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The amphetamine derivative, 3,4-methylenedioxymethamphetamine (MDMA), is a popular drug often 

taken by young adults at dance clubs or rave parties.  Laser light shows, fast-paced electronic music, and 

hot crowded dance floors are characteristic of these events, and Ecstasy users report that the acute effects of 

the drug are potentiated by these stimulatory conditions.  However, it remains largely unknown how 

environmental stimuli impact the neurochemical and physiological effects of MDMA.  The aim of the first 

study presented in this dissertation was to investigate how auditory stimuli (music, white noise, and no 

additional sound) influence MDMA conditioned place preference (CPP), self-administration, and nucleus 

accumbens (NAcc) dopamine (DA) and serotonin (5-HT) responses.  Findings revealed a significant CPP 

for animals exposed to white noise during MDMA conditioning trials.  After self-administration of MDMA 

(1.5 mg/kg), NAcc DA and 5-HT were highest in rats exposed to music during the test session.  The second 

study aimed to investigate the effects of ambient temperature (23° or 32°C) on long-term MDMA self-

administration and neurochemical responses.  Results indicated no difference in self-administration or 

locomotor activity rates for the high versus room temperature groups across sessions.  However, MDMA 

(3.0 mg/kg) administered in high ambient temperature resulted in significantly greater NAcc serotonin 

release compared to when taken at room temperature, but no differences in dopamine response was 

determined between the two conditions.  Overall, these results indicate that auditory and thermal stimuli 

can effect MDMA-induced behavioral and neurochemical responses.  The last aim tested a novel apparatus 

and method for use in animal models of drug reinforcement.  By combining traditional CPP and self-

administration procedures, this approach provided more informative data and circumvented some inherent 



 vii 

drawbacks of each method alone.  In addition to confirming the ability to produce drug conditioned place 

preferences after short- and long-term experiments, the long-term version of the procedure revealed a 

significant positive relationship between lever response rate and CPP magnitude. Therefore, this 

experimental design can be used to identify subgroups of rats that may vary in sensitivity to drug 

motivational effects.  Further study of these populations may be useful in the development of behavioral 

and pharmacological therapies for drug addiction. 
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CHAPTER 1: BACKGROUND AND SPECIFIC AIMS 

1-1. MDMA HISTORY 

 

MDMA was first synthesized by a German scientist, Dr. Anton Kollisch, in 1912 and 

patented by the pharmaceutical company, Merck, on May 16, 1914 in Germany.  At this 

time, the significance of the discovery was not yet known and MDMA was patented 

simply as a precursor of a novel chemical pathway for the clotting agent hydrastinine 

(Bernschneider-Reif et al., 2006).  In the 1950s, the drug was researched briefly by the 

US military in toxicology experiments on five different animal species.  However, data 

from these studies remained unpublished until 1973 (Hardman et al., 1973).     

 

In 1965, Alexander (“Sasha”) Shulgin, a chemist living in California, rediscovered and 

synthesized MDMA.  A few years later he began self-testing the drug, incrementally 

increasing the dose, until he recognized the drug’s strong psychoactive effects.  After 

researching the drug on himself and peers, he introduced the drug to his psychologist 

friend, Leo Zeff.  Dr. Zeff began using the drug in psychotherapy and it wasn’t long until 

several psychiatrists picked up on MDMA’s ability to help patients overcome emotional 

barriers and enhance communication during clinical sessions (Bernschneider-Reif et al., 

2006).   

 

In the early 1980s, the drug gained popularity in nightclubs and amongst rave cultures 

leading to its classification as a Schedule 1 controlled substance in the United States on 

May 31, 1985.  Ecstasy continued to gain popularity around the world and became an 

integral part of the electronic music movement and “rave party scene.”  This movement 
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began in Europe in the mid to late 1980s with the emergence of electronic music in clubs, 

warehouses, and underground parties.  The rave-party trend caught on quickly and before 

long a subculture grew out this movement.  Raves consisted of all night dance parties that 

featured fast-paced techno music and laser light shows.  Club drugs, such as MDMA, 

LSD, cocaine, amphetamines, and ketamine, were widely used among people who 

attended these parties.  Although there has been a decline in raves since the early 2000s 

due to government regulations, the trend is restarting and gaining momentum in a broad 

range of populations and settings around the globe.   

 

Since MDMA was placed on the list of Schedule 1 Controlled Substances in 1985, 

research on the medicinal value of the drug was largely halted because schedule 1 

substances are defined as having no currently accepted medical use and have the potential 

to be highly abused.  In 2002, a publication by George Ricaurte in Science was highly 

publicized because it showed recreational doses of MDMA to cause severe neurotoxicity 

in primates (Ricaurte et al., 2002).  The paper was later retracted with the explanation that 

there was a mix-up with the drug labels, and methamphetamine was used in these 

experiments, not Ecstasy (Ricaurte et al., 2003).  However, the retraction remained 

unknown to most of the general public and people were left with the notion that small 

doses of MDMA are highly toxic.  It has been speculated that the “drug mix-up” was 

politically driven and Ricaurte’s work should be carefully reexamined (Philipkoski, 

2004). 

 

In recent years, new research studies began to evaluate MDMA’s potential medicinal 

uses in psychotherapy for treating posttraumatic stress disorder (PTSD) and severe 

anxiety.  PTSD is a disorder that occurs after a traumatic event and causes the person to 
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experience severe, persistent anxiety and psychological trauma.  Common symptoms 

associated with the disorder include flashbacks, nightmares, increased arousal, and 

avoidance of things associated with the traumatic event.  MDMA-assisted psychotherapy 

may be an effective treatment for PTSD because of its ability to reduce the fear response 

and allow patients to express and experience strong emotions of fear, anger, and grief, 

which is a necessary step in the therapeutic process.  The first peer-reviewed article 

regarding these studies was published on September 30, 2008 in the Journal of 

Psychoactive Drugs and offered positive outcomes for MDMA-assisted psychotherapy 

(Bouso et al., 2008).  The Multidisciplinary Association for Psychedelic Studies (MAPS) 

is currently sponsoring further research in several countries around the world, including 

the U.S.A, Switzerland, Israel, Canada, Jordon, and Spain.  

 

1-2. HUMAN EFFECTS 

 

MDMA is classified under a new class of pharmacological agents called entactogens due 

to its ability to enhance feelings of emotional closeness and connectedness to others, 

empathy, love, and insightfulness.  Subjective reports state an overall euphoric feeling 

with heightened senses – especially the sense of touch.  MDMA can be ingested as a pure 

white crystalline solid or more commonly, pressed pills that are often not pure MDMA 

but a mix of other drugs. Common street names for MDMA include:  “Adam,” “Ecstasy,” 

“X-TC,” “love drug,” “X,” “molly.”   

 

Recreational use is most popular among teenagers and young adults, especially those who 

attend raves or all night dance parties. Raves and clubs offer environments that are rich in 

sensory stimulation, such as loud electronic dance music and flashing lights that may 
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enhance the positive and subjective effects of MDMA.  Indeed, it is estimated that 80-

95% of people who attend raves use Ecstasy, while 5-15% of young people in general 

report using the drug (Parrott, 2004). Therefore, the distinctive elements of the drug-

taking environment could play a role in both the primary reinforcing effects of the drug 

as well as the negative consequences associated with MDMA.  

 

Its widespread use is a cause for concern since research in recent years has shown long-

term neurotoxic and neurochemical changes in animal brains (Baumann et al., 2006; 

Glennon and Higgs, 1992; Quinton and Yamamoto, 2006). Human subjects report a 

higher euphoric state when taking the drug in clubs or raves, as compared to people who 

take the drug in a less stimulating environment (Hermle et al., 1993; Scholey et al., 

2004).  However, Ecstasy users can become dehydrated and have a greater chance of 

suffering more adverse medical problems such as rhabdomyolysis, intravascular 

coagulation, and acute renal failure when using the drug in such settings (Green et al., 

1995; Henry et al., 1992; Parrott et al., 2006). Human Ecstasy users can experience a 

range of behavioral and cognitive problems associated with taking the drug, including 

deficits in learning and memory performance (Bolla et al., 1998; Morgan, 2000; Parrott, 

2002).  

 

1-3. MECHANISM OF ACTION 

 

The amphetamine derivative, 3,4-methylenedioxymethamphetamine (MDMA), is the 

main component of the popular recreational drug, Ecstasy.  MDMA increases 

extracellular monoamine concentrations by a wide range of pharmacological actions, 

including increasing synthesis, carrier-mediated exchange, reuptake and metabolism 



 5 

inhibition (Cole and Sumnall, 2003; Gough et al., 1991).  MDMA induces a rapid release 

of pre-synaptic 5-HT, DA, NE, and Ach and acts to inhibit the reuptake of monoamines 

by actions on vesicular and plasma membrane transporter proteins, with the highest 

affinity for the serotonin transporter (SERT) (Gudelsky and Nash, 1996).  Another 

mechanism by which MDMA increases extracellular monoamine concentrations is by 

inhibiting MAOA and MAOB in all brain regions.  MDMA will bind to several different 

receptors, with the highest affinity for 5-HT2, !2-adrenergic, M1 muscarinic, H1 receptors, 

and a lower affinity for M2 muscarinic, !1- and "-adrenergic, and 5-HT1 receptors.  

MDMA-induced DA increase is mediated by direct or indirect activation of 5-HT2A 

receptors that are located on GABA neurons.  Once these receptors are activated there is 

a disruption of the negative feedback of GABA, subsequently increasing DA efflux (Cole 

and Sumnall, 2003; Schmidt et al., 1994).  The hypothalamic-pituitary-adrenal axis 

(HPA) is also activated after MDMA consumption, with increased concentrations of 

corticosterone, cortisol, and adrenal ascorbic acid (de la Torre et al., 2000).  MDMA has 

been shown to alter the hypothalamic-pituitary-gonadal reproductive axis, by suppressing 

gonadotropin-releasing hormone (GnRH) mRNA and serum testosterone levels in male 

rats (Dickerson et al., 2008).  Administration of MDMA produces a pronounced release 

of the hormones prolactin, vasopressin, and oxytocin (Emanuele et al., 2006; Fallon et al., 

2002; Forsling et al., 2002; Henry et al., 1998; Nash et al., 1988).  The drug also affects 

the immune system by reducing the number of lymphocytes in circulation and by 

suppressing T-lymphocyte and immunoglobulin production (Connor, 2004; Connor et al., 

1998; House et al., 1995; Pacifici et al., 2001). 
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1-4. MESOLIMBIC DOPAMINERGIC SYSTEM 

 

The mesolimbic dopaminergic system, also known as the “reward or pleasure pathway,” 

is a pathway in the brain that is activated by rewarding stimuli, such as food, sex, and 

drugs of abuse (Adinoff, 2004; Volkow et al., 2002).  In this pathway, the ventral 

tegmental area (VTA) connects the limbic areas by projecting to the nucleus accumbens 

(NAcc) and the prefrontal cortex (PFC).  The NAcc, which receives dopaminergic inputs 

from the VTA, plays an important role in mediating the reinforcing and motivational 

effects of MDMA and other addictive drugs (Cadoni et al., 2005; Di Chiara et al., 2004; 

Ritz and Kuhar, 1993).  The nucleus accumbens is comprised of two subregions, the core 

and the shell, which differ in function and morphology (Di Chiara et al., 2004).  Several 

studies describe how the mesolimbic dopaminergic system may become dysregulated 

after chronic drug use (Badiani and Robinson, 2004; Bardo, 1998; Nestler, 2004).   
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Illustration 1:  Mesolimbic Dopaminergic System 

 

Illustration drawn with the assistance of (Paxinos and Watson, 1997). 

 

1-5. CHEMICAL STRUCTURE 

 

MDMA is a ring-substituted amphetamine derivative, similar in chemical structure to 

mescaline and methamphetamine.  Due to its structure and mechanism of action, MDMA 

falls under the classification of a phenethylamine, stimulant, psychedelic, and 
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empathogenic-entactogen.  MDMA has R (-) and S (+) optical isomers.  The two main 

metabolic products of MDMA are 3,4-methylenedioxyamphetamine (MDA) and 3,4-

dihydroxymethamphetamine (DHMA), which are metabolized further via cathechol-O-

methyl transferase mediated reactions to 4-hydroxy-3-methoxymethamphetamine 

(HMMA) and 4-hydroxy-3-methoxyamphetamine (HMA).   

 

Illustration 2:  MDMA Chemical Structure 

 

 

 

 

 

 

1-6.   THERMOREGULATION 

 

Thermoregulation is accomplished by several systems that involve both behavioral and 

autonomic responses; namely shivering, nonshivering thermogenesis, and cutaneous 

blood flow (Kanosue et al., 1994b; Morrison, 2001a; Nagashima et al., 2000).  The 

preoptic area (PO) of the rostral part of the hypothalamus receives information from 

thermorecptors located on the body (surface and core) and the brain to control 

thermogenic responses that maintain body temperatures.  Warm-sensitive neurons in the 

PO send excitatory efferent signals down through the medial forebrain region to induce 
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heat loss and inhibitory efferent signals to stimulate heat production (Kanosue et al., 

1994a).  Neurons in the dorsomedial hypothalamus (DMH) also play an important role in 

thermoregulatory cutaneous vasoconstriction, shivering, and endocrine responses 

(Dimicco and Zaretsky, 2007).   

 

Rats’ main control of body temperature is through vasodilatation or vasoconstriction of 

the tails’ blood vessels. The rat’s tail is well suited for thermoregulation because it is 

highly vasculated with a large surface to volume ratio and has no fur.  In order to cool the 

body, the tail vessels expand allowing for warm blood to pass through the tail and heat to 

escape through the surface of the tail.  When the blood vessels of the tail constrict, this 

limits blood flow and conserves heat to increase the body temperature of the rat (Raman 

et al., 1987; Vanhoutte et al., 2002; Wu et al., 1995).  Two regions in the midbrain, the 

ventrolateral part of the rostral periaqueductal gray and the ventral tegmental area (VTA), 

receive input from the PO to control blood flow to the tail via postganglionic sympathetic 

neurons in the intermediolateral cell column.  In rats, the tail sympathetic nerve activity is 

activated by the premotor neurons in the raphe nuclei and not the rostral ventrolateral 

medulla (RVLM) as seen in other species (McAllen and May, 1994; Morrison, 2001b; 

Rathner and McAllen, 1999).    

 

Nonshivering thermogenesis has been primarily studied with brown adipose tissue 

(BAT), which is an important mechanism for heat production especially in small animals.  

Sympathetic premotor neurons in the rostral raphe nuclei (RnR) project to preganglionic 

neurons that give direct excitatory cholinergic inputs to interscapular BAT.  The 

activation of uncoupling proteins (UCP), which are found in mitochondrial inner 
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membranes, provides energy for oxidative phosphorylation and heat production (Mills et 

al., 2003; Rusyniak et al., 2008; Sprague et al., 2003). 

 

 1-7.   MDMA AND ELEVATED AMBIENT TEMPERATURE 

 

In animal studies, MDMA has been reported to induce both hypothermia and 

hyperthermia, depending on several factors such as dose, experience, and ambient 

temperature (Dafters, 1995; Malberg and Seiden, 1998).  The key mechanism of action of 

MDMA involves the enhancement of extracellular dopamine and to a greater degree, 

serotonin (Baumann et al., 2008; Koch and Galloway, 1997; Kurling et al., 2008).  The 

induction of hyperthermia by MDMA is likely due to activation of specific receptor 

subtypes, D1 and 5-HT2A, which leads to the compromise of normal thermoregulatory 

control (Green et al., 2004a; Mechan et al., 2002; Shioda et al., 2008).  Following a dose 

of MDMA, Mechan et al. did not observe any changes in rats’ tail temperatures, even 

though there was a significant increase in rectal temperatures, indicating that MDMA 

interferes with normal tail heat loss mechanisms (Mechan et al., 2002).  Additionally, 

nonshivering mechanisms of thermogenesis are important for MDMA-induced 

hyperthermia.  MDMA activates the sympathetic nervous system (SNS), which increases 

!1- and "3-adrenoreceptor modulation of uncoupling protein (UCP3) in skeletal muscles 

and uncoupling protein (UCP1) in BAT leading to a rise in body temperature (Mills et al., 

2003; Rusyniak et al., 2008; Sprague et al., 2003). 

 

In rodents, the magnitude of the hyperthermic response is tightly correlated with 

symptoms of the serotonin syndrome and MDMA-induced neurotoxicity (Huether et al., 
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1997).  Equally important, hyperthermia is a prominent symptom of acute MDMA-

induced toxicity in humans (Green et al., 2004a).  High temperatures may also increase 

neurotoxicity associated with MDMA (Green et al., 1995; Green et al., 2004b), while low 

temperatures may help protect against toxicity (Dafters, 1994; Green et al., 2004b; 

Parrott, 2004).  The underlying mechanisms are not clearly understood.  The involvement 

of free radicals is believed to play a role because their formation increased in 

hyperthermic rats (Colado et al., 1999; Colado et al., 1997; Green et al., 2003). 

 

Cornish et al. showed that environmental factors, such as raised temperature, increase 

intravenous self-administration in animals, thus indicating that heat enhances the 

rewarding effects of MDMA (Cornish et al., 2003).  Furthermore, rats injected with 

MDMA at high ambient temperatures show a greater enhancement of extracellular 5-HT 

and DA in the NAcc, compared to rats that receive the drug in lower temperatures 

(O'Shea et al., 2005).  

 

1-8.   ANIMALS AND MUSIC 

 

Insights into the evolution of human music and language have been revealed by 

comparative studies in animals (Fitch, 2005; 2006).  Various animal behaviors are 

considered to be a parallel of human music making, namely birdsong, whale and seal 

complex vocalizations, and rat ultrasonic vocalizations.  Additionally, African great apes 

(chimpanzee, bonobos, and gorillas) and monkeys use objects to make structured, 

periodic sounds (drumming) and other acoustic gestures, such as hand clapping and chest 

beating (Fitch, 2005).  A recent study using the rhesus monkeys, demonstrated that vocal 
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and nonvocal communication are represented in the temporal lobe and amygdala by 

overlapping neural networks.  Furthermore, drumming communicated information about 

social status or the emotional state of the drummer to other monkeys (Remedios et al., 

2009).  Primate drumming behavior may be homologous to human instrumental music, 

due to its inherent nature and universality in all human cultures.   

 

Other species use acoustic gestures in addition to their vocalizations.  For example, 

rodents drum their paws on the ground in rhythmic fashion (Randall, 2001).   

Footdrumming is common among desert rodents who have well-adapted ears for hearing 

low-frequency vibrations in the air or from the ground.  A footdrum occurs each time the 

rat’s hind paw hits the ground, and these footdrums are combined into short bursts called 

footrolls, which are then grouped to make a sequence.  In three species of kangaroo rats, 

each have distinct footdrumming sequences and are believed to communicate territorial 

ownership, location, and competitive superiority (Randall, 1997; Randall and Lewis, 

1997).  General auditory constraints used in animal vocalizations are also likely to 

influence human music, however, from an evolutionary perspective it is unlikely that 

animal song is analogous with human music.  Thus far, animal singing has specific 

adaptivity for mate attraction or territory defense, while human music is often made for 

pure enjoyment, beyond the purpose of communication (Hauser and McDermott, 2003).   

 

Similarities in the way animals and humans process complex auditory signals has led to 

the development of animal models to investigate the effects of music on physiology, 
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cognition, and emotion (Panksepp and Bernatzky, 2002; Rickard et al., 2005).  Animal 

research allows for more systematic experimental designs and a wider variety of methods 

(pharmacological, invasive recordings, and lesions) available compared to human 

research studies.  In order for studies from animals to be transferable back to humans, 

several lines of evidence have demonstrated homologous ways in which animals and 

humans perceive music.  For example, animals can discriminate and respond to basic 

elements of music, namely variations in tempo, pitch, and loudness (Rickard et al., 2005).  

One study in anesthetized cats showed that auditory neurons respond to tonal contour 

(Weinberger, 1988).  Another approach investigated perceptual invariance, which “refers 

to a structural characteristic that is perceived as the same even when transformed.”  In a 

discrimination task, European song birds were able to differentiate between various 

timbers, intensities, rhythms, pitches, pitch patterns, and recognize missing notes in 

harmonic complexes (Hulse et al., 1984; Page et al., 1989).   With regard to pitch 

processing, unlike humans, the birds performed poorly when the pitches were beyond the 

range used in training suggesting that birds use absolute pitch processing while humans 

rely more on relative pitch processing.  Furthermore, several species, including rats, 

dolphins, monkeys show octave equivalence (Blackwell, 1943; Richards et al., 1984; 

Wright et al., 2000).  In sum, animals perceive and discriminate musical sounds in many 

similar ways to humans indicating similar underlying brain structures for auditory 

functions (Hauser and McDermott, 2003; Panksepp and Bernatzky, 2002).   
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Preference tests, approach behaviors, and social activity measures have been used in 

variety of studies with different species to address the question of whether or not animals 

have affective responses to music.  Peretti and Kippschull demonstrated mice having an 

enhancement of attraction to other mice, huddling, and sexual behavior when exposed to 

classical music and a decrease in these behaviors when exposed to rock music (Peretti, 

1991).  Dogs spent more time resting and less time barking when classical music was 

played (Wells, 2002) and monkeys showed a decrease in plasma cortisol levels when 

listening to music (Line, 1991).  These studies do not provide conclusive evidence of 

animals and humans having the same emotional responses to music, but that music is 

capable of influencing certain animal behaviors.  

 

Other areas of research have investigated the effects of music on cognitive performance, 

including spatial tasks, learning, and memory.  In humans, music has been reported to 

facilitate performance on a number of cognitive tasks and has positive effects in music 

therapy for a huge variety of disorders (Abikoff et al., 1996; Avers et al., 2007; 

Cockerton et al., 1997; Gold, 2007; Wu and Chou, 2008).  A number of animal studies 

have also shown auditory stimuli to enhance learning and memory (Angelucci et al., 

2007b; Prior, 2006).  There are several theories discussing the underlying mechanisms of 

music’s effects on cognitive performance, most notably the arousal hypothesis.  Music, 

particularly the temporal components, has been shown to increase arousal levels via 

adrenal stress hormones and neurotransmitters (Britton et al., 1992; Rickard, 2009; 

Rickard et al., 2005; Sutoo and Akiyama, 2004; Toukhsati et al., 2005).  In humans and 
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animals, enhanced arousal can improve cognitive performance and memory, which could 

partially explain the effects of music on cognition (Bianchin et al., 1999; Crowe et al., 

1990; Rickard et al., 2005).  Further evidence for the arousal hypothesis, comes from a 

recent study by Fang et al. that demonstrated brain music decreases sleep and increases 

arousal levels in rats (Fang et al., 2009).  Additionally, music may also be providing an 

enriched environment, which can facilitate neural plasticity (Angelucci et al., 2007a; 

Angelucci et al., 2007b; Cai et al., 2009).  In sum, animal models significantly contribute 

to the evolutionary study of music and research involving the physiological and cognitive 

effects of music.  As with many other animal models used in neuroscience, information 

gathered from these studies is not 100% analogous to humans but still gives valuable 

information that is transferable back to human research.   

 

1-9. AUDITORY STIMULI AND AMPHETAMINE DERIVATIVES  

 

Little is known about the reinforcing properties of music on the Ecstasy experience. 

However, gathering evidence is beginning to show the neurotoxic effects of 

amphetamines and amphetamine derivatives may be increased by loud noise (Gesi et al., 

2004; Scholey et al., 2004).  Iannone et al. reported a marked increase in electrocortical 

activity of the telencephalic cortex in rats treated with MDMA (3 mg/kg and 6 mg/kg) 

and acoustic stimulation (white noise; 95 Db) compared to rats that received MDMA in 

the absence of additional environmental sound (Iannone et al., 2006).  In another study, 

mice given methamphetamine (75 mg/kg) while exposed to loud music (95 Db) showed a 

change in a number of behavioral parameters and experienced more seizures than mice 
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given the same dose of methamphetamine in silence (ambient noise, 55 Db) or in the 

presence white noise (95 Db) (Morton et al., 2001).  Cagiano et al. recently published a 

paper demonstrating low-doses of MDMA (3 mg/kg) in combination with loud music 

will increase the number of male rats showing sexual activity compared to rats 

administered the drug without music (Cagiano et al., 2008). 

 

Evidence also suggests that music influences the dopaminergic mesolimbic pathway in 

the brain, the same pathway that is activated by drugs of abuse and natural rewards, such 

as food and sex.  Music improves dopaminergic neurotransmission and increases 

neostriatal DA concentrations and serum calcium levels in spontaneously hypertensive 

rats (SHR). Systolic blood pressure was significantly decreased after these rats were 

exposed to music due to increased DA activity on D2 receptors (Sutoo and Akiyama, 

2004).  A human fMRI study showed the mesolimbic dopaminergic system, including the 

NAcc and VTA, is highly activated and tightly connected during music processing.  The 

hypothalamus, an important area for the physiological and autonomic response to 

emotional stimuli (Blood and Zatorre, 2001; Menon and Levitin, 2005), was also 

activated when subjects listened to pleasant music.  By using both functional (correlation 

of activations between regions) and effective connectivity (interactions of brain regions 

by anatomical connections) analyses, researchers concluded that increases in NAcc and 

VTA dopamine levels may underlie the rewarding and reinforcing aspects of listening to 

music (Menon and Levitin, 2005).   Taken together, these findings indicate that music 

and MDMA may work on common neural networks involving reward and arousal and 

most likely influence each other.  Since Ecstasy is often taken in environments rich in 

sensory stimulation, it is relevant to investigate the role music plays in enhancing the 

MDMA experience.  A pertinent question to address is whether music offers additional 
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arousal, which may potentially increase the toxicity of the drugs, and whether sound level 

and intensity cause any additional altered effects.  

 

1-10. MDMA NEUROTOXICITY  

 

MDMA has been shown to change many markers of serotonergic nerve terminals, 

including depletions of tissue 5-HT levels and SERT function (Baumann et al., 2006; 

Glennon and Higgs, 1992; Quinton and Yamamoto, 2006; Schmidt et al., 1987; Stone et 

al., 1987b).  Anatomical studies reveal that the 5-HT cell bodies remain intact, but axonal 

projections into other brain areas are significantly reduced (Fischer et al., 1995; O'Hearn 

et al., 1988).  The main metabolite of MDMA, 5-hydroxyindoleacetic acid (5-HIAA), and 

the rate-limiting enzyme in 5-HT synthesis, tryptophan hydroxylase (TPH), are reduced 

after single or repetitive doses of MDMA (Schmidt and Taylor, 1987; Schmidt et al., 

1986; Stone et al., 1987a; Stone et al., 1987b).  The neurotoxic effects of MDMA may be 

caused by the increase of free radical formation and oxidative stress in the brain (Cadet et 

al., 2001; Colado et al., 1997; Halliwell and Kaur, 1997; Halliwell et al., 1991).     

 

However, the majority of the studies that investigated MDMA neurotoxicity in rats used 

extremely high dosing regimens of 10 mg/kg or higher (Battaglia et al., 1987; Commins 

et al., 1987; O'Hearn et al., 1988; Schmidt, 1987; Stone et al., 1987a), which may not be 

comparable to recreational doses taken by humans (Green et al., 2003).  Evidence 

suggests that a dose of 1-2 mg/kg of MDMA will produce similar pharmacological 

effects in both rats and humans (Glennon and Higgs, 1992; Gudelsky and Nash, 1996; 

Kankaanpaa et al., 1998; Oberlender and Nichols, 1988).  Therefore, it is important to 
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investigate whether low doses of MDMA cause any long-term changes of 5-HT neuronal 

markers, as well as, the role the environment plays in MDMA-induced neurotoxicity.   

 

1-11.   MDMA BEHAVIORAL EFFECTS  

 

MDMA dose-dependently enhances locomotor activity, which is mediated by an 

interaction between dopamine and serotonin (Bankson and Cunningham, 2001; 2002).  

Evidence for this interaction comes from studies reporting lesions (6-OHDA) of the DA 

system did not completely abolish MDMA-induced hyperactivity (Gold et al., 1989) and 

5-HT1B receptor agonists lead to increased locomotion similar to that seen with MDMA 

(Rempel et al., 1993).  Furthermore, treatment with 5-HT2A receptor antagonist reduced 

MDMA-stimulated hyperlocomotion, indicating the importance of 5-HT2A receptors in 

this response (Kehne et al., 1996).  Additionally, transgenic mice without SERT or 5-

HT1B receptor lack MDMA-induced hyperlocomotion.  Baumann et al. showed MDMA-

stimulated monoamine (DA and 5-HT) release to be positively correlated with locomotor 

activity and stereotypy behaviors (Baumann et al., 2008).  The increase in activity is 

predominantly seen in the periphery of the testing chamber, where as amphetamines 

increase activity throughout the entire chamber (Callaway et al., 1990; Gold and Koob, 

1989; McCreary et al., 1999).  As seen with psychostimulants, repeated low doses of 

MDMA can elicit locomotor sensitization (Spanos and Yamamoto, 1989).  Certain 

stereotypical behaviors have been associated with the massive release of serotonin, which 

can be exacerbated by high temperatures, and have come to be known as the serotonin 

syndrome (Kutscher and Yamamoto, 1979; Piper et al., 2005; Spanos and Yamamoto, 

1989).  Serotonin syndrome behaviors in rats are described as forepaw treading (lateral 

side-to-side movement of the forepaws with little motion of the hindlimbs), headweaving 
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(lateral side-to-side movement of the head with no forward locomotion), low body 

posture (underbelly nearly touching the floor and the hindlimbs drawn away from the 

axis of the body) (Hiramatsu et al., 1989; Spanos and Yamamoto, 1989).  In humans the 

symptoms of serotonin syndrome include hyperactivity, mental confusion, agitation, 

fever, tachycardia, shivering, clonus, myoclonus, ocular oscillations, and tremor (Green 

et al., 1995; Huether et al., 1997).  This severe adverse drug reaction is unusual and often 

caused by serotonergic drug interactions with MDMA, such as monoamine oxidase 

inhibitors (MAOIs) and selective serotonin reuptake inhibitors (SSRIs).  Medical 

intervention involves cooling the body and the use of 5-HT2 and 5-HT1A antagonists 

(Gillman, 1998; 1999). 

 

1-12.  ANIMAL MODELS OF DRUG REINFORCEMENT 

 

Animal models of addiction, including place conditioning procedures and operant drug 

self-administration, are highly reliable and widely used for estimating the abuse potential 

of drugs in humans (Bardo and Bevins, 2000; Bozarth et al., 1980; Tzschentke, 1998).  

There have been over 1000 new published reports using place conditioning procedures 

since 1998, with the number of publications increasing each year (Tzschentke, 2007).  

Place conditioning procedures are used to measure the subjective, reinforcing or aversive 

properties of natural rewards and drugs of abuse.  The drug’s reinforcing or aversive 

effects act as an unconditioned stimulus (UCS) and after several pairings with neutral 

environmental cues; the environment becomes a conditioned stimulus (CS) and then 

alone can elicit approach/avoidance behaviors.  Such behaviors can be measured to 

provide information regarding the reinforcing properties of the drug. The apparatus used 
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in this paradigm consists of a conditioning box with two distinct environments usually 

differing in color, floor texture, lighting, or odor.  After multiple days of conditioning, 

one compartment becomes associated with the drug, while the other compartment is 

linked to saline.  On the test day, animals in a drug-free state are allowed access to both 

compartments.  A conditioned place preference (CPP) is indicated by an increase in time 

spent in the drug-paired compartment and a conditioned place aversion (CPA) by a 

decrease in time spent in the drug-paired compartment.   

 

In rats, most drugs that produce a CPP are also self-administered and vice versa, drugs 

that don’t produce a CPP aren’t self-administered.  However, there are a few examples 

where this is not the case:  LSD, buspirone, and pentylenetetrazole produce a CPP but is 

not self-administered, whereas pentobarbital and phencylclidine are self-administered but 

no CPP is observed (Bardo and Bevins, 2000).   

 

Operant self-administration models are extensively used in pre-clinical drug research on 

account of being a reliable and valid measure in predicting drug consumption in humans 

(Fischman and Schuster, 1978; Gardner, 2000; Panlilio and Goldberg, 2007; Schuster and 

Thompson, 1969).  Consequently, these procedures are employed to find strategies that 

are useful in terminating drug use, treating addiction, and deterring future drug-seeking 

and relapse in abstinent users.  Numerous paradigms and conditions extend from basic 

operant self-administration to model different aspects of addiction.  Namely, these are 

schedules of reinforcement (simple fixed ratio schedules, progressive-ratio schedules, 

multiple schedules), route of administration (intravenous, oral, inhalation, intracranial), 

and speed of drug delivery (Arnold and Roberts, 1997; Meisch, 2001; Roberts et al., 

2007).  
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Operant self-administration and place conditioning procedures are valuable behavioral 

pharmacological approaches to studying drug addiction and reinforcement (Panlilio and 

Goldberg, 2007; Tzschentke, 2007).  However, both methods have inherent 

methodological drawbacks.  One large drawback of the conditioned place preference 

procedure/chamber is that the drug is administered non-contingently, which has been 

shown to change a variety of behavioral and neurochemical aspects as compared to the 

same drugs that are self-administered (Miguens et al., 2008; Moolten and Kornetsky, 

1990; Palamarchouk et al., 2009; Stefanski et al., 2007; Twining et al., 2009).  The 

differences can be attributed to the mode of drug intake and is not an accurate model of 

the human experience (Collins et al., 1984).  Furthermore, CPP does not provide any 

information regarding changes in motivation to seek drugs or drug dependence.  The 

operant self-administration method also has potential pitfalls.  The rates of responding are 

used to infer reward value but are affected by motor drug effects.  The ability to test 

conditioned place preference in a drug-free state circumvents this problem.  Furthermore, 

self-administration procedures can be time consuming and expensive to conduct.  

Combining self-administration experiments with place conditioning would offer a more 

time and cost-effective approach.  

 

1-12. MDMA PLACE CONDITIONING AND SELF-ADMINISTRATION EXPERIMENTS 

 

MDMA causes a dose dependent conditioned place preference in rats, with optimal doses 

ranging from 2.0–10.0 mg/kg (Bilsky et al., 1990; Marona-Lewicka et al., 1996).  

However, other non-drug factors may be crucial to the development of the MDMA CPP. 

Meyer et al. showed that the housing conditions of the animals influenced the ability of 
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MDMA to produce a significant CPP, with isolated animals showing a more pronounced 

CPP than group-housed rats (Herzig et al., 2005; Meyer et al., 2002).  Although MDMA 

produces a positive CPP, it has not been shown to be a potent reinforcer in self-

administration studies (De La Garza et al., 2006; Ratzenboeck et al., 2001).  Laboratory 

rodents and non-human primates will self-administer MDMA but response-acquisition is 

more gradual in comparison to other drugs, such as cocaine or methamphetamine 

(Fantegrossi et al., 2004; Reveron et al., 2006; Schenk et al., 2003). 

 

1-14.   COCAINE PLACE CONDITIONING AND SELF-ADMINISTRATION EXPERIMENTS 

 

A large number a studies show the dopaminergic drug, cocaine, induces a conditioned 

place preference and several factors influence the magnitude of place conditioning, 

namely:  species, dose, route of administration, number and duration of drug-pairings, 

experimental procedure, sex, and age (Russo et al., 2003; Zakharova et al., 2009a; 

Zakharova et al., 2009b).  Adult female and both male and female periadolescent rats 

show cocaine CPP at a lower dose than adult male rats (Russo et al., 2003; Zakharova et 

al., 2009b).  A large range of doses can induce CPP, as well as, various routes of 

administration (i.p., s.c., and i.v.) (Bardo et al., 1999; Sellings et al., 2006; Tzschentke, 

2007).  A meta-analysis of cocaine CPP in the literature by Bardo et. al.,  showed no 

dose-CPP effect relationship meaning there was no significant differences between the 

strength of CPP produced by a range of cocaine doses (0.1 – 10 mg/kg, i.v., s.c., and i.p. 

combined) included in the analysis (Bardo et al., 1995).  However the authors note, that 

other studies have shown IP cocaine administration to produce a monotonic ascending 

dose-effect curve and IV administration to produce an inverted U-shaped dose-effect 
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curve (Nomikos and Spyraki, 1988).  Separate analysis of each route of administration by 

Bardo et. al., also failed to show a dose-effect response for cocaine CPP (Bardo et al., 

1995).  Other factors (see above in this section) than dose seem to have a greater impact 

on the magnitude of cocaine-induced CPP.    

 

Cocaine is readily self-administered by several different animal species and a large body 

of evidence illustrates that the reinforcing effects is dependent on dopamine transmission 

in the mesolimbic dopaminergic system (Ikegami et al., 2007; Pettit and Justice, 1991; 

Rocha et al., 1998).  Cocaine self-administration rates can be affected by a number of 

factors:  schedule of reinforcement, prior drug experience, dose, injection speed, and drug 

deprivation (Liu et al., 2005; Roberts et al., 2007; Sellings et al., 2006).   

 

1-15.   SUMMARY AND SPECIFIC AIMS 

 

The environmental contexts in which drugs are taken have been shown to modulate drug-

induced neuroadaptations (Badiani and Robinson, 2004).  Indeed, drug-associated 

environmental stimuli have the ability to induce drug craving and elicit drug seeking in 

both animals and humans (Childress et al., 1993; O'Brien et al., 1992).  Since MDMA is 

often used at clubs and raves, which offer environments rich in sensory stimulation, it is 

important to investigate how these settings influence the Ecstasy experience.  Loud music 

and high ambient temperatures may heighten the subjective effects of the drugs, but may 

also enhance the deleterious effects of the MDMA.  Since environmental factors, such as 

raised temperature have been shown to increase responding for MDMA (Cornish et al., 
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2003), it is important to investigate the role of other contextual components in initiation 

and maintenance of MDMA self-administration.  

 

The goal of the chapters 2 and 3 is to determine if environmental acoustic stimulation and 

increased ambient temperatures potentiate the neuropsychobiological effects and 

reinforcing properties of MDMA.  The focus of these chapters will be on behavior 

parameters that may be altered as a result of taking MDMA under varying conditions, as 

well as, changes in NAcc monoamines levels measured by in vivo microdialysis.  These 

chapters of the dissertation will provide insight into the neurochemical and behavioral 

changes associated with using MDMA in popular settings, such as dance clubs and raves. 

 

Animal models are useful and valid tools for studying mechanisms of drug reinforcement 

and are critical for advances in addiction research.  Place conditioning and self-

administration procedures are used extensively throughout the literature to investigate 

several facets of drug abuse and addiction including: (a) abuse liability, (b) drug intake, 

(c) drug seeking, (d) initiation, maintenance, and reinstatement (e) reinforcement and 

reward, (f) drug-induced tolerance and sensitization and (g) withdrawal and relapse.   

Although these methods have proven insightful, there are inherent drawbacks associated 

with both of these procedures.  In chapter 4, a novel apparatus and approach combines 

traditional CPP with self-administration to provide a measure that more accurately 

models human drug consumption and gives more informative data than either method 

alone.  
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Specific Aim 1: To determine the effects of auditory stimuli on MDMA conditioned 

place preference, self-administration, and NAcc dopamine and serotonin responses 

(chapter 2).   

 

Specific Aim 2: To determine the effects of thermal stimuli on long-term MDMA self-

administration, locomotor activity, core body temperature changes, and NAcc dopamine 

and serotonin responses (chapter 3).  

 

Specific Aim 3: To test a novel apparatus and approach for use in animal models of drug 

reinforcement (chapter 4). 
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CHAPTER 2:  AUDITORY STIMULI ENHANCES MDMA-

CONDITIONED REWARD AND MDMA-INDUCED NUCLEUS 

ACCUMBENS DOPAMINE, SEROTONIN AND LOCOMOTOR 

RESPONSES 

2-1.  ABSTRACT 

 

MDMA (3,4-methylenedioxymethamphetamine), also known as Ecstasy, is a popular 

drug often taken in environments rich in audio and visual stimulation, such as clubs and 

dance parties. The present experiments were conducted to test the notion that auditory 

stimulation influences the rewarding effects of MDMA.  In Experiment 1, a conditioned 

place preference (CPP) procedure was conducted in which rats received MDMA (1.5 

mg/kg, s.c.) in a distinctive environment accompanied by music (65-75 dB), white noise 

(70 db), or no added sound. Animals were pre-treated with saline on alternating days in 

an alternate environment.  Results revealed CPP in animals exposed to white noise during 

MDMA trials.  For Experiment 2, rats from Experiment 1 had access to operant levers 

that delivered intravenous MDMA (0.5 mg/kg/inj) or saline (0.1 ml) on alternate days in 

the presence or absence of the same types of auditory stimuli as previously experienced. 

After three each of MDMA and non-reinforced (saline) sessions, animals were tested for 

NAcc DA and 5-HT responses to MDMA (1.5 mg/kg) or saline under the same stimulus 

conditions. Findings revealed that NAcc DA and 5-HT increased after an MDMA 

injection, and both DA and 5-HT were significantly highest in animals exposed to music 

during the test session. These results indicate that paired sensorial stimuli can engage the 

same systems activated during drug use and enhance neurochemical and behavioral 

responses to MDMA administration. 
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2-2.  INTRODUCTION 

 

MDMA (3,4-methylenedioxymethamphetamine), also known as Ecstasy, is a popular 

drug often taken at clubs and raves, particularly by adolescents and young adults. Raves 

and clubs offer environments that are rich in sensory stimulation, such as loud electronic 

dance music and flashing lights that may enhance the positive and subjective effects of 

MDMA.  Indeed, it is estimated that 80-95% of people who attend raves use Ecstasy, 

while 5-15% of young people in general report using the drug (Parrott, 2004). Therefore, 

the distinctive elements of the drug-taking environment could play a role in both the 

primary reinforcing effects of the drug as well as the negative consequences associated 

with MDMA.  

 

Although MDMA use occurs most frequently in environments rich in sensory 

stimulation, little is known about the reinforcing properties of music on the Ecstasy 

experience. Evidence suggests that music influences the dopaminergic mesolimbic 

pathway in the brain, the same pathway that is activated by drugs of abuse and natural 

rewards, such as food and sex.  For instance, human fMRI studies show the mesolimbic 

dopaminergic system, including the NAcc and VTA, are highly activated during music 

processing (Blood and Zatorre, 2001; Menon and Levitin, 2005), and music increases 

dopaminergic neurotransmission and neostriatal DA concentrations in spontaneously 

hypertensive rats (SHR) (Sutoo and Akiyama, 2004). These findings indicate that music 

activates common neural networks involved in reinforcement and arousal, raising the 

possibility that MDMA and music may be mutually influential on reward pathways.  
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Animal models of addiction, including conditioned place preference (CPP) and drug self-

administration are useful in predicting or confirming drug candidates with abuse potential 

in humans. However, even though MDMA is a very popular drug in party-like 

atmospheres, response rates and speed of acquisition for MDMA self-administration are 

low (Reveron et al., 2006; Schenk et al., 2003), especially when compared to cocaine 

(Lile et al., 2005). Since human MDMA use patterns are typically intermittent, it is 

possible that the reinforcing properties of MDMA are difficult to assess using standard 

animal models of addiction. Another possibility is that MDMA administered in the 

absence of additional sensory stimuli (e.g., music, noise, lights) may not truly reflect the 

subjective rewarding qualities of MDMA intake within a sensory-rich environment.  

 

In the experiments presented here, rats were exposed to intermittent, low dosages of 

MDMA to test the hypothesis that auditory stimuli present in environments paired with 

MDMA influence behavioral and neurochemical responses to the drug.  For the first stage 

of the experiment, a 6-day CPP procedure was performed in which 3 days of MDMA 

treatment (1.5 mg/kg) alternated with 3 days of saline injections (0.1 ml).  During 

MDMA sessions, rats were exposed to music (65-75 dB), white noise (70 dB) or no 

additional sound (ambient noise approx 52 dB).  CPP was assessed on Day 7 in the 

absence of MDMA and auditory stimuli. In Experiment 2, a sub-group of the same rats 

were trained to lever press for food reinforcement.  The animals subsequently underwent 

intravenous catheterization and stereotaxic surgery to enable drug self-administration and 

in vivo microdialysis testing. During cue conditioning/ operant sessions (which 

commenced 3 weeks after the CPP test), rats were allowed access to levers that, when 

activated, delivered MDMA (0.5 mg/kg/inj) or saline (0.1 ml) over 6 alternating days (3 

MDMA and 3 saline sessions) in the presence of visual and auditory stimuli similar to the 
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CPP conditions.  On Day 7 of this experimental phase, rats were tested for NAcc DA and 

5-HT responses to a self-administered MDMA injection or to a non-reinforced operant 

response in the presence or absence of auditory stimuli. 

 

2-3.  MATERIALS AND METHODS 

2-3-1. Animals  

100 adult male Sprague-Dawley rats (200-250 g at the start of the experiment), obtained 

from the University of Texas Animal Resource Center, were used in this study.   Two 

weeks prior to the experiment, animals were handled daily.  Rats were group housed in 

plastic cages; after surgery they were housed individually.  They had free access to food 

and water and were on a 12:12 reverse light dark cycle.  Animals were kept in accordance 

with the Guide for the Care and Use of Laboratory Animals (U.S. Public Health Service, 

National Institute of Health) and the Institutional Animal Care and Use Committee 

(IACUC) at the University of Texas at Austin. 

 

2-3-2. Drug and Sensory Stimuli (Cues) 

MDMA 

(+/-) 3,4-methylenedioxymethamphetamine HCl used in this experiment was provided 

through the NIDA Drug Inventory Supply and Control Program (RTI International, 

Research Triangle Park, NC). The drug was dissolved in isotonic saline solution (0.9 %) 

for intravenous and subcutaneous injections.  
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Sensory Stimuli 

Auditory stimuli consisted of music (The Very Best Euphoric House Breakdown; Telstar 

Records, UK) similar to the genre of music that would be played in a club or rave, and 

white noise (Pure White Noise, Tallahassee, FL).  Two speakers produced sound at 65-75 

dB, measured by a sound pressure level meter (Galaxy Audio, Wichita, KS). Visual 

stimuli consisted of all black or all white walls in the place conditioning apparatus and 

operant chambers.  During operant trials, olfactory stimuli (cinnamon or rose oil-based 

scents) were also paired with visual and auditory cues. 
 

2-3-3.  Apparatus 

Place Preference   

The place preference apparatus used consisted of two compartments (26.6 x 27.6 x 31 

cm) separated by a removable piece of Plexiglas.  One compartment had white walls and 

chicken wire over the white floor.  The other compartment had black walls and a black 

Plexiglas floor.   
 

Operant Conditioning Chambers 

Operant chambers (28 x 22 x 21 cm) located within sound-attenuating compartments 

(Med Associates, St. Albans, VT) were used for food training, self-administration and in 

vivo microdialysis sessions.  Chambers had a single lever on the right wall and a stimulus 

light above the lever.  Three sets of photocells were located on the lower front and back 

walls of the chamber.  Breakages in the photocell beams were recorded as locomotor 
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activity units. Lever presses and locomotor activity were recorded during each session 

using a Med Pentium 100 MHZ computer equipped with Med-PC software. 

 

2-3-4. Conditioning and Training 

Experiment 1:  Conditioned Place Preference 
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In three experimental groups, animals were pretreated with MDMA (1.5 mg/kg) 5 

minutes prior to placement into one compartment of the apparatus.  After placement 

within the compartment, animals were exposed to music, white noise or no additional 

sound.  On alternate days in the alternate compartment, saline pretreatment was received 

5 minutes prior to placement and animals were not exposed to additional sound stimuli 

during the session.  Three control groups were pretreated with saline and were placed in 

the compartment and exposed to music, white noise or no additional sound.  On alternate 

days in the other compartment, these groups received saline pretreatment, but no added 

auditory stimulation (See CPP Groups, Table 1). 
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Animals were allowed access to both compartments of the CPP apparatus to determine 

the Baseline preference.  For this procedure, rats habituated to the apparatus for the first 

five minutes and were then timed for the duration spent in each compartment (e.g., black 

side versus white side) over the following 15 min period. Conditioning sessions 

commenced the next day.  On Conditioning Days 1, 3, and 5, animals were injected with 

MDMA (1.5 mg/kg, s.c.) and confined to one side of the apparatus for 40 min.  On 

alternate days, an equal volume of saline was injected and rats were confined to the 

alternate compartment for 40 min.  Control groups received saline prior to placement in 
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both sides of the apparatus for all 6 days.  24 hrs after the last conditioning session, 

animals were tested for place preference.  In the Test session, rats did not receive an 

injection, but were directly placed within the apparatus and allowed access to both 

compartments for 20 minutes.  As with the Baseline preference test, after a 5 min 

habituation period, the time spent in each compartment was measured for a total of 15 

minutes.   

 

Experiment 2: Cue Conditioning/Operant Sessions and In vivo Microdialysis 

3**2(%"$4'4'5.((

After completing the CPP experiment, a subgroup of animals (with equal MDMA intake 

experience) was food restricted (! 6 g of standard rat chow per day, adjusted as needed to 

maintain body weight) and trained to lever press for food on a FR1 schedule of 

reinforcement.  Each lever response resulted in dispensing one sucrose pellet (45 mg; P.J. 

Noyes, Lancaster, NH).  After the lever press response for food was acquired (approx 3 

days), 10-min. food-reinforced operant sessions (FR1) were conducted for the next 6 days 

without food restriction. 
 

6+"541$7(0"*1#2+"#!""

 To enable voluntary intake of MDMA and in vivo microdialysis testing, jugular 

catheterization and stereotaxic surgery to implant a guide cannula was performed.  Rats 

were anesthetized with pentobarbital sodium (Nembutal#; 50 mg/kg, i.p.) and chloral 

hydrate (80 mg/kg, i.p.) as needed to prolong the anesthesia.  Rats received atropine 

sulfate (250 ug/rat, s.c.) for prevention of respiratory secretions, and the anti-

inflammatory agent, Rimadyl (5 mg/kg, s.c.), post-surgically to alleviate pain.  Catheters 
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were constructed from 8.5 mm Silastic tubing (0.64 mm o.d.) with one end connected to a 

cannula endpiece (Plastics One, Roanoke, VA).   The catheter was inserted into the right 

jugular vein and the cannula endpiece passed subcutaneously to an incision on the head.  

Animals were stereotaxically implanted with a unilateral guide cannula (21 g; Plastic 

One, Roanoke, VA) above the NAcc (AP: + 0.2 mm, ML: +/- 0.12 mm; DV: -2.5 mm).  

NAcc microdialysis probes extended 6.25 mm past the ends of the cannula.  The catheter 

and cannula was anchored to the top of the head with four stainless steal screws and 

dental acrylic cement. For the first week after surgery, catheters were flushed daily with 

0.1 m of 0.9% saline that contained U/ml heparin and 67.0 mg/ml Timentin.  Animals 

continued receiving the same solution daily without the Timentin component through the 

duration of the experiment to maintain catheter patency. 
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Rats were assigned to one of five groups in which different auditory, visual and olfactory 

cues were present while rats had the opportunity to press a lever resulting in intravenous 

MDMA or saline injections. Group assignments for each rat were in correspondence with 

their previous CPP treatment conditions, except that olfactory stimuli were added as an 

additional cue during operant sessions. Three groups were exposed to music (MDMA + 

Music), white noise (MDMA + Noise) or no additional sound (MDMA Alone) during 

MDMA self-administration sessions, and no additional sound during non-reinforced 

sessions.  The other groups were exposed to MDMA and no additional sound during 

MDMA sessions and either music (Music Alone) or white noise (Noise Alone) during 

non-reinforced operant sessions. 
 

(

(
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Conditioning sessions commenced after a seven-day surgery recovery period.  During 

these sessions, MDMA (0.5 mg/kg per infusion) or saline (0.1 ml/inj) was available for 

self-administration.  On Days 1, 3, and 5, rats had access to MDMA, and on Days 2, 4, 

and 6, lever responses resulted in saline infusions.  For the first half hour of the session, 

the operant chamber remained dark and the lever was retracted.  After 30 minutes, the 

house light came on and the cues (visual, olfactory and auditory) were presented. 5 

seconds later, the lever became available for operant responding for a total of 30 minutes. 
 

Microdialysis Procedures 
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Microdialysis probes were constructed as previously described (Duvauchelle et al., 2000) 

with an active membrane length of 2.5 mm at the probe tip.  Prior to probe recovery, all 

probes were flushed with nanopure water. Recovery values for each probe were 

calculated by comparing the peak heights of samples to those from a standard as 

previously described (Ikegami et al., 2007). The mean (± SEM) recovery of probes used 

in the experiment was 12.28 ± 0.44% for DA and 12.90 ± 0.50% for 5-HT. 

(
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Within 12 hrs after the 6th self-administration session, animals were briefly anesthetized 

with isoflurane and implanted with a microdialysis probe through the previously 

implanted guide cannula.  Each microdialysis probe was connected to a 1.0 ml gastight 

Hamilton 1000 series syringe mounted on a syringe pump (Razel#, Model A), and 

freshly prepared Ringer’s solution was pumped through the probe.  Animals implanted 

with the probe remained in a holding chamber overnight with the syringe pump speed set 
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at 0.2 µl/min.  Bedding, food, and water were available in the holding chamber.  One 

hour prior to the test session, the pump speed was increased to 1.6 µl/min.  
 

Test Session for NAcc DA and 5-HT Responses 

24 hrs after the last self-administration session, rats were tested for their NAcc DA and 5-

HT responses in one of six different Test conditions. Animals that had self-administered 

MDMA in the presence of music or white noise were tested for DA and 5-HT responses 

to MDMA under the same conditions (MDMA + Music and MDMA + Noise).  Animals 

that were exposed to music or white noise during access to the non-reinforced lever 

(saline) received saline under the same conditions at test (Music Alone and Noise Alone).  

For animals that self-administered MDMA in the absence of additional auditory stimuli, 

some received MDMA at test (MDMA Alone) and the others received saline (Saline 

Alone).  For the test session, animals were placed in the operant chamber with the lever 

retracted for the first 30 min (Baseline), as previously described for self-administration 

sessions.  After 30 min., the house light illuminated, the lever extended into the chamber 

and the sensory cues associated with either MDMA or saline operant sessions were 

introduced into the chamber. Animals were allowed to respond once on the lever and 

received either a single self-administered injection of MDMA (1.5 mg/kg) or saline (0.1 

ml) infused over a 6-sec interval. The lever was then retracted for the remainder of the 

session. In vivo microdialysis samples were collected at 10 min intervals across the entire 

test session, comprising 3 10-min Baseline and 3 10-min Test (e.g., post-MDMA or 

saline injection) samples.  Locomotor activity units (photobeam breakages) were assessed 

in correspondence with dialysis sampling.  
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Analysis of DA and 5-HT 

High Performance Liquid Chromatography with electrochemical detection (HPLC-EC; 

Shizeido Capcell C-18 narrow bore column, ESA model 5200A Coulochem III Detector, 

Model 5041 cell and a Model 5020 Guard Cell; ESA, Inc., Chelmsford, MA) was used to 

determine DA and 5-HT levels.  An ESA model 420 dual pistons HPLC pump pushed 0.2 

ml/min Mobile Phase through the system. The mobile phase composition was as follows: 

sodium dihydrogen phosphate (75 mM), citric acid (4.76 mM), SDS 1 g/l, EDTA (0.5 

mM), MeOH 8% and acetonitrile 11% (v/v), pH 5.6. The analytical cell potential was set 

at 100 mV (oxidation), guard cell potential at 400 mV, and the pump speed at 0.2 ml/min. 

The detection limit of DA was 0.1 nM with a signal to noise ratio of 3:1. The detection 

limit of 5-HT was 0.12 nM with a signal to noise ratio of 3:1.  The amount of DA and 5-

HT within each sample was determined by comparison with standards prepared and 

analyzed on the day of sample analysis. Prior to correcting for probe recovery, mean (± 

SEM) basal NAcc DA and 5-HT concentrations (first baseline sample) for all animals 

included in the dialysis portion of the experiment was calculated at 0.54 ± 0.06 nM and 

0.21 ± 0.05 nM, respectively (n=50).  Data were collected and analyzed using an ESA 

Model 500 Data station. 
  

2-3-5.  Histology 

 

Animals were sacrificed at the end of the experiment and brains were stored in 10% 

formaldehyde/30% sucrose solution. Dialysis data obtained only from animals with probe 

locations confirmed to be in the NAcc from 48 µ coronal sections (see Fig 1). 
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2-3-6.  Statistical Analysis 

Conditioned Place Preference  

Difference scores at baseline and test were used to depict the amount of time spent 

oneach side of the place preference apparatus. For rats receiving MDMA during 

conditioning, difference scores were calculated by subtracting the number of seconds 

spent on the saline-paired side from time spent on the drug-paired side. For the control 

groups, difference scores were calculated by subtracting the saline-paired side from the 

saline + sound-paired side. Therefore, significant positive differences between Baseline 

and Test scores reflect CPP. A one-way analysis of variance (ANOVA) was performed 

across all groups’ baseline difference scores.  CPP’s were determined by comparing 

MDMA-receiving groups with the Saline Control using a 2-way analysis of variance with 

repeated measures (Group X Time [Baseline, Test]) on the difference scores.  Two 

additional control groups were also compared to the Saline Control in a separate 2-way 

ANOVA. Post hoc analyses (Fisher's Least Significant Difference) were utilized to detect 

significant group differences (at least p < 0.05) when main effects were detected in the 

initial analyses.  
 

Operant Sessions   

The number of lever responses elicited during the three MDMA- and non-reinforced 

operant sessions was compared across groups using a three-way ANOVA (Group X 

Treatment Level [MDMA and Non-reinforcement] X Days).   
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Microdialysis Test Session   

To compare the magnitude of NAcc DA and 5-HT responses between animals receiving 

different sensory stimuli during self-administration and test sessions, data from animals 

receiving MDMA and those receiving saline during the test session were analyzed using 

two-way ANOVA with repeated measures (Group X Time [3 Baseline and 3 Test 

intervals). DA and 5-HT concentrations in nM was corrected according to probe recovery 

rates and converted to percent of baseline for data analyses (overall baseline averaged 

from within-subject means of three baseline measurements). Locomotor activity, assessed 

by photobeam breakages within the operant chamber during the test session, was 

analyzed in the same manner using two-way repeated measures ANOVAs. Post hoc 

analyses (Fishers LSD) for dialysis and locomotor activity data were used to detect 

specific group or time differences (e.g., at least p < 0.05) when main and/or interaction 

effects were indicated by overall analyses. 

 

2-4.  RESULTS 

2-4-1. Experiment 1:  Conditioned Place Preference 

 

A one-way ANOVA performed on baseline difference scores of all experimental groups 

showed no significant differences [F(5,99) = 0.506, n.s.].   A two-way repeated measures 

ANOVA (Group x Time) comparing the MDMA-conditioned animals with the Saline 

Alone control revealed significant Time [F(1,70) = 28.92, p < 0.0001] and Group effects 

[F(3,70) = 3.22, p < 0.05], but no significant Interaction [F(3,70) = 0.814, n.s.].  Post hoc 

analyses showed that at test, only the MDMA + Noise group had a significantly higher 

score than the Saline Alone group (see Fig 2A). A two-way repeated measures ANOVA 
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(Group x Time) performed on the three control conditions revealed no significant Group, 

Time or Group X Time Interaction [F(2,37) = 0.290, F(1,37) = 3.660, F(2,37) = 0.06; 

respectively, all n.s.; see Fig 2B). 

 

2-4-2.  Experiment 2: Operant Sessions and Microdialysis 

 

Cue Conditioning/Operant Sessions 

A three-way ANOVA performed on the number of lever responses during MDMA and 

non-reinforced sessions showed significant effects of Group (F(4,88)=7.82; p < 0.0001), 

Treatment Level (F(1,88)=119.5; p < 0.0001), Days (F(2,176)=34.63; p < 0.0001), Group 

X Treatment Interaction (F(4,88)=4.19; p < 0.01), Group X Days Interaction 

(F(8,176)=3.45; p < 0.01), and Treatment Level X Days Interaction (F(2,176)=13.91; p < 

0.0001).  The Group X Treatment Level X Days Interaction effect was not significant 

(F(8, 176)=1.91; n.s.). Main findings of posthoc tests revealed significantly higher lever 

responses during non-reinforced compared to MDMA sessions, and a gradual decrease in 

responding over the 3 days of non-reinforced sessions while MDMA responding 

remained stable across MDMA sessions.  In addition, non-reinforced responding in the 

MDMA Alone, MDMA + Noise and Noise Alone groups were significantly greater on 

the first non-reinforced session compared to all other groups.  No significant group 

differences were detected during MDMA sessions (see Fig 3). 
 

Microdialysis Test Sessions  

A one-way ANOVA on baseline means (± SEM) of uncorrected DA and 5-HT nM levels 

showed no significant differences in absolute basal DA levels between experimental 
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groups [F(5,49)=1.021 and F(5,49)=1.434, respectively, both n.s.]. Therefore, data 

conversion to percent of baseline did not distort between-group comparisons. 
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A two-way repeated measures ANOVA (Group x Time) showed significant effects of 

Group [F (5,44) = 4.632, p = 0.002], Time [F(5,220) = 6.869, p < 0.001] and Group X 

Time Interaction [F (25,220) = 2.601, p < 0.001].  Posthoc tests revealed that self-

administered MDMA on test day resulted in a significant DA increase from baseline (last 

interval) in all groups (p < 0.05). In addition, the magnitude of DA response during the 

first 10-min interval after MDMA injection was greatest in the MDMA + Music group 

compared to all others (p < 0.05; see Fig. 4A).  No significant differences in DA were 

observed in groups receiving saline at test (see Fig 4B). 
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A two-way repeated measures ANOVA (Group x Time) showed significant Group [F (5, 

44) = 5.758, p < 0.001], Time [5-HT: F (5,220) = 11.684, p < 0.001] and Interaction 

effects [F (25,220) = 3.994, p < 0.001].  Post hoc tests revealed that only the MDMA + 

Music group and MDMA Alone group showed an increase in 5-HT concentrations 

compared to baseline (p < 0.05).   The MDMA + Music group had a significantly greater 

5-HT response during the first 10-min interval post-MDMA injection compared to all 

other groups (p < 0.05) and higher than all groups except for the MDMA Alone group for 

the remainder of the test session  (p < 0.01; see Fig. 5A).  No significant differences in 5-

HT were observed in groups receiving saline at test (see Fig 5B). 
 

(
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A two-way repeated measures ANOVA (Group x Time) showed significant Time [F(5, 

220)=4.602, p = 0.001] and Interaction effects [F(25,220)=1.964, p = 0.006], but no 

significant Group differences [F(5,44)=1.887, n.s.]. Post hoc tests revealed that the 

MDMA Alone and Saline Alone groups showed significantly lower locomotor activity 

levels during some baseline intervals (p < 0.05).  Additional comparisons showed that the 

MDMA + Music group was the only group showing a significant enhancement in 

locomotor activity from baseline (last baseline interval) to the first 10-min post-injection 

interval (p < 0.001). As can be seen in Fig 6A, locomotor activity during the same 10-min 

period was significantly higher in the MDMA + Music group than all other groups (p < 

0.05) except for MDMA + Noise.  No significant changes were observed in any group 

after a non-reinforced lever press, though the Saline Alone group showed lower baseline 

activity prior to saline infusion (see Fig 6B). 
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Table 1:  Conditioned Place Preference Groups/Experiment 1 

Rats received MDMA (1.5 mg/kg s.c.) 5 minutes before being placed in the chamber with music, white 
noise, or no additional sound.  On alternate days an equal volume of saline (0.1 ml) was given.  Control 

groups were pretreated with saline every day prior to conditioning and exposed to either music, white 
noise, or no additional sound every other day.   

  

 
 

 

 

   CONDITIONED PLACE PREFERENCE GROUPS 

Groups 

 

N-size 

 

Compartment 1 

 (Days 1,3, & 5) 

Compartment 2 

 (Days 2, 4, & 6) 

1 

2 

3 

 

Control  

   17 

   13    

   30 

 

 

MDMA + Music 

MDMA + Noise  

MDMA Alone 

 

 

Saline Alone 

Saline Alone 

Saline Alone  

 

 

4 

5 

6 

   14 

   10 

   16 

Saline Alone 

Music Alone 

Noise Alone 

 

 

Saline Alone 

Saline Alone 

Saline Alone 
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Figure 1:  Histological Diagram   

Drawings are representative of active membrane regions of dialysis probes in the core and shell 
subterritories of nucleus accumbens (NAcc).  Illustrations drawn with assistance (Paxinos and Watson, 
1997).  Coronal sections of probe traces ranged from +2.70 mm to +1.20 mm anterior to bregma. 

 

 



 44 

 

 

  

 

 

 

Figure 2:  Conditioned Place Preference  

Data are represented mean (+/- SEM) difference scores.  For MDMA receiving groups, difference scores 
were time spent in the drug-paired compartment minus the saline-paired compartment before and after 
conditioning trials. For Control groups receiving saline on both sides, difference scores were time spent in 
the sound-paired compartment minus the time spent in the compartment with no additional sound. (A) 
Significant CPP was observed only in the MDMA + Noise group (** = p < 0.01 compared to Saline 

Alone).  (B) No significant CPP was produced by Saline Alone, Music Alone or Noise Alone treatments. 
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Figure 3:  Lever responses during cue conditioning/operant sessions 

Data show combined means for all groups. One three occasions, rats had access to MDMA in the presence 
of music (MDMA + Music, n=11), white noise (MDMA + Noise; n=10), or with no added auditory stimuli 
(MDMA Alone; n=29). On alternating days, lever responses were not reinforced, but animals were in the 
presence of music (Music Alone; n=6), white noise (Noise Alone; n=7), or no added sound (Saline Alone; 
n=37). 
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Figure 4:  NAcc DA before and after voluntary intake of MDMA (A) and saline (B)  

Timeline represents DA levels (% of baseline mean +/- SEM) at 10 min intervals, from 30 min before to 30 
min after a single operant response (e.g., MDMA 1.5 mg/kg, or saline 0.1 ml).  (A) Following MDMA self-
administration (1.5 mg/kg), all three groups showed significantly greater enhancement in NAcc DA 

compared to baseline following MDMA self-administration.  In addition, immediately after MDMA 
injection, NAcc DA was significantly higher in the presence of music (MDMA + Music; n=11) compared 
to white noise (MDMA + Noise; n=10) or no additional sound (MDMA Alone; n=9)  (* = p < 0.05).  
(B) There were no significant changes from baseline following a non-reinforced operant response in the 
presence of music (Music Alone; n=6), white noise (Noise Alone; n=7) or no additional sound (Saline 
Alone; n=7). No other group differences were observed during the test session. 
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Figure 5:  NAcc 5-HT before and after self-administered MDMA (A) and saline (B) 

Timeline represents 5-HT levels (% of baseline mean +/- SEM) at 10 min intervals, from 30 min before to 

30 min after a single operant response (e.g., MDMA 1.5 mg/kg or saline 0.1 ml).  (A) Following MDMA 
self-administration (1.5 mg/kg), the groups receiving MDMA in the presence of music (MDMA + Music; 
n=11) and in the absence of additional sound (MDMA Alone; n=9), showed a significant increase in NAcc 
5-HT compared to baseline following MDMA self-administration, while the MDMA + Noise group (n=10) 
did not.  In addition, immediately after MDMA injection, NAcc 5-HT was significantly higher in the 
MDMA + Music group compared to MDMA + Noise or MDMA Alone (* p < 0.05).  (B) There were no 
significant changes from baseline following a non-reinforced operant response in the Music Alone (n=6), 

Noise Alone (n=7) and Saline Alone (n=7) groups.  No other group differences were observed during the 
test session.  
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Figure 6:  Locomotor activity before and after self-administration of MDMA (A) and 

Saline (B) on microdialysis test day  

The graph represents photobeam breakage means (+/- SEM).  (A) The MDMA Alone group had 
significantly less baseline locomotor activity compared to all other MDMA groups (* p < 0.05).  At the first 
post-MDMA interval, the MDMA + Music group was the only group showing significantly increased 
locomotor activity compared to the baseline interval just prior to MDMA injection (** = p < 0.001).  (B) 
The Saline Alone group showed significantly lower baseline activity than all other control groups (* = p < 
0.05). No change in locomotor activity was detected for any group after the non-reinforced lever response. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

100

200

300

400
MDMA + Music

MDMA Alone

MDMA + Noise

Self-InjectionBaseline

**

*

A

0

100

200

300

400

-40 -30 -20 -10 0 10 20 30 40

Noise Alone

Music Alone

Saline Alone

Pre- and Post-Injection 
Test Intervals (mins)

Self-InjectionBaseline

*

B



 49 

2-5.  DISCUSSION 

Low doses of MDMA (1.5 mg/kg/session) in the presence of white noise resulted in a 

significant conditioned place preference (CPP).  Since white noise paired with saline did 

not produce CPP, these results suggest rewarding effects of white noise only in 

combination with MDMA.  However, the trend of increasing preference for MDMA + 

Music and MDMA Alone should be noted.  It is possible that with additional training or 

by changing some aspect of the music, significant CPP would be detected for the MDMA 

+ Music group.  Previous studies have found that MDMA administration results in a dose 

dependent CPP in rats, with optimal doses ranging from 2.0 –10.0 mg/kg (Bilsky et al., 

1990; Marona-Lewicka et al., 1996; Meyer et al., 2002).  However, other non-drug 

factors, such as housing conditions, have been shown to influence the ability of MDMA 

to produce a significant CPP, with isolated animals showing a more pronounced CPP 

than group-housed rats (Herzig et al., 2005; Meyer et al., 2002).  The impact of the home 

cage environment on the reinforcing properties of MDMA within the CPP context 

suggests that non-drug factors present prior to drug use can play a critical role in the 

subjective rewarding value of MDMA drug experiences.  Our findings indicate that non-

drug factors, such as auditory stimulation, during MDMA use can also affect its 

conditioned rewarding value. 

  

In Experiment 2, animals had access to MDMA under differing stimulus conditions 

during a total of three sessions that alternated daily with non-reinforced (saline) sessions.  

However, since acquisition of MDMA self-administration requires a lengthy training 

period of daily consecutive sessions (Reveron et al., 2006; Schenk et al., 2003), the self-

administration opportunity of the present study was too limited to enable full acquisition 
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of MDMA self-administration behavior. Indeed, the aim of the current study was not to 

establish behavioral demonstration of MDMA reward through self-administration 

behavior, but to allow voluntary intake of MDMA in a distinctive environment.   

Nevertheless, consistent with previous reports showing the eventual demonstration of 

MDMA reinforcement (Reveron et al., 2006), rats maintained a stable number of 

MDMA-reinforced lever responses during these sessions. Though the number of lever 

responses for saline on alternate days was significantly higher than for MDMA, this 

observation is likely to be due to the experimental procedures of alternating 

reinforcement conditions.  For example, one possible explanation is that early 

“extinction” responding on non-reinforced days accounted for the higher rate of non-

reinforced operant responses.  Indeed, this phenomenon has also been shown with a 

similar schedule of cocaine and saline self-administration/conditioning trials (Ikegami et 

al., 2007).   

 

In the subsequent in vivo microdialysis test session, animals were exposed to the same 

stimulus conditions as during the operant sessions and allowed to lever press for MDMA 

or saline.   NAcc DA was significantly increased from baseline levels in all groups 

receiving MDMA (1.5 mg/kg, i.v.), but most dramatically when MDMA was self-

administered in the presence of music.  MDMA also increased 5-HT levels, but 

significant elevations were only observed in the MDMA alone and MDMA + Music 

group.  The MDMA + Noise group showed a slight, but non-significant rise in 5-HT ten 

minutes after the self-infusion.  This finding suggests that the presence of music in 

combination with MDMA mimics a higher dose of MDMA.  If so, this pattern of DA and 

5-HT responses to MDMA is consistent with a previous study in which a higher dose of 

MDMA (5.0 mg/kg, i.p.), significantly increased both NAcc DA and 5-HT levels, but at a 
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lower dosage (2.5 mg/kg, i.p.), NAcc DA was significantly increased, but 5-HT levels 

were not (O'Shea et al., 2005).  

 

As can be seen in Figs 4B and 5B, no significant changes in DA or 5-HT were observed 

in response to music or white noise alone, indicating that the enhancement seen in the 

MDMA + Music group was synergistic.  While the mechanisms underlying this effect 

remain unknown, evidence indicates a significant influence of auditory stimulation in the 

presence of MDMA and on monoamines levels. For example, significant changes in 

electrocortical activity were observed in rats receiving MDMA with additional acoustic 

stimulation compared to animals that received the same dose of MDMA without 

additional noise.  In addition, no change in electrocortical activity was observed in 

animals exposed to loud white noise (95 dB) as compared to control animals that received 

no additional sound (Iannone et al., 2006). Other work has shown a relationship between 

noise alone and monoamine metabolite (DOPAC, HVA, and 5-HIAA) levels in the 

striatum of mice (Tsai et al., 2005), though the intensity of white noise (110 dB) was 

much higher than that of the present study (70 dB).   

 

It is conceivable that changes in DA and 5-HT shown in the present study could be due to 

increased stress in response to auditory stimulation.  Indeed, noise above 80 dB can raise 

the pain threshold in mice, suggesting that noise at this intensity may induce a stress 

response (Chen, 2002). However, decibel levels in the present study did not exceed 75 dB 

and animals exposed to music or white noise in the absence of MDMA did not show 

enhanced NAcc DA or 5-HT.   
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Though it seems likely that the changes observed in the present study were not due to 

auditory stimulation-induced stress, it should be noted that noise could increase MDMA-

induced toxicity.  For instance, nigrostriatal DA damage was enhanced in mice following 

exposure to loud noise combined with MDMA (Gesi et al., 2004).  In addition, mice 

given methamphetamine (75 mg/kg) while exposed to loud music (95 Db) experienced 

more seizures than mice given the same dose of methamphetamine in silence (ambient 

noise; 55 Db) or in the presence white noise (95 Db) (Morton et al., 2001). These 

findings call for further research to determine neural mechanisms underlying synergistic 

effects of MDMA and auditory stimuli.  

 

During the dialysis test session, MDMA + Music was the only group that showed a 

significant enhancement in locomotor activity from the last baseline interval to the first 

post-injection interval, correlating with the high release of DA and 5-HT seen in this 

group.  Previous studies have shown that MDMA enhances locomotor activity in a dose-

dependent manner and is capable of producing locomotor sensitization after repeated 

administration (Callaway et al., 1992; Spanos and Yamamoto, 1989). The dopaminergic 

and serotonergic systems have both been shown to mediate MDMA-induced locomotor 

hyperactivity (Bankson and Cunningham, 2001; Callaway et al., 1990; Gold et al., 1989).  

Furthermore, like other psychostimulants, MDMA can produce conditioned locomotion 

after the drug has been repeatedly administered and paired with environmental cues. 

Ultimately, conditioned stimuli (environmental cues) alone cause an increase in 

locomotor activity even when the drug is not present and can act as a predictor for the 

animal of the drug availability (Gold et al., 1989).  Therefore, in the MDMA + Music 

group, it is conceivable that music acted as a conditioned stimulus that further enhanced 

MDMA-stimulated locomotion.  
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The large increases in DA and 5-HT levels observed in the MDMA + Music group may 

have involved inherent properties of the music.  Music has variations in rhythm, pitch, 

loudness, and frequency that may cause an increase in arousal levels in animals. For 

example, avian studies have shown that rhythmic auditory stimuli, but not human speech, 

increased physiological arousal through enhanced noradrenaline levels (Toukhsati et al., 

2005). The reticular activating system is known to mediate arousal levels and responds to 

changes in the organism's acoustic environment (Siegel, 1979).  Therefore, it is 

conceivable that the reticular formation may become more sensitive to changes in 

auditory input in an MDMA-treated animal.  On the other hand, since white noise 

contains an equal amount of energy per frequency band, it may suppress arousal and/or 

have the opposite effect of music. Our finding that the only group not showing significant 

MDMA-induced enhancement of 5-HT was the MDMA + Noise condition provides some 

support to that notion. 

 

Evidence also suggests that music influences the same pathways in the brain that are 

activated by natural rewards, such as food and sex, as well as drugs of abuse.  Music has 

been shown to improve dopaminergic neurotransmission and increase neostriatal DA 

concentrations in spontaneously hypertensive rats (SHR) (Sutoo and Akiyama, 2004). A 

human fMRI study showed the mesolimbic dopaminergic system, including the NAcc 

and VTA, are highly activated and tightly connected during music processing (Menon 

and Levitin, 2005).  The hypothalamus, an important area for the physiological and 

autonomic response to emotional stimuli was also activated when subjects listened to 

pleasant music (Blood and Zatorre, 2001).  Taken together, these findings indicate that 

music and MDMA may work on common neural networks involving reward and arousal 
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and most likely influence each other.  Since Ecstasy is often taken in environments rich in 

sensory stimulation, understanding the impact of music and other auditory stimuli during 

the MDMA experience is a crucial for evaluating MDMA effects and the potential for 

neurotoxicity.   1 

                                                
1 Previously published data in chapter 2 of this dissertation from Feduccia, A.A., Duvauchelle, C.L., 2008. 

Auditory stimuli enhances MDMA-conditioned reward and MDMA-induced nucleus accumbens 

dopamine, serotonin and locomotor responses. Brain Res Bull 77, 189-196.  
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CHAPTER 3:  HEAT INCREASES MDMA-ENHANCED NUCLEUS 

ACCUMBENS SEROTONIN AND BODY TEMPERATURE, BUT 

NOT MDMA SELF-ADMINISTRATION 

 

3-1.  ABSTRACT 

There is concern that hot environments enhance adverse effects of 3,4-

methylenedioxymethamphetamine (MDMA or “Ecstasy”). In this study, long-term (4-

wks) daily MDMA self-administration sessions and an MDMA challenge test were 

conducted with rats under normal and high thermal conditions (23° or 32°C). During 

MDMA self-administration sessions, activity and body temperature were increased by 

heat and/or MDMA experience, while MDMA self-administration rates were comparable 

between thermal conditions. At the MDMA challenge test (3.0 mg/kg, i.v.), in vivo 

microdialysis showed nucleus accumbens serotonin (NAcc 5-HT) and dopamine (DA) 

responses were significantly increased, but in the heated environment 5-HT responses 

were significantly greater than at room temperature. DA responses did not show 

significant thermal effects. Though the heated environment did not acutely boost MDMA 

intake, exaggerated NAcc 5-HT responses to MDMA may result in 5-HT depletion; a 

condition associated with Ecstasy use escalation and neural dysfunctions altering mood 

and cognition. 

 

3-2.  INTRODUCTION 

The amphetamine derivative, 3,4-methylenedioxymethamphetamine (MDMA), is a major 

component of Ecstasy, a commonly abused drug that is particularly popular among 

electronic dance music enthusiasts and club goers. Nightclubs and raves feature loud 
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techno music, laser lights, crowded and hot social environments that attract Ecstasy users. 

Indeed, human subjects report a higher euphoric state when taking the drug in sensory 

rich environments, as compared to people who take the drug in less stimulating contexts 

(Bedi and Redman, 2006; McElrath and McEvoy, 2002; Parrott, 2004). Though MDMA-

induced lethality is rare, the use of MDMA is associated with several negative 

consequences such as cardiac arrhythmias, renal failure, rhabdomyolysis, cognitive 

deficits, negative affect and aggressive bias (Curran et al., 2004; Hall and Henry, 2006; 

Indlekofer et al., 2009; Kalant, 2001).  It has been proposed that elevated ambient 

temperatures, such as those encountered in rave venues, can exacerbate MDMA-induced 

temperature-increasing effects and the likelihood of adverse drug effects (Parrott, 2004; 

Parrott et al., 2002). 

  

MDMA increases extracellular levels of both serotonin (5-HT) and dopamine (DA) 

(Gudelsky and Nash, 1996; Kankaanpaa et al., 1998).  Several studies show the increase 

in magnitude is greater for 5-HT (Baumann et al., 2008; Verrico et al., 2007), though 

others report greater DA effects (Gough et al., 1991). As the specific receptor subtypes, 

D1 and 5-HT2A have been shown to influence thermoregulatory responses (Benamar et 

al., 2008; Shioda et al., 2008), the combined enhancement of 5-HT and DA may 

contribute to MDMA’s unique effects on thermoregulation.  

 

In animal studies, MDMA has been reported to induce both hypothermia and 

hyperthermia, depending on several factors including MDMA dosage, amount of MDMA 

experience, and environmental ambient temperature (Malberg and Seiden, 1998). High 

MDMA doses (20 mg/kg, i.p.) reliably produce hyperthermia in rats (Benamar et al., 

2008), but a heated environment (e.g., 30°C) can elicit hyperthermia from a lower 
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MDMA dose (10 mg/kg, i.p.) (Hargreaves et al., 2007).  In rodents, the magnitude of the 

hyperthermic response has been tightly correlated with MDMA-induced 5-HT depletion 

in various brain regions (Broening et al., 1995; Malberg and Seiden, 1998; Sanchez et al., 

2004). 

 

MDMA is thought to be of lower reinforcement value than other abused drugs, such as 

cocaine (Lile et al., 2005), but is reliably self-administered by rodents (e.g., Daniela et al. 

2004).  Studies have reported that self-administered MDMA results in experience-

dependent changes in MDMA-motivated reinforcement, activity levels and temperature 

regulation (Daniela et al., 2004; Ratzenboeck et al., 2001; Reveron et al., 2006; Schenk et 

al., 2003; Schenk et al., 2007). 

  

In the present study, operant chambers were maintained at either 23° C (e.g., Room 

Temperature) or 32o C (e.g., High Temperature). During 20 daily 2-hr sessions, operant-

trained rats had the opportunity to press a lever that delivered either MDMA or saline. 

Following completion of the self-administration sessions, a 1-hr MDMA Challenge test 

was conducted using in vivo microdialysis techniques. For this test, animals were placed 

in the operant chamber under the same thermal conditions as during self-administration 

sessions and were allowed to elicit a single lever response that resulted in either MDMA- 

(3.0 mg/kg) or saline (0.1 ml). Dialysate samples collected in 10-min intervals enabled 

the determination of NAcc 5-HT and DA levels under differing thermal conditions. 
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3-3.  MATERIALS AND METHODS 

3-3-1.  Experimental Procedures 

Animals 

Male Sprague-Dawley rats (5 weeks old, Charles River Laboratories, Inc., Wilmington, 

MA) were housed in an animal colony (ambient temperature 22 +/-1 C) in clear cages 

with a 12:12 reverse light dark cycle.  Laboratory food pellets and water were available 

ad libitum.   Rats underwent 2 weeks of handling before the start of the experiment.  All 

protocols and procedures were in accordance with the Guide for the Care and Use of 

Laboratory Animals (U.S. Public Health Service, National Institute of Health) and the 

Institutional Animal Care and Use Committee (IACUC) at the University of Texas at 

Austin. 

 

3-3-2.  Apparatus 

Operant Chambers 

All experimental sessions were conducted in operant chambers (28 x 22 x 21 cm) located 

within sound-attenuating compartments (Med Associates, St. Albans, VT).  A house light 

within the chamber and a single retractable lever located on the right wall were activated 

at the start of each session. During self-administration sessions, the catheter inlet from 

each rat was connected to spring-covered tubing (Plastics One, Roanoke, VA) attached to 

a drug swivel mounted on a balancing arm.  Tygon tubing attached at the other end of the 

drug swivel extended to a 10 cc syringe, containing MDMA or saline solution, that was 

mounted on a motor-driven syringe pump (Razel, St. Albans, VT).  Each lever press 

activated the syringe pump that delivered 0.1 ml of saline or MDMA solution. A stimulus 

light directly above the lever remained on for the duration of the injection (6 sec).  Three 
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sets of photocells, spaced evenly apart across the lower front and back walls of the 

chamber detected photobeam breakages that were used as an index of locomotor activity. 

Lever presses and photobeam breakage were recorded during each session by a Med 

Pentium 100 MHZ computer equipped with Med-PC software.  

 

3-3-3.  Thermal Control System   

Ceramic infrared heat emitters (Big Apple Herpetological Inc., Holbrook, NY) controlled 

by a proportional thermostat (Big Apple Herpetological Inc., Holbrook, NY) and digital 

thermometers (Fisher Scientific, Pittsburgh, PA) were used to regulate and maintain 

operant chamber temperatures at either 23° or 32° C (+/- 1° C) during experimental 

sessions. 

  

3-3-4.  Food Training 

Rats were trained to lever press using food reward (45 mg sucrose pellets; P.J. Noyes, 

Lancaster, NH) and a fixed ratio (FR1) schedule of reinforcement. Animals were food 

restricted (approximately 6 g of laboratory rat chow per day, adjusted to maintain weight) 

until lever responding was acquired.  Food-reinforced operant sessions were 10 min/day 

for approx 8 days.  

 

3-3-5.  Surgical Procedures 

For intravenous drug or saline delivery and in vivo microdialysis procedures, jugular 

catheterization and stereotaxic surgery for guide cannula implantation was performed as 

previously described (Feduccia and Duvauchelle, 2008).  During the surgical procedure, 

rats were anesthetized with 2.5% isoflurane (VetEquip, Pleasanton, CA) vaporized in 
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oxygen at a flow rate of 0.8 L/min. Coordinates for the unilateral guide cannula (21 g; 

Plastic One, Roanoke, VA) aimed above the NAcc were as follows: AP: + 0.2 mm, ML: 

+/- 0.12 mm, DV: -2.5 mm. After surgery, Rimadyl (5 mg/kg, s.c.) was administered for 

prophylactic pain relief.  To maintain patency, jugular catheters were flushed daily with 

0.1 ml of 0.9% saline containing 1 U/ml heparin and 67 mg/ml Timentin. After one week, 

the Timentin component was removed from the solution, though daily catheter flushing 

continued throughout the duration of the experiment.  

 

3-3-6.  MDMA 

(+/-) 3,4-methylenedioxymethamphetamine HCl (MDMA) (NIDA Drug Inventory 

Supply and Control Program; RTI International, Research Triangle Park, NC) was used 

in this experiment. MDMA was dissolved in isotonic saline solution (0.9 %) in the 

appropriate dose concentrations according to the weights of the animals. 

 

3-3-7. Groups and Experimental Procedures 

One week after surgery, animals were randomly assigned to one of four groups:  (1) 

MDMA Room Temperature,  (2) MDMA High Temperature, (3) Control Room 

Temperature, or (4) Control High Temperature.  Room Temperature groups had daily 

access to MDMA or Saline in an operant chamber maintained at 23° C (+/- 1°), while 

sessions for the High Temperature groups were conducted in operant chambers 

maintained at 32° C (+/- 1°).  The core temperature of each animal was assessed before 

and after every self-administration session using a 7001H model microcomputer 

thermometer (Physitemp, Clifton, NJ). 
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3-3-8. Self-Administration Procedures 

To achieve optimal MDMA self-administration behavior, as previously reported 

(Reveron et al., 2006; Schenk et al., 2007), the unit dose of MDMA was set at 1.0 

mg/kg/inj for the first 10 sessions (“Acquisition”), followed by 0.5 mg/kg/inj for the last 

10 days (“Maintenance”).  Control groups had access to saline injections of the same 

volume of infusion (0.1 ml/inj) for the entire 20 self-administration sessions (5 

days/week, weekends off).  When animals were placed in the operant chamber and at the 

start of the session, the chamber remained dark and the lever was unavailable for a 30-

min habituation period.  After this interval, the house light illuminated and the lever was 

inserted into the chamber.  Animals then had access to the lever and the opportunity to 

administer MDMA or saline injections for 2 hr/session.  

 

3-3-9.  Microdialysis Procedures  

In vitro recovery calibration 

Microdialysis probes were constructed as previously described (Duvauchelle et al., 2000) 

with an active membrane length of 2.5 mm at the probe tip. For each probe, recovery 

values were calculated by comparing the peak heights of samples to those from a 

standard as previously described (Ikegami et al., 2007). The mean (± SEM) recovery of 

probes used in the experiment was 11.55 ± 0.39% for DA and 10.79 ± 0.44% for 5-HT. 

Probe implantation 

At least 12 hours prior to the MDMA Challenge and in vivo microdialysis test, animals 

were briefly anesthetized with isoflurane and implanted with a microdialysis probe 

through their indwelling guide cannula. Probes extended 6.25 mm past the end of the 

guide for placement within the NAcc.  After placement, artificial cerebral spinal fluid 
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(ACSF) was pumped through the probe at a speed of 0.2 µl/min with a 1.0 ml gastight 

Hamilton 1000 series syringe mounted on a syringe pump (Razel#, Model A).  The 

pump speed was increased to 1.60 µl/min one hour before the test session.  

 

3-3-10.  MDMA Challenge and Microdialysis Test Session 

24 hrs after the last self-administration session (e.g., Day 21) animals were placed within 

the operant chamber and experienced the 30-min habituation period, thermal and drug 

group conditions identical to those assigned during self-administration sessions. The only 

differences in this test session were that (1) animals were allowed only a single operant 

response resulting in MDMA (3.0 mg/kg) or saline (0.1 ml) and lever was retracted for 

the remainder of the session, and (2) brain dialysate samples were collected throughout 

the session at 10-minute intervals (3 10-min baseline and 6 10-min post-injection).  

 

3-3-11.  Analysis of DA and 5-HT 

To determine in vivo extracellular DA and 5-HT concentrations, dialysate samples were 

analyzed by high performance liquid chromatography and electrochemical detection 

(HPLC-EC; Shizeido Capcell C-18 narrow bore column, ESA model 5200A Coulochem 

III Detector, Model 5041 cell (oxidizing potential set to +200 mV, sensitivity 100 pA) 

and a Model 5020 Guard Cell (potential 400 mV); ESA, Inc., Chelmsford, MA).  The 

mobile phase contained sodium dihydrogen phosphate (75 mM), citric acid (4.76 mM), 

SDS 1 g/l, EDTA (0.5 mM), MeOH 8% and acetonitrile 11% (v/v), pH 5.6.  An ESA 

model 420 dual pistons HPLC pump circulated mobile phase through the system at a rate 

of 0.2 ml/min. An ESA Model 500 data station controlled the programs and data 

collection. The detection limit of DA was 0.1 nM and 0.12 nM for 5-HT, both with a 
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signal/noise ratio of 3:1. Uncorrected basal concentrations of NAcc DA ranged from 

0.443 to 0.479 nM and basal NAcc 5-HT ranged from 0.126 to 0.189 nM.  

 

3-3-12.  Histology 

At the conclusion of the experiment, animals were sacrificed and brains were collected, 

stored in 10% formalin/30% sucrose solution, sectioned (48 µm) and stained with cresyl 

violet for histological analysis to confirm placement within the NAcc (see Fig 1). 

 

3-3-13.  Statistical Analyses  

One-way ANOVAs were used to compare group differences in core temperature before 

and after self-administration across Acquisition and Maintenance sessions and before and 

after the MDMA Challenge test.  Two-way repeated measures ANOVA (Group x Session 

Day) was performed on number of daily lever responses and daily locomotor activity 

(e.g., photobeam breakages) during Acquisition and Maintenance intervals.  T-tests 

(Independent Samples) were used to compare MDMA intake (total mg/kg) between 

MDMA Room and High Temperature groups and between Acquisition and Maintenance 

intervals (Paired Samples). DA and 5-HT nM concentrations collected during the MDMA 

Challenge test were converted to percent of baseline values and analyzed using 2-way 

repeated measures (Group X Time). Pearson’s Correlation analyses were performed to 

determine relationships between the number of lever responses and core temperature 

changes during self-administration sessions. Post hoc analyses (Fisher’s LSD) were used 

when justified by significant main effects.   
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3-4.  RESULTS 

3-4-1. Operant Sessions: Acquisition and Maintenance Phases 

 Lever Responses   

Acquisition (Session Days 1-10). A two-way repeated measures ANOVA (Group x 

Session Day) on daily lever responses during Acquisition showed significant effects of 

Group [F(3,28)=4.322; p<0.05], Session Days [F(9,252)=12.554; p<0.001] and Group X 

Session Day Interaction [F(27, 252)=4.775; p<0.001]. Post hoc tests revealed that Control 

groups had significantly greater lever responses than MDMA groups on several occasions 

(see Fig 8 Panel A).  

Maintenance (Session Days 11-20). Significant Group [F(3,28)=5.360; p<0.01] and 

Group  x Session Day Interaction [F(27, 252)=1.830; p<0.05], but not Session Day 

[F(9,252)=1.192; n.s.] effects were detected.  Post hoc tests revealed significantly greater 

lever responses in MDMA Groups compared to Controls during several sessions (see Fig 

8 Panel B). 

  

3-4-2.  MDMA Intake (Acquisition vs. Maintenance) 

No significant differences were detected in total MDMA intake (mg/kg) between the two 

MDMA thermal conditions during Acquisition [t(14)=-0.879; n.s.] or Maintenance 

[t(14)=-0.542; n.s.], therefore MDMA intake data was combined for comparison 

purposes. Paired samples t-test revealed that the total MDMA intake during Maintenance 

was significantly greater than during the Acquisition interval [t(15)=-2.219; p<0.05] (see 

insert Fig 8).   
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3-4-3.  Core Temperature  

Acquisition (Session Days 1-10). A one-way ANOVA performed on mean core 

temperature difference scores (core temperature after session minus core temperature 

before session) of all experimental groups showed no significant differences 

[F(3,31)=0.993; n.s.] (see Fig 9A) 

Maintenance (Session Days 11-20). A one-way ANOVA performed on mean core 

difference scores detected significant differences [F(3,31)=5.316; p< 0.01].  Post hoc 

tests revealed the MDMA High Temperature group had significantly greater core 

temperatures self-administration sessions than MDMA and Control Room Temperature 

Groups (p<0.01), but not greater than the Control High Temperature group (see Fig 9B). 

 

3-4-4.  Correlation between Total Lever Responses and Core Temperature  

Acquisition (Session Days 1-10). Correlation analyses (Pearson’s Correlation) 

performed between lever responses and core temperature differences during Acquisition 

sessions revealed significant correlations for MDMA High Temperature group [r=0.780; 

p=0.022] but not MDMA Room Temperature [r=0.67; n.s] or Control conditions [Control 

Room Temperature: r=-0.196; Control High Temperature: r=-0.492; both n.s.] (see Fig 

10A).   

Maintenance (Session Days 11-20). A significant correlation between lever responses 

and change in core temperature was determined for both MDMA groups [MDMA High 

Temperature: r= 0.713; p=0.047; MDMA Room Temperature: r= 0.864; p=0.006] but not 

Control conditions [Control Room Temperature: r=-0.083; Control High Temperature: 

r=-0.53; both n.s.] (see Fig 10B). 
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3-4-5.  Locomotor Activity 

Acquisition (Session Days 1-10). A two-way ANOVA (Group X Session Days) 

performed on locomotor activity counts during lever access across Acquisition sessions 

showed significant Group [F(3, 28)=8.455; p<0.001] and Session Day effects 

[F(9,252)=5.576; p< 0.001], but not Group x Session Day Interaction [F(27,252)=1.281; 

n.s.]. Post hoc tests showed locomotor activity between MDMA groups was not 

significantly different and that MDMA-stimulated activity was significantly greater than 

their respective Controls during a few matched sessions.  However, activity in the 

Control High Temperature group was significantly higher than Control Room 

Temperature levels during a few initial matched sessions (see Fig 11 Panel A).   

Maintenance (Session Days 11-20).  A two-way ANOVA detected significant Group 

[F(3, 28)=12.372; p<0.001], but not Session Day [F(9,252)=0.820; n.s.] or Group x 

Session Day Interaction effects [F(27,252)=1.304, n.s.].  Post hoc tests revealed that 

activity in the MDMA groups were significantly higher than their respective controls on 

several occasions, but no effects of ambient temperature were observed in either the 

MDMA or Control groups (see Fig 11 Panel B). 

 

3-4-6.  Microdialysis Test Session 

Dialysate levels of DA and 5-HT in nM concentrations (uncorrected values) were 

converted to percent of baseline to enable MDMA response magnitude comparisons. 

Basal concentrations (uncorrected values) of NAcc DA ranged from 0.443 to 0.479 nM 

and basal NAcc 5-HT ranged from 0.126 to 0.189 nM. One-way ANOVAs performed on 

DA and 5-HT nM baseline means showed no significant differences between 

experimental groups [F(3,31)=2.248 and F(3,31)=1.283, respectively; both n.s.]. 
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3-4-7.  NAcc 5-HT 

A two-way repeated measure ANOVA (Group x Time) showed significant Group 

[F(3,28)=23.449; p<0.001], Time [F(8,224)=39.393; p<0.001] and Group x Time 

Interaction effects [F(24,224)=18.247; p<0.001].  Post hoc analysis revealed that both 

MDMA groups showed significant enhancement of NAcc 5-HT from baseline (p<0.001), 

and that the magnitude of enhanced NAcc 5-HT in the MDMA High Temperature was 

significantly greater than all other groups at all post-injection time points (p<0.01). 

Control groups showed no significant variations across the testing period (see Fig 12A).   

 

3-4-8.  NAcc DA 

A two-way repeated measures ANOVA (Group x Time) showed significant Group 

[F(3,28)=7.692; p<0.001], Time [F(8,224)=12.009; p<0.001], and Group x Time 

Interaction effects [F(24,224)=5.213; p< 0.001]. Post hoc tests revealed that MDMA (3.0 

mg/kg, i.v.) on test day resulted in a significant NAcc DA increase from baseline in both 

MDMA groups (p<0.001). Post-injection increases in NAcc DA did not significantly 

differ between the MDMA Room Temperature and MDMA High Temperature groups.  

NAcc DA levels in the Control conditions were comparable across the testing interval 

(see Fig 12B). 

 

3-4-9.  Core Temperature 

A one-way ANOVA performed on mean core temperature difference scores detected 

significant effects [F(3,31)=4.548, p<0.01].  Posthoc testing revealed that core 
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temperature in the MDMA High Temperature group increased to a significantly greater 

extent than all other groups (see Fig 13). 
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Figure 7:  Histology   

Illustrations depict active membrane regions of dialysis probes in the core and shell of the nucleus 
accumbens. Illustrations drawn with the assistance (Paxinos and Watson 1997). Coronal sections ranged 
from +2.7 to +1.6 mm anterior to bregma.   
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Figure 8:  MDMA Self-Administration Sessions:  Lever Responses and MDMA Intake  

Mean daily lever responses and total MDMA intake (mg/kg) (+/- SEM) during (A) Acquisition (Session 

Days 1-10) and (B) Maintenance (Session Days 11-20). During Acquisition, MDMA dose was 1.0 
mg/kg/inj and 0.5 mg/kg/inj during Maintenance sessions.  Groups included: MDMA Room Temperature 
(n = 8), MDMA High Temperature (n = 8), Control Room Temperature (n =8), and Control High 
Temperature (n =8). Ambient temperature did not influence lever responding in either the MDMA or 
Control groups across all sessions.  (A) All groups were trained to lever press for food reinforcement prior 
to MDMA sessions.  The high number of responses for the first 2 sessions in both Control groups is a 
characteristic food extinction response pattern.  Lever responses of the Control groups were significantly 

greater than MDMA groups during Acquisition (++ = both Control groups significantly greater than both 
MDMA groups @ p <0.01). (B) Lever responses in the MDMA groups were significantly greater than 
Controls (*, ** = both MDMA groups significantly greater than both Control groups @ p <0.05 and 0.01, 
respectively).  Bar Insert: Total MDMA Intake (both MDMA groups combined) was significantly greater 
during Maintenance (B) compared to the Acquisition (A) interval. 
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Figure 9:  MDMA Self-Administration Sessions: Core Temperature Difference Scores 

Data represent the mean (+/- SEM) of core temperature difference scores (After Session minus Before 
Session) during Acquisition and Maintenance sessions. (A) No significant core temperature differences 
between groups were observed during Acquisition. (B) Core temperature difference scores were 
significantly greater after MDMA self-administration in the MDMA High Temperature group than in the 

MDMA and Control Room Temperature groups, but not compared to the Control High Temperature group 
(**  = significant difference @ p < 0.01). 
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Figure 10:  Self-Administration Sessions: Correlation between lever response totals and 

increased core temperature (core temperature before session minus core temperature post-

session) during (A) Acquisition (Session Days 1-10) and (B) Maintenance (Session Days 

11-20) 

(A) MDMA High Temperature was the only group to show a significant positive correlation between lever 

responses and increased core temperature.  (B) Significant positive correlations between lever responses 
and increased core temperature were revealed in both MDMA groups (High and Room Temperature) but 
not control groups. 
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Figure 11:  MDMA Self-Administration Sessions: Locomotor Activity 

Mean daily locomotor activity units (+/- SEM) during (A) Acquisition (Session Days 1-10) and (B) 
Maintenance (Session Days 11-20). (A) MDMA groups had significantly greater overall locomotor activity 

than both Control groups, though activity in the Control High Temperature group was comparable to 
MDMA groups on a number of matched sessions. In a few matched sessions, activity levels in the Control 
High Temperature were higher than those observed Control Room Temperature (^ = significant difference 
between Control Room Temperature and Control High Temperature @ p <0.05). (B) Ambient temperature 
did not influence locomotor activity in either condition.  Activity levels in the MDMA groups were 
comparable and significantly greater than Controls (*, ** = both MDMA groups significantly greater than 
both Control groups @ p <0.05 and 0.01, respectively).   
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Figure 12:  MDMA Challenge Test Session   

Data represent mean (+/- SEM; expressed as Baseline mean %) (A) NAcc 5-HT, and (B) NAcc DA before 
(Baseline) and after a self-administered injection of MDMA (3.0 mg/kg) or saline (0.1 ml) in MDMA High 
Temperature (n=8), MDMA Room Temperature (n=8), Control High Temperature (n=8) and Control Room 
Temperature groups (n=8; same animals that had participated in the reported 20 daily self-administration 
sessions). (A) Both MDMA groups showed significant 5-HT enhancement from baseline levels, while 
Control groups showed no change in 5-HT. The magnitude of MDMA-induced 5-HT response was 

significantly greater in the MDMA High Temperature group compared to all other groups (^, ^^ = MDMA 
High Temp significantly greater than MDMA Room Temp @ p <0.01, 0.05, respectively). (B) Both groups 
self-administering MDMA showed a significant increase in NAcc DA from baseline, and maintained 
higher levels of DA than Control groups after MDMA infusion. Control groups showed no significant 
changes in NAcc DA from baseline levels. 
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Figure 13:  MDMA Challenge Test Session: Core Temperature Difference Scores  

Data represent the mean (+/- SEM) of core temperature difference scores (After Session minus Before 
Session) Core temperature.  The MDMA High Temperature group showed the greatest change in body 

temperature compared to all other groups on in response to MDMA (3.0 mg/kg/i.v.) (** = MDMA Hi 
Temp significantly greater increase in core temperature compared to all other conditions @ p <0.01). 
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3-5.  DISCUSSION 

Findings from the present experiment indicate that the heated environment did not 

influence voluntary MDMA intake across the entire span of MDMA self-administration 

sessions. However, other behavioral and physiological changes recorded during self-

administration sessions (e.g., activity and core temperature responses) were influenced by 

heat and MDMA exposure. During the first 10 self-administration sessions (e.g., 

Acquisition interval), activity and core temperature indices differed from those observed 

during the last 10 sessions (e.g., during Maintenance), indicative of experience-dependent 

effects.  In addition, during the MDMA Challenge test, a self-administered MDMA 

injection (3.0 mg/kg, i.v.) produced a significantly greater NAcc 5-HT response when 

rats occupied a heated environment (32° C) than an identical injection administered under 

normal ambient temperature conditions (23° C).  MDMA significantly increased NAcc 

DA levels, but statistical differences between thermal conditions were not detected. 

Control groups showed no significant variation from basal NAcc DA or 5-HT levels 

across the entire test period, confirming that thermal effects alone did not impact DA and 

5-HT in this region. 

 

Previous work has shown that reliable MDMA self-administration behavior is achieved 

in operant-trained animals over several sessions in which the MDMA unit dosage in the 

last 10 sessions (Maintenance = 0.5 mg/kg/inj) is half the dose of the first 10 sessions 

(Acquisition = 1.0 mg/kg/inj) (Daniela et al., 2004; Ratzenboeck et al., 2001; Schenk et 

al., 2003; Schenk et al., 2007).  It should be noted that a minimum lever response 

criterion, as has been utilized in previous work (e.g., Daniela et al. 2004), was not 
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required in the present experiment.  As a result, lever response rates shown here are lower 

in comparison due to inclusion of data from all animals in the experiment, not just those 

that attained high intake levels.  In addition, Control groups (e.g., rats receiving saline 

infusions) showed the highest response rates during Acquisition. As indicated above, all 

animals in the experiment underwent food-reinforced operant training prior to surgical 

procedures. High rates of non-reinforced responding during initial Acquisition sessions 

are not unanticipated under the circumstances as this is a typical response pattern during 

extinction of food-reinforced training (Olds and Christenson, 1970). We have previously 

reported the same pattern of responding in Control animals under similar conditions 

(Reveron et al., 2006). Even though these non-reinforced responses were high for the first 

session, the number of lever presses dramatically decreased by the next session and 

continued at low levels for the remaining sessions (see Fig 8). Subsequently, during the 

Maintenance phase, MDMA-reinforced responding was significantly higher than 

Controls. 

 

The present findings show that a heated environment does not increase the rate of 

MDMA intake and appears at odds with a previous study reporting a heat-induced 

increase in MDMA self-administration (Cornish et al., 2003). However, several 

methodological details differed between the present and the previous study.  In the 

current study, MDMA self-administration at 32° C proceeded over 20 sessions.  In the 

previous study, rats were tested during a single self-administration session at 30°C after 

MDMA self-administration responding had stabilized at room temperature (21°C) 

(though the number of MDMA self-administration sessions were not specified).  It is not 

entirely surprising the different procedures would yield different outcomes and 

interpretations of the findings.  However, in the present study and past work (Reveron et 
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al., 2006), we observed that MDMA-experienced rats increase MDMA intake over time. 

In addition, novelty has been shown to enhance rewarding effects of an environment 

(Bevins et al., 2002). Therefore, one possible explanation for enhanced responding 

reported in the previous study is that the combination of novel stimuli (e.g., higher 

temperature environment) and increasing MDMA experience may account for increased 

self-administration behavior during a heated test session.  Future studies of this 

phenomenon could examine whether animals with stable MDMA self-administration 

rates while in a heated environment will alter response rates when placed in an operant 

environment set at room temperature.  In that way, effects of novelty and drug experience 

may be addressed. 

 

Progressive changes in core temperature responses during self-administration sessions 

suggest experience-dependent effects of heat and MDMA exposure.  For instance, during 

the Acquisition phase (sessions 1-10), core temperature effects were not significantly 

altered in any of the experimental conditions.  Yet, core temperature readings obtained 

during the Maintenance phase (sessions 11-20) showed significant enhancement in the 

MDMA High Temperature group compared to the MDMA and Control Room 

Temperature groups, but not when compared to the Control High Temperature group. 

Correlation analyses revealed that hyperthermic responses to MDMA administration 

were also progressively enhanced with experience.  For example, during Acquisition, the 

number of MDMA-reinforced lever responses was positively correlated with increased 

core temperature in the MDMA High Temperature, but not the MDMA Room 

Temperature group.  However, during Maintenance, the positive correlation between 

these factors was significant in both the MDMA High Temperature and Room 

Temperature groups.  Taken together, these findings suggest that homeostatic 
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thermoregulatory responses become less effective under conditions of increased and/or 

repetitive exposure to MDMA and that a heated environment exacerbates MDMA-

induced thermal dysregulation (Dafters, 1994; Green et al., 2004b; Sanchez et al., 2004). 

  

In accordance with previous findings (Bankson and Cunningham, 2002; Gold and Koob, 

1989; Spanos and Yamamoto, 1989), the current study showed locomotor activity 

significantly increased during MDMA self-administration in both the Room Temperature 

and High Temperature conditions. Since activity levels in both MDMA thermal 

conditions were comparable, the data indicate that MDMA-stimulated locomotor activity 

is unaffected by ambient temperature, as reported by others (Dafters, 1994; O'Shea et al., 

2005).   Locomotor activity increased as sessions proceeded, which is consistent with 

findings of drug-induced locomotor sensitization, which also been reported by numerous 

previous studies (Kalivas et al., 1998; Reveron et al., 2006; Spanos and Yamamoto, 

1989).  However, since MDMA intake also increased over time, increased activity may 

be attributable to the increase in MDMA dose rather than an exaggerated response to 

MDMA. 

 

Elevation of synaptic 5-HT and DA is the primary mechanism of action by which 

MDMA exerts its major effects (Gough et al., 1991; Gudelsky and Nash, 1996; Gudelsky 

and Yamamoto, 2008; McCreary et al., 1999; Rudnick and Wall, 1992).  Consistent with 

previous work, in the present study, both groups receiving MDMA had a robust 

enhancement of NAcc 5-HT and a significant, but less exacerbated release of DA 

(Baumann et al., 2008; Koch and Galloway, 1997; Kurling et al., 2008).  In addition, 5-

HT, but not DA, was significantly higher in the MDMA High Temperature condition 

compared to all other groups. These findings are in partial agreement with previous work 
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showing that MDMA-induced (2.5 and 5 mg/kg, i.p.)  NAcc 5-HT responses were 

enhanced in an elevated temperature condition (30° C) compared to 5-HT responses in a 

lower temperature environment (20° C) (O'Shea et al., 2005).  Also consistent with the 

present work, this study showed that ambient temperature did not influence locomotor 

activity, but the heated environment (30°C) enhanced MDMA-induced hyperthermia.  

Though the previous finding reporting enhanced levels of DA in a heated environment 

diverged from our statistical findings, a closer evaluation of the current data shows higher 

mean DA values at all intervals in the heat condition. This observation suggests that a 

larger sample size would yield significant effects of heat.  However, since significant 

effects of temperature were observed in 5-HT responses with the present sample size, it is 

difficult to justify the use of additional animals to attain the statistical power needed to 

obtain another significant, though less dramatic effect.  Still, there were also differences 

between our work and the previous studies that may account for our observation of a less 

robust differentiation between DA responses.  For instance, the previous study utilized 

drug-naïve rats, while in the current study rats had extensive MDMA experience prior to 

dialysis testing. In addition, factors that influence the magnitude and duration of drug-

induced neurochemical responses also varied, including route and mode of MDMA 

administration (Battaglia et al., 1988; O'Shea et al., 1998; Spanos and Yamamoto, 1989).  

Thus, it is possible that, in the previous study, the combination of higher temperature and 

differing experimental conditions may have affected DA neurotransmission to a greater 

extent than in the present report. 

 

Neuroimaging studies have demonstrated reduced 5-HT transporter ligand binding and 

changes in the 5-HT2A receptor in abstinent recreational users, indicative of depleted 5-

HT levels (Cowan et al., 2003; Reneman et al., 2002; Semple et al., 1999). In addition, 
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clinical studies report memory impairment in current and abstinent Ecstasy users is 

common, and perhaps indicative of neural damage (Quednow et al., 2006; Zakzanis and 

Campbell, 2006) and decreased 5-HT function (Verkes et al., 2001).  As reported here, 

high ambient temperatures increased MDMA-stimulated 5-HT release and hyperthermia, 

indicating a greater likelihood of MDMA-induced 5-HT attenuation after drug use in a 

heated environment.  Since the MDMA dosages and intake examined in the present study 

were at low to moderate levels, these findings hold particular relevance for Ecstasy users 

whose drug use often occurs in hot, overcrowded environments.  In addition, our findings 

indicate that progressive enhancing effects of MDMA on core temperature occurs in both 

normal and heated environmental conditions; hence repetitive use of low MDMA doses 

can result in MDMA-induced hyperthermic responses regardless of thermal conditions. 

 

In conclusion, our findings indicate that ambient temperature does not change the 

reinforcing efficacy of MDMA, but enhances 5-HT efflux.  For human users, these 

findings suggest that hot environments would not immediately initiate greater levels of 

MDMA-seeking or administration.  However, the heat-induced increase in the magnitude 

of MDMA-stimulated 5-HT responses could lead to residual, prolonged 5-HT depletion; 

a condition that has been associated with escalation of drug intake in experienced Ecstasy 

users (Parrott, 2005).  In addition, as 5-HT depletion has also been linked with severe 

effects on cognition (Quednow et al., 2006; Zakzanis and Campbell, 2006), mood and 

aggressive bias (Curran et al., 2004), the combination of heat and MDMA use poses an 

insidious threat, extending even to those who consider their drug use as “recreational”. 
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CHAPTER 4:  NOVEL APPARATUS AND METHOD FOR DRUG 

REINFORCEMENT 

 

4-1.  ABSTRACT 

Animal models of reinforcement have proven to be useful in understanding the 

mechanisms underlying the neurobiology of addiction.  Operant drug self-administration 

and conditioned place preference (CPP) procedures are expansively used in research to 

model various components of drug reinforcement, consumption, and addiction in 

humans.  In this report, we combined traditional CPP and self-administration methods for 

a novel approach to studying drug reinforcement and addiction in rats.  This new method 

provides more informative data than either method alone and improves upon some of the 

inherent drawbacks of CPP and self-administration procedures. In the short-term 

experiment, two groups of Sprague-Dawley rats self-administered cocaine (0.75 mg/kg, 

i.v.) or MDMA (0.5 mg/kg, i.v.) for four days in a distinctive environment.  On alternate 

days, in a different environment, saline was available for self-infusion (0.1 ml, i.v.).  

Following self-administration/conditioning sessions, place preference was measured in 

the same apparatus.  For the long-term experiment, the conditions and drug doses were 

the same except rats had access to cocaine for 8 days and saline for 8 days.  In the short-

term experiment, cocaine induced a positive CPP while MDMA and saline controls did 

not.  Furthermore, drug lever responses were positively correlated with CPP scores for 

the cocaine long-term group only.  This method was also sensitive in determining within-

group differences of cocaine self-administration and CPP expression.  These results 

demonstrate that this novel apparatus and approach is a valid animal model for the use of 
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studying drugs of abuse and had advantageous over traditional CPP and self-

administration methods.    

 

4-2.  INTRODUCTION 

Operant intravenous drug self-administration and place conditioning procedures are 

reliable and valid animal models for studying the neuropsychobiological basis for drug 

dependence and addiction in humans (Koob, 1995; Sanchis-Segura and Spanagel, 2006; 

Tzschentke, 2007).  Both methods are widely used in pre-clinical drug abuse research and 

are able to measure the reinforcing properties of abused drugs (Bardo and Bevins, 2000). 

However, both methods have potential pitfalls in which the new apparatus and method 

presented in this paper will improve upon (Panlilio and Goldberg, 2007).   

 

Place Conditioning Procedures are used to measure the subjective, reinforcing or aversive 

properties of natural rewards and drugs of abuse.  Based on Pavlovian conditioning 

principles, the drug’s reinforcing effects act as an unconditioned stimulus (UCS), are 

repeatedly paired with previously neutral environmental stimuli.  After conditioning, the 

environment acts as a conditioned stimulus (CS) and can elicit approach or avoidance 

behaviors.  The apparatus used in this paradigm consists of a conditioning box with two 

distinct environments differing in color, floor texture, lighting, or odor.  After multiple 

days of conditioning, one compartment becomes associated with the drug, while the other 

compartment is linked to saline.  On the test day, animals in a drug-free state are allowed 

access to both compartments.  A conditioned place preference (CPP) is indicated by an 

increase in time spent in the drug-paired compartment and a conditioned place aversion 

(CPA) by a decrease in time spent in the drug-paired compartment (Tzschentke, 1998).   
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One large drawback of the CPP procedure is that the drug is administered non-

contingently, which has different behavioral and neurochemical outcomes compared to 

drugs that are self-administered (Di Ciano et al., 1998; Miguens et al., 2008; Moolten and 

Kornetsky, 1990; Palamarchouk et al., 2009; Stefanski et al., 2007; Twining et al., 

2009)).  The differences can be attributed to the mode of drug intake that does not 

accurately model of the human experience.  Additionally, CPP paradigms do not measure 

the progressive change in motivation to increase drug-intake, which is a key turning point 

in the switch from recreational drug use to uncontrollable drug addiction.  

 

Operant drug self-administration procedures provide a good model for human drug 

consumption and method for studying the neurobiology of drug reinforcement (Panlilio et 

al., 2005).  For the most part, drugs that are readily self-administered in animals have a 

high abuse potential in humans (Panlilio and Goldberg, 2007).  There are various 

schedules of reinforcement (fixed, progressive, ratio, interval) and routes of drug 

administration (intravenous, intraventricular, intracranial, intragastric, oral) routinely 

used in these paradigms that can affect the number of infusions or rate of responding 

(Arnold and Roberts, 1997; Sanchis-Segura and Spanagel, 2006).   

 

The operant self-administration method also has drawbacks.  The rates of responding are 

used to infer reward value but can be affected by motor drug effects.  The presence or 

absence of drug infusion-associated stimuli can also change the number of drug responses 

and extinction behaviors (Schindler et al., 2002).  Another criticism of the operant self-

administration method is that animals are pressing the lever for a drug because they were 

previously trained to lever press for food.  

 



 87 

The novel apparatus and approach presented here, combines aspects of both methods to 

circumvent some of the inherent problems with traditional CPP and self-administration 

models.  This model allows subjects to voluntarily self-administer drugs and then be 

tested in a drug free state.  Furthermore, the ability to test conditioned place preference in 

a drug-free state bypasses the problem of testing reward while an animal is under the 

influence of the drug.  This method could provide further information regarding this 

criticism that rats are lever pressing due food training because the CPP test scores could 

be correlated with the number of lever responses during conditioning (e.g., a strong 

positive correlation of lever responses and CPP scores would indicate the rat was indeed 

responding for the drug and not for food.) 

 

To test the effectiveness of this apparatus and method, animals self-administered either 

cocaine (0.75mg/kg, i.v.) or MDMA (0.5 mg/kg, i.v.) and on alternate days, in a different 

environment, saline was available for self-infusion (0.1 ml, i.v.).  The control group self-

administered saline (0.1 ml, i.v.) in both compartments.  The short-term groups had daily 

access to drug or saline for 8 consecutive conditioning sessions while the long-term 

groups had 16 consecutive conditioning sessions.  On the final day, place preference 

measurements.  Findings confirmed that this method is useful in studying the drug 

reinforcement in rats.  Cocaine-induced conditioned place preference in the short-term 

experiment, and CPP was positively correlated with drug lever responses in the long-term 

experiment.  Contrarily, MDMA or saline did not result in a CPP in this experiment.  By 

combining traditional CPP and operant drug self-administration methods, more 

information is gathered and could potentially be more accurate in reflecting the abuse 

liability in humans.  
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4-3.  MATERIALS AND METHODS 

4-3-1.  Animals 

Male Sprague-Dawley rats (5 weeks old at start of experiment, Charles River 

Laboratories, Inc., Wilmington, MA) were in housed in clear cages in an animal colony 

with a 12:12 reverse light dark cycle.  Rats were handled for 2 weeks prior to the start of 

the experiment. All protocols and procedures were in accordance with the Guide for the 

Care and Use of Laboratory Animals (U.S. Public Health Service, National Institute of 

Health) and the Institutional Animal Care and Use Committee (IACUC) at the University 

of Texas at Austin. 

 

4-3-2.  Apparatus 

 The apparatus consisted of two distinct operant chambers (28 x 22 x 21 cm) (Med 

Associates, St. Albans, VT) with an additional constructed alley between (21 x 25 x 25 

cm), which were separated with removable panels to allow access during the CPP 

experiment and confinement during self-administration.  The tops of the operant 

chambers had an opening to allow for a tether system to enter the chamber.  The alley 

consisted of two black walls with white stripes and two metal walls, a clear Plexiglas top, 

and a white Plexiglas floor.  The two main chambers had a steel grid rod floor consisting 

of 3/16" (4.8 mm) rods, placed on 5/8" (16 mm) centers.  In order to create unique, 

distinguishable environments, the operant chambers (top, front, and back walls) were 

covered with either white or black material and a cotton ball scented with either rose or 

cinnamon was placed on the removable tray under the retractable lever.  A house light 

within both chambers remained on during all sessions.  For self-administration sessions, 

retractable levers were available at opposite ends of the two operant chambers with a 
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stimulus light located directly above.  The rats’ catheters were connected to a spring-

covered tubing (Plastics One, Roanoke, VA) that attached to a drug swivel mounted on a 

balancing arm.  Upon pressing the lever, the stimulus light was turned on and a motor-

driven syringe pump (Razel, St. Albans, VT) infused 0.1 ml of saline or drug solution for 

6 sec into the animal’s catheter.  To measure animal locomotion, three pairs of infrared 

photodetectors embedded in the walls of each compartment, detected photobeam 

breakages.  During CPP baseline and preference test, a video camera mounted above the 

apparatus recorded entrance and exits into each chamber.  A blind experimenter viewing 

the recordings determined the amount of time the animals spent in each compartment.  A 

Med Pentium 100 MHZ computer equipped with Med-PC software monitored and 

recorded locomotor activity and lever responses.  

 

4-3-3.  Food Training 

A fixed ratio (FR1) schedule of reinforcement with food reward (45 mg sucrose pellets; 

Bio-Serv, Frenchtown, NJ) was used to train rats to lever press.  Food training lasted for 

approximately 8 days of 10 min/day operant sessions. Animals were food restricted 

(approximately 6 g of laboratory rat chow per day, adjusted to maintain weight) until 

lever responding was acquired. 

 

4-3-4.  Surgical Procedures 

To enable intravenous drug or saline delivery, rats underwent a jugular catheterization 

procedure as previously described (Feduccia 2008).  For the surgical procedure, rats were 

anesthetized with 2.5% isoflurane (VetEquip, Pleasanton, CA) vaporized in oxygen at a 

flow rate of 0.8 L/min.  One dose of Rimadyl (5 mg/kg, s.c.) was administered after the 
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surgery for prophylactic pain relief.  To maintain patency, jugular catheters were flushed 

daily with 0.1 ml of 0.9% saline containing 1 U/ml heparin and 67 mg/ml Timentin. After 

one week, daily catheter flushing continued with only 0.1 ml of 0.9% saline throughout 

the duration of the experiment.  

 

4-3-5.  MDMA and Cocaine 

(+/-) 3,4-methylenedioxymethamphetamine HCl (MDMA) (NIDA Drug Inventory 

Supply and Control Program; RTI International, Research Triangle Park, NC) and 

Cocaine (RTI International, Research Triangle Park, NC) was used in this experiment. 

MDMA and Cocaine was dissolved in isotonic saline solution (0.9 %) in the appropriate 

dose concentrations according to the weights of the animals. 

 

Table 2:  Experimental Groups 

Group # of Drug-

pairings 

# of Saline-

pairings 

n size 

Control short-term 0 8 10 

MDMA short-term 4 4 7 

Cocaine Short-term 4 4 8 

Control long-term 0 16 9 

MDMA long-term 8 8 8 

Cocaine long-term 8 8 8 
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4-3-6.  Experimental Procedures (CPP and Self-Administration) 

Baseline Preference 

The conditioned place preference experiment started with 2 days of baseline 

measurement, with animals having access to both compartments (lever unavailable) of 

the apparatus.  After a 5-minute habituation period, rats were allowed to habituate to 

apparatus and then the duration of time spent in each compartment (white vs. black) was 

recorded for the following 15 minutes.   

 

Self-administration/Conditioning Sessions 

Self-administration sessions began on next day and lasted for 8 days (short-term groups) 

or 16 days (long-term group).  During self-administration sessions, the house light 

illuminated and the lever was made available for 1 hour.  A progressive ratio (PR) 

schedule of reinforcement allowed for delivery of drug (MDMA or Cocaine) and on 

alternate days saline.  Each infusion resulted in the lever retracting the stimulus light 

illuminating.  The following progression of response requirements was utilized:  1, 3, 6, 

10, 15, 20, 25, 32, 40, 50, 62, 77, 95, 118, 145, 178, 219, 268.  Control groups self-

administered saline (0.1 ml/inj) with a PR schedule through out all conditioning sessions.   

 

Preference Test Session 

After the last conditioning session, animals were tested for place preference.  For the 

Preference Test session, the lever was retracted and rats were allowed access to both 

compartments for 20 minutes.  After a 5-minute habituation period, the time spent in each 

compartment was measured for 15 minutes. 
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4-3-7.  Statistical Analysis 

Place Conditioning 

Difference scores at baseline and test were calculated by subtracting the number of 

seconds spent the saline-paired side from the number of seconds spent on the drug-paired 

side.  For the control group, difference scores were determined by subtracting time 

(seconds) in saline-paired minus time (seconds) in the other saline-paired compartment.  

Baseline was calculated by averaging the difference scores from baseline days 1 and 2.  

CPP’s were determined by comparing the difference scores of drug groups with the 

difference scores of the Control group using a two-way repeated measures analysis of 

variance (Treatment x Time [Baseline, Post-test]), with separate analysis for short- and 

long-term groups. Paired samples t-test was utilized in the locomotor activity (e.g., 

photobeam breakages) analysis of drug-paired versus saline-paired sides on baseline and 

post-test days.  Pearson’s Correlation analyses determined relationships between the total 

number of drug lever responses and CPP post-test scores.  Fisher’s Least Significant 

Differences (LSD) post hoc analyses were used when main effects (at least p < 0.05) 

were found in the initial analyses.    

 

Conditioning/Operant Sessions  

Independent samples t-test was utilized in analysis of daily lever responses, daily 

infusions, and daily locomotor activity (e.g., photobeam breakages) to compare short- 

and long-term groups. 
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Low vs. High Cocaine Responders in Long-term Experiment 

Since there was a positive correlation between total drug lever responses and post-test 

CPP scores in the Cocaine long-term group, rats were divided into 2 groups: Cocaine 

High Responders and Cocaine Low Responders.  Rats with more than 100 drug lever 

responses were placed in the High Responders group; rats with less than 100 drug lever 

responses were placed into the Low Responders group.  An independent samples t-test 

was utilized in the analysis of place preference, drug lever responses, drug infusions, and 

locomotor activity.  As with all statistical analyses, Fisher’s Least Significant differences 

were performed during post hoc analyses.   

 

4-4.  RESULTS 

4-4-1.  Place Conditioning 

Place Conditioning short and long-term  

Difference scores at baseline and test were calculated by subtracting the number of 

seconds spent the saline-paired side from the number of seconds spent on the drug-paired 

side.  Baseline was calculated by averaging the difference scores from baseline days 1 

and 2.  Short-term Groups:  A two-way repeated measures ANOVA (Treatment x 

Time) showed significant Time x Treatment Interactions [F(2,22) = 4.187, p < 0.05], but 

no significant Time [F(1,22) = 0.056, n.s.] or Group [F(2,22) = 3.07, n.s.] effects.  Post 

Hoc tests revealed no significant differences between all groups’ baseline difference 

scores.  The Cocaine group had significantly higher post-test scores compared to the 

Control group (p < 0.05) and MDMA group (p < 0.01) post-test scores (see Fig 14A).  
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The Cocaine group also showed a significant increase in post-test score compared to 

baseline (p < 0.05).  Long-term Groups: A two-way repeated measures ANOVA 

(Treatment x Time) showed significant Time x Treatment Interactions [F(2,22) = 1.319, 

n.s.], but no significant Time [F(1,22) = 1.112, n.s.] or Group [F(2,22) = 0.957, n.s.] 

effects (see Fig 14B). 

 

Correlation Analysis of drug lever responses and CPP scores   

A significant correlation between total drug lever responses and post-test CPP % scores 

was determined for Cocaine long-term group [r = 0.711, p < 0.05] but not Cocaine short-

term [r = 0.112, n.s.], MDMA short-term [r = - 0.269, n.s.], or MDMA long-term [r = 

0.217, n.s.] (See Fig 15).  

 

4-4-2.  Conditioning/Operant Sessions  

Lever Responses 

An independent samples t-test of sessions’ mean lever responses between short- and 

long-term groups: Cocaine [t(15) = 0.638, n.s.], MDMA [t(13) = 1.301, n.s.], and Control 

[t(16) = 1.430, n.s.].  

 

Infusions 

An independent samples t-test of sessions’ mean infusions between short- and long-term 

groups: Cocaine [t(15) = 0.812, n.s.], MDMA [t(13) = 1.311, n.s.], and Control [t(16) = 

1.230, n.s.].  

 



 95 

Locomotor Activity  

An independent samples t-test of sessions’ mean locomotor activity between short- and 

long-term groups: Cocaine [t(15) = - 0.135, n.s.], MDMA [t(13) = 3.031, p < 0.01], and 

Control [t(16) = - 0.516, n.s.].  

 

4-4-3.  Low vs. High Cocaine Responders in long-term experiment 

Place Conditioning Low vs. High Cocaine Responders 

07$1#(/*'24%4*'4'5(

An independent samples t-test showed High Responders having significantly greater 

post-test CPP scores compared to Low Responders [t(7) = 9.592, p < 0.05] (See Fig 18). 

 

Conditioning/Operant Drug Sessions for Low vs. High Cocaine Responders 

B#=#"(<#-,*'-#-(

An independent samples t-test showed significant differences between High and Low 

Responders sessions’ mean drug lever responses [t(7) = 6.299, p < 0.001] (See Fig 19).  
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An independent samples t-test showed significant differences between High and Low 

Responders of sessions’ mean drug infusions [t(7) = 6.473, p < 0.001] (See Fig 19).  
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An independent samples t-test showed significant differences between High and Low 

Responders of sessions’ mean drug locomotor activity counts [t(7) = 3.112, p < 0.05] 

(See Fig 20).  
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Figure 14:  Place Conditioning: (A) Short-term groups (B) Long-term groups 

Data are represented as mean (+/- SEM) difference scores:  percent time spent in the drug-paired 

compartment minus the saline-paired compartment. No significant differences between all groups’ baseline 
difference scores. (A) Cocaine short-term group showed a significant conditioned place preference after 
conditioning (* = p < 0.05 compared to Control group).  (B) No significant differences at baseline or post-
test detected for the long-term groups. 
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Figure 15:  Drug Self-Administration Sessions:  Correlation between total drug lever 

responses and CPP difference scores (% time drug-paired minus % time saline-paired) 

during Post-test   

Cocaine long-term group was the only group to show a significant positive correlation between total drug 
lever responses and Post-test CPP scores (p < 0.05).  
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Figure 16:  Self-Administration Sessions:  Lever responses and infusions for (A) 

Cocaine, (B) MDMA, and (C) Control 

The left y-axis represents mean (+/- SEM) daily lever responses and the right y-axis represents mean (+/- 
SEM) daily infusions.  There were no differences between short- and long-term lever responses or 
infusions for any group.   
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Figure 17:  Self-Administration Sessions: Locomotor activity for (A) Cocaine, (B) 

MDMA, and (C) Control 

Bars represent mean daily locomotor activity units (+/- SEM) during drug self-administration sessions.  
MDMA short-term group had greater locomotor activity counts than the MDMA long-term group (** = p < 
0.01).  There were no differences between short- and long-term locomotor activity for Cocaine and Control 
groups.   
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Figure 18:  Low vs. High Cocaine Responders Place Conditioning 

Data are represented as mean (+/- SEM) difference scores:  percent time spent in the drug-paired 
compartment minus the saline-paired compartment for the Cocaine long-term group divided into Cocaine 

High Responders and Cocaine Low Responders.  High Responders showed significantly greater post-test 
CPP scores compared to Low Responders (* = p < 0.05).  
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Figure 19:  Low vs. High Cocaine Responders Self-Administration Sessions:  Lever 

responses and infusions  

Mean (+/- SEM) daily lever responses and mean (+/- SEM) daily drug infusions during drug sessions.  (A) 

Cocaine High Responders had more drug lever responses and drug infusions compared to Cocaine Low 
Responders (*** = p < 0.001).  
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Figure 20:  Low vs. High Cocaine Responders Self-Administration Sessions:  Locomotor 

activity  

Bars represent mean daily locomotor activity units (+/- SEM) during drug self-administration sessions. 

Cocaine High Responders had more drug lever responses and drug infusions compared to Cocaine Low 
Responders (* = p < 0.05).  

 

 

 



 107 

 

4-5.  DISCUSSION 

Findings from these experiments demonstrate that this novel apparatus and method can 

be used to measure the reinforcing properties of drugs of abuse by combining traditional 

place conditioning and operant self-administration procedures.  Furthermore, this design 

provides additional information by allowing the animal voluntary access to the drug and 

place preference testing in a drug-free state.  In the short-term experiment, cocaine self-

administration resulted in a conditioned place preference, while MDMA or saline did not.  

In the long-term experiment, no groups showed a significant CPP.  There was no overall 

difference in daily drug lever responses or drug infusions between Cocaine and MDMA 

short- and long-term groups.  

 

Many factors can influence the magnitude of CPP or CPA, including drug, dose, route of 

administration, and the number of drug-context pairings (Cunningham et al., 1999; 

Ettenberg et al., 1999; Mayer and Parker, 1993).  Most drugs cause a dose dependent 

conditioned place preference in rats and other non-drug factors may be crucial to the 

development of the CPP (Gardner, 2000).  These results support previous reports of drug 

reinforcement models.  Cocaine is known to be readily self-administered by rats and 

produce a robust conditioned place preference at a number of doses and routes of 

administration (Liu et al., 2005; O'Dell et al., 1996; Tzschentke, 2007).  A meta-analysis 

of cocaine CPP by Bardo et. al.,  showed no dose-CPP effect relationship meaning there 

was no significant differences between the strength of CPP produced by a range of 

cocaine doses (0.1 – 10 mg/kg, i.v., s.c., and i.p. combined) included in the analysis 

(Bardo et al., 1995).  However the authors note, that other studies have shown IP cocaine 
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administration to produce a monotonic ascending dose-effect curve and IV administration 

to produce an inverted U-shaped dose-effect curve (Nomikos and Spyraki, 1988).  

Separate analysis of each route of administration by Bardo et. al., also failed to show a 

dose-effect response for cocaine CPP (Bardo et al., 1995).  On the contrary, MDMA self-

administration develops more gradually and MDMA-induced CPP occurs in a dose 

response manner, with optimal doses ranging from 2.0 – 10.0 mg/kg (Bilsky et al., 1990; 

Marona-Lewicka et al., 1996).  Furthermore, other non-drug factors such as housing or 

auditory stimuli can affect MDMA reward efficacy (Feduccia and Duvauchelle, 2008; 

Meyer et al., 2002).  The rats in this experiment self-administered approximately 1.0 

mg/kg MDMA/session, which may have been too low of a dose for MDMA-induced 

place preference. 

 

A strong positive relationship between drug lever responses and post-test CPP scores was 

determined only for the Cocaine long-term group.  On the other hand, the short-term 

Cocaine group’s positive CPP scores were not correlated with drug lever responses, with 

all rats showing approximately the same increase in preference irrespective of drug 

responses.  By averaging the groups’ scores, no CPP was detected for the long-term 

Cocaine group due to the large within group variance. These results suggest that place 

conditioning and self-administration are related but are not isomorphic measures of 

reward.  

 

An interesting finding from this study is the divergence of two subpopulations of rats in 

the long-term cocaine experiment.  Across the 8 drug sessions, the Cocaine High 

Responders (HRs) had an average of 254 total drug lever responses and a post-test CPP 

score of 46% while the Cocaine Low Responders (LRs) had an average of only 30 total 
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drug lever responses and a post-test CPP score of – 3%.  HRs also had greater locomotor 

activity, drug lever responses, and drug infusions than LRs during drug sessions. The 

higher intake of cocaine by the high responders may partially explain the huge increase in 

CPP, but is likely reflecting a more robust change in reinforcement of the drug. As 

sessions progressed, the Cocaine High Responders showed greater locomotor activity 

counts than the Cocaine Low Responders.  The enhanced activity is likely due to 

sensitization to the behavioral effects of cocaine, which is a common and thoroughly 

documented phenomenon that occurs with repeated psychostimulant exposures (Bjijou et 

al., 1996; Kalivas and Duffy, 1990; Vanderschuren and Kalivas, 2000). 

 

Other studies have also reported the emergence of subpopulations in CPP experiments, 

based on time spent in the drug-paired environment on test-day (Adams et al., 2001; 

Daza-Losada et al., 2007).  By averaging group scores, the differences between ‘CPP 

expressing’ and ‘CPP non-expressing’ rats are masked and conclusions are based on 

group means.  A recent study addressed this problem by developing a criteria for dividing 

rats into subgroups based on CPP expression and showed this analysis to be more 

effective in indentifying pharmacological blockade of CPP in the subgroups (Dela Cruz 

et al., 2009).  The method presented in this paper is also useful in determining 

subpopulations of CPP expression, and provides further information about these 

subgroups based on their rates of responding and motivation to acquire the drug.  

 

The phenomenon of high and low responders is reported in several different areas of the 

literature.  In a drug-free state, high responders will reliably prefer a novel environment 

and show an increase in locomotor activity when placed in a novel environment 

compared to a familiar one (Dellu et al., 1996).  Furthermore, high responders have 
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greater locomotor activity after psychostimulant treatments and also have higher rates of 

responding than low responders (Kabbaj, 2006; Piazza et al., 1989; Piazza et al., 2000).  

Differences between HRs and LRs rats are attributed to varying sensitivity of the 

hypothalamo-pituitary-adrenal (HPA) axis, a key mediator of the stress response.  When 

placed in a novel environment, HRs show larger elevations in plasma corticosterone 

levels that remains high for a longer duration compared to LRs (Kabbaj et al., 2000; 

Piazza and Le Moal, 1998; Piazza et al., 1991a).  This differences may be attributed to a 

dysregulation of negative feedback to the HPA axis since HRs have less glucocorticoid 

receptors and lower corticosterone binding in the hippocampus compared to LRs (Kabbaj 

et al., 2000; Kabbaj et al., 2007).  Furthermore, at baseline HRs have elevated levels of 

DA in the NAcc and lower DA and 5-HT levels in the prefrontal cortex (Hooks et al., 

1992; Piazza et al., 1991b; Verheij et al., 2008).  HRs also have lower concentrations of 

D2 receptors in the NAcc and striatum than LRs (Hooks et al., 1994; Kabbaj, 2004).  

Taken together, these variations in the HPA axis and dopaminergic systems can at least 

partially explain the behavioral differences between high and low responders.     

 

Two previously published studies have reported a dissociation between CPP and self-

administration.  Bardo et al. first tested amphetamine in a 2-day CPP procedure followed 

by a daily amphetamine self-administration experiment (FR and PR schedules of 

reinforcement) and reported no correlation between CPP scores and rate of self-

administration (Bardo et al., 1999).  In a different study, rats self-administered cocaine 

for 6 or 29 sessions and then rats underwent a CPP test in a different testing chamber 

with 4 cocaine pairings (experimentally administered) and 4 saline pairings.  

Additionally, a cocaine naïve group was tested in the CPP procedures.  A similar 

threshold dose of cocaine (0.4 mg/kg i.v.) induced CPP in both cocaine-experienced 
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groups (6 SA sessions and 29 SA sessions), while the cocaine naïve group needed a 

higher dose (0.8 mg/kg i.v.) to attain CPP.  Even though the 29 SA session group self-

administered more drug and showed differences in cocaine reinstatement, there was no 

overall group differences in time spent in the drug-paired compartment during the CPP 

test (Deroche et al., 1999).  

 

These results also bring into question how valid is a short-term CPP procedure in 

modeling addiction behaviors in humans since we see such a large shift between the 

cocaine short- and long-term experiments.  Short-term exposure is likely reflecting the 

acute reinforcing properties of the drug typically seen with recreational drug use while 

the escalation of drug use by the Cocaine High Responders in the long-term experiment 

may be modeling addiction processes.  It is important to differentiate between what place 

conditioning and self-administration methods are modeling:  reinforcement, reward, or 

addiction?   

 

The new apparatus and approach permits animals to voluntarily self-administer drugs of 

abuse and allows for conditioned preference or aversion measurements.  This method 

provides both direct and indirect information about the positive (reinforcement) and 

negative effects of drugs, and has the ability to test drug effects while the animal is in a 

drug-free state.  Additionally, this is a more time and cost effective approach and gives 

more informative results compared to doing CPP and self-administration as separate 

experiments.  Countless experimental designs could utilize these procedures to test a 

variety of addictive drugs and potential pharmacological treatments for addiction.  The 

apparatus would be useful in determining relationships between voluntary drug intake 

behavior and experience-dependent changes in self-administration with changes in 



 112 

conditioned drug effects.  Furthermore, it could be used to investigate the influence of 

specific sensory stimuli on drug-seeking, reinstatement and spontaneous recovery.  In 

conclusion, these methods can be used to test drug reinforcement and provides more 

information than CPP or self-administration alone and has great potential for future use.   
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CHAPTER 5: SUMMARY OF FINDINGS AND FUTURE 

DIRECTIONS 

 

The overall findings for this dissertation: 

 

1) Low doses of MDMA in the presence of white noise resulted in a significant place 

preference, while MDMA + Music and MDMA Alone did not.  

 

2) Non-drug factors, such as auditory stimuli, play a critical role in the rewarding 

value of MDMA. 

 

3) MDMA + Music showed the greatest increase in NAcc DA and 5-HT levels 

compared to MDMA Alone, and MDMA + Noise.  

 

4) MDMA and music have a synergistic effect on monoamine levels, indicating that 

both work on common neural networks.  

 

5) Locomotor activity enhanced on dialysis test only for MDMA + Music group.  

 

6) There is no difference in long-term MDMA self-administration rates or locomotor 

activity counts between normal and high environmental temperatures (23° or 

32°C). 

 

7) MDMA significantly increased DA and 5-HT from baseline in both thermal 

conditions. 

 

8) In the heated environment, MDMA-stimulated 5-HT response was greater than at 

room temperature, but there was no difference in DA responses between the two 

thermal conditions.  

 

9) Combining traditional CPP and self-administration procedures offers a novel 

approach to studying drug reinforcement.   

 

10)  Cocaine produced a positive CPP in the short-term experiment but not in the 

long-term experiment.  Only the Cocaine long-term group showed a significant 

correlation between total lever responses and post-test CPP % scores. 
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11)  MDMA and saline control groups did not show a CPP in the short- or long-term 

experiments.   

 

12)  Rats in the long-term Cocaine group divided into 2 subpopulations:  Low 

Cocaine Responders and High Cocaine Responders.  High Cocaine Responders 

had greater lever responses, drug infusions, locomotor activity, and CPP post-test 

scores compared to Low Responders. 

 

The studies presented in chapter 2 and 3 of this dissertation contribute significant, unique 

findings to the MDMA literature.  Auditory stimuli and increased ambient temperature 

are often present in the environments that MDMA is taken and more research is needed 

to understand how these factors influence MDMA consumption, reinforcement, and 

neurotoxicity.  Future directions would be to investigate the exact mechanisms and neural 

substrates underlying the effects seen in these studies.  Also, experiments to understand 

how other sensory stimuli, such a visual and somatosensory, modify MDMA drug effects 

would contribute significantly to the literature.  Another research avenue would involve 

testing the neurotoxic effects of MDMA in different environmental contexts and 

quantifying the potential mechanisms.   

 

Chapter 4 presented a novel approach that can be used to study drug reinforcement and 

reward in animal models.  The goal of the experiments was to test the new apparatus and 

method and provide evidence of the value for its future use.  In addition to CPP and self-

administration, several experiments could potentially use this design; namely, drug-

seeking, reinstatement, and spontaneous recovery studies.  Future aims could probe more 

deeply to understand to neural substrates and circuitry involved in place preference and 

the escalation of drug self-administration. 
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CHAPTER 6:  CONCLUSIONS 

There is a large body of work that has investigated large doses of MDMA in rodents, 

however, very few studies have focused on the rewarding properties of the drug at 

recreational doses.  MDMA has not been shown to be as potent of a reinforcer as 

stimulant drugs, such as cocaine or methamphetamine, because self-administration 

response rates and speed of acquisition are lower (Reveron et al., 2006; Schenk et al., 

2003).  This may give human Ecstasy users the impression that the drug is not addictive 

and safe to use, but at this time there is insufficient research on the long-term effects of 

MDMA in humans.  Furthermore, a growing body of evidence suggests that 

environmental stimuli can have profound effects on the pharmacological actions of 

MDMA in the brain (Feduccia and Duvauchelle, 2008; Parrott et al., 2008).   

 

Since young adults at clubs or raves often take Ecstasy, the first aim of the dissertation 

was to determine how auditory stimuli (music, white noise, or no additional sound) 

impact MDMA-induced CPP, self-administration, and NAcc DA and 5-HT responses.  

These experiments demonstrated that low doses of MDMA in the presence of white noise 

resulted in a significant place preference, while MDMA + Music and MDMA Alone did 

not.  Although not significant, it should be noted that MDMA in combination music 

produced an increase in preference for the drug-paired environment and with additional 

conditioning sessions or a slight change in the auditory stimuli this effect may have 

reached significance.  Considering there was no change in preference for the control 

groups, this indicates that the auditory stimuli (music and white noise) used in these 
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experiments are not reinforcing to rats on there own, but potentiate the rewarding 

properties of MDMA.   

 

MDMA is known to produce a CPP in rats, with optimal doses between 2.5 – 10 mg/kg 

(Bilsky et al., 1991; Herzig et al., 2005; Marona-Lewicka et al., 1996).  Other non-drug 

factors, such as housing conditions and auditory stimuli, can impact MDMA’s ability to 

drive place preference (Feduccia and Duvauchelle, 2008; Meyer et al., 2002).  Although 

the underlying mechanisms by which MDMA induces place preference is not fully 

understood, a few studies have addressed this by looking at how different antagonists 

influence CPP.  One study reported the effectiveness of a DA release inhibitor, which 

acts without occupying DA receptors, in blocking MDMA and cocaine CPP (Bilsky et 

al., 1998).  Bilsky et al.  demonstrated that MDL72222, a 5-HT3 receptor antagonist, was 

effective in blocking MDMA CPP and theorized this effect is due to an inhibition of DA 

release via 5-HT3 receptor antagonism (Bilsky and Reid, 1991).  Additionally, the 

endocannabinoid and opioidergic systems play a role in mediating MDMA CPP, because 

pre-treatment of a CB1 cannabinoid antagonist or naltrexone, an opioid antagonist, 

blocked place preference (Braida et al., 2005).  Again, DA is indicated as the key player 

because cannabinoids and opioids regulate DA synthesis, release, and turnover (Gardner 

and Vorel, 1998).  Taken together, MDMA’s ability to establish a CPP is achieved by 

actions on multiple neural systems.  

 

MDMA exhibits complex interactions on many substrates and circuits in the brain, 

including the DA and 5-HT systems.  In the NAcc, MDMA elicits an increase in DA and 

to a greater extent 5-HT (Crespi et al., 1997; Johnson et al., 1986; Schmidt et al., 1987).  

Several studies have shown 5-HT neurotransmission to facilitate DA release via 
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activation of several different 5-HT receptor subtypes (Benloucif and Galloway, 1991; 

Bonhomme et al., 1995; Cameron and Williams, 1994).  In our experiment, MDMA self-

administered in conjunction with music produced the greatest increase in locomotor 

activity and extracellular NAcc DA and 5-HT.  This study is the first to demonstrate that 

MDMA treatment with music can enhance neurochemical levels in vivo and has 

synergistic effects on the mesolimbic dopaminergic system.   

 

In animals, MDMA can disrupt normal thermoregulatory mechanisms, causing 

hypothermia or hyperthermia, depending on experience, ambient temperature, and dose 

(Dafters, 1995; Malberg and Seiden, 1998).  The degree of hyperthermia has been 

correlated with subsequent neurotoxicity (Malberg and Seiden, 1998).  Both serotonin 

and dopamine are responsible for the hyperthermic response following MDMA 

administration, with D1 and 5-HT2A receptors being the primary mediators (Shioda et al., 

2008).   Consistent with previous findings, our results showed high ambient temperatures 

increase the MDMA-induced hyperthermic response in rats.  However, ambient 

temperature did not affect MDMA or saline self-administration rates or locomotor 

activity counts.  An interesting finding from our experiments was that MDMA-stimulated 

NAcc 5-HT release, but not DA, was enhanced by self-administering the drug in a heated 

environment.    

 

The studies presented in this dissertation demonstrate that environmental factors, namely 

auditory and thermal stimuli, can impact behavioral and neurochemical responses to low 

doses of MDMA.  By taking this drug in noisy, hot conditions, human recreational users 

may experience heighten acute drug responses.  However, most of the adverse side 

effects of MDMA are directly related to the drug-induced hyperthermia, which is 
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exacerbated in hot and crowded environments.  Also, a gathering body of evidence 

indicates that music activates the same dopaminergic pathways as drugs of abuse and 

may lead to a state of over-arousal when accompanied with strong psychoactive drugs, 

such as MDMA.  Further research is needed to understand how environmental stimuli 

present in the club and rave scenes impact the acute and long-term consequences of 

MDMA use.   

 

Animal models are extremely useful in studying many avenues of neuroscience and for 

the development of treatments for human diseases and disorders.  However, there are a 

limited number of animal behavioral tests available, especially for drug addiction 

research.  The last part of this dissertation tested a novel method and approach for use in 

studying drug reinforcement in animals.  Findings implicate that this approach can be 

used as a model for studying human drug consumption and reward and could also be used 

to test the effectiveness of behavioral and pharmacological therapies for addiction.   
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