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It is proven that locations of internal body joints are sufficient visual

cues to characterize human motion. In this dissertation I propose that loca-

tions of human extremities including heads, hands and feet provide powerful

approximation to internal body motion.

I propose detection of precise extremities from contours obtained from

image segmentation or contour tracking. Junctions of medial axis of contours

are selected as stars. Contour points with a local maximum distance to various

stars are chosen as candidate extremities. All the candidates are filtered by

cues including proximity to other candidates, visibility to stars and robustness

to noise smoothing parameters.

I present my applications of using precise extremities for fast human

action detection and recognition. Environment specific features are built from
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precise extremities and feed into a block based Hidden Markov Model to de-

code the fence climbing action from continuous videos. Precise extremities are

grouped into stable contacts if the same extremity does not move for a certain

duration. Such stable contacts are utilized to decompose a long continuous

video into shorter pieces. Each piece is associated with certain motion features

to form primitive motion units. In this way the sequence is abstracted into

more meaningful segments and a searching strategy is used to detect the fence

climbing action. Moreover, I propose the histogram of extremities as a general

posture descriptor. It is tested in a Hidden Markov Model based framework

for action recognition.

I further propose detection of probable extremities from raw images

without any segmentation. Modeling the extremity as an image patch instead

of a single point on the contour helps overcome the segmentation difficulty

and increase the detection robustness. I represent the extremity patches with

Histograms of Oriented Gradients. The detection is achieved by window based

image scanning. In order to reduce computation load, I adopt the integral

histograms technique without sacrificing accuracy. The result is a probability

map where each pixel denotes probability of the patch forming the specific

class of extremities. With a probable extremity map, I propose the histogram

of probable extremities as another general posture descriptor. It is tested on

several data sets and the results are compared with that of precise extremities

to show the superiority of probable extremities.
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Chapter 1

Introduction

The purpose of computer vision is to have machines “see”. Since ma-

chines are built to serve people, many videos in computer vision focus on peo-

ple. Human motion analysis has become a critical part of modern computer

vision. In general, it involves detection and tracking of human beings and

interpretation of human behaviors from videos. While detecting and track-

ing human figures are very important, they are often regarded as intermediate

rather than final results of motion analysis. For many motion analysis systems

in practice, behavior understanding is the goal and end product.

The importance of human behavior understanding owes to the increas-

ing demand from all kinds of applications. In battle fields, as displayed in

Figure 1.1(a), unmanned aerial vehicles take videos of military personnel from

high above to identify actions such as planting mines. In public transport en-

vironments including subway stations and airports, numerous cameras are set

up to monitor abnormal human behavior such as leaving baggages unattended

in Figure 1.1(b). In shopping malls, store owners employ cameras to cover

valuable items in the hope of preventing theft as in Figure 1.1(c). With the

rapid growth of internet media, content based video retrieval becomes more
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desirable than ever.

Figure 1.1: (a) Planting IED taken by UAV; (b) i-LIDS bag detection chal-
lenge; (c) Group theft in an Apple store.

Human behavior understanding is a general and loosely defined term.

To be more specific, given the input data as a video stream or an image se-

quence, one has to temporally segment it into pieces and recognize each piece

as a predefined action. A consecutive sequence of certain actions constitute a

certain kind of semantic activity. In short, the behavior understanding problem

consists of three parts, including temporal segmentation, action recognition,

and semantic description. Sometimes temporal segmentation is not explicitly

performed and action recognition is done on continuous videos. In such cir-

cumstances, it is called action detection. In this dissertation, I present my

perspective on the visual understanding of human behavior, and focus on fast

action detection and recognition with a particular kind of visual cue, e.g. the

human extremities.
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1.1 Challenges

Most of the behavior understanding in the above mentioned applica-

tions are completed by human operators. Despite various efforts from re-

searchers, there are still plenty of difficulties before fully automated analysis

is possible in practice.

There are some fundamental problems facing the entire computer vision

community. For example, to recover the lost three-dimensional information

from two-dimensional images is the primary difficulty in vision. According

to Shah [60], the shape from stereo problem has almost been solved, while

shape from motion and other similar problems have proved difficult or less

interesting. Image segmentation is another well known difficulty which has

not been overcome yet.

Beyond those common difficulties, there are challenges native to the

human motion analysis task. First, the human body is non-rigid, its motion

is articulated and body parts may have different motions. Second, under

different camera views, body parts may be self-occluded and have different

appearances.

To narrow down the issues further, there are specific difficulties in each

of the three parts of human behavior understanding. Videos are too lengthy

to be manually broken into shorter pieces. Those from surveillance cameras

require fast processing to produce real time responses. In action recognition,

the action labels are often predefined in a closed world. Such labels are more

3



human language oriented and they may turn out to be fuzzy or ill posed.

The definitions of actions overlap sometimes. For example, the KTH

data set [59] has walking, jogging, and running as different categories, as shown

in Figure 1.2. However, it is hard to draw a clear line between jogging and

running even for human beings. Jogging is slow running in essence. How slow is

slow? Is slow running not running? Therefore, except that the term “jogging”

is used often in an exercise context, there is no real distinction between them.

Figure 1.2: The definitions of jogging and running overlap.

Even for the same action, there are great intra-class variations. For

instance, there is a lot of variation in climbing fences, as shown in Figure 1.3.

The fences may differ in height and style. The height of fences greatly affects

the specific climbing action. People can easily jump over a short fence enclosing

cows in a ranch, and they have to really climb a fence when it is as tall as they

are. The style of fences is less critical but still important. Fences with barb

or razor wires on the top greatly increase the climbing difficulty. For visual

surveillance purposes, privacy fences are quite different from picket or split rail

fences since it completely blocks the view on the other side. Different persons

4



may climb in a distinct style. Even the same person may climb in a different

way occasionally.

Figure 1.3: There are huge variations in climbing fences.

1.2 Motivation

Since there are various difficulties in human behavior understanding,

researchers usually work only on a part of it. For human action recognition,

one traditional approach is to represent each frame with certain features. With

the frame descriptors one may classify the entire action either with sequential

analysis methods or by simple majority voting. In such circumstances, the

representation of human figures inside a frame greatly determines how effective

the entire action classification system will be. So what is an effective and

efficient human posture representation?

Johansson [33] demonstrated that locations of human body joints are

effective visual cues for human recognition of activities. He attached lights on

human body joints and took videos of human actions in the dark. As shown

in Figure 1.4, the set of points in an image does not really follow any Gestalt
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principle, which is often used in psychology to group scattered cues. But when

viewing the points in an image sequence, observers can quickly find a vivid

human figure in action. In essence, human visual systems can recover object

information from very sparse inputs such as a set of points in motion. This

phenomenon is known as biological motion in the biological vision literature.

Figure 1.4: Biological motion: human visual systems can recognize actions
from inputs as sparse as a set of body joints.

Stimulated by Johansson’s experiments, Webb and Aggarwal [72] pro-

posed to estimate the structure of jointed objects from motion, where jointed

objects have two visible points on each rigid part. Consistent with Johansson’s

method, modern motion capture systems generally have performers wear suits

with distinct markers to identify such body joints. In the past, there have

been extensive studies following Johansson’s moving light displays (MLD), as

reviewed by Cedras and Shah [9].

However, body joints are not easily available from videos or images

directly. Can one replace body joints with other points to represent a human

body? In Figure 1.5, I display a few images of another set of points, instead

6



of body joints. For human observers, it is as easy to identify the action as the

same “jumping jack” as in Figure 1.4. This new set of points includes heads,

hands and feet, which I call extremities.

Figure 1.5: Recognizing human actions from their extremities including head,
hands and feet. For display purpose, each extremity is drawn as a square.

1.3 My approach

In this dissertation I present the unique idea of using human extremi-

ties, including heads, hands and feet, as a powerful cue for fast action detection

and recognition.

I propose to extract precise extremities from contours. Starting with

the star-skeleton representation as a baseline comparison, I propose the two-

star-skeleton and the variable-star-skeleton representations. I utilize the con-

cept of a star polygon from the computer graphics community to illustrate

why the number and locations of star points matter for extremity detection.

I present experimental results on a set of 1000 images taken from videos of

persons climbing fences to verify the variable-star-skeleton performs best in

7



detecting extremities.

With the precise extremities, I propose to generate both task specific

and general purpose action descriptors. For the specific task of fence climbing

from continuous videos, which consists of mixed actions, I define a set of

features from the relative spatial configuration of extremities against fences.

Such features are employed in a block-based Hidden Markov Model (HMM) to

decode the fence climbing action from continuous videos. For general action

recognition, where each action is already temporally segmented, I define a

spatial histogram of the extremities for each frame. All the unique histograms

form the observation symbol set for the HMM training and testing.

With the precise extremities, I further propose the concept of stable

contacts, which are those extremities that do not move for a certain amount

of time. The change in the number of stable contacts indicates a pose change

in human actions. By monitoring such changes, I decompose the continuous

videos into smaller pieces where each piece has a fixed number of stable con-

tacts, which usually correspond to a phase in human action. I describe how

to take advantage of such temporal segmentations and search different actions

in continuous videos.

When contours are not available, I propose to model the extremity as

an image patch instead of a single point on the contour, which helps overcome

the segmentation difficulty and increase the detection robustness. Extremity

patches are represented with Histograms of Oriented Gradients. The detec-

tion is achieved by window based image scanning combined with the integral
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histograms. The result of approximate detection is a probability map where

each pixel denotes the probability of the patch forming the specific class of

extremities.

With such a probability map, I propose the histogram of probable ex-

tremities, as a compact human posture representation. A Support Vector Ma-

chine is used in classifying individual actions. I present experimental results

on a few data sets to show the effectiveness of the proposed action descriptor.

1.4 My contributions

In short, my contribution in this dissertation is to propose and validate

the effectiveness of extremities for fast human action detection and recognition.

In overview, my contributions are listed as follows.

1. Human extremity detection [81]: To the best of my knowledge, there

is no prior work that detects head, hands and feet simultaneously. A vast

amount of research has been devoted to face detection, as reviewed by

Yang et al. [75]. Some researchers work on head detection and even hand

detection. One significant difference between previous and my work is

the resolution at which the videos are taken. In other words, the field of

view is different. For example, Kölsch and Turk [36] applied the method

from Viola and Jones [67] to detect hands. As their application is hand

gesture recognition, their videos cover mostly the hands and no feet are

visible. It is similar in face detection where videos usually focus only on
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the upper body. In my work, the resolution is significantly coarser, since

the video has to cover the entire human body at various postures.

2. Extremities for fast human action detection [78–80] and recog-

nition [81]: There are at most five points in my precise extremity defi-

nition, which provides very limited and restricted information. However,

I show that when used properly these extremities are powerful cues for

action detection and recognition. My experiments on various data sets

demonstrate that the accuracy on action classification is comparable to

the most state-of-the-art algorithms, which is very impressive considering

that those other algorithms employ significantly more input information

and hence consume more computation resources.

In addition, I invent some novel techniques.

1. Variable-star-skeleton [81]. When the segmentation yields reasonably

clean contours, the variable-star-skeleton provides accurate localization

of extremities on the contour. I develop the technique in three stages.

First, I propose the two-star-skeleton and observe that it is better than

the single-star-skeleton. Second, I use the concept of the star polygon

to explain that the appropriate number and locations of the stars help

increase the detection accuracy, since in this way the human silhouette

can be approximately decomposed into star polygons. Third, I propose

to have junctions of medial axis as stars, extract candidates from these
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stars and filter them out with the robustness, visibility and proximity

criteria.

2. Histogram of Probable Extremities. When clean contours are not avail-

able, I model the extremities as image patches. Each patch is represented

by a feature vector through available techniques such as Histogram of

Oriented Gradients. By window scanning the image with integral his-

tograms, I build a probability map where each pixel denotes how likely it

is the center of an extremity patch. Then I lay a set of spatial cells over

the map and compute the histogram of probability over each extremity

class and cell. The resulting histogram is a vector capturing the spatial

distribution of probable extremities in an image.

3. Stable contacts [79, 80]. Precise extremities not only tells the spatial

configuration of human body parts, it also provides temporal information

on human actions. I define stable contacts to be those extremities that

do not move over a certain time. The durations of those stable contacts

are used to form primitive intervals where each interval corresponds to

a phase in human actions. In this way, I can group frames in an image

sequence into frame blocks and achieve action detection faster and in a

more meaningful way.
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1.5 Outline

The rest of the dissertation is organized as follows. I review relevant

works in Chapter 2. The detection of precise extremities from contours is

presented in Chapter 3, which features the development of the variable-star-

skeleton and its comparison with two previous works. Next in Chapter 4, I

describe how to make the full use of precise extremities in action detection

and recognition. In action recognition, the precise extremities are used to

generate both task specific and general purpose action descriptors. I present

the detection of probable extremities in Chapter 5. In the same chapter the

probable extremity map is converted into a histogram as a general purpose

action descriptor. Finally the conclusion is given in Chapter 6.
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Chapter 2

Relevant Works

As human motion analysis is such a broad topic, in this chapter I con-

centrate on the research that either has something to do with my own research,

or helps strengthen my understanding of the area. I briefly discuss the dif-

ferent kinds of human behaviors and introduce typical actions researchers are

interested in. Shape and motion are the two cues used most often in human

motion analysis, so I describe a few papers that used silhouette or its equiva-

lent, contour, as input of the approaches. In particular, I collect all works that

involve usage of a star-skeleton representation. While silhouette or contour is

an explicit shape representation, it is difficult to obtain sometimes. In com-

parison, Histograms of Oriented Gradients (HOG) is a popular technique that

represents shapes implicitly. Hence, I also introduce those works involving the

usage of HOG. Next, I review those works that explicitly use optical flow to

capture motion information. As my own approach uses extremities only, I also

review other part based methods and discuss their advantage against holistic

methods. Finally, I introduce the emerging trend of using interest point de-

tectors and descriptors as an unstructured representation, which is different

from my or other part based methods where parts have a structure.
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For more complete coverage, I list some excellent review papers as fol-

lows. Aggarwal and Cai [1] focused on three major components of human mo-

tion analysis, including segmentation of body parts in images and reconstruc-

tion of the 3-dimensional body structure from trajectories of such body parts,

tracking human beings with multiple cameras without identifying body parts,

and recognition of human movements. Gavrila [26] discussed various methods

grouped in 2-dimensional approaches without explicit models, 2-dimensional

approaches with explicit models and 3-dimensional approaches. Shah [60] gave

possible reasons for slow progress in human behavior understanding, presented

their work on human tracking, representation and recognition, and commented

on promising future solutions. Wang et al. [69] organized their reviews in a

hierarchy according to the general framework of human motion analysis, with

the emphasis on grouping methods on each task within the framework. Pan-

tic [49] narrowed down the definition of human behavior as affective and social

signaling, and discussed how far we are from embedding computers into human

centered daily lives.

2.1 Types of human behaviors

According to Bobick [8], machine perception may focus on one of three

levels: movement, activity, and action, ranked by their complexity. In En-

glish, the word “activity” sometimes sounds more complex than “action”. In

computer vision literature, people often use the two words interchangeably. In

my understanding, human behavior refers to observations of certain patterns

14



of human actions over a relatively long time, although some researchers use

it equivalently with actions and activities. Hence, a better ranking is: move-

ment, action, activity, behavior, with increasing complexity in time or involved

subjects. Anyway, the differences are very subtle and there is no real standard

definition.

By using the relationship between humans and environment, one may

broadly divide human actions into three types: (a) single person actions, such

as walking, bending and sitting [2], where the action is performed by a single

person and involves no interaction with the environment; (b)interactions be-

tween persons, such as following and leaving [58], hugging and punching [51],

greeting and fighting [57]; (c) actions involving inanimate objects, such as

opening a file cabinet [56] and digging [39]. In this dissertation I actually as-

sume there is only one person in the video, hence I do not need any tracking

part and all actions involved are single person actions.

2.2 Silhouette or contour for explicit shape feature

Many earlier works utilized silhouettes (blobs) or contours as a starting

point for human representation.

Davis and Bobick [17] represented human movements by temporal tem-

plates, which are vector images wherein each pixel records some function of the

movement at that pixel. In the two component temporal template, one com-

ponent of the vector is a binary value representing the occurrence of motion,

and the other is a recency function that describes how recently the motion
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occurred. In other words, the temporal template can be split into the Motion

History Image (MHI) and Motion Energy Image (MEI), wherein the MHI is

formed by stacking time weighted foreground masks and the MEI is its bina-

rized version. They test the matching algorithm on sequences of 18 aerobic

exercises. The temporal segmentation is achieved by approximately search-

ing over a wide range of the movement duration parameter. An example of

temporal template is shown in Figure 2.1 computed on a short sequence of

walking.

Figure 2.1: Shown in the left is one out of about 12 frames of a person walking.
Shown in the middle is the Motion Energy Image, while on the right is the
Motion History Image.

A later extension called Motion History Volumes by Weinland et al. [73]

generalized the temporal templates to three-dimension for free viewpoint ac-

tion recognition. For human figures in each of the multiple camera views,

the silhouette is obtained by background subtraction. From these silhouettes,

the visual hull is constructed and accumulated over time to form the Motion

History Volume (MHV). They further transform these MHVs into cylindri-

cal coordinates around the vertical axes of a human visual hull, and extract
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view-invariant features with Fourier analysis.

Blank et al. [6] built a space-time three-dimensional action shape in-

duced from silhouettes. Given the silhouette of a human figure, each pixel

inside the contour is associated with a value, which is the average time that it

takes for the pixel to randomly walk into a contour point. A Poisson equation

is used to model such a measure. Solutions to all Poisson equations are stacked

together to form a space-time shape, from which a set of action features are

extracted, including space-time saliency, orientations, etc.

Yilmaz and Shah [76] presented a similar approach where human con-

tours are stacked to form a spatiotemporal object, which they call spatial-

temporal volume (STV) in the (x,y,t) space. It differs from other works that

stack entire frames in that they segment the contour, find point correspondence

between contours and stack contours according to the point correspondence.

They analyze the STV with differential geometric surface properties including

peak, ridge, saddle ridge, flat, minimal, pit, valley and saddle valley. The set

of such points is called an action sketch. As each action sketch consists of a set

of 3-dimensional points, the action classification becomes a problem of point

matching as formulated in epipolar geometry.

All these works require foreground segmentation as precise as up to the

blob or contour level.
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2.2.1 Works involving star-skeleton

Fujiyoshi and Lipton [25] proposed a star-skeleton model (SS) to ana-

lyze human motion. The center of mass of a human silhouette is extracted as

the star. Distances from contour points to the star are computed as a func-

tion of indices of clockwise sorted contour points. Their initial goal is to use

such a representation for feature extraction to recognize cyclic human actions

such as walking and running. Their features include the angle between the

left leg and the vertical axis passing through the human blob centroid and the

angle between the line from head to the star and the vertical axis, as shown

in Figure 2.2.

Figure 2.2: Displayed from left to right are the source image, the segmented
contour with the star and skeletons, and the features extracted from the rep-
resentation.

Petkovic et al. [52] used the star-skeleton to find out parts of the hu-

man body that stick out. However, they only consider those parts that fall

within a pre-defined portion centered around the body, to emphasize the hand

movements.
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Peursum et al. [53] used a modified star-skeleton in each of the mul-

tiple views of an action and fused the 2-dimensional star-skeletons into a 3-

dimensional one. They modified the star so that it is no longer the blob

centroid but the “shoulder” point of the body, which is defined as the point at

one third from the head to the centroid. This creates the problem of finding

the head, which is solved by designating the highest extreme point from the

star-skeleton as the head. However, the head is not always the highest point.

Chen et al. [11] employed the same modified star-skeleton in their work on

estimating 3-dimensional body pose.

To utilize structure information available in the star-skeletons, Chen

et al. [12] defined a distance function between two star-skeletons. Each star-

skeleton is converted into a vector of five extremities. If less than five are

detected, they fill the rest with zero. If more than five are detected, they

increase the noise smoothing level to remove extra extremities. The distance

function is defined as the sum of Euclidean distances between five matched

pairs of skeletons. Such a distance function is used in their HMM-based action

recognition system.

2.3 HOG for implicit shape feature

Dalal and Triggs [15] proposed a Histogram of Oriented Gradients

(HOG) for human detection in still images. First, the image gradients are

computed. Then, the image is split into a dense grid of spatial cells. Inside

each cell the gradients are grouped into orientation bins, with the gradient
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magnitudes as weights. The concatenation of all local histograms forms the

final descriptor.

Even before the HOG appears, there is a partially identical work that

uses oriented gradients for histograms to describe regions of a human body.

Shashua et al. [62] divided the area of interest, which is the bounding box of

a human body, into a fixed set of 9 regions. Among the 9 regions, region 1,2,3

represents the head, upper body, and lower body respectively, while region

4,6,8 represents the left,right and middle of the upper body respectively, region

5,7,9 represents the left, right and middle of the lower body respectively. Some

pairs of these regions also form the additional region 10,11,12,13. Each of the 9

regions is further divided into 2 by 2 sub-regions with 8 orientation bins, hence

represented as a 32-element vector. Up to here, the approach is very similar

to the HOG technique. Then a procedure called ridge regression is applied,

to assign a discriminant value for each region, where the value is the inner

product between a region and a weight vector. The entire area of interest is

converted into a 13 ∗ 9 element feature vector.

Later, Wang and Suter [71] employed a similar partition over human

figures. They divided each silhouette image into h ∗ w non-overlapping sub-

blocks. For each sub-block, the number of foreground pixels is divided by

the maximum number of foreground pixels over all sub-blocks, to produce a

normalized value as the representation of how much the block is covered by

foreground.

In addition to human detection in images and videos, HOG is quickly
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extended to non-human object detection as well. As a part of the 2005 PAS-

CAL Visual Object Classes Challenge [20], Dalal and Triggs used HOG to

detect cars, motorbikes and persons and won the detection competition for

the car and person classes.

Furthermore, researchers started to represent human poses with HOG

features for action recognition. Thurau [64] divided each detector window of

size 40 ∗ 80 into evenly distributed cells of size 10 ∗ 10, and represented each

window as a vector of size 4 ∗ 8 ∗ 9 for further clustering to produce action

primitives. Different from [64], Hatun and Duygulu [30] computed the HOG

in a radial grid structure for each frame.

2.4 Optical flow for motion feature

Efros et al. [19] proposed a novel optical flow based motion descriptor,

for recognizing actions of human figures about 30 pixels tall. They first track

and stabilize human figures. Then they compute the optical flow between

two adjacent frames with the Lucas-Kanade [42] algorithm. The optical flow

field F is split into Fx and Fy, corresponding to the horizontal and vertical

components. The two components are further half-wave-rectified into the four

channels, F+
x ,F−

x ,F+
y ,F−

y , so that each channel has only positive values. These

four channels are further smoothed with a Gaussian, to form the final motion

descriptor. The distance between two action sequences are defined as the

normalized correlation between motion descriptors.

Similar to Efros et al. [19], Fathi and Mori [21] added one more channel
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called zero motion, F0 by computing the L2 norm of the four channels. Then

they treat F̂c(p) as a low level feature, which is the value of channel c for the

pixel at location p. They partition the spatial-temporal volume of each action

sequence as evenly distributed cuboids. With each cuboid as the mid-level

motion feature of a weak classifier, they apply the AdaBoost algorithm to

train a strong classifier which is a linear combination of those weak classifiers.

As opposed to the two representative works above, some researchers

chose to build histograms out of raw optical flow fields to have a more compact

and robust motion feature.

Dalal et al. [16] proposed the Motion Boundary Histograms, which is

essentially a replicate of the HOG descriptor on optical flow fields. Since op-

tical flow fields have two channels including horizontal and vertical directions,

each channel is treated separately like an image. For each channel, the local

gradients are computed. The gradient magnitudes and orientations are used

for magnitude weighted votes in the orientation histogram of local neighbor-

hoods, where each neighborhood is a spatial cell in a block, just as the standard

Histogram of Oriented Gradients on gray scale images. In their work, the goal

is to detect human beings from images.

Laptev and Pérez [38] adopted the Motion Boundary Histograms tech-

nique with a different name, histograms of optical flow, to represent motion.

In their work to detect actions such as “drinking” from movies, the histograms

have 5 bins with four corresponding to four discrete motion directions and the

last bin corresponding to no motion.
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Although the name is “histograms of optical flow” in the two works [16,

38], the histograms are in fact built out of derivatives of optical flows, with

the consideration that relative motion is more important in discriminating

actions from each other. In contrast, Ikizler et al. [31] built the histograms

of optical flow literally. Their histograms have only 4 bins corresponding to

the directions of 0,90,180,270. Each spatial bin corresponds to a cell inside a

block. For each cell, the optical flow associated with each pixel is projected

into the four directions and summed over the entire cell. The histograms from

different cells are concatenated to form the histogram for each pair of adjacent

frames.

Li [40] used oriented histograms of optical flow field in his Hidden

Markov Model based framework for action recognition. However, it is not

clear whether the work treats the histogram of optical flows as a global fea-

ture over an image, or a local feature within a spatial cell, as the paper never

mentions spatial bins inside the image. Ignoring the spatial configuration of

optical flows might significantly hurt the overall effectiveness of the motion

feature.

Chaudhry et al. [10] proposed to abbreviate Histogram of Oriented

Optical Flow as HOOF. They further modify the histogram in [31] by changing

the four orientation bins to the four regions symmetric along the vertical axis,

in order to allow actions in reverse directions. Then they generalize the Binet-

Cauchy kernels to nonlinear dynamical systems for action recognition.
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2.5 Part based v.s. holistic

In general, an object can be described by breaking it down into multiple

parts and specifying the spatial relationships between parts. Such part based

representations are mostly used in object recognition, including detection and

localization.

Fischler and Elschlager [24] proposed the pictorial structure model. The

basic idea is to model an object through a collection of parts arranged in a

deformable configuration. The appearance of each part is modeled separately,

and the deformable configuration is represented by spring-like connections be-

tween pairs of parts. These models allow for qualitative descriptions of visual

appearance, and are suitable for generic recognition problems.

Felzenszwalb and Huttenlocher [23] presented a statistical framework

for modeling the appearance of objects with the pictorial structure models [24].

Their contribution is to present efficient algorithms in both finding instances of

an object in an image and training tree structured object models from training

images.

Crandall et al. [13] proposed the k-fan models for more general object

classes that do not necessarily have tree structures. When k = 0, there is no

dependence between locations of parts. When k = 1, the structure becomes

the star-skeleton representation. When k = n − 1 where n is the number of

parts, there are dependencies between all pairs of parts. The models are tested

on detecting airplanes and motorbikes.
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In human behavior understanding, some approaches have an explicit

part based model for the human body.

Ju et al. [34] proposed the “cardboard people” model, where the limbs

of a person are represented by a set of connected planar patches. The motion

of the limb is estimated from optical flow fields by treating the limb as a chain

structure of rigid objects. Their experiments are conducted on “walking” with

only two legs visible.

Haritaoglu et al. [27] developed a real time system to estimate hu-

man body pose and detect body parts from silhouettes. The system uses a

silhouette-based body model which consists of 6 primary body parts (head,

hands(2), feet(2), and torso) and 10 secondary parts( elbows(2), knees(2),

shoulders(2), armpits(2), hips, and upper back). It first compares the human

body contour with predefined templates to estimate body posture. Then the

head position is detected and other body parts are estimated with the topol-

ogy of the estimated body posture. Their work was later included in the W 4

system [28].

Park and Aggarwal [50] used a hierarchical human body model, where

a body is divided into the head, the upper body and the lower body. Further-

more, the head has hair and a face, the upper body has hands and torso, and

the lower body has legs and feet. A maximum a posterior (MAP) classifier is

employed to assign each blob into a body part.

There are a few advantages of part based v.s. holistic representations.
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1. Better representation power: Since a part based model usually just has

a few fixed parts and connection between parts, it has a very flexible

structure and can represent much more object classes than those holistic

methods such as template based methods. For human beings with ar-

ticulated motions, this is particularly useful, since human postures have

huge intra-class variations.

2. More robust to occlusions: When objects are occluded partially, the

holistic methods usually cannot work as well, since there is missing data

in the representation. However, as long as the key parts are still visible,

it should have no influence on part based methods. In some cases, some

parts may still get occluded, but it is not as severe for part based methods

as for holistic methods.

2.6 Interest points as unstructured representation

In holistic methods, object structures are implicitly coded into the al-

gorithm. In part based methods, parts are explicitly detected and their spatial

relationships are also modeled. Unlike those methods, there are a considerable

amount of works in recent years that ignore the structure inside an object.

Probably the most important reason for this phenomenon is the success

of the “bag of words” model in the text mining community. For example, be-

fore the search engine Google appears, companies such as Yahoo and AskJeeves

were attempting to give structured and semantically meaningful answers to
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queries submitted by Internet users. Such efforts proved in vain, since manu-

ally sorting out Internet documents is prohibitively expensive. Nowadays, it

has become almost standard to just represent each document by the bag of

words model. For each document, it is represented as a frequency vector where

each element denotes the frequency of a certain word in the document. There

is not any structural information kept in such a sparse feature vector. Such

a basic representation is further enhanced by the Term-Frequency-Inverse-

Document-Frequency (TFIDF) weighting scheme.

Researchers in computer vision are borrowing the model and its ac-

companing techniques such as Latent Semantic Analysis and its variants. The

model and techniques are first replicated in the object recognition area and

later extended into the human motion analysis as well. In order to build visual

words out of images or videos, researchers have tried different techniques for

feature detectors and descriptors.

Vogel and Schiele [68] proposed a two-stage system for content based

image retrieval. In the first stage, an image is divided into small patches of

equal sizes and a classifier is employed to determine which class a patch is from.

In the second stage, all decisions over these small patches are accumulated to

represent frequency of occurrence for each patch class. In this way the patches

are regarded as visual words and the images are documents in the bag of words

model.

Vidal-Naquet and Ullman [66] selected informative fragments to repre-

sent images. They first cropped a large set of image patches of different sizes at
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random locations, then computed the optimum threshold for each fragment to

be determined present at the image, and finally selected a set of such patches

that convey the maximum amount of information about the class. Maree et

al. [43] proposed a similar strategy on building visual words from random

sampling.

Barnard et al. [4] built visual words out of image segments. They first

segmented images with normalized cuts, and then selected 8 largest segments.

Each segment is represented by a set of 40 features that reflect size, shape,

texture, position, color, etc.

The most popular way of building visual words out of images or videos

might be due to the interest point detectors, such as Harris corner detector [29],

the saliency detector [35] and Lowes DoG [41]. With interest points detected,

one can choose different descriptors for the image patches centered around

them, such as SIFT [41].

Fei-Fei and Perona [22] selected local patches from images with differ-

ent strategies including evenly sampled grids, random sampling, the saliency

detector and the DOG detector. For each detector, two different descriptors

are used, including normalized gray scale intensities and the SIFT descrip-

tor. Furthermore, the patches are clustered to yield codewords and all unique

codewords form the visual vocabulary.

In addition to works originally designed for object detection in images,

there are also interest point detectors for action recognition in videos. As an
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extension of the Harris corner detector, Laptev and Lindeberg proposed the

space time interest point [37]. Dollár et al. [18] proposed sparse spatiotemporal

features to recognize human and rodent behavior.

Niebles et al.[45] modeled the action as a bag of visual words, ignoring

the spatial and temporal relationships among the words. Both static and

motion features are computed. For static features, a set of points are sampled

along the edges and a shape context descriptor [5] is computed around each

sampled point. For motion features, the separable linear filter [18] is used to

capture human movement characteristics.
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Chapter 3

Precise Extremities from Contours

In this dissertation human extremities refer to human heads, hands and

feet, which provide useful information about human movements. There are

different ways to define the extremities in details such as their locations, scales

and representations. In the simplest case, extremities are modeled as points

along the body contour. In this chapter, I present how to detect extremities

as points precisely from contours.

3.1 Extracting contours

In video analysis for human behavior understanding, a given video is

often decomposed into an image sequence first. Working with image sequences

taken under unrestricted settings poses many challenges for successful segmen-

tation. For simplicity, in this dissertation I assume there is only one person in

an image sequence. Under such settings, there is no need for tracking, as long

as the area of interest is detected from each frame.

For images sequences taken by a stationary camera, the common ap-

proach is to build a statistical background model for background subtraction,

where each pixel follows a normal distribution. This is followed by thresh-
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olding and binary morphological operations. To ensure there is just one blob

extracted, I extract only the largest blob and ignore all smaller ones after

connected component analysis. The contour is obtained from the blob with a

border following algorithm. Shown in Figure 3.1 is an example of such proce-

dures applied on a frame.

Figure 3.1: Extracting contours from frames by background subtraction.

When image sequences are taken by a moving camera, the background

subtraction method is not applicable any more. The problem here can be

formulated as contour tracking. For details, readers can refer to Yilmaz et

al. [77].

3.2 The star-skeleton representation

My first attempt to extract extremities is to use the star-skeleton model

to represent the human body. The contour points are sorted clockwise by their

indices. With the blob centroid as the star, the distances between contour

points and the star are computed. In this way, the distance from the star to

a contour point is a function of the index of the point. The function is then

smoothed by a Gaussian to extract points where the distance is the largest in
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its contour neighborhood. These contour points whose distance reach a local

maximum are regarded as extremities.

3.3 The two-star-skeleton representation

Later, I proposed to have a two-star-skeleton representation for detect-

ing extremities. First two stars are chosen. The first star point is the blob

centroid, and the second star point is the highest contour point. For each star,

distances between the star and all contour points traversing clockwise from

the highest contour point are computed. After the distances are smoothed

with a Gaussian kernel, two curves of distances varying along the contour are

obtained. For better understanding, an example is shown in Figure 3.2 and

Figure 3.3.

Figure 3.2: An example of the two-star-skeleton representation, where the two
stars are the centroid and the highest contour point. Blue solid lines represent
skeletons from the second star, while green dash lines represent skeletons from
the first star.
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Figure 3.3: An example of computing the extremities from the distances be-
tween the stars and the contour points.

Next, I extract all those local peaks where the distances reach the

largest values among their local contour neighborhood and record the two sets

of indices of corresponding contour points. I then group the two sets of indices

into pairs by proximity and use the mean index of each pair as the index of

an extreme point.

In order to get the best pairing, I compute a cost function for each

possible pairing between the two sets, and search exhaustively as explained
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below.

Given a contour with perimeter NC (number of contour points), I

have two sets of numbers: A = {a1, . . . , am} and B = {b1, . . . , bn}. Each

number is an index of a local extreme point with respect to a star along the

clock-wise contour. For each number in one set, it can either have a one-one

correspondence in the other set or be left unmatched. So in a possible pairing,

I split all the numbers into three portions, including unmatched numbers in

A denoted as A′, unmatched numbers in B denoted as B′, and numbers of A

or B with one-one correspondence denoted as AB. I define a cost function

C(A′, B′, AB) as

C(A′, B′, AB) = C(A′) + C(B′) + C(AB) (3.1)

C(A′) = |A′| · (0.5 · α ·NC − c) (3.2)

C(B′) = |B′| · (0.5 · α ·NC − c) (3.3)

C(AB) =
∑

∀〈ai,bi〉∈AB

min{|ai − bi|, NC − |ai − bi|} (3.4)

In equation 3.1, I compute the overall cost function as the sum of costs

of both un-matched points and matched pairs. In equations 3.2 and 3.3, |X| is

the set cardinality, and α·NC (α = 0.05 in my experiments) acts as a threshold

to judge if a pair should be kept or broken apart. Note that c represents an

arbitrarily small value to break the tie when a pair of points are exactly at a

distance of α · NC from each other. One can also choose randomly without
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using c, when there is a tie. In equation 3.4, I sum the circular distances

across all pairs as the cost. The minimum function is to select between the

two distances, since there are always two distance between two points on a

closed contour.

The idea here is to form pairs of numbers if they are close enough and

leave them apart if they are far away from each other. In my experiment, as all

of my sequences are taken in very similar camera and scenario settings, sizes

of human blobs do not vary much among the frames. Hence I didn’t change

α much in my experiments. When I change α in a reasonably small range, it

yields very similar results. If I change α too much, for example from 0.05 to

0.5, the result does not make sense as I group two candidates that are half of

the contour away from each other.

I search over all possible pairings and compute the cost function for

each to find the optimum pairing in the sense of minimizing the cost function,

as implemented in four steps.

1. Build a matrixD of sizem·n, whereDij = min {|ai − bi|, NC − |ai − bi|}.

Each row represents a point in A, and each column represents a point in B.

2. Thresholding D by α ·NC to produce an indicator matrix E, where

Eij = 1 if Dij < α ·NC, and 0 otherwise.

3. Without loss of generality, I iterate through columns of matrix E

to compute the total number of possible pairings as
∏

j (Ej + 1) where Ej is

the number of 1’s in column j. Note that having no 1 entry in a column of E
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means the point in set B is left unmatched. One possible pairing corresponds

to selecting none or one point from A for each point in B.

4. For each possible pairing, I compute the cost function as defined in

equation 3.1. The best pairing is the one with the minimum cost.

3.4 On the number and position of stars

Why should I propose the two-star-skeleton over the simple star-skeleton?

The simple answer is that the number and positions of the stars matter. In

this section, I first illustrate my motivation for analyzing the number and posi-

tion of stars with an example in Section 3.4.1. Next I connect my observation

with the visibility and star polygon concepts in Section 3.4.2. Then I ana-

lyze both the single and two star skeleton representations with the concepts

in Section 3.4.3.

3.4.1 Observation

If there is only one star in a star-skeleton representation, the position of

the star greatly effects, if not determines, whether a contour point could be a

local peak in the contour neighborhood hence be a possible human extremity.

An example is given in Figure 3.4 showing a climbing person. I focus

on detecting the left hand here. The part of the contour around the left hand

is highlighted with a green solid line, while the other parts are shown with a

black dash line. For illustration purposes, four stars are chosen as shown with

blue asterisks and numbered. The detected hand from each star is shown with
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a solid red square and numbered accordingly in Figure 3.4. From this example,

it is obvious that the fourth star provided the best approximation, the second

star made a close one, and the other two produced incorrect extremities.

  1

  2

  3

  41

2

3

4

Figure 3.4: The four stars are shown with blue asterisks and their respec-
tive detections of left hand shown with solid red squares with corresponding
numbers.

3.4.2 The star polygon concept

Before I proceed, I briefly review some concepts from the computer

graphics community to make the paper self-contained.

Given a human contour represented by a set of clockwise sorted contour

points, I treat it as a simple polygon P . In geometry [61], a simple polygon is a

polygon whose sides do not intersect unless they share a vertex. A point in the

polygon (including interior and boundary) is visible with respect to another
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point in the polygon if their line segment falls completely within the polygon.

For example, in Figure 3.5, point D is visible to point E, F,G while not visible

to H .

According to Shapira and Rappoport [61], if there exists a point v ∈ P

that is visible from any other point inside P , then P is a star polygon and v is a

star point. Since not every polygon is a star polygon, they further defined the

star skeleton to decompose a simple polygon as a star set and the associated

skeleton. Simply speaking, the star set is a set of star polygons such that each

shares at least one edge with another star polygon; the skeleton is a tree that

connects star points and mid points of the shared edges.

Shown in Figure 3.5 is the same simple polygon decomposed into two

star polygons in (a) and into three in (b). In Figure 3.5(a), points A, C are star

points and the connection ABC is the skeleton. In Figure 3.5(b), points D,

F , H are star points and the connection DEFGH is the skeleton. Obviously

the star-polygon decomposition is not unique.

Figure 3.5: Two different decomposition on the same simple polygon.

38



3.4.3 Characteristics of star skeleton representations

Why do different stars produce different approximations of the left hand

in Figure 3.4? There are many possible explanations such as distance, scale,

and visibility. Among all the factors, I regard visibility as the most important

one. The reason that the second and fourth star perform better is because the

left hand is visible to them, while not visible to the other two.

Fujiyoshi and Lipton [25] considered the human centroid as a single

star. As human contours are usually not star polygons, a single star cannot

be visible to all contour points. Hence the star-skeleton will easily miss true

human limbs or produce false alarms. In extreme conditions, the centroid may

not even be inside the human silhouette.

In my previous improvement [78], I added the highest contour point

as the second star. It can be interpreted as an intention to make all those

points not visible to the center of mass visible to the second star. This way,

it is hoped that most contour points will be visible to at least one of the two

stars. This strategy is intuitive and reasonable; however, its practical effect is

weakened in two aspects. First, it is a problem whether or not to treat the

highest contour point as an extremity. In most human postures, the highest

contour point is the head, hence it is desirable to include the second star as one

of the detected extremities. When the assumption is violated, the inclusion

might produce false alarms. Second, two detected limbs (each from a different

star) are paired up and averaged, which means a good detected extremity is

compromised by a bad one. I would rather have the algorithm select the good
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ones and discard the bad ones.

Using a frame of a person climbing fence, I show in Figure 3.6 the

visibility of each contour point with respect to the center of the mass and

the highest contour point. Details of computing such visibility are described

later in Section 3.5.3. It is obvious that with only the center of mass as the

single star, a considerable portion of the contour is not visible. With the

addition of the second star, more contour pieces are covered, while there is

still a significant portion not visible.

Figure 3.6: The two stars are in blue and green respectively. Contour points
visible only to the center of mass are shown with a blue solid line, visible only
to the highest contour point shown with a green dash line, visible to both
shown with a black solid line, visible to neither shown with a red dotted line.
Best viewed in color.

Note that in both works [25, 78], the so-called stars are just approxima-

tions of star points as defined in Section 3.4.2. Considering human contours
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as simple polygons, my ultimate desire is to choose an appropriate number of

“stars” and their positions so that many contour points are visible to at least

one “star”, e.g. making the approximation as good as possible.

3.5 The variable-star-skeleton representation

In this section, I develop a variable star skeleton (VSS) representation,

motivated by observing that more and well positioned stars make contour

points more visible. Although built upon previous works [25, 78], my new rep-

resentation is considerably different in two aspects, including finding stars and

producing extremities out of multiple sets of candidates. I take as stars, junc-

tion points in the medial axis of the human silhouette, which may be regarded

as a rough approximation of human body joints. Each star will produce a set

of extreme points, as previously done in SS and 2SS. As a candidate, each ex-

treme point will be processed according to its robustness to noise smoothing,

visibility to the generating star, and proximity to its neighbors.

3.5.1 Detecting junctions of a medial axis

For contours, a medial axis is the union of all centers of inset circles that

are tangent to at least two contour points. In order to compute the medial axis,

I choose the augmented Fast Marching Method by Telea and Wijk [63] among

many existing algorithms such as [7, 47]. There is a threshold t controlling

how short each branch of the medial axis may be. Shown in Figure 3.7 is

the computed medial axis in magenta dotted line with t = 10 and t = 30
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respectively.

Figure 3.7: The left image shows in magenta line the medial axis obtained
with t = 10, while the right one with t = 30. Each detected junction point is
annotated with a black asterisk.

In order to find the junction points, I employ a lookup table (LUT) in

the 3 by 3 neighborhood of every pixel on the medial axis. As each cell in

the neighborhood take binary values, I have 256 total possible combinations

of the 8 connected neighbors. For each combination, I determine if the center

pixel is a junction point, as denoted by a black asterisk in Figure 3.7. One

may notice in the figure that sometimes two junctions are too close together;

in such cases, I merge those junctions that are closer than a threshold (w) and

use their mean as the estimated junction. In rare cases, the parameter t is too

strict to produce any junction from the medial axis; I opt to use the center of

the mass as the single star, although I can also choose to reduce t until there
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is at least one junction point.

3.5.2 Generating candidate extreme points

Suppose there are N stars denoted as starj (j = 1, 2...N). Starting with

the highest contour point, each point in the contour of length NC is sorted

clockwise, and denoted as Pi (i = 1, 2...NC). As in previous works [25, 78], I

compute the Euclidean distance from starj to Pi as a function distj(i). The

function is then smoothed by a one-dimensional Gaussian kernel with standard

deviation δ. Contour points with a local peak are chosen as candidate extreme

points.

In order to find the local peaks from the smoothed distance function, I

proceed with the following steps.

1. Modify the computed distance distj(i) to Dj(k) by removing repeating

values so that there are no identical values adjacent to each other in

Dj(k). Now that the length of Dj(k) should be reduced from NC to

another number denoted as NK. Keep the indices Indk (k = 1, 2...NK)

updated, so that for each chunk of identical distance values, their com-

mon index is the middle of the interval. The main purpose of this step

is to accommodate those contour pieces where every point has the same

distance to the star.

2. For each k, check ifDj(Indk) > Dj(Indk−1) andDj(Indk) > Dj(Indk+1).

If both are satisfied, it is output as a candidate extremity. Note here k−1
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and k + 1 are both modulo NK arithmetic.
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Figure 3.8: The top plot shows distance from sorted contour points to the red
star, while the bottom plot shows its smoothed version.

Using the contour and junctions from Figure 3.9, Figure 3.8 shows the

plots of a distance function and its smoothed version with respect to the top

red star. Those with respect to the bottom green star are similar. The detected

candidates are drawn as red or green crosses in Figure 3.9 accordingly.

3.5.3 Filtering

In this section, I determine if a candidate extreme point is kept, dis-

carded or merged with a nearby candidate. I first associate each candidate
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Figure 3.9: The medial axis is shown with a magenta line, junctions as aster-
isks, and candidate extremities as crosses in the same color as the correspond-
ing star.

with two properties, including robustness to the smoothing parameter and

visibility to the generating star.

The robustness R may be viewed as a measurement of how much a

possible human limb protrudes out of the torso. As I have located all the local

peaks from the distance function Dj described above, I can easily modify it to

locate all the local valleys as well. Given a local peak with value Dj(IndK) at

position IndK , it must have an adjacent valley both on the left and on the right.

Suppose the higher adjacent valley has value Dj(IndK ′) at position IndK ′, I

define robustness R associated with the candidate extreme point PIndK in the

following equation, also illustrated in Figure 3.10.

45



R =
Dj(IndK)−Dj(IndK ′)

|IndK − IndK ′|
(3.5)

Figure 3.10: The definition of robustness of an extremity candidate.

I connect from the candidate to the star generating it, to form a line

segment. The visibility V is computed as a proportion of the line segment that

lies inside a silhouette. Given two points, I use the basic raster algorithm [48]

on line drawing to produce the set of points between them. Then the inter-

section of the set with the binary human silhouette produces line points inside

the silhouette.

With these properties, I proceed with the following procedure where

the input is all those candidates as generated in Section 3.5.2, and the output

is the detected extremities.

1. Select candidates chosen by more than one star. I group all those

candidates by hierarchical agglomerative clustering with single linkage,

so that any two candidates whose indices are closer than w are put into
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one group. The means of all those clusters with more than one members

form set A, and all the single member clusters form set B.

2. Select candidates with better visibility and robustness. Select

from B all those candidates with R bigger than threshold MaxR and V

bigger than MaxV into set A.

3. Discard bad candidates from B with R smaller than threshold MinR

or V smaller than MinV .

4. Make at most 5 extremities. I denote the number of elements of A

as |A|. If |A| > 5, sort A by product of R and V , stop and output the

top 5 only. If |A| <= 5, sort B by product of R and V . Select the top

min|B|, 5− |A| candidates from B into set A, stop and output A.

3.6 Experiments on extremity detection

In order to compare the performance of detecting extremities from con-

tours with the three kinds of star-skeleton representations, I built a data set

from 50 sequences of persons climbing fences. Shown in Figure 3.11 are sam-

ple frames of a sequence. I collect 20 frames evenly distributed from each

sequence to form a data set of 1000 frames. It is checked manually to test if

the proposed VSS performs better than previous methods including SS and

2SS.
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Figure 3.11: Sample frames of a fence climbing sequence.

Ground truth True positive False alarm

SS 3691 3107/84.2% 779/21.1%
2SS 3691 3381/91.6% 146/4.0%

VSS w/o robustness 3691 3617/98.0% 705/19.1%
VSS w/o visibility 3691 3580/97.0% 384/10.4%

VSS 3691 3440/93.2% 98/2.7%

Table 3.1: Results from the three representations on the data set.

3.6.1 Comparison

For each frame in the data set, I have all three star skeleton repre-

sentations performing detection of extremities as an approximation of head

and human limbs. I manually check the results and determine the number of

ground truth extreme points, true positives and false alarms. To empirically

validate the relative importance of visibility and robustness criteria for human

extremities, I also did experiments on the data set without the visibility or

robustness criteria. Comparisons are shown in Table 1.
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3.6.2 Parameter selection

There are several parameters involved in all the three star skeleton

representations. The common parameter among the three is the Gaussian

smoothing factor δ. There is a trade off between detecting more global or more

local extreme points when selecting different scales of smoothing parameters.

I used δ = 10. The t threshold is set as 30, which yields a reasonable medial

axis for most binary blobs. I usually get one, two or three junctions from a

medial axis. I set w = 10 for both merging junctions and clustering candidates.

The two thresholds for R in the filtering process are set as 0.6, 0.1, and the

two thresholds for V are set as 0.9, 0.5. All the parameter values are chosen

empirically and used throughout the experiments.

3.6.3 Discussion

From Table. 3.1, I conclude that the two-star-skeleton (2SS) can con-

siderably improve detection accuracy from the single star skeleton. The vari-

able star skeleton (VSS) performs best. From detection results over the 1000

frames, I have the following observations.

When there is no junction point detected, the VSS is reduced to the

single-star-skeleton, except that there is the filtering process. Fortunately this

does not occur often due to proper selection of t. When there is only one

junction point, the VSS is more different with the single SS than without any

junction point. An example is shown in Figure 3.12(a), where the VSS can

successfully detect the two hands while both SS and 2SS fail. The difference
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lies in that the single star is usually closer to human body joints instead of

being the center of mass. Hence it has better visibility to the ground truth

extreme points including the head and limbs.

The 2SS improves on the SS by fixing the highest contour point as

the second star and making it automatically one of the final detections. As

displayed in the left image of Figure 3.12(c), the head is detected as the highest

contour point. This implicit assumption of the highest contour point being the

head does not always hold. When it holds, 2SS could perform better than VSS

in some cases. As shown in the right image of Figure 3.12(c), the head is missed

by the VSS. This shows that increased complexity might cost us due to the

difficulty in finding a set of parameters suitable all the time.

If the assumption holds, the VSS can also perform better than the 2SS,

as shown in Figure 3.12(d). In this example, the left corner of a cloth is a false

alarm for 2SS while it is correctly removed by VSS. When the assumption does

not hold, the VSS easily wins over the 2SS. Figure 3.12(b,e) shows the hand

is higher than the head, and Figure 3.12(f) shows the back is higher than the

head.

3.7 Summary

In this chapter I presented how to find extremities precisely from con-

tours with a variable-star-skeleton representation. With the concept of a star

polygon, I concluded the variable-star-skeleton is a better approximation of de-

composing the human contour as star polygons. Furthermore, I experimentally
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validated its superiority over the previous star-skeleton and two-star-skeleton

models.

51



Figure 3.12: For each pair of images, the image on the left shows the result
of SS in red crosses, the result of 2SS in blue squares; the image on the right
shows the result of VSS in blue squares. In the images on the right, stars are
shown in colors and their associated extremity candidates are shown in the
same color crosses.
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Chapter 4

Action Detection and Recognition with

Precise Extremities

After extracting precise extremities from contours, I seek various ways

to put them into usage in this chapter. As stated in Chapter 1, the main goal

is to understand human behavior from videos with extremities only. When the

video is long enough to consist of multiple actions, it is necessary to decompose

the video into shorter pieces so that each piece is a single predefined action.

For research purpose, a long video with multiple actions is often decomposed

manually and the focus is then the classification of each individual piece, which

is called action recognition. If the long video is not manually broken, the task

of finding and labeling each consisted action is then called action detection.

In this chapter, I present first an application of using extremities to

generate environment specific features for detection of fence climbing. Next, I

present the idea of stable contact, which is used to abstract the image sequence

into primitive motion units. Finally, I develop a general purpose human pos-

ture descriptor so that the actions to be recognized are not limited to fence

climbing or those with stable contacts.
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4.1 Detection of fence climbing from continuous videos

Usually fences or walls surround important infrastructures or facilities

such as airports, power plants, national borders and military zones. For ex-

ample, on 10/26/2006 President Bush authorized the construction of a fence

along 700 miles of the U.S.-Mexico border. In order to prevent persons leaving

or entering such special territories by climbing, security staff patrol around

the area regularly. With such background motivation, I wish to develop an

algorithm that will help monitor people climbing fences.

For now, I focus on two types of fences including flat top fences with

vertical iron bars and chain link fences with slightly “barbed” wires, as shown

in Figure 4.1. The main reason for choosing such fences is due to a performer’s

physical capability to climb. These fences are simple enough for an amateur

to climb with a modest amount of effort. The camera is positioned so that the

fence is in the front-back view instead of in the side view.

By continuous videos, I mean such videos are long enough to consist of

multiple types of actions. Since there are mixed walking and climbing actions

in a fence climbing video, I develop a Hidden Markov Model (HMM) based

framework to decode the video into an action sequence.

4.1.1 Task specific features

There are three cues for identification of a human climbing fences. The

first one is the coordinates of the blob centroid. A change in the y-coordinate

indicates a possible climbing action. The second cue is the extreme point
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Figure 4.1: An wrought iron fence with a flat top surrounding a swimming
pool, and a chain link fence with slight barbed wires separating a school play-
ground.

configuration relative to the fence, which is a coarse approximation of the

position of the human hands and feet. The third cue is the height of the fence

which is either known a priori or obtained by doing a simple horizontal line

extraction.

Five features are computed as shown in Table 4.1 and Figure 4.2.

Table 4.1: The environment specific features for detecting fence climbing

Feature Explanation

1 centroid x-coordinate changes?
2 centroid y-coordinate up, down, or not
3 centroid y-coordinate above fence?
4 2 or more extreme points above fence?
5 2 or less extreme points under fence?

55



Figure 4.2: Extremities for detecting fence climbing. In the figure, the extrem-
ities are shown in red squares, and the fence is shown as the red horizontal
line.

4.1.2 A block based HMM

I define that each fence climbing sequence consists of a few basic actions,

including walking, climbing up, crossing over the top of the fence, and dropping

down. A generalization to include more actions is straightforward. So the

desired HMM has the four actions as the hidden states. The Viterbi algorithm

of the HMM decoding problem is employed to infer the action sequences.

After training a discrete HMM for each of the four basic actions, there

are four sets of HMM parameters {Pi, Ti, Oi} where Pi is the prior state dis-

tribution vector, Ti is the state transition matrix, and Oi is the observation

distribution matrix, i ∈ {walk, up, cross, down}. These parameters are con-
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Figure 4.3: The block based HMM assembled from the four individual HMMs

catenated to form a block based HMM, as shown in the following equations

and Fig. 4.3.

Prior =
[

Pwalk 0 0 0
]

(4.1)

Trans =









a1Twalk A12 0 0
0 a2Tup A23 A24

0 0 a3Tcross A34

A41 A42 0 a4Tdown









(4.2)

Obs =









Owalk

Oup

Ocross

Odown









(4.3)

Note that the zeros mean appropriate size matrices with all zero values.

Comparing the three equations above with Figure 4.3, there come the following
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interpretations. Equation 4.1 means that one always starts the sequence by

walking. Equation 4.2 comes into being as usually it is assumed that only

certain transitions between actions are possible, where A blocks are the random

matrices with fixed weight and have the same meaning as in Figure 4.3, and a

values mean weights to sum every row up to 1. Equation 4.3 shows that each

block state may observe all the observation symbols, hence the observation

matrices are concatenated by rows.

4.1.3 Decoding HMM

As illustrated in Fig. 4.4, to detect a climbing action, I first decode the

observation sequences into hidden state sequences, and then generalize them

into block sequences since each block of hidden states corresponds to one of the

basic actions. Qualitatively, climbing is determined if there is a consecutive

triple {up, cross, down} where each lasts for a long enough frame period.

Furthermore, I implement a quantitative measurement to judge if the

detected action sequence is the same as the ground truth. It consists of two

steps. In the first step, I remove noise and merge adjacent labels if necessary.

In the second step, I determine if the detected action sequence is the same as

the ground truth by judging if they have the exact same labels and similar

duration for each label.
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Figure 4.4: Decoding on the block based HMM to infer the action sequence

4.1.4 Experiments

I collected fence-climbing videos from six men and a woman in two

scenarios, including a swimming pool surrounded by a flat-top fence and a

school playground separated by a chain-link fence with “barbed” wires, as

shown in Fig. 4.5. I dumped videos into image sequences, where each frame

is a 24 bit RGB bitmap file of size 360 by 240 pixels and the FPS rate is

30. Overall, there are 50 sequences consisting of mixed actions of walking and

fence-climbing.

I manually segmented temporally the mixed action sequences of walking

and climbing (split into three actions) according to a manually determined

ground truth. I tested the classification accuracy of the four trained individual
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Figure 4.5: Sample frames of climbing two fences.

Table 4.2: The accuracy of four individual HMMs under two different star
skeleton representations.

HMM my two-star-skeleton star-skeleton
walking 18/18 18/18

jumping up 7/10 0/10
crossing over 10/10 7/10
dropping down 10/10 8/10

HMMs each with 3 hidden states, using my two-star skeleton representation.

The results are shown in the middle column of Table 4.2.

On the same data, I also tested classification accuracy with the rep-

resentation of Fujiyoshi and Lipton [25]. The results are shown in the right

column of Table 4.2. It is clear that their representation cannot recognize

accurately any jumping up action (the first component action of climbing).

The main reason is that when the human jumps up in the front/back view,

the shoulders or elbows are easily but incorrectly detected as desired extreme

points in the single-star-skeleton representation. However, this problem is

greatly reduced with my two-star-skeleton representation, with seven out of

10 correctly classified.

I checked the decoding accuracy of the proposed block based HMM.
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Figure 4.6: Continuous recognition accuracy of the frame level analysis.

After assembling the parameters of the four HMMs into a block based HMM, I

used the proposed quantitative measurement to judge if a sequence is correctly

decoded. The experiment was done on different sizes of a training set of the

50 mixed action sequences. I increased the training size from 5 to 50, and

used the whole set as the testing set. For each training size, I randomly chose

training sequences and computed the testing accuracy. Random selection for

each training size was repeated 50 times, and the mean and standard deviation

were computed, as shown in Fig. 4.6.

I further validated the decoding approach with those sequences con-

sisting of no climbing actions. I fed 25 walking sequences into the decoding

implementation with the two-star skeleton and got zero false alarms of a fence
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climbing action.

4.2 Detection of stable contacts for motion analysis

The concept of stable contact comes from a close observation of human

actions. In most time instants, there has to be at least one part of the body in

stable contact with the surrounding environment; otherwise the human body

must be in rare moving conditions such as falling or swimming. The number

and positions of stable contacts themselves give a lot of information about

human actions. For example, when climbing there are always stable contacts

between the human body and the environment, involving either the hands or

feet. When the number of stable contacts does not change, one may consider

the period to be in a relatively static state. I call this period a primitive interval

and further define a primitive motion unit (PMU) as what happens in that

period including both stationary and motion information. By this definition,

PMUs are formed to break a long continuous action or activity into multiple

parts. In other words, a frame sequence is abstracted as a PMU sequence,

which provides a new perspective for the detection and recognition phase.

For each type of action to be recognized, a discrete HMM is trained

with associated PMU sequences. In order to continuously recognize activities,

I search over the time axis stepped by PMUs, by varying the duration of a

candidate PMU sequence and judging how well it fits among all the trained

models. The overall architecture is shown in Fig. 4.7. One block shows the

processing by frames, and the other block shows the analysis by PMUs. There
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Figure 4.7: The architecture of the second approach.

are three steps necessary to abstract frames into PMUs, including the detection

of stable contacts, the construction of primitive intervals, and the extraction

of PMU attributes.

4.2.1 Detection of stable contacts

Intuitively a stable contact is any body part or region that is in con-

tact with the environment for a period longer than a minimum threshold τ .

I call this period the duration with respect to the stable contact. By broad

definition the stable contact is a surface region where the body part is in

contact with a large area of the environment. However, human body parts

always come into contact in three-dimensional space from a point to a grad-

ually increasing region until it is stable, or in the reverse situation when the
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Figure 4.8: My implementation of detecting stable contacts.

stable contact is disappearing, the contact region gradually decreases into a

single point and then null. So the whole stable contact surface is abstracted

as a single point, which should be the ‘starting point’ when the stable contact

surface appears, and the ‘ending point’ when it disappears. This representa-

tion also fits the common practice of working on image sequences consisting

of only 2-dimensional information. How to detect stable contacts and their

associated durations in image sequences depends highly on the human body

representation. In my case, I have extracted sets of extreme points from human

contours.

Since extreme points are usually human hands and feet, stable contacts
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are formed from those stationary extreme points. Hence stable contacts are

detected by checking if any extreme point remains in the same place for a long

enough period τ . A maximum deviation tolerance parameter w is also applied

in order to tolerate the detection inaccuracy of extreme points. In order to

find such extreme points, consider the following two equations, as explained

below.

j − i+ 1 ≥ τ (4.4)

∀m,n(i ≤ m,n ≤ j) |pm,xm
− pn,xn

| ≤ w (4.5)

Given a length l sequence of extreme point sets, denoted as 〈P1, . . . ,Pl〉,

where each point set Pr(1 ≤ r ≤ l) consists of all extreme points {pr,1, pr,2, . . . , pr,|Pr|}

in the rth frame. Note that |Pr| represents the cardinality of the set Pr. The

goal is to find any consecutive sub-sequence of extreme points 〈pi,xi
, . . . , pk,xk

, . . . , pj,xj
〉,

where ∀k, pk,xk
∈ Pk (1 ≤ i ≤ k ≤ j ≤ l), such that the two equations (4.4)

and (4.5) hold. Then I output the mean coordinate of each sub-sequence of

extreme points as the stable contact position and the associated frame interval

as the duration of the stable contact.

Fig. 4.8 shows my implementation of the stable contact detection al-

gorithm, with simplified illustrative data from a real sequence. Note that

the shaded diamond box implies usage of the parameter w, while the shaded

rectangle box implies usage of the parameter τ .
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Figure 4.9: Detected stable contacts from a sequence of 21 frames shown in
three primitive intervals respectively.

Fig. 4.9 shows examples of two detected stable contacts for a total

period of 21 frames in a walking sequence. For each image in the figure, all

the associated frames are stacked to demonstrate that a stable contact is in fact

the extreme point that stays in contact with the environment for a reasonable

length of time.

Fig. 4.10 shows an example of all detected stable contacts on a real

sequence. Each triangle represents a stable contact point, and all detected

stable contacts are plotted on the last frame of the sequence, regardless of their

associated durations. The sequence starts with a person walking, followed by

his climbing over the fence. These positions of the stable contacts are formed

by either his hands or feet, displaying approximately the activity trajectories.

Although I experiment with limited kinds of activities, this stable con-

tact concept is designed as a generic abstraction tool for human actions. The

only limitation of the concept may be that it needs as many visible stable
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Figure 4.10: An example of detected stable contacts shown as triangles in a
sequence of walking and fence-climbing. Best viewed in color.

contacts as possible in order to achieve the best results.

For the stable contact, its detection is not as sensitive as that for the

extreme points. The reason is that I am looking for the consecutive extreme

points appearing in nearby positions. In my practice, I ensure the recall of all

ground truth extreme points while tolerating false alarms. As long as those

false alarms are not consistent in consecutive frames, they will not get detected

as stable contacts. Stable contact detection will only yield false alarms, if the

noise produces persistent extreme points in the same neighborhood.

This parameter w determines how much a group of consecutive extreme

points can deviate from each other before they are not regarded as a stable
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contact. My strategy in selecting it is to allow a relatively loose standard,

which means a bigger w. This will allow more tolerance of errors produced

from getting the extreme points.

4.2.2 Primitive Intervals

In general, there are a number of stable contacts associated with each

frame, and their durations overlap. Hence temporal segmentation is achieved

through changes in the number of stable contacts (NSC), instead of using

the durations of stable contacts. More precisely, I segment a new block of

consecutive frames from the image sequence whenever there is a change in

the NSC. The frame block covers a period when there is a consistent number

of stable contacts. I call such a period a primitive interval to distinguish it

from the duration of a stable contact. Therefore a primitive interval may be

associated with an arbitrary number of stable contacts, and all durations of

those stable contacts may intersect to produce the primitive interval, as shown

in Fig. 4.11.

Fig. 4.11 uses the same data as in Fig. 4.9. The video has 21 consecutive

frames of a person walking. Since there are two stable contacts, of which the

first is from frame 1 to 18 and the second is from frame 12 to 21, their durations

overlap during the period from frame 12 to 18. Hence these two stable contacts

form three primitive intervals, covering frames from 1 to 11, from 12 to 18,

and from 19 to 21 respectively, also shown in Fig. 4.9.

Fig. 4.12 shows an example of temporally segmenting the same image
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Figure 4.11: An example of three primitive intervals from two stable contacts.
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Figure 4.12: An example of temporal segmentation by change in the number
of stable contacts.

sequence as used in Fig. 4.10, including walking in side view and climbing a

fence in the front-back view. For example, soon after frame 100, there is a

jumping up action when the NSC is detected as zero since hands are occluded.

Just before frame 250, the person jumps down, causing the NSC zero again.

Before or after the climbing action, there is only walking, hence the NSC

fluctuates between one and two, with an exception when an immobile hand

is detected as a false positive stable contact. Every primitive interval has a

consistent NSC, which will be my time unit for analysis.
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4.2.3 Primitive Motion Units

Over each primitive interval, I define a PMU to represent the movement

during the period. I use three attributes to summarize low level information

about the movement, as shown in Table 4.3. The first attribute is the NSC,

with category values 0, 1, 2, and more than 2. The second attribute involves

the duration of the primitive interval, with category values short, medium

and long. The third attribute is related to the approximate motion direction,

with category values left, right, up, down or stationary. By using the joint

attributes, I get a total of 4× 3× 5 = 60 different types of PMUs. Note that

not all types appear in the experimental sequences.

Table 4.3: Attributes for a PMU.
Attribute Description

Number of stable contacts 0,1,2,more than 2
Duration of primitive interval short, medium, long
Direction of blob centroid left, right, up, down, stationary

The number of stable contacts (NSC) itself is a perfect cue for the

movement categorization. For example, the NSC normally alternates between

one and two in walking, but alternates between zero and one during running.

I define three category values on the second attribute of a PMU. A short

duration normally means that the primitive interval is a transition period for

the action. A medium duration tends to be the actual phase of performing the

action. A long duration implies there is very slow movement or no movement at

all. I choose thresholds from trials to determine the category values. I obtain

the value of the third attribute using the velocity of the blob centroid. Briefly
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speaking, I take the average velocity of the blob centroid in the primitive

interval and categorize it with appropriate thresholds.

4.2.4 Searching with trained HMMs

I evaluate the three attributes listed in Table 4.3, hence forming a

feature vector for each PMU. I then build a code book to convert each discrete

feature vector into a symbol. The original image sequence is now summarized

by a time series of PMUs. A typical PMU sequence may contain any number

of PMUs, depending on the length of the original frame sequence. The goal

is to model an action with a discrete HMM, and the observation of the HMM

is the symbol of PMU attributes. I train a discrete HMM for each action to

be classified, including human walking and climbing fences. The training data

is manually segmented from continuous activity sequences so that each piece

of training data consists of only one action. Note that here I regard the three

actions (climbing up, crossing over and dropping down) considered in the first

approach together as a single climbing action.

I recognize continuous activities from acquired image sequences by

searching over the time axis. The approach is motivated partially by works

from Davis and Bobick[17] and Min and Kasturi.[44] Here, I work on PMU

sequences instead of frame sequences.

The searching task is as follows. Given two trained HMMs representing

walking and climbing, and a length l PMU sequence 〈PMU1, PMU2, . . . , PMUl〉,

I have to form a temporal partition P which breaks the PMU sequence into r
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parts with the ith part pi having li consecutive PMUs. I also need to classify

each part as either walking or climbing. There are
∑l

r=1

(

r−1

l−1

)

× 2r possible

combinations of partitions and classifications.

The searching task is formulated as an optimization problem by defin-

ing an objective function Ψ(P,C), with the partition P = 〈p1, . . . pr〉 and

classification C = 〈cp1, . . . cpr〉 as variables. Having trained c HMMs, I can

derive the likelihood of an action cpi on any part pi of a partition, which can

be denoted as L(pi, cpi)(1 ≤ i ≤ r). Note that I use cpi to imply that this

action class is for the part pi in the partition, and the actual action class is

from the two trained HMM classes {Cwalking, Cclimbing}. Hence I re-write the

likelihood as L(pi, Cj)(1 ≤ i ≤ r, j ∈ {walking, climbing}). The objective

function is formally defined as in equation 4.6, for the case of two classes only,

where Cj means the other class of the two.

Ψ(P,C) =
r

∑

i=1

L(pi, Cpi)− L(pi, Cj) (4.6)

My goal is to maximize the objective function. I choose a greedy style

optimization strategy. As shown in equation 4.7, I break the objective function

into the sum of local objective functions as defined in equation 4.8. I get a

solution by maximizing the local objective functions one by one.

Ψ(P,C) =

r
∑

i=1

ψ(pi) (4.7)
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Figure 4.13: An example of searching for the maximum relative likelihood over
the time axis by PMUs.

ψ(pi) = L(pi, Cpi)− L(pi, Cj) (4.8)

I start from the first (i = 1) PMU, and search for the last PMU of part

p1 in the partition with a minimum duration m and a maximum duration M .

Every search will result in a fixed part duration and classification of that part

into one of the two activities. The next search for part pi (i ≥ 2) starts from

the PMU immediately after the last PMU of part pi−1. The number of parts

r increases by one after every search until the search stops when there are no

more PMUs left in the sequence.

An example from real sequences is given in Figure 4.13. The dotted line

represents the log likelihood of a walking action covering the duration at the

PMU level. The dashed line represents the log likelihood of a climbing action.

The solid line represents the difference between the two classes. From the
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graph, I can see the difference first reaches a local maximum at the 16th PMU.

Hence I determine that the duration from the 1st to the 16th PMU represents

a walking action. The next search starts from the 17th PMU.

4.2.5 Experiments

Using the exact same data set as used in the first application, I check

the accuracy of the continuous recognition by searching at the PMU level.

Similar to the first approach, I stepped the training set from 5 to 50 and used

the whole set to test. The mean and standard deviation of 50 runs at each

partition are shown as the red line in Fig. 4.14, where results from Fig. 4.6 are

also shown as blue lines shifted one unit to the left for comparison.

From Fig. 4.14, I can see that the frame level analysis (the first ap-

proach) performs worse than the PMU level analysis (the second approach),

when the size of the training set is not big enough. The reason is that the block-

based HMM needs to be accurate enough for the decoding to work properly,

while searching in the PMU level can be more robust since it involves only the

relative difference between individual HMMs instead of depending on a global

HMM.

Both approaches achieve about 80 percent accuracy when the size of

the training set is big enough. When the training set becomes larger, the PMU

level analysis has a smaller standard deviation in accuracy than the frame level

analysis. There are two explanations for this increased stability. On one hand,

when I extract features based on PMUs instead of on frames, the accuracy is
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Figure 4.14: Comparing the two approaches, with accuracy of the second
approach shown in red line and that of the first approach shown in blue line
shifted one unit to the left for comparison.

improved since features extracted across a few frames are less noisy than those

extracted from a single frame. On the other hand, in PMU level, the number

of possible partitions of a sequence is greatly reduced since primitive intervals

have already abstracted the frame sequence, hence improving the accuracy.

4.2.6 Comparison between the two approaches

Overall I conclude from Fig. 4.14 that there is no significant difference in

terms of performance with the two approaches. However, the two approaches

differ in their applicability to practical problems.
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The first approach depends on the availability of fence height to build

feature vectors from each frame. From Table 4.1, I can see that feature 3, 4

and 5 cannot be obtained without the height of the fence. Moreover, providing

the height of the fence as a single value to the approach implicitly assumes that

the fence forms a horizontal line in the field of view of the camera. This may

not always be true. The second approach does not require any such context.

In another aspect, the first approach trains a global HMM to model

switching between climbing and walking, while the second approach trains

two HMMs, one for walking and one for climbing. Hence if the switching

pattern between walking and climbing is relatively fixed (for example, people

always walk in, climb, and walk away), it may be enough to train only once

in the first approach. But if the switching pattern changes often (for example,

suddenly all people walk in and out without climbing), it requires frequent

updates for the global model to accurately decode an observation sequence.

In terms of algorithm complexity, the second approach involves more

steps and is much more complicated. So when a given scenario is simple enough

(with the height of the fence is available and there is not much fluctuation in

the pattern of walking and climbing), one may still prefer the first approach

for its simplicity.

4.3 General purpose posture descriptor

In the last two sections, I introduced how to utilize extremities to pro-

duce features for detecting fence climbing and how to detect the stable contacts
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from extremities. Both approaches are focusing on detecting certain actions

from continuous videos. In this section I will focus on classifying temporally

segmented videos into predefined classes. I propose a circular histogram of

extremities to abstract a frame into a 12-element feature vector.

4.3.1 Histogram of extremities

With detected body extremities, one can recognize a variety of common

human actions by using the discrete HMM technique [55]. As each action is

represented with an image sequence or video, the key procedure is to convert

each frame to an observation symbol so that each action may be represented by

an observation sequence. Note that I use only a set of human extremities for

each frame. Motivated by the shape context descriptor proposed by Belongie

et al. [5], I use a simple circular histogram to build a feature vector for each

frame. As shown in Figure 4.15, we find the relative coordinates of each

extremity with respect to the center of mass of the human silhouette. The

entire plane is evenly divided into N (N = 12) sectors, and the histogram is a

N-element vector with each element indicating if there is an extremity in the

sector.

In order to reduce the number of observation symbols, vector quantiza-

tion is commonly employed to cluster the feature vectors. The cluster label of

each feature vector acts as the observation symbol for HMM usage. However,

it is not always necessary if there are a limited number of unique features. In

my experiments, I simply use the index of each feature vector in the unique
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Figure 4.15: A simple histogram to extract feature vectors from frames.

feature vector set as the observation symbol.

4.3.2 Experiments

I tested action recognition on four different data sets with the same

strategy. For each data set, I build a feature vector from each frame with the

simple histogram. The procedure itself can be viewed as vector quantization

as well, since the number of unique feature vectors is much less. I adopted the

leaving-one-out cross-validation strategy in our HMM classification framework.

In each iteration, we just pick one test sequence in turn, and use all the rest as

a training set to train for each class a HMM with 2 hidden states. Finally, each

sequence is used exactly once as a test sequence, and the confusion matrix is

produced.

The experiments on the four data set is listed in the following sub-
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sections, according to the relative size of the human figures in videos. The

summarized results are displayed in Table 4.4 to show the classification accu-

racy on the four data sets. It gives an idea about how good the histogram of

extremity descriptor is with respect to the size of human figures.

Data Figure size # of class # of seq. Accuracy

Fence climbing 130 pixels 2 140 97.9%
Weizmann [6] 70 pixels 10 93 93.6%

Tower 30-40 pixels 5 60 86.7%
Soccer [19] 40 pixels 7 66 63.6%

Table 4.4: Performance of the histogram of extremity descriptor on different
data sets.

4.3.2.1 On the fence climbing data set

There are a total of 12652 frames in the 50 climbing and 90 walking

sequences. After feature extraction, there are 685 unique feature vectors. After

140 iterations, the confusion matrix produced only 3 misclassifications, e.g. the

overall accuracy is 97.9%. I found all three misclassifications are due to their

very short durations, including 16, 12, and 19 frames. Since the frame rate is

30 (fps), these short sequences do not even show a full step, as validated by

manual inspection.

As a baseline comparison, my previous work [78] reported 3 misclassifi-

cations on 18 walking and 10 climbing test sequences, which is approximately

5 times our error rate. In that work, I used 2SS to find extremities and built

features such as how many extremities are above or under the fence, in ad-
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dition to motion features including the direction of the centroid velocity. In

comparison, the histogram approach involves no explicit motion features.

4.3.2.2 On the Weizmann data set

Figure 4.16: Sample images of the 10 actions, including bend, jack, jump,
pjump, run, side, skip, walk, wave1 and wave2.

In this data set [6], there are 93 sequences of 9 persons performing

10 different actions, as shown in Figure 4.16. Using the provided human

silhouette, I extracted the human extremities for all 5687 frames. To get

a flavor of the accuracy of the proposed VSS on this particular data set, I

manually checked all 701 frames from 10 sequences performed by one person

(Daria). The VSS detected 1889 (96.1%) out of 1966 ground truth extremities,

while making only 18 false alarms.

There are only 179 unique feature vectors. After 93 iterations, the

confusion matrix is produced as in Figure 4.17. There are 2 misclassifications
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Figure 4.17: The confusion matrix of action recognition on the Weizmann data
set.

between jump and pjump, as they are essentially the same action taken in

different views. Among these actions, jump and pjump are essentially the

same action which is taken from different views; walk and run are hard to

differentiate without considering the speed factor.

The overall accuracy is 93.6%, as compared in Table 4.5. Although we

didn’t achieve the perfect recognition rate, our methodology is the fastest in

the sense that our VSS to detect extremities is linear in the number of contour

points; and our feature extraction procedure is very simple.

Note that the first four papers [3, 6, 32, 46] worked on the old version of

the data set without the skip action. In Blank et al. [6], each sequence is further

split into cubes and classification is done per cube. Their algorithm has linear

time complexity in the number of space-time points, e.g. the total number of
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Method Accuracy Data

Blank et al. [6] 99% 81 seq. no skip, chopped as cubes
Ali et al. [3] 92.6% 81 seq. no skip
Niebles and Fei-fei [46] 72.8% 83 seq. no skip
Jhuang et al. [32] 98.8% 81 seq. no skip
Fathi and Mori [21] 100% 93 seq. 10 actions
Wang and Suter [70] 100% 93 seq. 10 actions
Ours 93.6% 93 seq. 10 actions

Table 4.5: Comparison of different methods on the Weizmann data set.

pixels inside all silhouettes. Ali et al. [3] assume the six body joints including

head, belly, hands and feet are available for further action recognition. In their

experiment, they used the end points of a medial axis as an approximation of

body joints, which is very close to our idea of using junctions as stars. Both

Niebles and Fei-fei [46] and Jhuang et al. [32] have the advantage of avoiding

the difficult segmentation step, but their time complexity is at least linear in

the number of all pixels in a video. In Fathi and Mori [21], a computation of

the optical flow is necessary for each frame as the first step. Considering they

have tracked the human figure as a rectangle, the time complexity is linear in

the number of all pixels in the tracked region. In Wang and Suter [70], the

module of dimension reduction by Locality Preserving Projection (LLP) has

square time complexity in the number of frames, as the construction of the

adjacency matrix need to find K nearest neighbors for each frame.
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4.3.2.3 On the tower data set

In comparison with the Weizmann data set, the tower data are in lower

resolution. For this data set, the camera is mounted on a tower around 70

meters tall and actors perform in a garden under the tower. Human figures in

the frames are only around 40 pixels tall. There are 6 actors each performing

5 actions twice, including carrying, running, jumping, waving one hand, and

waving both hands. There are 60 sequences and 2406 frames in total. We show

five sample frames of each action in Figure 4.18.

Figure 4.18: Five sample frames of each action in the tower data set.

As the resolution is low, the segmentation is not as good as in the first
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two data sets. The overall classification accuracy is 86.7%.

4.3.2.4 On the soccer data set

The soccer data set provided by Efros et al. [19] proves very difficult

for action recognition. Its difficulty is due to two aspects. First, the action

classes are very similar to each other. Among the seven classes, running left

and running left at 45 degrees look very similar to each other, and so do

running right and running right at 45 degrees. Walking left and running

left are almost the same, and so are walking right and running right. The

only distinct class is walking/running in/out. These similar classes are even

more similar when there is only relative motions between body parts available.

Second, the video is in low resolution and quite noisy. The sample frames are

shown in Figure 4.19.

Figure 4.19: One sample frame of each action in the soccer data set. From left
to right, the seven actions are: walking/running in/out, running left, running
left at 45 degrees, running right, running right at 45 degrees, walking left,
walking right.

Amazingly, the histogram descriptor performed well and obtained 63.6%

classification accuracy, in comparison with the 67% in Efros et al. [19]. Con-

sidering that they compute optical flows for each pair of images, our method

is significantly faster.
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4.4 Summary

In this chapter I utilized extremities to detect climbing actions from

continuous videos. It is done first by generating environment specific features

and decoding a trained block based HMM to infer the action sequence. It

is then accomplished by another approach, where I detect stable contacts to

abstract frames into primitive motion units. The searching strategy is used

to find the duration and label for each piece of action along the time axis. In

other words, this second application of extremities can also be regarded as a

kind of temporal segmentation.

Furthermore, I defined a posture descriptor with the histogram of ex-

tremities for general action recognition. I reported the experimental results on

four data sets, where the size of human figures decreases from about 130 pixels

to only 30 pixels. The results proved the effectiveness of precise extremities as

long as the segmentation is not an big issue.
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Chapter 5

Probable Extremities

In previous chapters, I introduced how to extract precise extremities

from contours and utilize such extremities for action detection and recognition.

I conducted extensive experiments to prove the effectiveness of extremities as

a compact representation of human postures. Although the result is excellent,

there is an inherent limitation to the work, e.g. the contour has to be provided.

In order to relax the limitation, I propose to model human extremities

as image patches instead of points on the contour. In Section 5.1, I explain the

advantage of modeling extremities as patches. With extremities as patches,

I elaborate in Section 5.2 how to represent them with Histogram of Oriented

Gradients. In Section 5.3, I describe how to extract a set of training examples

for extremities, train a classifier for patches and detect the extremities from

an image. In this way, each frame is represented by a probability map, where

each pixel is associated with the probability of the patch centering around it

as an extremity type. In Section 5.4, I describe the integral histograms for

fast feature computation without losing accuracy. In Section 5.5, I propose

the histogram of probable extremities descriptor to summarize the probability

map as another compact representation of human postures, in comparison to
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the one introduced in Section 4.3.1. In Section 5.6, I explain the pipeline

for action recognition with the probable extremities. In Section 5.7, the new

posture descriptor is applied into several data sets, to validate its superiority

over the old one.

5.1 Advantage of extremities as patches

Human extremities refer to heads, hands, and feet in this dissertation.

The simplest way to model human extremities is to define them as the points

on the human body contour that produce the maximum distance from the

corresponding star. Such an approach is described in details in Chapter 3.

However, extremities are not really single points in practice. Instead,

human extremities often cover an image region and are more appropriately

modeled as image patches. There are the following advantages for the image

patch model:

1. To overcome the segmentation difficulty: Although there are dif-

ferent methods to compute human contours from images or videos, the

contour segmentation remains a challenging problem in practice. Since

segmentation is a fundamental difficulty in computer vision, there is a

tendency among researchers to bypass the segmentation step. For my

extremity detection and applications, it is more practical to work directly

on images or videos, instead of on segmented contours. Such a strategy

can also be explained from the perspective of information theory. When
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there is less step in a system, there is less information loss. The essence

of bypassing the contour segmentation step is not to ignore the detection

of extremities, but to minimize the detection steps.

2. To increase the detection robustness: When the extremities are

modeled as image patches, there are many more representations available

for extremities besides their locations, since a region can easily provide

more powerful and rich descriptors than a single point. With better

representations, the detection is more accurate.

5.2 Representing patches

Given an image patch, there are various ways to represent it as a fea-

ture vector. The simplest way is to concatenate all the pixel intensities. For

example, Turk and Pentland [65] proposed the Eigenfaces approach for face

recognition, with the face images represented by concatenations of all pixels

in the images. What exact representation one should use for patches depends

on the specific types of patches.

Among the three types of extremities, heads are in general upright, feet

are mostly upright, while hands may have various orientations. The HOG de-

scriptor can capture edge orientations at different spatial local neighborhoods.

As shown in Figure 5.1, given an extremity patch, its gradients are computed

first. With a set of m by n spatial cells imposed on the gradient image, the

occurrences of each of the nBin edge orientations (nBin = 9) in the local
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Figure 5.1: The HOG representation of an extremity patch.

cells are counted. All the local histograms are concatenated and normalized

to form the final representation as a feature vector of length m ∗ n ∗ nBin.

5.3 Predicting a patch as an extremity class

Now the task is to train a classifier so that one can predict how likely a

testing patch is from one of the extremity classes. There are mainly two steps,

including collecting the training set of extremities and training a classifier to

predict a testing patch.

5.3.1 Collecting extremities

In order to identify a patch with a classifier, one needs both positive

and negative extremity patches. I designate a set of images as the training

set, and extract positive and negative patches from all images in the set. For

positive extremity patches, I manually collect example patches at a fixed size

and label them as heads, hands or feet. For negative examples, I have written a
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program to automatically collect two sets of patches according to the locations

of positive patches from the images.

As illustrated in Figure 5.2, given an image in (a), I manually collect

four patches in (b), including the head, two hands, and the feet. The cor-

responding masks are displayed in (c) as white squares. Next my program

randomly selects points out of those contours of white squares as patch cen-

ters. The resulting patches may cover both a part of the true extremity and

the background, as shown in (d). Then my program randomly selects points

out of the black regions so that the resulting patches entirely cover the back-

ground, as shown in (e). Both sets of patches in (d) and (e) are treated as

negative examples, for better identification of extremities from backgrounds.

In Figure 5.3 some samples of the three extremity and negative classes are

shown.

Figure 5.2: To collect extremity patches from frames for training.

5.3.2 Training a classifier to predict

Given the training set of image patches represented by feature vectors,

there are many choices for a classifier. The support vector machine (SVM)
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Figure 5.3: Samples of the collected patches for training.

technique is chosen due to its capability of reducing the generalization error

through margin maximization. I train and validate with a SVM to see if a

patch can be reliably classified as having positive or negative extremities.

It is a multi-class classification problem. In my work, there are three

extremity classes plus the negative (not an extremity) class. While the original

SVM is for binary classification, it can be extended for multi-class classifica-

tion. Suppose there are c classes and there are
(

c

2

)

class pairs. For each pair,

a binary classifier is trained to assign the testing instance to one of the two

classes and the vote for the assigned class is increased by one. In this one-

versus-one approach, finally the class with most votes determines the instance

classification.

The name “probable extremities” comes from the fact that the clas-

sifier produces a probability over each extremity patch. The motivation for

having such soft decisions is to improve robustness by capturing more accurate

91



Figure 5.4: Probability estimate of an image patch as extremities or negative.

information and delaying the hard decision to later steps. The binary decision

over a patch being an extremity is prone to errors, due to complicated image

backgrounds. With a probability describing how likely a patch is an extremity,

better representation is achieved.

To predict the probability of an image patch as one of the extremity

classes or negative, I utilize the algorithm proposed by Wu et al. [74]. As

opposed to the traditional SVM that produces only a binary classification re-

sult, they make a probability estimate for multi-class classification by pairwise

coupling. For a given test image patch, a number between 0 and 1 is produced

for each class as the probability of the patch forming a head, hands, feet or

negative. The basic flow is shown in Figure 5.4.

5.4 Detection of probable extremities

Described in the last section is how to predict a patch as an extremity

class. However, the task is to detect probable extremities in an image. Hence

92



Figure 5.5: Building the probable extremity map, which includes three chan-
nels for heads, hands, feet.

one needs to search over the image to find all the possible locations for an ex-

tremity. Intuitively the solution is to do an exhaustive search over all possible

locations. At each location, a patch is cropped and feed into the classifier to

produce the probability. In this way, a probable extremity map is built, as

shown by the flow chart in Figure 5.5.

5.4.1 Integral histograms

Instead of cropping a rectangle region and computing the histogram

repeatedly, there is a faster method to compute histograms for all possible

locations over an image. The method is called integral histogram, as first

proposed by Porikli [54]. It originates from the integral image idea by Viola and

Jones [67], which in turn dates back to the summed area table by Crow [14]. In

order to compute the Haar-like rectangle features efficiently, they first compute

the integral image of the image to search and then each rectangle feature

can be evaluated efficiently with only a constant number of array access and

arithmetic operations.

A histogram is a set of numbers, where each number is the frequency of a

93



Figure 5.6: The computation of integral histograms for one bin.

range of values in the given data. Such a range of values are called bins. For the

HOG descriptor, there are 9 bins (8 directions plus no gradients). The integral

histogram is defined as in Equation 5.1, where the function Indicator(x, y, Bi)

returns 1 if the value at pixel (x,y) falls within bin Bi or 0 else.

H(x, y, Bi) = H(x− 1, y, Bi) +H(x, y − 1, Bi)

−H(x− 1, y − 1, Bi) + Indicator(x, y, Bi) (5.1)

The computation of integral histograms is further illustrated in Fig-

ure 5.6. Note in the figure, only one bin is shown. It is easy to verify that
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one scan across all the pixels is sufficient to compute the integral histograms.

When the integral histograms are ready, it only takes four array accesses, one

summation and two subtractions to compute the histogram over any randomly

chosen image patch with the following Equation 5.2.

h(xleft : xright, ytop : ybottom, Bi)

= H(xleft − 1, ytop − 1, Bi) +H(xright, ybottom, Bi)

−H(xleft − 1, ybottom, Bi)−H(xright, ytop − 1, Bi) (5.2)

5.5 Histogram of probable extremities

With the probable extremity map built, I propose to build a histogram

out of it hence the name “Histogram of Probable Extremities” and its abbre-

viation HOPE. In the case of precise extremities from contours, the histogram

of extremities is built with a radical circle centered around the blob centroid.

In the case of probable extremities, no blob centroid is available and the his-

togram is built in the style of the HOG descriptor.

Briefly speaking, a grid of M by N cells are imposed on the probable

extremity map. In each cell, the average of probabilities across the cell is

computed for each of the three extremity classes. Hence each histogram in

the cell is a feature vector of length 3. All the histograms from cells are

concatenated and normalized to form a feature vector of length M ∗N ∗ 3.
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5.6 Action classification

With each image represented as a HOPE descriptor of lengthM ∗N ∗3,

I can employ any classifier for action recognition. Each block of T consecutive

frames are treated as the most basic action unit, and their HOPE descriptor

are further combined to form a feature of length M ∗ N ∗ 3 ∗ T . Adjacent

blocks may have OT frames in overlapping. Considering that the block de-

scriptor may be very long, I use Principle Component Analysis for dimension

reduction when necessary. Beyond the SVM for estimating extremity prob-

abilities in Section 5.3, I train another multi-class SVM to classify whether

a block of consecutive frames belongs to one of the predefined action classes.

The sequence label is assigned to the class that gets the most votes from the

block based classification.

5.7 Experiments

The framework is applied to two data sets, including the Weizmann

data [6] and the Tower data. For each data set, the histograms of probable

extremities are built out of frames, and the leave-one-out cross-validation is

utilized to compute an overall classification accuracy on sequences. As a base-

line comparison, I reported the performance of both the algorithm based on

probable extremities and the algorithm based on precise extremities in Ta-

ble 5.1.

96



Weizmann Tower

Based on precise extremities 93.6% 86.7%
Based on probable extremities 95.7% 98.3%

Table 5.1: Comparison of the two types of extremities on two data sets.

5.7.1 On the Weizmann data

Refer to Section 4.3.2.2 for details on the data set. For those images in

Figure 4.16, the corresponding vector images of probable extremities are shown

in Figure 5.7. Our best result is achieved with M = 8,N = 6,T = 15,OT = 5.

Figure 5.7: Corresponding vector images of the probable extremities. Best
viewed in color.

5.7.2 On the Tower data

The same data is described in Section 4.3.2.3. The first 5 frames of

each action and the corresponding vector images of probable extremities are

shown in Figure 5.8.

5.7.3 Discussion

On the Weizmann data, the probable extremities performed better than

the precise extremities , also with the advantage of avoiding contour segmen-
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tation. On the Tower data, I obtained significantly better results. From my

observation, when the extremities are well detected by the baseline algorithm,

my probable extremity approach does not significantly improve the classifica-

tion accuracy, since it is an approximation to the precise extremity after all.

This is exactly what happens with the Weizmann data set. For the tower

data, since there is quite some shade associated with human figures in lower

resolution, contour segmentation is not a easy job. In such cases, the probable

extremities clearly outperform the precise extremities.

5.8 Summary

In this chapter, I present how to compute the probable extremity map

from an image and how to summarize it with the histogram of probable extrem-

ities descriptor. I achieve reduction of the computation load by implementing

the integral histograms. The experimental results are presented to prove the

superiority of the probable extremities over the precise extremities.
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Figure 5.8: The first 5 frames of each action and their corresponding vector
images of the probable extremities. Best viewed in color.
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Chapter 6

Conclusions

In this dissertation, I presented my unique perspective on analyzing

human behaviors with human extremities only.

For precise extremities, the detection goes from the simplest star-skeleton

to the most complicated variable-star-skeleton, with more and more compre-

hensive understanding on what can be seen as an extremity on a contour.

After detection, the human body information is essentially reduced to only a

few points. It is amazing that so little information can do so much. The ap-

plications also go from restricted to more flexible usage. Based on the precise

extremities, I derived several features to describe a human posture, including

the environment specific features for fence climbing actions, the stable contacts

for abstracting continuous videos, and the histogram of extremities descriptor

as a general purpose posture descriptor.

For probable extremities, the detection is more or less relaxed to detect

the extremities and its nearby body parts. These regions are the most descrip-

tive regions for identifying human posture, in comparison with torsos. In order

to detect probable extremities from raw images, I utilized the Histograms of

Oriented Gradients for patch representation. At the same time, I implemented
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integral histograms for fast computation without sacrificing accuracy.

The major advantage of applying human extremities in action detec-

tion and recognition is its compact representation and fast computation while

maintaining comparable accuracy against other methods. Furthermore, the

usage of human extremities is not to claim that it is the best and only cue for

motion analysis. Instead, I promote that it is so powerful that it should be

used together with other common cues such as optical flow in motion analysis.

More and more state-of-the-art approaches are combining multiple cues into

one system, in the hopes of achieving better results with more inputs.

Although my current applications of human extremities are mainly cen-

tered around interpreting human actions from either continuous or temporally

segmented videos, the detected human extremities may find other usage be-

yond motion analysis. For example, in the motion capture industry, researchers

and developers are trying hard to go markerless in an affordable way. Finding

extremities directly from videos is a solid intermediate step toward such a goal.

6.1 Future work

There are a few directions one can go to further push the detection of

extremities.

First, the relationship between the detection of extremities and recog-

nition of actions are not fully exploited. Right now, the detection and recog-

nition of actions benefit from detection of extremities, but not vice versa.
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Some researchers worked on unifying the segmentation and recognition into

one framework, and the same philosophy is applicable in my task. A simple

way to go this direction is to build a prior probability on extremity locations

for each kind of action, and look for extremities with the appropriate emphasis

at different locations under a particular action hypothesis.

Second, in comparison with individual images, videos provide richer in-

formation. Working on temporal relationships between image features should

help yield better results on extremity detection. For example, human extrem-

ities usually alternate between two types of stances. In one type of stance, the

extremity exhibits some movement; in the other type of stance, it becomes the

stable contact.

Third, using multiple cameras is the best way to reduce object occlusion

and self-occlusion among human body parts. With two cameras, the depth

may be estimated to differentiate the left and right hand. With more cam-

eras, it is possible to construct a human visual hull to fit a three-dimensional

extremity model.
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[36] Mathias Kölsch and Matthew Turk. Robust hand detection. In Inter-

national Conference on Automatic Face and Gesture Recognition, pages

614–619, 2004.

[37] Ivan Laptev and Tony Lindeberg. Space-time interest points. In IEEE

International Conference on Computer Vision, pages 432–439, 2003.
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