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The surest way to increase the capacity of a wireless system is by getting the

transmitters and receivers closer to each other, which creates the dual benefits of

higher quality links and more spatial reuse. In a network with nomadic users, this

inevitably involves deploying more infrastructure, typically in the form of microcells,

hotspots, distributed antennas, or relays. Compared to these deployments, a less

expensive alternative for cellular operators is the recent concept of femtocells – also

called home base-stations – which are end consumer installed data access points in

the desire to get better indoor voice and data coverage. A two-tier network consisting

of a conventional macrocell overlaid with shorter range wireless hotspots offers poten-

tial capacity benefits with low upfront costs to cellular operators. This dissertation

addresses the key technical challenges inherent to a femtocell-aided cellular network,

specifically managing radio interference and providing reliable coverage at either tier,

for different physical layer technologies. Specific contributions include 1) an uplink

capacity analysis and interference avoidance in two-tier networks employing Code Di-

vision Multiple Access (CDMA), 2) a decentralized power control scheme in two-tier

networks with universal frequency reuse, 3) a coverage analysis of multi-antenna two-

tier networks, and 4) spectrum allocation in two-tier networks employing Orthogonal

Frequency Division Multiple Access (OFDMA). The goal of this research is to inspire
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and motivate the use of decentralized interference management techniques requir-

ing minimal network overhead in ongoing and future deployments of tiered cellular

architectures.
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Chapter 1

Introduction

The advances in digital signal processing, integrated circuit (IC) technology

and microprocessors towards the latter half of the 20th century has, among other

things, ushered in a new era of telephony, providing people the ability to communi-

cate over the wireless medium. It is one of the crowning achievements of the human

age that a vehicular user traveling at 80 plus miles per hour can yet communicate re-

liably over wireless. Due to technological advances in semiconductor fabrication and

manufacturing, the number of transistors that can be placed on an IC has increased

exponentially, doubling nearly every two years – known as the Moore’s law. Indeed,

cellular telephony has experienced exponential growth over the last decade, and it

is estimated that there are about two billion users worldwide [56]. A further conse-

quence has been that heterogeneous tasks hitherto carried out by different devices –

cell phones for voice telephony, desktop computers for video downloads, cameras for

taking pictures, MP3 players for music – have been aggregated onto single computing

platforms endowed with wireless capability, thereby accelerating social change.

This technological “convergence” has created an unrelenting demand for higher

data rates in wireless networks, and has triggered the design and development of new

data-minded cellular standards such as the Worldwide Interoperability for Microwave

Access (WiMAX) (IEEE 802.16e), the 3rd Generation Partnership Project’s (3GPP)

High Speed Packet Access (HSPA) and Long Term Evolution (LTE) standards, and

3GPP2’s Evolution Data Optimized (EVDO) standard. In parallel, Wireless-Fidelity

(Wi-Fi) mesh networks also are being developed to provide nomadic high-rate data

services in a more distributed fashion [147]. Although the Wi-Fi networks will not

1



be able to support the same level of mobility and coverage as the cellular standards,

to be competitive for home and office use, cellular data systems will need to provide

service roughly comparable to that offered by Wi-Fi networks.

This conglomeration of differing wireless technologies such as cellular tele-

phony, Wi-Fi, Bluetooth, ZigBee etc. has created an unprecedented growth in the

ability to reliably communicate at ever increasing data rates over the wireless medium.

Indeed, this growth in wireless capacity is exemplified by this observation from Martin

Cooper of Arraycomm: “The wireless capacity has doubled every 30 months over the

last 104 years”. This translates into an approximately million-fold capacity increase

since 1957. Breaking down these gains shows a 25x improvement from wider spectrum,

a 5x improvement by dividing the spectrum into smaller slices, a 5x improvement by

designing better modulation schemes, and a whopping 1600x gain through reduced

cell sizes and transmit distance. The enormous gains reaped from smaller cell sizes

arise from efficient spatial reuse of spectrum, or alternatively, a higher area spectral

efficiency [7] measured in bits per second per hertz per unit area.

In conventional macrocellular systems (providing a wide area coverage typi-

cally of the order of a kilometer or more), providing reliable wireless performance

– for example, a guaranteed minimum data rate with a maximum tolerable outage

probability – is difficult because of path losses, the random wireless channel fluctua-

tions (known as fading), and most seriously, cochannel interference from neighboring

base-station (BS) transmissions. Existing and upcoming wireless standards – such

as the IS136, the European GSM, the WiMAX (IEEE 802.16e) and the 3GPP LTE

standards – negotiate the interference problem by requiring that adjacent BSs trans-

mit on different frequency resources. Frequency reuse, however, requires centralized

control, and more importantly incurs a poor spatial reuse of expensive spectrum.

Therefore, cellular systems often encounter conflicting requirements between either

providing reliable communication or obtaining higher spatial reuse of spectrum.

The surest way to resolve this tradeoff is by getting the transmitter and receiver
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closer to each other, which creates the dual benefits of higher-quality links and more

spatial reuse. In a network with nomadic users, this inevitably involves deploying

more infrastructure, typically in the form of microcells, distributed antennas, or relays

as described below.

Microcells. Microcells are operator installed cell towers (Fig. 1.1) that im-

prove coverage in urban areas experiencing poor reception. A microcell [77] has a

large radio range (100-500 m), and generally implies centralized deployment, i.e. by

the service-provider. This allows the operator to either load balance users [113, 152]

or preferentially assign high data rate cellular users to the microcell [99, 130] because

of its inherently larger capacity. The disadvantage associated with microcells are the

high costs associated with installation and maintenance of new cell towers. Moreover,

microcells do not guarantee reliable indoor coverage.

Distributed Antennas (DAs). Distributed antennas cellular systems com-

prise of a conventional macrocell BS augmented with operator installed spatially

separated antenna elements (AEs) [123], thereby forming a spatially separated macro-

scopic multi-antenna system. Each antenna module is connected to the central macro-

cell BS via dedicated wires, fiber optic or an exclusive RF backhaul link (Fig. 1.2).

Coverage holes are eliminated since users previously experiencing poor reception to

the macrocell BS are likely proximate to an antenna element. Because the AEs are

centrally controlled, the operator can vary the transmission strategy – as an instance,

choosing which AEs to transmit and how much transmit power to assign to each AE

– for optimizing system performance. Previous research has shown that DAs cause

lower other-cell interference and provide substantial capacity gains [35, 79], especially

for users on their cell-edge. The shortcomings of DAs are that they do not necessarily

guarantee reliable indoor coverage, the high costs associated with backhaul provision-

ing, and radio interference in the same bandwidth from nearby AEs which will likely

diminish capacity.

Relays. Relays are operator deployed infrastructure points which route the
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data between the source and destination, thereby enhancing the overall end-to-end

performance. Relays are currently the focus of intense research in the area of coop-

erative communications [114, 117] as well as in upcoming deployments of multihop

cellular networks (MCN) – for example, the IEEE 802.16j, the multihop relay spec-

ification for the IEEE 802.16e (WiMAX) wireless standard. Relays can fill coverage

holes in existing cellular systems (at the cell-edge, at tunnels/subways), or end-user

deployed in poor coverage areas, or even provide temporary coverage (for example,

during public events). Additionally, relays enhance signal strength at users experienc-

ing already experiencing good coverage at their BS. In practice, however, deploying

relays requires prior planning by the service provider – for example, where to place the

relays for maximum coverage benefit [105] – and identifying locations experiencing

poor cellular coverage. From a communications perspective, relays will require to be

tightly synchronized with the macrocell BS for ensuring coherent reception and con-

sequent improved signal strength at the user terminal [117]. Finally, non-transparent

relaying – for relays serving mobiles unable to communicate with the macrocell BS

– will require relays to transmit control information, implying potentially increased

costs and sophisticated design.

The common problems associated with each of the above infrastructures are

that a) the network infrastructure for doing so is potentially expensive and b) high

quality indoor reception is not guaranteed especially in microcells and DA systems.

In the following section, we shall describe an alternative approach for coverage and

capacity enhancement by end-user deployment through the recent concept of femto-

cells.

1.1 The Femtocell Concept

Femtocells, also called home base-stations, are short range, low cost and low

power access points (APs), installed by the end-consumer for better indoor voice and

data reception. The user-installed femtocell device communicates with the cellular
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Figure 1.1: The underlying architecture in a microcell-aided cellular network.
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Figure 1.2: The underlying architecture in a cellular system employing distributed
antennas.
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Figure 1.3: The underlying architecture in a multi-hop relayed cellular system

network over a broadband connection such as Digital Subscriber Line (DSL), cable

modem, or a separate wireless backhaul channel (see Fig. 1.4). Like microcells,

DAs and relays, due to their short transmit-receive distance, femtocells can greatly

lower transmit power, prolong handset battery life, and achieve a higher signal-to-

interference-plus-noise ratio (SINR). These translate into improved reception – the

so-called five-bar coverage – and higher capacity. Because of the reduced interference,

more users can be packed into a given area in the same region of spectrum, thus

increasing the area spectral efficiency [7], or equivalently, the total number of active

users per Hz per unit area.

Compared to other techniques for increasing system capacity, such as dis-

tributed antenna systems, microcells and relays, the key advantages of femtocells are

that there is very little upfront cost to the service provider, further, they require rela-

tively minimal coordination (implying minimal network overhead) with the macrocell

6



Outdoor 
cellular user

Small Dedicated Indoor coverage (Femtocell)

Femtocell 
gateway

DSL/Cable 
Modem

Macrocell

PSTN

In
te

rn
e
t

Large Anytime Anywhere Outdoor coverage (Macrocell)

Figure 1.4: The underlying architecture in a femtocell-aided cellular network.

BS [29]. Moreover, because femtocells are installed by end-consumers in their self-

interest, they can be placed at random locations in each cell-site; in contrast, other

infrastructure such as fixed relays will need to be placed by the service provider for

realizing their benefits, implying increased network planning.

Studies on wireless usage show that more than 50% of all voice calls and more

than 70% of data traffic originates indoors [118]. Voice networks are engineered to

tolerate low signal quality, since the required data rate for voice signals is very low,

on the order of 10 Kbps or less. Data networks, on the other hand, require much

higher signal quality in order to provide the multi-Mbps data rates users have come

to expect. For indoor devices, particularly at the higher carrier frequencies likely to

be deployed in many wireless broadband systems, attenuation losses will make high

signal quality and hence high data rates very difficult to achieve. Poor in-building

coverage causes customer dissatisfaction, encouraging them to either switch operators

or maintain a separate wired line whenever indoors.

7



This raises the obvious question: why not encourage the end-user to install

a short-range low-power link in these locations? This is the essence of the win-win

of the femtocell approach. The subscriber is happy with the higher data rates and

reliability; the operator reduces the amount on traffic on their expensive macrocell

network, and can redirect its resources to provide better coverage to truly mobile

users. The enhanced home coverage provided by femtocells will reduce motivation for

home users to switch carriers.

However, the coverage and capacity benefits of femtocells are not realizable,

without first addressing radio interference across tiers, i.e. between the primary tier

1 cellular network and the secondary tier 2 femtocell network. Interference in such a

tiered cellular architecture arises because users in both tiers inhabit the same region

of spectrum, termed as universal frequency reuse.

Universal frequency reuse is desirable for reasons of economy and flexible de-

ployment. With universal frequency reuse however, cochannel radio interference be-

tween cellular users and femtocell users will likely limit the performance of such tiered

cellular systems. Interference management in two-tier networks faces practical chal-

lenges from the lack of coordination between the macrocell base-station (BS) and

femtocell APs due to reasons of scalability, security and limited availability of back-

haul bandwidth [160]. Consequently, even though it may be easier to operate the

macrocell and femtocells in a common spectrum from an infrastructure or spectrum

availability perspective, at the same time, pragmatic solutions are necessary to reduce

cross-tier interference. The motivation of this thesis is to provide decentralized radio

interference management strategies in femtocell-aided cellular architectures.

1.2 Motivation

The motivation behind this research is to address radio interference man-

agement in practical femtocell deployments and ensure that both cellular users and
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hotspot users can achieve their desired target data rates (or coexist) when they either

operate in the same spectrum, or operate in orthogonal spectrum. Shared spectrum

operation may be desirable to operators because of the scarce availability of spectrum

and flexibility during deployment [72]. With shared spectrum between tiers however,

radio interference between cellular users to femtocell hotspots, and between hotspot

users to the macrocell BS, is likely to be the capacity-limiting factor.

Contemporary wireless systems employ power control to assist users experienc-

ing poor channels and to limit interference caused to neighboring cells. In a two-tier

network however, cross-tier interference may significantly hinder the performance of

conventional power control schemes. For example, during cellular uplink (mobile to

BS) transmission, a cellular user at the edge of its macrocell transmits with higher

power to meet its receive power target, and causes excessive cross-tier interference

at nearby femtocells. During downlink (BS to mobile) transmissions, a cellular user

may experience excessive interference from nearby cochannel femtocell transmissions,

especially when the received signal strength from the macrocell BS transmission is

low (typically at the edge of the macrocell). Cellular users and femtocell users con-

sequently experience unacceptable cross-tier interference in these resulting coverage

“dead zones” (see Fig. 1.5), thereby satisfy their minimum desired Quality-of-Service

(QoS) requirements.

Addressing cross-tier interference at a cellular user is especially important be-

cause the service (data rates) provided to cellular users should remain unaffected by a

femtocell underlay which operates in the same spectrum. In other words, the addition

of femtocells should not deteriorate the performance of the conventional macrocellular

network. Three main reasons are a) the macrocell BS’s primary role of an anytime

anywhere infrastructure, especially for mobile and “isolated” users without hotspot

access, b) the greater number of users served by each macrocell BS, and c) the end

user deployment of femtocells in their self-interest. The macrocell is consequently

modeled as primary infrastructure, meaning that the service provider’s foremost obli-
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Figure 1.5: Dead zones caused by cross-tier interference with universal frequency
reuse.

gation is to ensure that an outdoor cellular user achieves its desired quality of service,

despite cross-tier femtocell interference.

Due to reasons of scalability and limited availability of backhaul bandwidth,

the macrocell and femtocell BSs may not be able to coordinate their transmissions

(for example, using a centralized scheduler or centralized power assignments to users)

for minimizing cross-tier interference. The implication is that the macrocell BS and

femtocell APs should not only provide reliable coverage to their own users, but en-

sure that they do not cause unacceptable interference to users in the other tier in

a distributed fashion. By distributed, we mean that there is little or zero control

information exchanged – for instance, the indices of the currently active cellular or

femtocell user – either between the macrocell BS and femtocell APs, or between fem-

tocell APs. This motivates employing decentralized interference management schemes

– which is the main focus of this thesis – for ensuring acceptable performance at either

tier. In the following section, we focus on the main contributions of this research for
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ensuring coexistence in femtocell-aided cellular architectures.

1.3 Thesis Statement

Our main thesis is that without managing interference, deploying tiered net-

works will likely be self-defeating due to near-far effects with universal frequency reuse.

This dissertation addresses decentralized radio interference management in femtocell-

aided cellular architectures, encompassing a variety of physical layer technologies,

through a combination of interference avoidance, power control and spectrum alloca-

tion techniques for alleviating cross-tier interference and improving wireless capacity.

1.3.1 Contributions and Organization

The following are the contributions of this dissertation.

Uplink Capacity and Interference Avoidance. Due to the scarcity of spec-

trum, it is desirable to operate both macrocell and femtocell users to operate in the

same bandwidth, if at all possible. The location dependent cross-tier co-channel inter-

ference (CCI) experienced at femtocells from the “near-far” problem causes significant

deterioration in the user capacity of a two-tier network. This research addresses the

total two-tier system capacity – defined as the total number of cellular users and fem-

tocell APs – when Code Division Multiple Access (CDMA) transmission is employed

in either tier. This work also demonstrates an interference avoidance strategy for

combating the near-far problem, which results in superior user capacity, compared

with a two-tier network which splits the spectrum between each tier.

Data Rate Adaptation in Closed Access. To quantify near-far effects in

a femtocell-aided cellular network with universal frequency reuse, this research derives

a fundamental relation providing the largest feasible macrocell SINR, given any set of

feasible femtocell SINRs. A distributed utility-based SINR adaptation at femtocells

is proposed in order to alleviate cross-tier interference at the macrocell from overlaid
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femtocell infrastructure. The Foschini-Miljanic (FM) algorithm is a special case of the

adaptation. Each femtocell maximizes their individual utility consisting of a SINR

based reward less an incurred cost (interference to the macrocell). Numerical results

show greater than 30% improvement in mean femtocell SINRs relative to FM. In

the event that cross-tier interference prevents a cellular user from obtaining its SINR

target, an algorithm is proposed that adaptively curtails transmission powers of the

strongest femtocell interferers.

Coverage in Multi-Antenna Networks. In two-tier networks with univer-

sal frequency reuse, the near-far effect from cross-tier interference creates dead spots

where reliable coverage cannot be guaranteed to users in either tier. Equipping the

macrocell and femtocells with multiple antennas enhances robustness against the

near-far problem and improves spatial reuse. Using tools from stochastic geometry,

this research has derived the maximum number of simultaneously transmitting mul-

tiple antenna femtocells meeting a per-tier outage probability constraint. Per-tier

coverage zones are presented wherein cross-tier interference bottlenecks cellular and

hotspot coverage. Two operational regimes have been shown namely 1) a cellular-

limited regime in which femtocell users experience unacceptable cross-tier interference

and 2) a hotspot-limited regime wherein both femtocell users and cellular users are

limited by hotspot interference. The analysis accounts for the per-tier transmit pow-

ers, the number of transmit antennas (single antenna transmission being a special

case) and terrestrial propagation such as the Rayleigh fading and the path loss ex-

ponents. Single user (SU) multiple antenna transmission at each tier is shown to

provide significantly superior coverage and spatial reuse relative to multiuser (MU)

transmission. Finally, a decentralized carrier-sensing approach has been proposed to

regulate femtocell transmission powers based on their location.

Spectrum Allocation. In two-tier networks providing frequency division based

access (FDMA), the absence of coordination between cellular and femtocell transmis-

sions will cause spectrum partitioning between tier to be more viable, compared to
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centralized frequency assignment strategies. This research has proposed and analyzed

the performance of an optimum decentralized spectrum allocation policy that max-

imizes the Area Spectral Efficiency (ASE) of a two-tier network employing FDMA,

and is subjected to a sensible QoS requirement, which guarantees that both macrocell

and femtocell users attain at least a prescribed data rate.

This dissertation is organized as follows. In Chapter 2, we examine the

key technical and business challenges facing femtocell deployments. Thereafter, the

technical contributions of this dissertation are covered in Chapters 3 through 6.

In Chapter 3, we describe an uplink capacity analysis and an interference

avoidance strategy in a two-tier network employing CDMA transmission with univer-

sal frequency reuse. Next, Chapter 4 presents a utility-based femtocell Signal-to-

Interference-Plus Noise Ratio (SINR) adaptation scheme which minimizes cross-tier

interference to cellular users. Moving from single antenna transmission to multi-

antenna transmission, Chapter 5 studies how equipping the macrocell BS and fem-

tocell APs with multiple transmit antennas influences coverage provided to cellular

and femtocell users, and presents a carrier-sensing based femtocell interference man-

agement strategy to combat cross-tier interference. The final contribution in Chap-

ter 6 presents a spectrum allocation strategy and derives area spectral efficiencies in

frequency division access based two-tier networks. The dissertation concludes with

Chapter 7, which summarizes the key contributions of this thesis and highlights

open avenues for future research in femtocell networks.
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Chapter 2

Business and Technical Challenges facing

Femtocell Deployments

This chapter examines the key business and technical challenges encounter-

ing practical femtocell deployments. We first discuss the daunting requirements for

keeping femtocell manufacturing costs and their prices low for effectively competing

against the ubiquitous Wi-Fi technology. Next, we discuss the state of ongoing femto-

cell deployments and standardization efforts spearheaded by the Femto-Forum. Key

technical challenges in a practical femtocell deployment are presented, including man-

aging cross-tier radio interference, resource allocation between tiers, providing QoS

over an internet backhaul, allowing access to femtocells, handoffs and mobility issues,

and finally, how to provide reliable QoS and security over the cable modem/DSL

based internet backhaul.

2.1 Business, Standardization and Deployment Aspects of
Femtocells

Even though femtocells offer savings in site lease, backhaul and electricity costs

for the operator, they incur strategic investments. Operators will need to aggressively

price femtocells despite tight budgets and high manufacturing costs, to compete with

ubiquitous Wi-Fi. This may necessitate innovative business solutions such as the cel-

lular operator subsidizing the femtocell for purchase by the customer, or alternatively

charging reduced prices per call to incentivize consumers using their home BS. For

example, the North American operator Sprint charges a subsidized price of $99.99 per

14



Airave femtocell (introduced in September 2007), for subscribing to a $20 per month

family plan. At the same time, the features that femtocells have to provide are in

many ways more sophisticated than what is in a consumer grade Wi-Fi access point.

The nascent femtocell vendors are facing cost targets set by the mature high-volume

Wi-Fi market and by the demands of the operators for minimal subsidy to reduce

Return-on-Investment (ROI) time. Consequently, cost issues are in most cases, the

central factor driving the selection of solutions to each technical challenge.

Claussen et al. [36] have performed a financial analysis of the operating and

capital expenditures incurred in a femtocell deployment. Assuming open access (or

public access to all users within radio range of a femtocell), the key conclusions of

their study are that 1) the macrocell expenses initially decrease very quickly because

of the high degree of coverage even with a few installed femtocells and 2) the overall

network costs (considering operating expenses of both the macrocell and femtocells)

are minimal with nearly 30% of consumers having an installed femtocell. A predictive

cost breakup in a femtocell network deployment conducted by Airvana and Gartner

[118] has shown that after 1.5 years, operator investment will be recovered, allowing

future profits.

2.1.1 Current Standardization and Deployments

Given the aggressive cost challenges, standardization of requirements across

customers is important to accomplish a low cost femtocell solution. Towards this end,

a collaborative organization called the Femto-Forum comprised of operators and fem-

tocell vendors was formed in 2007 with the objective of developing open standards for

product interoperability. During April 2009, the 3rd generation partnership project

(3GPP), in collaboration with the Femto-Forum and the Broadband Forum released

the world’s first femtocell standard. This standard covers different aspects of fem-

tocell deployments including the network architecture, radio interference, femtocell

management, provisioning and security.
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As of the writing of this dissertation (February-April 2009), the cellular oper-

ator Sprint provides CDMA 1x EVDO services through its “Airave” femtocell (man-

ufactured by Samsung) in the United States of America (USA). Verizon has launched

its femtocell operation in USA–called the “Verizon Home Network Expander” for

providing Code Division Multiple Access (CDMA) service. Concurrently, a num-

ber of operators-AT &T (USA), O2 Telefonica and Motorola (Europe) and Softbank

(Japan)-are conducting femtocell trials prior to market. ABI Research [118] predicts

102 million users worldwide on more than 32 million femtocells by 2012.

2.1.2 Comparison with Wi-Fi Access Points

For users possessing dual-mode handsets endowed with both cellular and Wi-

Fi capability (for example, the iPhone), it is likely that such users would rather

communicate with an indoor Wi-Fi AP – using for example, a Skype-enabled software

application on their handset device – for making telephone calls over the internet.

Indeed, it is hard to make a convincing case to motivate such users to install femtocells.

On the contrary, significant numbers of cellular devices are not equipped with dual-

mode capabilities; the value proposition for femtocells lies in encouraging such users

to install femtocell APs for enhancing their indoor cellular coverage.

One would note the demerits of Wi-Fi access including a) the QoS (example,

guarantees on the maximum end-to-end latencies at a packet level) provided by IEEE

802.11x Wi-Fi standards are in general inferior to those provided by the cellular

standards, b) interference between Wi-Fi devices since they operate in unlicensed

spectrum and c) seamless switching on dual-mode devices between the 3G/2G cellular

networks and Wi-Fi networks may be difficult.

Having considered the business aspects, the following sections now examine

equally compelling technical challenges that will require to be addressed by femtocells.
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2.2 Technical Challenges

This section overviews the key technical challenges facing practical deploy-

ments of femtocell networks namely a) managing radio interference between cellular

users and femtocell users, b) resource allocation between tiers, c) providing QoS over

an internet backhaul, d) allowing access to femtocells and e) handoffs, mobility and

providing Emergency-911 services .

2.2.1 Allocating Spectrum and Managing Radio Interference

Confronting cellular operators will be the dual problems of mitigating radio

interference and efficiently allocating spectrum in femtocell-aided cellular networks.

Interference mitigation will require innovative solutions since the low-cost target po-

tentially necessitates scaled-down signal processing capabilities inside femtocells. The

interference will arise from a) Macrocell to femtocell interference, b) Femtocell to fem-

tocell interference and c) Femtocell to macrocell interference. The near-far effect –

due to uneven spatial distribution of receive power – is the main contributor for a) and

c), while femtocell to femtocell interference is relatively smaller due to low transmit

power and penetration losses.

Example. Assume a cellular user located at a distance of D = 1000 meters

from their macrocell BS, whose transmission power equals Ptx,dBm = 43 dBm (approx-

imately 20 Watts) 1. Considering a path loss based signal strength decay using the

IMT-2000 propagation model [1], the average received signal strength – disregarding

fast fading and random channel fluctuations – at the cellular user terminal equals

Srx,dBm = Ptx,dBm − 10αc log10 D − 30 log10 fc + 71.

1The dBm notation refers to the decibel signal power level relative to 1 milliwatt (mW). A signal
power level P (in milliwatts) is equivalent to 10 log10 P dBm. A power level of 1 mW therefore equals
0 dBm. The dBm notation is convenient for expressing both small and large signal power values in
a short form.
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Ptx = 0.2 Watts

Figure 2.1: Example demonstrating cross-tier interference at cellular user.

Here fc denotes the carrier frequency (in MHz) and αc denotes the path-loss exponent

[56]. Choosing fc = 2000 MHz and a typical cellular path-loss exponent αc = 3.8, the

receive power Srx,dBm is nearly −99 dBm.

Now, assume an interfering femtocell at a distance of Df = 30 meters from the

cellular user (see Fig. 2.1). This choice of Df represents a scenario of a cellular user

passing near the immediate vicinity of an actively transmitting femtocell AP. The

average interference power at the cellular user due to the femtocell is well modeled as

Irx,dBm = Ptx,dBm − 10αfo log10 Df −WdB − 37.

With a femtocell transmit power equaling 23 dBm – 100x smaller than the macrocell

transmit power – and the path loss exponent αfo = 3.8, the received interference

power Irx,dBm at the cellular user is nearly −75 dBm. In other words, the decibel

signal-to-interference ratio at the cellular user equals −24 dB, implying that successful

reception at the cellular user is infeasible. This indicates that cross-tier interference,

arising from the uneven distribution of receive powers, is potentially likely to be the
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key technical challenge facing practical femtocell deployment.

The 3GPP LTE and WiMAX (IEEE 802.16e) standards ensure intra-cell or-

thogonality among cellular users and mitigate inter-cell interference through fractional

frequency reuse [10]. Since femtocells will be placed by end consumers, the ad-hoc

locations of femtocells will render centralized frequency planning difficult. Owing to

the absence of coordination between the macrocell and femtocells and between fem-

tocells, decentralized spectrum allocation between macrocell and femtocell users is an

open research problem, which can provide answers to the following questions.

1. Should macrocell and femtocell users be orthogonal through bandwidth splitting?

Is there an “optimal” splitting policy? How does this vary with the femtocell

density?

2. Alternatively, with shared bandwidth (i.e. universal frequency reuse), what frac-

tion of the spectrum should the macrocell and femtocells assign their users?

3. Which of these two schemes is “better” in various configurations?

Because of the scarce availability of spectrum and for reasons of economy, flexibil-

ity and ease of deployment [72, 89], cellular operators will likely prefer assigning the

same region of spectrum to both cellular and hotspot users. With shared spectrum,

practical challenges stem from the absence of coordination between the macrocell

and femtocell due to reasons of scalability, security and limited backhaul capacity

[29]. Due to the near-far effect in a closed-access femtocell deployment, cross-tier

interference will likely be the capacity-limiting factor with universal frequency reuse.

When femtocells are added, power control employed by cellular users creates dead-

zones leading to non-uniform coverage. On the reverse link (user transmitting to their

BS), a cell edge macrocell user transmitting at maximum power causes unacceptable

interference to nearby femtocells. Consequently, cell edge femtocells experience signif-

icantly higher interference compared to interior femtocells. On the forward link (BS
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transmitting to served user), at the cell edge – where femtocells are most needed –

cellular users are disrupted by nearby femtocell transmissions, since they suffer higher

path loss compared to cell interior users.

2.2.2 Providing QoS over an Internet Backhaul

The IP backhaul needs QoS for delay-sensitive traffic and providing service

parity with macrocells. Additionally, it should provide sufficient capacity to avoid

creating a traffic bottleneck. While existing macrocell networks provide latency guar-

antees within 15 ms, current backhaul networks are not equipped to provide delay

resiliency. Lack of net neutrality poses a serious concern, except in cases where the

wireline backhaul provider is the same company or in a tight strategic relationship

with the cellular operator.

Another issue arises when femtocell usage occurs when the backhaul is al-

ready being used to deliver Wi-Fi traffic. Trials by Telefonica reveal that when

users employed Wi-Fi, femtocells experienced difficulty transferring data and even

low-bandwidth services like voice [118]. This is especially important considering that

improved voice coverage is expected to be a main driver for femtocells. In this respect,

other infrastructures such as DAs and relays – typically being operator deployed –

can ensure satisfactory backhaul performance because the operator may optimize the

backhaul for providing reliable QoS to serviced users.

2.2.3 Access and Handoffs to Femtocells

A closed access femtocell – also called managed access – has a fixed set of

subscribed home users-for privacy and security-that are licensed to use the femtocell.

Tackling radio interference is complicated due to the limited coordination between

the macrocell BS and femtocell APs for reasons of scalability, security and limited

backhaul [29]. Managing cross-tier radio interference from cellular users to femtocell

users and vice-versa (see preceding subsection) in closed-access femtocell deployments
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is potentially the biggest challenge confronting cellular operators.

Open access femtocells, on the other hand, provide service to macrocell users,

if they pass nearby. Radio interference is managed by allowing strong macrocell

interferers to communicate with nearby femtocells. Although open access reduces

the macrocell load, the higher numbers of users communicating with each femtocell

will strain the backhaul to provide sufficient capacity and raise privacy concerns for

home users. Open access will need to avoid “starving” the paying home user-so

they shouldn’t ever see “all circuits busy.” Since femtocells are typically marketed

as offering flat-rate calling, open access will need to differentiate between the zero-

tariff home users from the pay-per-minute visitor. For both reasons, operators are

looking at hybrid models where some of the femtocell’s resources are reserved for

registered family members, while others are open for roamers. Alternatively, the

cellular operator could potentially reward the paying home consumer – either in

money or calling minutes – for enabling open access especially in cellular coverage

dead-zones.

In current commercial femtocell offerings, cellular operators are typically offer-

ing both open access and closed access operation which are configurable by users. For

example, Verizon’s home expander (femtocell) allows open access by default, but pro-

vides the user the capability to choose closed access operation with priority access for

up to 50 callers. Sprint’s Airave femtocell offers a similar access operation. Because

of federal regulations however, all users can potentially access the home expander for

Emergency (E911) calls.

In general, handoff from a femtocell to the macrocell network is significantly

easier – as there is only one macrocell BS – as compared to handoffs from the macrocell

to the femtocell. Current 2nd generation (2G) and 3rd generation (3G) cellular

systems broadcast a neighbor list which a mobile attached to the current cell uses

to learn where to search for potential handover cells. Such a handoff protocol does

not scale to the large numbers of femtocells that “neighbor” (actually underlay) the

21



macrocell, and the underlying network equipment isn’t designed to rapidly change

the lists as femtocells come and go. This motivates upcoming 4th generation (4G)

standards to implement handover procedures to account for the presence of femtocells.

In open access, channel fluctuations may cause a passing macrocell user to

perform multiple handovers. In co-channel deployments, Claussen et al. [37] have

proposed auto configuration that periodically reduces the pilot power inside a fem-

tocell when no active calls are in progress thereby minimizing handoffs from passing

macrocell users. An open research area is to develop low complexity algorithms for

predicting the dwell time before handing off a macrocell user onto a nearby femtocell.

Yeung and Nanda [156] have proposed controlling handoff events by choosing velocity

thresholds based on the user mobility and sojourn times when a macrocell user travels

in the vicinity of a femtocell.

2.2.4 Mobility of Femtocell Users and Emergency-911 services

The portability of the femtocell presents a conundrum: Unlike Wi-Fi networks

that operate in unlicensed spectrum in which radio interference is not actively man-

aged, femtocell networks will operate in licensed spectrum. Femtocell mobility can

cause problems when a subscriber with operator A carries their femtocell to another

location where the only service provider is a rival operator B. In such a scenario,

should the femtocell be allowed to transmit on operator B’s spectrum? Viable op-

tions are providing Global Positioning System (GPS) inside femtocells for location

tracking and locking the femtocell within a geographical area. Alternatively, inter-

operator agreements facilitate charging the home subscriber on roaming.

Government mandated Emergency-911 services require operators to provision

femtocells for transmitting location information during emergency calls. Femtocell

location may be obtained by either using GPS inside femtocells (added cost with

possibly poor indoor coverage), or querying the service provider for location over

the backhaul, or gathering information from the macrocell providing the femtocell
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falls within the macrocell radio range, or even inferring the location from the mobile

position (estimated by the macro network) at handoff to the femtocell.

Ethical/legal dilemmas can arise on whether a femtocell should service macro-

cell users with poor outdoor coverage for making emergency calls, if they are located

within its radio range. In open access networks, this problem can be solved by hand-

off. Closed access femtocells should be provisioned to allow communication with

unsubscribed users in the event of emergencies.

2.3 Security and QoS over Internet Backhaul

In a femtocell environment the operator will need to provide a secure and

scalable interface over the Internet at a reasonable cost. Traditional radio network

controllers (RNCs) are equipped to handle tens to hundreds of macrocells. How will

they provide equal parity service to femtocells over the Internet?

Three network interfaces have been proposed, of which the IP multimedia sub-

system (IMS)/Session Initiation Protocol (SIP) and unlicensed mobile access (UMA)-

based interfaces appear to be the architectures of choice.

Iu-b over IP. Existing RNCs connect to femtocells through standard Iu-CS

(circuit-switched) and Iu-PS (packet-switched) interfaces present in macrocell net-

works. The advantage is that the capital expenditure is comparatively low insofar as

the operator can leverage existing RNCs. The shortcomings are the lack of scalability

and that the interface is not yet standardized.

IMS/SIP. The IMS/SIP interface provides a core network residing between

the femtocell and the operator. The IMS interface converts subscriber traffic into IP

packets and employs voice over IP (VoIP) using SIP, and coexists with the macrocell

network. The main advantages are scalability and rapid standardization. Disadvan-

tages include the capital expenditure for upgrade, and the operating expenditure in

maintaining two separate core networks for the macrocell and femtocell respectively.
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RAN-gateway-based UMA. A radio access network (RAN) gateway ex-

ists between the IP and operator networks, aggregating traffic from femtocells. This

gateway is connected to the operator network using a standard Iu-PS/CS interface.

Between the femtocell and the RAN gateway, the UMA protocol makes use of secure

IP tunneling for transporting the femtocell signals over the Internet. Current UMA-

enabled services such as T-Mobiles Hotspot@Home require dual-mode handsets for

switching between in-home Wi-Fi and outdoor cellular access. Integrating the UMA

client inside femtocells rather than the mobile would enable future deployments sup-

port use of legacy handsets.

This chapter has shown that there are numerous challenges that will require

to be addressed by the service provider, in order for femtocells to provide tangible

benefits. From a technical standpoint, the main focus of this thesis is on propos-

ing interference management schemes for alleviating cross-tier interference in two-tier

networks. In the following chapters, we present each thesis contribution in detail. In

Chapter 3, we consider a two-tier network employing CDMA transmission at both

tiers. An uplink capacity analysis is derived and an interference avoidance strategy

is presented in such a network. We show that substantial capacity gains are obtain-

able through interference avoidance, thereby enabling the robust design of two-tier

networks with universal frequency reuse.
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Chapter 3

Uplink Capacity and Interference Avoidance

3.1 Introduction

In a two-tier network employing CDMA transmission with universal frequency

reuse, cross-tier interference causes unacceptable outage probability. This chapter

presents an uplink capacity analysis and an interference avoidance strategy in a two-

tier CDMA network. We present a network-wide area spectral efficiency metric called

the Operating Contour (OC) defined as the Pareto-optimal pairs of the average num-

ber of active cellular users and femtocell access points in each cell-site which ensures

that all users attain a certain minimum Signal-to-Interference Ratio (SIR) subject to

a maximum outage probability (call drop probability) constraint. The capacity anal-

ysis accurately models the uplink outage probability, accounting for power control,

path loss and lognormal shadowing. The research also demonstrates substantial ben-

efits obtained using an interference avoidance strategy thereby enabling the robust

design of two-tier networks with universal frequency reuse.

3.2 Motivation

Conventional CDMA networks (without femtocells) employ fast power control

to compensate for path loss, shadowing and fading, and to provide uniform coverage.

When femtocells are added, the very same power control can create dead-zones leading

to non-uniform coverage for both macrocell and femtocell users. On the reverse link,

a cell edge cellular user transmitting at maximum power causes unacceptable interfer-

ence to nearby femtocells. Consequently, cell edge femtocells experience significantly
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higher interference compared to interior femtocells [28]. Consequently, an operator

faces two choices: either allocate different frequency bands to macrocell and femto-

cell users to reduce cross-tier interference, or alternatively, serving both macrocell and

femtocell users in the same region of bandwidth, to maximize area spectral efficiency.

Considering the scarce availability of radio resources and ease of deployment, using

the same region of bandwidth is preferable, if at all possible. The system capacity

in such a macrocell-femtocell deployment with shared spectrum is determined by the

maximum number of simultaneous macrocell and femtocell transmissions, subject to

an outage probability constraint per BS. The focus of the research is to answer the

following questions:

• What is the two-tier uplink capacity in a typical macrocell with randomly scat-

tered hotspots, assuming a randomly distributed population of actively transmit-

ting users per femtocell?

• Is it possible to accurately characterize the statistics of the cross-tier interference?

What is the effect of the femtocell hotspot density, macrocell-femtocell power ratio

and femtocell size?

• How much benefit is accrued by interference avoidance using antenna sectoring and

time hopping in CDMA transmission?

By addressing these questions, this work augments existing research on capacity anal-

ysis and interference mitigation in two-tier networks. We show that creating a suit-

able infrastructure for curbing cross-tier interference can actually increase the uplink

capacity for a shared spectrum network.
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3.2.1 Related Work

From a physical layer viewpoint, prior research has mainly focused on ana-

lyzing the uplink capacity, assuming either a single microcell1 or multiple regularly

spaced microcells in a macrocell site[4, 51, 93]. This model has assumed significance

for its analytical tractability, nonetheless, it has limited applicability owing to the

inherent variability in microcell locations in realistic scenarios.

The ideas presented in this work are most closely related to the work by Kishore

et al. The downlink cellular capacity of a two-tier network was derived in [92]. Con-

sidering a single macrocell with an embedded microcell, their results showed that

the per-tier user capacity is uplink-limited when fast power control is employed. In

[95], the user capacities in a two-tier network were derived for different tier-selection

schemes. Further work by the same author [94, 96] extended the framework to mul-

tiple microcells embedded inside multiple macrocells. The cross-tier interference was

approximated by its average and cross-tier microcell to microcell interference is ig-

nored. Their resulting analysis was accurate only up to 8 microcells per macrocell.

Our results, on the other hand, are accurate over a wide range of femtocell densities,

without approximating the interference statistics.

Related work includes [90], which discusses the benefits of having a tilted

antenna radiation pattern and macrocell-microcell power ratio control. In [89, 149],

a regular network comprising a large hexagonal macrocell and smaller hexagonal

microcells is considered. Citing near far effects, the authors conclude that it is more

practical to operate both tiers in separate spectrum. The reason being that the loss

in trunking efficiency by splitting the spectrum is lower than the increase in outage

probability in a shared spectrum two-tier network. This work, in contrast, shows a

higher user capacity for a shared spectrum network by enforcing higher spatial reuse

1A microcell has a much larger radio range (100-500 m) than a femtocell.
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through small femtocells and interference avoidance by way of antenna sectoring and

Time Hopped CDMA (TH-CDMA) in each tier.

Finally, from a network perspective, Joseph et al. [87] study impact of user

behavior, load balancing and different pricing schemes for interoperability between

Wi-Fi hotspots and cellular networks. In [51], the design of a multitiered wireless net-

work with Poisson call arrivals is formulated as an constrained optimization problem,

and the results highlight the economic benefits of a two-tier network infrastructure:

increased stability in system cost and a more gradual performance degradation as

users are added.

3.2.2 Contributions

This work employs a stochastic geometry framework for modeling the random

spatial distribution of users/femtocells, in contrast to prior work [77, 89, 94–96, 149].

Hotspot locations are likely to vary from one cellsite to another, and be opportunistic

rather than planned: Therefore a capacity analysis that embraces instead of neglecting

randomness will naturally provide more accurate results and more plausible insights.

To model the user/hotspot locations therefore, cellular users and femtocell BS are

assumed to be randomly distributed as a Homogeneous Spatial Poisson Point Process

(SPPP) (see [65, 91, 142] for background and survey, prior works include [14, 26, 48,

160]). The three key contributions of this work are given below.

• First, a novel outage probability analysis is presented, accounting for cellular

geometry, cross-tier interference and shadowing effects. We derive tight lower bounds

on statistics of macrocell interference at any femtocell hotspot BS along the hexagonal

axis. Next, assuming small femtocell sizes, a Poisson-Gaussian model for macrocell

interference and alpha-stable distribution for cross-tier femtocell interference is shown

to accurately capture the statistics at the macrocell BS. In the analysis, outage events

are explicitly modeled rather than considering average interference as in [77, 149]. For

doing so, the properties of Poisson shot-noise processes [78, 107] and Poisson void
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probabilities [91] are used for deriving the uplink outage probabilities.

• Second, robust interference avoidance is shown to enable two-tier networks

with universal frequency reuse to achieve higher user capacity. With interference

avoidance, an equitable distribution of users between tier 1 and tier 2 networks is

shown to be achieved with an order-wise difference in the ratio of their received

powers. Even considering the worst case cross-tier interference at a corner femtocell,

results for moderately loaded cellular networks reveal that interference avoidance

provides a 7x increase in the mean number of femtocells over split spectrum two-tier

networks.

• Third, additional interference avoidance using a combination of femtocell

exclusion and tier selection based femtocell handoff offers modest improvements in

the network OCs. This suggests that at least for small femtocell sizes, time hopping

and antenna sectoring offer the largest gains in user capacity for shared spectrum

two-tier networks.

3.3 System Model

Denote H ⊂ R2 as the interior of a reference hexagonal macrocell C of radius

Rc. The tier 1 network consists of low density cellular users that are communicating

with the central BS in each cellsite. Cellular users are distributed on R2 according

to a homogeneous SPPP Ωc of intensity λc. The underlying femtocells forms a ho-

mogeneous SPPP2 Ωf with intensity λf . Each femtocell hotspot includes a Poisson

distributed population of actively transmitting users3 with mean Uf in a circular

coverage area of radius Rf , Rf ¿ Rc. To maximize user capacity per cellsite, it is

desirable to have λf À λc; as will be shown, cross-tier interference at a macrocell BS

2The system model allows a cellular user to be present inside a femtocell as the governing process
Ωc is homogeneous.

3A hard handoff is assumed to allocate only licensed subscribed hotspot users to a femtocell,
provided they fall within its radio range.
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limits λf for a given λc. Defining |H| , 2.6R2
c as the area of the hexagonal region

H, the mean number of cellular users and femtocell BS’s per cellsite are given as

Nc = λc · |H| and Nf = λf · |H| respectively. Table 3.1 shows a summary of important

parameters and typical values for them, which are used later in numerical simulations.

Outdoor Cellular User

Indoor Femtocell User

Figure 3.1: A two-tier femtocell network.

Users in each tier employ Direct Sequence-CDMA transmission with process-

ing gain G. Uplink power control adjusts for propagation losses and log-normal

shadowing, which is standard in contemporary CDMA networks. The macrocell and

femtocell receive powers are denoted as P c
r and P f

r respectively. Any power control

errors [80] and short-term fading effects are ignored for analytical convenience. We

affirm this assumption as reasonable, especially in a wide-band system with signifi-

cant frequency diversity and robust reception (through RAKE receiver, coding and

interleaving).

30



3.3.1 TH-CDMA and Antenna Sectoring

Suppose that the CDMA period T = G ·Tc is divided into Nhop hopping slots,

each of duration T/Nhop. Every cellular user and all users within an active femtocell

independently, randomly select a hopping slot for transmission, and remain silent

over the remaining Nhop − 1 slots. Because the process of selecting the hopping slots

are independent across users, the resulting intra- and cross-tier interference at the

macrocell BS and femtocell APs are “thinned” by a factor of Nhop [91]. Using TH-

CDMA, users in each tier effectively sacrifice a factor Nhop of their processing gain,

but benefit by thinning the interfering field by the same factor. We further assume

R0

Φ

r

|R
0
+
re

jΦ
|

θ

In cell cross-tier 

interference region

around femtocell 

antenna sector

Tier-1 macrocell user

at location (r, Φ)

from femtocell

Figure 3.2: Interference experienced at sectorized femtocell antenna aligned at θ.

sectorized antenna reception in both the macrocell and femtocell BS, with antenna

alignment angle θ and sector width equaling 2π/Nsec (Fig. 3.2). While antenna

sectoring is a common feature at the macrocell BS in practical cellular systems, this

work proposes to use sectorized antennas at femtocell BS’s as well. The reason is that

the cross-tier interference caused by nearby cellular users can lead to unacceptable

outage performance over the femtocell uplink; this motivates the need for directed

femtocell antennas.
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The following definitions will be useful in the remainder of the paper.

Definition 1. Denote Hsec ⊆ H (region within the reference cellsite) over which the

femtocell BS antenna sector experiences interference. For example, Hsec = H for an

omnidirectional femtocell located at the corner of the reference macrocell.

Definition 2. Denote Ω̂c and Ω̂f as the heterogeneous SPPPs composed of active

macrocell and femtocell interferers as seen at an antenna sector in each tier. Denote

the equivalent mapped homogeneous SPPPs over R2 by Φc and Φf whose intensities

are given by ηc and ηf respectively.

The spatial thinning effect of TH-CDMA transmission and antenna sectoring

is analytically derived in the following lemma.

Lemma 1 (Spatial thinning by interference avoidance). With TH-CDMA transmis-

sion over Nhop slots and antenna sectoring with Nsec directed BS antennas in each

tier, the interfering field at a given antenna sector can be mapped to the SPPPs Φc

and Φf on R2 with intensities ηc = λc/(NhopNsec) and ηf = λf (1− e−Uf )/(NhopNsec)

respectively.

Proof. See Appendix A.1.

Definition 3. Denote the restriction of Ω̂c and Ω̂f to H by the SPPPs Πc and Πf

respectively.

3.3.2 Channel Model and Interference

The channel is represented as a combination of path loss and log-normal shad-

owing. The path loss exponents are denoted by α (outdoor transmission) and β

(indoor femtocell transmission) with random lognormal shadowing standard devi-

ation σdB. Through uplink power control, a cellular user transmitting at a ran-

dom position X w.r.t the reference macrocell BS C chooses a transmit power level
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P c
t = P c

r /gc(|X|). Here gc(|X|) is the attenuation function for outdoor propagation,

defined as gc(|X|) = Kc(d0c/|X|)αΘC where 10 log10 ΘC ∼ N(0, σ2
dB) is the log-normal

shadowing from user to C, Kc , [c/(4πfcd0c)]
2 is a unitless constant that depends on

the wavelength of the RF carrier c/fc and outdoor reference distance d0c. Similarly,

Ic,in Ic,fIc,out If,fIf,fIf,c
Tier 1 user (Macrocell)Tier 2 user (Femtocell)Intra/Cross-tier CCI

If,in
Figure 3.3: Intra-tier and cross-tier interference with universal frequency reuse.

a femtocell user at a random position Y within a femtocell BS F chooses a transmit

power P f
t = P f

r /gf (|Y |), where gf (|Y |) = Kf (d0f/|Y |)βΘF represents the indoor at-

tenuation, 10 log10 ΘF ∼ N(0, σ2
dB) and Kf , [c/(4πfcd0f )]

2. Here d0f is the reference

distance for calculating the indoor propagation loss. Note that in reality, Kc and Kf

are empirically determined. The interference in each tier (Fig. 3.3) can be grouped

as:

Macrocell interference at a macrocell. Through power control, all cellu-

lar users within Hsec are received with constant power P c
r , so the in-cell interference

equals (N − 1)P c
r , where N ∼ Poisson(Nc/Nhop). As such, inferring the exact statis-
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tics of out-of-cell cellular interference Ic,out is analytically intractable; it is assumed

that Ic,out is distributed according to a scaled Gaussian pdf [26]. Defining µ and σ2

to be the empirically determined parameters of the Gaussian, the pdf of Ic,out is given

as fIc,out(y) = 2e−
1
2 (y−µ)2/σ2

√
2πσ2[2−erfc( µ√

2σ
)]
, where erfc(t) ,

√
2
π

∫∞
t
√

2
e−x2/2dx.

Femtocell interference at a macrocell. Say femtocell Fi with Ui ∼ Poisson(Uf )

users is located at random position Xi w.r.t the reference macrocell BS C. A

femtocell user j at distance Yj from their femtocell BS Fi transmits with power

P f
t (j) = P f

r /gf (Yj). The interference caused at C from user j is given as

Ic,f (Fi, j) = P f
r gc(|Xi + Yj|)/gf (|Yj|) ≈ P f

r gc(|Xi|)/gf (Rf ) = QfΘj,C/Θj,Fi
|Xi|−α

(3.1)

where Qf , P f
r Rβ

f ( Kc

Kf
)(

dα
0c

dβ
0f

). In doing so, we make two important assumptions namely

AS 1. For small sized femtocells (Rf ¿ Rc), a femtocell or macrocell BS sees inter-

ference from other femtocells as a point source, implying gc(|Xi + Yj|) ≈ gc(|Xi|).
AS 2. When analyzing the interference caused by a random femtocell Fi at any other

location, the Ui femtocell users can be modeled as transmitting with maximum power,

so that gf (|Yj|) ≈ gf (Rf ). This is for analytical tractability and modeling worst-case

interference.

Using (3.1), the cumulative cross-tier interference at the reference macrocell C is

represented by the Poisson Shot-Noise Process (SNP) [107],

Ic,f =
∑

Fi∈Ω̂f

QfΨi|Xi|−α (3.2)

where Ψi ,
∑Ui

l=1 Θl,C/Θl,Fi
defines the cumulative shadowing gain between actively

transmitting users in femtocell Fi and the macrocell BS C.

Neighboring femtocell interference at a femtocell. By an identical ar-

gument as above, the interference caused at the antenna sector of femtocell Fj from

other femtocells Fi, i 6= j is a Poisson SNP given by If,f =
∑

Fi∈Ω̂f
QfΨi|Xi|−α, where

|Xi| refers to the distance between (Fi, Fj) and Ψi ,
∑U

l=1 Θl,Fj
/Θl,Fi

.
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Interference from active users within a femtocell. Conditioned on the

femtocell containing U actively transmitting users (U ≥ 1), the intra-tier interference

experienced by the user of interest arising from simultaneous transmissions within

the femtocell is given as If,in = (U − 1)P f
r ,E[U ] =

Uf

1−e
−Uf

.

Macrocell interference at a femtocell. This work analyzes outage prob-

ability at a femtocell BS Fj located on the hexagonal axis, considering the effect

of in-cell cellular interference. The cellular interference If,c is lower bounded by

the interference caused by the set of cellular interferers inside the reference macro-

cell Πc. This lower bound is represented as If,c ≥ I lb
f,c =

∑
i∈Πc

P c
r Ψi(

|Xi|
|Yi| )

α, where

Ψi , Θi,Fj
/Θi,C , 10 log10 Ψi ∼ N(0, 2σ2

dB) is the LN shadowing term and |Xi|, |Yi|
represent the distances of cellular user i to the macrocell BS and femtocell BS respec-

tively. Because a corner femtocell experiences a significantly higher cellular interfer-

ence relative to an interior femtocell, the statistics of If,c are non-stationary.

3.4 Per Tier Outage Probability

To derive the OCs, an uplink outage probability constraint is formulated in

each tier. Define Nf and Nc as the average number of femtocell BS’s and cellular

users per cellsite respectively.

A user experiences outage if their instantaneous received Signal-to-Interference

Ratio (SIR) over a transmission (Fig. 3.4) is below a threshold Γ. The outage

probabilities Pc
out(Nf , Nc) [resp. Pf

out(Nf , Nc)] are defined as the probabilities that

the despread narrowband SIR for a cellular user [femtocell user] at the tier 1 [tier 2]

antenna sector is below Γ. Assuming the PN code cross-correlation equals Nhop/G
4,

4With Nhop = G = 1, the model reduces to a non CDMA narrowband transmission; with
Nhop = G À 1, the model reduces to slotted ALOHA transmission
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� �
� �CDMA Transmission

Figure 3.4: CDMA transmission with per-tier SIR target Γ.

define

Pc
out(Nf , Nc) = P

[
G/NhopP

c
r

Ic,in + Ic,out + Ic,f

≤ Γ
∣∣∣|Ω̂c| ≥ 1

]

Pf
out(Nf , Nc) = P

[
G/NhopP

f
r

(U − 1) · P f
r + If,f + If,c

≤ Γ
∣∣∣U ≥ 1

]
(3.3)

where |Ω̂c| denotes the number of points in Ω̂c and the unconditioned U ∼ Poisson(Uf/Nsec).

Any feasible (Ñf , Ñc) satisfies the outage probability requirements Pf
out(Nf , Nc) ≤

ε,Pc
out(Nf , Nc) ≤ ε in each tier.

Definition 4. Define the tuple N , (Nf , Nc) as being a feasible tuple if Pc
out(Nf , Nc) ≤

ε and Pf
out(Nf , Nc) ≤ ε.

Definition 5. Given two feasible tuples N and N′, define N Â N′ when ever either

a) Nf > N ′
f and Nc ≥ N ′

c, or alternatively b) Nf ≥ N ′
f and Nc > N ′

c is satisfied.

The OCs for the macrocell [resp. femtocell] are obtained by computing the

Pareto optimal set of tuples N pairs which satisfy a target outage constraint ε. More
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formally,

OC , {N :6 ∃Ñ Â N such that Ñ is feasible}. (3.4)

Theorem 1. With a path loss exponent α = 4, the interference terms Ic,f and If,f

are identically distributed as a Poisson SNP Y =
∑

i∈Φf
QfΨi|Xi|−α with identical

and independently distributed marks Ψi and probability density function (pdf) and

cumulative distribution function (cdf) given as

fY (y) =

√
κf

π
y−3/2e−κf /y, FY (y) = erfc

(√
κf

y

)
(3.5)

where κf , η2
fπ

3Qf (E[Ψ1/2])2/4.

Proof. See Appendix A.2.
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Remark 1 (Femtocell size). Increasing femtocell size (Rf) strictly increases the out-

age probabilities arising from the femtocell interference If,f and Ic,f in a two-tier

network. To elucidate this, observe that an increase in Rf causes κf to increase

by a factor Rβ
f . By monotonicity of erfc(·), the cdf’s FIf,f

(·), FIc,f
(·) decrease as κf

increases, causing a higher outage probability per tier. Intuitively, a femtocell user lo-

cated on the edge of a femtocell will cause excessive interference at a nearby femtocell

BS; this edge effect appears as a power control factor Rβ
f in (3.5).

All Tier 2 users within a femtocell are assumed to jointly choose a hopping

slot. Suppose we compare this against an independent hopping protocol, where users

within a femtocell are independently assigned a hopping slot. With independent

hopping, the intensity of Φf equals η̃f =
λf

Nsec
· (1 − e−Uf /Nhop) (note the difference

from ηf in Lemma 1) and the average number of interfering users in an actively

transmitting femtocell equals
Uf /Nhop

1−e
−Uf /Nhop

. With an outage threshold of P f
r G/(ΓNhop)

(3.3) at a femtocell BS, two observations are in order:

TH-CDMA transmission. When G
Nhop

À 1, joint hopping is preferable

from an outage probability perspective. Intuitively, joint hopping reduces λf by a

factor Nhop, causing a quadratic decrease in κf in (3.5); independent hopping de-

creases the number of interfering users per active femtocell, causing a sub-quadratic

decrease in E[Ψ1/2]2. The consequence is that joint hopping results in a greater de-

crease in Pf
out. Using Nhop = 2, Fig. 3.5 confirms this intuition; notably, the gap

in outage performance is dictated by the hotspot user density: In heavily loaded

femtocells (Uf À 1), a joint hopping scheme is clearly superior. For lightly loaded

femtocells, ηf ' η̃f ≈ λf Uf

Nsec·Nhop
, implying that independent and joint hopping schemes

perform nearly identical.

Random access transmission. When Nhop = G À 1, the femtocell outage

threshold is P f
r /Γ; by consequence, it is preferable to use independent hopping across

the tier 2 network (see Fig. 3.5). With joint hopping, even a single interferer within
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a femtocell can cause outage for the user of interest as there is no CDMA interference

averaging ; an independent hopping scheme offers increased interference avoidance

since the likelihood of two femtocell users sharing a hopping slot is negligible. Conse-

quently, in non-CDMA two-tier cellular networks employing interference avoidance,

an independent assignment of hopping slots is preferable from an outage viewpoint.

Theorem 2 (Macrocell outage probability). Let the outdoor path loss exponent α =

4. With Poisson in-cell macrocell interference Ic,in, Gaussian out-of-cell interference

Ic,out and Lévy-stable femtocell interference Ic,f given by (3.5), the outage probability

at the macrocell BS antenna sector is given as

ε ≥ Pc
out = 1− 1

1− e−ηc|H|

bρc/P c
r c∑

m=1

e−ηc|H|(ηc|H|)m

m!
Gc(ρ̃c) (3.6)

where ηc = λc

NhopNsec
,ρc = P c

r G
ΓNhop

, ρ̃c = ρc − (m − 1)P c
r and Gc(t) ,

∫ t

0
fIc,out(t −

y)FIc,f
(y)dy.

Proof. See Appendix A.3.

Theorems 1 and 2 provide the tools to quantify the largest Nf that can be

accommodated at a given Nc subject to an outage constraint ε. The next step is to

compute the outage probability at a femtocell as defined in (3.3). To do so, assume

that the femtocell is located on the axis at a distance R0 from the macrocell center

and the femtocell antenna sector is aligned at angle θ w.r.t the hexagonal axis. The

following theorem derives a lower bound on the tail probability distribution of the

cross-tier interference If,c at any femtocell located along the hexagonal axis.

Theorem 3 (Lower bound on cellular interference). At any femtocell antenna sector

located at distance 0 < R0 ≤ Rc from the macrocell BS along the hexagonal axis:

1. The complementary cumulative distribution function (ccdf) of the cross-tier inter-

ference If,c at a femtocell antenna sector is lower bounded as F̄If,c
(y) ≥ 1−F lb

If,c
(y),
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where

F lb
If,c

(y) = exp



−

λc

Nhop

∫∫

Hsec

S(r, φ; y)rdrdφ



 , S(r, φ; y) , F̄Ψ

[
yr

P c
r (|reiφ + R0|)α

]

(3.7)

Here F̄Ψ is the ccdf of Ψ : 10 log10 Ψ ∼ N(0, 2σ2
dB), i ,

√−1, θ is the femtocell

BS antenna alignment angle and Hsec ⊆ H denotes the region inside the reference

macrocell enclosed between θ ≤ φ ≤ θ + 2π/Nsec.

2. For a corner femtocell R0 = Rc with an omnidirectional femtocell antenna Nsec =

1, the ccdf of If,c is lower bounded as F̄If,c
(y) ≥ 1− F lb

If,c
(y), where

F lb
If,c

(y) = exp



−3

λc

Nhop

∫∫

H

S(r, φ; y)rdrdφ



 . (3.8)

Proof. See Appendix A.4.

Corollary 1. With the above definitions, assuming a pure path loss model (no shad-

owing), (A.5) and (3.8) hold with S(r, φ; y) , 1
[
P c

r · (|reiφ + R0|/r)α ≥ y
]
.

Theorem 3 characterizes the relationship between the intensity of cellular users

and the femtocell outage probability. Increasing Nhop “thins” the intensity of Πc,

thereby mitigating cross-tier interference at the femtocell BS.

The thesis of this work revolves around a two-tier CDMA network with inter-

ference avoidance. Below, we elucidate why successful application of sectorization is

required in a CDMA two-tier network.

Infeasibility of omnidirectional femtocells. Irrespective of the orientation

of the sector inside a femtocell, the femtocell outage probability is no worse than a

sectorized femtocell located on the cell edge. Results (see Fig. 3.7) show that an

omnidirectional femtocell located in the cell interior has a higher outage probability

than a sectorized femtocell on the cell edge. The implication is that CDMA two-tier
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networks with universal frequency reuse perform poorly with omnidirectional femto-

cell antennas. Additionally, irrespective of how a consumer places the antenna sector,

using sectorized femtocells benefits the end consumer.

Benefits of Time-hopping. Figure 3.6 compares the performance of increas-

ing the number of CDMA hopping slots while employing an omnidirectional femtocell

antenna, versus using a fixed CDMA hopping factor and using three antenna sectors.

Results indicate that a femtocell which uses a combination of interference averaging

and interference avoidance (3 antenna sectors and 4 CDMA hopping slots) shows a

near identical outage probability, in comparison to random TDMA transmission (us-

ing 128 CDMA hopping slots). This shows that an alternative non-CDMA scheme

(random TDMA) offers the same benefits as a CDMA two-tier network with sector-

ized femtocell BSs.

As seen in Fig. 3.7, the closeness between the empirical and theoretical outage

probabilities in (A.5) and (3.8) shows that the cross-tier interference If,c is primarily

impacted by the set of dominant cellular interferers (A.7). Moreover, the magnitude

of outage is more severe in femtocells that are located on the edge of the macrocell,
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relative to interior femtocells. The implication is that one can perform accurate

outage analysis at a femtocell by considering only cellular users whose transmissions

are strong enough to individually cause outage. This agrees with the observations in

[143, 144].

Using Theorems 1 and 3, the femtocell outage probability (3.3) is stated in

the next theorem.

Theorem 4 (Femtocell outage probability). For small λc, the femtocell outage prob-

ability Pf
out is lower bounded as

ε ≥ Pf,lb
out ≈ 1− e−Uf,sec

1− e−Uf,sec

bρf /P f
r c∑

m=1

Um
f,sec

m!
·Gf (ρ̃f ) (3.9)

where Uf,sec , Uf

Nsec
, ρf , GP f

r

Nhop·Γ , ρ̃f = ρf − (m − 1) · P f
r and Gf (t) , FIf,f

(t) +
∫ t

0
fIf,f

(t− y) ln (F lb
If,c

(y)) dy.

Proof. See Appendix A.5.

For a given Nf , Theorem 4 computes the largest Nc which ensures the SIR

threshold Γ is satisfies for a fraction (1−ε) of the time. Furthermore, the lower bound

F lb
If,c

(·) was shown to be tight, hence the computed Nc is not overly optimistic. Using

Theorems 2 and 4, the OCs for the two-tier network with interference avoidance can

now be readily obtained. The following section studies using a femtocell exclusion

region around the macrocell BS and a tier selection based femtocell handoff policy,

in addition to the interference avoidance strategies discussed hitherto.

3.5 Femtocell Exclusion Region and Tier Selection

Suppose the reference macrocell BS has a femtocell exclusion region Rexc
f ⊂ H

surrounding it. This idea is motivated by the need to silence neighboring femtocell

transmissions which are strong enough to individually cause outage at a macrocell BS;
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similar schemes have been proposed in [68] and adopted in the CSMA scheduler in the

802.11 standard. The tier 2 femtocell network then forms a heterogeneous SPPP on

H with the average number of femtocells in each cell-site equaling λf · (|H| − |Rexc
f |).

The following theorem derives a lower bound on the ccdf of the cross-tier femtocell

interference Ic,f considering the effect of a femtocell exclusion region.
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Figure 3.8: Macrocell outage probability for different femtocell densities with a femto-
cell exclusion region (Nc = 24 users, P f

r = P c
r ). Dotted lines represent the theoretical

lower bounds on outage probability and solid lines represent the empirically estimated
probabilities.

Lemma 2 (Femtocell exclusion region). With a femtocell exclusion region of radius

Rf,exc around the reference macrocell BS, the ccdf of cross-tier femtocell interference

Ic,f is lower bounded as

F̄Ic,f
(y) ≥ 1− e−πηf H(y) (3.10)
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where H(y) is defined as,

H(y) ,
(

Qf

y

)δ

(E[Ψδ]− FΨ(u)E[Ψδ|Ψ ≤ u])− (Rf,exc)
2F̄Ψ(u)

Ψ =
U∑

i=1

Ψi, where 10 log10 Ψi ∼ N(0, 2σ2
dB)

δ = 2/α, u =
yR

2/δ
f,exc

Qf

, U ∼ X|X ≥ 1, X ∼ Poisson(Uf ) (3.11)

Proof. See Appendix A.6.

Fig. 3.8 depicts the macrocell outage performance as a function of the femto-

cell exclusion radius. A small exclusion radius Rf,exc results in a significant decrease

in Pc
out. The implication is that a femtocell exclusion region can substantially in-

crease the number of simultaneous active femtocell transmissions, while satisfying

the macrocell outage constraint Pc
out ≤ ε. The close agreement between analysis and

simulation shows that only the nearby dominant femtocell interferers influence outage

events at the macrocell BS.

Corollary 2. With no femtocell exclusion (Rf,exc = 0), the complementary cumulative

distribution function of the cross-tier femtocell interference Ic,f at a macrocell is lower

bounded as F̄Ic,f
(y) ≥ 1− e−πηf Qδ

fE[Ψδ]y−δ

.

Corollary 2 is the two-tier cellular network equivalent of Theorem 3 in Weber et

al. [143], which derives a lower bound on the outage probability for ad hoc networks

with randomized transmission and power control. Finally, this work considers the

influence of a femtocell tier selection based handoff policy wherein any tier 1 cellular

user within the radius Rf of a femtocell BS undergoes handoff to the femtocell. In

essence, the interference caused by the nearest cellular users is mitigated since these

users are power controlled to a femtocell BS.
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Lemma 3. With a tier selection policy in which any user within a radius Rf of a

femtocell undergoes handoff to the femtocell BS, the intensity of tier 1 users within

H after handoff is given as λTS
c (r) = λce

−λf πRf
2

whenever r > Rf,exc, where Rf,exc is

the femtocell exclusion radius.

Proof. See Appendix A.7.

Remark 2. For small λf and r > Rf,exc, a first-order Taylor approximation shows

that λTS
c ≈ λc · (1− λfπR2

f ). The interpretation is that tier-selection offers marginal

benefits for small femtocell sizes (Rf ¿ Rc). Intuitively, a small sized femtocell does

not cover “enough space” for significant numbers of cellular users in Ωc to accomplish

femtocell handoff. However, Theorem 1 shows that a small femtocell size does lead to

a lower uplink outage probability.

Remark 3. The network OCs considering the effects of a femtocell exclusion region

and tier selection can be obtained by applying Lemmas 2 and 3 in Theorems 2 and 4

respectively. In doing so, we approximate If,f as a Poisson SNP whose cdf is described

by (1).

3.6 Numerical Results

System parameters are given in Table 3.1. The setup consists of the region

H surrounded by 18 macrocell sites to consider two rings of interferers and 2π/3

sectorized antennas at each BS. In (3.10), the statistics of the shadowing gain Ψ were

empirically estimated using the MATLAB functions ksdensity and ecdf respectively.

The OCs were analytically obtained using Theorems 1-4 for an outage constraint

ε = 0.1 in (3.4). The following plots compare the OCs for a shared spectrum network

with interference avoidance against a split spectrum network with omnidirectional

femtocells.

Figs. 3.9-3.10 plot the OC curves for a macrocell and an interior femtocell

with P f
r /P c

r = 1, 10, 100 and Nhop = 1. The femtocell uses a sectorized receive
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Table 3.1: System Parameters
Symbol Description Value

H Region inside reference cellsite N/A
Ωc, Ωf SPPPs defining Tier 1, Tier 2 users N/A
Rc, Rf Macro/Femtocell Radius 500, 20 meters

Uf Poisson mean users per femtocell 5
Nsec Macrocell/Femtocell antenna sectors 3
Nhop CDMA Hopping slots 1, 2, 4
G Processing Gain 128
Γ Target SIR per tier 2 [C/I=3 dB]
ε Target Outage Probability 0.1

P c
r Macrocell receive power 1

P f
r Femtocell receive power 1, 10, 100

σdB Lognormal shadowing parameter 4 dB
α, β Path loss exponents 4, 2

d0c, d0f Reference distances 100, 5 meters
fc Carrier Frequency 2 GHz

antenna with Nsec = 3, θ = 2π/3. The close agreement between the theoretical and

empirical OC curves indicates the accuracy of the analysis. Observe that the outage

constraints oppose one another: Relative to the macrocell, increasing P f
r /P c

r decreases

the largest sustainable Nf for a given Nc. From the femtocell standpoint, increasing

P f
r /P c

r increases the largest sustainable Nc sustainable for a given Nf .

Figs. 3.11 through 3.13 plot the performance of the shared spectrum network

employing interference avoidance for a corner and an interior femtocell, as a function

of Nhop and P f
r /P c

r . Fig. 3.11 shows that with P f
r /P c

r = 1 and a lightly loaded tier 1

network, the corner femtocell can achieve greater than 7x improvement in Nf relative

to the split spectrum network. Intuitively, with P f
r /P c

r = 1, a macrocell BS tolerates

a large cross-tier interference; the downside being that the femtocell BS experiences

higher cross-tier interference arising from cellular users transmitting at maximum

power near the cell edge. This explains why Nf decreases rapidly with increasing

Nc in the OC curves for a corner femtocell. This also suggests that achieving load

balancing by increasing Nc at the expense of Nf requires an order wise difference
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= 10, Nsec =

3, Rf,exc = 20) for a cell interior femtocell (distance to macrocell = 0.5Rc).

in the femtocell-macrocell receive power ratio. We suggest that a practical wireless

system use a larger femtocell-macrocell receive power ratio (P f
r /P c

r ) at the corner
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femtocell, relative to an interior femtocell. Such a position based variable power ratio

would ensure that both the interior and corner femtocells can tolerate interference

from an almost identical number of tier 1 users.

With P f
r /P c

r = 10, Fig. 3.13 shows that up to Nc = 43 cellular users (a

nearly 1.2x improvement in the number of cellular users compared to a split spectrum

network) can be accommodated by an interior femtocell. With P f
r /P c

r = 10 and

Nhop = 4 slots, Figs. 3.12-3.13 show a nearly 2.5x improvement in Nf compared to

the split spectrum network.

Fig. 3.14 shows the OCs with a femtocell exclusion region and a tier selection

policy for femtocell handoff. We observe an increase in Nf by up to 10 additional

femtocells (or 10∗Uf = 50 users) for Nc < 30 users. Both femtocell exclusion and tier

selection do not result in a higher Nc. The reason is that a femtocell exclusion region

does not alleviate tier 1 interference at a femtocell. Furthermore, an explanation

for the conservative gains in Nf is that there is a maximum tolerable interference

to sustain the outage requirements at a given femtocell, that prevents a substantial

increase in the number of actively transmitting femtocells. Next, owing to small

femtocell sizes, a tier selection policy succeeds in curbing cellular interference mainly

for a large Nf , which is sustainable when Nc is small (to satisfy Pc
out ≤ ε). This

explains the dominant gains in Nf at a low-to-moderate Nc.

A relevant question is to ask: “How does the system capacity with randomly

placed users and hotspots compare against a two-tier network with a given configu-

ration?” Kishore et al. [96, Page 1339] have performed a capacity analysis with a

given configuration of cellular users and hotspots. Their results show diminishing sys-

tem capacity gains without interference avoidance, because the configuration contains

high levels of cross-tier interference.

Kishore [95] considers an operator administered macrocell-microcell underlay

and proposes to improve two-tier cellular capacity assuming that the macrocell can
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offload its traffic by handing off users to the microcell. Our model assumes that

femtocells (placed by end consumer) operate with closed access. Consequently, due

to reasons of security, handing off unsubscribed users from macrocell to a femtocell

hotspot may not be practical. This necessitates an interference avoidance strategy.

3.7 Conclusion

This chapter has presented an uplink capacity analysis and interference avoid-

ance strategy for a shared spectrum two-tier DS-CDMA network. We derive exact

outage probability at a macrocell BS and tight lower bounds on the outage prob-

ability at a femtocell. Interference avoidance through a TH-CDMA physical layer

coupled with sectorized receive antennas is shown to consistently outperform a split

spectrum two-tier network with omnidirectional femtocell antennas. Considering the

worst-case interference at a corner femtocell, the network OCs show a 7x improve-

ment in femtocell density. Load balancing users in each tier is achievable through a

orderwise difference in receive powers in each tier. Additional interference avoidance

using a femtocell exclusion region and a tier selection based femtocell handoff offers

conservative improvements in the OCs. The message is clear: Interference avoid-

ance strategies can make shared spectrum two-tier networks a viable proposition in

practical wireless systems.

The uplink capacity analysis presented in this chapter assumes that a) channel-

inversion based power control is adopted at either tier, and b) users seek a common

minimum SINR at their respective BSs. The next chapter relaxes these assumptions

and derives a fundamental relationship between the set of feasible SINR targets at

femtocells and the set of feasible cellular SINR targets. A utility-based femtocell

power control scheme is presented, along with an algorithm which ensures that cel-

lular users can satisfy their minimum target data rates in the presence of interfering

hotspots.
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Chapter 4

Data Rate Adaptation in Closed Access

4.1 Introduction

In a two-tier network with closed access and universal frequency reuse, because

of the lack of coordination between cellular users and hotspot users, the SINRs of cel-

lular users and hotspot users are coupled. This chapter provides three contributions.

First, given a cellular user and N cochannel femtocells, the highest feasible cellular

SINR target is derived, given a set of N femtocell SINR targets over all power control

strategies. A Link Budget bound is presented which enables a simple and accurate

performance analysis in a two-tier network. Next, a utility-based femtocell SINR

adaptation is proposed which comprises of a SINR-based reward less an incurred cost

(namely cross-tier interference to the macrocell). We show improved performance of

this utility adaptation in contrast to conventional closed-loop power control schemes.

Lastly, to guarantee that a cellular user satisfies its SINR target, a distributed link

quality protection algorithm is proposed to adaptively reduce transmission powers of

the strongest femtocell interferers.

4.1.1 Managing Cross-Interference

Contemporary wireless systems employ power control to assist users experi-

encing poor channels and to limit interference caused to neighboring cells. However,

in a two-tier network, cross-tier interference may significantly hinder the performance

of conventional power control schemes. For example, signal strength based power

control (channel inversion) employed by cellular users results in unacceptable deteri-

oration of femtocell SINRs [28]. The reason is because a user on its cell-edge transmits
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with higher power to meet its receive power target, and causes excessive cross-tier

interference at nearby femtocells.

Due to cross-tier interference in a two-tier network with shared spectrum, the

target per-tier SINRs among macrocell and femtocell users are coupled. The notion of

a SINR “target” models a certain application dependent minimum QoS requirement

per user. It is reasonable to expect that femtocell users and cellular users seek different

SINRs (data rates) – typically higher data rates using femtocells – because home users

deploy femtocells in their self interest, and because of the proximity to their BS (Fig.

4.1). However, the QoS improvement arising from femtocells should come at an

expense of reduced cellular coverage.

�� �� �� ��
Circular disc with radius equaling 

the maximum distance of a home 

user from its femtocell AP

Macrocell BS

Figure 4.1: A two-tier cellular system with varying SINR targets

Interference management in two-tier networks faces practical challenges from

the lack of coordination between the macrocell base-station (BS) and femtocell APs

due to reasons of scalability, security and limited availability of backhaul bandwidth
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[160]. From an infrastructure or spectrum availability perspective, it may be easier

to operate the macrocell and femtocells in a common spectrum; at the same time,

pragmatic solutions are necessary to reduce cross-tier interference. An open access

(OA) scheme [36], which performs radio management by vertical handoffs – forcing

cellular users to communicate with nearby femtocells to load balance traffic in each

tier – is one such solution. A drawback of OA is the network overhead [29, 113] and

the need for sufficient backhaul capacity to avoid starving the paying home user.

Additionally, OA potentially compromises security and QoS for home users.

This work assumes Closed Access (CA), which means only licensed home users

within radio range can communicate with their own femtocell. With CA, cross-tier

interference from interior femtocells may significantly deteriorate the SINR at the

macrocell BS. The motivation behind this work is ensuring that the service (data

rates) provided to cellular users remain unaffected by a femtocell underlay which

operates in the same spectrum. Three main reasons are 1. the macrocell’s primary

role of an anytime anywhere infrastructure, especially for mobile and “isolated” users

without hotspot access, 2. the greater number of users served by each macrocell BS,

and 3. the end user deployment of femtocells in their self-interest. The macrocell is

consequently modeled as primary infrastructure, meaning that the operator’s foremost

obligation is to ensure that an outdoor cellular user achieves its minimum SINR

target at its BS, despite cross-tier femtocell interference. Indoor users act in their

self interest to maximize their SINRs, but incur a SINR penalty because they cause

cross-tier interference.

Considering a macrocell BS with N cochannel femtocells and one transmitting

user per slot per cell over the uplink, the following questions are addressed in this

work:

• Given a set of feasible target SINRs inside femtocell hotspots, what is the largest

cellular SINR target for which a non-negative power allocation exists for all users

in the system?
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• How does the cellular SINR depend on the locations of macrocell and femtocell

users and cellular parameters such as the channel gains between cellular users and

femtocells?

• Given an utility-based femtocell SINR adaptation with a certain minimum QoS

requirement at each femtocell, what are the ensuing SINR equilibria and can they

be achieved in a distributed fashion?

• When a cellular user cannot satisfy its SINR target due to cross-tier interference,

by how much should femtocells reduce their SINR target to ensure that the cellular

user’s SINR requirement is met?

The first question poses a problem of determining the radio link quality (feasible

SINR target) for a cellular user, given a set of N transmitting femtocells with different

SINR targets. Questions 2 & 3 seek to determine the data rates at femtocells when

home users adapt their SINR targets based on a utility function accounting for cross-

tier interference; providing link quality protection to an active cellular user may

necessitate femtocells to deliberately lower their SINR targets.

Although this work exclusively focusses on the uplink in a tiered cellular sys-

tem, we would like to clarify that portions of our analysis (Section III) are also appli-

cable in the downlink with potentially different conclusions. Due to space limitations,

the downlink extension is omitted for future work.

4.1.2 Prior Work

Prior research in cellular power control and rate assignments in tiered networks

mainly considered an operator planned underlay of a macrocell with single/multiple

microcells [51, 93]. In the context of this work, a microcell has a much larger radio

range (100-500 m) than a femtocell, and generally implies centralized deployment, i.e.

by the service-provider. A microcell underlay allows the operator to handoff and load
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balance users between each tier [29]. For example, the operator can preferentially

assign high data rate users to a microcell [93, 99, 130] because of its inherently larger

capacity. In contrast, femtocells are consumer installed and the traffic requirements

at femtocells are user determined without any operator influence. Consequently,

distributed interference management strategies may be preferred.

Our work ties in with well known power control schemes in conventional cellu-

lar networks and prior work on utility optimization based on game theory. Results in

Foschini et al. [46], Zander [159], Grandhi et al. [59] and Bambos et al. [17] provide

conditions for SINR feasibility and/or SIR balancing in cellular systems. Specifically,

in a network with N users with target SINRs Γi, 1 ≤ i ≤ N , a feasible power alloca-

tion for all users exists iff the spectral radius of the normalized channel gain matrix

is less than unity. Associated results on centralized/distributed/constrained power

control, link admission control and user-BS assignment are presented in [59, 67, 135,

139, 154, 155, 158] and numerous other works.

The utility-based non-cooperative femtocell SINR adaptation presented here

is related to existing game theory literature on non-cooperative cellular power control

[8, 57, 81, 100, 126, 151] (see [9] for a survey). The adaptation forces stronger femto-

cell interferers to obtain their SINR equilibria closer to their minimum SINR targets,

while femtocells causing smaller cross-tier interference obtain higher SINR margins.

This is similar to Xiao and Shroff[151]’s utility-based power control (UBPC) scheme,

wherein users vary their target SIRs based on the prevailing traffic conditions. Unlike

the sigmoidal utility in [151], our utility function has a more meaningful interpreta-

tion because it models 1. the femtocell user’s inclination to seek higher data-rates

and 2. the primary role of the macrocell while penalizing the femtocell user for caus-

ing cross-tier interference. Our SINR equilibria is simple to characterize unlike the

feasibility conditions presented in prior works e.g [8].

To minimize cross-tier interference, prior femtocell research has proposed open

access [36], varying femtocell coverage area [72], hybrid frequency assignments [62],
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adjusting the maximum transmit power of femtocell users [86] and adaptive access

operation of femtocells [33]. In contrast, this work addresses SINR adaptation and

ensuring acceptable cellular performance in closed access femtocells. Related works

in cognitive radio (CR) literature such as [74, 119] propose that secondary users limit

their transmission powers for reducing interference to primary users (PUs). In [74],

CR users regulate their transmit powers to limit PU interference, but their work does

not address individual rate requirements at each CR. Qian et al. [119] propose a

joint power and admission control scheme, but provide little insight on how a CR

user’s data-rate is influenced by a PU’s rate. In contrast, our results are applicable

in CR networks for determining the exact relationship between the feasible SINRs

of primary and CR users; further our SINR adaptation can enable CR users to vary

their data-rates in a decentralized manner based on instantaneous interference at PU

receivers.

4.1.3 Contributions

Pareto SINR Contours. Near-far effects in a cochannel two-tier network

are captured through a theoretical analysis providing the highest cellular SINR target–

for which a non-negative power allocation exists between all transmit-receive pairs–

given any set of femtocell SINRs and vice versa. With a common SINR target at

femtocells and neglecting interference between femtocells, the per-tier Pareto SINR

pairs have an intuitive interpretation: the sum of the decibel (dB) cellular SINR and

the dB femtocell SINR equals a constant. Design interpretations are provided for

different path loss exponents, different numbers of femtocells and varying locations

of the cellular user and hotspots.

Utility-based Femtocell SINR Adaptation. Femtocells individually max-

imize an objective function consisting of a SINR dependent reward, and a penalty

proportional to the interference at the macrocell. We obtain a channel-dependant

SINR equilibrium at each femtocell. The equilibrium discourages strongly interfering
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femtocells to use large transmit powers. This SINR equilibrium is attained using dis-

tributed power updates[155]. For femtocell users whose objective is to simply equal

their minimum SINR targets, our adaptation simplifies to the Foschini-Miljanic (FM)

update. Numerical results show that the utility adaptation provides up to 30% higher

femtocell SINRs relative to FM.

Cellular Link Quality Protection. To alleviate cross-tier interference when

the cellular user does not achieve its SINR target, we propose a distributed algorithm

to progressively reduce SINR targets of strongest femtocell interferers until the cel-

lular SINR target is met. Numerical simulations with 100 femtocells/cell-site show

acceptable cellular coverage with a worst-case femtocell SINR reduction of only 16%

(with typical cellular parameters).

4.2 System Model

The system consists of a single central macrocell B0 serving a region C. The

macrocell is underlaid with N cochannel femtocells APs Bi, i ≥ 1. Femtocell users

are located on the circumference of a disc of radius Rf centered at their femtocell AP.

Orthogonal uplink signaling is assumed in each slot (1 scheduled active user per cell

during each signaling slot), where a slot may refer to a time or frequency resource

(the ensuing analysis leading up to Theorem 5 apply equally well over the downlink).

AS 3. For analytical tractability, cochannel interference from neighboring cellular

transmissions is ignored.

During a given slot, let i ∈ {0, 1, · · · , N} denote the scheduled user connected

to its BS Bi. Designate user i’s transmit power to be pi Watts. Let σ2 be the variance

of Additive White Gaussian Noise (AWGN) at Bi. The received SINR γi of user i at

Bi is given as

Γi ≤ γi =
pigi,i∑

j 6=i pjgi,j + σ2
. (4.1)
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Here Γi represents the minimum target SINR for user i at Bi. The term gi,j denotes

the channel gain between user j and BS Bi. Note that gi,i can also account for

post-processing SINR gains arising from, but not restricted to, diversity reception

or interference suppression (e.g. CDMA). In matrix-vector notation, (4.1) can be

written as

p ≥ ΓGp + η and p ≥ 0. (4.2)

Here Γ , diag(Γ0, . . . ΓN) while the vector p = (p0, p1, · · · pN) denotes the trans-

mission powers of individual users, and the normalized noise vector equals η =

(η0, . . . ηN), ηi = σ2Γi/gi,i. The (N + 1) × (N + 1) matrix G ≥ 0 is assumed to

be irreducible – meaning its directed graph is strongly connected [73, Page 362]– with

elements given as

Gij =
gi,j

gi,i

, i 6= j and 0 else. (4.3)

Since ΓG is nonnegative, the spectral radius ρ(ΓG) (defined as the maximum modu-

lus eigenvalue max{|λ| : ΓG−λIN+1 is singular}) is an eigenvalue of ΓG [73, Theorem

8.3.1]. Applying Perron-Frobenius theory [73] to ΓG, (4.2) has a nonnegative solution

p∗ (or Γ constitutes a feasible set of target SINR assignments) iff the spectral radius

ρ(ΓG) is less than unity[17, 59]. Consequently,

∀η ≥ 0, (I− ΓG)−1 > 0 ⇔ (I− ΓG)−1η ≥ 0 ⇔ ρ(ΓG) < 1. (4.4)

The solution p∗ = (I − ΓG)−1η guarantees that the target SINR requirements are

satisfied at all BSs. Further, p∗ is Pareto efficient in the sense that any other solution

p satisfying (4.2) needs at least as much power componentwise[17]. When Γ = γIN+1,

then the max-min SIR solution γ∗ to (4.4) is given as

Γ = ΓIN+1 ⇒ Γ∗ =
1

ρ(G)
. (4.5)

In an interference-limited system (neglecting η), the optimizing vector p∗ equals the

Perron-Frobenius eigenvector of ΓG [159].
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4.3 Per-Tier SINR Contours In a Femtocell-Underlaid Macro-
cell

In a two-tier network, let Γc = Γ0 and Γi(i ≥ 1) denote the per-tier SINR tar-

gets at the macrocell and femtocell BSs respectively. Define Γf , diag(Γ1, Γ2, . . . , ΓN)

and Γ = diag(Γc,Γf ). Any feasible SINR tuple ensures that the spectral radius

ρ(ΓG) < 1 with a feasible power assignment given by (4.4). This section derives the

relationship between Γc and Γi as a function of κ and entries of the G matrix.

Using the above notation, ΓG simplifies as

ΓG =

(
0 Γcq

T
c

Γfqf ΓfF

)
. (4.6)

Here the principal submatrix F consists of the normalized channel gains between

each femtocell and its surrounding N − 1 cochannel femtocells. The vector qT
C =

[G01, G02, . . . , G0N ] consists of the normalized cross-tier channel gains between the

transmitting femtocell users to the macrocell BS. Similarly, qF = [G10, G20, . . . GN0]
T

consists of the normalized cross-tier channel gains between the cellular user to sur-

rounding femtocell BSs.

Below, we list two simple but useful properties of ΓG:

Property 1. ρ(ΓG) is a non-decreasing function of Γ. That is, Γ′ ≥ Γ ⇒ ρ(Γ′G) ≥
ρ(ΓG).

Property 2. ρ(ΓG) ≥ ρ(ΓfF).

Property 1 is a consequence of [73, Corollary 8.1.19] and implies that increasing

the per-tier SINRs in Γ drives ρ(ΓG) closer to unity. This decreases the margin for

existence of a nonnegative inverse of I−ΓG in (4.4). Therefore, assuming a fixed set

of femtocell SINRs given by Γf , the maximum cellular SINR target Γ0 monotonically

increases with ρ(ΓG). Property 2 arises as a consequence of ΓfF being a principal

submatrix of G, and applying [73, Corollary 8.1.20]. Intuitively, any feasible femtocell
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SINR in a tiered network is also feasible when the network comprises only femtocells

since ρ(ΓG) < 1 ⇒ ρ(ΓfF) < 1. From (4.4), the condition ρ(ΓfF) < 1 ⇔ (I−ΓfF)−1

is non negative with expansion given as
∑∞

k=0(ΓfF)k.

We restate a useful lemma by Meyer [109] for obtaining ρ(ΓG) in terms of

F,qf ,qc, Γc and Γf .

Lemma 4. [109, Meyer] Let A be a m × n nonnegative irreducible matrix with

spectral radius ρ and let A have a k-level partition

A =




A11 A12 . . . A1k

A21 A22 . . . A2k
...

...
. . .

...
Ak1 Ak2 . . . Akk


 (4.7)

in which all diagonal blocks are square. For a given index i, let Ai represent the

principal block submatrix of A by deleting the ith row and ith column of blocks from

A. Let Ai∗ designate the ith row of blocks with Aii removed. Similarly, let A∗i

designate the ith column of blocks with Aii removed. Then each Perron complement

Pii = Aii + Ai∗(ρI−Ai)
−1A∗i is also a nonnegative matrix whose spectral radius is

again given by ρ.

Using Lemma 4, we state the first result in this work.

Theorem 5. Assume a set of feasible femtocell SINRs targets Γi(i ≥ 1) such that

ρ(ΓfF) < 1, and a target spectral radius ρ(ΓG) = κ, ρ(ΓfF) < κ < 1. The highest

cellular SINR target maintaining a spectral radius of κ is then given as

Γc =
κ2

qT
c [I− (Γf/κ)F]−1Γfqf

. (4.8)

Proof. From Lemma 4, the Perron complement of the entry “0” of ΓG in (4.6) is a

nonnegative scalar equaling κ. This implies,

κ = 0 + Γcq
T
c [κI− ΓfF]−1Γfqf . (4.9)

60



Rearranging terms, we obtain (4.8). Note that since κ > ρ(ΓfF), the inverse [I −
(Γf/κ)F]−1 =

∑∞
k=0(Γf/κ)kFk exists and is nonnegative.

Remark 4. Alternatively, one may use the block determinant formula

det(D) 6= 0 ⇒ det

(
A B
C D

)
= det(D)det(A−BD−1C). (4.10)

Let λ be an eigenvalue of ΓG. Whenever λI − ΓfF is invertible, applying the block

determinant formula implies

det(λI− ΓG) = 0 (4.11)

⇒ det(λI− ΓfF) · det(λ− Γcq
T
c (λI− ΓfF)−1Γfqf ) = 0 (4.12)

⇒ det(λ− Γcq
T
c (λI− ΓfF)−1Γfqf ) = 0 (4.13)

We claim that det(κI − ΓfF) 6= 0 because 1. the spectral radius ρ(ΓG) = κ is also

an eigenvalue of ΓG and 2. Property 2 ensures that (κI − ΓfF) is non-singular.

Replacing λ in (4.13) with κ, one obtains κ = Γcq
T
c (κI−ΓfF)−1Γfqf . Consequently,

(4.8) follows.

Given a set of N feasible femtocell SINR targets, Theorem 5 provides a fun-

damental relationship describing the maximum SINR target at the macrocell over all

power control strategies. Given a κ (e.g. κ = 1− ε, where 0 < ε < 1− ρ(ΓfF)), one

obtains the highest Γc for a given Γf .

Example 6 (One Femtocell). Consider a two-tier network consisting of the central

macrocell B0 and a single femtocell BS B1. The matrix ΓG is given as

ΓG =

(
0 ΓcG01

ΓfG10 0

)
. (4.14)

Setting F = 0,qc = G01,qf = G10 in (4.8), one obtains

ρ(ΓG) =
√

ΓcG01ΓfG10 ⇒ (Γc, Γf ) ∈
{

(x, y) ∈ R2
+ : xy <

1

G01G10

}
. (4.15)

Intuitively, the product of the per-tier SINR targets is limited by the inverse product

of the cross-tier gains between the cellular user to the femtocell AP and vice versa.
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Remark 5. Equation (4.8) generically applies in a wireless network with N +1 users

for finding the best SINR target for a particular user – by appropriately adjusting the

entries in qc, qf and F – for a given set of N SINR targets. However, the subsequent

analysis (Lemma 5) specializes (4.8) to a two-tier cellular system and works only

when the cellular user is isolated.

With Γc obtained from (4.8) and SINR targets Γ∗ = [Γc, Γ1, Γ2, . . . , ΓN ]T , a

centralized power allocation is given as

p∗ = (I− Γ∗G)−1η∗, where η∗ , diag

(
σ2

g1,1

,
σ2

g2,2

, . . . ,
σ2

gN+1,N+1

)
Γ∗. (4.16)

Next, assume that the N femtocells B1 . . . BN choose a common SINR target Γi =

Γf (i ≥ 1). Although the assumption of a common SINR target at all femtocells seems

rather restrictive at first glance, it provides intuition on near-far effects in a two-tier

network which will be discussed in the next section. The following corollary derives

the Pareto contours between the best SINR targets for macrocell and femtocell users

respectively.

Corollary 3. Assume a common positive target femtocell SINR target Γf < 1/ρ(F),

and a target spectral radius ρ(ΓG) = κ, where Γfρ(F) < κ < 1. The Pareto contours

maintaining a spectral radius of κ are given as

{
(Γc, Γf ) : 0 ≤ Γf <

1

ρ(F)
, Γc =

κ2

ΓfqT
c [I− (Γf/κ)F]−1qf

}
. (4.17)

Remark 6 (Pareto optimality). Given a target spectral radius κ, the (Γc,Γf ) tuples

derived in (4.8) (and hence (4.17)) are Pareto optimal. From Property ??, a “better

pair” Γ′f ≥ Γf (component-wise) and Γ′c > Γc cannot be obtained without ρ(ΓG)

exceeding κ.
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Lemma 5. With a set of feasible femtocell SINRs thresholds Γi(i ≥ 1) and ρ(ΓfF) <

1, a necessary condition for any cellular SINR target Γc to be feasible is given as

Γc ≤ 1

qT
c Γfqf

. (4.18)

Consequently, assuming a common positive SINR target Γf < 1/ρ(F) at femtocells

(1/ρ(F) being the max-min target), any feasible SINR pair (Γc, Γf ) satisfies the fol-

lowing inequality

ΓcΓf <
1

qT
c qf

. (4.19)

Proof. Computing the Perron complement of ΓfF in (4.6) and applying Lemma 4:

κ = ρ(ΓfF + ΓfqfΓcq
T
c /κ)

(b)

≥ ρ(ΓfqfΓcq
T
c /κ) (4.20)

where step (b) in (4.20) follows by applying [73, Corollary 8.1.19]. Upper bounding κ2

by unity and applying ρ(qfq
T
c ) = qT

c qf to (4.20) yields (4.18). Alternatively, one can

expand I− (Γf/κ)F and replace qT
c [I− (Γf/κ)F]−1qf by the lower bound qT

c qf .

Intuitively, (4.19) restates that 1/qT
c qf is an upper bound on the product of

the per-tier SINRs, achieved when F = 0 in (4.8), i.e. the interference between

neighboring femtocells is vanishingly small. Ignoring F is justifiable because 1. the

propagation between femtocells suffers at least a double wall partition losses (from

inside a femtocell to outdoor and from outdoor onto the neighboring femtocell), and

2. there is only one partition loss term while considering the propagation loss between

a cellular user to femtocells.

Thus, a simple relationship between the highest per-tier SINRs is expressed

as:

For small F, the sum of the per-tier decibel SINRs equals a channel dependant

constant LdB = −10 log10(q
T
c qf ). We denote this constant L = 1

qT
c qf

as the Link
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Budget. Choosing a cellular SINR target of x dB necessitates any feasible femtocell

SINR target to be no more than LdB− x dB. To keep L large, it is desirable that the

normalized interference powers are decorrelated (or qc and qf do not peak simulta-

neously). In a certain sense, the link budget provides an “efficiency index” of closed

access femtocell operation, since open (or public) femtocell access potentially allows

users to minimize their interference by handoffs.

Example 7 (N Femtocells). Assume a path loss based model wherein the channel

gains gi,j = D−α
i,j (Di,j represents the distance between user j to BS Bi. The term

α is the path loss exponent (assumed equal indoors and outdoors for convenience).

Femtocell user i is located at distances Rf from its AP Bi and Df from B0. The

cellular user is located at distances D from its macrocell BS B0 and Dc from each

femtocell AP (See Fig. 4.2 for N = 2 femtocells).

DDf

Dc

Df

R
f

Dc R
f

fBS fBS

mBS

Figure 4.2: Simple example with N = 2 femtocells for determining how link budgets
vary with the normalized interference distance DfDc/RfD.

In this setup, qT
c = [

(
Df

D

)−α

,
(

Df

D

)−α

, . . . ,
(

Df

D

)−α

]. The vector qf = [
(

Dc

Rf

)−α

,
(

Dc

Rf

)−α

, . . . ,
(

Dc

Rf

)−α

]T .
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The decibel link budget LdB varies with α as a straight line and given as

L , 1

qT
c qF

=
1

N

(
DfDc

DRf

)α

⇒ LdB = −10 log10 N︸ ︷︷ ︸
intercept

+ 10 log10

(
DfDc

DRf

)

︸ ︷︷ ︸
slope

α. (4.21)

Define Q , Df Dc

DRf
as the interference distance product normalized by the sig-

naling distance product. Then, LdB monotonically increases with α whenever the slope

QdB > 0 and decreases otherwise. Consequently, the condition Q ≷ 1 determines the

sensitivity of link budgets to the path-loss exponent.

4.3.1 Design Interpretations

This subsection studies how the per-tier SINRs and link budgets vary with

user and femtocell locations in practical path loss scenarios. Assume that the cellular

user 0 is located at a distance D0,0 = D from the macrocell B0. At a distance Df from

B0 (see Fig. 4.3), N surrounding cochannel femtocells {Bi}, i = 1 · · ·N are arranged

in a square grid – e.g. residential neighborhood – of area D2
grid = 0.25 sq. km. with

√
N femtocells per dimension. Each femtocell has a radio range equaling Rf meters.

Let Di,j denote the distance between transmitting mobile j and BS Bi.

For simplicity, neither Rayleigh fading nor lognormal shadowing are modeled.

Assuming a reference distance Dref = 1 meter [56] for all users, the channel gains gi,j

are represented using the simplified path loss model in the IMT-2000 specification

[1], given as

gi,j =





Kc min (D−αc , 1) i = j = 0,

KfiR
−β
f i = j > 1,

Kfoφ min (D
−αfo

0,j , 1) i = 0, j > 0,

Kcφ min (D−αc
i,j , 1) i > 0, j = 0,

Kfoφ
2 min (D

−αfo

i,j , 1) i 6= j, i, j > 0

(4.22)

In (4.22), αc, β, αfo respectively denote the cellular, indoor and indoor to outdoor

femtocell path loss exponents. Defining fc,MHz as the carrier frequency in MHz,
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L 

L

Macrocell BS

Femtocell user Cellular user

D Cellular user distance to its macrocell BS

D
DF

DF Distance from femtocell grid center to macrocell BS

Figure 4.3: Single transmitting cellular user coexisting with an underlaid grid of
cochannel femtocells.

Kc,dB = 30 log10(fc,Mhz) − 71 dB equals the fixed decibel propagation loss during

cellular transmissions to B0. The term Kfi is the fixed loss between femtocell user i

to their BS Bi. Finally, Kfo denotes the fixed loss between femtocell user i to a dif-

ferent BS Bj, and assumed equal to Kc. The term W explicitly models partition loss

during indoor-to-outdoor propagation (see numerical values for all system parameters

in Table 4.2).

AS 4. Assume equal outdoor path loss exponents from a cellular user and a femtocell

user to the macrocell B0. That is, αc = αfo = α.

Following AS4, substituting (4.22) in (4.19) and assuming that users are at

least 1 meter away from BSs (or D−α
i,j < 1∀i, j), the link budget L is given as

L =
KfiR

−β
f

W 2Kfo

D−α

(
N∑

i=1

D−α
0,i D−α

i,0

)−1

. (4.23)

We first plot the SINR contours in Fig. 4.4 for different normalized D and Df

values. The target spectral radius κ = ρ(ΓG) in (4.8) equals max{1 − 10−4, ρ(F) +
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(1 − 10−4)(1 − ρ(F))} (ensuring that ρ(ΓfF) < ρ(ΓG) < 1). For comparison, the

upper bound in (4.19) was also plotted. Three different positions – normalized w.r.t

the cellular radius – of the user and the grid are considered namely a) D = DF = 0.1,

b) D = 0.1 and DF = 0.5 and c) D = DF = 0.9 . In case (a), note that the macrocell

BS is located in the interior of the femtocell grid.
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Figure 4.4: Per-Tier SINR contours for different cellular user and femtocell locations

We observe that employing (4.19) is a good approximation for the exact result

given in (4.17). The highest per-tier SINRs occurs in configuration (b) suggesting

a low level of normalized interference (qc and qf ). Interestingly, when both users

and hotspots are close to the macrocell BS [configuration (a)], the per-tier SINRs

are worse compared to the cell-edge configuration (c). This counterintuitive result

suggests that unlike a conventional cellular system where the regular placement of

BSs causes the worst-case SINRs typically at cell-edge, the asymmetric locations of

interfering transmissions in a two-tier network potentially diminishes link budgets in

the cell-interior as well. The reason is because power control “warfare” due to cross-

tier interference from femtocells near the macrocell BS necessitates both tiers to lower
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their SINR targets.

Assume that user 0 is located at the center of the femtocell grid (D = Df in

Fig. 4.3). The following lemma provides a necessary condition under which the link

budget increases with α.

Proposition 1. Under assumption 4 and assuming fixed locations of all users w.r.t

their BSs, the link budget monotonically increases with α whenever

∑N
i=1(D0,iDi,0)

−α ln(D0,iDi,0)∑N
i=1(D0,iDi,0)−α

> ln(D). (4.24)

Proof. Taking the first derivative of the link budget in (4.23) with respect to α yields

(4.24).

Fig. 4.5(a) plots the Link Budget in (4.23) for α = 3.5, 4 and N = 4, 16, 64

femtocells with the cellular user colocated at the grid center (D = DF ). The link

budgets with α = 4 are higher relative to those obtained when α = 3.5 indicating

link budgets tend to increase with higher path loss exponents in practical scenarios.

Fig. 4.5(b) plots the cumulative distribution function (CDF) of LdB considering

randomly distributed femtocells inside a circular region of radius Dgrid/
√

π and center

at distance Df from B0. With N = 64 femtocells, both the regular and random

configurations in Figs. 4.5(a)-4.5(b) show diminishing L in the cell-interior suggesting

significant levels of cross-tier interference.

The above results motivate adapting femtocell SINRs with the following objec-

tives namely 1. to maximize their own SINRs, and 2. limit their cross-tier interference.

4.4 Utility-Based Distributed SINR Adaptation

Due to the absence of coordination between tiers, implementing centralized

power control p∗ = (I−Γ∗G)−1η∗ will likely be prohibitively difficult. In this section,
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we present a utility-based SINR adaptation scheme. Using microeconomic concepts,

we shall assume that cellular and femtocell users participate in a N + 1 player non-

cooperative power control game G = [N, {Pi}, {Ui(.)}]. Here N = {0, 1, . . . N} refers

to the player index set and Pi is the strategy set describing the domain of transmission

powers for user i. User i maximizes its individual utility Ui (or payoff) in a distributed

fashion. Consequently, their actions – selecting their transmission power – are the

best response to the actions of other participants. For notational convenience, define

[x]+ , max{x, 0}. Given user i, designate p−i as the vector of transmit powers of

all users other than i and define Ii(p−i) ,
∑

j 6=i pjgi,j + σ2 as the interference power

experienced at Bi.

Formally, for all users 0 ≤ i ≤ N , this power control game is expressed as

max
0≤pi≤pmax

Ui(pi, γi|p−i) for each user in N. (4.25)

We are interested in computing the equilibrium point (a vector of N +1 transmit pow-

ers) wherein each user in N individually maximizes its utility in (4.25), given the trans-

mit powers of other users. Such an equilibrium operating point(s) in optimization

problem (4.32) is denoted as the Nash equilibrium [112]. Denote p∗ = (p∗0, p
∗
1, . . . , p

∗
N)

as the transmission powers of all users under the Nash equilibrium. At the Nash

equilibrium, no user can unilaterally improve its individual utility. Mathematically,

Ui(p
∗
i , γ

∗
i |p∗−i) ≥ Ui(pi, γ

∗
i |p∗−i) ∀pi 6= p∗i , pi ∈ Pi, ∀i ∈ N. (4.26)

We shall make the following assumptions for the rest of the work.

AS 5. All mobiles have a maximum transmission power constraint pmax, consequently

the strategy set for user i is given as Pi = [0, pmax].

AS 6. Assume a closed-loop feedback power control, i.e BS Bi periodically provides

status feedback to user i ∈ N if its current SINR γi = pigii/Ii(p−i) is above/below its

minimum SINR target Γi.
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4.4.1 Cellular Utility Function

Given a current cellular SINR γ0 and a minimum SINR target Γ0 > 0 at B0,

we model the cellular user 0’s objective as

max
0≤p0≤pmax

U0(p0, γ0|p−0) = −(γ0 − Γ0)
2. (4.27)

The intuition behind the strictly concave utility in (4.27) is that user 0 desires to

achieve its minimum SINR target Γ0 – assuming feasibility – while expending no more

than the minimum required transmission power below pmax. Alternatively, given a

cellular SINR γ0 > Γ0 for a given interference I0(p−0) at B0, user 0 could improve its

utility by decreasing p0 until γ0 = Γ0.

4.4.2 Femtocell Utility Function

Given interfering powers p−i and current SINR γi, user i in femtocell Bi obtains

an individual utility Ui(pi, γi|p−i). Having installed the femtocell AP Bi in their self-

interest, user i seeks to maximize its individual SINR while meeting its minimum

SINR requirement. At the same time, transmitting with too much power will create

unacceptable cross-tier interference at the primary infrastructure B0. Consequently,

it is natural to discourage femtocells from creating large cross-tier interference. We

therefore model the utility function for femtocell user i as consisting of two parts.

Ui(pi, γi|p−i) = R(γi, Γi) + bi
C(pi,p−i)

Ii(p−i)
. (4.28)

Reward function. The reward function R(γi, Γi) denotes the payoff to user

i as a function of its individual SINR γi and minimum SINR target Γi ≤ pmaxgi,i

σ2 .

Penalty function. The penalty function bi
C(pi,p−i)
Ii(p−i)

is related to the interfer-

ence experienced at the macrocell BS B0. The penalty C reduces the net utility

obtained by i for creating cross-tier interference at B0 by virtue of transmitting at

power pi. Here bi is a constant which reflects the relative importance of the penalty
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w.r.t the reward of user i. Scaling the penalty by Ii(p−i) ensures that femtocells

experiencing higher interference are penalized less.

Using the framework of [81], we make the following assumptions for femtocell

user i ∈ N \ {0}.

AS 7. For the ith user, given fixed pi, its utility Ui(pi, γi|p−i) is a monotonically

increasing concave upward function of its SINR γi.

AS 8. For the ith user, given fixed γi, the utility Ui(pi, γi|p−i) is a monotonically

decreasing concave downward function of its transmit power pi.

Assumption 7 models declining satisfaction (marginal utility) obtained by user

i, once its current SINR γi exceeds Γi. Assumption 8 models increased penalty

incurred by user i for causing more interference. Under assumptions 7 and 8:

∂Ui

∂γi

> 0 ⇒ dR

dγi

> 0
∂Ui

∂pi

< 0 ⇒ dC

dpi

< 0 (4.29)

∂2Ui

∂γ2
i

< 0 ⇒ d2R

dγ2
i

< 0
∂2Ui

∂p2
i

< 0 ⇒ d2C

dp2
i

≤ 0 (4.30)

Taking the second-order total derivative of Ui w.r.t pi and applying (4.30),

d2Ui

dp2
i

=
d2R(γi, Γi)

dγ2
i

(
gii

Ii(p−i)

)2

+
bi

Ii(p−i)

d2C(pi,p−i)

dp2
i

< 0 (4.31)

This suggests that given interferer powers p−i, the femtocell utility function Ui at Bi

is strictly concave with respect to the user i’s transmission power pi.

Assume that each femtocell individually maximizes its utility U(pi, γi|p−i) as

a best response to the cellular user and neighboring femtocell users’ transmit powers

p−i. The problem statement is given as

max
0≤pi≤pmax

Ui(pi, γi|p−i) = max
0≤pi≤pmax

[
R(γi, Γi) + bi

C(pi,p−i)

Ii(p−i)

]
. (4.32)
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4.4.3 Existence of Nash Equilibrium

Observe that for all i ∈ N, Ui is continuous in p and Ui is strictly concave

w.r.t pi from (4.31) over a convex, compact set [0, pmax]. We now employ the following

theorem from Glicksberg [55], Rosen [120] and Debreu [38]:

Theorem 8. A Nash equilibrium exists in game G = [N, {Pi}, {Ui(.)}] if, for all

i = 0, 1, . . . , N ,

1. Pi is a nonempty, convex and compact subset of some Euclidean space RN+1.

2. Ui(p) is continuous in p and quasi-concave in pi.

Following Theorem 8, the optimization problems in (4.27) and (4.32) have

a Nash Equilibrium. The following theorem derives the SINR equilibria at each

femtocell.

Theorem 9. The SINR Nash equilibrium at femtocell BS Bi, i ∈ N \ 0 equals γ∗i =

p∗i gi,i/Ii(p
∗
−i), where p∗i is given as

p∗i = min

{[
Ii(p

∗
−i)

gi,i

f−1
i

(
− bi

gi,i

dC

dpi

)]+

, pmax

}
and fi(x) ,

[
dR(γi, Γi)

dγi

]

γi=x

.

(4.33)

Proof. See Appendix B.1.

4.4.3.1 Femtocell Utility Selection

Assume the R(γi, Γi) and C(pi,p−i) in (4.28) as shown below.

R(γi, Γi) = 1− e−ai(γi−Γi), γi ≥ 0, C(pi,p−i) = −pig0,i. (4.34)

The exponential reward intuitively models femtocell users’ desire for higher SINRs

relative to their minimum SINR target. The linear cost C(pi,p−i) = −pig0i discour-

ages femtocell user i from decreasing the cellular SINR by transmitting at high power.
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Assuming ai, bi 6= 0, it can be verified that the above choice of R(γi, Γi) and C(pi,p−i)

satisfies the conditions outlined in (4.29) and (4.30).

dR

dγi

= aie
−ai(γi−Γi) > 0

bi

Ii(p−i)

dC

dpi

= − big0,i

Ii(p−i)
< 0 (4.35)

d2R

dγ2
i

= −a2
i e
−ai(γi−Γi) < 0

bi

Ii(p−i)

d2C

dp2
i

= 0 (4.36)

Lemma 6. With the utility-based cellular SINR adaptation [resp. femtocell SINR

adaptation] in (4.27) [resp. (4.32) with reward-cost functions in (4.34)], the unique

SINR equilibria at BS Bi, i ∈ N are given as γ∗i =
p∗i gii

Ii(p−i)
where p∗i is given as

Femtocell User : p∗i = min

{
Ii(p

∗
−i)

gi,i

[
Γi +

1

ai

ln

(
aigi,i

big0,i

)]+

, pmax

}
. (4.37)

Cellular User : p∗0 = min

{
I0(p

∗
−0)

g0,0

Γ0, pmax

}
. (4.38)

Proof. See Appendix B.2.

In a practical tiered cellular deployment, (B.5) can be implemented in a dis-

tributed fashion since each femtocell user i only needs to know its own target SINR Γi

and its channel gain to B0 and Bi given as g0i and gii respectively. Estimating g0,i at

femtocell Bi may require site specific knowledge [32]. Possibly, femtocells would infer

their locations using indoor GPS, or even estimate the path losses from the macrocell

downlink signal in a TDD system (assuming reciprocity).

Remark 7. Given equal minimum SINR targets at all femtocells and assuming iden-

tical coefficients in the utility functions (ai = a, bi = b ∀i ∈ N \ {0}), femtocell users

with higher gi,i/g0,i (or a higher received signal strength relative to cross-tier macrocell

interference) obtain a higher relative improvement in their SINR equilibria.

The choice of the coefficients ai and bi entails careful consideration of the

trade-offs between the femtocell users’ desire to maximize their own data rates and
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the relative importance of satisfying the cellular users’ QoS requirement. The Nash

equilibrium defined in (B.3) has the following properties.

1. For large ai (ai → ∞), the equilibria γ∗i → Γi. This corresponds to hotspot

users with little inclination to exceed their minimum rate requirement (e.g. voice

users). In such a case, (B.5) is equivalent to the Foschini-Miljanic (FM) algorithm

p
(k+1)
i = min

{
p

(k)
i

Γi

γ
(k)
i

, pmax

}
[46, 59].

2. If ai is chosen such that aigi,i < big0,i, the hotspot users’ SINR equilibria are lesser

than their minimum target Γi, because they pay a greater penalty for causing

cross-tier macrocell interference.

3. Choosing ai < 1 and ai

bi
À 1 increases the importance provided to the reward func-

tion relative to the cost function at each femtocell. Indeed, taking the derivative

of 1
ai

ln
(

aigi,i

big0,i

)
w.r.t ai yields

d

dai

[
1

ai

ln

(
aigi,i

big0,i

)]
=

1

a2
i

(
1− ln

(
aigi,i

big0,i

))
> 0 ∀aigi,i

big0,i

< e = 2.71828 . . .

(4.39)

Therefore, the highest gains over the minimum SINR target Γi are obtained when

aigi,i = ebig0,i. Such a choice is not necessarily preferable since the potentially

large cross-tier interference from femtocells may result in γ∗0 < Γ0.

4.4.4 Reducing Femtocell SINR Targets : Cellular Link Quality Protec-
tion

Whenever the cellular SINR target Γ0 is infeasible, user 0 transmits with

maximum power according to (B.6). Assume, after the Mth iterate (assuming large

M), user 0’s SINR γ
(M)
0 < (1− ε)Γ0 where ε is a pre-specified SINR tolerance for the

cellular user.

(1− ε)Γ0 > γ
(M)
0 =

pmaxg0,0

N∑
i=1

p
(M)
i g0,i + σ2

. (4.40)
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For guaranteeing that user 0 achieves its SINR target within its tolerance, that

is γ
(M)
0 ≥ (1− ε)Γ0, we propose that a femtocell subset Π ⊆ {B1, B2, . . . , BN} reduce

their SINR equilibria in (B.3) by a factor t > 1. A centralized selection of t ensures

(1− ε)Γ0 ≤ pmaxg0,0

1
t

∑
i:Bi∈Π

p
(M)
i g0,i +

∑
j:Bj∈ΠC

p
(M)
j g0,j + σ2

(4.41)

where ΠC denotes the set complement of Π. Combining (4.40) & (4.41), a sufficient

condition to obtain γ0 ≥ Γ0 at B0 is that there exists t > 1 and Π ⊆ {B1, B2, . . . , BN}
such that

(
1− 1

t

) ∑
i:Bi∈Π

p
(M)
i g0,i ≥ pmaxg0,0

(
1

γ
(M)
0

− 1

(1− ε)Γ0

)
. (4.42)

In (4.42), whenever Π1 ⊆ Π2 ⊆ {B1, . . . BN}, then tΠ1 ≥ tΠ2 . That is, choosing an

expanding set of femtocell BSs to reduce their SINR targets requires a monotoni-

cally decreasing SINR reduction factor for each femtocell. Further, if reducing SINR

targets inside a femtocell set Π1 does not achieve Γ0 at B0, then a bigger femtocell

set Π2 ⊃ Π1 should be chosen. Centralized selection of t and Π may be practically

hard especially in two-tier networks employing OFDMA because the macrocell BS

may need to communicate the t’s and Π sets for each frequency sub band. A sim-

pler strategy is to distributively adapt the femtocell SINR targets based on periodic

feedback from the macrocell BS.

AS 9. Following every M th update in (B.5), an SINR status feedback occurs from B0

to Bi’s whether γ
(M)
0 < (1− ε)Γ0.

Given M iterative updates, define the set Π(M) [resp. its complement Πc
(M)]

as the dominant [resp. non-dominant] interferer set, consisting of femtocells whose

interference at B0 individually exceeds [resp. below] a threshold y > 0. Mathemat-

ically, Π(M)(y) , {Bi : p
(M)
i g0,i > y}. Whenever femtocell user i determines that

Bi ∈ Π(y), it scales down its SINR target γ∗i in (B.3) by t > 1. Denoting the set
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cardinality by |X|, the above selection chooses the |Π(y)| strongest femtocell interfer-

ers for reducing their transmit powers. Periodically decreasing y by a factor δy after

every M iterations increases |Π(y)|. Specifically, for all j ≥ i, choosing yMj ≤ yMi

ensures that ΠMj ⊇ ΠMi. Given a tolerance ε, the SINR reduction procedure is re-

peated after every M updates until the cellular user’s SINR is greater than (1− ε)Γ0.

See Algorithm 1 for the pseudocode. Table 4.1 shows the algorithm performance in

a practical scenario of a macrocell overlaid with 16 femtocells.

Algorithm 1 Maintain Cellular Link Quality at Macrocell BS B0

repeat
Initialize k ← 1,p ← pmax {Initialize iteration count and TX powers.}
while k ≤ MAXITER do

Cellular user 0 adapts transmission power according to p
(k+1)
0 =

min

{
Γ0

γ
(k)
0

p
(k)
0 , pmax

}

For all i = 1, 2, . . . , N , femtocell user i adapts transmit power according to

p
(k+1)
i = min

{
p
(k)
i

γ
(k)
i

γ∗i , pmax

}
where γ∗i ,

[
Γi + 1

ai
ln

(
aigi,i

big0,i

)]+

k ⇐ k + 1
end while
Macrocell B0 broadcasts status indicator flag = 1[γ∗0 ≥ (1− ε)Γ0] to all femto-
cells where ε ∈ [0, 1] is a pre-specified tolerance.
if flag == 0 then
{g0,i is channel gain from Bi to B0}
Form status indicator at femtocell Bi: flagi = 1(p∗i g0,i > y), where y > 0
if flagi == 1 then
{Reduce reduce γ∗i since femtocell user i causes excessive cross-tier Interfer-
ence.}
SINR Target Update: γ∗i,dB ⇐ γ∗i,dB − tdB, where t > 1

end if
y ⇐ y/δy {Induce more femtocell users to lower SINR Target.}

end if{Check if cellular user 0’s SINR is within (1− ε)Γ0}
until flag == 1

Provided the SINR at B0 equals (1− ε)Γ0, the mean femtocell dB SINR 〈γ∗dB〉,
the average percentage of degraded femtocells 〈N〉 and the average percentage dB SINR
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Table 4.1: Example: Link quality protection for a cellular user (row 2) with N = 16
femtocells

User i D0,i/R dB Target Γ Γ∗M (dB) Γ∗19M (dB) p∗19M (dBm)
0 0.1000 21.0034 7.8979 20.1932 30.0000
1 0.2915 25.3945 25.5374 23.9538 0.4138
2 0.1716 27.8943 27.9605 21.6260 3.1487
3 0.1716 22.6351 22.8535 18.1027 −0.2808
4 0.2915 27.1217 27.2182 24.8428 1.4084
5 0.2506 14.0872 15.6355 14.8437 −3.6491
6 0.0850 14.4560 15.3847 5.8830 1.3216
7 0.0850 28.3470 28.3891 15.7201 11.1628
8 0.2506 25.7148 25.8408 21.8818 3.5317
9 0.3100 17.9488 18.7032 17.9114 −0.5868
10 0.2014 8.4026 12.3111 7.5602 3.0034
11 0.2014 28.3375 28.4014 19.6914 15.1274
12 0.3100 12.3944 14.6515 14.6515 −3.5588
13 0.4301 8.6965 13.1272 13.1272 −10.4070
14 0.3598 19.4412 20.0152 19.2234 0.7828
15 0.3598 20.3513 20.8225 20.0306 1.7930
16 0.4301 26.7008 26.8211 26.8211 3.4629

User 0 designates cellular user. Users 1 through 16 represent femtocell users.
Bold faced entries designate users unable to meet their SINR target.
Initial spectral radius ρ(ΓG) = 4.4391
Final spectral radius ρ(Γ∗19MG) = 0.9999 (M=1000 iterations/update)
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degradation 〈∆(γ∗)〉 at femtocells (assuming zero SINR degradation at femtocells with

γ∗i ≥ Γi) are given as

〈γ∗dB〉 =
1

N

N∑
i=1

10 log10 γ∗i

〈|Π|〉 =
1

N

∣∣∣{Bi ∈ Π : γ
(M)
i < Γi}

∣∣∣

〈∆(γ∗)〉 =


 1

N

∑

Bi∈Π:γ
(M)
i <Γi

10 log10 Γi − 10 log10 γ
(M)
i

10 log10 Γi


 . (4.43)

4.5 Numerical Results

In this section, we present numerical results based on two experiments with

the system parameters in Table 4.2 and the setup in Section 4.3.1.

Table 4.2: System Parameters
Variable Parameter Sim. Value

Rc Macrocell Radius 1000 m
Rf Femtocell Radius 30 m

Dgrid Grid size 500 m
f Carrier Frequency fMhz 2000 MHz

pmax Max. Transmission Power per Mobile 1 Watt
Γc,min, Γc,max Max. and Min. Cellular SINR target 3, 10 dB
Γf,min, Γf,max Max. and Min. Femtocell SINR target 5, 25 dB

Kfi Indoor Loss 37 dB
W Partition Loss 5, 10 dB
α, β Outdoor and Indoor path loss exponents 4, 3
tdB Femtocell SINR target reduction 0.8 dB
δy Interference threshold reduction 3 dB

The AWGN power σ2 in (4.1) was determined assuming a cell-edge user ob-

tains a cellular SNR equaling 20 dB at B0 employing maximum transmission power.

Results are reported for 5000 different SINR trials in each experiment. The mini-

mum femtocell SINR targets were randomly selected (uniform distribution) in the
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interval [Γf,min, Γf,max] dB. In any given trial, if the generated set of minimum SINR

targets Γf resulted in ρ(ΓfF) > 1 in (4.6), then our experiments scaled Γf by a factor

ρ(ΓfF)(1 + 10−3) for ensuring feasible femtocell SINR targets.

The first experiment obtains the improvements in femtocell SINRs relative to

their minimum SINR targets with our proposed SINR adaptation. A cell-edge location

of the cellular user (D = 0.9) and the femtocell grid (DF = 0.9) is considered. To

maximize the chance of obtaining a feasible set of (N + 1) SINRs, the cellular SINR

target Γ0 is equal to either its minimum target Γc,min = 3 dB, or scaling its highest

obtainable target in (4.8) by ∆c,dB = 5 dB (which ever is larger) and given as

Γ0 = max

{
Γc,min,

1

∆c

κ2

qT
c [I− (Γf/κ)F]−1Γfqf

}
. (4.44)

Assuming ai = a and bi = b ∀i ≥ 1 in (B.3), Fig. 4.6 plots the mean decibel

femtocell SINRs (D = Df = 0.9) in (4.43) for different a and b values. Selecting

a < 1 models femtocell users seeking a greater SINR reward relative to their minimum

SINR target. With a = 0.1, b = 1 and N = 64 femtocells, there is a nearly 30 %

improvement in mean femtocell SINRs relative to their average minimum SINR target.

With a higher interference penalty at femtocells (b = 1), our utility adaptation yields

a nearly 2 dB improvement in mean femtocell SINRs above their mean SINR target.

When a >> 1, femtocell users have little inclination to exceed their minimum SINR

targets. In fact, with N ≥ 64 femtocells, the mean equilibrium femtocell SINRs are

below the mean SINR target because femtocell users turn down their transmit powers

to improve the cellular link quality.

The second experiment considers randomly selected decibel cellular SINR tar-

gets chosen uniformly in the interval [Γc,min, Γc,max] dB. All femtocells selected identi-

cal coefficients ai = bi = 1 in in (B.3). Femtocells scaled down their SINR targets in

(B.5) until the cellular user 0 approached within 95% of its minimum SINR target.

Fig. 4.7 shows the average femtocell decibel SINRs 〈γ∗dB〉 using the distributed

power control in (B.5)-(B.6) and cellular link quality protection. The black dotted
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lines plot the average minimum decibel femtocell SINR target given as 10 log10(
√

Γf,minΓf,max).

With N = 64 femtocells, a nearly 8% SINR improvement is obtained with a cell-edge

location of the cellular user and femtocell APs.

Figs. 4.8(a)-4.8(b) plot the mean percentage reduction in femtocell SINRs

〈∆(γ∗)〉 and the mean percentage of “degraded” femtocells 〈|Π|〉 in (4.43). With

N = 100 femtocells and a cell-edge location (D = 0.9, DF = 0.9), although Fig.

4.8(b) shows that nearly 45% of femtocells operate below their minimum SINR target,

the worst-case femtocell SINR reduction at femtocells is only 16% [Fig. 4.8(a)]. In all

other cases, the mean percentage SINR reduction is less than 6%. This shows that our

cellular link quality protection algorithm guarantees reliable cellular coverage without

significantly affecting femtocell SINR targets.

4.6 Conclusion

Cellular operators will obtain better spectral usage and reduced costs by de-

ploying macrocell and femtocell users in a shared region of spectrum. Our work has

addressed three related questions. The first is that of determining the radio link qual-

ity for a cellular user, given a set of N transmitting femtocells with different SINR

targets. The takeaway is that achieving higher SINR targets in one tier fundamen-

tally constricts the highest SINRs obtainable in the other tier. The reason is because

of near-far effects caused by the asymmetric positions of interfering users w.r.t nearby

BSs. The second and third questions seek to determine femtocell data rates when

home users perform utility-based SINR adaptation; providing link quality protection

to an active cellular user may necessitate femtocells to deliberately lower their SINR

targets. We provide a link quality protection algorithm for progressively reducing the

SINR targets at strong femtocell interferers when a cellular user is unable to meet

its SINR target. Simulation results confirm the efficacy of the proposed algorithm

and its minimal impact (worst case femtocell SINR reduction of only 16%) on femto-

cell SINRs. Being distributed, the power control algorithm ensures minimal network
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overhead in a practical two-tier deployment.

The next chapter extends the analytical framework in Chapters 3-4 to ac-

count for multi-antenna transmission at either tier. Specifically, we determine how

exploiting the additional spatial degrees of freedom provided using multi-antenna

transmission improves coverage and alleviates the near-far effect in a two-tier cellular

network.

84



Chapter 5

Coverage in Multi-Antenna Two-Tier Networks

5.1 Introduction

In two-tier networks with universal frequency reuse, the near-far effect from

cross-tier interference creates dead spots where reliable coverage cannot be guaran-

teed to users in either tier. Employing multiple antenna transmission at the macrocell

and femtocells provides independent and spatially distinct copies of the transmitted

signal, thereby providing increased spatial reuse and increased robustness against

near-far effects at the user terminal. This chapter considers how multi-antenna trans-

mission influences the coverage and spatial reuse in a two-tier network with universal

frequency reuse. Two transmission strategies namely single user (SU) multiple an-

tenna transmission and multiple user (MU) multiple antenna transmission schemes

are considered. We derive per-tier coverage zones wherein cross-tier interference bot-

tlenecks cellular and hotspot coverage. A decentralized carrier-sensing approach is

presented for regulating hotspot transmit powers based on their location.

5.2 Background on Multi-Antenna Transmission

Using multiple antennas (MIMO) at the transmitter and receiver exploits the

rich spatial diversity offered by the wireless channel to obtain robustness and in-

creased wireless capacity. MIMO enables simultaneous transmission of multiple data

streams – spatial multiplexing (SM) – providing a linear increase in capacity with

the number of antennas [47, 137]. Alternatively, MIMO can improve robustness by

exploiting transmit or receive diversity, with or without channel state information at
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the transmitter (CSIT) [6, 111, 115]. In point-to-point MIMO, practical adaptation

schemes have been proposed for alternating between SM and diversity based on, but

not restricted to, the current channel condition (see [24, 70, 71] and the references

therein) and the spatial selectivity of the wireless channel [43, 44].

In point-to-point MIMO with full channel state information (CSI) – both the

transmitter and receiver have full channel knowledge – the channel capacity scales as

min(M,N) [137], where M is the number of transmit antennas and N is the number

of receive antennas. Rather surprisingly, at high Signal-to-Noise Ratio (SNR), an

identical scaling occurs with CSI at the receiver only. Since this scaling behavior

occurs even for small M, N – as long as the channel can be estimated accurately at

the receiver– MIMO has found widespread appeal in 4G wireless standards such as

3GPP’s LTE and WiMAX (IEEE 802.16e).

In point-to-multipoint systems (broadcast channel), the multiplexing gain –

defined as the quantity lim
P→∞

Csum

log2 P
– characterizes the scaling behavior of the sum

capacity Csum at high SNR. Given M transmit antennas at the BS, N receive antennas

and n users and assuming CSIT, prior works have shown that a multiplexing gain

of min(M, max(N, n)) can be provided [69, 82]. Assuming N < M , the high SNR

capacity can therefore scale linearly with the number of transmit antennas at the BS,

if the number of users is made larger than M (as is typically the case).

The sum capacity of the MIMO broadcast channel is achieved using a Dirty-

Paper Coding (DPC) transmission strategy [145]. Although optimal, DPC trans-

mission requires high complexity and therefore hard to implement in practical wire-

less systems employing MIMO. This has motivated the use of linear MIMO trans-

mit/receive processing techniques [83, 116] – such as zero-forcing (ZF), Minimum

Mean Squared Error (MMSE) precoding – that incur low complexity while asymp-

totically providing the same multiplexing gain as DPC transmission.

Considering the effects of a imperfect channel information at the BS, works

by [83, 164] show that even with just one base-station (no out of cell interference),
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multi-user MIMO using linear ZF precoding lose their spatial multiplexing gain with

a fixed number of feedback bits and/or feedback delay. With multiple base-stations,

the limited number of antennas at the user terminal causes the performance of either

SM or multi-user transmission schemes to deteriorate in the presence of other cell

interference (OCI) [11, 23]. This degradation is due to the increased dimensionality

of the received signal, which necessitates providing robustness against OCI with the

available degrees of freedom [11].

Addressing OCI in multicellular systems through base-station cooperation

has been the subject of intense research. Coordinated BS processing schemes using

block-diagonalization (BD) techniques have been proposed in [34, 45, 88, 133, 162]. By

jointly designing a linear preprocessing filter among cooperating BSs, BD transmis-

sion provides an interference-free channel to each individual user. The drawback is

that BD transmission requires complete channel information at each BS regarding the

channel gains between all other BSs and their respective users. To circumvent this,

research in network-MIMO [19, 163] propose clustered BS cooperation, which only

require local channel knowledge within each group of cooperating BSs. In spite of BS

clustering, the complexity of such schemes is still daunting because of the network

overhead for exchanging channel information between BSs.

In a tiered cellular network with universal frequency reuse, because of the

potential proximity of femtocells to a cellular user, cross-tier femtocell interference is

likely to be more severe in comparison to OCI in conventional cellular systems. Due

to reasons of scalability and limited availability of backhaul bandwidth, there will be

little or zero coordination between the macrocell and femtocell BSs. Consequently,

centralized BS cooperation – consequently employing DPC, block diagonalization and

other sophisticated transmission schemes – will likely be difficult, if not impossible to

implement in a two-tier network. Considering multi-antenna transmission at either

tier, this work instead proposes a decentralized carrier-sensing approach to regulate

femtocell transmit powers and minimize hotspot interference at cellular users.
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5.3 Problem Definition

The motivation behind this work is to understand how the available degrees

of freedom from multiple antenna transmission influences coverage and spatial reuse

in a two-tier network with universal frequency reuse [31]. We consider both single-

user (SU) multiple antenna (SU) transmission and multiuser (MU) multiple antenna

transmission employed by the macrocell base-station (BS) and femtocell APs. Array

gain resulting from SU transmission (Fig. 5.1) provides robustness against cross-tier

interference. Multiuser transmission, on the other hand, increases the number of

simultaneous transmissions (Fig. 5.2) at the expense of reduced signal strength per

user terminal.

Figure 5.1: Single user multiple antenna transmission

Given a multiple antenna transmission strategy (SU or MU), let λf denote the

maximum density (in femtocells per square meter) of simultaneously transmitting

femtocells – denoted as the maximum femtocell contention density – that guarantees

a certain minimum per-tier QoS requirement. Given a certain minimum per-tier

target SIR equaling Γ, the QoS requirement stipulates that the instantaneous SIR at
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Figure 5.2: Multi-user multiple antenna transmission

each user should exceed Γ with a probability of at least 1 − ε, where ε is a design

parameter. Since the signal power for a cellular user decays as D−αc (D being the

distance from the macrocell BS and αc is the outdoor path loss exponent), satisfying

its QoS requirement requires λf to be a monotonically decreasing function of D.

Conversely, satisfying the QoS requirement for a femtocell user at D necessitates λf

to be monotonically decreasing as D → 0.

This work characterizes near-far effects by defining two quantities of interest

namely the No-Coverage Femtocell Radius and the Cellular Coverage Radius. The no-

coverage femtocell radius Df determines the minimum SIR feasible femtocell distance

(Fig. 5.3) from the macrocell. Any femtocell user within D < Df meters from the

macrocell experiences an outage probability greater than ε due to excessive cellular

interference. This suggests that any user at D < Df should communicate with the

macrocell because of its potentially higher cellular SIR. The cellular coverage radius

Dc denotes the maximum SIR feasible distance (Fig. 5.4) from the macrocell BS up

to which a cellular user can satisfy its outage probability constraint in the presence
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of hotspot interference. Since there is no coordination between tiers for managing

interference, providing greater spatial reuse using femtocells trades off the coverage

radiuses and vice-versa. Because the cellular network serves as the primary network

to mobile outdoor users, it is desirable to maximize Dc in the presence of hotspot

interference.

Df

D

Figure 5.3: No-coverage femtocell radius Df

Assuming that each tier employs either transmit beamforming (BF) [for SU

transmission] or zero-forcing precoding [for MU transmission] with transmission pow-

ers Pc and Pf in each resource (eg. frequency sub-band), this work poses the following

questions:

• What is the maximum femtocell contention density λf as a function of the location

D with respect to (w.r.t) the macrocell, the ratio Pc/Pf , the transmission strategy

(SU vs. MU transmission), the number of transmit antennas per macrocell and

femtocell AP, the target per-tier SIR Γ, the maximum outage probability ε and the

path loss exponents?
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D
c

D

Figure 5.4: Cellular coverage radius Dc.

• Given an average of Nf transmitting femtocells per cell-site, how much cellular

coverage can the macrocell provide to its users?

• How does the no-coverage femtocell radius vary with SU and MU femtocell trans-

mission strategies?

• How should femtocells adapt their transmission power as a function of their loca-

tion w.r.t the macrocell for ensuring that nearby cellular users satisfy their QoS

requirements?

5.3.1 Related Works

The subject of this work is related to Huang et al. [75] which derives per-tier

transmission capacities with spectrum underlay and spectrum overlay. In contrast to

their work which assumes relay-assisted cell-edge users, our work proposes to improve

coverage by regulating femtocell transmit powers. Hunter et al. [76] have derived

transmission capacities in an ad hoc network with spatial diversity. Our work, in
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contrast, derives the coverage loss from cross-tier interference in a cellular-underlaid

ad hoc network with multi-antenna BSs. To the best of our knowledge, there is

little related work addressing diversity performance in tiered networks (e.g [90] which

proposes tilted antenna arrays to reduce cross-tier interference).

To overcome the near-far problem in femtocell networks, prior works have pro-

posed hybrid femtocell frequency assignments [62], adjusting the maximum transmit

power of femtocell users [86] and adaptive femtocell access [33]. Related works on

cognitive radios (CR) include (but not restricted to) 1) analyzing sensing-throughput

tradeoffs [104] for computing optimal sensing time by CR users and 2) limit transmit

powers of CR users [53, 66, 74, 119]. The differentiating aspect of our work is a de-

centralized femtocell transmit power selection scheme which ensures a per-tier outage

probability below a desired threshold.

5.3.2 Contributions

Given Tc antennas at the macrocell and Tf antennas at each femtocell, per-

tier transmission powers equaling Pc at the macrocell and Pf at each femtocell, and

path loss exponents given as αc (from outdoor cellular transmission) and αfo (from

femtocell transmission to outdoor users and neighboring femtocells) respectively, our

work provides the following contributions.

Coverage. We derive coverage zones wherein cross-tier interference prevents

users in each tier from satisfying their QoS requirements. Single user macrocell trans-

mission is shown to increase the cellular coverage radius by a factor T
2/αc
c relative to

MU transmission. Single-user femtocell transmission is shown to decrease the no-

coverage femtocell radius Df by a factor of (Tf/ε
1−1/Tf )1/αc relative to MU femtocell

transmission. This suggests that the array gain provided by SU transmission results

in superior coverage in either tier. Moreover, a femtocell located just a few meters

outside the no-coverage zone can tolerate interference from greater than 100 hotspots
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per cellsite. This suggests that femtocell performance is regulated by cellular inter-

ference and hotspot interference is negligible in comparison.

Hotspot Contention Density. We derive the maximum femtocell contention

density λ∗f (D) at distance D from the macrocell BS. Two distinct operating regimes

are shown namely a 1. Cellular-limited regime, wherein femtocell users are primarily

affected by cellular interference and 2. Hotspot-limited regime wherein both cellu-

lar and hotspot users are affected by hotspot interference. Regime 1 determines the

coverage provided to femtocell users, while Regime 2 determines λ∗f (D) and the cel-

lular coverage radius. In Regime 2, SU macrocell transmission is shown to increase

λ∗f (D) by a factor of Γ(1 − 2/αfo)T
4/αfo
c (where Γ(z) ,

∫∞
0

tz−1e−t dt ∀Re(t) > 0 is

the Gamma function) relative to MU transmission. Femtocells maximize their area

spectral efficiency by choosing their transmission strategy depending on αfo, with SU

transmission being desirable with considerable hotspot interference (αfo < 4). This

suggests that per-tier SU transmission is preferable from a spatial reuse perspective.

Power control. We propose a carrier-sensing approach in which a femtocell

chooses its transmission power Pf in order to minimize hotspot interference and to

ensure uniform cellular coverage. We derive lower and upper bounds for Pf depending

on the femtocell location, the number of macrocell and femtocell antennas and the

path loss exponents. We demonstrate that our strategy enables uniform cellular

coverage with up to 60 femtocells per cell site (with typical cellular parameters).

5.4 System Model

Assume a central macrocell B0 using Tc antennas to service a geographical

region C, assumed as a circular disc with radius Rc and area |C| = πR2
c . Each femtocell

is equipped with Tf antennas. Femtocell users are located on the circumference of a

disc of radius Rf centered at their femtocell AP. Both cellular users and femtocell users

are assumed to be equipped with single-antenna receivers. In a given time/frequency
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slot, each macrocell [resp. femtocell] employs its Tc [resp. Tf ] antennas for serving

1 ≤ Uc ≤ Tc cellular [resp. 1 ≤ Uf ≤ Tf indoor] users. Although user selection

has a potentially beneficial impact, it is not considered in this work for analytical

tractability.

This work employs a stochastic geometry framework for modeling the random

spatial distribution of the underlying femtocells. The randomly located femtocells are

assumed to be distributed according to a Spatial Poisson Point Process (SPPP) Πf

(see [65, 91] for background, prior works include [14, 26, 48, 160]). Provided Πf is a

homogeneous SPPP (or the intensity λf in femtocells per square meter stays constant

over C), the average number of actively transmitting femtocells is readily obtained as

Nf = λf |C| femtocells per cellsite. Because of near-far effects inherent to a two-tier

network, the maximum hotspot intensity varies with the location D in the cell-site.

5.4.1 Terrestrial Path Loss Model

The signal decay encountered using terrestrial propagation to users in either

tier is represented using a distance based path loss model. Temporal amplitude varia-

tions of the complex vector downlink channel are modeled as frequency-flat Rayleigh

fading–e.g. each frequency sub-band in frequency division multiple access (FDMA)

transmission–with individual complex entries distributed as CN(0, 1). For analytical

simplicity, this work does not consider random lognormal shadow fading. Instead,

we shall assume a fixed partition loss, based on Qualcomm’s home BS propagation

model [2], which accounts for wall losses encountered during outdoor-to-indoor and

indoor-to-indoor propagation. Shown below, we use the IMT-2000 channel model [1,

Page 26] for modeling indoor (derived from the COST231 indoor model [1, Page 44])

and outdoor path losses.

Macrocell to Cellular Users. The decibel path loss between B0 and cellu-

lar user 0 is modeled as PLc,dB = Ac,dB + 10αc log10 D where αc is the outdoor path

loss exponent, Ac,dB = 30 log10 fc−71 represents the fixed decibel loss during outdoor
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propagation, fc is the carrier frequency in MHz and D is the distance between B0

and its user.1

Macrocell to Femtocell Users. We model each femtocell as a point ob-

ject, hence all indoor users served by a given femtocell experience identical path loss

from cellular interference. This decibel path loss is given as PLf,c,dB = Af,c,dB +

10αc log10(D) where Af,c,dB = 30 log10 fc− 71+WdB designates the fixed decibel path

loss, D is the distance between B0 and the femtocell and WdB equals the decibel wall

partition loss during outdoor-to-indoor wireless propagation.

Femtocell to Subscribed Home Users. The decibel path loss between a

femtocell to its licensed, subscribed indoor users is modeled as PLfi,dB = Afi,dB +

10αfi log10(Rf ) where Afi,dB = 37 dB models the fixed propagation loss in decibels

between the femtocell to its desired user, αfi represents the indoor path loss exponent.

For analytical simplicity and modeling the worst-case scenario, we assume that indoor

users are located on the edge of their respective femtocells.

Femtocell to Outdoor Cellular Users. Given a transmitting femtocell, any

cellular user located at distance D will experience cross-tier interference with decibel

path loss modeled as PLc,fdB = Ac,f,dB + 10αfo log10(D). Here, the fixed decibel path

loss is designated by Ac,f,dB = PdB + 37, while αfo denotes the path loss exponent

during indoor-to-outdoor wireless propagation.

Femtocell to Neighboring Femtocells. The decibel path loss of the hotspot

interference caused by a transmitting femtocell at another femtocell is given as PLf,fdB =

Af,f,dB + 10αfo log10(D) where Af,f,dB = 2WdB + 37 denotes the fixed decibel path

loss (the factor of 2 models the double wall partition loss during indoor to indoor

propagation) and D is the distance between the two femtocells.

1Strictly speaking, the IMT-2000 pedestrian test model adopts a fixed path loss exponent αc = 4
(with path loss PLdB = 30 log10 fc + 40 log10(D) − 71). To keep the analysis general, this work
parameterizes the outdoor path loss exponent.

95



5.5 Per-Tier Signal-to-Interference Ratios

Assume that the macrocell B0 serves 1 ≤ Uc ≤ Tc users. Define hj ∈ CTc×1 as

the channel from B0 to cellular user j ∈ {0, 1, . . . , Uc− 1} with its entries distributed

as hk,j ∼ CN(0, 1). The direction of each vector channel is represented as h̃j , hj

||hj || .

Designate H̃ = [h̃0, h̃1, . . . , h̃Uc−1]
† ∈ CUc×Tc as the concatenated matrix of channel

directions, where the symbol † denotes conjugate transpose.

AS 10. Perfect channel state information (CSI) is assumed at the central macrocell

[resp. femtocells] regarding the channels to their own users.

Although we acknowledge that imperfect channel estimation plays a poten-

tially significant role, we defer its analysis for subsequent research and instead employ

AS10 for analytical tractability.

AS 11. For analytical tractability, cochannel Interference from neighboring cellular

transmissions is ignored.

This work assumes linear zero-forcing (ZF) precoding transmission because it

has low complexity, yet achieves the same multiplexing gain as higher complexity

schemes such as dirty-paper coding [83]. With ZF precoding transmission, macro-

cell BS B0 chooses its precoding matrix V ∈ CTc×Uc = [vi]1≤i≤Uc as the normal-

ized columns of the pseudoinverse H̃†(H̃H̃†)−1 ∈ CTc×Uc . Similarly, each femtocell

Fj ∈ ΠF serves 1 ≤ Uf ≤ Tf users with the channel directions between Fj to its in-

dividual users represented as G̃†
j = [ ˜g0,j, ˜g1,j, . . . g̃Uf−1,j] and the entries of g̃k,j dis-

tributed as CN(0, 1). With ZF precoding, the columns of the precoding matrix Wj =

[wj,i]1≤i≤Uf
∈ CTf×Uf equal the normalized columns of G̃j

†
(G̃jG̃j

†
)−1 ∈ CTf×Uf .

5.5.1 SIR Analysis at a Femtocell User

Consider a reference femtocell F0 at distance D from the macrocell B0. During

a given signaling interval, the received signal at user 0 at distance Rf w.r.t F0 is given
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as

y0 =
√

AfiR
−αfi

2
f g†0W0r0︸ ︷︷ ︸

Desired Signal

+
√

Af,f

∑

Fj∈Πf\F0

|X0,j|−
αfo
2 g†0,jWjrj

︸ ︷︷ ︸
Intra-tier Interference

+
√

Af,cD
−αc

2 f †0Vs︸ ︷︷ ︸
Cross-tier Interference

+n

where the vectors s ∈ CUc×1 and rj ∈ CUf×1 designate the transmit data symbols

for users in B0 and Fj, which satisfy E[|s||2] ≤ Pc and E[||rj||2] ≤ Pf respectively

(assuming equal power allocation) and n represents background noise. The term f0 ∈
CTc×1 [resp. g0,j] designates the downlink vector channel from B0 [resp. interfering

femtocell Fj] to user 0. Neglecting receiver noise for analytical simplicity, the received

SIR for user 0 is given as

SIRf (F0, D) =

Pf

Uf
AfiR

−αfi

f |g†0w0,0|2
Pc

Uc
Af,cD−αc ||f †0V||2 +

Pf

Uf
Af,f

∑
Fj∈Πf\F0

||g†0,jWj||2|X0,j|−αfo

. (5.1)

For successfully decoding the message intended for user 0, SIRf (F0, D) should be

greater than equal to the minimum SIR target Γ. For clarity of exposition, we define

Pf =
Pc

Pf

Af,c

Af,f

D−αc , Qf =
Af,f

Afi

R
αfi

f Uf . (5.2)

User 0 can successfully decode its signal provided SIRf (F0, D) is at least equal to

its minimum SIR target Γ. Combining (5.1) and (5.2), the probability of successful

reception is given as

P[SIRf (F0, D) ≥ Γ] =

P

[
|g†0w0,0|2 ≥ ΓQf

(
Pf

Uc

||f †0V||2 +
1

Uf

∑
j∈ΠF

||g†0,jWj||2|X0,j|−αfo

)]
. (5.3)

Let κ =
PfQfΓ

Uc

= Γ
Pc/Uc

Pf/Uf

Af,c

Afi

D−αc

R
−αfi

f

. (5.4)
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Note that κ ≥ 0 and the expression κ
κ+1

∈ [0, 1) characterizes the relative strength of

cellular interference. As κ increases (or κ
κ+1

→ 1), user 0 experiences progressively

poor coverage due higher cellular interference. Conversely, as κ → 0, SIRf (F0, D) is

limited by interference from neighboring femtocells.

Definition 6. Given a Beta distributed random variable X ∼ Beta(a, b) with two

positive shape parameters a and b, denote its cumulative distribution function (cdf)

FX(x) , P[X ≤ x] – namely the regularized incomplete beta function – as Ix(a, b).

Definition 7. Given a Beta distributed random variable X ∼ Beta(a, b) with cdf

FX(x) = Ix(a, b), denote its inverse cdf x , I−1(y; a, b) as that value of x for which

Ix(a, b) = y. Because of the underlying monotonicity of a cdf, I−1(y; a, b) is well-

defined.

For satisfying the femtocell QoS requirement, P[SIRf (F0, D) ≥ Γ] ≥ 1 − ε in

equation (5.3). The following theorem gives the no-coverage femtocell radius Df as a

function of ε, Γ, Tf , Uf and Uc.

Theorem 10. Any femtocell F0 within D < Df meters of the macrocell B0 cannot

satisfy its QoS requirement P[SIRf (F0, D) ≤ Γ] ≤ ε, where Df is given as

Df =

[
K

Γ

Pf/Uf

Pc/Uc

(
I−1(ε; Tf − Uf + 1, Uc)

1− I−1(ε; Tf − Uf + 1, Uc)

)]−1/αc

(5.5)

where K =
Afi

Af,c
R
−αfi

f .

Proof. Refer to Appendix C.1.

Proposition 2. The inverse function I−1(x; a, b) is monotonically increasing with a

and monotonically decreasing with b for any a, b ≥ 0.

Proof. Refer to Appendix C.2
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Remark 8. With SU femtocell transmission (Uf = 1), the no-coverage radius Df,SU

is strictly smaller than the no-coverage radius Df,MU with MU transmission (1 <

Uf ≤ Tf). This follows by applying Proposition 2 to (5.5) in Theorem 10.

Corollary 4. With K as defined in Theorem 10 and Uc = 1, the reduction in the

no-coverage radius using a SU transmission strategy at femtocells relative to MU

transmission to Uf = Tf users [resp. single antenna transmission] is given as

Df,SU

Df,MU

=

[(
1− ε1/Tf

ε1/Tf

)
ε

1− ε

1

Tf

]1/αc

≈
[
ε1−1/Tf

Tf

]1/αc

Df,SU

Df,1 Antenna

=

[(
1− ε1/Tf

ε1/Tf

)
ε

1− ε

]1/αc

≈ ε
1

αc
(1−1/Tf).

Proof. Refer to Appendix C.3.

Remark 9. For fixed Tf , Uf and Uc, the no-coverage femtocell radius Df in (5.5)

scales with the ratio of the per-tier transmission powers Pf/Pc as (Pf/Pc)
−1/αc. De-

creasing Df by a factor of k requires each femtocell to increase their transmit power

by 10αc log10 k decibels. This suggests that the graph of Df versus Pf/Pc (see Fig.

5.5) is a straight line on a log-log scale with slope −1/αc.

Any femtocell located at a distance D > Df w.r.t the macrocell can toler-

ate interference from both the cellular transmissions as well as neighboring hotspot

transmissions. Next, we derive the maximum obtainable spatial reuse from multiple

antenna femtocells when they share spectrum with cellular transmissions. Mathe-

matically, the maximum femtocell contention density satisfying (5.3) is expressed as

λ∗f (D) = arg max λf , subject to P(SIRf (F0, D) ≥ Γ) ≥ 1− ε. (5.6)

The following theorem derives λ∗f (D).
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Theorem 11. In a two-tier network, the maximum femtocell contention density

λ∗f (D) at distance D from the macrocell B0, which satisfies (5.6) (in the small-ε

regime) is given as

λ∗f (D) =
1

Cf (QfΓ)δf

[
ε− I κ

κ+1
(Tf − Uf + 1, Uc)

1
Kf
− I κ

κ+1
(Tf − Uf + 1, Uc)

]
(5.7)

where δf = 2/αfo, Qf is given by (5.2), κ is given by (5.4), and

Cf = πδfU
−δf

f

Uf−1∑

k=0

(
Uf

k

)
B(k + δf , Uf − k − δf ) (5.8)

Kf =


1 +

1

(1 + κ)Uc

Tf−Uf−1∑
j=0

(
κ

κ + 1

)j (
Uc + j − 1

j

) Tf−Uf−j∑

l=1

1

l!

(l−1)∏
m=0

(m− δf )



−1

(5.9)

where B(a, b) = Γ(a)Γ(b)
Γ(a+b)

denotes the Beta function and Kf = 1 whenever Uf = Tf .

Proof. Refer to Appendix C.4

Theorem 11 provides the maximum femtocell contention density at D consid-

ering both cross-tier cellular and hotspot interference from neighboring femtocells.

Alternatively, given an average of λf transmitting femtocells per square meter, (5.7)

can be inverted (numerically) to obtain the minimum D which guarantees that (5.6)

is feasible. Theorem 11 provides two fundamental operational regimes depending on

the hotspot location relative to the macrocell.

Cellular-limited regime. A necessary condition for a positive femtocell con-

tention density at distance D is I κ
κ+1

(Tf − Uf + 1, Uc) < ε, or κ(D) in (5.4) is upper

bounded as

κ ≤ I−1(ε, Tf − Uf + 1, Uc)

1− I−1(ε, Tf − Uf + 1, Uc)
.

From Theorem 10, violating this condition implies that the hotspot cannot guarantee

reliable coverage because of cross-tier interference.
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Hotspot-limited regime. As κ → 0 or D−αc → 0, the SIR at any femtocell

located at D is primarily influenced by hotspot interference. Consequently, λ∗f (D) in

(5.7) approaches the limit λ̆f given as

λ̆f = lim
κ→0

λ∗f (D) =
ε K̆f

Cf (QfΓ)δf

, where K̆f = lim
κ→0

Kf =


1 +

Tf−Uf∑

l=1

1

l!

l−1∏
m=0

(m− δf )



−1

. (5.10)

The limit K̆f determines the maximum contention density in the special case of an

ad hoc network–no cellular interference–of homogeneously distributed transmitters

equipped with multiple antennas [76]. Their work shows that K̆f and Cf scales with

Tf and Uf as

K̆f ∼ Θ[(Tf − Uf + 1)δf ], CfQ
δf

f ∼ Θ(U
δf

f ). (5.11)

Further, ∀κ ≥ 0,Kf ≤ K̆f and K̆f is bounded as (Tf − Uf + 1)δf ≤ K̆f ≤ K̆f,max =

Γ(1− δf )(Tf −Uf + 1)δf [76]. We shall now consider two cases in the hotspot-limited

regime (D−αc → 0). First, with multiuser transmission to Uf = Tf femtocell users

and using (5.11), the femtocell area spectral efficiency (in b/s/Hz/m2) which is given

as (1 − ε)Uf λ̆f log2(1 + Γ) scales according to Θ(T
1−δf

f ). With SU transmission, the

ASE scales as Θ(T
δf

f ). This suggests that in path loss regimes with αfo < 4, higher

spatial reuse is obtainable (order-wise) provided femtocells employ their antennas to

transmit to just one user. In contrast, MU femtocell transmission provides higher

network-wide spatial reuse (orderwise) only when hotspot interference is significantly

diminished (αfo > 4).
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5.5.2 SIR Analysis at a Cellular User

We now consider a reference cellular user 0 at distance D from their macrocell

B0. During a given signaling interval, the received signal at user 0 is then given as

y0 =
√

AcD
−αc

2 h†0Vs +
√

Ac,f

∑
Fj∈Πf

e†jWjrj|Xj|−
αfo
2 (5.12)

where s ∈ CUc×1,E[||s||2] ≤ Pc and rj ∈ CUf×1,E[||rj||2] ≤ Pf represent the transmit

data symbols for users in each tier. Further, |Xj| and ej ∈ CTc×1 respectively denote

the distance and the downlink vector channel from the interfering femtocell Fj to user

0. The received SIR for user 0 is given as

SIRc(B0, D) =
Pc

Uc
AcD

−αc ||h0||2
Pf

Uf
Ac,f

∑
Fj∈Πf

||e†jWj||2|Xj|−αfo

. (5.13)

For successfully decoding user 0’s signal, SIR(0, D) should be greater than equal to

the minimum SIR target Γ. Define Qc = Uc
Pf

Pc

Ac,f

Ac
Dαc . Then, the probability of

successful reception at 0 is given as

P[SIRc(0, D) ≥ Γ] = P

[
|h†0v0|2

1
Uf

∑
Fj∈Πf

||e†jWj||2|Xj|−αfo
≥ QcΓ

]
. (5.14)

Both the desired channel powers denoted as |h†0v0|2 and the interfering marks [91]

given by ||e†jWj||2 follow a chi-squared distribution with 2(Tc − Uc + 1) and 2Uf

degrees of freedom respectively. Using [76], the maximum femtocell contention den-

sity λf (D) for which (5.14) satisfies the maximum outage probability constraint

P(SIR(0, D) ≥ Γ) ≥ 1− ε of a cellular user is given as

λ∗f (D) =
εKc

Cf (QcΓ)δf
, where Kc =

[
1 +

Tc−Uc∑
j=1

1

j!

j−1∏

k=0

(k − δf )

]−1

(5.15)

where δf = 2/αfo as before and Cf is given by (5.8). From [76], Kc is bounded as

(Tc − Uc + 1)δf ≤ Kc ≤ Γ(1− δf ) (Tc − Uc + 1)δf (5.16)

where the upper bound is a good approximation for Kc; for example, with Tc = 4,

Uc = 1 and αfo = 3.8, the term Kc equals 3.47 while the upper bound equals 3.87.

102



Remark 10. Since (5.15) varies as Kc/U
δf
c , approximating Kc by the upper bound

in (5.16) shows that the maximum contention density for single user beamforming

given as λ∗f,SU(D) is proportional to Γ(1 − δf )T
δf
c . With 1 < Uc < Tc transmitted

users, the maximum femtocell contention density denoted as λ∗f,MU(D) is proportional

to Γ(1− δf )(Tc −Uc + 1)δf /U
δf
c . Therefore, SU transmission increases the maximum

hotspot density by a factor of [TcUc/(Tc − Uc + 1)]δf . With Uc = Tc users (implying

Kc = 1), one obtains λ∗f,MU(D) to be proportional to T
−δf
c , so that λ∗f,SU(D)/λ∗f,MU(D)

equals Γ(1− δf )T
2δf
c .

Given an average of λf femtocells per sq. meter, inverting (5.15) yields the

maximum distance up to which the cellular outage probability lies below ε. This

cellular coverage radius Dc is given as

Dc =

(
1

ΓUc

Ac

Ac,f

Pc

Pf

)1/αc
(

εKc

λfCf

) 1
δf αc

. (5.17)

Remark 11. Since Dc varies as (Pc/Pf )
1/αc, increasing the cellular coverage radius

by a factor of k necessitates increasing Pc by 10αc log10 k decibels relative to Pf .

Remark 12. In (5.17), Dc is proportional to (K
1/δf
c

Uc
)

1
αc . With SU transmission [resp.

MU transmission to Uc = Tc users] at the macrocell and applying (5.16), the cellular

coverage distance Dc scales with Tc as Dc,SU ∼ Θ(T
1/αc
c ), Dc,MU ∼ Θ(T

−1/αc
c ). This

suggests that SU macrocell transmission provides coverage improvement by a factor

of T
2/αc
c (order-wise) relative to MU transmission.

5.5.3 Design Interpretations

In this section, we provide design interpretations of the preceding results de-

rived in Sections 5.5.1 and 5.5.2 in realistic path loss scenarios. We shall use the

system parameters given in Table 5.1 and the path loss model described in Section

5.4.1.
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Figure 5.5 plots the normalized no-coverage femtocell radius Df versus Pf/Pc

on a log-log scale. Figs. 5.6-5.7 plot the maximum number of simultaneous femtocell

transmissions given as Nf (D)Uf where Nf (D) = πR2
cλ
∗
f (D), considering SU and MU

femtocell transmissions and different values of αfo. Shown below are the three key

observations.

Coverage improvement. In the cellular-limited regime with Tf = 2 anten-

nas, Fig. 5.6 shows that SU transmission obtains a nearly 1.5x reduction in the

no-coverage femtocell radius Df w.r.t single antenna transmission. Next, both Figs.

5.5-5.6 show that SU transmission reduces Df by a factor of nearly 1.8x relative to

MU transmission. Both these observations agree with the predicted improvements

in Corollary 4. This indicates that SU transmission significantly improves hotspot

coverage.

Dominance of cellular interference. In Figs. 5.6-5.7, Nf increases from

zero (at the no-coverage femtocell radius) to greater than 100 femtocells per cell-site
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within a few meters outside the no-coverage radius. This step-like transition from the

cellular-limited to the hot-spot limited regime suggests that cross-tier cellular inter-

ference is the capacity-limiting factor even in densely populated femtocell networks

and interference between femtocells is negligible because of the proximity of home

users to their APs and double wall partition losses.

Spatial Reuse. In the hotspot-limited regime with αfo = 3.8, SU transmis-

sion consistently outperforms MU transmission. For example, with Tf = 2 antennas,

there is a nearly 1.7x spatial reuse gain (NfUf = 1080 with SU transmission versus

NfUf = 640 with MU transmission). Only when hotspot interference is significantly

diminished – Fig. 5.7 with Tf = 3 antennas and αfo = 4.8 – MU transmission to

Uf = 2 hotspot users provides a marginally higher spatial reuse relative to SU trans-

mission. The conclusion is that achieving the multiplexing benefits of MU transmis-

sion requires relative isolation (or large αfo) between actively transmitting femtocell

APs.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−2

10
−1

10
0

10
1

10
2

10
3

Normalized Cellular User Distance from Macrocell

M
ax

im
um

 A
ve

ra
ge

 N
um

be
r 

of
 F

em
to

ce
lls

 N
f

α
c
 = 3.8, α

fo
 = 3.8, T

c
 = 4 antennas, T

f
 = 2 antennas

 

 

P
c
/P

f
 (dB) = 0, BF

P
c
/P

f
  (dB) = 20, BF

P
c
/P

f
 (dB) = 0, ZF

P
c
/P

f
 (dB) = 20, ZF

D
c, SU

/D
c, MU

 ≈ 2.7 

Target N
f
 =60 femtocells/site
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Fig. 5.8 plots the maximum number of transmitting femtocells Nf = πR2
c λ∗f (D)

as a function of the cellular user distance D. With (Pc/Pf )dB = 20 and a desired

Nf = 60 femtocells/cellsite, SU macrocell transmission provides a normalized cellular

coverage radius Dc ≈ 0.35. In contrast, the coverage provided by MU transmission

is only Dc ≈ 0.13, resulting in a coverage loss of 2.7x relative to SU transmission

(Remark 12 gives an order-wise loss of Θ(T
δf
c ) = 2.07). With SU transmission and

(Pc/Pf )dB = 0, a cellular user at D = 0.1 can tolerate interference from nearly

Nf = 62 femtocells/cellsite. In contrast, with MU transmission, Nf reduces to nearly

8 femtocells/cellsite. The observed improvement in the maximum femtocell con-

tention density (equaling 7.75x) is well approximated by the predicted improvement

(Γ(1− δf )T
2δf
c = 8.04x) in Remark 10.

The preceding observations reveal 1. since MU performance is significantly

limited by residual hotspot interference, the macrocell should maximize cellular cov-

erage by transmitting to just a single cellular user and 2. that femtocells should adapt

their transmit powers depending on their location in order to ensure reliable cellular

coverage.

5.6 Interference Management using Carrier-Sensing at Fem-
tocells

To motivate carrier-sensing at femtocells, Fig. 5.6 shows that even with

(Pc/Pf )dB = 20, a femtocell at normalized distance D = 0.4 can tolerate hotspot

interference from greater than 1000 neighboring femtocells. This suggests that in

dense femtocell deployments (eg. 60 femtocells in a radius of Rc = 1 km), (Pc/Pf )dB

can be increased to minimize hotspot interference without violating the QoS require-

ment at femtocells. This section presents a carrier-sensing interference management

strategy for choosing the femtocell transmission power provided there is a cellular

user in its vicinity.
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AS 12. Each cellular user periodically transmits over a set of uplink pilot slots (time

or frequency resource) with power PUT,pilot for communicating their channel informa-

tion to the macrocell.

AS 13. Each femtocell is capable of inferring its distance from its closest macrocell.

During carrier-sensing, each femtocell performs energy detection while mon-

itoring uplink pilot cellular transmissions. In the absence of a cellular user, the

femtocell maintains a constant transmit power Pf . When the detected energy of a

cellular user exceeds a threshold, the femtocell chooses its Pf based on its location D

within the underlying macrocell.

5.6.1 Minimum Required Sensing Range and Per-Tier Transmit Power
Ratio Bounds

We shall first derive the minimum required sensing distance Dsense such that

any transmitting femtocell located within R < Dsense meters of the cellular user

violates its maximum outage probability requirement. Define the notation B(Dsense)

to denote a circular region of radius Dsense containing |B(Dsense)| femtocells. Given

an intensity of λf femtocells per square meter and assuming the cellular user 0 is

located at normalized distance D w.r.t the macrocell, its outage probability is lower

bounded as

P[SIRc(B0, D) ≤ Γ]
(a)

≥ P[SIRc(B0, D) ≤ Γ, |B(Dsense)| > 0] (5.18)

(b)
= P

[
SIRc(B0, D) ≤ Γ

∣∣∣|B(Dsense)| > 0
]
· (1− e−λf πD2

sense)

(c)
> P

[
SIRc(B0, D) ≤ Γ

∣∣∣|B(Dsense)| = 1, R = Dsense

]
· (1− e−λf πD2

sense)

where step (a) in (5.18) is a lower bound as it ignores the event of zero hotspots oc-

curring within B(Dsense). Step (b) rewrites (a) in terms of the conditional probability.

Finally, step (c) is a lower bound because it considers the event that |B(Dsense)| = 1

and the hotspot is located exactly at R = Dsense meters (thereby experiencing the
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highest path loss). A necessary condition for ensuring P[SIRc(B0, D) ≤ Γ] ≤ ε is that

the right hand side in step(c) in (5.18) consisting of the product of two probabilities

should be less than ε. The first term represents the outage probability from interfer-

ing hotspots due to the time-varying channel powers and the second term represents

the probability that B(Dsense) is non-empty.

Assuming large λf (or 1 − e−λf πD2
sense → 1), a reasonable choice for selecting

Dsense is to set the conditional outage probability , given exactly one interfering fem-

tocell AP F0 at distance Dsense from the cellular user, to equal ε. Evaluating this

probability,

P
[
SIRc(B0, D) ≤ Γ

∣∣∣|B(Dsense)| = 1, R = Dsense

]
= P




Pc

Uc
AcD

−αc|h†0v0|2
Pf

Uf
Ac,f ||e†0W0||2D−αfo

sense

≤ Γ




= P

[
|h†0v0|2
||e†0W0||2

≤ ΓQcD
−αfo
sense

Uf

]

(a)
= P

[
Z ≤ θ

Uf

Tc − Uc + 1

]

(b)
= I θ

θ+1
(Tc − Uc + 1, Uf ) (5.19)

where Qc = Uc
Pf

Pc

Ac,f

Ac
Dαc as before, while |h†0v0|2 ∼ χ2

2(Tc−Uc+1) and ||e†0W0||2 ∼ χ2
2Uf

denote the chi-squared distributed desired and interfering channel powers, as given

earlier in (5.14). Step (a) in (5.19) follows by defining θ , QcΓD
−αfo
sense /Uf and defining

the normalized ratio Z =
|h†0v0|2/(Tc−Uc+1)

||e†0W0||2/Uf
which is F-distributed [5]. Step (b) follows

by substituting the cdf of the F-distributed r.v Z. The minimum required sensing

radius at D is consequently given as

Dsense ≥
[(

QcΓ

Uf

)(
1− I−1(ε; Tc − Uc + 1, Uf )

I−1(ε; Tc − Uc + 1, Uf )

)]1/αfo

. (5.20)

Using the numerical values in Table 5.1, Fig. 5.9 plots Dsense for different

values of the path loss exponents αc and αfo as well as different cellular user locations
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Figure 5.9: Required sensing range (in meters) per femtocell (assuming SU transmis-
sion in each tier) as a function of the path loss exponents αc, αf and the normalized
distance D of the cellular user.

D. Assuming SU transmission in both tiers, (Pc/Pf )dB = 20 dB and αc = αfo = 3.8,

a minimum sensing range Dsense ≈ 160 meters is required at the cell-edge (D = Rc).

Next, the following lemma derives bounds on Pc/Pf that satisfy the per-tier

outage probability requirements at distance D from the macrocell.

Lemma 7. Given a mean intensity of λf femtocells per square meter and minimum

per-tier SIR target Γ, satisfying the per-tier outage probability requirement at dis-

tance D from the macrocell necessitates (Pc/Pf ) to be bounded as (Pc/Pf )lb[D] ≤
Pc/Pf ≤ (Pc/Pf )ub[D], which are given as

(
Pc

Pf

)

lb

[D] = Γ

(
Ac,f

Ac

)(
Uc

D−αc

)(
Cfλf

εKc

)1/δf

(5.21)

(
Pc

Pf

)

ub

[D] =

(
1

Γ

)(
Afi

Af,c

) (
UcR

−αfi

f

UfD−αc

)
I−1(ε̃; Tf − Uf + 1, Uc)

1− I−1(ε̃; Tf − Uf + 1, Uc)
(5.22)
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where δf = 2/αfo as before, Kc is given by (5.15), Qf is given by (5.2), Cf is given by

(5.8) and

ε̃ =
ε− λfCf (QfΓf )

δf /K̆f,max

1− λfCf (QfΓf )δf
and K̆f,max = (Tf − Uf + 1)δf Γ(1− δf ). (5.23)

Proof. A lower limit on Pc/Pf is obtained by computing the minimum Pc required to

satisfy the outage probability requirement for a cellular user at distance D. Combining

(5.15) and (5.16) yields (Pc/Pf )lb in (5.21). Conversely, given a cellular transmit

power Pc, an upper limit for Pc/Pf is obtained by computing the minimum required

Pf for satisfying P[SIR(F0, D) ≤ Γ] ≤ ε. Substituting the upper bound for Kf and

inverting (5.7) to compute (Pc/Pf )ub yields (5.22).
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Figure 5.10: Lower and upper bounds on Pc/Pf with SU transmission as a function
of the distance D. Shaded region shows feasible Pc/Pf ’s at location D, which satisfies
the per-tier outage probability requirement for different average numbers of femtocells
per cell-site.

The lower bound (Pc/Pf )lb[D] in (5.21) considers D as the distance of a cellular

user from their macrocell. Conversely, (Pc/Pf )ub[D] considers D as the distance of
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the reference femtocell from the macrocell. Inspecting (5.21) and (5.22) reveals that

the difference between the decibel upper and lower bounds is constant for all D.

Fig. 5.10 plots (Pc/Pf )lb and (Pc/Pf )ub at different distances D from the

macrocell. As an example, for a cell-edge (D = 1) location, the bounds on the

required (Pc/Pf )dB are given as 40 ≤ (Pc/Pf )dB ≤ 55 dB.

5.6.2 Energy Detection based Carrier-Sensing of Cellular Users

Assume that each femtocell monitors a set of contiguous pilot slots (we as-

sume time-slotted transmission in the subsequent discussion) and employs energy

detection[140]. We briefly describe the sensing procedure below and refer to [39, 53,

104, 140] for further details.

Let T denote the sensing time (number of sensing time slots times the slot

duration) and W designate the sensed bandwidth. Given a received signal x(t) in

the pilot slots and n(t) being complex Gaussian noise process with power N0W/2 per

complex dimension, define the following hypotheses namely 1. H0 : Absence of cellular

user [x(t) = n(t)] and 2. H1 : Presence of an active cellular user [x(t) = hs(t)+n(t)].

The femtocell compares the energy detector output Y = 2/N0

∫ T

0
|x(t)|2 dt against

a threshold λ for inferring the presence (or absence) of a cellular user. Define m

to equal the time-bandwidth product TW (assumed to be an integer). The average

sensed pilot Signal-to-Noise Ratio (SNR) at the femtocell is given as

γ =
PUT,pilotD

−αcAf,c

N0W

where (N0W )dB = Pc,dB − Ac,dB − 10αc log10(Rc)− γedge,dB (5.24)

where D denotes the distance of the cellular user from the femtocell. The noise power

N0W is chosen with reference to a cell-edge user obtaining an average downlink SNR

γedge > Γ. Assuming Selection Combining (SC) is used at the Tf available diversity

branches for choosing the maximum SNR branch, the false-alarm probability Pfalse
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and the detection probability Pdetect,SC are respectively given as [39, 53]

Pfalse = P[Y > λ|H0] =
Γ(2m,λ)

Γ(2m)
(5.25)

Pdetect,SC = P[Y > λ|H1] = Tf ·
Tf−1∑

k=0

(−1)k

k + 1

(
Tf − 1

k

)
Pd,Ray

(
γ

k + 1

)
,

where Pdetect,Ray(γ) =
Γ(2m− 1, λ)

Γ(2m− 1)

+ e−
λ

(1+mγ)

(
1 +

1

mγ

)2m−1
[
1−

Γ(2m− 1, λmγ
(1+λmγ)

)

Γ(2m− 1)

]
.

(5.26)

where Γ(a, x) =
∫∞

x
ta−1e−tdt is the upper incomplete gamma function. Because of

the complex baseband signal model, there is a factor of 2 discrepancy in (5.25) with

respect to [53].

Fig. 5.11 plots the maximum femtocell sensing range Dsense versus different

values of the time-bandwidth product m. For example, with PUT,pilot = 20 dBm (3

dB below the maximum UT transmit power), and target probabilities Pdetect,SC = 0.9

and Pfalse = 0.1 respectively, obtaining a sensing range of Dsense = 230 meters requires

a minimum time-bandwidth product m = 500.

5.7 Numerical Results

This section reports the results of computer simulations using the system pa-

rameters in Table 5.1. The simulation consisted of 1000 different random drops of

femtocell hotspots with 1000 trials per drop to simulate Rayleigh fading. Addi-

tive white Gaussian noise power was chosen to obtain an average cell-edge SNR of

γedge, dB = 12 dB. Single-user transmission is assumed in either tier considering its su-

perior coverage and spatial reuse performance. With an average of Nf = 60 femtocells

per cell-site, we evaluate whether the 10 percentile outage capacity (ε = 0.1) satisfies

the minimum required per-tier spectral efficiency log2(1 + Γ) b/s/Hz (or nearly 2.06

b/s/Hz for ΓdB = 5).
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Figure 5.11: Maximum sensing range (in meters) at each femtocell as a function of
the sensing time-bandwidth product and uplink pilot transmission powers.

Table 5.1: System Parameters
Variable Parameter Sim. Value

Γ Minimum per-tier SIR Target for successful reception 5 dB
γedge,dB Average SNR of cell-edge user 12 dB

ε Maximum tolerable per-tier outage probability 10%
Rc Macrocell Radius 1000 m
Rf Femtocell Radius 30 m
Tc Transmit Antennas at macrocell 4 antennas
Tf Transmit Antennas at femtocell 2 antennas
Pc Maximum Transmit Power at macrocell 43 dBm
Pf Maximum Transmit Power at femtocell 23 dBm
PUT Maximum Transmit Power at User Terminal 23 dBm
WdB Indoor to Outdoor Wall Partition Loss 5 dB
fc Carrier Frequency 2000 MHz
αc Outdoor path loss exponent 3.8
αfo Indoor to Outdoor path loss exponent 3.8
αfi Indoor path loss exponent 3
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During carrier-sensing, each femtocell can detect active cellular users within a

sensing radius equaling 230 meters (determined using computer simulations), which

exceeds the minimum required sensing range of Dsense = 160 meters. We consider

both a fixed Pc/Pf (without carrier-sensing or power control at femtocells) and

a location based selection of Pc/Pf (wherein femocells adjust their Pf upon sens-

ing a cellular user). Under ambient conditions (no detected cellular user), a fixed

(Pc/Pf )dB = 20 dB is chosen. Upon sensing a cellular user, a femtocell chooses its

Pf such that (Pc/Pf )[D, dB] = 0.7(Pc/Pf )ub[D, dB] + 0.3(Pc/Pf )lb[D, dB], which are

given in (5.21)-(5.22). Two scenarios are considered namely

Reference Cellular User. A cellular user is placed at normalized distances

(D = 0.8 and D = 1.0) w.r.t the macrocell. The cdfs of the achievable cellular data

rates have been reported.

Reference Hotspot. A reference hotspot is placed at normalized distances

(D = 0.11, 0.4, 0.6, 0.8 and 0.9 respectively from the macrocell. A reference cellular

user is co-linearly placed at a distance Dsense/2 w.r.t the hotspot. The conditional

cdfs of the hotspot data rates (assuming idealized sensing) have been reported.

Fig. 5.12 shows the cdfs of the obtained cellular data rates for Nf = 60

femtocells/cell-site. Without carrier-sensing, the 10 percentile outage capacities are

below 0.5 b/s/Hz. By employing carrier-sensing, the 10 percentile outage capacities

(corresponding to ε = 0.1) equal 3.21 b/s/Hz and 2.22 b/s/Hz for cellular user lo-

cations of D = 0.8 and D = 1.0 respectively. Thus, our scheme ensures uniform

cell-edge coverage with large numbers of femtocells.

Fig. 5.13 shows the cdfs of the obtained hotspot data rates with carrier-sensing

and transmit power control at hotspots. The 10 percentile hotspot outage capacities

are respectively equal to 2.15, 3.63, 3.56, 3.32 and 3.22 b/s/Hz for the different hotspot

locations given above which exceeds the minimum desired target spectral efficiencies.

The lowest outage capacity is obtained when the femtocell is located close to the
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no-coverage zone (D = 0.11). In the hotspot-limited regime, because of the location-

based power control, the outage capacities monotonically decrease with increasing

hotspot distance to the macrocell.

5.8 Conclusions

In two-tier cellular systems with universal frequency reuse, cross-tier inter-

ference will likely be the main obstacle preventing uniform coverage. This work has

derived analytical expressions for the coverage zones in such a tiered architecture with

spatial diversity considering the number of antennas, the maximum tolerable outage

probability accounting for path-loss and Rayleigh fading. Single-user transmission in

either tier is analytically shown to provide significantly superior coverage and spatial

reuse while performance of multiple-user transmission suffers from residual cross-tier

interference. For providing uniform cellular coverage, we have proposed a location-

assisted power control scheme for regulating femtocell transmit powers. This scheme

is fully decentralized and provides uniform cellular and hotspot coverage on the cell-

edge, as opposed to randomized hotspot transmissions without carrier-sensing. These

results motivate deploying closed-access tiered cellular architectures while requiring

minimal network overhead.
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Chapter 6

Spectrum Allocation in Two-Tier Networks

6.1 Introduction

In Chapters 3 through 5, interference avoidance schemes and power control

techniques have been presented for mitigating cross-tier interference in a two-tier

network. Alternatively, cross-tier interference is completely eliminated by placing

cellular users and femtocell users in orthogonal frequency resources. In two-tier net-

works with frequency division based systems such as Orthogonal Frequency Division

Multiple Access (OFDMA), it is likely that partitioning bandwidth between each tier

will be more viable, compared to centralized frequency assignment strategies. This

chapter proposes and analyzes an optimum decentralized spectrum allocation pol-

icy for two-tier networks that employ frequency division multiple access (including

OFDMA). The proposed allocation is optimal in terms of Area Spectral Efficiency

(ASE), and is subjected to a sensible Quality of Service (QoS) requirement, which

guarantees that both macrocell and femtocell users attain at least a prescribed data

rate.

6.1.1 The Return of FDMA

Frequency division multiple access (FDMA)’s resurgence in emerging OFDMA

wireless standards such as the 3rd Generation Partnership Project’s Long Term Evo-

lution (LTE), the Worldwide Interoperability for Microwave Access (WiMAX) enable

the macrocell to perform flexible rate assignment [10] across frequency sub bands to

users and provide interference management by fractional frequency reuse. In fem-

tocell deployments, due to reasons of scalability, security and limited availability of
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backhaul bandwidth, it is reasonable to assume the absence of coordination between

femtocells and the central macrocell. Further, femtocells are placed opportunistically

or randomly by end users. Therefore, conventional frequency planning strategies will

be very difficult in a two-tier network.

Ff subchannels to femtocells Fc subchannels to macrocell

Accessed using F-ALOHA by individual femtocells

Free subchannel (not accessed by any femtocell)

Frequency subchannels accessed by macrocell

Figure 6.1: Spectrum partitioning in a two-tier network.

Assigning orthogonal spectrum resources between the central macrocell and

femtocell BSs eliminates cross-tier interference. This motivates the orthogonal access

spectrum allocation strategy (Fig. 6.1) proposed in this work [27]. Next, to avoid

persistent collisions with neighboring femtocells in their allotted spectrum, this work

proposes that each femtocell accesses a random subset of the candidate frequency

subchannels, wherein each subchannel is accessed with equal probability. We term

this spectrum access strategy as F-ALOHA (Frequency ALOHA)1. We motivate F-

ALOHA for three reasons. First, F-ALOHA avoids transmission delays and increased

RF sensitivity requirements for sensing frequency subchannels in the presence of chan-

nel fading[122]. Next, F-ALOHA provides randomized interference avoidance, since

1Slotted ALOHA, by convention, implies that the slots are in the time domain
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neighboring femtocells are unlikely to consistently access identical frequency subchan-

nels. Finally, such a transmission strategy offers a decentralized spectrum access by

femtocells and low complexity.

F-ALOHA Spectrum Access: If a femtocell transmits over all its allotted

subchannels, it may cause excessive interference to surrounding femtocells; conversely,

accessing only a few subchannels could result in a poor spatial reuse. With F-ALOHA,

there should be an optimal fraction of spectrum access for each femtocell in order to

maximize the spatial reuse of spectrum, or in effect the net number of simultaneous

transmissions per unit area [13, 143]. The spatial reuse is readily expressible using the

Area Spectral Efficiency (ASE) in b/s/Hz/m2 [7], which is defined as the network-wide

spatially averaged throughput per frequency subchannel divided by the product of the

subchannel bandwidth and the area over which the transmissions take place. Based

on the stated reasons, we assume (1) downlink transmissions from the macrocell and

femtocells are frequency orthogonal and (2) femtocells transmit using F-ALOHA, and

pose the following questions:

• What is the expected subchannel throughput inside the macrocell [resp. femto-

cell], as a function of interference from neighboring macrocells [resp. femtocells],

and terrestrial propagation parameters such as path loss exponent and lognormal

shadowing?

• Given the expected subchannel throughput, the average number of femtocells per

cell-site and the number of users associated with each BS, how should the band-

width be partitioned between tiers in order to satisfy a Quality of Service (QoS)

requirement in each tier?

• With this spectrum allocation strategy, how much improvement in network-wide

ASE does opportunistic channel aware macrocell scheduling offer relative to channel

blind scheduling?
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6.1.2 Related Work

The problem considered in this work is related to Yeung and Nanda [156],

who propose frequency partitioning in a microcell/macrocell system based on mo-

bile speeds and the loading of users in each cell. Their frequency partitioning is

derived based on choosing handoff velocity thresholds and maximizing the overall

system capacity, subject to per-tier blocking probability constraints that ignore co-

channel interference. Similar dynamic channel allocation schemes have been pro-

posed in [102] and [50]. In Ahn et al. [4], an algorithmic approach is presented for

macrocell-microcell deployment depending on spatio-temporal traffic loads, but relies

on event-driven simulations. In contrast, our work analytically determines the spec-

trum allocation, which maximizes the network-wide area spectral efficiency consider-

ing interference from neighboring BSs, path losses and prevailing channel conditions.

Transmission capacities in a two-tier network have been derived in [75] for

both spectrum sharing and spectrum partitioning approaches. In decentralized net-

works, Jindal et al. [84] have derived the optimal number of frequency subchannels

F for a frequency-hopped ad hoc network assuming a fixed data rate requirement

per transmitter-receiver pair and a target outage probability. Our work, in contrast,

assumes a fixed F (as is the case with Orthogonal FDMA), allowing for multiple

subchannels to be accessed by each BS, with variable rate transmission per accessed

subchannel. In a hybrid network composed of ad-hoc nodes and BS infrastructure

nodes, Zemlianov and de Veciana [161] and Liu et al. [106] have derived asymp-

totic scaling laws relating to the per user throughput as the number of infrastructure

nodes increase. In addition to the hierarchical nature of our model, the main dif-

ference is that this work assumes single-hop communication. In wireless local area

networks, Bahl et al. [16] have proposed variable center frequencies and variable

channel widths for improving the spectrum utilization and fairness for heavily loaded

access points (APs). Finally, game-theoretic approaches have been investigated for

both non-cooperative [42, 60] and cooperative [136] spectrum sharing in decentralized
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networks.

6.1.3 Contributions

The three contributions of this work are as follows.

Expected per-tier throughput. The expected per-tier throughput is de-

rived for the macrocell and femtocell users accounting for interference from neighbor-

ing cells. The maximum ASE of the femtocell network is shown to be unchanged with

addition of hotspots beyond a threshold. At low femtocell densities, the highest fem-

tocell ASEs are attained when each femtocell accesses the entire available spectrum.

In higher densities, femtocells should use a decreasing fraction of the spectrum; e.g.

with an average of 100 femtocells in each cell site, each femtocell should access 30%

of the available spectrum.

Spectrum allocation with Quality of Service (QoS). The proposed spec-

trum allocation maximizes the spatial reuse in a two-tier network, subject to a

network-wide QoS requirement, which guarantees a minimum expected throughput

per-user. Differing QoS constraints produce markedly different spectrum allocations

due to the competing spatial coverage scales in each tier. Notably, a QoS requiring

equal per-user throughputs in each tier means assigning greater than 90% of spec-

trum to the macrocell. Conversely, an even division of spectrum occurs when the QoS

constraints favor femtocells to provide significantly higher data rates.

Scheduling and Spectrum Requirements. Channel aware macrocell schedul-

ing gains permeate to femtocells, resulting in a significant spectrum reduction with

the proposed allocation. With an average of 50 femtocells/cell site and target per-tier

data rates of 0.1 Mbps/macrocell user and 10 Mbps/hotspot user, a channel aware

macrocell scheduler provides nearly 50% reduction in necessary spectrum compared

to a channel blind scheduler. As number of hotspot users increases, the spectrum

requirements in a two-tier network show two extremes. One is a low interference sce-
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nario where addition of femtocell hotspots provides increased spatial reuse, ensuring

that the necessary spectrum is unchanged up to 110 femtocells/cell site. In a high

interference scenario however, the ensuing co-channel interference may necessitate a

linear increase in required spectrum with hotspot density.

6.2 System Model

The setup consists of a hexagonal region H of radius Rc with a central macro-

cell BS C providing coverage area |H| = 3
√

3
2

R2
c , which is surrounded by two rings of

interfering macrocells. The macrocell is overlaid with femtocell hotspots of radius Rf ,

which are randomly distributed on R2 according to a homogeneous SPPP Ωf with

intensity λf [91]. The mean number of femtocells per cell site is readily obtained as

Nf = λf |H|. Cellular users are assumed to be uniformly distributed inside each cell

site. Femtocells are assumed to provide “closed access” to licensed indoor users who

fall within the radio range Rf of their respective home BSs. Let U = Uc + NfUf

denote the average number of users in each cell site. These U users are distributed

into Uc uniformly distributed tier 1 mobile outdoor users and Uf users per femtocell.

6.2.1 Per-Tier Spectrum Access

The available spectrum comprises F frequency subchannels each with band-

width W Hz. We wish to determine the optimal partitioning (Fc, Ff ), where Fc

subchannels are available for macrocell transmissions and Ff = F − Fc subchannels

are available for femtocell transmissions. Denote ρ = Fc/F as the fraction of spectrum

assigned to the macrocell BS with the following key assumptions:

AS 14. Each femtocell schedules its users in a Channel Blind Round Robin (RR)

fashion. The macrocell schedules its users according to either a RR or a Channel

Aware Proportional Fair (PF) scheduler.

AS 15. The fraction ρ is a positive real number in [0, 1]. For simplicity, the paper does
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not quantize ρ for having an integer number of frequency subchannels. Consequently,

Fc = [ρF ] and Ff = F − Fc, where we use [x] to denote the integer part of a number

x.

Assumption 1 makes it clear that the long term expected throughput per in-

door user equals 1/Uf th of the average femtocell throughput. The long term expected

macrocell throughput is assumed to be equally divided among the Uc outdoor users

with RR and PF scheduling at the macrocell. With a PF scheduler, this assumption

is reasonable considering mobility, which ensures that all users receive an identical

average Signal-to-Interference Ratio (SIR) over the long term.

If each femtocell accesses exactly k frequency subchannels among their allotted

Ff subchannels, the net portion of accessed spectrum per femtocell equals ρf (1− ρ)

where ρf , k/Ff . Provided femtocells choose their frequency subchannels indepen-

dently and with equal probability, F-ALOHA “thins” the mean number of interfering

femtocells in each frequency subchannel by their subchannel access probability. The

probability p of a femtocell choosing a given frequency subchannel for transmission

is given as

p =

(
Ff

k

)− (
Ff−1

k

)
(

Ff

k

) =
k

Ff

= ρf . (6.1)

Consequently, the set of interfering femtocells per frequency subchannel is a Marked

SPPP [91] Λf with intensity λfρf = λfk/Ff . When ρf = 1, all femtocells in Ωf access

the entire spectrum but mutually interfere in all subchannels. For ρf ¿ 1, femtocells

transmit in a small region of spectrum and avoid causing mutual interference. This

strategy provides a higher spectral efficiency over each frequency subchannel, but

incurs reduced spectrum utilization because femtocells do not transmit over the entire

available spectrum.
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6.2.2 Channel Model and Variable Rate Transmission

The downlink channel between each BS and its users is composed of a fixed

distance dependent path loss, a slowly varying component modeled by lognormal

shadowing and Rayleigh fast fading with unit average power. For simplicity, thermal

noise is neglected at the receiver.

AS 16. Each user is assumed to track their SIR in each subchannel and feedback the

instantaneous rate to their BS with zero delay. Further, the channel can support the

requested rate as determined by the scheduled user with probability 1.

Although imperfect feedback and/or channel estimation has a potentially big

impact on system capacity, this work does not account for these effects for sake of

analytical tractability.

AS 17. BSs assign equal transmission powers to all subchannels.

Each BS assigns rate adaptively based on the received SIR per user. Let

G denote the Shannon Gap with variable rate M-QAM transmission [56]. Assume

an instantaneous transmission rate of bi bps/Hz if the instantaneous SIR lies in

[Γi, Γi+1), 1 ≤ i ≤ L. Using adaptive modulation with L discrete rates, the in-

stantaneous rate Wb in a W Hz wide subchannel is given as

b = bi, when SIR ∈ [Γi, Γi+1), 1 ≤ i ≤ L. (6.2)

bi = log2

(
1 +

Γi

G

)
bps/Hz. (6.3)

Assuming identical statistics over all frequency subchannels, the long term expected

throughput (in b/s/Hz) per macrocell/femtocell in each subchannel is given as

S =
L−1∑

l=1

l · Pr[Γl ≤ SIR < Γl+1] + L · Pr[SIR ≥ ΓL]. (6.4)

The expected throughput provided by each macrocell [resp. femtocell] is obtained

multiplying the expected throughput in (6.4) by their respective spectrum allocation

ρ [resp. ρf (1− ρ)].
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6.3 Spectrum Allocation and Per-Tier Expected Through-
puts

Let spectrum WF be allocated such that the macrocell BS transmits over

a portion ρ, while femtocell BSs transmit over the remaining 1 − ρ fraction of the

spectrum. Let Sc(ρ, Uc) be the long term throughput (in b/s/Hz) in each subchannel

provided by the macrocell2. Obtaining Sc requires calculating the average rate per

subchannel in (6.4) after spatially averaging the SIR over all locations, and accounting

for the interference from two rings of transmitting macrocells.

Let each femtocell access a portion ρf of its allotted spectrum using F-ALOHA,

servicing its users in a RR schedule. Define Sf (ρfλf ) as the expected femtocell

throughput in each frequency subchannel, which is determined by the intensity ρfλf

of the marked SPPP Λf . With universal frequency reuse across all macrocells, the

area spectral efficiency (ASE) provided by each tier is given as

ASEc =
Sc(ρ, Uc)

|H| , ASEf =
NfρfSf (ρfλf )

|H| . (6.5)

The factor Nfρf represents the mean number of transmitting femtocells in each sub-

channel in the set Λf . With bandwidth W , the per-tier throughputs (in b/s) per sub-

channel can be calculated by multiplying the ASEs in (6.5) by W |H|. The network-

wide ASE is given as

ASE = ρASEc + (1− ρ)ASEf =
1

|H| [ρSc(ρ, Uc) + (1− ρ)NfρfSf (ρfλf )]. (6.6)

The expected network throughput (in b/s) over the WF wide spectrum is obtained

by multiplying (6.6) by WF |H|. Before determining the spectrum allocation, we first

stipulate a QoS requirement η, which ensures that users in either tier are guaranteed

a minimum expected throughput. By implication, η also regulates the maximum

amount of spectrum that any tier can receive.

2The use of Uc and ρ within parenthesis is to account for a macrocell scheduler which can provide
diversity gains by scheduling users according to their channel variations[141]
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Definition 8. The QoS parameter 0 < η ≤ 0.5 guarantees that the expected through-

put per user in one tier is at least η/(1− η) w.r.t the other tier.

Choosing different η enables assigning different priorities (QoS) to one tier

relative to the other. For example, setting η = 0.5 ensures that users in both tiers

obtain identical expected rates. Decreasing η favors assigning greater spectrum to

the tier providing a higher expected throughput per active user.

Given a total available spectrum of 1 Hz, the problem is to determine the opti-

mal spectrum allocation ρ over all possible spectrum partitioning strategies ω ∈ [0, 1]

between the macrocell and femtocells. The proposed spectrum allocation maximizes

the network-wide ASE with a QoS constraint η on the minimum expected per-tier

throughput/user, as shown below.

ρ =
1

|H| arg max
0≤ω≤1

ωSc(ω, Uc) + (1− ω)NfρfSf (ρfλf ) (6.7)

subject to min {Sc,u(ω), Sf,u(ω)} ≥ η(Sc,u(ω) + Sf,u(ω)) (6.8)

where Sc,u(ω) , ωSc(ω, Uc)

Uc

and Sf,u(ω) , (1− ω)ρfSf (ρfλf )

Uf

Here Sc,u(ω) and Sf,u(ω) are the long term expected throughputs for a macrocell and

femtocell user respectively. Whenever the average subchannel throughput Sc(ω, Uc)

is independent of the spectrum ω assigned to the macrocell, the objective function in

(6.7) is an affine function w.r.t ω. The following proposition derives the optimizing

ρ considering that the maximum is attained at the extremal points of the constraint

set:

Proposition 3. If the expected macrocell throughput per subchannel is independent

of the total spectrum allocated to the macrocell ω, i.e. Sc(ω, Uc) = Sc(Uc) ∀ω ∈ [0, 1],

the optimizing ρ in (6.7) satisfies the QoS constraint with equality, belonging to a set

with two candidate spectrum allocation assignments given as

ρ∗ ∈ {x, 1− x}, x ,
[
1 +

1− η

η

Sc(Uc)

Uc

Uf

ρfSf (ρfλf )

]−1

. (6.9)
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Proof. Since Sc(ω, Uc) = Sc(Uc) ∀ω ∈ [0, 1], the optimization problem in (6.7) is to de-

termine the optimal ρ which maximizes a convex combination of Sc and NfρfSf (ρfλf )

with a linear constraint (6.8). Consequently, the argument maximizer is located at

the extremal points of the constraint set (6.8). Solving for the ρ which satisfies (6.8)

with equality yields (6.9).

Remark 13. Without a QoS requirement (allowing η → 0), the objective function

in (6.7) is a convex combination of the macrocell and femtocell throughputs which is

maximized at the extreme points ρ ∈ {0, 1}. Such a partitioning is clearly unfair since

it results in a greedy allocation of the entire spectrum to one tier.

For a generic macrocell scheduler–when Proposition 3 may be inapplicable–

(6.7) is a one dimensional optimization problem that can be solved efficiently for a

given η using a numerical search.

6.3.1 Macrocell Throughput: RR Scheduling

Assuming that the central macrocell BS C0 in the hexagonal region H is placed

at the origin, the normalized positions of the interfering BSs Ck ∈ B, k = 1 . . . 18 are

represented in polar form bk, k ∈ B using MATLAB notation as

bk/Rc ∈
{√

3ei(π/6+[0:5]π/3)
} ⋃ {

3ei([0:5]π/3)
} ⋃ {

2
√

3ei(π/6+[0:5]π/3)
}

. (6.10)

Let |h0|2 denote exponentially distributed channel power (with unit mean) between

the central macrocell BS C0 and its scheduled user 0. Denoting the Euclidean norm

by ||·||, the expression for the received SIR for macrocell user 0 at position r is given

as

SIRc(r) =
Θ0

ΨI(r)
|h0|2 ||r/Rc||−αc where ΨI(r) =

∑

k∈B

∣∣∣∣
∣∣∣∣
r− bk

Rc

∣∣∣∣
∣∣∣∣
−αc

|h0k|2Θ0k. (6.11)

Here Rc is the cell radius, αc represents the outdoor path loss exponent and |h0k|2 ∼
exp(1) is the exponentially distributed channel power between interfering BS Ck and
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the user of interest. The random variable Θ0 [resp. Θ0k] is the lognormal shad-

owing between the central BS [resp. interfering BSs] and the desired user, which

are distributed as LN(ζµc,dB, ζ2σ2
c,dB), where ζ = 0.1 ln 10 is a scaling constant. For

analytical tractability in the reminder of the paper, our paper makes the following

assumption regarding the distribution of a composite lognormal-exponential random

variable (r.v).

AS 18. The distribution of a composite lognormal-exponential r.v Θk|h0k|2 is modeled

as a lognormal distribution using Turkmani’s approximation [138] given as

fΨi
(x) =

1

xσi

√
2π

exp

[
−(ln x− µi)

2

2σ2
i

]
(6.12)

µi = ζ(µc,dB − 2.5), σi = ζ
√

σ2
c,dB + 5.572. (6.13)

AS 19. For a fixed r, using the moment generating function based technique described

in Mehta et al.[108], the sum of |B| independent, but not identically distributed log-

normal r.v’s in the expression ΨI(r) =
∑

k∈B(||r− bk|| /Rc)
−αcΨk is approximated

by a single lognormal r.v with parameters LN(µI(r), σ
2
I (r)).

Using Assumptions 18-19 and (6.11), SIRc(r) is distributed according to a log-

normal r.v LN(µC(r), σ2
C(r) where µC(r) = µS(r)−µI(r) and σC(r) =

√
σ2

S(r) + σ2
I (r).

Then, the distribution of the SIR for a cellular user at position r w.r.t the macrocell

is given as

Pr [SIRc(r) ≤ Γ|r] = 1−Q

[
ln (Γ ||r/Rc||αc)− µC

σC

]
. (6.14)

where Q(x) , 1√
2π

∫∞
x

e−t2/2dt is the complementary cumulative distribution function

(CCDF) of a standard normal. Defining a(r) , ln Γ−µC(r)
σC(r)

and b , αc

σC(r)
, (6.14)

simplifies to

Pr [SIRc(r) ≤ Γ|r] = 1−Q[a(r) + b(r) ln ||r/Rc||]. (6.15)
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Averaging (6.15) over a hexagonal cell region is difficult. Alternatively, the

spatially averaged cumulative distribution function (CDF) of SIRc can be obtained

approximately by considering an circular region of radius
√
|H| /π, which results in

the same area as the cell site H. To calculate the spatial throughput inside this

circular region, the paper divides the region into M non-overlapping annuli. For

tractability, a simplifying assumption is that all users inside an annulus experience

identical shadowing statistics (i.e. identical µC(r) and σC(r)). Denoting the distance

of the user from C0 by ||r|| = R, the following lemma derives the expected spatial

throughput by averaging SIRc(R) inside a circular annulus with inner radius R1 and

outer radius R2.

Lemma 8. The spatially averaged SIR distribution inside a circular annulus with

inner radius R1 and outer radius R2 is given as

ER[Pr (SIRc ≤ Γ|R1 ≤ R ≤ R2)] = 1− 1

(R2
2 −R2

1)
[R2

2C(a2, b)−R2
1C(a1, b)] (6.16)

where C(a, b) , Q(a) + exp

(
2− 2ab

b2

)
Q

(
2− ab

b

)
(6.17)

a , ln Γ− µC(R2)

σC(R2)
, b , αc

σC(R2)
(6.18)

a2 = a + b ln (R2/Rc), a1 = a + b ln (R1/Rc). (6.19)

Proof. See Appendix D.1.

Lemma 8 provides a simple method for estimating the cell-averaged macrocell

throughput per subchannel. The probability that a user lies in an annulus with inner

radius Rm−1 and outer radius Rm (1 ≤ m ≤ M with R0 = 0) equals
π(R2

m−R2
m−1)

|H| .

We make use of assumptions 18 through 19 for computing the shadowing parameters

σC and µC at discrete locations Rm, 1 ≤ m ≤ M where RM =
√

|H|
π

. The spatially
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averaged SIR distribution for a macrocell user is therefore approximated as follows

Pr (SIRc ≤ Γ) = ER[Pr (SIRc(R) ≤ Γ)] (6.20)

≈
M∑

m=1

ER[Pr (SIRc ≤ Γ|Rm−1 ≤ R ≤ Rm)] · π(R2
m −R2

m−1)

|H| (6.21)

= 1− πR2
1

|H| C
(

a1 + b1 ln
R1

Rc

, b1

)

−
M∑

m=2

π

|H|
[
R2

mC

(
am + bm ln

Rm

Rc

, bm

)
−R2

m−1C

(
am + bm ln

Rm−1

Rc

, bm+1

)]

(6.22)

where am , ln Γ− µC(Rm)

σC(Rm)
and bm , αc/σC(Rm)

where (6.21) approximates (6.20) by spatially averaging SIRc over M different an-

nulus. Equation (6.22) is obtained by substituting (6.16) inside the conditional ex-

pectation in (6.21) and the corresponding probability that the user lies in annu-

lus m, 1 ≤ m ≤ M . Combining equations (6.4) and (6.20), the average macrocell

throughput Sc in a given subchannel is given as

Sc =
L−1∑

l=1

l · ER[Pr(Γl ≤ SIRc(R) < Γl+1)] + L · ER[Pr(SIRc(R) ≥ ΓL)]

=
L−1∑

l=1

l · (ER[Pr(SIRc(R) ≤ Γl+1)]− ER[Pr(SIRc(R) < Γl)])

+ L · ER[Pr(SIRc(R) > ΓL)]. (6.23)

Figure 6.2 plots Sc (in b/s/Hz) with RR scheduling as a function of the outdoor path

loss exponent αc for the system parameters in Table 6.1. The close agreement be-

tween theory and numerical simulations indicates that the theoretically obtained SIR

distribution is an accurate approximation for practical throughput in a macrocellular

environment.
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6.3.2 Macrocell Throughput: PF Scheduling

In contrast to a RR scheduler, a PF scheduler enables macrocell users to

compete for resources based on their requested rates normalized by their average

throughput thus far. Consequently, the macrocell selects the user with the highest

rate relative to their average rate. During the transmission interval n in subchannel

m, denote Rk[m,n] as the requested rate for user k, 1 ≤ k ≤ Uc, located at position rk

w.r.t the central macrocell C. Let R̄k[n] be the windowed mean throughput obtained

by user k over the Fc frequency subchannels allocated for macrocell transmission. The

PF scheduler selects the user k̃ whose current supportable rate is highest relative to

their mean rate. The scheduling policy per subchannel m with equal per-subchannel

transmission powers (Assumption 17) is described as

k̃(m,n) = arg max
1≤k≤Uc

Rk[m,n]

R̄k[n]
. (6.24)

Note that mobile user k calculates Rk[m,n] using (6.2) and (6.11) respectively. The

windowed throughput per user prior to transmission interval (n + 1) is updated ac-

cording to the rule,

R̄k[n + 1] = (1− 1

N
)R̄k[n] +

1

N

Fc∑
m=1

Rk[m, n]1[k = k̃(m,n)], 1 ≤ k ≤ Uc (6.25)

where 1[·] is the indicator function determining whether user k is scheduled during

transmission interval n in frequency link or not. The window size N is a parameter

that is selected considering the delay tolerance for each user. Choosing a smaller N

enables a given user to be scheduled more often, whereas choosing larger N relaxes

the fairness constraint and allows the scheduler to wait longer before scheduling a

user. By the strong law of large numbers, the average throughput per frequency

subchannel for a given set of user positions is obtained from the sample average over

a long duration and expressed as

E[R̄(Fc, Uc)|r1, · · · rUc ] = lim
n→∞

1

n

n∑
j=1

Fc∑
m=1

Rk̃[m, j]

Fc

, k̃ ∈ {1, 2 · · ·Uc} (6.26)
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where the expectation on the left hand side is over the joint pdf of all channel gains

between users and their serving and interfering BSs. The spatial averaged subchannel

macrocell throughput is obtained by averaging (6.26) w.r.t the joint pdf fR1,···RUc
(·)

and given as

Tc(ρ, Uc) = ER1,···RUc
[E[R̄(Fc, Uc)|R1 = r1, · · ·RUc = rUc ]]. (6.27)

Using (6.27) to compute Tc(ρ, Uc) is analytically intractable. this work resorts to nu-

merical simulation to empirically estimate Sc(ρ, Uc), which is used to derive the band-

width partitioning. In the simulation, the number of subchannels is set as Fc = 1 with

a link bandwidth W = 15 KHz and a PF window parameter N = 500 OFDM sym-

bols. Each mobile is moving at v = 13.34 m/s (30 mph) and the per-link throughput

(6.26) is averaged over 500 drops, with 8000 trials/drop for modeling time-varying

Rayleigh fading. The Rayleigh fading is held fixed over a duration Sc = 0.4/fd

where fd = vfc

3∗108 is the doppler frequency at a carrier frequency fc = 2 GHz. Fig.

6.3 compares the performance of PF (numerically evaluated) versus RR scheduling

for different Uc. Exploiting channel variations through proportional fairness roughly

doubles the expected subchannel throughput.

6.3.3 Femtocell Throughput

Using F-ALOHA, the interfering femtocells with respect to a (typical) reference

femtocell F0 form a marked SPPP Λf ⊆ Φf with intensity ρfλf . In a given frequency

subchannel, the cochannel interference If,f experienced by an indoor user served by

F0 is given as

If,f =
∑

k∈Λf

AfΘ0k|h0k|2|x0k|−αf (6.28)

where Θ0k ∼ LN(ζµfo,dB, ζ2σ2
fo,dB) represents the lognormal shadowing, and |h0k|2

is the exponentially distributed channel power between interfering femtocell Fk and

user 0. Denoting the exponentially distributed channel power between F0 and user 0
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as |h0|2 and assuming that user 0 is located at distance Rf w.r.t F0, the received SIR

is given as

SIRf =
BfΘ0|h0|2|Rf |−βf

∑
k∈Λf

AfΘ0k|h0k|2|x0k|−αf
. (6.29)

Here, |x0k| are the distances of the interfering femtocells Fk w.r.t user 0, while

Θ0 ∼ LN(ζµfi,dB, ζ2σ2
fi,dB) designates the indoor lognormal shadowing experienced

by user 0. The terms αf [resp. βf ] represent the path loss exponents resulting from

interfering transmissions [resp. in-home transmissions] to user 0. A simple model

is used to distinguish between the fixed losses arising from in-home and interfer-

ing transmissions: specifically, home users are insulated against interfering femtocell

transmissions through double partition losses arising from external wall partitions

[2]. Consequently, Af and Bf (in dB) are related as Af,dB = Bf,dB + 2Pf,dB where

Pf =
√

Af

Bf
is the wall partition loss.

Using Assumption 18, Θ0|h0|2 is well approximated as a lognormal r.v Ψ0 ∼
LN(µS, σ2

S). Similarly, the channel powers Θ0k|h0k|2∀k are approximated as identical

and independently distributed r.v’s ΨI ∼ LN(µI , σ
2
I ). Equation (6.29) then simplifies

to

SIRf =
Ψ0|Rf |−βf

∑
k∈Λf

P 2
f Ψ0k|xk|−αf

. (6.30)

The closed form distribution of interference from neighboring femtocells If,f is known

only for αf = 4[107]. However, tight lower bounds on Pr (If,f > y) are obtained by

only considering femtocells whose interference individually exceeds y. The following

lemma, derived in Weber et al. [143] provides an asymptotically tight lower bound

on the tail distribution of If,f .

Lemma 9. [143, Theorem 3] With randomized transmissions and lacking power con-

trol, the lower bound on distribution of If,f is given as

Pr(If,f > y) ≥ 1− exp [−πλfρfE[Ψ
δf

I ]P
2δf

f y−δf ] (6.31)
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where δf , 2
αf

. When αf = 4, If,f is distributed Ch5:AS:

Pr(If,f > y) = 1− erfc

(
π3/2λfρfPfE[Ψ1/2]

2
√

y

)
. (6.32)

Lemma 9 provides the relationship between the density λfρf of interfering

femtocells in Λf and the distribution of the CCI at a femtocell. For fixed y, as

ρf → 0, the tail probability Pr(If,f > y) → 0 in (6.31) indicating that selecting

fewer subchannels using F-ALOHA transmission provides greater resilience against

persistent collisions from nearby femtocells. The femtocell SIR distribution in (6.29)

is given as

Pr (SIRf ≤ Γ) = Pr

(
Ψ0|Rf |−βf

∑
k∈Λf

P 2
f Ψ0k|xk|−αf

≤ Γ

)
(6.33)

= EΨ0

[
Pr

(∑

k∈Λf

P 2
f Ψ0k|xk|−αf ≥ ψ0|Rf |−βf

Γ

∣∣∣Ψ0 = ψ0

)]
(6.34)

≥ 1− EΨ0

{
exp

[
−πλfρfE[Ψ

δf

I ]

(
P 2

f Γ

Ψ0|Rf |−βf

)δf
]}

(6.35)

= 1− EΨ0 [exp (−ρfκfΓ
δf Ψ

−δf

0 )] (6.36)

where, κf , πλfE[Ψ
δf

I ](P 2
f |Rf |βf )δf

where (6.34) and (6.35) follow by conditioning on Ψ0, assuming independence of Ψ0

and Ψ0k ∀k ∈ Λf , and applying (6.31). Although it is not possible to obtain a

closed form expression for the expectation in (6.36), the distribution of SIRf can

be calculated numerically. The mean subchannel throughput Sf is calculated by

combining (6.4) and (6.36):

Sf (ρfλf ) =
L−1∑

l=1

l · Pr(Γl ≤ SIRf < Γl+1) + L · Pr(SIRf ≥ ΓL) (6.37)

≈
L−1∑

l=1

l · EΨ0 [exp (−ρfκfΓ
δf

l+1Ψ
−δf

0 )− exp (−ρfκfΓ
δf

l Ψ
−δf

0 )]

+ L · EΨ0 [exp (−ρfκfΓ
δf

L Ψ
−δf

0 )]. (6.38)
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The approximation in (6.37) is because the right-hand side in (6.36) is a lower bound

on Pr(SIRf ≤ Γ). Figure 6.4 plots the femtocell throughput (1− ρ)ρfSf (in b/s/Hz)

assuming the entire bandwidth is allocated to femtocells (ρ = 0). Black dash-dotted

curves show results of numerical simulations. Two cases are considered namely

(1) high attenuation (marked “HA” with αf = 4, Pf,dB = 10) and (2) low attenu-

ation (marked “LA” with αf = 3.5, Pf,dB = 2) from neighboring femtocells. Setting

ρf = 1 and assuming Nf = 50 femtocells/cell site, the femtocell throughput falls

from approximately 4.5 b/s/Hz in a HA environment to nearly 0.5 b/s/Hz in LA sce-

nario, indicating the sensitivity of femtocell throughput to propagation from nearby

femtocells.
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Figure 6.4: Theoretical and empirical throughput per femtocell ρfSf (b/s/Hz).

To calculate the optimum ρf , we determine the optimal fraction of subchannels

accessed by each femtocell for maximizing spatial reuse, given as the solution to the

following optimization problem

ρ∗f = λf arg max
0<θ≤1

θSf (θλf ), ASE∗f = ρ∗fλfSf (ρ
∗
fλf ). (6.39)
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To justify (6.39), observe that there are an average of |H|ρfλf transmitting femtocells

per subchannel. With F-ALOHA access of 0 < θ ≤ 1, each femtocell obtains an

average subchannel throughput of Sf (θ), resulting in ASEf equaling λfθ · Sf (θλf ).

Alternatively, given any allocation ρ, (6.39) computes the F-ALOHA spectrum access

ρf which maximizes the mean overall throughput (1− ρ)ρfSf (ρfλf ) per femtocell.

Remark 14 (Boundedness of the ASE). The ASE in (6.39) depends only on the

effective intensity λfρ
∗
f of interfering femtocells per subchannel. With increasing λf ,

provided ρ∗f < 1, then the intensity of Λf given as λfρ
∗
f remains constant, implying

that the optimal ρf decreases inversely as λf . Consequently, if ρf < 1 for a given λf ,

the maximum ASE per subchannel is fixed. This also means that with increasing λf ,

the network-wide femtocell throughput equaling |H|WF · (1 − ρ)ASE∗f grows linearly

with (1− ρ).
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Fig. 6.5 plots (6.39) for different Nf with αf = 3.5 and Pf,dB = 2. In all

cases, the highest ASE is fixed at nearly 0.000121 b/s/Hz/m2 validating Remark
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14. With a low femtocell density (Nf = 10 femtocells/cellsite), the best strategy

is for each femtocell to access its entire allocated spectrum. In a dense network

(Nf = 100 femtocells/cellsite), the ASE is maximized when each femtocell accesses

approximately 30% of the available spectrum. Further, in (6.39), as long as ρ∗f = 1,

each femtocell accesses the entire available spectrum (1−ρ), consequently Sf decreases

with addition of femtocells. Whenever ρ∗f < 1, Sf = ASEf/(λfρ
∗
f ) remains constant

with increasing λf (Fig. 6.6). As λf →∞, since ρ ∈ (0, 1), the mean throughput per

femtocell approaches zero, as the following limit shows:

lim
λf→∞

Sf (1− ρ)ρf ≤ lim
λf→∞

Sf .ρf = 0 (6.40)

One may explore the dependence of the mean overall femtocell throughput Sfρf (1−ρ)

on the spectrum allocation ρ and F-ALOHA access ρf . Equivalently: With increasing

femtocell density λf , can increasing allocated spectrum (1−ρ) to femtocells counterbal-

ance decreasing F-ALOHA access ρf to result in a higher mean femtocell throughput?

This question is answered by the following condition: Given an allocation ρl
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at femtocell density λf , let Tf,l and ρf,l be the mean subchannel throughput and the

optimal F-ALOHA access respectively. On increasing λf by δλf with allocation ρh,

let the corresponding quantities equal Tf,h and ρf,h. The femtocell network is defined

as fully-utilized [resp. sub-utilized] if a marginal increment in the femtocell density

reduces [resp. improves] the mean throughput per femtocell given as

(1− ρl)ρf,lTf,l ≷ (1− ρh)ρf,hTf,h

⇐⇒ (1− ρl)
ASEf,l

λf

≷ (1− ρh)
ASEf,h

λf + δλf

⇐⇒ 1− ρh

1− ρl

≶ ASEf,l

ASEf,h

· λf + δλf

λf

=
Tf,l

Tf,h

ρf,l

ρf,h

. (6.41)

Equation (6.41) reflects the competing effects of increasing allocation (1 − ρ) and

decreasing F-ALOHA access ρf (or increasing λf ) in determining the net femtocell

throughput.

6.4 Numerical Results

Results are presented in Figs. 6.7 through 6.10 with the system parameters in

Table 6.1. The number of users in each tier is controlled by varying Nf . To model

the different data-rates demanded by femtocell users relative to cellular users, QoS

values of η = 0.5 (equal per-user throughputs in each tier) and η = 0.01 (favoring

100x higher throughput per femtocell user relative to a cellular user) are considered.

Two propagation scenarios are presented namely 1) High Attenuation (HA) of neigh-

boring femtocell transmissions with parameters αf = 4 and Pf,dB = 10 and 2) a Low

Attenuation (LA) scenario by setting αf = 3.5 and Pf,dB = 2.

Fig. 6.7 shows the allocation using (6.9) with RR scheduling per-tier. With

equal average per-user throughputs (η = 0.5), nearly 90% of the overall bandwidth is

assigned to the macrocell. The central macrocell serves a higher number of users, who

experience relatively poor reception over a bigger area. Equalizing per-user through-

puts consequently requires assigning almost the entire spectrum to the macrocell. As
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Table 6.1: System Parameters
Symbol Description Value
Rc, Rf Macrocell, Femtocell Radius 288 m, 40 m

U Total users per cell site 300
Uf Users per femtocell 2

Pf,dB Wall partition loss 2 dB, 10 dB
G,L Shannon Gap, Modulation Levels 3 dB, 8
αc Path loss exponent (Cellular) 4
αf Path loss exponent (Femtocell to Femtocell) 3.5, 4
βf Path loss exponent (Inside Home Femtocell) 3

σc,dB, σfi,dB, σfo,dB Lognormal Shadow Parameters 8 dB, 4 dB, 12 dB

η decreases, femtocells require more spectrum for providing greater indoor capacity;

eg. in a LA scenario with η = 0.01 and Nf = 50 femtocells/cell site, nearly 70% of

spectrum is allocated to femtocells.

Fig. 6.8 plots the ASEs of the two-tier network using (6.6). In a LA scenario

with η = 0.01, the high degree of co-channel interference results in the ASE maximized

with fewer than Nf = 50 femtocells. Following Remark 14, this indicates that adding

more femtocells does not provide additional spatial reuse. In all other cases, the ASEs

monotonically increase with Nf indicating increasing spatial reuse with addition of

femtocells. To show benefits of opportunistic scheduling, a PF scheduler provides

nearly 2.3x [resp. 1.35x] ASE gains relative to a RR scheduler in a HA scenario with

QoS parameter η = 0.5 [resp. η = 0.01] and Nf = 110 femtocells/cell site.

Fig. 6.9 plots the expected throughput per femtocell (1−ρ)ρfSf as a function

of Nf and η. For η = 0.5, the throughputs monotonically increase with Nf indicating

that increasing spectrum allocation (1−ρ) counteracts the effects of decreasing ρfSf ;

in effect, the femtocell network is sub-utilized. With η = 0.01 in a LA environment

however, the femtocell throughputs decrease with increasing Nf , indicating that the

femtocell network is fully-utilized.

Fig. 6.10 plots the minimum required spectrum WF , satisfying a target av-
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Figure 6.7: Optimal spectrum allocation ρ for varying QoS parameter η.

erage data rate of Dc = 0.1 Mbps for each macrocell user. For each femtocell, we

consider QoS parameter values η = 0.5 and η = 0.01 corresponding to target average

data rates Df = Dc(1−η)/η equaling 0.1 and 10 Mbps per hotspot user. Since Propo-

sition 3 ensures that the QoS constraint in (6.7) is binding, the required spectrum

WF is given Ch5:AS:

WF =
Uc

ρSc

Dc =
Uf

(1− ρ)ρfSf

Df . (6.42)

Two key observations are: First, a macrocell with a channel aware PF scheduling

obtains significant spectrum savings to guarantee Df and Dc; eg. with η = 0.01

and Nf = 50 femtocells/cell site in a HA scenario, the spectrum reduction is nearly

40% (10 MHz) relative to RR scheduling. Next, with η = 0.01 and a LA scenario,

adding femtocells requires a linear increase in spectrum WF indicating the femtocell

network is fully-utilized in (6.41). Conversely, in a HA scenario, the femtocell network

is sub-utilized in (6.41), hence adding femtocells increases the mean throughput per

femtocell.
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6.5 Conclusions

This work has proposed a decentralized spectrum allocation strategy as an al-

ternative to centralized/coordinated frequency assignment in a two-tier network. The

proposed allocation depends on the per-tier throughputs, the loading of users in each

tier and the QoS requirements, accounting for co-channel interference and path losses.

With a randomized spectrum access strategy, femtocells should access a decreasing

fraction of their allocated spectrum with increasing femtocell density, in order to

maximize spatial reuse. Spatial reuse benefits derived from channel aware macrocell

scheduling result in nearly 50% spectrum reduction for meeting target per-tier data

rates. In a low interference scenario where addition of hotspots provides increased

spatial reuse, the spectrum requirement is unchanged up to 110 femtocells/cell site.

On the other hand, the limited spatial reuse in high interference scenarios necessitates

increasing spectrum with addition of femtocells. These insights provide guidelines on
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performance of decentralized spectrum allocation in the two-tier networks.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

The conventional paradigm of expanding cellular system capacity was by in-

stalling ever increasing numbers of macrocell BS towers (in addition to improved

modulation and coding techniques). The key problem with adding more macrocell

(or microcell) BSs was a) substantial resource and capital investments for the cellular

operator, and b) these deployments do not scale well with the ever increasing demand

for data rates for reasons of economy and scarce availability of spectrum.

In contrast, supplementary hotspot infrastructure in the form of femtocells,

distributed antennas and relays ameliorate wireless capacity by exploiting the rela-

tive proximity of users to their AP (thereby reducing the average transmit-receive

communication distance), resulting in a greater number of cochannel transmissions

per square meter. Because these technologies potentially require less capital and

scale with the number of users, cellular operators can recoup their initial investments

within a relatively shorter duration and offer better service, while consuming less

bandwidth.

This dissertation has addressed the key technical challenges confronting tiered

cellular wireless systems when cellular and hotspot users either share radio spectrum

or operate over orthogonal spectrum. Our main thesis is that tiered networks with

universal frequency reuse will be significantly encumbered by significant levels of

cross-tier interference, which results from the significant disparity in communication

distances over the cellular and hotspot networks. Specifically, there is a fundamental
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tradeoff between providing reliable cellular coverage and providing reliable hotspot

operation. Addressing this problem is challenged due to the absence of coordination

between the macrocell and femtocell BS transmissions due to reasons of scalability,

security and limited backhaul capacity. The net consequence is that accommodating

greater numbers of hotspots (or providing higher hotspot data rates) reduces the

number of cellular users that can reliably operate in the same spectrum. Without

interference management, adding femtocells will likely be self-defeating, because of

the potentially likely disruption in reliable outdoor coverage at the primary cellular

infrastructure.

The focus of this work has been to address decentralized radio interference

management in femtocell-aided cellular architectures, encompassing a variety of phys-

ical layer technologies, through a combination of interference avoidance, power control

and spectrum allocation techniques for alleviating cross-tier interference and improv-

ing system capacity. With interference avoidance, cellular and hotspot users attempt

to avoid causing mutual collisions (through time-hopping and antenna sectorization).

Interference mitigation is achieved by forcing femtocells to choose their target data

rates (and hence their transmit powers) for minimizing cross-tier interference inflicted

on cellular users. This thesis has developed power control schemes which require

femtocells to adjust their target data rates either upon sensing the presence of an

active cellular user within its radio range, or upon receiving a broadcast from the

macrocell BS. The efficacy of these power control schemes has been demonstrated

in typical cellular path loss scenarios even when large number of femtocells are de-

ployed. Finally, the spectrum allocation scheme suggested in this thesis maximizes

spatial reuse in two-tier networks employing FDMA, while guaranteeing a minimum

desirable Quality-of-Service to users in either tier.
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7.2 Future Work

Adaptive Access. Open-access (or public access) femtocell operation will

enable cellular users experiencing poor macrocell coverage to undergo handoff to a

nearby femtocell, thereby reducing radio interference at both the macrocell and fem-

tocell BSs. It is reasonable to assume that a practical system would assign weighted

priorities to serviced users with the paying home consumers receiving higher prior-

ity. Closed-access operation, on the other hand, provides privileged access to the

home user which is desirable when backhaul capacity is limited. Because the femto-

cells transport their traffic over the internet backhaul, the available excess backhaul

capacity will most likely influence whether a femtocell should serve an unlicensed

user without deteriorating the Quality-of-Service provided to the tariff paying home

consumer.

An open research problem is to analyze which mode of operation (open-access or

closed-access) is preferable either from the perspective of the paying home consumer

(as an instance, which operation yields a higher average throughput), or from the per-

spective of the entire network (a centralized entity could maximize the network-wide

spatial reuse by determining two classes of hotspots: one would provide open access,

and the other set would operate with closed access). The implication is that femto-

cells would adaptively configure their access mode depending on their location, the

prevailing levels of co-channel interference, the channel conditions between users to

their BSs, the number of already serviced users in each femtocell and their prevailing

target data-rates.

Coverage and Handoffs. In open-access operation, the network overhead

arising from handoffs from the cellular BS to a femtocell hotspot will seriously chal-

lenge practical deployments of large numbers of femtocells. One method of minimizing

frequent handoff events is that femtocells dynamically adapt their coverage radius –

also called “cell breathing” [95] – depending on their channel conditions, and the
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number of users served by each femtocell. Femtocell handoff procedures should care-

fully choose the femtocell pilot signal strengths in order to load balance users across

tiers [37, 156]. The problem of determining the “optimal” femtocell coverage radius

as a function of the available excess backhaul bandwidth, the time-varying channel

strength and cellular user mobility (governing dwell times) is an open avenue for

further research.
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Appendix A

Appendix to Chapter 3

A.1 Lemma 1

With TH-CDMA transmission over Nhop slots and antenna sectoring with

Nsec directed BS antennas in each tier, the interfering field at a given antenna sector

can be mapped to the SPPPs Φc and Φf on R2 with intensities ηc = λc/(NhopNsec)

and ηf = λf (1− e−Uf )/(NhopNsec) respectively.

Proof. Consider the Poisson field of interferers as seen at any antenna sector (either

macrocell or femtocell BS) with antenna alignment angle θ. Assuming a perfect

antenna radiation pattern, the interfering Poisson field forms heterogeneous SPPPs

Ω̂c and Ω̂f with intensities respectively given as

λ̂c(r, φ) =
λc

Nhop

· 1
(

φ ∈
[
θ, θ +

2π

Nsec

])

λ̂f (r, φ) =
λf

Nhop

(1− e−Uf ) · 1
(

φ ∈
[
θ, θ +

2π

Nsec

])
(A.1)

where the indicator 1(·) is defined as 1(x ∈ X) , 1 if x ∈ X and zero otherwise.

Equation (A.1) is justified for the following reasons namely,

Hopping slot selection: The set of cellular users and femtocell BSs trans-

mitting over any hopping slot is obtained by independent Bernoulli thinning of the

individual SPPPs Ωc and Ωf by the probability of choosing that hopping slot namely

1/Nhop.

Active femtocell selection: The factor (1− e−Uf ) arises because the set of

femtocells with at least one actively transmitting user is obtained using independent
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Bernoulli thinning of Ωf [91]. Observe that a femtocell with U ≥ 1 actively transmit-

ting users satisfies E[U ] =
Uf

1−e
−Uf

.

The event consisting of marking femtocells by the probability that they contain at

least one actively transmitting user and the event of marking femtocells by the prob-

ability of choosing a common hopping slot are independent; this implies that the

resulting SPPP Ω̂f has intensity
λf

Nhop
(1− e−Uf ). Finally, using the Mapping theorem

[91, Section 2.3] for Poisson processes, one can map the heterogeneous SPPPs Ω̂c and

Ω̂f over one antenna sector to homogeneous SPPPs Φc and Φf over R2 with intensities

ηc = λc

NhopNsec
and ηf =

λf

NhopNsec
(1− e−Uf ) respectively.

A.2 Theorem 1

With a path loss exponent α = 4, the interference terms Ic,f and If,f are

identically distributed as a Poisson shot-noise process Y =
∑

i∈Φf
QfΨi|Xi|−α with

identical and independently distributed marks Ψi and probability density function (pdf)

and cumulative distribution function (cdf) given as

fY (y) =

√
κf

π
y−3/2e−κf /y, FY (y) = erfc

(√
κf

y

)
(A.2)

where κf , η2
fπ

3Qf (E[Ψ1/2])2/4.

Proof. From (3.2), Ic,f (and If,f ) are distributed as a Poisson SNP Ŷ =
∑

i∈Ω̂f
QfΨi|Xi|−α

over an antenna sector of width 2π/Nsec. The statistics of Ŷ can be obtained using

the following two steps.

1. Invoke Lemma 1 for mapping Ω̂f to a homogeneous SPPP Φf on R2. This

implies that Ŷ is distributed identically as Y =
∑

i∈Φf
QfΨi|Xi|−α.

2. Map the planar SPPP defining Φf with intensity ηf to a one-dimensional

SPPP with intensity πηf using Proposition 1, Theorem 2 in [78]. For doing so, rewrite

Y as, Y =
∑

i∈Φf
QfΨi(|Xi|2)−α/2 which represents a SPPP on the line with Poisson

arrival times |Xi|2 and intensity πηf =
πλf

Nhop·Nsec
(1− e−Uf ).
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Consequently, Y is identically distributed as a one-dimensional SPPP with intensity

πηf , which represents a Lévy-stable distribution with a stability exponent δ = 2/α

[124]. When α = 4 (or stability exponent δ = 0.5), the cumulative distribution

function in (3.5) is obtained from Equation (30) in [107].

A.3 Theorem 2

With Poisson in-cell macrocell interference Ic,in, Gaussian out-of-cell inter-

ference Ic,out and Lévy-stable femtocell interference Ic,f given by (3.5), the outage

probability at the macrocell BS antenna sector is given as

ε ≥ Pc
out = 1− 1

1− e−ηc|H|

bρc/P c
r c∑

m=1

e−ηc|H|(ηc|H|)m

m!
Gc(ρ̃c) (A.3)

where ηc = λc

NhopNsec
,ρc = P c

r G
ΓNhop

, ρ̃c = ρc − (m − 1)P c
r and Gc(t) ,

∫ t

0
fIc,out(t −

y)FIc,f
(y) dy.

Proof. At the macrocell BS, the interference terms denoted by Ic,in, Ic,out and Ic,f

are mutually independent random variables. The macrocell outage probability Pc
out

defined in (3.3) can be computed by the probability of the complementary event,

corresponding to the probability that the cumulative interference does not exceed the

SIR threshold ρc = GP c
r /(ΓNhop). The cdf of (Ic,in + Ic,out + Ic,f ) can be computed

using a three-fold convolution. Observe that the event that the intra-tier macrocell

interference from (k− 1) in-cell tier 1 interferers Ic,in equals (k− 1)P c
r , given at least

one active tier 1 user (user of interest), is equivalent to the event that Φc has exactly

k elements within H. The probability of this event is given as,

P
[
Ic,in = (k − 1) · P c

r

∣∣∣k ≥ 1
]

= P
[
|Φc| = k

∣∣∣|Φc| ≥ 1
]

=
1

1− e−ηc|H|
e−ηc|H|(ηc|H|)k

k!
.

(A.4)

The total interference caused by the (k − 1) interfering macrocell users equals (k −
1) · P c

r . Outage does not occur if the residual interference Ic,out + Ic,f is less than
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ρc − (k − 1)P c
r . Using Theorem 1 and independence of Ic,out and Ic,f , the result

follows.

A.4 Theorem 3

At any femtocell antenna sector located at distance 0 < R0 ≤ Rc from the

macrocell BS along the hexagonal axis:

1. The complementary cumulative distribution function (ccdf) of the cross-tier inter-

ference If,c at a femtocell antenna sector is lower bounded as F̄If,c
(y) ≥ 1−F lb

If,c
(y),

where

F lb
If,c

(y) = exp



−

λc

Nhop

∫∫

Hsec

S(r, φ; y)rdrdφ



 , S(r, φ; y) , F̄Ψ

[
yr

P c
r (|reiφ + R0|)α

]
.

(A.5)

Here F̄Ψ is the ccdf of Ψ : 10 log10 Ψ ∼ N(0, 2σ2
dB), i ,

√−1, θ is the femtocell

BS antenna alignment angle and Hsec ⊆ H denotes the region inside the reference

macrocell enclosed between θ ≤ φ ≤ θ + 2π/Nsec.

2. For a corner femtocell R0 = Rc with an omnidirectional femtocell antenna Nsec =

1, the ccdf of If,c is lower bounded as F̄If,c
(y) ≥ 1− F lb

If,c
(y), where

F lb
If,c

(y) = exp



−3

λc

Nhop

∫∫

H

S(r, φ; y)rdrdφ



 . (A.6)

Proof. The interference experienced at a femtocell BS antenna sector θ ≤ φ ≤
θ + 2π/Nsec is lower bounded by the cellular interference arising within Hsec. If

the femtocell BS is located at distance R0 from the reference macrocell, then any

macrocell user located at polar coordinates (ri, φi) w.r.t the femtocell BS causes an

interference equaling P c
r Ψi(|R0 + reiφ|/r)α at the femtocell BS. Corresponding to the

heterogeneous SPPP Πc (see Def. 3), outage events at the femtocell BS arising from
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cellular interference If,c can be categorized into two types: In the first type, outage

events arise due to interference caused by a single user in Πc. The second class of

outage events occur due to the macrocell interferers whose cumulative interference

causes outage [144]. This class precludes all interferers falling in the first category.

Mathematically, for an outage threshold y at the femtocell BS, split Πc into two

disjoint heterogeneous Poisson SPPPs Πc = Πc,y ∪ ΠC
c,y corresponding to the set of

dominant and non-dominant cellular interferers:

Πc,y , {(ri, φi) ∈ Πc : P c
r Ψi(|rie

iφi + R0|/ri)
α ≥ y}, ΠC

c,y = Πc \ Πc,y. (A.7)

At any point (r, φ) ∈ H, the intensity of Πc,y denoted by λc,y(r, φ) is given as,

λc,y(r, φ) =
λc

Nhop

F̄Ψ

[
yrα

P c
r |reiφ + R0|α

]
· 1

(
φ ∈

[
θ, θ +

2π

Nsec

])
. (A.8)

In the event of Πc,y being non empty, the femtocell BS experiences outage, arising

from the interference caused by a user in Πc,y. Therefore, Pf
out is lower bounded by the

probability that Πc,y has at least one element. Equation (A.5) results from the Poisson

void probability of the complementary event P[|Πc,y| = 0] [91]. This completes the

proof for the first assertion.

To prove (3.8), recognize that a corner femtocell with an omnidirectional BS

antenna encounters cellular interference from the three surrounding cellsites. The

dominant macrocell interferer set Πc,y can be expressed as Πc,y =
⋃3

i=1 Πi
c,y, where

Πi
c,y denotes the dominant macrocell interferer set in neighboring cellsite i. The

heterogeneous SPPPs Πi
c,y are non-intersecting with an intensity expressed by (A.8).

The ccdf of If,c is then lower bounded by the probability of Πc,y being non empty,

which can be deduced from the event that Πi
c,y, i ∈ {1, 2, 3} are empty.

F lb
If,c

(y) =
3∏

i=1

P(|Πi
c,y| = 0) = exp



−3

λc

Nhop

∫∫

H

S(r, φ; y)r drdφ



 . (A.9)

To complete the proof, use pairwise independence of the events that Πi
c,y and Πj

c,y

are empty and S(r, φ; y) in (A.5) to show that F̄If,c
(·) is lower bounded as F̄If,c

(y) ≥
1− F lb

If,c
(y) in (A.9).
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A.5 Theorem 4

For small λc, the femtocell outage probability Pf
out is lower bounded as

ε ≥ Pf,lb
out ≈ 1− e−Uf,sec

1− e−Uf,sec

bρf /P f
r c∑

m=1

Um
f,sec

m!
·Gf (ρ̃f ) (A.10)

where Uf,sec , Uf

Nsec
, ρf , GP f

r

Nhop·Γ , ρ̃f = ρf − (m − 1) · P f
r and Gf (t) , FIf,f

(t) +
∫ t

0
fIf,f

(t− y) ln (F lb
If,c

(y)) dy.

Proof. The number of femtocell users within a femtocell BS antenna sector is Pois-

son distributed with mean Uf/Nsec. The overall interference is composed of three

terms namely If,in, If,f and If,c which are mutually independent. Given m actively

transmitting femtocell users including the user of interest, the interference from users

within the femtocell equals If,in = (m − 1)P f
r . The threshold for If,f + If,c to cause

outage therefore equals ρ̃f = ρf − (m−1)P f
r , ρf , GP f

r /(ΓNhop) using (3.3). A lower

bound on Pf
out is obtained as,

1− Pf,lb
out =

e−Uf,sec

1− e−Uf,sec

bρf /P f
r c∑

m=1

Um
f,sec

m!
· FIlb

f,c+If,f
(ρ̃f ) (A.11)

(a)
=

e−Uf,sec

1− e−Uf,sec

bρf /P f
r c∑

m=1

Um
f,sec

m!
· [F lb

If,c
∗ fIf,f

](ρ̃f )

(b)≈ e−Uf,sec

1− e−Uf,sec

bρf /P f
r c∑

m=1

Um
f,sec

m!
· [(1 + ln(F lb

If,c
)) ∗ fIf,f

](ρ̃f ).

Equation (A.11) uses the lower bound on macrocell interference I lb
f,c arising from the

set of dominant macrocell interferers (A.7). Step (a) uses pairwise independence of

If,f and If,c for performing a convolution of the respective probabilities. Finally,

Step (b) follows from a first-order Taylor series approximation of F lb
If,c

in (A.5) using

ex ≈ (1 + x) for small λc in the low outage regime.
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A.6 Lemma 2

With a femtocell exclusion region of radius Rf,exc around the reference macro-

cell BS, the ccdf of cross-tier femtocell interference Ic,f is lower bounded as

F̄Ic,f
(y) ≥ 1− e−πηf H(y) (A.12)

where H(y) is defined as,

H(y) ,
(

Qf

y

)δ

(E[Ψδ]− FΨ(u)E[Ψδ|Ψ ≤ u])− (Rf,exc)
2F̄Ψ(u)

Ψ =
U∑

i=1

Ψi, where 10 log10 Ψi ∼ N(0, 2σ2
dB)

δ = 2/α, u =
yR

2/δ
f,exc

Qf

, U ∼ X|X ≥ 1, X ∼ Poisson(Uf ). (A.13)

Proof. Outside the femtocell exclusion region Rexc
f ⊂ H, corresponding to an outage

threshold y, the SPPP Φf (see Def.2) of intensity ηf =
λf

NhopNsec
(1− e−Uf ) can be split

into the dominant and non-dominant interfering femtocells denoted by (Φf,y, Φ
C
f,y)

respectively. The heterogeneous SPPP Φf,y = {(ri, φi) ∈ Φf : QfΨir
−α
i ≥ y} consists

of actively transmitting femtocells over R2 which are capable of individually causing

outage at a macrocell BS. At any (r, φ) w.r.t macrocell BS, the intensity of φf,y equals

ηf · F̄Ψ(yrα/Qf ). The ccdf of the femtocell interference If,c is lower bounded by the

probability that Φf,y is non-empty. For if Φf,y contains at least one element, then the

macrocell BS antenna sector is in outage (by construction of Φf,y). The lower bound
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F̄ lb
Ic,f

(y) is then given as

1− F̄ lb
Ic,f

(y) = exp




−2πηf

∞∫

Rf,exc

F̄Ψ

(
yrα

Qf

)
r dr





(A.14)

(a)
= exp



−πηfQ

δ
fy
−δ

∞∫

u

F̄Ψ(t) d(tδ)





(b)
= exp



−πηfQ

δ
fy
−δ




∞∫

u

tδfΨ(t) dt− F̄Ψ(u)(Rf,exc)
2






 .

Step (a) follows by substituting t = yrα/Qf and δ = 2/α in (A.14), while Step

(b) is obtained using integration by parts and setting u = ( y
Qf

)(Rf,exc)
2/δ. Using

∫∞
u

tδfΨ(t) dt = E[Ψδ]− FΨ(u)E[Ψδ|Ψ ≤ u] in Step (b) completes the proof.

A.7 Lemma 3

With a tier selection policy in which any user within a radius Rf of a femtocell

undergoes handoff to the femtocell BS, the intensity of tier 1 users within H after

handoff is given as λTS
c (r) = λce

−λf πRf
2

whenever r > Rf,exc, where Rf,exc is the

femtocell exclusion radius.

Proof. In the region 0 ≤ r ≤ Rf,exc around the reference macrocell, actively transmit-

ting femtocells are absent, so that there are no femtocells for handoff to occur for any

user in Ωc. Consequently, the intensity of the tier 1 cellular users in 0 < r < Rf,exc

equals λc. For r > Rf,exc, the intensity of the cellular users is found by computing the

probability that any point in Ωc (prior tier selection) does not fall within Rf meters

of a femtocell BS. This is equivalent to computing the void probability of Ωf within

a circle of radius Rf of every point in Ωc, which equals e−λf πR2
f .

This proof assumes an independent Bernoulli thinning of each point in Ωc by

the probability that a tier 1 user falls with Rf of a femtocell. Strictly speaking,
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this statement is not correct: Given two closely spaced tier 1 users in Ωc, the event

that the first user undergoes femtocell handoff is correlated with a nearby user in Ωc

undergoing handoff with the same femtocell. However, we justify that this assumption

is reasonable while considering the small size of each femtocell. Then, the intensity

of tier 1 users following the femtocell handoff is obtained by independent Bernoulli

thinning [91] of Ωc by the void probability e−λf πR2
f , which completes the proof.
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Appendix B

Appendix to Chapter 4

B.1 Theorem 9

The SINR Nash equilibrium at femtocell BS Bi, i ∈ N\0 equals γ∗i = p∗i gi,i/Ii(p
∗
−i),

where p∗i is given as

p∗i = min

{[
Ii(p

∗
−i)

gi,i

f−1
i

(
− bi

gi,i

dC

dpi

)]+

, pmax

}
and fi(x) ,

[
dR(γi, Γi)

dγi

]

γi=x

. (B.1)

Proof. Since femtocell user i individually optimizes its utility as a best response to

other users, we first fix interfering powers p−i. Because Ui(pi, γi|p−i) is a strictly

concave function of pi, its partial derivative U ′
i(pi, γi|p−i) – assuming differentiability –

monotonically decreases with increasing pi. A necessary condition for the existence of

local optima is that the derivative of Ui in the interval [0, pmax] equals zero. Therefore,

if there is no local optima in the interval [0, pmax], the user i chooses its equilibrium

transmit power p∗i depending on the sign of the derivative U ′
i(pi, γi) – transmit at full

power (if U ′
i(pi, γi) > 0 in [0, pmax]) or zero power otherwise.

On the contrary, ∀i ∈ N, i ≥ 1, if the Nash equilibrium p∗i is a local optima in

[0, pmax],

[
dUi(pi, γi|p−i)

dpi

]

pi=p∗i

= 0 ⇒
[
dR(γi, Γi)

dγi

gi,i

Ii(p−i)
+

bi

Ii(p−i)

dC

dpi

]

pi=p∗i

= 0. (B.2)

Since Ii(p−i) ≥ σ2 > 0, one may cancel Ii(p−i) on both sides of (B.2). The first- and

second-order conditions (4.29)-(4.30) ensure that dR(γi, Γi)/dγi [resp. −dC/dpi] are
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monotone decreasing [resp. monotone non-decreasing] in pi. The solution to (B.2)

corresponds to the intersection of a monotone decreasing function gi,idR(γi, Γi)/dγi

and a monotone increasing function −bidC/dpi w.r.t the transmitter power pi. This

intersection is therefore unique [81, Section 3] and corresponds to the Nash equilibrium

at pi = p∗i . Using the notation fi(x) ,
[

dR(γi,Γi)
dγi

]
evaluated at γi = x yields (B.1).

This completes the proof.

B.2 Lemma 6

With the utility-based cellular SINR adaptation [resp. femtocell SINR adapta-

tion] in (4.27) [resp. (4.32) with reward-cost functions in (4.34)], the unique SINR

equilibria at BS Bi, i ∈ N are given as γ∗i =
p∗i gii

Ii(p−i)
where p∗i is given as

Femtocell User : p∗i = min

{
Ii(p

∗
−i)

gi,i

[
Γi +

1

ai

ln

(
aigi,i

big0,i

)]+

, pmax

}
. (B.3)

Cellular User : p∗0 = min

{
I0(p

∗
−0)

g0,0

Γ0, pmax

}
. (B.4)

Proof. The cellular user’s utility function U0(p0, γ0|p−0) is strictly concave w.r.t p0

given p−0. Consequently, the argument maximizer in (4.27) occurs either in the

interior at p∗0 = Γ0
I0(p−0)

g00
or at the boundary point p = pmax if U ′

0(p0, γ0|p−0) =

2(Γ0 − p0
g00

I0(p∗−0)
) > 0 in [0, pmax]. At femtocell AP Bi, the equilibrium SINR in

Equation (B.3) follows immediately by applying (B.1) in Theorem 9 to the utility

functions given in (4.34).

To show uniqueness of the Nash equilibria, we rewrite Equations (B.3)-(B.4)

as an iterative power control update p(k+1) = f(p(k)) – wherein the component fi(pi)
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represents the power update for user i – with individual power updates given as

Femtocell User : p
(k+1)
i = min

{
p

(k)
i

γ
(k)
i

[
Γi +

1

ai

ln

(
aigi,i

big0,i

)]+

, pmax

}
. (B.5)

Cellular User : p
(k+1)
0 = min

{
p

(k)
0

γ
(k)
i

Γ0, pmax

}
. (B.6)

Yates [154] has shown that, provided a power control iteration of the form

p(k+1) = f(p(k)) has a fixed point and whenever f(p) satisfies the following properties

namely a) positivity f(p) > 0, b) monotonicity p1 > p2 ⇒ f(p1) > f(p2) and

c) scalability αf(p) > f(αp) ∀α > 1, then the power control iteration converges to

the fixed point, which is unique. In such a case, f is called a standard interference

function. Since the RHSs in (B.5)-(B.6) form a standard interference function, its

fixed point (or the Nash equilibrium given by (B.3)-(B.4)) is unique and the iterates

are guaranteed to converge to the equilibrium transmit powers. This completes the

proof.
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Appendix C

Appendix to Chapter 5

C.1 Theorem 10

Any femtocell F0 within D < Df meters of the macrocell B0 cannot satisfy

its QoS requirement P[SIRf (F0, D) ≤ Γ] ≤ ε, where Df is given as

Df =

[
K

Γ

Pf/Uf

Pc/Uc

(
I−1(ε; Tf − Uf + 1, Uc)

1− I−1(ε; Tf − Uf + 1, Uc)

)]−1/αc

(C.1)

where K =
Afi

Af,c
R
−αfi

f and x , I−1(ε; a, b) denotes the value of x for which the cumu-

lative distribution function (cdf) of a Beta-distributed random variable X with param-

eters a and b [namely the regularized incomplete Beta function Ix(a, b) = P(X ≤ x)]

equals ε.

Proof. The probability of successful reception in (5.3) can be upper bounded as

P[SIRf (F0, D) ≥ Γ] ≤ P
[
|g†0w0,0|2 ≥ ΓQf

(
Pf

Uc

||f †0V||2
)]

. (C.2)

The term |g†0w0,0|2 is distributed as a chi-squared random variable (r.v) X with

2(Tf − Uf + 1) degrees of freedom [103, 148] denoted as χ2
2(Tf−Uf+1). To prove this

claim, whenever Uf = 1 (beamforming to a single user), w0,0 = g0

||g0|| , therefore,

|g†0w0,0|2 is distributed as χ2
2Tf

. When 1 < Uf ≤ Tf , |g†0w0,0|2 = | g†0
||g0||w0,0|2 · ||g0||2

which equals the product of two independent r.v’s which are distributed as Beta(Tf −
Uf + 1, Uf − 1) (see [49, Theorem 1.1] for proof) and χ2

2Tf
respectively. Proposition

4 shows that |g†0w0,0|2 is distributed as a χ2
2(Tf−Uf+1) r.v. The probability density

function of |g†0w0,0|2 is given as f|g†0w0,0|2(x) = xTf−Uf e−x/Γ(Tf − Uf + 1) ∀x ≥ 0

where Γ(k) = (k − 1)! for any positive integer k.
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Similarly, the r.v ||f †0V||2 =
∑Uc−1

k=0 |f †0vk|2 is the sum of Uc r.v’s, wherein each

term |f †0vk|2 equals the squared modulus of a linear combination of Tc complex normal

r.v’s, which is exponentially distributed. Consequently, ||h†0,cV||2 is distributed as a

χ2
2Uc

r.v.

Define Z =
|g†0w0,0|2
||f†0V||2 . Then Z is the ratio of two independent χ2 r.v’s with

2(Tf−Uf+1) and 2Uc degrees of freedom respectively. Therefore, Z follows a canonical

Fc-distribution[5] and Z Uc

(Tf−Uf+1)
is an F-distributed r.v with parameters 2(Tf−Uf +1)

and 2Uc respectively. Substituting κ in (5.4) and taking the complement of (C.2),

one obtains

P[SIRf (F0, D) ≤ Γ] ≥ P[Z ≤ κ]

= P
[

Z Uc

Tf − Uf + 1
≤ κ

Uc

Tf − Uf + 1

]

= I κ
κ+1

(Tf − Uf + 1, Uc). (C.3)

A necessary condition for meeting the QoS requirement ε for indoor users served by

F0 is given as

I κ
κ+1

(Tf − Uf + 1, Uc) ≤ ε ⇒ κ∗ =
I−1(ε; Tf − Uf + 1, Uc)

1− I−1(ε; Tf − Uf + 1, Uc)
. (C.4)

Substituting the definition of κ in (5.4), one obtains Df . This completes the proof.

C.2 Proposition 2

The inverse function I−1(x; a, b) is monotonically increasing with a and mono-

tonically decreasing with b for any a, b ≥ 0.

Proof. We use the following two expansions [61, Page 29] for Ix(a, b).

Ix(a, b)
(a)
= 1−

a∑
i=1

Γ(b + i− 1)

Γ(b)Γ(i)
xi−1(1− x)b (b)

=
b∑

i=1

Γ(a + i− 1)

Γ(a)Γ(i)
xa(1− x)i−1. (C.5)
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where the Gamma function Γ(k) = (k − 1)! for any positive integer k. Relation

(a) shows that Ix(a, b) monotonically decreases with a. The equivalent Relation (b)

shows that Ix(a, b) is monotone increasing w.r.t b. Consequently, the inverse function

I−1(x; a, b) monotonically increases with a and monotonically decreases with b.

C.3 Corollary 4

With K as defined in Theorem 10 and Uc = 1, the reduction in the no-coverage

radius using a SU transmission strategy at femtocells relative to MU transmission to

Uf = Tf users [resp. single antenna transmission] is given as

Df,SU

Df,MU

=

[(
1− ε1/Tf

ε1/Tf

)
ε

1− ε

1

Tf

]1/αc

≈
[
ε1−1/Tf

Tf

]1/αc

.

Df,SU

Df,1 Antenna

=

[(
1− ε1/Tf

ε1/Tf

)
ε

1− ε

]1/αc

≈ ε
1

αc
(1−1/Tf).

Proof. With SU femtocell transmission [resp. MU transmission to Uf = Tf users] and

Uc = 1 user, the incomplete beta function I κ
κ+1

(Tf − Uf + 1, Uc) simplifies as

I κ1
κ1+1

(Tf , 1) =

(
κ1

κ1 + 1

)Tf

, I κ2
κ2+1

(1, 1) =

(
κ2

κ2 + 1

)
(C.6)

where κ1 = 1
K

Pc

Pf
D−αc

f,SU and κ2 = 1
K

Pc

Pf /Tf
D−αc

f,MU respectively. Therefore, the no-

coverage distances in (5.5) are respectively given as

Df,SU =

[
K

Γ

Pf

Pc

(
ε1/Tf

1− ε1/Tf

)]−1/αc

, Df,MU =

[
K

Γ

Pf/Tf

Pc

(
ε

1− ε

)]−1/αc

. (C.7)

Assuming small ε, SU femtocell transmission consequently reduces Df by a factor of

approximately (
Tf

ε
1−1/Tf

)1/αc relative to MU transmission. A similar argument shows

that SU transmission reduces Df by a factor of approximately ε−
1

αc
(1−1/Tf) relative

to single antenna transmission.
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C.4 Theorem 11

In a two-tier network, the maximum femtocell contention density λ∗f (D) at

distance D from the macrocell B0, which satisfies (5.6) (in the small-ε regime) is

given as

λ∗f (D) =
1

Cf (QfΓ)δf

[
ε− I κ

κ+1
(Tf − Uf + 1, Uc)

1
Kf
− I κ

κ+1
(Tf − Uf + 1, Uc)

]
(C.8)

where δf = 2/αfo, Qf is given by (5.2), κ is given by (5.4), and

Cf = πδfU
−δf

f

Uf−1∑

k=0

(
Uf

k

)
B(k + δf , Uf − k − δf ) (C.9)

Kf =


1 +

1

(1 + κ)Uc

Tf−Uf−1∑
j=0

(
κ

κ + 1

)j (
Uc + j − 1

j

) Tf−Uf−j∑

l=1

1

l!

(l−1)∏
m=0

(m− δf )



−1

(C.10)

where B(a, b) = Γ(a)Γ(b)
Γ(a+b)

denotes the Beta function and Kf = 1 whenever Uf = Tf .

Proof. Using (5.3), the probability of successful reception P[SIRf (F0, D) ≥ Γ] is given

as

P[|g†0w0,0|2 ≥ ΓQf (If,c + If,f )]

where, If,c =
Pf

Uc

||f †0V||2, If,f = 1/Uf

∑

Fj∈Πf\F0

||g†0,jWj||2|X0,j|−αfo . (C.11)

The interference from neighboring femtocells If,f is a Poisson Shot-noise Process([107,

132]) with independent and identically distributed marks[91]. The distributions of the

signal powers and marks of the interferers are chi-squared with degrees of freedom

given as |g†0w0,0|2 ∼ χ2
2(Tf−Uf+1), ||f †0V||2 ∼ χ2

2Uc
and ||g†0,jWj||2 ∼ χ2

2Uf
respectively.

Consequently,

P[SIRf (F0, D) ≥ Γ]
(a)
=

∫ ∞

0

Tf−Uf∑

k=0

(sQfΓ)k

k!
e−sQfΓdP(If,c + If,f ≤ s) (C.12)

(b)
=

Tf−Uf∑

k=0

(−QfΓ)k

k!

dk

dθk
LIf,c

(θ)LIf,f
(θ)

∣∣∣
θ=QfΓ

(C.13)
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where step (a) follows by conditioning on If,c+If,f and computing the complementary

cumulative distribution (ccdf) of ||g0||2. For deriving step (b), with k = 0, the

integral in (a) corresponds to the Laplace Transform (LT) of the r.v If,f + If,c given

as E[e−(If,c+If,f )θ] evaluated at θ = QfΓ (originally derived in [13]). Next, since If,c

and If,f are independent r.v’s, the LT of their sum decouples as the product of their

LTs E[e−If,cθ]E[e−If,f θ]. Finally, for any k > 0, we have the identity L[tkf(t)] =

(−1)kF (k)(s), where F k(s) represents the kth derivative of F (s) (this technique is

borrowed from [76]).

The LTs of If,c and If,f may be written as

LIf,c
(θ) = E[e−θIf,c ] =

1

(1 + Pfθ/Uc)Uc
(C.14)

LIf,f
(θ) = E[e−θIf,f ]

(a)
= exp

{
−λf

∫

R2

1− ES[e
−θ S

Uf
|x|−αfo

] dx

}
, where S ∼ χ2

2Uf

(b)
= exp



−πλfδf

(
θ

Uf

)δf
Uf−1∑

k=0

(
Uf

k

)
B(k + δf , Uf − k − δf )





(c)
= exp(−λfCfθ

δf ) (C.15)

where (C.14) follows from the LT of a chi-squared r.v with 2Uc degrees of freedom. In

(C.15), step (a) represents the LT of a Poisson Shot-Noise process with independent

and identically distributed marks Sj–equaling ||g†0,jWj||2 in our case. Steps (b) and

(c) follow from [76]. Substituting (C.14) and (C.15) in (C.13) leads to the following

requirement for the success probability

Tf−Uf∑

k=0

(−QfΓ)k

k!

dk

dθk

e−λf Cf θ
δf

(1 +
Pf θ

Uc
)Uc

≥ 1− ε, where θ = QfΓ. (C.16)

Using the Leibniz rule, the kth derivative of LIf,c
(θ)LIf,f

(θ) is given as

dk

dθk

e−λf Cf θ
δf

(1 +
Pf θ

Uc
)Uc

=
k∑

j=0

(
k

j

)
dj

dθj

(
1 +

Pfθ

Uc

)−Uc d(k−j)

dθ(k−j)
e−λf Cf θ

δf
. (C.17)
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where
(

a
b

)
is the coefficient of xb in the expansion of (1 + x)a. Considering the low

outage regime, we shall evaluate the kth derivative of LIf,f
(θ) using a first-order Taylor

series approximation around λfCfθ
δf = 0. Then, for all k ≥ 1, the kth derivatives of

LIf,c
(θ) and LIf,f

(θ) are individually given as

dk

dθk

(
1 +

Pfθ

Uc

)−Uc

=

[∏k−1
j=0(Uc + j)

] (
−Pf

Uc

)k

(1 +
Pf θ

Uc
)k+Uc

. (C.18)

dk

dθk
e−λf Cf θ

δf
= −

[
λfCf

k−1∏
m=0

(δf −m)θδf−k

]
e−λf Cf θ

δf
+ Θ(λ2

fC
2
fθ

2δf ). (C.19)

Combining (C.16) with (C.18) and (C.19) and substituting θ = QfΓ leads to

e−λf Cf (QfΓ)
δf

(1 +
Pf QfΓ

Uc
)Uc

{
(Tf−Uf )∑

k=0

(
Pf QfΓ

Uc
)k

k!
(
1 +

Pf QfΓ

Uc

)k

(k−1)∏
m=0

(Uc + m)

− λfCf (QfΓ)δf

(Tf−Uf )∑

k=1

(−1)k

k!

k∑
j=1

(
k

j

) [ −Pf QfΓ

Uc

1 +
Pf QfΓ

Uc

]k−j (k−j−1)∏
n=0

(Uc + n)

j−1∏
m=0

(δf −m)

}

+ Θ(λ2
fC

2
f (QfΓ)2δf ) ≥ 1− ε.

Next, substituting κ = PfQfΓ/Uc from (5.4) and performing a first-order Taylor

series expansion of e−λf Cf (QfΓ)
δf

= 1 − λfCf (QfΓ)δf + Θ(λ2
fC

2
f (QfΓ)2δf ), the above

expression simplifies as

1− λfCf (QfΓ)δf

(1 + κ)Uc

{
Tf−Uf∑

k=0

1

k!

(
κ

κ + 1

)k k−1∏
m=0

(Uc + m)

− λfCf (QfΓ)δf

Tf−Uf∑

k=1

1

k!

k∑
j=1

(
k

j

)[
κ

κ + 1

]k−j (k−j−1)∏
n=0

(Uc + n)

j−1∏
m=0

(m− δf )

}

+ Θ(λ2
fC

2
f (QfΓ)2δf ) ≥ 1− ε. (C.20)

Note that
∏k−1

m=0(Uc + m)/k! =
(

Uc+k−1
k

)
. Using Proposition 5 in Appendix C.6, we

have the identity

(Tf−Uf )∑

k=0

(
κ

κ + 1

)k (
Uc + k − 1

k

)
= (1 + κ)Uc [1− I κ

κ+1
(Tf − Uf + 1; Uc)]. (C.21)
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With straightforward algebraic manipulation, it is easily shown that

(Tf−Uf )∑

k=1

1

k!

k∑
j=1

(
k

j

)[
κ

κ + 1

]k−j k−j−1∏
n=0

(Uc + n)

j−1∏
m=0

(m− δf )

=

Tf−Uf−1∑
j=0

(
κ

κ + 1

)j (
Uc + j − 1

j

) Tf−Uf−j∑

l=1

1

l!

(l−1)∏
m=0

(m− δf ). (C.22)

Using (C.22), we now define Kf in (5.9), where Kf = 1 whenever Uf = Tf (since

(C.16) does not contain derivative terms). By substituting (C.21) and Kf in (C.20)

and discarding (for small λf ) the Θ(λ2
fC

2
f (QfΓ)2δf ) terms (which are o(λfCf (QfΓ)δf )),

the upper bound on λf is given as

λf ≤ 1

Cf (QfΓ)δf

ε− I κ
κ+1

(Tf − Uf + 1, Uc)
1

Kf
− I κ

κ+1
(Tf − Uf + 1, Uc)

. (C.23)

Since the maximum contention density λ∗f maximizes the number of simultaneous

femtocell transmissions, λ∗f satisfies (C.23) with equality. This completes the proof.

C.5 Distribution of the product of independent Beta dis-
tributed and Gamma distributed random variates

Proposition 4. Let X ∼ Beta(a, b) be a Beta distributed random variable (r.v) with

shape parameters a > 0 and b > 0 respectively. Let Y ∼ Gamma(a + b, 1) be an

independent Gamma r.v with shape parameter a+ b. Then the product XY is gamma

distributed with shape parameter a, that is XY ∼ Gamma(a, 1).

Proof. Since Y is Gamma distributed with shape parameter a + b, its moment gen-

erating function (MGF) is given as

E[etY ] = (1− t)−(a+b) = (1− t)−a · (1− t)−b

⇒ Y
d
= Y1 + Y2, Y1 ∼ Gamma(a, 1), Y2 ∼ Gamma(b, 1) and Y1 ⊥ Y2 (C.24)
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where
d
= denotes equality in distribution and ⊥ denotes independence of r.v’s. That

is, Y is equal in distribution to the sum of two independent Gamma r.v’s with shape

parameters a and b respectively (since the MGF of the sum of two independent r.v’s

equals the product of their respective MGF’s).

Next, the ratio Y1

Y1+Y2
is Beta distributed with shape parameters a and b re-

spectively, that is,

Y1

Y1 + Y2

∼ Beta(a, b) ⇒ Y1

Y
∼ Beta(a, b) ⇒ XY

d
= Y1 ∼ Gamma(a, 1).

In other words, the product XY is equal in distribution to a Gamma distributed

random variable with shape parameter a. This completes the proof.

C.6 A new expression for the regularized incomplete Beta
function

Proposition 5. For any x ≥ 0, and non-negative integers n,m and r where n ≥ r,

n−r∑

k=0

(
x

x + 1

)k (
m + k − 1

k

)
= (1 + x)m I 1

x+1
(m,n− r + 1). (C.25)

Proof. Multiplying the left hand side of (C.25) by (1 + x)n−r,

n−r∑

k=0

xk(1 + x)n−r−k

(
m + k − 1

k

)
=

n−r∑

k=0

n−r−k∑

l=0

(
n− r − k

l

)(
m + k − 1

k

)
xk+l. (C.26)

The coefficient of xq, where 0 ≤ q ≤ n−r, is given as
∑q

j=0

(
n−r−j

q−j

)(
m+j−1

j

)
=

(
n−r+m

q

)

(using the combinatorial identity [58, Page 22, (3.2)]). Consequently, we have

n−r∑

k=0

xk(1 + x)n−r−k

(
m + k − 1

k

)
=

n−r∑

k=0

(
n− r + m

k

)
xk. (C.27)
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Next, by definition of the incomplete Beta function,

(1 + x)mI 1
x+1

(m,n− r + 1)
(a)
=

n−r+m∑
j=m

(
n− r + m

j

)
xn−r+m−j

(1 + x)n−r

(b)
=

n−r∑

k=0

(
n− r + m

k

)
xk

(1 + x)n−r
(C.28)

where step (a) follows by definition, while step (b) follows by replacing the index j

in step (a) by k = n − r + m − j. Combining (C.27) and (C.28) gives the desired

result.
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Appendix D

Appendix to Chapter 6

D.1 Lemma 8

The spatially averaged SIR distribution inside a circular annulus with inner

radius R1 and outer radius R2 is given as

ER[Pr (SIRc ≤ Γ|R1 ≤ R ≤ R2)] = 1− 1

(R2
2 −R2

1)
[R2

2C(a2, b)−R2
1C(a1, b)] (D.1)

where C(a, b) , Q(a) + exp

(
2− 2ab

b2

)
Q

(
2− ab

b

)
(D.2)

a , ln Γ− µC(R2)

σC(R2)
, b , αc

σC(R2)
(D.3)

a2 = a + b ln (R2/Rc), a1 = a + b ln (R1/Rc), (D.4)

Proof. Inside a circular annulus of small width, one can assume that a user experiences

identical shadowing statistics from interfering BSs. For convenience, the parameters

a and b are chosen when the user is at the outer edge (R = R2) of the annulus, as

shown in equation (6.18). Given R1 ≤ R ≤ R2 with the pdf function fR(r|R1 ≤ R ≤
R2) = 2r

R2
2−R2

1
, the spatially averaged outage probability is obtained as

ER[Pr (SIRc ≤ Γ|R1 ≤ R ≤ R2)] = 1− ER[Q(a + b ln R/Rc) | R1 ≤ R ≤ R2]

= 1− 2

R2
2 −R2

1

∫ R2

R1

Q[a + b ln r/Rc]r dr (D.5)

= 1− 1

R2
2 −R2

1

{
R2

2

∫ R2

0

2

R2
2

Q[a2 + b ln r/R2]r dr

−R2
1

∫ R1

0

2

R2
1

Q[a1 + b ln r/R1]r dr

}
(D.6)
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where (D.6) is obtained by substituting a2 , a + b ln R2/Rc and a1 , a + b ln R1/Rc

in (D.5). Combining the definitions in (6.17) and (6.19) with the identity [56, Pg.

55]:

C(a, b) =
2

R2

∫ R

0

Q(a + b ln r/R)r dr (D.7)

and plugging into (D.6), the result follows.
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