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This dissertation is divided up into two parts, each examining a distinct

theme. The first part of our work concerns itself with open quantum systems and

the relaxation phenomena arising from the repeated application of an interaction

Hamiltonian on systems composed of quantum harmonic oscillators. For the second

part of our work, we shift gears and investigate the wave propagation in left-handed

media, or materials with simultaneously negative electric permeability ε and mag-

netic permeability µ. Each of these two parts is complete within its own context.

In the first part of this dissertation, we introduce a relaxation-generating

model which we use to study the process by which quantum correlations are created
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when an interaction Hamiltonian is repeatedly applied to bipartite harmonic oscil-

lator systems for some characteristic time interval τ . The two important time scales

which enter our results are discussed in detail. We show that the relaxation time

obtained by the application of this repeated interaction scheme is proportional to

both the strength of interaction and to the characteristic time interval τ . Through

discussing the implications of our model, we show that, for the case where the os-

cillator frequencies are equal, the initial Maxwell-Boltzmann distributions of the

uncoupled parts evolve to a new Maxwell-Boltzmann distribution through a series

of transient Maxwell-Boltzmann distributions, or quasi-stationary, non-equilibrium

states. We further analyze the case in which the two oscillator frequencies are un-

equal and show how the application of the same model leads to a non-thermal steady

state. The calculations are exact and the results are obtained through an iterative

process, without using perturbation theory.

In the second part of this dissertation, we examine the response of a plane

wave incident on a flat surface of a left-handed material, a medium characterized

by simultaneously negative electric permittivity ε and magnetic permeability µ. We

do this by solving Maxwell’s equations explicitly. In the literature up to date,

it has been assumed that negative refractive materials are necessarily frequency

dispersive. We propose an alternative to this assumption by suggesting that the

requirement of positive energy density can be relaxed, and discuss the implications

of such a proposal. More specifically, we show that once negative energy solutions

are accepted, the requirement for frequency dispersion is no longer needed. We

further argue that, for the purposes of discussing left-handed materials, the use of

group velocity as the physically significant quantity is misleading, and suggest that

any discussion involving it should be carefully reconsidered.
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Chapter 1

Introduction

1.1 Prologue

1.1.1 Relaxation in harmonic oscillator systems

Systems which do not suffer from unwanted interactions with the outside

world are known as closed systems. However, in the real world, there are no perfectly

closed systems, except perhaps the universe as a whole. Unwanted interactions

with the outside world are inevitable. Systems in which the interaction with the

environment is taken into consideration are known as open systems. For example,

in quantum information processing, these interactions enter the problem in the form

of noise. To be able to build useful information processing devices, the origin and

behavior of such noises needs to be understood and controlled.

The interaction between two isolated systems can be a resource for quantum

information processing [39]. However, the interaction between an isolated system

and the environment surrounding it can lead to decoherence, an undesirable loss

of information that was initially available. One way or the other, any interaction

between two initially uncoupled subsystems leads to the exchange of quantities such

as purity or polarization [55], or for thermodynamical systems, heat. To understand

1



and to control this interaction process, as well as to prevent decoherence, we need

to study the mechanism by which this exchange occurs.

There has been a lot of interest and work in this problem [36, 53, 76, 78, 79,

82, 85]. Most of this work involves the coupling between two (or more) two-level

quantum systems, or qubits, the fundamental units used in quantum computing [57,

58, 86, 89]. In this dissertation, we investigate the problem of interacting quantum

systems which have larger state spaces. Specifically, we concentrate our attention

to the study of the interaction between quantum systems with infinite-dimensional

Hilbert spaces by considering the reduced dynamics of a harmonic oscillator induced

by the evolution of a bipartite system which is also infinite-dimensional.

Any kind of optical or magnetic atomic trap can be modeled as a quantum

harmonic oscillator (at least to the first order). Optical traps use laser beams to

trap atoms, while magnetic traps use strong magnetic fields. Bose Einstein con-

densates can be created in either one of this kind of traps by forcing the atoms to

fall to the ground state. Atomic traps are conservative in nature. In other words,

energy is conserved and there is no friction. Any damping has to be added exter-

nally through some other means (just like friction in a mechanical oscillator). The

analog of friction for trapped atoms can be created by forcing the atom to absorb

a photon and spontaneously emit it. Measurements of the decoherence of a single

trapped atom due to its coupling to engineered harmonic oscillator reservoirs with

controllable states and controllable coupling are presented in [38]. Decoherence of

specific quantum superpositions with a variety of couplings to a reservoir has been

investigated extensively both theoretically and experimentally in [5, 6, 9, 51, 81],

while sources of decoherence in the context of trapped-ion experiments have been

more recently discussed theoretically in [37, 60, 61].

It turns out that the results obtained from the evolution of a system in contact

with an environment having the same number of degrees of freedom as itself agree
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with those of a system in contact with an environment with a much larger number of

degrees of freedom than itself. After examining the case in which a single harmonic

oscillator (the system) interacts with a single harmonic oscillator (the environment),

we extend the results obtained to the case where the same system interacts with an

environment which is composed of at least two harmonic oscillators. This extension

is necessary if we are to study all possible open dynamics of such a system.

Throughout this dissertation, the Markov approximation is employed. This

approximation simply assumes that the final state of a system after a stochastic

evolution for a short time only depends on its initial state and not on its history or

other parameters. Under this approximation, any correlations between the system

and its environment can be neglected. This is a very reasonable assumption for

large environments. This approximation gives rise to exponential solutions, which

are very natural results of decay equations. Going beyond this approximation is not

within the scope of our work.

1.1.2 Wave propagation in left-handed materials

Refraction is perhaps one of the most fundamental phenomena of optics and

electromagnetic wave propagation. When a beam of light is incident on an interface

between two different materials, its path is deflected depending on the ratio of the

refractive indices n1 and n2 of the two materials. The refractive index of a medium

measures how fast it transmits light and how light is bent on entering the material

from another medium. The higher the ratio of the indices of refraction of the two

media, the slower the propagation and the stronger the deflection. The basis of

lenses and imaging lies in the phenomenon of refraction, as any material with an

index different than that of its environment will deflect any incoming ray that is not

normal to the interface.

In addition to the refractive index, the electric permittivity ε and magnetic
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permeability µ are commonly used material parameters that describe how materials

polarize in the presence of electric and magnetic fields. The electric permittivity

determines a material’s response to an applied electric field, while the magnetic per-

meability summarizes how the material reacts to an applied magnetic field. These

parameters generally depend on frequency, thus leading to the phenomenon of “dis-

persion”. For wave propagation inside materials found in nature, one assumes posi-

tive ε and µ. The theoretical implications of materials with simultaneously negative

ε and µ were first proposed in 1968 by the Russian physicist Victor Veselago, and

during the last decade, they have been given a great deal of theoretical and exper-

imental attention. Such novel structures have been given the name “left-handed

materials”, for reasons to be discussed in Chapter 7.

In the second part of this dissertation, we investigate the behavior of a plane

electromagnetic wave incident on left-handed materials from vacuum. We obtain

the physically important information by explicitly solving Maxwell’s equations and

by matching the boundary conditions at the interface. Our main focus concerns

the implications of allowing for the possibility of the electromagnetic field to have

negative energy. It turns out that once negative energy solutions are accepted, the

requirement for frequency dispersion for negative refraction to be observed can be

relaxed. We also touch upon the role of group velocity in the context of discussing

left-handed materials. For reasons to be seen in Chapter 7, we suggest that any

discussion involving it should be carefully reconsidered.

1.2 Outline of this dissertation

This dissertation is organized as follows: in Chapter 2, we review the con-

cepts of stochastic processes in both the classical as well as the quantum realm and

introduce the quantum operator approach employed in studying the time evolution

of a system undergoing a stochastic process. We discuss the importance of open
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quantum systems and review a special subclass of stochastic processes that have the

Markov property. We devote the last section of this chapter to a brief mention of

the master equation approach.

In Chapter 3, we introduce the relaxation-generating model on which the re-

sults of this dissertation are based. The three main processes comprising this model

are discussed in detail and physically realizable systems that could be described by

such a model are introduced.

Two examples involving bipartite spin and harmonic oscillator systems are

explicitly solved and analyzed in Chapter 4. The composite system under inves-

tigation is taken to be an initially uncoupled set of two subsystems: the physical

system of interest and the environment with which this system is in contact. Two

important time regimes appearing in these examples are examined, and the physi-

cal interpretations and consequences of these models are presented and analyzed in

detail.

Chapter 5 is a generalization of the results of Chapter 4 to the case where

the number of degrees of freedom of the environment is made larger than that of the

physical system of interest. This chapter concludes the first part of our dissertation.

In Chapter 6, we make a transition to quantum optics and discuss the quan-

tization of the electromagnetic field in terms of harmonic oscillators by invoking a

normal mode expansion.

In Chapter 7, we introduce left-handed materials and investigate the propa-

gation of waves incident on such media from vacuum by solving Maxwell’s equations.

We discuss the possibility of allowing the electromagnetic field to have a negative

energy density, and discuss the implications resulting from such a possibility.

Chapter 8 is a summary of our results and a discussion of possible future

directions.
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Chapter 2

Stochastic processes and open

systems: an overview

There are many situations in physics where the evolution of a set of variables

can be calculated with one hundred percent certainty. For example, in Newtonian

mechanics, when given the initial conditions, one can in principle write down the

equations of motion which relate the change in position and momentum of a particle,

at least for finite times. On the other hand, there are also many situations in physics

that are based on probabilistic concepts. Take as an example thermodynamics. The

theory of thermodynamics relates the average values of physical quantities such as

temperature, polarization, number of particles, and so on, to one another. However,

it does not say much about the processes that are occurring microscopically and

how these processes affect the overall macroscopic picture.

In order to apply probability theory to the real world, we must introduce the

concept of a stochastic, or random variable. By definition, stochastic variables are

variables whose values are determined by the outcome of an experiment. In a given

situation, a stochastic variable may have any one of a number of values. All we

can know about this variable is the probability that a particular value of it will be
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realized in our experiment. Put another way, the values for the dynamical variables

are replaced by their probability distributions.

A stochastic, or random process, is the counterpart to a deterministic process.

Instead of dealing with only one possible “reality” of how the process might evolve

under time (as is the case, for example, for solutions of an ordinary differential

equation), in a stochastic or random process there is some indeterminacy in its

future evolution described by probability distributions. This means that even if the

initial conditions are known, there are many possibilities the process might go to,

but some paths are more probable and others less.

In the simplest possible case, a stochastic process amounts to a sequence

of random variables known as a time series. An example of such a situation is

a Markov chain. This will be discussed in more detail in Section 2.3. Although

the random values of a stochastic process at different times may be independent

random variables, in most commonly considered situations they exhibit complicated

statistical correlations. Familiar examples of processes modeled as stochastic time

series include stock market and exchange rate fluctuations, medical data such as a

patient’s EKG, EEG, blood pressure or temperature, and random movement such

as Brownian motion or random walks.

2.1 Stochastic processes in the quantum realm

The examples given above all involve classical stochastic processes. Quantum

stochastic processes were introduced and developed by Sudarshan [69].

In quantum mechanics, the state vector |ψ〉 of a system completely deter-

mines the statistical behavior of a measurement. The state vector language has

the shortcmoning that it cannot describe mixed systems. Consider, for example,

a “mixed quantum system” prepared by statistically combining two different pure

states |ψ1〉 and |ψ2〉, each with probability 1/2. To represent this statistical mixture

7



of pure states, a probability density operator ρ is introduced. The density matrix

formalism was developed independently by Landau and Von Neumann in the 1920’s

[27, 80]. Density matrices not only portray the probabilistic nature of a quantum

system, but they also contain all the physically significant information we can pos-

sibly obtain about the ensemble in question. The need for a statistical description

via density matrices arises when one considers either an ensemble of systems, or

one system when its preparation history is uncertain and one does not know with

certainty which pure quantum state the system is in.

A general density matrix, expressed in the basis in which it is diagonal, has

the form:

ρ =
∑
a

pa|ψa〉〈ψa|, (2.1)

where pa is the probability to be found in the state |ψa〉, and the projectors |ψa〉〈ψa|

form an orthogonal set. The necessary conditions that need to be satisfied for

a finite-dimensional density matrix to be able to describe physical quantities are

hermiticity, non-negativity, and unit-trace:

ρ = ρ†

x∗rρrsxs ≥ 0

Tr[ρ] =
∑
a

pa = 1.

The condition of hermiticity ensures that the eigenvalues of the density matrix

are real, non-negativity ensures that these eigenvalues are positive, and unit-trace

ensures that they add up to one. These three conditions allow for the interpretation

of the diagonal elements of ρ as probability weights.

If the state of the system is pure, the sum in Eq. (2.1) has only one term.

Then the density matrix |ψ〉〈ψ| is the projection onto the one-dimensional space

spanned by |ψ〉. A pure density matrix has the property ρ2 = ρ. If the density matrix
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is not pure, we say that it is mixed. Then, there are two or more terms in the sum of

Eq. (2.1), and ρ2 6= ρ. In fact, for a mixed density matrix, Tr[ρ2] =
∑

a p
2
a <

∑
a pa

= 1. The quantity Tr[ρ2] signifies the “purity” of the density matrix.

The expectation value of any observable M acting on a system can be ex-

pressed as:

〈M〉 =
∑
a

pa〈ψa|M |ψa〉 = Tr[Mρ],

so that we can interpret ρ as describing an ensemble of pure quantum states in which

the state |ψa〉 occurs with probability pa.

The evolution of a state |ψ(t)〉 in quantum mechanics is given by Schrodinger’s

equation:

Ĥ(t)|ψ(t)〉 = i~
∂

∂t
|ψ(t)〉,

where Ĥ is the Hamiltonian operator and ~ is the Planck constant. Given the initial

state |ψ(t0)〉, the time-evolved state |ψ(t)〉 can be found from:

|ψ(t)〉 = Û(t, t0)|ψ(t0)〉,

where:

Û(t, t0) = T
{
e
−i/~

R t
t0
Ĥ(t′)dt′

}
is the time evolution operator, Ĥ is the Hamiltonian of the system, and T is the

time-ordering operator.

Using the Schrodinger equation, we can write the analogous equation of

motion for the density operator. This is given by:

i~
∂

∂t
ρ(t) =

[
Ĥ(t), ρ(t)

]
, (2.2)
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which is the differential form of the equation for the evolution of the density operator:

ρ(t) = Û(t, t0)ρ(t0)Û †(t, t0). (2.3)

Equation (2.2) is the Von Neumann equation [80]. It is the analogue of the deter-

ministic evolution from Hamilton’s equations of motion. In this dissertation, we

study the dynamics of density matrices as stochastic processes.

2.2 Open quantum systems

If our initial state is pure and this state remains pure under time evolution,

it means that the evolution is unitary. This is the case of a closed system. The

evolution of a closed system is governed by Eq. (2.2). For simplicity, we will assume

that the Hamiltonian Ĥ is time-independent, but the present discussion can be

extended to the case of time-dependent Hamiltonians without loss of generality.

This formalism allows us to write down the time evolution operator that connects

the states of our system at two different times, given by Eq. (2.3). We call this the

quantum operator approach to studying the dynamics of a system.

Any physical system which is acted on by an external agency and does not

react back to it, is characterized by a unitary time evolution. An example of this type

is an ensemble of spin particles and associated magnetic moments in the presence

of a magnetic field. However, one is often interested in a physical system forming

just part of a larger system, or which is in interaction with a larger system. An

example of this situation is seen in paramagnetic relaxation, where a system of

spins is interacting with a lattice. Further, one may also be interested in just one,

or a few, of the many degrees of freedom of a system. For instance, one may wish

to only look at the spin state of a particle scattered by a target possessing spin,

irrespective of the distribution of the directions. One assumption in approaching
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the study of a system’s evolution is that it is impossible to have knowledge of all

the parameters entering the problem. The part which is known is often treated as

the system, while the unknown part is treated as the environment.

Open quantum systems are those in which the state does not evolve in isola-

tion, but is influenced instead by the interaction with its environment. This formal-

ism is employed in this dissertation. The usual case for open quantum systems is

that even though the details of the system variables are accessible to us, the details

of the effect of the environmental variables on this system are inaccessible. The open

quantum system is the combination of the system of interest and the environment

with which it interacts.

Open systems are not exclusively quantum mechanical. Take as an example

a classical swinging pendulum like that found in some mechanical clocks. Such

a pendulum can be thought of as a nearly ideal closed system since it interacts

only very slightly with the outside world, mainly through friction. However, to

describe the full dynamics of the pendulum’s motion and to understand why it

eventually ceases to swing, one must incorporate into the problem the damping

effects of friction and the imperfections in the suspension mechanism. In a similar

fashion, no quantum system is ever perfectly isolated from its environment, and thus

never perfectly closed.

Open quantum evolution usually deals with mixed states. For this reason,

we will represent the quantum states in our discussion using the density matrix

formalism, introduced in Section 2.1.

2.3 The Markov approximation

In this section, we describe the subclass of stochastic processes that have the

Markov property. Such processes are very important in physics and chemistry. A

Markov process is defined as a stochastic process with the property that for any set
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of n successive times (i.e., t1 < t2 < · · · < tn), one has:

P1|n−1(yn, tn|y1, t1; · · · ; yn−1, tn−1) = P1|1(yn, tn|yn−1, tn−1).

That is, the conditional probability density at tn, given the value yn−1 at tn−1, is

uniquely determined and is not affected by any knowledge of the values at earlier

times. P1|1 is the transition probability. A Markov process is fully determined

by the two functions P1(y1, t1) and P1|1(y2, t2|y1, t1). The whole hierarchy can be

reconstructed from them. This makes Markov processes manageable, which is the

reason why they are so useful in many applications.

The oldest and best known example of a Markov process in physics is Brown-

ian motion. A heavy particle is immersed in a fluid of light molecules, which collide

with it in a random fashion. As a consequence, the velocity of the heavy particle

varies by a large number of small, and supposedly uncorrelated jumps. To facili-

tate the discussion, the motion is treated as if it were one-dimensional. When the

velocity of the heavy particle has a certain value v, there will be, on average, more

collisions in front that from behind. Hence, the probability for a certain change δv

of the particle’s velocity in the next time interval δt depends on v, but not on earlier

values of the velocity. Thus, the distribution of the velocity of the heavy particle is

described by a Markov process.

Radioactive decay is another example in physics that can be described by a

Markov process. For example, an atom of carbon-14 may lose an electron and decay

to nitrogen-14. This is a Markov process because the probability of decay does not

depend on how old the carbon-14 atom is. A newly formed carbon-14 atom has

exactly the same probability of decay in the next second as a very old carbon-14

atom.

Markov processes are also very common in chemistry, and specifically chem-

ical reactions. Consider for example the dissociation of a gas of binary molecules in
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a reaction of the form:

AB → A+B.

Every molecule AB has a certain probability per unit time to be broken up by

some collision with another molecule. The change in the concentration between

two times t and t+ ∆t has a certain probability distribution which depends on the

concentration of the molecules at t but not on previous values of the concentration.

In this sense, this process is Markovian.

In going from classical to quantum mechanics, the Markov approximation

implies that the microscopic processes entering the transition probabilities of the

quantum mechanical state of our system do not depend on their past history but only

on that at the present time. An implication that follows from this approximation is

that the environment as a whole does not change, and neither do the correlations

between it and the system of interest.

The Markov approximation will in general lead to irreversibility by effectively

preventing the environment from reacting back on the system. If the environment

is of such a nature that it is affected by changes in the system and, in addition, if it

passes those effects back to the system, then the evolution becomes non-Markovian.

In general, the effect of the environment on the system becomes apparent in higher

orders of time [83]. Thus, the Markov approximation is reasonable for short time

regimes and does not hold for higher orders of time. In addition, a Markov process

on a system with n dynamical variables, when reduced to m < n degrees of freedom,

can become non-Markovian. For example, if Brownian motion was reduced to the

study of the evolution of coordinates only, non-Markovian effects would become

apparent. The study of such effects is beyond the scope of this dissertation. The

interested reader can find an extensive discussion of non-Markovian processes in [56]

and references thereafter. The remainder of this dissertation will deal exclusively

with Markov processes.
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2.4 A word on the master equation approach

As a final remark, we conclude this chapter with a brief mention to the theory

of master equations. The master equation approach describes quantum dynamics in

continuous time using differential equations and is an approach used often by physi-

cists. The main objective of master equations is to describe the time evolution of an

open system with a differential equation which properly describes non-unitary be-

havior. The Kossakowski-Lindblad equation or master equation in the Kossakowski-

Lindblad form is the most general type of a Markovian master equation describing

non-unitary (dissipative) evolution of the density matrix ρ that is trace preserv-

ing and completely positive for any initial condition. The Kossakowski-Lindblad

equation reads:

dρ

dt
= − i

~
[Ĥ, ρ] +

∑
j

[
2L̂jρL̂

†
j − {L̂

†
jL̂j , ρ}

]
,

where Ĥ is the system Hamiltonian, L̂j is the Lindblad operator which represents

the coupling of the system to its environment, and {x, y} = xy + yx denotes an

anticommutator.

In deriving a master equation for a process, it is generally assumed that the

system and environment begin in a product state. In order to determine L̂j , one

usually begins with a system-environment model Hamiltonian and then makes the

Markov approximation.

The master equation approach is less general than the quantum operations

formalism. Solving a master equation allows one to determine the time dependence

of a density matrix, which means that the result can be written as a quantum

operation. The reverse process is not always possible. Quantum operations describe

only state changes and thus they can be used to also describe non-Markovian effects,

in contrast to the master equation approach. Non-Markovian processes can produce
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Markovian master equations, but they will only preserve positivity and thus they will

not be of the Kossakowski-Lindblad form. For a detailed discussion of Markovian

master equations and their limitations, we refer the interested reader to [18, 25, 28,

32]. See also [56, 63].
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Chapter 3

A relaxation-generating model

It is customary to divide physics into two branches: macroscopic physics,

which is phenomenological in nature, such as non-equilibrium thermodynamics, and

microscopic, or atomic physics, in which the basis and explanation of macroscopic

physics is examined. Consider, for example, a container filled with a neutral gas.

Macroscopic physics would describe the system in terms of a few macrovariables

such as pressure, temperature or density. These variables are directly amenable

to measurements. Microscopic physics on the other hand would treat the gas as a

collection of N interacting molecules. The microscopic dynamics of this gas man-

ifests itself in the fact that these molecules can scatter off each other at a certain

rate when kept in a certain temperature and pressure. If we had knowledge of the

molecular dynamics, such as for example the two-body scattering cross sections, we

could then derive the ideal gas law in a dilute gas with frequent collisions but no

correlations between the particles. In the second half of the 19th century, Maxwell

and Boltzmann were the first to realize that the laws of macroscopic physics could

be derived from the microscopic dynamics of the system, if statistical considerations

were invoked.

The above discussion was mainly aimed at systems in equiIibrium. However,
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the role of statistical mechanics is very important for systems away from equilib-

rium. Let’s consider such a system. Suppose that a thermodynamical system has

been prepared initially in an equilibrium state characterized by certain well-defined

macrovariables such as temperature, pressure, density, etc. Also suppose that at

some time t = 0, the system is disturbed externally by applying a temperature

gradient or any other external field across it. The system will immediately try to

respond and adjust to this external stimulus by evolving toward a new macroscopic

state that is compatible with this external constraint. The task of deriving the ki-

netic equations for non-equilibrium statistical mechanics was initiated by Boltzmann

with his famous equation [3].

The problem of describing the approach to equilibrium for systems composed

of a large number of interacting particles is a very fundamental one, and one that

has been studied extensively through the years. Ever since the classic work of

Boltzmann, it has been recognized that not only statistical, but also dynamical

considerations play a role in the time evolution of these systems.

In this chapter, we give a brief overview of Boltzmann’s collision model and

introduce a quantum mechanical version of this model. Both these models can

be used to provide a mechanism for generating relaxation. The remainder of this

dissertation deals exclusively with the latter model.

3.1 Boltzmann’s collision model

Boltzmann was interested in the thermodynamics of gases as derived from

the Hamiltonian dynamics of the individual atoms comprising those gases. The

main question which troubled Boltzmann was related to the irreversibility seen in

thermodynamical systems: if Hamiltonian dynamics give rise to reversible processes,

how can the irreversibility seen in thermodynamical systems be explained?

Boltzmann considered a dilute gas of neutral molecules interacting with
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short-range van der Waals forces. Such a system suggests a number of possible

simplifications. First and foremost, Boltzmann neglected triple collisions because

he assumed that it would be very unlikely that, once two particles are within their

short-range sphere of mutual interaction, a third particle would be there as well

during the short-time interval of the two-body encounter.

In addition to this, Boltzmann introduced another important assumption

which was referred to by Boltzmann as the Stosszahlansatz, and is also known as

the “molecular chaos assumption”. Under this assumption all two-body encounters

in the gas are statistically independent. In other words, no particle in the gas carries

any information about a previous encounter and its memory about dynamical cor-

relations from previous collisions is wiped out before a new collision starts. Given a

situation where the system of interest is in the presence of an environment, the par-

ticles comprising the system interact with the particles comprising the environment

only for short periods of time such that the environment only affects the system

during this short-time interaction. The environment is the set of all other particles

except the system of interest. Boltzmann assumed that, after a collision, the state

of the environment is the same as its state before a collision.

Another way of looking at the assumptions invoked in Boltzmann’s collision

model is the following: every time a system particle collides with an environmental

particle, some energy is exchanged but energy conservation ensures that the total

energy is conserved. Once the interaction is over, the system particle continues its

journey (with its new energy) while the environmental particle is discarded (along

with its energy). The assumption here is that the probability of the same environ-

mental particle interacting with the system particle again is very low and can be

neglected. Once the interaction is over, the system particle continues its journey

until it comes across a new environmental particle with which it collides, and the

process is repeated. Each time there is a system-environment interaction, energy is
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exchanged (causing the system’s energy to change), and the environmental particle

along with its energy is discarded. Successive collisions of this type will eventually

cause the system’s state to cease to change and the system will reach thermodynamic

equilibrium.

This statistical Stosszahlansatz introduces a distinction between the event

“before a collision” and the event “after a collision” and is the source of irreversibility

in the Boltzmann equation.

3.2 The “Interact-Refresh-Repeat” model

In this section, we present the quantum mechanical analogue to the Boltz-

mann collision model. This model was originally proposed by Rau [54] and it deals

with the loss of quantum information to the environment in an irreversible manner,

which is the biggest challenge to scalable quantum computation.

Consider a bipartite system ρSE composed of two initially uncoupled sub-

systems ρS and ρE . Let the subsystem described by ρS correspond to the “physical

system” of interest, and that described by ρE correspond to a second subsystem

which, in turn, is in contact with a “reservoir”, or “thermal bath”. This second sub-

system can be thought of as the “environment”. The composite system described by

ρSE is considered to be a complete system even though ρE is kept in an inexhaustible

temperature bath.

If an interaction Hamiltonian is applied to this initially uncorrelated com-

posite system for a characteristic time interval τ , the two subsystems will interact

and evolve to two new states ρS(τ) and ρE(τ). In the remainder of this dissertation,

we will follow a program in which our system is “refreshed” after each characteristic

time interval τ , and the same interaction Hamiltonian is repeatedly applied to it

until a new steady state is reached.

As discussed in Chapter 2, the time evolution of a closed quantum system
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ρ(t) governed by a time-independent Hamiltonian Ĥ is given by:

ρ(t) = Û(t, t0)ρ(t0)Û †(t, t0),

where Û(t, t0) = e−iĤ(t−t0)/~ is the unitary time evolution operator. Quantum

correlations are generated when two such systems are forced to interact through

some interaction Hamiltonian Ĥint.

Now let us suppose that we are interested in studying how the physical system

of interest described by ρS relaxes when in contact with its environment, described

by ρE . Although the evolution of ρSE is unitary, the reduced evolution of ρS is in

general not unitary [69]. Knowing the form of ρS at any time t1 is not sufficient to

predict its form at a future time t2. To extract the reduced evolution of subsystem

1, we need to first calculate the time evolution of ρSE and then eliminate the effect

of the unwanted part by taking the partial trace of the evolved complete system

over the environmental degrees of freedom. Namely:

ρS(t) = TrE [Û(t)ρSE(0)Û †(t)],

where ρSE(0) = ρS(0)⊗ ρE(0).

Just like in the Boltzmann collision model, emphasis is given to studying how

system 1 relaxes when it is in contact with system 2, or how the system of interest

relaxes when it is in contact with its environment. The interaction Hamiltonian is

applied to the composite system ρSE(0) for a constant characteristic time interval τ ,

interrupted, and then reapplied for another time interval τ to the time-evolved state

ρSE(τ) = ρS(τ)⊗ρE(τ), where ρS(τ) = TrE [Û(τ)ρSE(0)Û †(τ)], and ρE(τ) = ρE(0).

This very last statement comes about from the fact that system 2 is assumed to be

in contact with an inexhaustible temperature bath, or reservoir, so that any change

it may undergo during the time interval τ can be neglected.
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In summary, at t > 0, a general, constant interaction Hamiltonian is applied

to the composite system for a characteristic time interval τ , the system is allowed

to interact, it is then“refreshed”, and the process is repeated.

The “interaction” process is defined as follows: the two quantum systems

ρS(0) and ρE(0) interact with one another through the interaction Hamiltonian

Ĥint during a time interval 0 < t < τ , where τ is fixed. The “refresh” process is

the extraction of the reduced time-evolved quantum part ρS(τ) from the complete

system ρSE(τ) and the resetting of ρE(τ) back to its initial form (which corresponds

to discarding the environmental particle after the interaction in the Boltzmann colli-

sion model). Finally, the “repeat” process is the application of the same interaction

Hamiltonian to the new state ρSE(τ) = ρS(τ) ⊗ ρE(τ)
(
with ρE(τ) = ρE(0)

)
for

another time interval τ < t < 2τ .

There are several areas in physics where periodic couplings along with the

Markov approximation are reasonable. For example, in spintronics, in the case of

paramagnetic relaxation, a system of spins interacts with a lattice, and the informa-

tion is encoded in the spin states of the conduction electrons [50]. In this case, the

conduction electron takes the role of system 1, and the atoms in the lattice take the

role of system 2, or the environment. As the conduction electron passes through the

lattice, it interacts with a lattice atom, and as a consequence, its state is changed.

This new state will now interact with another atom in the lattice, identical to the

first one.

The following assumptions are made in the formulation of generating relax-

ation as described in the “interact-refresh-repeat” model: first, it is assumed that

there is statistical independence between the two density matrices of subsystems

1 and 2 at t = 0, or in other words, the density matrix of the composite system

can be factorized into density matrices of the component subsystems at t = 0, i.e.,

ρSE(0) = ρS(0) ⊗ ρE(0). Second, the relaxation time of the system of interest,
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subsystem 1, is much larger than the characteristic interval τ . In other words, the

system is reset before the time interval specified by the inverse of the interaction

energy. Third, time averages are never taken, but after every characteristic time in-

terval τ , partial trace with respect to the environment is performed. Finally, system

2 is assumed to be in an inexhaustible temperature bath so that any change in it

during the interaction process is negligible.

At each time interval τ , the system goes back to its original state at t = 0,

while system 1, the system of interest, changes its state. The mechanism of refreshing

introduced in this model annuls the correlation between the two systems 1 and 2 at

every characteristic time interval τ and replaces the time-evolved state of subsystem

2 with an identical copy of its original state. The “refresh” procedure is a very

important ingredient in our model and we dedicate the last section of this chapter

entirely to understanding the implications associated with it.

Our relaxation-generating model is described in more detail below:

ρSE(0) = ρS(0)⊗ ρE(0)

ρSE(τ) =

Û(τ)

?
ρS(τ)⊗ ρE(0)

· · ·

Û(τ)

?

ρSE(nτ) =

Û(τ)

?
ρS(nτ)⊗ ρE(0).
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More specifically:

ρSE(0) = ρS(0)⊗ ρE(0)

ρSE(τ) =

Û(τ)

?
TrE

[
Û(τ)ρSE(0)Û †(τ)

]
⊗ ρE(0)

· · ·

Û(τ)

?

ρSE(nτ) =

Û(τ)

?
TrE

[
Û(τ)ρSE [(n− 1)τ ]Û †(τ)

]
⊗ ρE(0),

with the time evolution operator given by:

Û(τ) = e−iĤτ/~.

A flow chart of our model is shown in Fig. 3.1. The iteration process described

above is carried out until a new steady state is reached. Our aim is to study the

long time behavior of this periodically repeated interaction scheme and understand

its effect on the reduced quantum subsystem ρS .

Decoherence processes can be modeled using the above relaxation-generating

model by controlling the strength, duration, and number of system-environemnt

interactions.

3.3 The mechanism of refreshing

As promised, we now turn to the mechanism of refreshing, or the “refresh”
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process, which is perhaps the most crucial part of our relaxation-generating model.

Implicit in this mechanism is the assumption, invoked by Pauli [46], that the occu-

pation numbers of the composite system, which correspond to the diagonal elements

of the composite density matrix, remain good quantum numbers at all times. In

other words, it is assumed that, during the course of time, off-diagonal terms become

unimportant. Pauli eliminated them by invoking a “random phase approximation”

at all times. This approximation is a serious ingredient in the analysis of our problem

and it is perhaps worthwhile to analyze its use in more depth.

3.3.1 The random phase approximation

The disappearance of interferences between a system and its environment

leads to an irreversible process. Irreversible, or energy-dissipating processes always

involve transitions between quantum states. Such processes are described, at the

simplest level, by master or rate equations. The Pauli master equation [46], is the

most commonly used model of irreversible processes in simple quantum systems. It

can be derived from elementary quantum mechanics and by neglecting off-diagonal

terms.

Among other (inessential to our discussion) approximations, the derivation

of the Pauli master equation suffers from the restriction that one has to discard any

built-up of phase relations by invoking a repeated “random phase” approximation

at a series of times at microscopically small intervals. This restriction may find

its justification in Van Kampen’s analysis of the problem in deriving the master

equation from quantum mechanics [74, 75]. Specifically, Van Kampen observed

that, by writing a master equation, one intends to get statements on macroscopically

observable properties of (statistically) large systems. In trying to derive a master

equation from quantum mechanics, we must therefore first construct, following Pauli,

a suitable coarse-graining of phase-space in such a way that the quantities of the
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statistical theory are only those that can be measured macroscopically. Any coarse-

graining automatically introduces irreversibility into the picture. Van Kampen’s

derivation of the master equation highlights quite explicitly the inherent difficulties

of non-equilibrium statistical mechanics.

To derive a master equation, we must postulate a number of (justifiable)

mathematical assumptions, unfortunately in most cases without being able to give

the explicit criteria on the microscopic dynamics of the system for these assump-

tions to be valid. The general attitude is that because many large systems evolve

smoothly on a macroscopic time scale, microscopic details are most likely not impor-

tant, and must therefore be suppressed. Further, it is assumed that the evolution

of the reduced density matrix is a Markov process. This translates to invoking a

repeated random phase approximation, i.e. neglecting or suppressing any dynamical

build-up of phases as time evolves. For example, in the case of photon scattering,

interference terms connecting different positions become unobservable at the macro-

scopic body itself, though still existing in the whole system. This was first discussed

by Von Neumann in his theory of the measurement process [80]. Another possible

physical mechanism which may aid in explaining the validity of this approximation

is the interaction of the system with its natural environment. It has been shown

[26, 87], that the interaction between the system and its environment causes some

interference terms to become unobservable. In relation to this, it has also been

argued that the environment surrounding a quantum system can, in effect, monitor

some of the system’s observables and as a result, the eigenstates of those observables

continuously decohere and can behave like classical states [88].

3.3.2 How does the random phase approximation relate to the par-

tial trace?

For the purposes of this discussion, let us assume that both the system and
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environment are each described by a single quantum harmonic oscillator. In short,

the operation of taking a partial trace assumes that there are no fixed phase relation-

ships between the two oscillators, while at the same time, the phase relationships

between the number states of each individual oscillator are definite. In addition, the

partial trace also assumes that knowledge of the occupation numbers of each mode

of the second system is absent and so the average of these occupation numbers is

taken. In contrast, a full fledged random phase approximation considers all phase

relationships to be random. The partial trace does not go that far.

To get an idea of what the random phase approximation means, we can take

the following constructive approach. Let us assume that the state of the overall

system is a product state of two pure states of each of the two harmonic oscillators,

such that:

|Ψ12〉 = |ψ1〉 ⊗ |ψ2〉,

with:

|ψ1〉 =
∑
n1

pn1e
−iθn1 |n1〉

|ψ2〉 =
∑
n2

pn2e
−iθn2 |n2〉,

where pn1 and pn2 are real numbers. The bipartite density matrix is given by:

ρ = |Ψ12〉 ⊗ 〈Ψ12| =
∑

n1,n2,n′1,n
′
2

pn1pn2pn′1pn′2e
−i[(θn1−θn′1

)−(θn2−θn′2
)]|n1, n2〉〈n′1, n′2|.

(3.1)

The random phase approximation assumes that the four phases θn1 , θn2 , θn′1 , and

θn′2 in Eq. (3.1) are completely random and the effective density matrix describing

the system ρeff is obtained by integrating out the four phases from ρ. The integral

from 0 to 2π over the four phases will kill all terms in ρ except those in which

n1 = n′1 and n2 = n′2, so that θn1 − θn′1 = θn2 − θn′2 = 0. In other words, the
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random phase approximation kills off all the off-diagonal terms in ρ and makes ρeff

diagonal.

The partial trace does something which is different from what we described

above. In the case of the partial trace, the assumption made is that nothing is

known about the second system. In other words, it is assumed that θn2 and θn′2 are

completely random and integration over them can be performed. This will kill off

any terms in ρ for which n2 6= n′2. In addition to this, it is assumed that there is

no knowledge of the occupation numbers of each mode of the second subsystem and

hence averaging over all possible occupation numbers can be performed by summing

over n2.

Another way of looking at the partial trace is the following. Let as define

θn1 − θn′1 ≡ Θn1n′1
and θn2 − θn′2 ≡ Θn2n′2

. If we assume that the phase relationship

between the two oscillators given by Θn1n′1
−Θn2n′2

is unknown, we can average over

this unknown relative phase. This is analogous to integrating Eq. (3.1) over either

Θn1n′1
or Θn2n′2

. If we perform the integration over Θn2n′2
, all terms with n2 6= n′2

will be removed. Further sum over n2 justified by the lack of knowledge of the

occupation numbers in the second system leads to the operation of partial trace.

Note that the discussion above assumes that the state |Ψ12〉 is a pure product

state. This will not be the case for the systems considered in the remainder of this

dissertation. The density matrix ρSE(τ) on which the partial trace is performed is

neither pure nor a product state. However, a similar analysis can be extended to

the case where |Ψ12〉 is not a product state and the subsystems |ψ1〉 and |ψ2〉 are

not pure. This example was used because of its transparency in understanding the

subtle differences between the random phase approximation and the partial trace

operation.
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To summarize, the random phase approximation is a transformation:

ρ→
∑
n1,n2

|n1, n2〉〈n1, n2|ρ|n1, n2〉〈n1, n2|,

with |n1, n2〉 being the orthonormal basis of the total free Hamiltonian. This trans-

formation is linear with respect to ρ, and corresponds to vanishing of off-diagonal

terms in ρ. The operation of the partial trace is not quite the same as the random

phase approximation. Whereas the partial trace assumes that we have no knowl-

edge of the occupation numbers of each mode in the second subsystem and hence we

end up averaging over those occupation numbers, the random phase approximation

considers all phase relationships to be random.

We will be revisiting the issues presented in this last section in Chapter 4 for

the specific case of two interacting harmonic oscillators.
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UρSE(0)U+ 

ρS(0) 

ρE(0) 

TrE ρSE(τ) 

ρE(0) 
ρSE(τ) 

Repeated n times 

Figure 3.1: Flow Chart describing the first step in the iterative process of “in-
teracting”, “refreshing”, and “repeating”. Two initially uncoupled subsystems are
forced to interact through a constant interaction Hamiltonian Ĥint, the time-evolved
composite density matrix is calculated, and the system is “refreshed”. Statistical
independence is assumed at each characteristic time interval τ . The interaction is
again applied to the new uncoupled states of the two subsystems. The process is
periodically repeated until a new steady state is reached.
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Chapter 4

Dynamics of coupled bipartite

systems: some examples

We are now in a position to apply the “interact-refresh-repeat” model to solve

some specific examples. We begin with an introduction to the two-state quantum

system known as the qubit and explicitly solve the open evolution of a bipartite

system composed of two such finite-dimensional systems. We continue to extend this

calculation to the case involving systems with infinite-dimensional Hilbert spaces, in

which case our bipartite system is composed of quantum harmonic oscillators. The

physical consequences of the latter case is the main focus of this dissertation.

4.1 An introduction to qubits

The qubit is the basic unit of measurement in quantum information theory.

The name “qubit” stands for QUantum BInary digiT. The qubit is analogous to

the bit (or BInary digiT), which is the basic unit of classical computer information.

Irrespective of its physical realization, a bit is always understood to be either a 0

or a 1. Similarly, the two possible computational states of a qubit are the states |0〉
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and |1〉. The information encoded in a qubit is described by a state vector in a two-

level quantum-mechanical system, which is formally equivalent to a two-dimensional

Hilbert space.

The qubit has some similarities to the classical bit but is overall very different

from it. The main difference is that whereas a bit must by either 0 or 1, the qubit

can be in state |0〉, |1〉, or a linear combination (or superposition) of both:

|ψ〉 = α|0〉+ β|1〉,

where α and β are probability amplitudes and can in general both be complex

numbers. α and β are constrained by the equation:

|α|2 + |β|2 = 1, (4.1)

where |α|2 is the probability that the qubit is in state |0〉, and |β|2 is the probability

that it is in state |1〉. Geometrically, we can interpret Eq. (4.1) as the condition

that the qubit’s state be normalized to length 1. Put another way, the state of a

qubit is a vector in a two-dimensional complex vector space.

The existence and behavior of qubits has been extensively validated experi-

mentally [39], and there is a plethora of systems found in nature that are physical

realizations of these two-level quantum systems. For example, this realization may

occur as the two different polarizations of a photon, as the alignment of a nuclear

spin in a uniform magnetic field, or as two states (“ground” |0〉 or “excited” |1〉)

of an electron in the atom model. The electron in the atom model can be moved

from the state |0〉 to the state |1〉 by shining light on the atom with the appropriate

energy and for an appropriate length of time. However, by reducing the time that

the light is shone on the atom, the electron can be moved halfway between the states

|0〉 and |1〉.

31



4.1.1 Entanglement, or “spooky action at a distance”

An important feature that distinguishes a qubit and a classical bit is that

multiple qubits can exhibit quantum entanglement. If we had a bipartite system

composed of two classical bits, there would be four possible states, 00, 01, 10, and

11. Similarly, a two-qubit system has four computational basis states denoted by

|00〉, |01〉, |10〉, and |11〉. Of-course, a pair of qubits can also exist in a superposition

of these four states.

Let’s take as an example two qubits in the state given by:

|ψ〉 =
1√
2

(
|00〉+ |11〉

)
, (4.2)

known as a Bell state. The notation |ab〉 in Eq. (4.2) translates to the first qubit

being in the state |a〉 and the second qubit being in the state |b〉. For example,

|00〉 means that both qubits are in the state |0〉. For the equal superposition state

of Eq. (4.2), the probability of measuring |00〉 or |11〉 is the same, and equal to∣∣1/√2
∣∣2 = 1/2. This state has the remarkable property that there are no single

qubit states |a〉 and |b〉 such that |ψ〉 = |a〉|b〉, or in other words, the state cannot

be written as a product of states of its component systems. A state of a composite

system that has this property is called an entangled state.

Entanglement is specific to the character of quantum systems. It is a nonlocal

property that allows a set of qubits to express a higher correlation than is possible

in classical systems. This is a real phenomenon which Einstein called “spooky

action at a distance”, the mechanism of which cannot, as yet, be explained by any

theory; it simply must be taken as given. Quantum entanglement allows qubits that

are separated by incredible distances to interact with each other instantaneously,

without being limited to the speed of light. Regardless of how great the distance

between the correlated particles is, they will remain entangled as long as they are
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isolated.

If the two entangled qubits of Eq. (4.2) are separated, with one part given to

Alice and the other to Bob, and Alice makes a measurement on her qubit obtaining

either |0〉 or |1〉 with equal probability, Bob must get the exact same measurement

as Alice. In other words, if Alice measures a |0〉, Bob must measure the same, as

|00〉 is the only state where Alice’s qubit is a |0〉.

Many of the successes of quantum computation and communication, such as

quantum teleportation and superdense coding, make use of entanglement, suggesting

that entanglement is a resource that is unique to quantum computation [39].

Any arbitrary qubit density matrix can be written in the form [39]:

ρ =
1
2
(
I +

∑
i

aiσi
)

= 1
2

 1 + a3 a1 − ia2

a1 + ia2 1− a3

 , (4.3)

where I is the 2× 2 identity matrix, and the σi’s are the spin Pauli matrices given

by:

σ1 =

 0 1

1 0

 , σ2 =

 0 −i

i 0

 , σ3 =

 1 0

0 −1

 .

The ai’s have i = {1, 2, 3}, and are real vector components which provide a conve-

nient way of parametrizing single qubit states. The three-dimensional vector ~a is

known as the Bloch vector for the state ρ and it satisfies the condition |~a ≤ 1|. Its

magnitude represents the polarization of the density matrix. The space spanned by

Eq. (4.3) can be geometrically interpreted as all the points on or inside the “Bloch

sphere”, which is the sphere with radius 1 spanned by the ai’s. For example, the

case with |~a = 1| represents a pure state and that with |~a = 0| represents a fully

mixed state. All other cases lie between these two extremums. In calculating the

time evolution of a qubit system, we need to calculate the time evolution of its Bloch

vector components.
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4.2 Dynamics of two coupled spins in the presence of a

magnetic field

Our first application of the “interact-refresh-repeat” model of Chapter 3

involves the case of two coupled qubits, mainly because of the calculational simplicity

afforded by such systems. For the purposes of the following discussion, we choose to

represent a qubit by the two states of a spin-1/2 particle. Without loss of generality,

both the system of interest and its environment are represented by a single qubit.

More specifically, our composite system consists of two spin subsystems ini-

tially at thermal equilibria at temperatures T1 and T2, respectively. Following our

model, we assume that spin 2 (the environment) is maintained in an inexhaustible

thermal bath at temperature T2, and that spin 1 is not in contact with any kind of

bath. A static external magnetic field H0 is applied to the system in the z direction.

At t = 0, the two spin systems are not interacting and the density matrix of the

composite system is given by the tensor product of the two subsystems, such that

ρSE(0) = ρS1 (0)⊗ ρE2 (0). For compactness, we will leave out the superscripts S (for

system) and E (for environment), unless the meaning of our discussion is not clear.

We are interested in studying the relaxation of the physical system of interest (sub-

system 1) when in contact with its environment (subsystem 2), under the successive

periodic application of an interaction Hamiltonian.

The free Hamiltonians of this particular system are given by:

Ĥ1 = ω1(σ3 ⊗ 1)

Ĥ2 = ω2(1⊗ τ3),

Here, ω1 is the precessional frequency of spin 1 in the presence of the magnetic field,

and ω2 is that of system 2. These are determined by the gyromagnetic ratio and the

applied external magnetic field. The σ’s denote spin Pauli matrices in the Hilbert
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space of spin system 1, and the τ ’s denote those matrices in the Hilbert space of

spin system 2.

The most general interaction Hamiltonian between the two qubits can be

written as:

Ĥint(t) =
∑
i,j

λij(t)(σi ⊗ τj), (4.4)

where the subscript indices i, j take values from {1, 2, 3}, and λij(t) denotes the

strength of coupling between the two spins. By using local unitary transformations

[70], Eq. (4.4) can be simplified to:

Ĥint(t) =
∑
i

λi(t)(σi ⊗ τi).

For simplicity, we will assume that the coupling parameter λ(t) is the same for

all three of the possible coupling combinations, i.e., λ1(t) = λ2(t) = λ3(t), and

that individual qubits do not evolve freely, such that λ(t) → λ, and the coupling

parameter has no explicit time dependence. With these assumptions, the interaction

Hamiltonian (4.4) takes the simplified form:

Ĥint = λ
∑
i

(σi ⊗ τi). (4.5)

From now on, summation over repeated subscript indices will be implied. This choice

of the interaction Hamiltonian has no special significance, but it can be shown in

[63] that it does not lack any of the important features seen in the evolution of a

system under a more general interaction Hamiltonian.

As mentioned above, at t = 0, both system and environment are in thermal

equilibria at temperatures T1 and T2, respectively. This allows for the initial density

matrices of the uncoupled systems to be described by Maxwell-Boltzmann statistics,
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such that:

ρS(0) =
1
Z1
e−Ĥ1θ1 =

1
Z1
e−ω1θ1[σ3⊗1]

ρE(0) =
1
Z2
e−Ĥ2θ2 =

1
Z2
e−ω2θ2[1⊗τ3].

The quantity θ is an inverse temperature, defined by θ = 1/kT , where k is the

Boltzmann constant. Z is a normalization constant known as the partition func-

tion, and it is given by Z =
∑

n e
−En/(kT ) = Tr[e−Ĥ/(kT )]. In this first illustrative

example, we will consider the simplified case where the precessional frequencies of

the two spins are the same and equal to that of the interaction Hamiltonian, such

that ω1 = ω2 = ω. This assumption will be relaxed in Section 4.3, but for now, we

will employ it in order to simplify the calculation.

The initial density matrix for the composite system is given by:

ρSE(0) = ρS(0)⊗ ρE(0)

=
1

Z1Z2
e−ωθ1[σ3⊗1]e−ωθ2[1⊗τ3]

=
1

Z1Z2

[
(1⊗ 1) coshωθ1 − (σ3 ⊗ 1) sinhωθ1

]
·[

(1⊗ 1) coshωθ2 − (1⊗ τ3) sinhωθ2

]
, (4.6)

where we have used the property σ2 = τ2 = 1 to arrive at the last expression.

Equation (4.6) can be put in the form:

ρSE(0) =
1

Z1Z2

[
(1⊗ 1) coshωθ1 coshωθ2 − (1⊗ τ3) coshωθ1 sinhωθ2

− (σ3 ⊗ 1) sinhωθ1 coshωθ2 + (σ3 ⊗ τ3) sinhωθ1 sinhωθ2

]
. (4.7)

The time-evolved density matrix for the composite system after one characteristic
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interval has passed can be calculated by evaluating the expression:

ρSE(τ) = Û(τ)ρSE(0)Û †(τ),

in the interaction picture. Here Û = e−iĤintτ . It can be shown in [55] that for the

interaction Hamiltonian of Eq. (4.5) we have:

Û(1⊗ 1)Û † = 1⊗ 1

Û(σi ⊗ σi)Û † = σi ⊗ σi

Û(1⊗ σi)Û † = (1⊗ σi)e2iλτ(σj⊗σj+σk⊗σk)

Û(σi ⊗ σj)Û † = (σi ⊗ σj)e2iλτ(σi⊗σi+σj⊗σj),

with {i, j, k} cyclic. Using the above results, the evolution of Eq. (4.7) can be

written as:

ρSE(τ) =
1

Z1Z2

[
(1⊗ 1) coshωθ1 coshωθ2 − (1⊗ τ3) cos2 2λτ coshωθ1 sinhωθ2

− 1
2

sin 4λτ coshωθ1 sinhωθ2(σ2 ⊗ τ1 − σ1 ⊗ τ2)

− (σ3 ⊗ 1) sin2 2λτ coshωθ1 sinhωθ2 − (σ3 ⊗ 1) cos2 2λτ sinhωθ1 coshωθ2

− 1
2

sin 4λτ sinhωθ1 coshωθ2(σ1 ⊗ τ2 − σ2 ⊗ τ1)

− (1⊗ τ3) sin2 2λτ sinhωθ1 coshωθ2 − (σ3 ⊗ τ3) sinhωθ1 sinhωθ2

]
. (4.8)

The reduced density matrix of spin 1 after the first characteristic time interval τ

has passed is calculated by taking the partial trace of Eq. (4.8) with respect to the
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environment:

ρS(τ) = TrE
[
ρSE(τ)

]
=

1
Z1Z2

[
1
2
I coshωθ1 coshωθ2 −

1
2
σ3 sin2 2λτ coshωθ1 sinhωθ2

− 1
2
σ3 cos2 2λτ sinhωθ1 coshωθ2

]
. (4.9)

In obtaining Eq. (4.9), we have used the property:

Tr(τi) = 0.

Using the fact that:

Z2 = 2 coshωθ2,

Eq. (4.9) can be written as:

ρS(τ) =
1
Z1

[
I coshωθ1−σ3(sinhωθ1 cos2 2λτ +coshωθ1 tanhωθ2 sin2 2λτ)

]
. (4.10)

We would like to calculate the state of system 1 after n successive interactions

have been applied to our composite system. In other words, we are looking for an

expression for ρS(nτ). This can be calculated quite easily for the bipartite system

at hand by using the method of iteration.

To calculate the time evolution of our spin system, we need to calculate the

time evolution of its Bloch vector components. For this particular example, the

Bloch vector components are a measure of the temperature of the system. To begin,

we note that ρS(0) can be written in the form:

ρS(0) =
1
Z1

[
I coshωθ1 − σ3 sinhωθ1

]
=

1
2

[
I− σ3 tanhωθ1

]
, (4.11)

where we have used the fact that Z1 = 2 coshωθ1. In a similar fashion, ρS(τ) given
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by Eq. (4.10) can be written as:

ρS(τ) =
1
2

[
I− σ3(tanhωθ1 cos2 2λτ + tanhωθ2 sin2 2λτ)

]
. (4.12)

Using Eqs. (4.3), (4.11), and (4.12), we see that:

a3(τ) = tanhωθ1 cos2 2λτ + coshωθ1 tanhωθ2 sin2 2λτ

= a3(0) cos2 2λτ + coshωθ1 tanhωθ2 sin2 2λτ

= a3(0)A+B,

where:

a3(0) = tanhωθ1(0)

A = cos2 2λτ

B = coshωθ1 tanhωθ2 sin2 2λτ.

The next few terms can be calculated by using the same technique:

a3(2τ) = a3(τ)A+B = [a3(0)A+B]A+B = A2a3(0) +B(A+ 1)

a3(3τ) = a3(2τ)A+B = [A2a3(0) +B(A+ 1)]A+B = A3a3(0) +B(A2 +A+ 1)

a3(4τ) = a3(3τ)A+B = A4a3(0) +B(A3 +A2 +A+ 1),

and so on. After n such iterations, the Bloch vector component a3(nτ) is found to

be:

a3(nτ) = Ana3(0) +
(
An − 1
A− 1

)
,
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or:

a3(nτ) = a3(0) cos2n 2λτ + coshωθ1 tanhωθ2

(
cos2n 2λτ − 1
cos2 2λτ − 1

)
sin2 2λτ

= a3(0) cos2n 2λτ + coshωθ1 tanhωθ2(1− cos2n 2λτ).

After a total time t = nτ has passed, a3(nτ) can be written as:

a3(t) = cos2t/τ 2λτ [a3(0)− coshωθ1 tanhωθ2] + coshωθ1 tanhωθ2

= cos2t/τ 2λτ [a3(0) + a0]− a0,

or:

a3(t) + a0 = cos2t/τ 2λτ [a3(0) + a0], (4.13)

with:

a0 = − coshωθ1 tanhωθ2.

At t = 0, a3 is a measure of the temperature of system 1, but for t > 0, it

becomes a function of both θ1 and θ2. It is also interesting to note that a3(t) depends

on two time scales: τ for the short-time regime, and t for the long time-regime. We

will be discussing these two different time regimes in more detail in Section 4.3.

Equation (4.13) can be written in an exponential form, which is characteristic of a

thermodynamic decay:

a3(t) + a0 = e−γt[a3(0) + a0] = e−t/T [a3(0) + a0], (4.14)

where γ is the decay constant and T = 1/γ is the relaxation time of our system.
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This relaxation time can be calculated from Eqs. (4.13) and (4.14):

cos2t/τ 2λτ = e−t/T

t

T
= ln(cos−2t/τ 2λτ)

T =
τ

ln(sec 2λτ)
. (4.15)

Equation (4.15) states that the relaxation time of our two-qubit system is directly

proportional to the characteristic time-interval τ . In addition, when the coupling

strength λ is zero, T → ∞ and there is no relaxation. In other words, there is

no relaxation unless the subsystems are forced to interact with each other. As the

coupling strength increases, so does the rate of relaxation.

The reduced density matrix of spin system 1 is given by:

ρS(t) =
1
Z1

[
coshωθ1 − a3(t)σ3

]
=

1
Z1

[
coshωθ1 − σ3

(
e−t/T

(
a3(0) + a0

)
− a0

)]
. (4.16)

Letting t→∞ in Eq. (4.16) gives:

ρS(t) =
1
Z1

[
coshωθ1 + σ3a0

]
=

1
Z1

[
coshωθ1 − σ3 coshωθ1 tanhωθ2

]
=

1
2 coshωθ1

[
coshωθ1 − σ3 coshωθ1 tanhωθ2

]
=

1
2

[
I− σ3 tanhωθ2

]
=

1
2 coshωθ2

[
coshωθ2 − σ3 sinhωθ2

]
=

1
Z2
e−Ĥ1θ2 . (4.17)

Equation (4.17) states that after a long enough time and after sufficient refreshing
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intervals, subsystem 1 attains the temperature of the thermal bath that it is in

contact with. This result is nothing but a statement of the zeroth law of thermody-

namics, and was first noted by Rau [54].

Notice that Eq. (4.12) is characterized by an oscillatory behavior. The inter-

action Hamiltonian exchanges the system with the environment at periodic intervals

without any loss of information or dissipation. However, a system interacts with its

environment in an irreversible manner. So how can this irreversibility be under-

stood? The answer to this question can be found in the assumptions put forth

in employing the “interact-refresh-repeat” model along with the Markov approxi-

mation. The environment is modeled as a stream of identical thermal spins, each

interacting independently with the system for a short average time. Decoherence

and irreversibility are introduced by the assumption that this interaction is inter-

rupted before there is time for the system to return the exchanged information to

the environment. This is in accordance with the Boltzmann collision model.

4.3 Dynamics of two coupled harmonic oscillators

In Section 4.2, we examined the case of a finite-dimensional quantum me-

chanical system coupled to a finite-dimensional environment through a general inter-

action Hamiltonian. In this section, we investigate the case of quantum mechanical

systems with infinite-dimensional Hilbert spaces coupled together through a general

interaction Hamiltonian. More specifically, our composite system is described by

two coupled harmonic oscillators.

Following the discussion presented in Section 4.2, we begin our discussion by

considering a set of two initially uncoupled harmonic oscillators 1 and 2, described

by density matrices ρS(0) and ρE(0), respectively. Harmonic oscillator 2 acts as the

environment, and it is kept at an inexhaustible temperature bath at temperature T2

at all times, while harmonic oscillator 1 is not in contact with any bath. At t = 0,
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the two oscillators are put in contact, and oscillator 1 relaxes away from its initial

equilibrium state. The free and interaction Hamiltonians of our system are given

by1:

Ĥ1 = ~ω1â
†
1â1

Ĥ2 = ~ω2â
†
2â2

Ĥint = ~ωλ(â†1â2 + â†2â1),

where ω{1,2} is the oscillation frequency of oscillator {1, 2}, and ω is the frequency of

the applied interaction Hamiltonian. λ is the constant strength of coupling between

the two oscillators. Here, â†1 and â1 are the raising and lowering operators for

oscillator 1, and similarly, â†2 and â2 are the raising and lowering operators for

oscillator 2. For simplicity, we set ~ = 1 for the remainder of this thesis.

The interaction Hamiltonian introduces a coupling between the two oscil-

lators through the coupling parameter λ. At the same time, when one quantum

is created in one of the oscillators, one quantum is destroyed in the other. This

conserves the total number of particles in the two oscillators.

Note that in the coupled spin system example, we limited our attention to

the special case where the precessional frequencies of the two subsystems were equal.

As promised, we now relax this limiting simplification and explore the case where

each oscillator is characterized by its own frequency. We will see that relaxing the

equal frequency assumption gives rise to some very interesting physical phenomena.

Just like in the coupled spins case, the initial uncoupled and combined den-

sity matrices of the system under consideration are characterized by the Maxwell-
1For a more detailed discussion on the quantum harmonic oscillator, see Chapter 6
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Boltzmann distribution and are given by:

ρS(0) =
1

Z1[θ1(0)]
e−ω1â

†
1â1θ1(0) (4.18)

ρE(0) =
1

Z2[θ2(0)]
e−ω2â

†
2â2θ2(0) (4.19)

ρSE(0) = ρS(0)⊗ ρE(0)

=
1

Z1[θ1(0)]Z2[θ2(0)]
e−ω1â

†
1â1θ1(0)e−ω2â

†
2â2θ2(0)

=
1

Z1[θ1(0)]Z2[θ2(0)]
e−[ω1â

†
1â1θ1(0)+ω2â

†
2â2θ2(0)], (4.20)

where we have used the property [â†1â1, â
†
2â2] = 0 to obtain the last equation. As

before, θ{1,2} = 1/(kT{1,2}), k is the Boltzmann constant and T{1,2} is the initial

equilibrium temperature of oscillator {1, 2}. The partition function is given by

Zi =
∑
e−En/(kT ) = Tr(e−Ĥi/(kT )) = Tr(e−ωiâ

†
i âiθi). We calculate the time evolution

of the composite system as before:

ρSE(τ) = e−iĤtotalτρSE(0)e+iĤtotalτ

= e−i(Ĥ1+Ĥ2+Ĥint)τρSE(0)e+i(Ĥ1+Ĥ2+Ĥint)τ

=
1

Z1[θ1(0)]Z2[θ2(0)]
e−iτ [ω1â

†
1â1+ω2â

†
2â2+ωλ(â†1â2+â†2â1)]

× e−[ω1â
†
1â1θ1(0)+ω2â

†
2â2θ2(0)]

× e+iτ [ω1â
†
1â1+ω2â

†
2â2+ωλ(â†1â2+â†2â1)]. (4.21)

To proceed, we note that there is a very interesting connection between the algebra

of angular momentum and the algebra of two uncoupled harmonic oscillators. This

connection is given by Schwinger’s oscillator model of angular momentum [62]. In
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this model, the following operators are defined:

Ĵ+ = â†1â2

Ĵ− = â†2â1

Ĵ1 =
1
2

(â†1â2 + â†2â1)

Ĵ2 =
1
2i

(â†1â2 − â†2â1)

Ĵ3 =
1
2

(â†1â1 − â†2â2)

j =
1
2

(â†1â1 + â†2â2) =
1
2

(n1 + n2)

m =
1
2

(â†1â1 − â†2â2) =
1
2

(n1 − n2) = Ĵ3.

It can be shown that the above operators satisfy angular momentum commutation

relations. With the above definitions, Eq. (4.21) becomes:

ρSE(τ) =
1

Z1[θ1(0)]Z2[θ2(0)]
e−iτ [j(ω1+ω2)+Ĵ3(ω1−ω2)+2ωλĴ1]

× e−j[ω1θ1(0)+ω2θ2(0)]−Ĵ3[ω1θ1(0)−ω2θ2(0)]

× e+iτ [j(ω1+ω2)+Ĵ3(ω1−ω2)+2ωλĴ1].

Since j commutes with Ĵ1 and Ĵ3, we can pull it through and factor it out, obtaining

a simplified expression for ρSE(τ):

ρSE(τ) =
1

Z1[θ1(0)]Z2[θ2(0)]
e−j[ω1θ1(0)+ω2θ2(0)] × e−iτ [Ĵ3(ω1−ω2)+2ωλĴ1]

× e−Ĵ3[ω1θ1(0)−ω2θ2(0)] × e+iτ [Ĵ3(ω1−ω2)+2ωλĴ1]. (4.22)

45



By introducing the parameters:

a = τ(ω1 − ω2)

b = 2ωλτ (4.23)

c = i[ω2θ2(0)− ω1θ1(0)],

Eq. (4.22) can be written as:

ρSE(τ) =
1

Z1[θ1(0)]Z2[θ2(0)]
e−j[ω1θ1(0)+ω2θ2(0)]e−i(aĴ3+bĴ1)e−icĴ3e+i(aĴ3+bĴ1). (4.24)

The reduced time evolution of oscillator 1 after a time τ has passed is obtained by

taking the partial trace of Eq. (4.24) over oscillator 2. The matrix elements of such

an expression are given by:

〈n′1|ρS(τ)|n1〉 =
∑
n2

〈n′1, n2|ρSE(τ)|n1, n2〉 = δn′1,n1

∑
n2

〈n′1, n2|ρSE(τ)|n1, n2〉

=
1

Z1[θ1(0)]Z2[θ2(0)]

∑
n2

〈n1, n2|e−j[ω1θ1(0)+ω2θ2(0)]

× e−i(aĴ3+bĴ1) × e−icĴ3 × e+i(aĴ3+bĴ1)|n1, n2〉, (4.25)

The appearance of the delta function δn′1,n1
in Eq. (4.25) is part of the “refresh”

procedure presented in Chapter 3 and its meaning will be discussed in detail in

Section 4.3.1.

It remains to figure out the action of the exponential operators in Eq. (4.25)

on the two-system state |n1, n2〉. This calculation is greatly simplified if we make

a transformation to the Euler-angle form e−iαĴ3e−iβĴ2e−iγĴ3 , since the action of the

operators Ĵ3 and Ĵ2 on this state is a known result. We would like to find expressions

for the coefficients α, β, and γ appearing in the Euler-angle form, in terms of the
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coefficients a, b, and c given by Eq. (4.23). To do this, we make use of the identity:

e−in̂·~σ
φ
2 = I cos

(
φ

2

)
− in̂ · ~σ sin

(
φ

2

)
,

where, for our case:

~σ = σ1î+ σ2ĵ + σ3k̂ = 2Ĵ ,

(the σ{1,2,3} are the Pauli spin matrices) and:

n̂ =
1√(

a
2

)2 +
(
b
2

)2
(
b

2
î+

a

2
k̂

)
,

such that:
φ

2
=

√(a
2

)2
+
(
b

2

)2

.

After some extensive but straightforward algebraic calculations, the results are:

α = arctan
(
D

A

)
+ arctan

(
−B
C

)
β = 2 arccos

[
A

cos
(
arctan D

A

)]

γ = arctan
(
D

A

)
− arctan

(
−B
C

)
,

with:

A = cos
( c

2

)
B =

ab

2d2
sin2(d) sin

( c
2

)
C = − b

d
cos(d) sin(d) sin

( c
2

)
D =

[
cos2(d) +

(
a
2

)2 − ( b2)2
d2

sin2(d)

]
sin
( c

2

)
,
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and:

d =

√(a
2

)2
+
(
b

2

)2

=
φ

2
.

With the above transformations, Eq. (4.25) becomes:

〈n′1|ρS(t)|n1〉 =
δn′1n1

Z1[θ1(0)]Z2[θ2(0)]

∑
n2

〈n′1, n2|e−j[ω1θ1(0)+ω2θ2(0)]

× e−iαĴ3e−iβĴ2e−iγĴ3 |n1, n2〉

=
1

Z1[θ1(0)]Z2[θ2(0)]

∑
n2

e−
1
2

(n1+n2)[ω1θ1(0)+ω2θ2(0)]

× e−
i
2

(n1−n2)(α+γ)〈n1, n2|e−iβĴ2 |n1, n2〉, (4.26)

where the Ĵ2 matrix element in the last equation is given by Wigner’s Formula in

the |j,m〉 basis [59]:

〈j,m′|e−iβĴ2 |j,m〉 = d
(j)
m′,m(β)

=
∑
K

(−1)K
√

(j +m)!(j −m)!(j +m′)!(j −m′)!
(j −m′ −K)!K!(j +m−K)!(K +m′ −m)!

×
(

cos
β

2

)j+m+j−m′−2K (
sin

β

2

)2K+m−m′

. (4.27)

Substituting Eq. (4.27) into Eq. (4.26) and summing over n2 and K, we obtain:

〈n′1|ρS(τ)|n1〉 =
δn′1,n1

Z1[θ1(0)]Z2[θ2(0)]
×

 1

1− cos
(
β
2

)
e
i
2

(α+γ)−Θ


×

 cos
(
β
2

)
eΘ+ i

2
(α+γ)

1− sec
(
β
2

)
e
i
2

(α+γ)−Θ

1− cos
(
β
2

)
e
i
2

(α+γ)−Θ

n1

, (4.28)

where:

Θ =
1
2

[ω1θ1(0) + ω2θ2(0)].
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Defining α = iζ and γ = iξ in Eq. (4.28) and letting δ = 1
2(ζ + ξ), we finally get:

〈n′1|ρS(τ)|n1〉 =
δn′1,n1

Z1[θ1(0)]Z2[θ2(0)]

 cos
(
β
2

)
eδ+Θ − 1

eΘ−δ
[
eΘ+δ − cos

(
β
2

) ]
n1

× 1

1− cos
(
β
2

)
e−(Θ+δ)

. (4.29)

Equation (4.29) can be written in the form:

〈n′1|ρS(τ)|n1〉 = δn′1,n1

1
Z[θ1(τ)]

e−ω1n1θ1(τ), (4.30)

with:

e−ω1θ1(τ) =
cos
(
β
2

)
eΘ+δ − 1

eΘ−δ
[
eΘ+δ − cos

(
β
2

) ] , (4.31)

and:

Z[θ1(τ)] = Z1[θ1(0)]Z2[θ2(0)]
[
1− cos

(
β

2

)
e−(Θ+δ)

]
. (4.32)

Equation (4.30) represents a quasi-stationary, non-equilibrium state. It shows

that after the interaction Hamiltonian has been applied for a time interval τ , the

original Maxwell-Boltzmann distribution describing oscillator 1 with temperature

T1(0) = 1/[kθ1(0)] at t = 0, is replaced by another Maxwell-Boltzmann distribution

and a different temperature T1(τ) = 1/[kθ1(τ)], given by Eqs. (4.31) and (4.32).

More specifically, the interaction has forced the oscillator out of its initial thermal

equilibrium at temperature T1(0) and brought it to a new thermal equilibrium at

temperature T1(τ). Once the system has been “refreshed”, the interaction process

is repeated. The new state of the physical system of interest, ρS(τ), interacts with

an identical copy of the initial state of the environment, ρE(0).

In the case of the bipartite spin system of Section 4.2, ρS(nτ) was obtained

analytically through an iteration method. Unfortunately, in the case of the two oscil-
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lators, there is no such simple analytical technique that can be used to obtain ρS(nτ).

Technically, of-course, now that we have an expression for the matrix elements of the

reduced time-evolved density matrix of oscillator 1 at time τ , our calculations could

be repeated to obtain 〈n′1|ρS(2τ)|n1〉, which will lead to another Maxwell-Boltzmann

distribution (and another quasi-stationary, non-equilibrium state), with a different

temperature T1(2τ) = 1/[kθ1(2τ)]. The same process can be repeated further to

obtain 〈n′1|ρS(3τ)|n1〉, 〈n′1|ρS(4τ)|n1〉, · · · , 〈n′1|ρS(nτ)|n1〉 with an increasing level

of difficulty. We bypass the complexity of the analytical method by carrying out the

iteration numerically using Mathematica. The graphs of our results are presented

in Section 4.3.2.

4.3.1 The delta-function in the reduced density matrix

As promised, we now turn our discussion to the appearance of the delta

function in Eq. (4.25). To begin, we note that the reduced density matrix ρS(τ) is

diagonal in the number basis {|n1〉} of the first harmonic oscillator. This is due to the

fact that j = N̂ = 1/2(â†1â1 + â†2â2) is a conserved quantity in our model ([Ĥ, N̂ ] =

0), and also because the initial composite density matrix ρSE(0) = ρS(0)⊗ ρE(0) is

diagonal in the number basis {|n1, n2〉} of the two harmonic oscillators. The only

non-zero matrix elements of the bipartite density matrix ρSE(τ) at time τ are:

〈n′1, n′2|ρSE(τ)|n′′1, n′′2〉,

such that n′1 + n′2 = n′′1 + n′′2 (j = j′), provided that ρSE(0) had no non-zero matrix

elements with n′1 + n′2 6= n′′1 + n′′2.

The evolution generated by the interaction Hamiltonian cannot change the

value of the conserved quantity. To make this statement more transparent, we note
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that the initial, diagonal density operator can be written as:

ρSE(0) =
∑
n1,n2

pn1n2 |n1, n2〉〈n1, n2|,

with n1, n2 = 0, 1, 2, · · · ,∞. The unitary operator Û = e−iĤτ transforms each

operator in the sum above to:

|n1, n2〉〈n1, n2| → un′1n′2n′′1n′′2 |n
′
1, n
′
2〉〈n′′1, n′′2|δn′1+n′2,n1+n2

δn′′1 +n′′2 ,n1+n2
.

The two delta functions ensure that n1 + n2 is a conserved quantity under the

evolution generated by Ĥ. In addition, the two delta functions together imply that

n′1+n′2 = n′′1 +n′′2 in all the terms appearing in ρSE(τ). In other words, if ρSE(0) had

no support on operators of the form |n′1, n′2〉〈n′′1, n′′2| with n′1 +n′2 6= n′′1 +n′′2 to begin

with, then the evolution cannot generate support on such terms. Of-course, if the

initial density matrix ρSE(0) had non-zero matrix elements with n′1 +n′2 6= n′′1 +n′′2,

then the above argument would not work. The latter situation is beyond the scope

of this dissertation.

The partial trace operation assumes that we consider the relative phase be-

tween systems 1 and 2 to be completely randomized and thus we can integrate over

it. In addition to this, we assume that we know nothing about the occupation num-

bers of each mode of the second system and hence we can sum over them when

computing the partial density matrix of system 1. This produces a ρS(τ) that is

diagonal because in performing the partial trace, we set n′2 = n′′2 which means that

all the terms in ρSE(τ) contributing to the partial trace also have n′1 = n′′1, since

n′1 + n2 = n′′1 + n2 which leads to n′1 = n′′1. Then indeed:

〈n′1|ρS(τ)|n1〉 =
∑
n2

〈n′1, n2|ρSE(τ)|n1, n2〉 = δn1,n′1

∑
n2

〈n′1, n2|ρSE(τ)|n1, n2〉.
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It turns out that, for the specific system considered here, there is no need

to invoke the random phase approximation to kill off the off-diagonal elements in

ρSE(τ). Even without this approximation, the answer is the same. This is due to

the extra symmetry of our system. In general, if we had chosen a different system

with no extra symmetry like this one, the refresh procedure as defined using the

partial trace and the random phase approximation would lead to different partial

density matrices. Again, this situation is beyond the scope of this dissertation.

4.3.2 Physical interpretation and consequences

The question we want to answer now is: When is equilibrium achieved, or

When does the relaxing system reach a steady state? To answer this question, let’s

consider the system composed of some energy state |n1〉 in oscillator 1 and some

energy state |n2〉 in oscillator 2. A steady state will be reached when the net rate of

“absorption” equals the net rate of “emission” in and out of this system. “Emission”

results from transitions such as |n1〉 → |n1 + 1〉 or |n1〉 → |n1 − 1〉 in oscillator 1,

and |n2〉 → |n2 − 1〉 or |n2〉 → |n2 + 1〉 in oscillator 2. Likewise, “absorption”

processes are caused from transitions such as |n1− 1〉 → |n1〉 or |n1 + 1〉 → |n1〉 and

|n2 + 1〉 → |n2〉 or |n2 − 1〉 → |n2〉.

Recalling that Ĥint = ωλ(â†1â2 + â†2â1), we can calculate the probability

amplitudes for “emission” out of this bipartite system:

〈n1 + 1, n2 − 1|ωλ(â†1â2 + â†2â1)|n1, n2〉 = ωλ
√
n2(n1 + 1),

〈n1 − 1, n2 + 1|ωλ(â†1â2 + â†2â1)|n1, n2〉 = ωλ
√
n1(n2 + 1).

Similarly, the probability amplitudes for “absorption” are given by:

〈n1, n2|ωλ(â†1â2 + â†2â1)|n1 − 1, n2 + 1〉 = ωλ
√
n1(n2 + 1),

〈n1, n2|ωλ(â†1â2 + â†2â1)|n1 + 1, n2 − 1〉 = ωλ
√
n2(n1 + 1).
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At equilibrium, we expect that:

P (n1, n2)[n2(n1 + 1)] + P (n1, n2)[n1(n2 + 1)] = P (n1 − 1, n2 + 1)[n1(n2 + 1)]

+ P (n1 + 1, n2 − 1)[n2(n1 + 1)],

(4.33)

where P (n1, n2) is the probability to have a particle in energy level |n1〉 in oscillator

1 and energy level |n2〉 in oscillator 2, etc. Simplifying Eq. (4.33) gives:

P (n1, n2)[2n1n2 + n1 + n2] = P (n1 − 1, n2 + 1)[n1(n2 + 1)]

+ P (n1 + 1, n2 − 1)[n2(n1 + 1)]. (4.34)

The consequences of Eq. (4.34) can now be explored. Recall that the interaction

Hamiltonian imposes the condition that the sum of the occupation numbers n1 and

n2 in states |n1〉 and |n2〉 respectively, is a constant. Let’s call this constant N ,

such that n1 + n2 = N . The case N = 0 is trivial, it represents the vacuum state.

For N = 1, there are two possible transition states, |1, 0〉 and |0, 1〉. Solving Eq.

(4.34) for these two different cases leads to the condition P (1, 0) = P (0, 1). This

result is not surprising. It simply states that, at equilibrium, the probability of a

transition to the state |1, 0〉 is the same as that to the state |0, 1〉. Similarly, for

N = 2, there are three possible transition states: |0, 2〉, |1, 1〉, and |2, 0〉. This time,

Eq. (4.34) yields a more interesting result: P (0, 2) = P (1, 1) = P (2, 0). Since the

sum of all probabilities must be unity, each of these probabilities must be equal to

1/3. Repeating this procedure for increasing N , we soon recognize that for any N ,

there are N + 1 different possible states, and the probability of transition to any of

them is the same for all and equal to 1/(N + 1).

Making use of the above result and employing Eqs. (4.18) and (4.30), we
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conclude that the new density matrix for the composite system will be of the form:

〈n1, n2|ρSE(∞)|n1, n2〉 =
1

N + 1
e−ω1n1θ1(∞)e−ω2n2θ2(0). (4.35)

If we define ν = n1 − n2, we can rewrite Eq. (4.35) as:

〈n1, n2|ρSE(∞)|n1, n2〉 =
〈
N + ν

2
,
N − ν

2

∣∣∣∣ρSE(∞)
∣∣∣∣N + ν

2
,
N − ν

2

〉
=

1
N + 1

e−ω1

(
N+ν

2

)
θ1(∞)e−ω2

(
N−ν

2

)
θ2(0)

=
1

N + 1

[
e−

N
2

[
ω1θ1(∞)+ω2θ2(0)

]
e−

ν
2

[
ω1θ1(∞)−ω2θ2(0)

]]
.

(4.36)

Since, for any N , the probability of transition at equilibrium to any of the N + 1

possible states is equal to 1/(N + 1), Eq. (4.36) should be independent of ν. This

is true when e−
ν
2

[ω1θ1(∞)−ω2θ2(0)] → 1, which leads to the consequence that, at

equilibrium, ω1θ1(∞) = ω2θ2(0), or ω1/[kT1(∞)] = ω2/[kT2(0)].

In the plots below, the “temperature” (kt0/~)T and the quantity kT/~ω are

plotted as functions of the refreshing time intervals nτ/t0, for the relaxation of the

initial Maxwell-Boltzmann distributions of the two oscillators. Here, we introduce

the time constant t0 for the simplicity of working in a dimensionless system of units.

In this system, we set k = ~ = t0 = 1. The interaction Hamiltonian is applied for

a constant time interval τ , interrupted, the system is refreshed, and the procedure

is repeated, until oscillator 1 reaches a new steady state. In Figs. 4.1 and 4.2, the

frequencies of both harmonic oscillators and that of the interaction Hamiltonian

are equal, in Fig. 4.3, the frequencies of the oscillators are equal but that of the

interaction Hamiltonian is not, and, finally, in Figs. 4.4 and 4.5, the frequencies of

the oscillators and the interaction Hamiltonian are all different. The dashed line

represents the evolution of oscillator 1 and the solid one represents the evolution of
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oscillator 2.

We note some interesting results. The rate with which system 1 reaches a

new steady state depends on an interplay between the characteristic time interval τ

and the interaction frequency ω. Comparing Figs. 4.1 and 4.2, we observe that, for

a constant interaction frequency and a shorter characteristic time interval, harmonic

oscillator 1 reaches equilibrium much faster. This can be understood by noting that

as τ decreases, the period of the applied interaction Hamiltonian is decreased, and

the oscillators do not have as much time to interact before the interaction is inter-

rupted. Decreasing the length of the interaction time prevents the oscillators from

returning back the temperature they have exchanged so the equilibrium is achieved

faster. In other words, if we let the characteristic time interval τ to be of signifi-

cant length, the short time behavior tends to dominate. For a longer τ , an overall

long time envelope develops. Just like in the example of two interacting spins, this

phenomenon begins to suggest exponential decay, a signature of thermodynamic

behavior. The same effect is observed when we compare Figs. 4.1 and 4.3: for a

constant characteristic time interval and a higher interaction frequency, the oscilla-

tors are forced to exchange temperature faster. Again, the equilibrium is attained

more quickly.

Further, we note that our prediction is verified: ω1θ1(∞) = ω2θ2(0) (or,

ω1/[T1(∞)] = ω2/[T2(0)]), at equilibrium. This is shown in subfigures (b) of each

figure. In the first three cases, we set ω1 = ω2, and observe that system 1 attains the

temperature of its environment as t→∞. The equilibrium reached is a thermal one,

or, in other words, oscillator 1 has reached a steady state where its temperatures

has ceased to change, and a single temperature (that of the environment) can be

attributed to the composite system. This was in fact noted by several individuals

including Montroll and Shuler [35], Mathews, Shapiro, and Falkoff [32], although

the problem was solved through a master equation approach and the use of pertur-
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Figure 4.1: (kt0/~)T and kT/~ω as functions of the refreshing time intervals nτ/t0
for the relaxation of the two initial Maxwell-Boltzmann distributions, with a long
characteristic interval τ and equal frequencies. The dashed line represents oscillator
1 and the solid one represents oscillator 2. Here, k = ~ = t0 = 1, (kt0/~)T1(0) = 1,
(kt0/~)T2(0) = 9, ω1t0 = ω2t0 = ωt0 = 1, and τ/t0 = 2.7. The frequencies of
the oscillators are the same and system 1 attains a thermal equilibrium with its
environment such that T1(∞) = T2(0).
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Figure 4.2: (kt0/~)T and kT/~ω as functions of the refreshing time intervals nτ/t0
for the relaxation of the two initial Maxwell-Boltzmann distributions, with a short
characteristic interval τ and equal frequencies. The dashed line represents oscillator
1 and the solid one represents oscillator 2. Here, k = ~ = t0 = 1, (kt0/~)T1(0) = 1,
(kt0/~)T2(0) = 9, ω1t0 = ω2t0 = ωt0 = 1, and τ/t0 = 0.3. Keeping the oscillation
frequencies the same as in Fig. 4.1, the characteristic time interval is decreased and
thermal equilibrium is reached much faster.
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Figure 4.3: (kt0/~)T and kT/~ω as functions of the refreshing time intervals nτ/t0
for the relaxation of the two initial Maxwell-Boltzmann distributions, with a high
interaction frequency ω and equal frequencies. The dashed line represents oscillator
1 and the solid one represents oscillator 2. Here, k = ~ = t0 = 1, (kt0/~)T1(0) =
1, (kt0/~)T2(0) = 9, ω1t0 = ω2t0 = 1, ωt0 = 5, and τ/t0 = 2.7. Keeping the
characteristic time interval the same as in Fig. 4.1, the interaction frequency is
increased and the equilibrium is reached much faster.
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Figure 4.4: (kt0/~)T and kT/~ω as functions of the refreshing time intervals nτ/t0
for the relaxation of the two initial Maxwell-Boltzmann distributions with unequal
frequencies. The dashed line represents oscillator 1 and the solid one represents
oscillator 2. Here, k = ~ = t0 = 1, (kt0/~)T1(0) = 2, (kt0/~)T2(0) = 6, ω1t0 = 1,
ω2t0 = 3, ωt0 = 5, and τ/t0 = 1.5. Figure (a) shows that oscillator 1 approaches,
but does not attain the temperature of its environment, while Fig.(b) demonstrates
that the condition ω1/[T1(∞)] = ω2/[T2(0)] is satisfied.
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Figure 4.5: (kt0/~)T and kT/~ω as functions of the refreshing time intervals nτ/t0
for the relaxation of the two initial Maxwell-Boltzmann distributions with unequal
frequencies. The dashed line represents oscillator 1 and the solid one represents
oscillator 2. Here, k = ~ = t0 = 1, (kt0/~)T1(0) = 8, (kt0/~)T2(0) = 2, ω1t0 =
1, ω2t0 = 4, ωt0 = 5, and τ/t0 = 1.5. Again, Fig. (a) shows that oscillator 1
approaches, but does not reach the temperature of its environment, and Fig. (b)
shows that the condition ω1/[T1(∞)] = ω2/[T2(0)] is satisfied.
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bation theory. The above result is also in agreement with the results of [54], but the

availability of numerical techniques for carrying out the iteration was unavailable

at the time. Nonetheless, the predictions made were correct and the results are not

surprising. They are simply a consequence of the zeroth law of thermodynamics:

when two systems are put in contact with each other, there will be a net exchange

of energy between them unless or until they are in thermal equilibrium. This phe-

nomenon has also been studied by Andersen and Shuler for the specific case of the

relaxation of a hard-sphere Rayleigh and Lorentz gas [1].

A somewhat more unexpected result (from a thermodynamical point of view),

appears in the case where ω1 6= ω2. The equilibrium reached is not a thermal one

and the final composite system no longer satisfies Maxwell-Boltzmann statistics.

Oscillator 1 interacts with its environment through the interaction Hamiltonian

which takes it out of its initial equilibrium, and eventually reaches a new steady

state in which it attains a new equilibrium at a temperature different from that of

its environment. While system 1 approaches the temperature of its environment,

it never quite reaches it. Its new equilibrium temperature is given by the relation

ω1/[T1(∞)] = ω2/[T2(0)]. We note that, besides imposing the condition that the

total number of particles is a constant, the interaction Hamiltonian also dictates

that the energy of the uncoupled parts of the system (not including the interaction

energy) is conserved only when the frequencies of the oscillators are equal:

[Ĥ, Ĥ1 + Ĥ2] = ωλ(ω2 − ω1)[â†1â2 − â†2â1],

where Ĥ1+Ĥ2 is the total energy of the uncoupled oscillators without the interaction.

The selection rules imposed by the interaction Hamiltonian override the statistical

mechanical effects.

The relaxation of our harmonic oscillator system was attained through two

equally important parameters: the interaction coupling, introduced through the pa-
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rameter λ in our interaction Hamiltonian, and a “refresh” procedure, whose mech-

anism and physical realizations were described in detail in Chapter 3.
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Chapter 5

Relaxation through interaction

with environments with a larger

number of degrees of freedom

In Chapter 4, we studied the approach to equilibrium of a physical subsys-

tem which formed part of a bigger system composed of itself and the environment

in which it is in contact with. For what has been presented thus far, the environ-

ment has been assumed to be of a size comparable to that of the relaxing physical

subsystem. The system composed of a single spin system in Section 4.2 was cou-

pled to an environment composed of only one spin system, and similarly for the

harmonic oscillator system of Section 4.3. Realistically, a system will interact with

an environment that has a larger number of degrees of freedom than itself.

It turns out that the stochastic evolution of a system in contact with an

environment having a larger number of degrees of freedom than itself gives similar

results to those of Chapter 4, obtained for the case in which the system is in contact

with an environment of similar size. Nonetheless, for the sake of completeness, we

would like to generalize the results obtained thus far by examining the case in which
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the physical system of interest is coupled to a much larger environment. It will be

shown that the physical consequences arrived at in Section 4.3 also apply for this

more general case.

The physical system of interest will again be modeled by the familiar single

harmonic oscillator, but this time, the environment with which it will be in contact

with will be a harmonic oscillator chain. As usual, we are interested in how the

physical system relaxes when in contact with this environment.

To solve this problem, we will continue to utilize the model presented in

Chapter 3. As a reminder of this model’s recipe, at t < 0 the physical system of

interest is uncoupled from the environment, such that the composite system matrix

is given by the tensor product of ρS(0) and ρE(0), where the superscripts S and E

denote “system” and “environment”, respectively. At t < 0, the physical system is

at thermal equilibrium at temperature T1(0), and each degree of the environment

described by ρEi (0) is at thermal equilibrium at temperature T2(0). As per usual,

a general interaction Hamiltonian is turned on at t = 0, and the physical system

couples to its environment.

In what follows, the environment considered is an array of N harmonic os-

cillators which form a one-dimensional periodic lattice, or a one-dimensional chain.

Associated with each harmonic oscillator is a precessional frequency ωi and a tem-

perature T2. In all examples to follow, we assume an interaction Hamiltonian that

only couples nearest-neighbors. If the physical system of interest is placed at the far

left end of the chain and the N th environmental oscillator at the far right and the

interaction is turned on, ρS1 will couple directly to its nearest neighbor ρE2 . Once this

happens, both ρS1 (0) and ρE2 (0) will be taken out of their initial thermal equilibria

and this will in turn initiate an interaction between ρE2 and ρE3 .

The above setup is analogous to the ding-dong model [52] which is a simplified

version of the ding-a-ling model [8] in the context of heat conduction. The ding-a-
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ling model consists of a line of harmonic oscillators with free particles placed between

each neighboring harmonic oscillator. In this model, the interaction appears in the

form of an elastic collision between the neighboring free particle and the particle

of the oscillator. Between collisions, the free particles and the harmonic oscillators

move independently. The ding-dong model is the same as the ding-a-ling model but

without the free particles. Thus, in this case, the harmonic oscillators can elastically

collide with each other.

5.1 Dynamics of a system in contact with an environ-

ment composed of two harmonic oscillators: the

case of SU(3)

We begin by adding just one additional environmental degree of freedom to

the composite system of Section 4.3. More specifically, we consider the case in which

the physical system under observation, described as usual by ρS = ρ1, is in contact

with a bipartite environment ρE = ρ2 ⊗ ρ3. The three harmonic oscillators form

a chain such that ρ1 is at the far left end of the chain and ρ3 is at the far right.

All subsystems of this tripartite system are initially uncoupled from one another,

such that the initial composite density matrix is given by ρSE(0) = ρS(0)⊗ρE(0) =

ρ1(0) ⊗ [ρ2(0) ⊗ ρ3(0)]. As described above, once the interaction is turned on, ρ1

directly couples to ρ2. In turn, this interaction initiates a direct coupling between

the two environmental oscillators ρ2 and ρ3. ρ1 interacts indirectly with ρ3 through

the direct interaction of ρ2 with ρ1 and ρ3.
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The free and interaction Hamiltonians of the composite system are given by:

Ĥfree =
3∑
i=1

ωiâ
†
i âi (5.1)

Ĥ
SU(3)
int = ω

2∑
i=1

gi,i+1

(
â†i âi+1 + â†i+1âi

)
, (5.2)

where the creation and annihilation operators have their usual meaning. The inter-

action couplings gi,i+1 and the interaction frequency ω are given constants. In the

above, we have taken the most general case in which each oscillator is characterized

by its own frequency. For simplicity, we restrict our model to the case where ωi = ω.

The initial density matrices of the oscillators are characterized by the Maxwell-

Boltzmann distribution and are given by:

ρS(0) = ρ1(0)

=
1
Z1
e−ωâ

†
1â1θ1

ρE(0) = ρ2(0)⊗ ρ3(0)

=
1

Z2Z3

3∑
i=2

e−ωâ
†
i âiθ2

ρSE(0) = ρS(0)× ρE(0)

=
1

Z1Z2Z3
e−ωâ

†
1â1θ1e−ωθ2(â†2â2+â†3â3)

=
1

Z1Z2Z3
e−ω[â†1â1θ1+(â†2â2+â†3â3)θ2],

where we have used the relation [â†i âi, â
†
j âj ] = 0 to obtain the last equation.

The density matrix of the composite system after a time interval τ has passed

is given by:

ρSE(τ) = Û(τ)ρSE(0)Û †(τ),

where Û(τ) = e−iĤtotalτ , with Ĥtotal = Ĥfree+Ĥint. Following the “interact-refresh-
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repeat” model of Chapter 3, the effect of the environment will be traced out after

each characteristic time interval τ :

ρS(nτ) = TrE
[
Û(τ)ρSE [(n− 1)τ ] Û †(τ)

]
.

The time evolution of the composite system is given by:

ρSE(τ) = e−iĤtotalτρSE(0)e+iĤtotalτ

=
1
Z
e

−iωτ
[ 3∑
i=1

â†i âi +
2∑
i=1

gi,i+1(â†i âi+1 + â†i+1âi)
]

× e

−ω
[
θ1â
†
1â1+θ2

3∑
i=2

â†i âi

]

× e

+iωτ

[ 3∑
i=1

â†i âi +
2∑
i=1

gi,i+1(â†i âi+1 + â†i+1âi)
]
, (5.3)

where the product of the inverse partition functions Z1, Z2, and Z3 has been replaced

by 1
Z .

In the case where the environment was composed of a single harmonic os-

cillator, we made use of Schwinger’s oscillator model in order to connect creation

and annihilation operators to the angular momentum algebra. These operators sat-

isfied SU(2) commutation relations. The natural extension of this procedure to the

case of a bipartite harmonic oscillator environment is to look for a set of operators

satisfying SU(3) commutation relationships.

An SU(N) algebra is generated by N2 − 1, linearly independent operators,

which satisfy the commutation relationship [xi, xj ] = ifkijxk, where the fkij are struc-

ture constants. An important representation for N = 3 involves 3 × 3 matrices

because the group elements act on complex vectors with 3 entries, i.e. on the fun-

damental representation of the group. A particular choice of this representation is
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given by the eight Gell-Mann matrices:

λ1 =


0 1 0

1 0 0

0 0 0

 , λ2 =


0 −i 0

i 0 0

0 0 0

 , λ3 =


1 0 0

0 −1 0

0 0 0

 ,

λ4 =


0 0 1

0 0 0

1 0 0

 , λ5 =


0 0 −i

0 0 0

i 0 0

 , λ6 =


0 0 0

0 0 1

0 1 0

 ,

λ7 =


0 0 0

0 0 −i

0 i 0

 , λ8 = 1√
3


1 0 0

0 1 0

0 0 −2

 .

The generators of SU(3) are traceless and Hermitian, and obey the extra relation

Tr(λiλj) = 2δij . In addition to these matrices, we include the unit matrix which we

will call λ0, for reasons that will become clear later on this chapter:

λ0 =


1 0 0

0 1 0

0 0 1

 .

It is a straight-forward exercise to check that the above SU(3) generators satisfy

the required SU(3) commutation relations.

Having obtained the necessary generators, we proceed to constructing the

operators of SU(3). Let’s call these operators K̂’s. Any operator K̂i can be obtained

by calculating the product 1
2 â
†λiâ, where â† is understood to be a 1× 3 row matrix

composed of the three raising operators â†1, â
†
2, â
†
3, and â is the corresponding 3× 1

column matrix of annihilation operators. In addition to the identity operator, there
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will be 32 − 1 operators for SU(3). The K̂’s are given by:

K̂1 =
1
2

(â†1â2 + â†2â1)

K̂2 =
1
2i

(â†1â2 − â†2â1)

K̂3 =
1
2

(â†1â1 − â†2â2)

K̂4 =
1
2

(â†1â3 + â†3â1)

K̂5 =
1
2i

(â†1â3 − â†3â1)

K̂6 =
1
2

(â†2â3 + â†3â2)

K̂7 =
1
2i

(â†2â3 − â†3â2)

K̂8 =
1

2
√

3
(â†1â1 + â†2â2 − 2â†3â3)

K̂0 =
1
2

(â†1â1 + â†2â2 + â†3â3).

With these definitions, Eq. (5.3) becomes:

ρSE(τ) =
1
Z
e−2iωτ(K̂0+g12K̂1+g23K̂6) × e−ωθ1

[
1
3

(
2K̂0+

√
3K̂8

)
+K̂3

]
× e

−ωθ2
(

4
3
K̂0−K̂3− 1√

3
K̂8

)
× e+2iωτ(K̂0+g12K̂1+g23K̂6),

where we have used the relations:

â†1â1 =
2
3
K̂0 + K̂3 +

1√
3
K̂8

â†2a2 =
2
3
K̂0 − K̂3 +

1√
3
K̂8

â†3â3 =
2
3
K̂0 −

2√
3
K̂8.

Since K̂0 commutes with all other operators, we can pull it through and factor it
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out, obtaining:

ρSE(τ) =
1
Z
e−

2
3
ωK̂0(θ1+2θ2) × e−2iωτ(g12K̂1+g23K̂6) × e−ωθ1

(
1√
3
K̂8+K̂3

)
× e

+ωθ2
(
K̂3+ 1√

3
K̂8

)
× e+2iωτ(g12K̂1+g23K̂6).

A final simplification can be made by noting that K̂3 commutes with K̂8:

ρSE(τ) =
1
Z
e−

2
3
ωK̂0(θ1+2θ2) × e−2iωτ(g12K̂1+g23K̂6)

× e
−ω(θ1−θ2)(K̂3+ 1√

3
K̂8)

e+2iωτ(g12K̂1+g23K̂6).

The matrix elements of the reduced, time-evolved density matrix are given by:

〈n′1|ρS(τ)|n1〉 =
∑
n2,n3

〈n′1, n2, n3|ρSE(τ)|n1, n2, n3〉

= δn′1,n1

∑
n2,n3

〈n′1, n2, n3|ρSE(τ)|n1, n2, n3〉

= δn′1,n1

1
Z

∑
n2,n3

〈n′1, n2, n3|e−α03K̂0e−2iωτ(g12K̂1+g23K̂6)

× e
−ω(θ1−θ2)(K̂3+ 1√

3
K̂8)

e+2iωτ(g12K̂1+g23K̂6)|n1, n2, n3〉,

or:

〈n′1|ρS(τ)|n1〉 =
δn′1,n1

Z

∑
n2,n3

e−α03
N
2

× 〈n′1, n2, n3|e−2iωτĤ
SU(3)
int e

−ω(θ1−θ2)(K̂3+ 1√
3
K̂8)

e+2iωτĤ
SU(3)
int |n1, n2, n3〉,

(5.4)

where:

α03 =
2
3
ω(θ1 + 2θ2),
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and the subscript 3 is to remind us that we are in SU(3). The delta function in Eq.

(5.4) is introduced for the same reasons as those discussed in Section 4.3.1.

There remains to calculate the action of the interaction Hamiltonian on the

state |n1, n2, n3〉. Let:

e2iωτĤ
SU(3)
int = e2iωτ(g12K̂1+g23K̂6) = <̂SU(3),

where the SU(3) superscript is to remind us that we are working in a tripartite

composite system. Our task is to calculate <̂SU(3)|n1, n2, n3〉. The state |n1, n2, n3〉

can be written as:

|n1, n2, n3〉 =
(â†1)n1(â†2)n2(â†3)n3

√
n1!n2!n3!

∣∣∣0〉,
and we have:

<̂SU(3)|n1, n2, n3〉 =
[<̂â†1<̂−1]n1 [<̂â†2<̂−1]n2 [<̂â†3<̂−1]n3

√
n1!n2!n3!

<̂|0〉, (5.5)

where we have suppressed the SU(3) superscript on the right hand-side of Eq. (5.5)

for compactness. <̂SU(3) acting on |0〉 just reproduces |0〉, so all we need to do is

to calculate the products <̂â†1<̂−1, <̂â†2<̂−1, and <̂â†3<̂−1. At this point, we can use

the Baker-Hausdorff lemma:

eiĜλÂe−iĜλ = Â+ iλ[Ĝ, Â] +
(iλ)2

2!

[
Ĝ, [Ĝ, Â]

]
+

· · · +
(iλ)n

n!

[
Ĝ,

[
Ĝ,
[
Ĝ, · · · [Ĝ, Â]

]]
· · ·

]
+ · · · ,

where Ĝ is a Hermitian operator and λ is a real parameter. Letting G→ (g12K̂1 +

g23K̂6), λ → 2ωτ = a3, and Â → â†1, we realize that we must look at various
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commutators, namely:

[
g12K̂1 + g23K̂6, a

†
1

]
=

g12

2
a†2[

g12K̂1 + g23K̂6,
[
g12K̂1 + g23K̂6, a

†
1

]]
=

g12

2

[g12

2
â†1 +

g23

2
â†3

]
,

and so forth. Clearly, the commutators will always be proportional to either a†2 or

â†1 + â†3. After quite a bit of algebra, we obtain:

<̂â†1<̂
−1 = â†1

[
1−g

2
12

2z
sin2

(a3
√
z

2

)]
+iâ†2

[
g12

2
√
z

sin(a3

√
z)
]
−â†3

[
g12g23

2z
sin2

(a3
√
z

2

)]
,

(5.6)

where z =
(g12

2

)2 +
(g23

2

)2. Following a similar procedure, we get, for the remaining

two terms:

<̂â†2<̂
−1 = iâ†1

[
g12

2
√
z

sin(a3

√
z)
]

+ â†2

[
1− a2

3

2!
(z − 1)− 2

z
sin2

(a3
√
z

2

)]
+ iâ†3

[
g23

2
√
z

sin(a3

√
z)
]

(5.7)

<̂â†3<̂
−1 = iâ†2

[
g23

2
√
z

sin(a3

√
z)
]
− â†1

[
g12g23

2z
sin2

(a3
√
z

2

)]
+ â†3

[
1− g2

23

2z
sin2

(a3
√
z

2

)]
. (5.8)

Substituting Eqs. (5.6) - (5.8) back into Eq. (5.5) and making use of the Multinomial

Theorem:

(â1 + â2 + · · ·+ âk)n =
∑

n1,n2,··· ,nk≥0

n!
n1!n2! · · ·nk!

ân1
1 ân2

2 · · · â
nk
k ,
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with n1 + n2 + · · ·+ nk = n, we obtain:

<̂SU(3)|n1, n2, n3〉 =
∑
k,l

[n1!
[
â†1

[
1− g212

2z sin2
(
a3
√
z

2

) ]]n1−k[
iâ†2

(
g12
2
√
z

sin(a3
√
z)
)]k−l

(n1 − k)!(k − l)!

×

[
− â†3

g12g23
2z sin2

(
a3
√
z

2

)]l
l!

]

×
∑
m,ξ

[n2!
[
iâ†1

g12
2
√
z

sin(a3
√
z)
]n2−m[

iâ†3
g23
2
√
z

sin(a3
√
z)
]ξ

(n2 −m)!ξ!

×

[
â†2

[
1− a2

3
2! (z − 1)− 2

z sin2
(
a3
√
z

2

)]]m−ξ
(m− ξ)!

]

×
∑
t,p

[
n3!
[
− â†1

g12g23
2z sin2

(
a3
√
z

2

)]n3−t[
iâ†2

g23
2
√
z

sin(a3
√
z)
]t−p

(n3 − t)!(t− p)!

×

[
â†3

[
1− g223

2z sin2
(
a3
√
z

2

)]]p
p!

]∣∣∣0〉.
We would like to compare our expression with:

<̂SU(3)|n1, n2, n3〉 = <̂SU(3)

[
(â†1)n1(â†2)n2(â†3)n3

√
n1!n2!n3!

∣∣∣0〉]. (5.9)
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To do this, we factor out the â†1, â†2, and â†3 operators. Our expression becomes:

<̂SU(3)|n1, n2, n3〉 =
∑

k,l,m,ξ,t,p

n1!n2!n3!
(n1 − k)!(n2 −m)!(n3 − t)!

× 1
(k − l)!l!(m− ξ)!ξ!(t− p)!p!

× [â†1]n1−k+n2−m+n3−t[â†2]k−l+m−ξ+t−p[â†3]l+ξ+p

× [−1]l+n3−t[i]k−l+n2−m+ξ+t−p
[
1− g2

12

2z
sin2

(a3
√
z

2

)]n1−k

×
[
1− g2

23

2z
sin2

(a3
√
z

2

)]p
×

[g12g23

2z
sin2

(a3
√
z

2

)]l+n3−t[ g12

2
√
z

sin(a3

√
z)
]k−l+n2−m

×
[ g23

2
√
z

sin(a3

√
z)
]ξ+t−p[

1− a2
3

2!
(z − 1)− 2

z
sin2

(a3
√
z

2

)]m−ξ∣∣∣0〉.
(5.10)

Equating the coefficients of the powers of â†1, â†2, and â†3 in Eqs. (5.9) and (5.10),

we identify:

n1 − k + n2 −m+ n3 − t = n1

k − l +m− ξ + t− p = n2

l + ξ + p = n3,

from which we obtain the relations:

ξ = n3 − l − p

t = n2 + n3 − k −m.

The equations above are a statement that the sum over ξ is not independent of the

sums over l and p, and similarly, that the sum over t is not independent of the sums

over k and m. By taking advantage of these equalities, we can eliminate ξ in favor of
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l and p, and t in favor of k and m. After a simple calculation, Eq. (5.10) becomes:

<̂SU(3)|n1, n2, n3〉 =
∑
k,l,m,p

n1!n2!n3!
(n1 − k)!(k − l)!(l)!(n2 −m)!(p)!

[
â†1

]n1
[
â†2

]n2
[
â†3

]n3

×

[
− 1
]l−n2+k+m[

i
]2(n2+n3−l−p−m)[

1− g212
2z sin2

(
a3
√
z

2

)]n1−k

(m− n3 + l + p)!(n3 − l − p)!(k +m− n2)!

×

[
1− g223

2z sin2
(
a3
√
z

2

)]p
(n2 + n3 − k −m− p)!

×
[g12g23

2z
sin2

(a3
√
z

2

)]l−n2+k+m[ g12

2
√
z

sin(a3

√
z)
]k−l+n2−m

×
[ g23

2
√
z

sin(a3

√
z)
]2n3+n2−2p−l−k−m

×
[
1− a2

2!
(z − 1)− 2

z
sin2

(a3
√
z

2

)]m−n3+l+p∣∣∣0〉.
(5.11)

Equation (5.11) can be written in the form:

<̂SU(3)|n1, n2, n3〉 = f(n1, n2, n3)|0〉,

Equation (5.4) then becomes:

〈n′1|ρS(τ)|n1〉 =
δn′1,n1

Z

∑
n2,n3

e−α03
N
2 e−

ω
3

(θ1−θ2)(2n1−n2−n3)|f(n1, n2, n3)|2, (5.12)

with f(n1, n2, n3) given by Eq. (5.11).

In analogy to the single environmental harmonic oscillator case, we expect

that the initial Maxwell-Boltzmann distribution of our physical system will be re-

placed by another Maxwell-Boltzmann distribution at temperature T1(τ) after one

characteristic interval τ has passed, or in other words, that Eq. (5.12) will be of the
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form:

〈n′1|ρS(τ)|n1〉 =
δn′1,n1

Z[θ1τ ]
e−ωn1θ1(τ).

Theoretically, we should now be able to compute T1(2τ), T1(3τ), · · · , T1(nτ) by the

method of iteration. Unfortunately, there is no simple analytic solution to Eq. (5.11)

and thus no simple iterative procedure that will allow us to do so. Nonetheless, we

can still get some insight into the conditions which need to be satisfied for ρS to

reach a new steady state.

Following the discussion of Section 4.3.2, let’s consider the energy states

|n1〉, |n2〉, and |n3〉, corresponding to oscillators 1, 2, and 3, respectively. At the

new equilibrium, the net rate of absorption into this set of states will be equal to the

net rate of emission out of it. For the given interaction Hamiltonian of Eq. (5.2),

the probabilities of absorption into and emission out of this set of energy states can

be calculated. Setting these probabilities equal to each other gives:

P (n1, n2, n3)
[
g2

12(2n1n2 + n1 + n2) + g2
23(2n2n3 + n2 + n3)

]
= P (n1 + 1, n2 − 1, n3)g2

12[n2(n1 + 1)] + P (n1 − 1, n2 + 1, n3)g2
12[n1(n2 + 1)]

+ P (n1, n2 + 1, n3 − 1)g2
23[n3(n2 + 1)] + P (n1, n2 − 1, n3 + 1)g2

23[n2(n3 + 1)].

(5.13)

Once again, the interaction Hamiltonian imposes the condition that:

n1 + n2 + n3 = N

is a constant. In addition, it can be shown from Eq. (5.13) that for any N , there

are (N + 2)!/(2!N !) possible transition states and that the probability of transition

to any one of these states is the same and equal to (2!N !)/(N + 2)!. Therefore, we
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can expect that at equilibrium, our composite system will be of the form:

〈n1, n2, n3|ρSE(∞)|n1, n2, n3〉 =
2!N !

(N + 2)!
e−ωn1θ1(∞)e−ω(n2+n3)θ2(0). (5.14)

If we define ν = n1 − n2 − n3, we can write Eq. (5.14) as:

〈n1, n2, n3|ρSE(∞)|n1, n2, n3〉 =
2!N !

(N + 2)!
e−

ω
2

(N+ν)θ1(∞)e−
ω
2

(N−ν)θ2(0)

=
2!N !

(N + 2)!
e−

ω
2
N
[
θ1(∞)+θ2(0)

]
e−

ω
2
ν
[
θ1(∞)−θ2(0)

]
.

The probability of transition to any of the possible states should be independent

of ν, and this requires that e−
ω
2
ν
[
θ1(∞)−θ2(0)

]
→ 1, or that θ1(∞) = θ2(0). It can

also be shown that if we had allowed for the case ωi 6= ω such that the frequency of

ρS was ω1 and that of ρE was ω2, the condition for the new steady state would be

ω1θ1(∞) = ω2θ2(0), in agreement to the results of Chapter 4.

5.2 Dynamics of a system in contact with an environ-

ment composed of three and four harmonic oscilla-

tors

In the previous section, we saw that the addition of even a single environ-

mental degree of freedom makes the solution to our problem significantly more chal-

lenging. Before generalizing our results to the case of N environmental harmonic

oscillators, it is perhaps insightful to examine the SU(4) and SU(5) cases. As per

usual, we will assume the same system-environment model, only each time, an extra

environmental degree of freedom will be added. Once again, only nearest-neighbor

interactions will be assumed.
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5.2.1 The case of SU(4)

The free and interaction Hamiltonians for the case where the environment is

composed of three harmonic oscillators are given by:

Ĥfree = ω
4∑
i=1

â†i âi

Ĥ
SU(4)
int = ω

3∑
i=1

gi,i+1(â†i âi+1 + â†i+1âi).

The initial density matrices for the system and environment are given by:

ρS(0) =
1
Z1
e−ωâ

†
1â1θ1

ρE(0) =
1

Z2Z3Z4

4∑
i=2

e−ωâ
†
i âiθ2 ,

while ρSE(τ) is given by:

ρSE(τ) =
1
Z
e

−iωτ
[ 4∑
i=1

â†i âi +
3∑
i=1

gi,i+1(â†i âi+1 + â†i+1âi)
]

× e

−ω
[
θ1â
†
1â1+θ2

4∑
i=2

â†i âi

]

× e

+iωτ

[ 4∑
i=1

â†i âi +
3∑
i=1

gi,i+1(â†i âi+1 + â†i+1âi)
]
, (5.15)

with Z = Z1Z2Z3Z4. Following the method used to solve the SU(2) and SU(3)

cases, we can utilize the Gell-Mann type basis for the Lie algebra of SU(4), given
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by the following set of fifteen matrices:

λ1 =


0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 , λ2 =


0 −i 0 0

i 0 0 0

0 0 0 0

0 0 0 0

 ,

λ3 =


1 0 0 0

0 −1 0 0

0 0 0 0

0 0 0 0

 , λ4 =


0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

 ,

λ5 =


0 0 −i 0

0 0 0 0

i 0 0 0

0 0 0 0

 , λ6 =


0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

 ,

λ7 =


0 0 0 0

0 0 −i 0

0 i 0 0

0 0 0 0

 , λ8 = 1√
3


1 0 0 0

0 1 0 0

0 0 −2 0

0 0 0 0

 ,

λ9 =


0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

 , λ10 =


0 0 0 −i

0 0 0 0

0 0 0 0

i 0 0 0

 ,

λ11 =


0 0 0 0

0 0 0 1

0 0 0 0

0 1 0 0

 , λ12 =


0 0 0 0

0 0 0 −i

0 0 0 0

0 i 0 0

 ,
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λ13 =


0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0

 , λ14 =


0 0 0 0

0 0 0 0

0 0 0 −i

0 0 i 0

 ,

λ15 = 1√
6


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −3

 .

The above generators of SU(4) are traceless, Hermitian, and obey the extra relations:

[λi, λj ] = 2ifijkλk

fijk =
1
4i

Tr
[
[λi, λj ] · λk

]
.
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The SU(4) operators are given by:

K̂1 =
1
2

(â†1â2 + â†2â1)

K̂2 =
1
2i

(â†1â2 − â†2â1)

K̂3 =
1
2

(â†1â1 − â†2â2)

K̂4 =
1
2

(â†1â3 + â†3â1)

K̂5 =
1
2i

(â†1â3 − â†3â1)

K̂6 =
1
2

(â†2â3 + â†3â2)

K̂7 =
1
2i

(â†2â3 − â†3â2)

K̂8 =
1

2
√

3
(â†1â1 + â†2â2 − 2â†3â3)

K̂9 =
1
2

(â†1â4 + â†4â1)

K̂10 =
1
2i

(â†1â4 − â†4â1)

K̂11 =
1
2

(â†2â4 + â†4â2)

K̂12 =
1
2i

(â†2â4 − â†4â2)

K̂13 =
1
2

(â†3â4 + â†4â3)

K̂14 =
1
2i

(â†3â4 − â†4â3)

K̂15 =
1

2
√

6
(â†1â1 + â†2â2 + â†3â3 − 3â†4â4)

K̂0 =
1
2

(â†1â1 + â†2â2 + â†3â3),
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from which we obtain the relations:

â†1â1 =
1
2
K̂0 + K̂3 +

1√
3
K̂8 +

1√
6
K̂15

â†2â2 =
1
2
K̂0 − K̂3 +

1√
3
K̂8 +

1√
6
K̂15

â†3â3 =
1
2
K̂0 −

2√
3
K̂8 +

1√
6
K̂15

â†4â4 =
1
2
K̂0 −

3√
6
K̂15.

In terms of the K̂ operators, Eq. (5.15) becomes:

ρSE(τ) =
1
Z
e−2iωτ(g12K̂1+g23K̂6+g34K̂13)

× e
−ωθ1

“
1
2
K̂0+K̂3+ 1√

3
K̂8+ 1√

6
K̂15

”
× e−ωθ2

“
3
2
K̂0−K̂3− 1√

3
K̂8− 1√

6
K̂15

”

× e+2iωτ(g12K̂1+g23K̂6+g34K̂13). (5.16)

After some simplifying, Eq. (5.16) can be written as:

ρSE(τ) =
1
Z
e−

1
2
ωK̂0(θ1+3θ2) × e−2iωτ(g12K̂1+g23K̂6+g34K̂13)

× e
−ω(θ1−θ2)(K̂3+ 1√

3
K̂8+ 1√

6
K̂15) × e+2iωτ(g12K̂1+g23K̂6+g34K̂13).

The matrix elements of the reduced, time-evolved system density matrix after one

characteristic time interval τ has passed are given by:

〈n′1|ρS(τ)|n1〉 = δn′1,n1

∑
n2,n3,n4

〈n′1, n2, n3, n4|ρSE(τ)|n1, n2, n3, n4〉

= δn′1,n1

1
Z

∑
n2,n3,n4

〈n′1, n2, n3, n4|e−α04K̂0e−2iωτ(g12K̂1+g23K̂6+g34K̂13)

× e
−ω(θ1−θ2)(K̂3+ 1√

3
K̂8+ 1√

6
K̂15)

e+2iωτ(g12K̂1+g23K̂6+g34K̂13)|n1, n2, n3, n4〉,
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or:

〈n′1|ρS(τ)|n1〉 = δn′1,n1

1
Z

∑
n2,n3,n4

e−α04
N
2 〈n′1, n2, n3, n4|e−2iωτĤ

SU(4)
int

× e
−ω(θ1−θ2)(K̂3+ 1√

3
K̂8+ 1√

6
K̂15)

e+2iωτĤ
SU(4)
int |n1, n2, n3, n4〉,

(5.17)

where:

α04 =
2
4
ω(θ1 + 3θ2).

To solve Eq. (5.17), we need to calculate the action of ĤSU(4)
int on the state |n1, n2, n3, n4〉,

or:

e+2iωτĤint |n1, n2, n3, n2〉 = e+2iωτ(g12K̂1+g23K̂6+g34K̂13) = <̂SU(4)|n1, n2, n3, n4〉.

(5.18)

This can be done by following a procedure similar to that presented in Section 5.1

for the SU(3) case. Once Eq. (5.18) is solved, the reduced matrix elements for the

system become:

〈n′1|ρS(τ)|n1〉 =
δn′1,n1

Z

∑
n2,n3,n4

e−α04
N
2 e−

ω
4

(θ1−θ2)(3n1−n2−n3−n4)|f(n1, n2, n3, n4)|2,

(5.19)

where f(n1, n2, n3, n4) is the eigenvalue of <̂SU(4).
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5.2.2 The case of SU(5)

The free and interaction Hamiltonians for the case of SU(5) are given by:

Ĥfree = ω
5∑
i=1

â†i âi

Ĥ
SU(5)
int = ω

4∑
i=1

gi,i+1(â†i âi+1 + â†i+1âi),

and the time-evolved composite density matrix ρSE(τ) is:

ρSE(τ) =
1
Z
e

−iωτ
[ 5∑
i=1

â†i âi +
4∑
i=1

gi,i+1(â†i âi+1 + â†i+1âi)
]

× e

−ω
[
θ1â
†
1â1+θ2

5∑
i=2

â†i âi

]

× e

+iωτ

[ 5∑
i=1

â†i âi +
4∑
i=1

gi,i+1(â†i âi+1 + â†i+1âi)
]
, (5.20)

where Z = Z1Z2Z3Z4Z5. The Gell-Mann type basis for the Lie algebra of SU(5) is

given by a set of twenty-four matrices. The first fifteen are the same as those for

the SU(4) case (with the fifth row and column all zeroes), and the remaining nine
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are:

λ16 =



0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0


, λ17 =



0 0 0 0 −i

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

i 0 0 0 0


,

λ18 =



0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 1 0 0 0


, λ19 =



0 0 0 0 0

0 0 0 0 −i

0 0 0 0 0

0 0 0 0 0

0 i 0 0 0


,

λ20 =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 1 0 0


, λ21 =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 −i

0 0 0 0 0

0 0 i 0 0


,

λ22 =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 1 0


, λ23 =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 −i

0 0 0 i 0


,

λ24 = 1√
10



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 −4


.
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The corresponding SU(5) operators are:

K̂16 =
1
2

(â†1â5 + â†5â1)

K̂17 =
1
2i

(â†1â5 − â†5â1)

K̂18 =
1
2

(â†2â5 − â†5â2)

K̂19 =
1
2

(â†2â5 + â†5â2)

K̂20 =
1
2i

(â†3â5 − â†5â3)

K̂21 =
1
2

(â†3â5 + â†5â3)

K̂22 =
1
2i

(â†4â5 − â†5â4)

K̂23 =
1
2i

(â†4â5 + â†5â4)

K̂24 =
1

2
√

10
(â†1â1 + â†2â2 + â†3â3 + â†4â4 − 4â†5â5),

from which we obtain the relations:

â†1â1 =
6
15
K̂0 + K̂3 +

1√
3
K̂8 +

1√
6
K̂15 +

1√
10
K̂24

â†2â2 =
6
15
K̂0 − K̂3 +

1√
3
K̂8 +

1√
6
K̂15 +

1√
10
K̂24

â†3â3 =
6
15
K̂0 −

2√
3
K̂8 +

1√
6
K̂15 +

1√
10
K̂24

â†4â4 =
2
5
K̂0 −

1
2
√

6
K̂15 +

1√
10
K̂24

â†5â5 =
2
5
K̂0 −

4√
10
K̂24,

with:

K̂0 =
1
2

(â†1â1 + â†2â2 + â†3â3 + â†4â4 + â†5â5).
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In terms of the above K̂ operators, Eq. (5.20) becomes:

ρSE(τ) =
1
Z
e−

2
5
ωK̂0(θ1+4θ2) × e−2iωτ(g12K̂1+g23K̂6+g34K̂13+g45K̂22)

× e
−ω(θ1−θ2)(K̂3+ 1√

3
K̂8+ 1√

6
K̂15+ 1√

10
K̂24)

e+2iωτ(g12K̂1+g23K̂6+g34K̂13+g45K̂22).

The matrix elements of the time-evolved reduced density matrix are given by:

〈n′1|ρS(τ)|n1〉 =
δn′1,n1

Z

∑
n2,n3,n4,n5

e−α05
N
2 〈n′1, n2, n3, n4, n5|e−2iωτĤ

SU(5)
int

× e
−ω(θ1−θ2)(K̂3+ 1√

3
K̂8+ 1√

6
K̂15+ 1√

10
K̂24)

e+2iωτĤ
SU(5)
int |n1, n2, n3, n4, n5〉,

(5.21)

where:

α05 =
2
5
ω(θ1 + 4θ2).

Once again, the solution of Eq. (5.21) depends on calculating the action of ĤSU(5)
int

on the state |n1, n2, n3, n4, n5〉, or:

e+2iωτ(g12K̂1+g23K̂6+g34K̂13+g45K22) = <̂SU(5)|n1, n2, n3, n4, n5〉. (5.22)

Just like in the previous cases, once Eq. (5.22) is solved, the reduced matrix elements

for the system become:

〈n′1|ρS(τ)|n1〉 =
δn′1,n1

Z

∑
n2,n3,n4,n5

e−α05
N
2 e−

ω
5

(θ1−θ2)(4n1−n2−n3−n4−n5)

× |f(n1, n2, n3, n4, n5)|2, (5.23)

where f(n1, n2, n3, n4, n5) is the eigenvalue of <̂SU(5).
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5.3 The generalization to SU(N)

We are now in a position to generalize our results to the case of an arbitrary

number of interacting oscillators. The algebra of SU(N) can be used to describe

the case in which the physical system of interest is a single harmonic oscillator and

the environment with which this system is in contact is a chain composed of N − 1

harmonic oscillators. The interaction Hamiltonian for an arbitrary SU(N) is of the

form:

Ĥ
SU(N)
int = ω

N−1∑
i=1

gi,i+1(â†i âi+1 + â†i+1âi),

and the initial composite density matrix of such a system is given by:

ρSE(τ) =
1
Z
e

−iωτ
[ N∑
i=1

â†i âi +
N−1∑
i=1

gi,i+1(â†i âi+1 + â†i+1âi)
]

× e

−ω
[
θ1â
†
1â1+θ2

N∑
i=2

â†i âi

]

× e

+iωτ

[ N∑
i=1

â†i âi +
N−1∑
i=1

gi,i+1(â†i âi+1 + â†i+1âi)
]
,

and Z = Z1Z2 · · ·ZN .

To obtain the generators for an arbitrary SU(N), we define two N × N

matrices for every i, j = 1, 2, 3, · · · , N [17, 20], such that:

[λ{1}(i, j)]µν = δjµδiν + δjνδiµ,

and:

[λ{2}(i, j)]µν = −i(δiµδjν − δiνδjµ).

The above forms N(N + 1) linearly independent matrices. We can then construct a
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further N − 1 matrices according to:

λn2−1 =



(1 0 0 0 · · · 0

0 1 0 0 · · · 0

0 0 1)n−1 0 · · · 0

0 0 0 −(n− 1) · · · 0

· · · · · · · · · · · · · · · · · ·

0 0 0 0 · · · 0


N×N

,

for n = 2, 3, · · · , N . From these generators, N2 − 1 operators can be defined.

Once the SU(N) operators are constructed, the matrix elements of the re-

duced density matrix ρS(τ) after one characteristic time interval has passed will be

given by:

〈n′1|ρS(τ)|n1〉 =
δn′1,n1

Z

∑
n2,n3,··· ,nN

e−α0N
N
2 e−

ω
N

(θ1−θ2)
[
(N−1)n1−n2−···−nN

]
× |f(n1, n2, · · · , nN )|2, (5.24)

with:

α0N =
2
N
ω
[
θ1 + (N − 1)θ2

]
.

Equation (5.24) was constructed by comparing Eqs. (5.12), (5.19), and (5.23). The

difficulty in calculating <̂SU(N)|n1, n2, · · · , nN 〉 = f(n1, n2, · · · , nN )|n1, n2, · · · , nN 〉

increases more and more as N becomes larger. We have shown that even with N as

small as 3, this calculation was significantly tedious.

Following the discussion of the SU(2) and SU(3) cases, we can expect that

the initial Maxwell-Boltzmann distribution of our physical system will be replaced by

a second Maxwell-Boltzmann distribution at temperature T1(τ) after one character-

istic interval τ has passed. In theory, one should be able to calculate 〈n′1|ρS(2τ)|n1〉,

· · · , 〈n′1|ρS(nτ)|n1〉 numerically or analytically for an arbitrary number N of inter-
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acting harmonic oscillators. Even though Eqs. (5.12), (5.19), and (5.23) have not

been solved explicitly, the analysis presented for the SU(2) and SU(3) cases allows

us to conclude that the physical system of interest will always reach a new steady

ρS(nτ) such that θ1(∞) = θ2(0) when the frequency of the system is the same as

that of the environment, and such that ω1θ1(∞) = ω2θ2(0) when the frequencies of

the system and the environment are not equal.
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Chapter 6

A transition to quantum optics

Chapter 5 completes our study of the relaxation of open quantum mechanical

harmonic oscillator systems and along with it the first part of this dissertation. We

now make a transition from the quantum mechanical analysis of open systems to

the classical analysis of electromagnetic wave propagation and optical phenomena

inside left-handed materials. Even though the study of these two problems is com-

plete within each topic’s own context, we present this chapter as a link between the

quantum mechanical analysis of the harmonic oscillator and that of the electromag-

netic field. The connection between the two, lies in the fact that field quantization

is based on recognizing that the electromagnetic field is equivalent to an infinite set

of harmonic oscillators.

Historically, any attempts in explaining phenomena such as the interaction of

light with matter, electron diffraction, or atomic spectra using classical description

failed. It was soon realized that only a quantum mechanical approach could be

successful. In making the transition from classical to quantum theory, classical

variables are replaced by operators and the states of the system are replaced by

state vectors. Following this general procedure, all physical observables appearing

in nature (including field variables describing wave phenomena) must be accounted
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for by operators.

We have already employed the quantum mechanical description of a harmonic

oscillator in the calculations of Chapter 4, without formally deriving it. In Section

6.1, we present a formal derivation of the quantum theory of the harmonic oscillator,

before we proceed to the quantization of the electromagnetic field in Section 6.2.

6.1 The harmonic oscillator

Consider a classical harmonic oscillator with coordinate q, conjugate mo-

mentum p = mq̇, and mass m. The Hamiltonian of this harmonic oscillator is given

by:

H =
p2

2m
+
mω2q2

2
. (6.1)

The canonical equations of motion give for this Hamiltonian:

q̇ =
∂H

∂p
=

p

m

ṗ = −∂H
∂q

= −mω2q,

in agreement with Newton’s Laws of motion.

To make the transformation from the classical to the quantum theory, we

need to replace q, p, and H with the analogous operators. The Hamiltonian (6.1)

becomes:

Ĥ =
p̂2

2m
+
mω2q̂2

2
, (6.2)

with q̂ and p̂ satisfying the commutation relation:

[q̂, p̂] = i.

The operators q̂ and p̂ are Hermitian and unbounded.
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6.1.1 Second quantization: creation and annihilation operators

We can now make a change of basis by defining the two non-Hermitian op-

erators:

â =
1√

2mω
(mωq̂ + ip̂) (6.3)

â† =
1√

2mω
(mωq̂ − ip̂). (6.4)

These are the well-known lowering (or annihilation) and raising (or creation) oper-

ators, respectively. In terms of these new operators, q̂ and p̂ can be written as:

q̂ =

√
1

2mω
(â+ â†) (6.5)

p̂ = i

√
mω

2
(â† − â). (6.6)

It can be shown that:

[â, â] = [â†, â†] = 0,

and

[â, â†] = 1.

In terms of these new operators, the Hamiltonian (6.2) becomes:

Ĥ = ω

(
â†â+

1
2

)
, (6.7)

and its eigenstates are states of definite energy, satisfying:

Ĥ|n〉 = ω

(
â†â+

1
2

)
|n〉 = En|n〉, (6.8)

where En is the energy of state |n〉. The states |n〉 are known as Fock or number

states. We can also define the Hermitian operator known as the number operator
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N̂ = â†â, which leads us to an important relation between N̂ and Ĥ:

Ĥ = ω

(
N̂ +

1
2

)
. (6.9)

Because Ĥ is just a linear function of N̂ , N̂ and Ĥ can be simultaneously diagonal-

ized. If we denote the eigenvalue of N̂ by n, we obtain the eigenvalue equation:

N̂ |n〉 = n|n〉. (6.10)

Combining Eqs. (6.8), (6.9), and (6.10) gives the energy eigenvalues of the oscillator:

En =
(
n+

1
2

)
ω.

We can appreciate the physical significance of â, â†, and N̂ by first noting that:

[N̂ , â] = [â†â, â] = −â,

and

[N̂ , â†] = [â†â, â†] = â†.

This leads to the important relations:

N̂ â†|n〉 = (n+ 1)â†|n〉 (6.11)

N̂ â|n〉 = (n− 1)â|n〉. (6.12)

Equations (6.11) and (6.12) imply that both â†|n〉 and â|n〉 are eigenkets of N̂ with

eigenvalues increased and decreased by one, respectively. The increase of n by one

amounts to the creation of a single quantum unit of energy and, in analogy, the

decrease of n by one corresponds to an annihilation of a single quantum unit of

energy. This is precisely how the operators get their names.
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Further, Eq. (6.12) implies that:

â|n〉 = c|n− 1〉,

where c is a numerical constant that can be determined from the requirement that

both |n〉 and |n− 1〉 be normalized. This can be done by noting that:

〈n|â†â|n〉 = |c|2,

such that n = |c|2. By taking c to be real and positive by convention, it can be

shown that:

â|n〉 =
√
n|n− 1〉 (6.13)

â†|n〉 =
√
n+ 1|n+ 1〉. (6.14)

If the annihilation operator â is repeatedly applied to both sides of Eq. (6.13), a

sequence of smaller and smaller values of n is obtained. This sequence will eventually

terminate as long as we start with a positive integer n. The positivity requirement

for the norm of â|n〉 leads to the conclusion that n can never be negative and that

the sequence terminates with n = 0. In turn, this implies that the ground state of

the harmonic oscillator is |0〉, with ground energy E0 = (1/2)ω.

The simultaneous eigenkets of Ĥ and N̂ can be obtained by repeated ap-

plication of the creation operator â† to the ground state |0〉. They are found to

be:

|n〉 =
[

(â†)n√
n!

] ∣∣∣0〉,
with energy eigenvalues given by:

En =
(
n+

1
2

)
ω,
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and n = 0, 1, 2, 3, ...

6.2 The electromagnetic field

We are now ready to quantize the electromagnetic field to show that it is

equivalent to an infinite set of harmonic oscillators. Each harmonic oscillator is

quantized using the canonical procedure as shown above. The result is a repre-

sentation of the field as a sum over modes at frequencies ωi, with each of these

frequencies having a definite number ni of quanta, or excitations. Just as in the

case of the quantum harmonic oscillator, each excitation of the field contributes an

energy ωi, such that the total energy of the field is expressed as:

E =
∑
i

ωi

(
ni +

1
2

)
.

6.2.1 Normal mode expansion

In order to quantize the electromagnetic field by the procedure developed in

Section 6.1, a normal mode expansion for the field must be introduced. To arrive

at a discrete set of modes, we define an artificial “quantization volume” V . For

simplicity, we consider the “free field” case, in which there are no particles, no

charges, and no current, so that the only source of the electric field is the change

in the magnetic field, and vice versa. We specifically consider a plane optical wave

propagating in the z direction between two plane x-y surfaces of perfect conductivity

separated by a length L. This set-up is nothing more than a plane-wave resonator

of length L and volume V = LA, where A is the cross-sectional area of the end

surfaces.
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In source-free space, Maxwell’s equations are:

∇×E(r, t) = − ∂

∂t
B(r, t) (6.15)

∇×B(r, t) = ε0µ0
∂

∂t
E(r, t) (6.16)

∇ ·E(r, t) = 0 (6.17)

∇ ·B(r, t) = 0 (6.18)

Besides satisfying Maxwell’s equations, the electric field E(r, t) must also satisfy the

boundary conditions E(z = 0, t) = E(z = L, t) = 0. The fields can be expanded as:

E(r, t) = −
√

1
ε0

∑
l,σ

pl,σ(t)El,σ(z) (6.19)

B(r, t) =
√
µ0

∑
l,σ

ωlql,σ(t)Bl,σ(z). (6.20)

Here, l is a positive integer, c = 1/ε0µ0 is the speed of light, and µ0 and ε0 are the

magnetic permeability and electric permittivity of vacuum, respectively. Finally,

ωl = klc is the frequency of the lth resonator mode. The field distributions of the

lth mode with the electric field polarized along the unit vector pointing along the σ

direction, eσ, are given by:

El,σ(z) = eσ

√
2
V

sin klz (6.21)

Bl,σ(z) = eσ × ez

√
2
V

cos klz, (6.22)

where:

kl =
2π
L
l,

97



and σ = x, y. With the proper normalization, the modes are orthogonal, obeying:

∫
V

El,σ ·Em,γd
3r = δl.mδσ,γ (6.23)∫

V
Bl,σ ·Bm,γd

3r = δl.mδσ,γ . (6.24)

After substituting Eqs. (6.19) - (6.22) into Maxwell’s Eqs. (6.15) and (6.16), we

obtain:

pl,σ =
dql,σ
dt

(6.25)

ω2
l ql,σ = −

dpl,σ
dt

, (6.26)

which in turn lead to:
d2ql,σ
dt2

+ ω2
l ql,σ = 0. (6.27)

Equation (6.27) is precisely that of simple harmonic motion, with ωl being the

oscillation frequency of the lth mode. This is now starting to look exactly like we

wished it would.

The next step is to calculate the energy stored in the electromagnetic field.

This is given by:

Hfield =
1
2

∫
V

(
ε0E2 +

1
µ0

B2

)
d3r, (6.28)

for all modes put together. In terms of the dynamical variables ql,σ(t) and pl,σ(t),

Eq. (6.28) can be written as:

Hfield =
1
2

∑
l,σ

(p2
l,σ + ω2

l q
2
l,σ). (6.29)

Equation (6.29) was obtained by using the normalization conditions (6.23) and

(6.24), and by substituting Eqs. (6.19) and (6.20) into (6.28). Comparison of Eq.

(6.29) with Eq. (6.1) suggests that mathematically, the electromagnetic field in the
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resonator behaves just like an ensemble of independent harmonic oscillators. The

canonical variables ql,σ and pl,σ constitute the canonically conjugate position and

momentum variables q and p. This last statement can be verified by writing down

Hamilton’s equations of motion:

q̇l,σ =
∂H

∂pl,σ
= pl,σ (6.30)

ṗl,σ = − ∂H

∂ql,σ
= −ω2

l ql,σ. (6.31)

Equations (6.30) and (6.31) are the same as Eqs. (6.25) and (6.26) obtained from

Maxwell’s equations.

6.2.2 Quantization of the electromagnetic field

Now that we have expanded the electromagnetic field in normal modes, it’s

quantization is straight-forward. It can be implemented simply by following the

quantization procedure for the harmonic oscillator. Once again, we define the cre-

ation and annihilation operators âl,σ and â†l,σ, analogous to Eqs. (6.3) and (6.4):

âl,σ =
1√
2ωl

(ωlq̂l,σ + ip̂l,σ) (6.32)

â†l,σ =
1√
2ωl

(ωlq̂l,σ − ip̂l,σ). (6.33)

In analogy to the harmonic oscillator case, the operators (6.32) and (6.33) obey the

commutation relations:

[âl,σ, âm,γ ] = [â†l,σ, â
†
m,γ ] = 0

[âl,σ, â†m,γ ] = δl,mδσ,γ .

Following Eqs. (6.5) and (6.6), we can write the position and momentum operators
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as:

q̂l,σ =
√

1
2ωl

(âl,σ + â†l,σ) (6.34)

p̂l,σ = i

√
ωl
2

(â†l,σ − âl,σ). (6.35)

We can now write the operator expressions for the electric and magnetic fields of

the resonator by substituting Eqs. (6.34) and (6.35) into Eqs. (6.19) and (6.20):

Ê = −i
∑
l,σ

eσ

√
ωl
ε0V

(â†l,σ − âl,σ) sin klz

B̂ =
∑
l,σ

(eσ × ez)kl

√
1

ε0V ωl
(â†l,σ + âl,σ) cos klz.

The Hamiltonian of the field can be written in terms of the raising and lowering

operators, taking a form analogous to Eq. (6.7):

Ĥfield =
∑
l,σ

ωl

(
â†l,σâl,σ +

1
2

)
.

The Hilbert space describing the quantized electromagnetic field is a Fock space. A

state with n photons in the lth mode polarized in the σ direction is given by acting

n times with the creation operator â†l,σ on the vacuum state |0〉, and normalizing:

|nl,σ〉 =
(âlσ)n√
n!
|0〉.

Any state will be a superposition of such states for all modes.
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Chapter 7

Wave propagation in

left-handed materials

When neutral matter is placed inside an electric field, it becomes polarized.

This polarization comes about because the electric field induces electric dipoles

which align in the direction of the field. The polarization of a medium is proportional

to the field such that:

P = ε0χeE,

where χe is the electric susceptibility of the medium and ε0 is the electric permittivity

of free space.

Similarly, matter becomes magnetized when placed inside a magnetic field.

The magnetic dipoles align parallel (for paramagnets) or antiparallel (for diamag-

nets) to the direction of the field. The magnetization of the medium is analogous

to the polarization and is proportional to the magnetic field:

M =
1
µ0
χmB,

where χm is the magnetic susceptibility of the medium and µ0 is the permeability
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of free space.

For linear media, we define:

D ≡ ε0E + P = εE

H ≡ 1
µ0

B−M =
1
µ
B,

where:

ε = ε0(1 + χe)

µ = µ0(1 + χm).

The parameters ε and µ are known as the electric permittivity and magnetic perme-

ability of the medium, respectively. Together, they describe how a medium responds

when placed in an electromagnetic field.

The dispersion relation satisfied by an electromagnetic wave inside an isotropic

medium is given by:

k2 =
ω2n2

c2
, (7.1)

where k is the wavenumber, c is the speed of the wave in vacuum, and n is the

refractive index of the medium. We also have:

n2 ≡ εµ

ε0µ0
,

or:

n = ±
√

εµ

ε0µ0
. (7.2)

Materials can be classified in terms of the sign of their electric permittivity

and magnetic permeability. For materials found in nature, the positive sign of the

square root in Eq. (7.2) applies. Almost all materials encountered in optics, such as
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glass or water, have positive values for both ε and µ. However, many metals (such

as silver and gold), have negative ε at visible wavelengths. Materials having either

(but not both) ε or µ negative are opaque to electromagnetic radiation (for example

surface plasmons), since n becomes imaginary. To have n real, we need to look

at materials with the same sign of ε and µ simultaneously. However, to this date,

materials with both ε and µ negative for long wavelengths have not been found in

nature.

The theoretical implications of materials with simultaneously negative per-

meability and permittivity were first studied by Victor Veselago, a Russian physi-

cist, in 1968 [77]. Veselago suggested that the electromagnetic properties of such

materials would exhibit interesting phenomena, without violating any fundamental

physical laws. He also claimed that such materials would be characterized by a

negative index of refraction, and would have unique properties such as a reversed

Doppler effect, Cherenkov radiation, and even Snell’s Law. Since then, a great deal

of interest has been paid to these theories [49, 68, 71, 72].

From Eqs. (7.1) and (7.2), it is clear that a simultaneous change of the signs

of ε and µ does not affect the equations. Substances with simultaneously negative

ε and µ still satisfy the dispersion relation. To see how the properties of such a

material would change, Veselago looked at Maxwell’s equations in free space:

∇×E = −1
c

∂B
∂t

∇×H =
1
c

∂D
∂t

∇ ·B = 0

∇ ·D = 0,

where D = εE and H = B/µ. For a plane monochromatic wave in which all
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quantities are proportional to ei(k·r−ωt), the curl equations above take the form:

k×E =
ω

c
µH

k×H = −ω
c
εE.

For ε > 0 and µ > 0, E, H, and k form a right-handed triplet of vectors, while

for ε < 0 and µ < 0, they form a left-handed triplet of vectors. For this reason,

materials like these have since then been given the name “left-handed materials”.

Even though materials with ε and µ negative simultaneously are not known

to exist in nature, it has been recently suggested that such materials can be fab-

ricated over a finite frequency band by specific electromagnetic design. Such a

one-dimensional structure was introduced by Smith et al. in [67]. Subsequently, an

extension to two dimensions was presented by Shelby et al., and such an artificial

composite was predicted to have an isotropic, negative index of refraction in two

dimensions [64]. Recent technological advances have made this goal realizable. In

fact, experimental scattering data at microwave frequencies on a structured material

that exhibits a frequency band where the effective index of refraction is negative,

directly confirms Veselago’s predictions [65].

To produce a negative electric permittivity in a particular frequency region,

wire elements were used [47], while at the same time, non-magnetic thin sheets of

metal were utilized to create a negative magnetic permeability in an overlapping

frequency region [48]. Both ε and µ rely on a resonant response and have the

resonant form [65]:

µ(ω)
µ0

= 1−
ω2
mp − ω2

mo

ω2 − ω2
mo + iγω

ε(ω)
ε0

= 1−
ω2
ep − ω2

eo

ω2 − ω2
eo + iγω

,
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where ω∗p is the magnetic or electric plasma frequency and ω∗o is the magnetic or

electric resonant frequency. As shown in [65], ε and µ are negative in the range

10.4 - 11 GHz. In this frequency band, the material exhibits a negative index of

refraction. Many other investigators have since then confirmed negative refraction

at microwave frequencies [22, 43].

In the work presented in this chapter, we specifically concentrate our atten-

tion to two assumptions employed when discussing LHM’s: the first has to do with

the requirement of a positive energy density, which in turn leads to the necessity

of frequency dispersion in LHM’s, and the second is related to the use of group

velocity as the quantity which describes the behavior of a wave once inside a LHM.

In response to these assumptions, we make two proposals: the first is that the pos-

itive energy density requirement should be relaxed, and the second is that the use

of group velocity as the variable which determines physical information should be

carefully reconsidered.

7.1 Maxwell’s equations in left-handed materials

As previously mentioned, for existing naturally occurring materials, the pos-

itive sign of the square root in Eq. (7.2) is used. In [77], it is suggested that for a

medium possessing simultaneous negative ε and µ, this convention must be reversed

to satisfy energy considerations: the negative sign of the square root in Eq. (7.2)

must be chosen instead. This statement seems to have no direct justification.

Snell’s law is given by:

n1 sin θ1 = n2 sin θ2, (7.3)

where n1 is the index of refraction of the medium that the wave is incident from,

and n2 is that of the LHM. As per usual, θ1 and θ2 are respectively the angles of
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incidence and refraction at the interface. Equation (7.3) can be written in terms of

the wave vectors as:

k1 sin θ1 = k2 sin θ2,

where we have used the relation:

n2 =
c2

ω2
k · k,

with ω being the frequency of the wave. The sign of the refractive index n = n1/n2,

is determined by the relative sign between k1 and k2, which really depends not

on the magnitude, but on the direction of the wave vectors in the two materials.

In what follows, we show that the sign of this ratio turns out to be negative for

materials described by simultaneously negative ε and µ.

We begin our calculation by considering a two-dimensional plane wave and

letting the plane of incidence be the x-y plane. The interface between vacuum and

the LHM is placed at y = 0. We are interested in the behavior of the wave vector k

as the wave enters the LHM from vacuum. For this purpose, we let ε, µ > 0 for y < 0

and ε, µ < 0 for y > 0. There are two possible scenarios: the first is for the case in

which the electric field is perpendicular to the plane of incidence and the second is

for the case in which it is parallel to it. We study these two cases separately and

show that the same results are obtained in either case.

7.1.1 Electric field perpendicular to plane of incidence

We consider here the electric field to be perpendicular to the plane of inci-

dence (the x-y plane), and we assume that all fields have a time dependence given by

e−iωt. The wave vectors are assumed real but the fields are in general complex, with

a magnitude and phase that change with position. The physical fields, of-course,

are the real parts of these expressions. The plane wave can be described in terms of
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the electric field as:

E(r, t) =


E0Ie

i(kI ·r−ωt) + E0Re
i(kR·r−ωt) y < 0

E0T e
i(kT ·r−ωt) y > 0,

(7.4)

with:

kI = kxx̂ + kyŷ

kR = kxx̂− kyŷ

kT = k′xx̂ + k′yŷ.

E0I , E0R and E0T denote the complex amplitudes of the incident, reflection and

transmission vectors. The wave vectors are related by

kIv1 = kRv1 = kT v2 = ω,

with v1 = c, and the fields are perpendicular to the propagation vector k. Equation

(7.4) can be rewritten as:

E(r, t) = e−iωt


eikxx

[
E0Ie

ikyy + E0Re
−ikyy

]
ẑ y < 0

eik
′
xx
[
E0T e

ik′yy
]
ẑ y > 0.

(7.5)

To calculate the magnetic field, we employ Faraday’s Law, ∇×E = − ∂
∂tB:

− ∂

∂t
Bx =

∂

∂y
Ez = (iky)e−iωteikxx

[
E0Ie

ikyy − E0Re
−ikyy

]
∂

∂t
By =

∂

∂x
Ez = (ikx)e−iωteikxx

[
E0Ie

ikyy + E0Re
−ikyy

]
 y < 0

107



and

− ∂

∂t
Bx =

∂

∂y
Ez = E0T (ik′y)e

−iωteik
′
xxeik

′
yy

∂

∂t
By =

∂

∂x
Ez = E0T (ik′x)e−iωteik

′
xxeik

′
yy

 y > 0.

This translates to:

Bx =
(

1
ω

)
(ky)e−iωteikxx

[
E0Ie

ikyy − E0Re
−ikyy

]
By = −

(
1
ω

)
(kx)e−iωteikxx

[
E0Ie

ikyy + E0Re
−ikyy

]
 y < 0

and

Bx =
(
E0T

ω

)
(k′y)e

−iωteik
′
xxeik

′
yy

By = −
(
E0T

ω

)
(k′x)e−iωteik

′
xxeik

′
yy

 y > 0,

or:

B(r, t) =
1
ω
e−iωt


eikxx

 (E0Ie
ikyy − E0Re

−ikyy)(ky)x̂

−(E0Ie
ikyy + E0Re

−ikyy)(kx)ŷ

 y < 0

E0T e
ik′xxeik

′
yy[k′yx̂− k′xŷ] y > 0.

(7.6)

We can use Ampere’s Law, ∇×H = ∂
∂tD, or ∇×B = εµ ∂

∂tE, to arrive at the wave

equation of the wave. The components are:

εµ
∂Ex
∂t

= −∂By
∂z

εµ
∂Ey
∂t

=
∂Bx
∂z

εµ
∂Ez
∂t

=
∂By
∂x
− ∂Bx

∂y
.
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The only relevant equation is the third one. Using Eqs. (7.5) and (7.6), we obtain:

ω2 =


k2
x+k2

y

εµ y < 0

k′2x +k′2y
ε′µ′ y > 0.

(7.7)

Before we can present a more detailed analysis of the behavior of the wave as it

gets refracted into the LHM, we calculate the Poynting vector S associated with

the electromagnetic field. The flux of energy of the electromagnetic wave in the

direction of the energy flow is given by the real part of the complex Poynting vector,

or S = 1
µE×B*, where the star superscript on B denotes complex conjugate1. For

the form of the wave presented above,

S =
1
µ

[
−EzB∗y x̂ +B∗xEzŷ

]
.

From Eqs. (7.5) and (7.6), the x and y components of the Poynting vector are found

to be:

Sx = − 1
µ
EzB

∗
y =

1
ω

(
kx
µ

)
(E0I)2

[
1 +Re2ikyy +Re−2ikyy +R2

]
Sy =

1
µ
EzB

∗
x =

1
ω

(
ky
µ

)
(E0I)2

[
1−Re2ikyy +Re−2ikyy −R2

]
 y < 0

(7.8)

and

Sx = − 1
µ′
EzB

∗
y =

1
ω

(
k′x
µ′

)
(E0T )2

Sy =
1
µ′
EzB

∗
x =

1
ω

(
k′y
µ′

)
(E0T )2

 y > 0, (7.9)

where R = E0R/E0I and T = E0T /E0I .

At this point, it is important to notice that we have neither said anything

about the signs of ε or µ, nor have we made any assumptions about the direction
1For a detailed discussion of Poynting’s Theorem, see [24].
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of the wave vector inside the LHM. The physically significant information is hidden

in the boundary conditions at the interface of the LHM. These ask for continuity of

the normal components of D and B, and similarly for the parallel components of E

and H. In other words, we ask for continuity in Ez, By and Hx. This gives:

(1 +R)eikxx = Teik
′
xx (7.10)

kx(1 +R)eikxx = k′xTe
ik′xx (7.11)(

ky
µ

)
(1−R)eikxx =

(
k′y
µ′

)
Teik

′
xx, (7.12)

Equations (7.10) and (7.11) taken together lead to the condition:

kx = k′x, (7.13)

and Eq. (7.11) becomes:

1 +R = T.

The reflection and refraction amplitudes are found to be:

R =
ky/µ− k′y/µ′

k′y/µ
′ + ky/µ

(7.14)

T =
2ky/µ

k′y/µ
′ + ky/µ

. (7.15)

The last step to revealing the behavior of the wave vector as it enters the LHM, is

to combine Eqs. (7.11), (7.12), and (7.13) to obtain:

1−R2

T 2
=

(
k′y
µ′

)
(
ky
µ

) . (7.16)

Here, µ = µ0 > 0 is the permeability of vacuum and µ′ < 0 is that of the LHM. We

notice that the left-hand side of Eq. (7.16) is positive if |R| < 1. Since ky and µ
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in Eq. (7.14) are both positive, the |R| < 1 condition is satisfied if ky
µ and k′y

µ′ have

the same sign (under the assumption that all the k’s and µ’s are real). Hence, since

µ′ < 0, it is required that k′y < 0, or that ky and k′y have opposite signs if µ and

µ′ have opposite signs. Equations (7.13) and (7.16) thus completely determine the

direction of the transmitted wave vector kT .

7.1.2 Electric field parallel to plane of incidence

For completion, we now turn to the case of P-polarization for which the

electric field is parallel to the plane of incidence, and show that the results produce

conclusions which are identical to those presented in Section 7.1.1. In this case, the

electric field contains a component that is perpendicular to the interface. The setup

of the problem remains the same, but we now have to make use of the conditions

Ê0I · k̂I = Ê0R · k̂R = Ê0T · k̂T = 0 in order to calculate the incident, reflection, and

transmission vectors. They are given by:

E0I = E0I(kyx̂− kxŷ)

E0R = −E0R(kyx̂ + kxŷ)

E0T = E0T (k′yx̂− k′xŷ).

In terms of the electric field, the wave can be written as:

E(r, t) =


E0I(kyx̂− kxŷ)ei(kxx+kyy−ωt) − E0R(kyx̂ + kxŷ)ei(kxx−kyy−ωt) y < 0

E0T (k′yx̂− k′xŷ)ei(k
′
xx+k′yy−ωt) y > 0,
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or:

E(r, t) = e−iωt


eikxx

 [E0Ie
ikyy − E0Re

−ikyy](ky)x̂

−[E0Ie
ikyy + E0Re

−ikyy](kx)ŷ

 y < 0

eik
′
xxE0T (k′yx̂− k′xŷ)eik

′
yy y > 0.

The magnetic field is found to be:

B(r, t) =
e−iωt

−ω


eikxx

(
k2
x + k2

y

)
(E0Ie

ikyy + E0Re
−ikyy)ẑ y < 0

eik
′
xxE0T

(
k′2x + k′2y

)
eik
′
yyẑ y > 0.

The wave equation can be calculated for this case and, as expected, it is found to

be identical to Eq. (7.7). The components of the Poynting vector are given by:

Sx =
1
µ
EyB

∗
z =

1
ω

(
kx
µ

)(
k2
x + k2

y

)
(E0I)2

[
1 +Re2ikyy +Re−2ikyy +R2

]
Sy = − 1

µ
ExB

∗
z =

1
ω

(
ky
µ

)(
k2
x + k2

y

)
(E0I)2

[
1 +Re2ikyy −Re−2ikyy −R2

]
 y < 0

(7.17)

and

Sx =
1
µ′
EyB

∗
z =

1
ω

(
k′x
µ′

)(
k′2x + k′2y

)
(E0T )2

Sy = − 1
µ′
ExB

∗
z =

1
ω

(
k′y
µ′

)(
k′2x + k′2y

)
(E0T )2

 y > 0. (7.18)

The boundary conditions ask for continuity in Ex, Dy, and Hz. These give:

ky(1−R)eikxx = k′yTe
ik′xx (7.19)

εkx(1 +R)eikxx = ε′T (k′x)eik
′
xx (7.20)

1
µ

(
k2
x + k2

y

)
(1 +R)eikxx =

1
µ′
(
k′2x + k′2y

)
Teik

′
xx, (7.21)
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Equations (7.7), (7.20), and (7.21) taken together lead us back to Eq. (7.13), or:

kx = k′x, (7.22)

and this completely determines the sign of k′x to be the same as that of kx, just like

in the Section 7.1.1. The sign of k′y can be determined by combining together Eqs.

(7.19), (7.20), and (7.22). This gives us:

ε′k′y
εky

=
1−R2

T 2
, (7.23)

which is the same as Eq. (7.16) except that every µ is replaced by a corresponding

1/ε. Again, to make |R| < 1 in Eq. (7.23) when ε and ε′ have opposite signs, one

needs ky and k′y to have opposite signs. Hence, once again, k′y < 0.

The reflection and transmission amplitudes are found to be:

R =
ε′k′xky − εkxk′y
εkxk′y + ε′k′xky

T =
2εkxky

εkxk′y + ε′k′xky
.

A great deal of physically important information is contained in the ratios k′x
µ′ , and

ky
µ′ appearing in Eqs. (7.9) and (7.18). Since µ is positive, Eqs. (7.8) and (7.17)

state that the Poynting vector is parallel to the wave vector in the region y < 0.

However, as the sign of the permeability changes from positive to negative as the

wave moves from vacuum to the LHM, the Poynting vector becomes antiparallel to

the wave vector in the region y > 0, as shown by Eqs. (7.9) and (7.18). This result

was obtained in [77] by using different arguments. The situation is depicted in Fig.

7.1. Notice that, as expected, the energy flux is away from the interface for y > 0.
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Figure 7.1: Ray diagram for the behavior of a plane wave as it propagates into a
left-handed medium placed at y = 0. The “ray” is shown in terms of the Poynting
vector as well as the wave vector.
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7.2 Negative energy density and frequency dependence

In all literature available up to date, it has been assumed that negative

refractive materials are necessarily frequency dependent. In this section, we propose

an alternative to this assumption.

Consider the energy density of the electromagnetic wave in a non-dispersive

medium (Eq. (22) in [77]):

W = εE2 + µH2. (7.24)

In [77] it is argued that the sign of Eq. (7.24) should be positive at all times. It is

further suggested that, since simultaneously negative values of ε and µ would make

W < 0, Eq. (7.24) should be replaced with the expression for the energy density in

a dispersive medium (Eq. (23) in [77]):

W =
∂(εω)
∂ω

E2 +
∂(µω)
∂ω

H2. (7.25)

In order to have W > 0 in Eq. (7.25), it is required that ∂(εω)
∂ω > 0, and ∂(µω)

∂ω >

0. More importantly, because of the positive energy density requirement, negative

refraction can be realized only when there is frequency dispersion. As a final remark,

it is claimed that the partials in Eq. (7.25) do not in general mean that ε and µ

cannot be simultaneously negative, but for them to hold, it is necessary that ε and

µ are frequency dependent.

There are many situations in physics where energy assumes negative values.

Two of the most well-known examples are those arising from the Klein-Gordon and

the Dirac relativistic wave equations. Both these equations admit negative energy

solutions which are not realized in nature. This gives an apparently fatal difficulty,

since an external perturbation can cause a particle with energy greater than its rest

mass energy mc2 to make a radiative transition to a state of negative energy less

than mc2. In 1930, Dirac proposed a way out of this difficulty by suggesting that, for
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electrons, there are states in nature that admit negative energy, but they are all full.

Since, according to the Pauli exclusion principle, only one electron is allowed in each

state, transitions from positive to negative energy states are only allowed if there

is a mechanism that empties the already full negative states. In this picture, the

vacuum state consists of an infinite sea of electrons filling all the negative energy

states and all the positive energy states are empty. It is possible for an electron

in the negative sea to acquire energy greater than 2mc2 and make a transition to

a positive energy state with some value greater than mc2. This transition leaves

behind a hole in the sea of negative-energy states. Measured with respect to the

vacuum, this hole appears to have a positive charge (+e) and positive energy; it can

therefore be interpreted as a positron. This is how Dirac predicted the existence of

positrons, which were indeed discovered in 1933 by C.D.Anderson.

The Dirac field with the negative energy sea all filled, has difficulties with

relativistic invariance. The problem presents itself when the negative energy states

are reinterpreted as holes. For an extensive discussion, see [15]. However, there are

other situations in which negative energy presents itself. Let’s consider the case in

which there is a region in space in which the energy density W associated with the

motion of particles is negative. Such a question was considered in [2] for the case

of tachyons, particles capable of overcoming the light barrier. Consider being in a

frame S which is at rest. Also suppose that in that frame, a tachyon is observed to

be emitted by a source and absorbed a while later by a sink. It was shown that, for

an observer in some other frame S′ moving with velocity w with respect to frame

S, these particles may appear to have negative energy. In addition, to the observer

in the S′ system, the negative-energy particle will appear to have been absorbed

first and emitted later. At the time, this phenomenon raised serious objections to

the possible existence of tachyons. To resolve this difficulty, the authors proposed

a reinterpretation principle. According to this principle, a negative-energy particle
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that has been absorbed first and emitted later, is nothing else but a positive-energy

particle emitted first and absorbed later, a perfectly normal situation.

It also turns out that, for the case of tachyons, the velocity is antiparallel to

the momentum. This is analogous to what we observe in negative refractive index

materials: the Poynting vector is antiparallel to the wave vector. As a parallel to the

case of tachyons, it looks like, inside the LHM, the wave hits the interface before it

is emitted by its source. By an analogous reinterpretation technique, we can think

of a negative-energy wave propagating in one direction as a positive-energy wave

propagating in the opposite direction.

Allowing the existence of negative energy solutions has consequences which

contradict the claims in [77]. Namely, allowing W to be negative means that the

partials in Eq. (7.25) are no longer restricted to be positive. More importantly,

however, Eq. (7.24) need not be replaced by Eq. (7.25), and the requirement that

the medium be dispersive if negative refraction can occur is no longer necessary.

One could in fact ask the question of what happens in certain regions of a material

in which the absorption bands are far enough apart such that the region in-between

them is essentially non-dispersive for a quasi-monochromatic pulse. Once negative

energy solutions are accepted, it seems like there is no fundamental reason justifying

the rejection of negative refraction in non-dispersive materials.

Dispersion and the role of group velocity

We finish this chapter with a review of the fundamentals of the phenomenon

of dispersion and a discussion of the use of group velocity to describe the behavior of

a wave inside a LHM. In Section II of [77], the author states that in negative index

materials, S and k are antiparallel, and suggests that such materials must have

negative group velocity. The assumption here is that the so-called group velocity vg

is in the same direction as the Poynting vector, which is in turn antiparallel to k and
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also to the phase velocity vp. It is also suggested that vp is opposite to the energy

flux, which is taken to be S or vg interchangeably. In the discussion that follows,

we claim that the use of group velocity as presented in [77] may not be inevitable,

but we wish to point out that a careful reinterpretation of a negative energy mode

is as we have suggested. The notion of group velocity should perhaps be used very

carefully, if at all.

The variation of the refractive index with wavelength (or frequency) consti-

tutes the phenomenon of dispersion. For a detailed derivation of the characteristic

frequency dispersion equations, we refer the interested reader to [4] and [24], in

which discussions of a simplified model of a dispersive medium can be found. In

the case of normal dispersion n increases with ω, while in the case of anomalous

dispersion n decreases with ω and has a significant imaginary part.

It is found that if one were to plot a graph of n versus λ for a range of different

optical materials, that curve would differ in detail from one material to the next,

but all curves would have the same general shape. Curves representative of normal

dispersion are characterized by the following facts: n increases with decreasing λ, the

rate of increase dn/dλ rises at shorter wavelengths, the larger the index of refraction

of a certain substance, the steeper dn/dλ is for a given wavelength, and the curve

of one substance cannot in general be obtained from that of another substance by

a simple change in the scale of the ordinates. The magnitude of n is in general

quite different for various substances, but its change with wavelength shows the

characteristics described above.

Anomalous dispersion is seen when the index of refraction is measured for

substances like quartz in the infrared region of the spectrum. In that case, the

dispersion curve begins to deviate significantly from that which describes normal

dispersion. More specifically, the measured value of n decreases more and more

rapidly with increasing λ, until it reaches a region in the infrared where light ceases
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to be transmitted at all. This region of selective absorption is known as the absorp-

tion band, and its position is characteristic of the material in question. Since the

substance does not transmit radiation of the wavelength in the absorption band, n

cannot usually be measured in this region. The index of refraction is found to be

higher for the long wavelength side of the absorption band, and as one moves further

away from the band, n decreases rapidly at first and more slowly later.

Anomalous dispersion was first observed with materials whose absorption

bands fall in the visible region of the spectrum. However, it was soon discovered that

transparent substances like glass and quartz possess regions of selective absorption

in the infrared and ultraviolet regions, and therefore show anomalous dispersion in

those areas. It turns out that no substance exists which does not exhibit anomalous

dispersion at some wavelengths, making the term “anomalous” inappropriate. This

phenomenon, far from being anomalous, is perfectly general. The so-called “normal”

dispersion is seen only in the frequency region between two absorption bands, and

fairly far removed from them. Nonetheless, the term “anomalous dispersion” has

been retained for historical reasons.

It is not uncommon for some positive index materials to exhibit regions in

which vp > 0 and vg < 0 [16, 42]. In this sense, there is nothing special about

negative index materials, contrary to the assertion that LHM’s are materials with

negative group velocity. To make things more transparent, let us recall that the

phase and group velocity of a wave are related by:

vg = vp + k
dvp
dk

= vp − λ
dvp
dλ

, (7.26)

where the relation k = 2π/λ has been used to arrive at the second part of the

equation above. Equation (7.26) can also be expressed in terms of the refractive
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index n as:

vg =
∂ω

∂k
=

c

Re(n) + ω ∂Re(n)
∂ω

. (7.27)

In the fictitious case of a complete absence of dispersion, the group velocity is

identical to the phase velocity in both magnitude and direction. However, the sign

of the group velocity can be positive or negative depending on the sign of the second

term in the denominator of Eq. (7.27) and its magnitude with respect to Re(n). It

should thus be expected that the relative sign between vp and vg varies in different

frequency regions of the same material, irrespective of the sign of its refractive

index. In fact, all four sign combinations between vp and vg have been verified

experimentally for a negative index material [12]. It is important to note at this

point that nowhere in the above discussion has the Poynting vector been mentioned.

Even though it is unlikely that a material in which dispersion is absent en-

tirely exists naturally, there surely must be frequency regions within materials for

which dispersion is so small that it can be thought of as negligible. According to [77],

negative refraction is not allowed in those regions. Based on fundamental physical

reasoning, we suggest an alternative to this proposal.

Since no assumptions of the nature of the medium were made in deriving Eq.

(7.7), we are in a position to study the behavior of the wave vector as a function of

frequency in the region of interest for any medium of our choice. Below, we present

two cases: in the first, we consider the unlikely case of a non-dispersive medium in

which ε and µ are frequency independent, and in the second, we consider the case

of a medium with a simple frequency dependence of the form ε(ω) = ε0

(
1− ω2

p

ω2

)
and µ(ω) = µ0

(
1− ω2

p

ω2

)
, where ωp is the constant plasma frequency. We focus our

attention to the region y > 0 for the case where the electric field in perpendicular

to the plane of interface, such that kx = k′x.

As mentioned previously, even though the existence of a medium in which

dispersion is absent entirely is unlike, there are, realistically, frequency regions within
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materials for which dispersion can be thought of as negligible. We present here the

case of a non-dispersive medium as an illustrative example corresponding to those

regions inside the medium in which dispersion is so small that it can be neglected.

In that case, Eq. (7.7) becomes:

k′2y c
2 = ω2

[
ε′µ′

ε0µ0
− sin2 θi

]
, (7.28)

with ε′, µ′ negative constants and ε′µ′/ε0µ0 > 1. Here, θi is the incident angle of

the wave, and k′x has been replaced with ω
c sin θi. Equation (7.28) has two possible

solutions:

k′yc = ±ω

√
ε′µ′

ε0µ0
− sin2 θi.

The behavior of the y-component of the wave vector as a function of frequency is a

simple linear relation and is shown in Fig. 7.2 for an incident angle of θi = 30◦ and

positive ω.

Following the results of the calculations of Section 7.1, the physical region

of interest is that in which k′y < 0. As an aside, note that for this region, vp and

vg are negative and parallel. This is of no surprise, of-course, since in the absence

of dispersion, the group velocity of the wave is precisely its phase velocity. At the

same time, the energy flux is positive.

We proceed to study the same problem in the case where ε and µ are described

by a simple frequency dependence of the form ε(ω) = ε0

(
1− ω2

p

ω2

)
and µ(ω) =

µ0

(
1− ω2

p

ω2

)
, where ωp is the constant plasma frequency. This model has been

treated earlier in [23], where a detailed discussion of arguments based on group

velocity can be found. Under this assumption, equation (7.7) takes the form:

k′2y c
2 = ω2

(1−
ω2
p

ω2

)2

− sin2 θi

 . (7.29)
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Figure 7.2: Behavior of the y-component of the refracted part of the wave vector as
a function of frequency for y > 0 and ε, µ negative constants and εµ/ε0µ0 > 1. The
wave is incident at an angle of 30◦.

Once again, there are two possible solutions to Eq. (7.29):

k′yc = ±ω

√(
1−

ω2
p

ω2

)2

− sin2 θi. (7.30)

A plot of the real values of the y-component of the wave vector as a function of

frequency for the case where ε and µ have this particular frequency dependence is

shown in Fig. 7.3.

Figure 7.3 displays all four solutions of Eq. (7.30). The upper branch has
ω
ωp
> 1 and corresponds to ε and µ positive. Similarly, the lower branch has ω

ωp
< 1

and corresponds to ε and µ negative. Again, we are interested in the region in which

k′y < 0. Figure 7.3 shows that for positive index materials vp and vg are positive

and parallel, while for negative index materials, vp < 0 and vg > 0. Again, the
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Figure 7.3: Behavior of the y-component of the refracted part of the wave vector as
a function of frequency for y > 0 and ε
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ω2 . The wave is incident at an
angle of 45◦.

energy flux is positive in both cases.
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Chapter 8

Concluding remarks and future

directions

8.1 Relaxation in harmonic oscillator systems

In the first part of this dissertation, we explicitly calculated the time evolu-

tion of an initially uncoupled harmonic oscillator system, under the repeated appli-

cation of an interaction Hamiltonian for successive time intervals τ . The bipartite

system under consideration was composed of a physical system of interest, and the

environment with which this system was in contact. The results were obtained ex-

actly by using iterative methods and without employing perturbation theory. We

showed that after enough periodically repeated applications of the interaction Hamil-

tonian, the physical system of interest came to equilibrium with its environment -

if the frequencies of the two subsystems were equal - at an effective temperature

which was equal to the initial temperature of the environment. We also showed that

when the frequencies of the two subsystems were unequal, the physical system of

interest approached but never attained the environment’s temperature.

It was shown that the steady state of our system was obtained through
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a series of transient Maxwell-Boltzmann distributions, and the new steady state

satisfied the condition ω1θ1(∞) = ω2θ2(0). It was concluded that the selection

rules imposed by the interaction Hamiltonian overrode statistical mechanical effects.

The results were first obtained for the case where the physical system of interest

represented by a single harmonic oscillator was coupled to an environment composed

of a single harmonic oscillator. These results were extended to the case where the

same single harmonic oscillator system was coupled to an environment composed of

at least two harmonic oscillators. To obtain the most general open evolution of the

system of interest, the situation was generalized to the case where the environment

was composed of N harmonic oscillators.

An important ingredient introduced in our model was the “refresh” proce-

dure. After applying a constant interaction Hamiltonian to our initially uncoupled

bipartite system, a “refreshing” mechanism was performed. This mechanism corre-

sponded to the assumption that there were no fixed phase relationships between the

physical system of interest and the environment surrounding it, while at the same

time, the phase relationships between the number states of each individual oscilla-

tor were definite. In addition, it was assumed that we had no knowledge about the

occupation numbers of each of the modes in the second system and so averaging

over all these occupation numbers was performed.

The fact that the total number of particles was conserved by definition of

the total Hamiltonian of our model, and the fact that the initial density matrix was

diagonal in the number basis {|n1, n2, · · · , nN 〉} of the harmonic oscillators, forced

the evolved reduced density matrix ρS(nτ) with n = 0, 1, 2, · · · ,∞ to be diagonal in

its respective number basis {|n1〉}. In turn, this allowed for the composite system

density matrix after the “refreshing” to be written as a product state of the new

system and environment states.

The results and consequences obtained in this dissertation were dependent
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on the assumptions put forth in the “interact-refresh-repeat” relaxation-generating

model, along with the chosen interaction Hamiltonian. When analyzing multi-stage

processes, it is often a good assumption to use the Markov approximation. This

approximation ignores the built-up of correlations between the system and its envi-

ronment and is valid for short times. The irreversible evolution of a system in contact

with an environment is obtained, provided that the decay time or the time it takes

for correlations with the environment to become important are much shorter than

the typical relaxation times of the two subsystems. These assumptions taken to-

gether lead to exponential decays. Nonetheless, there are many situations in physics

in which the use of the Markov approximation may be inappropriate. An example

is seen in the quantum Zeno effect [33], in which the decay of a system at very short

times is not exponential in nature.

Our results were also unique in the sense that the initial composite system-

environment state was assumed to be in a tensor product of the two subsystems.

In other words, initial correlations were ignored. In many cases of practical inter-

est, this is a reasonable assumption. When an experimentalist prepares a system

in a specified state and has complete control over the initial state of interest, all

correlations between the system and the environment are undone. Ideally, the de-

struction of all correlations will leave the system in a pure state. In practice, how-

ever, uncoupling a system from its environment is in general very difficult and it

is very rarely accomplished experimentally. Quantum systems interact constantly

with their environments, leading to the built-up of correlations. One way in which

these correlations express themselves is via the exchange of heat between the system

and its environment.

One can then ask the following questions:

• How will our results change if:

– initial system-environment correlations are assumed?
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– the interaction Hamiltonian can allow for free evolution of the individual

parts (i.e. it can allow for the interaction coupling to have an explicit

time-dependence?)

• What are the conditions (if any) under which the above models can be treated

as Markov processes? And if none, how can non-Markovian effects be incor-

porated in the problem?

The above are just a few of the questions which remain unanswered. Nonethe-

less, we hope that the work which was presented in this dissertation can contribute to

the foundations of the study of Markovian processes in the context of open quantum

systems.

8.2 Wave propagation in left-handed materials

In the second part of this dissertation, we examined the response of a plane,

monochromatic electromagnetic wave incident on a left-handed material from vac-

uum, by explicitly solving Maxwell’s equations. The physically significant infor-

mation was explored by matching the boundary conditions at the interface. We

proposed that negative energy solutions should not be rejected on the grounds of

being unphysical, and examined the implications arising from such a change. We

specifically focused our attention on the claim that if negative energy solutions are

accepted, negative refraction can be allowed to occur in frequency regions within

a material for which dispersion is essentially negligible. We further examined the

role of group velocity and suggested that all possible sign combinations between the

phase and the group velocity of a wave should be expected in all materials, regard-

less of the sign of the refractive index. To finish, we solved the wave equation for

a wave incident on a left-handed medium from vacuum for two extreme cases: in

the first, we assumed the absence of dispersion, and in the second, we assumed the
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high-frequency limit.

The original prescription for a sub-wavelength array of thin metallic wires

combined with resonant metallic rings has been extensively investigated, and nega-

tive refraction at microwave frequencies has been confirmed by several investigators.

In addition, a great deal of effort has been put in trying to create a material with

a negative refractive index for visible light. In fact, in 2000, Notomi showed that

negative refraction should be expected to occur in photonic crystals for a certain

range of frequencies [40]. Photonic crystals are periodic structures built on the scale

of the optical wavelength, which allow only certain wavelengths to pass through.

Essentially, they are structures in which the refractive index can be controlled by

their band structure. The nice thing about photonic crystals, other than the fact

that they are built within the visible region, is that they have significantly reduced

losses. Many researchers have already explored negative refraction and Cherenkov

radiation using photonic crystals [10, 11, 14, 30, 31, 41, 44, 45]. All possible sign

combinations between phase and group velocities were observed in these materials

[34].

One problem with the original structures presented is that they were not

suitable for practical microwave applications because of their excessive loss and nar-

row bandwidth. Caloz et al. introduced a transmission line approach of left-handed

materials and proposed an artificial left-handed transmission line with microstrip

components including interdigital capacitors and shorted stub inductors [7]. Since

then, researchers have arrived at the circuit equivalent of a negative index material

using transmission lines [13, 19, 29, 66]. It is very important to note here that

experiments involving transmission-line devices demonstrate only moderate disper-

sion with no noticeable increase in absorption. It is understood that it would be

a challenging (if not impossible) task to experimentally study materials in which

dispersion is negligible. However, the recent approaches to negative refraction in-
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volving photonic crystals and circuit models indicate a promising future as far as

the arguments on the necessity of dispersion put forth in this dissertation.

Inevitably, the implications accounting to the wave propagation inside a left-

handed medium have challenged our current understanding of optics. To a physicist,

the peculiar behavior of a wave inside a left-handed material constitutes counter-

intuitive phenomena. Theoretical questions about the possibility of the fabrication

of perfect lenses and invisibility cloaks, as well as the apparent violation of causal-

ity are just a few of the subjects which have raised interesting theoretical debates

between researchers in this field [21, 49, 71, 73, 84]. Even though theoretical ques-

tions of this nature still remain unanswered, we hope that the suggested inclusion of

negative energy solutions within the context of wave propagation inside left-handed

media can contribute to the understanding of some of the aspects of the peculiar

phenomena observed in these novel structures.
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