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As data mining matures as a field and develops more powerful algorithms for

discovering and exploiting patterns in data, the amount of data about individ-

uals that is collected and stored continues to rapidly increase. This increase

in data heightens concerns that data mining violates individual privacy. The

goal of data mining is to derive aggregate conclusions, which should not reveal

sensitive information. However, the data-mining algorithms run on databases

containing information about individuals which may be sensitive. The goal

of privacy-preserving data mining is to provide high-quality aggregate conclu-

sions while protecting the privacy of the constituent individuals.

The field of “privacy-preserving data mining” encompasses a wide vari-

ety of different techniques and approaches, and considers many different threat

and trust models. Some techniques use perturbation, where noise is added (ei-

ther directly to the database that is the input to the algorithm or to the output

of queries) to obscure values of sensitive attributes; some use generalization,

vi



where identifying attributes are given less specific values; and some use cryp-

tography, where joint computations between multiple parties are performed

on encrypted data to hide inputs. Because these approaches are applied to

different scenarios with different threat models, their overall effectiveness and

privacy properties are incomparable.

In this thesis I take a pragmatic approach to privacy-preserving data

mining and attempt to determine which techniques are suitable to real-world

problems that a data miner might wish to solve, such as evaluating and learn-

ing decision-tree classifiers. I show that popular techniques for sanitizing

databases prior to publication either fail to provide any meaningful privacy

guarantees, or else degrade the data to the point of having only negligible

data-mining utility.

Cryptographic techniques for secure multi-party computation are a nat-

ural alternative to sanitized data publication, and guarantee the privacy of

inputs by performing computations on encrypted data. Because of its heavy

reliance on public-key cryptography, it is conventionally thought to be too

slow to apply to real-world problems. I show that tailor-made protocols for

specific data-mining problems can be made fast enough to run on real-world

problems, and I strengthen this claim with empirical runtime analysis using

prototype implementations. I also expand the use of secure computation be-

yond its traditional scope of applying a known algorithm to private inputs by

showing how it can be used to efficiently apply a private algorithm, chosen

from a specific class of algorithms, to a private input.
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Chapter 1

Introduction

1.1 Privacy-Preserving Data Mining

Data mining, or knowledge discovery, is the act of processing massive

amounts of data in order to learn small amounts of useful information. For

example, through the analysis of product-purchase transactions, a company

may determine that two products are highly correlated: consumers who pur-

chased product “A” were also likely to purchase product “B.” This type of

information can have significant commercial value. As the commercial ben-

efits of data mining have increased and the costs of storing and processing

data have decreased, there has been an explosion in the amount of data that

is collected and stored about individuals. For the most part consumers have

benefitted from the mining of their data, as it has allowed companies to more

precisely target their advertising and to provide consumers with uniquely tai-

lored recommendations. However, the massive-scale mining of customer data

also creates security and privacy concerns. The demand for combining data

from multiple sources to facilitate data mining has given rise to companies

such as ChoicePoint and Acxiom, who are in the business of aggregating and

reselling data about consumers. This creates a single point of failure where a

breach of security at one of these companies can compromise the privacy of
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thousands of consumers. A security breach at ChoicePoint in 2005 resulted

in the theft of information about more than 163,000 consumers [28], and data

breaches at Acxiom affected as many as 1.6 billion records [106]. Security

breaches of this scale could be avoided with the development of techniques

that allow data mining over aggregated databases without the need to actu-

ally combine the data in a single location.

In addition to the accidental loss of customer data due to theft, there

have been several recent instances of companies intentionally releasing cus-

tomer data for the express purpose of exploratory data mining by third parties.

For example, AOL released a dataset for the academic community, and Netflix

released a dataset so that they could sponsor a prize for the best data-mining

algorithm [61,62]. In both cases, the data was supposed to be anonymous and

unlinkable, because obvious identifiers such as names were removed. How-

ever, it was later shown that it was far easier to link individuals with their

“anonymous” records than the companies intended [93].

There are also many real-world situations where one party may need to

perform a computation on a single individual’s private data. For example, a

company may be able to diagnose software errors based on information about

a customer’s computer at the time of the software fault. However, customers

will be unable to take advantage of these sorts of services if they are unwilling

to disclose their private data.

In collaborative medical applications, multiple hospitals may wish to

run a data-mining algorithm on a joint database which combines all of their

2



data. The larger database provides better results by increasing the size of

the training set. However, the hospitals may be prevented from sharing their

data directly by legal requirements or by their own desire to protect their

intellectual property.

If a company wishes to run data-mining algorithms on a database in its

possession, it may be sufficient to provide customer privacy by enacting a data

handling policy (e.g., no customer data on laptops) or by using conventional

cryptographic techniques. Scenarios in which multiple parties with privacy

concerns participate in a data-mining process, on the other hand, require the

development of new techniques. It is the goal of research in privacy-preserving

data mining to develop techniques which enable these sorts of scenarios.

1.2 What is Privacy?

A privacy-preserving data-mining scenario can have many different par-

ties, including several individuals (such as customers) who contribute their

data to a database, a database owner who controls access to the database,

and a data miner who runs a learning algorithm on the database. Since there

are a wide variety of possible scenarios with multiple parties, it is meaningless

to make the unqualified statement that a data-mining protocol is “private.”

Instead, we must explicitly state what information is being kept private, who

owns the information, and what the adversary is capable of. After making

these determinations, we can construct rigorous definitions of privacy that are

scenario-appropriate. Here we examine some types of information that might

3



be kept private in a data-mining scenario.

1.2.1 Privacy of the data

Typically the data are in the possession of a database owner who wants

to ensure privacy on behalf of the individual contributors. (One exception

is the “Data Collection” scenario, in which the individual contributors desire

privacy from the database owner. See section 3.1.) The adversary is the data

miner, who is supposed to learn as little sensitive information about individuals

as possible while at the same time learning a useful data-mining result. The

data miner may learn private information about individuals in one of two

ways. He may be able to draw private conclusions about individuals from the

output of the data-mining algorithm, or he may perform additional analysis on

the data that was provided to him in order to tease out sensitive information

beyond that found in the data-mining output.

Privacy loss from the data-mining result. In some cases, individual pri-

vacy loss can stem from the data-mining result itself (even though data-mining

results tend to be aggregate conclusions). This is especially the case when the

adversary has background information about the individual. Consider, for in-

stance, an association rule that tells us that people with high blood pressure

have a high risk of heart disease. If an individual considers her heart disease

to be private information, and a data miner knows that this individual has

high blood pressure, then the association rule combined with the data miner’s
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background knowledge gives the data miner information about her private

information.

Ideally, we could say that a data-mining result is privacy-preserving

if adversaries can learn no more about individuals when they have access to

the result than they can without access to the result. Unfortunately, it is

impossible to achieve such a definition because it would require accounting for

all possible auxiliary information that the adversary may have access to [38].

In fact, if we allow for arbitrary forms of auxiliary information, a data-

mining result could leak information about an individual who isn’t even in the

database. Consider, for instance, an adversary who knows in advance that a

certain individual is of average height. If the average height is published, then

the adversary learns the height of the individual. The concept of ε-differential

privacy [38], discussed in Section 3.4, says that a data-mining result is private

if it changes only very slightly when a single individual is removed or added

to the database. While it is possible that a data-mining result could still

leak a substantial amount of information about an individual, it would leak

essentially the same amount of information about her even if she were not in

the database.

Privacy loss from intermediate data. Even if the result of a data-mining

algorithm doesn’t violate the privacy of individual contributors, it is possible

that during the course of computing the result the data miner will learn ad-

ditional information which does violate their privacy. For example, if data
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mining requires the database owner to transmit the entire database to the

data miner, then the data miner will learn much more about individuals’ pri-

vate records than he would learn from the data-mining result alone. This may

still be the case if the database is sanitized before transmission, if the saniti-

zation is inadequate or fails to account for all of the data miner’s background

knowledge.

If data mining takes place as an interactive process (as in the secure

multi-party computation framework), then intermediate data consists of the

messages that are passed back and forth between participants. An adversarial

data miner may attempt to analyze these messages in order to draw conclu-

sions other than those conclusions which are a consequence of the data-mining

output.

1.2.2 Privacy of the algorithm and its output

The data miner may wish to keep the data-mining algorithm that he

applies to the database private from the database owner. This could either be

because the algorithm is proprietary, or because the data miner does not wish

to reveal anything about the type of conclusion he is hoping to draw from

the data. From a theoretical standpoint, there is no difference between an

interactive scenario where one party provides a private function to be applied

to the other party’s private data, and a scenario in which both parties provide

private inputs to a public function. They are theoretically equivalent because

the public function could be a universal circuit, which accepts a description
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of a function as one of its inputs. However, from a practical standpoint it is

very useful to provide protocols for private-algorithm scenarios that are more

efficient than the privacy-preserving simulation of a universal circuit.

1.3 This Thesis

The goal of this thesis is to answer the following question:

How can we continue to support popular data mining tasks
while minimizing the risks of collecting, warehousing, and dis-
tributing the private data that is needed as input?

We develop methods that (1) are efficient, so that they can be utilized in

real-world systems; (2) provide meaningful data-mining utility, so that

the privacy-protection techniques do not reduce the quality of data-mining

results; and (3) satisfy meaningful definitions of privacy with provable

guarantees, so that the threat model and allowed leakage of sensitive infor-

mation are precisely understood.

The remainder of this thesis is organized as follows. Chapter 2 pro-

vides background about notation and cryptographic techniques that are used

throughout the thesis. Chapter 3 gives related work concerning the many dif-

ferent approaches to privacy-preserving data-mining. Chapters 4–8 contain

the technical contribution of this thesis. At the highest level, they are divided

between Chapter 4 which is about collecting private data, and Chapters 5–8

which are about using private data.

7



Within Chapters 5–8, there is an additional division between Chapter 5,

which shows how popular sanitized data publishing techniques are ineffective,

and Chapters 6–8 which give several effective secure multi-party computation

protocols for data-mining problems. Specifically, Chapter 6 examines graph

algorithms (such as all pairs shortest path), Chapter 7 examines the evaluation

of branching programs, and Chapter 8 examines decision-tree learning. Finally,

Chapter 9 concludes the thesis.

This thesis contains previously published work [17–21].
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Chapter 2

Preliminaries and Tools

In this chapter, we define cryptographic concepts and notation that are

used throughout the thesis.

2.1 Public-Key Encryption

We take the standard definition of a public-key cryptosystem from [12].

A public-key (or “asymmetric”) encryption scheme AE = (K, E ,D) consists of

three algorithms, as follows:

• A randomized key generation algorithm K which returns a pair (x, y) of

keys. These are the private and public keys, respectively.

• A (possibly randomized) encryption algorithm E , which takes a public

key y and a plaintext m, and returns a ciphertext C. To denote encryp-

tion we will write

C = {m}y.

• A deterministic decryption algorithm D, which takes a private key x and

a ciphertext C to return a message m. We will denote this as

m = decx(C).

9



We require that decx({m}y) = m. This means that the owner of the private

key x can recover a message encrypted with the public key y.

Many times in this thesis we will need to serially encrypt a text under

multiple public keys yN , ..., yi, and we will use the following notation to make

this less cumbersome:

{m}yN :yi
def
= {...{{m}yN}yN−1

...}yi .

2.1.1 Indistinguishability under adaptive chosen ciphertext attack

We require that the cryptosystems used in our protocols have the

property of indistinguishability under adaptive chosen ciphertext attack (IND-

CCA2) [12]. Intuitively, this means that it is impossible to learn any infor-

mation a plaintext m from an encryption {m}y, even when given access to a

decryption oracle for all ciphertexts other than {m}y. Although IND-CCA2

is a very strong property, there are cryptosystems that are known to satisfy

it [15, 30]. Under the RSA assumption and in the random-oracle model, RSA

with OAEP padding satisfies IND-CCA2 [49].

In our definition of an IND-CCA2 encryption scheme, we will make use

of the distinguishing game.

The distinguishing game

The distinguishing game is played between a challenger and an oracle.

This game is slightly different from, but equivalent to, the standard adaptive

chosen ciphertext game [12].

10



1. The oracle chooses a keypair (x, y), and gives y to the challengers.

2. The challenger may encrypt polynomially many messages m using y.

The challenger may also choose polynomially many ciphertexts C and

send them to the oracle, who sends back decx(C).

3. The challenger chooses two plaintexts m0 and m1.

4. The oracle chooses a bit b ∈ {0, 1} uniformly at random, and returns the

ordered pair ({mb}y, {mb̄}y).

5. The challenger may encrypt polynomially many messages m using y.

The challenger may also choose polynomially many ciphertexts C 6=

{mb}y, {mb̄}y and send them to the oracle, who sends back decx(C).

6. The challenger attempts to guess whether b = 0 or b = 1.

Let A be a polynomial-time challenger. Then

Pr[A(m0,m1, 0) = 1]

is the probability that A outputs 1 when the bit b = 0, and

Pr[A(m0,m1, 1) = 1]

is the probability that A outputs 1 when the bit b = 1. In both cases, the

probability is taken over the randomness of the key generation in step 1. The

challenger’s advantage is equal to

Pr[A(m0,m1, 1) = 1]− Pr[A(m0,m1, 0) = 1].
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Now we can define indistinguishability under adaptive chosen ciphertext attack

as follows:

Definition 1. A cryptosystem is IND-CCA2 if, for all probabilistic

polynomial-time challengers, the advantage in the distinguishing game is

negligible (dominated by 1
f(ρ)

, where f is any polynomial and ρ is a security

parameter).

2.2 Digital Signatures

We use the standard definition of digital signature schemes from [12].

A digital signature scheme DS = (K, sig,VF) consists of three algorithms:

• The randomized key generation algorithm K, which returns a pair (u, v)

of keys. These are the private and public keys, respectively.

• The (possibly randomized) signing algorithm sig, which takes a private

key u and a message m to produce a signature σ = sigu{m}.

• The deterministic verification algorithm VF, which takes a public key v,

a message m, and a candidate signature σ. VF returns 1 if σ is a valid

signature of m with key u, and 0 otherwise. That is, VF(v,m, sigu{m})

returns 1.

The desired security property for a digital signature scheme is unforgeability,

which means that without the private key u, it is computationally infeasible
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to produce a signature sigu(m) for a message m that one has not previously

seen signed with u. For a more formal treatment, see [12].

2.3 Oblivious Transfer

Oblivious transfer (OT) is a fundamental cryptographic primitive [70,

104]. A 1-out-of-N oblivious transfer, denoted as OT 1
N , is a protocol between

two parties, the Chooser and the Sender. The Chooser’s input is the index

σ ∈ {0, ..., N − 1}. The Sender’s inputs are the values M0,M1, ...,MN−1. As a

result of the protocol, the Chooser learns Mσ (and only Mσ), while the Sender

learns nothing.

In our constructions, we use oblivious transfer as a “black-box” primi-

tive, i.e., our constructions do not depend on a particular OT implementation.

In our implementations, we employ the Naor-Pinkas constructions forOT 1
2 [90].

Below, we restate Protocol 3.1 from [90]. It performs some precomputation so

that the amortized cost of each 1-out-of-N oblivious transfer is a single mod-

ular exponentiation. In the following, H is a hash function that is modeled

as a random oracle, and g is a generator for the group Zq of prime order. All

mathematics is done modulo Zq.

Initialization: The sender chooses N−1 random constants C1, C2, ..., CN−1.

It also chooses a random r and computes gr. The values C1, ..., CN−1 and gr

are sent to the chooser and play the role of the public key of the sender. The
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same values will be used for all transfers. The sender precomputes for every

1 ≤ i ≤ N − 1 the value (Ci)
r.

Transfer: The sender’s input is M0,M1, ...,MN−1. The chooser’s input is

σ ∈ {0, ..., N − 1} (she should learn Mσ).

• The chooser selects a random k and sets PKσ = gk. If σ 6= 0 she com-

putes PK0 = Cσ/PKσ. She sends PKσ to the sender and can already

compute a decryption key (gr)k = (PKσ)r.

• The sender computes (PK0)r and then for every 1 ≤ i ≤ N−1 computes

(without doing any additional exponentiations)

(PKi)
r = (Ci)

r/(PK0)r.

The sender chooses a random string R. He then encrypts each Mi by

computing H((PKi)
r, R, i)⊕Mi, and sends these encryptions and R to

the chooser.

• The chooser uses H((PKσ)r, R, σ) to decrypt Mσ.

2.4 Homomorphic Encryption

A homomorphic encryption scheme is a semantically secure cryptosys-

tem that permits algebraic manipulations on plaintexts given their respective

ciphertexts. In this thesis, we require an encryption scheme with an additively

homomorphic property, which allows {c1 + c2}y to be computed from {c1}y
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and {c2}y without knowledge of the private key x corresponding to the public

key y.

In our prototype implementation, we use the Paillier cryptosys-

tem [101], which operates as follows:

Key Generation: Large primes p and q are chosen independently at ran-

dom, and N = pq and λ = lcm(p − 1, q − 1) are computed. Let G ∈ Z∗N 2 be

chosen randomly, and then compute

µ =

(
((Gλ mod N 2)− 1)

N

)−1

.

If the multiplicative inverse does not exist, a new G must be chosen. The

public key is PK = (N ,G) and the secret key is SK = (λ, µ).

Encryption: To encrypt a message m, first a random value r ∈ Z∗N 2 is

chosen. Then compute the ciphertext as c = Gm · rN mod N 2.

Decryption: For a ciphertext c, compute

m =

(
(cλ mod N 2)− 1

N

)
· µ mod N

Homomorphic encryption: Paillier is additively homomorphic, so that

the product of two ciphertexts will decrypt to the sum of their plaintexts:

D[E[m1, r1] · E[m2, r2] mod N 2] = m1 +m2 mod N .
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The Paillier cryptosystem is semantically secure under the Decisional

Composite Residuosity assumption [101].

2.5 Secure Multi-Party Computation

2.5.1 Garbled circuits

Garbled circuits are a fundamental technique in secure multi-party com-

putation. Originally proposed by Yao [132], the garbled circuits method en-

ables secure constant-round computation of any two-party functionality. We

only give a brief overview here; a detailed explanation can be found in [80].

Let C be a boolean circuit which receives two n-bit inputs x = x1 . . . xn

and y = y1 . . . yn, and outputs bit C(x, y) ∈ {0, 1}. (If the circuit takes only

one input, we denote the other input as ⊥.) Consider Alice and Bob who

wish to securely compute C(x, y), where x is Alice’s input, y is Bob’s input.

Yao’s method transforms any C into a secure garbled circuit C ′, which enables

computation of C(x, y) without revealing x to Bob or y to Alice.

For each wire i of the circuit, Alice generates two random wire keys w0
i

and w1
i . These wire keys are used as labels encoding, respectively, 0 and 1

on that wire. Now consider a single gate g in C, described by some boolean

function g : {0, 1} × {0, 1} → {0, 1}. Let the two input wires to g be labeled

A and B, and let the output wire be labeled C. The corresponding wire keys

are w0
A, w

1
A, w

0
B, w

1
B, w

0
C , w

1
C .

The garbled gate g′ of circuit C ′ is defined by a random permutation

of the following four ciphertexts, where {x}κ is a symmetric-key encryption of
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plaintext x under key κ (see [80] for the properties that the encryption scheme

must satisfy).

c00 = {{wg(0,0)
C }w0

B
}w0

A
c01 = {{wg(0,1)

C }w0
B
}w1

A

c10 = {{wg(1,0)
C }w1

B
}w0

A
c11 = {{wg(1,1)

C }w1
B
}w1

A

Alice garbles all gates of the circuit in this manner, and sends the entire garbled

circuit to Bob.

Garbled circuit evaluation proceeds as follows. For each input wire i

associated with Alice, Alice simply sends to Bob the wire key wbAi encoding

Alice’s input bit bA on that wire. This leaks no information about the value

of bA because the wire keys are random. For each input wire j associated with

Bob, Alice and Bob engage in OT 1
2 protocol. Alice’s inputs as the sender are

the two wire keys w0
j and w1

j , and Bob’s input as the chooser is his bit bB

on that wire. As a result of the OT protocol, Bob learns the wire key wbBj

encoding his input without revealing bB to Alice.

Bob evaluates the circuit starting from the gates where he has a wire

key for each input wire. For each such gate, Bob can decrypt exactly one of

the four ciphertexts, and learn the key wC encoding the value of the gate’s

output wire. If the output wire is used as an input into another gate, Bob

continues the process. This evaluation procedure maintains the invariant that,

for each circuit wire i, Bob learns exactly one wire key wbi . This wire key is

random and thus leaks no information about the bit b it “represents.”

In the standard Yao’s method, Alice provides a mapping for the wire

keys w0
out and w1

out of each circuit output wire out to 0 and 1, respectively.
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This allows circuits transformed by Yao’s method to be used as “black boxes”

which have the same functionality as normal circuits, but hide the parties’

respective inputs.

In some of our constructions, we use Yao’s garbled circuits in a non-

black-box way to implement a conditional oblivious transfer. In our modi-

fication, Alice does not provide a mapping from w0
out and w1

out to 0 and 1;

instead, we consider w0
out or w1

out to be Bob’s final output from evaluating the

circuit. Furthermore, w0
out and w1

out can be arbitrary strings of our choosing

rather than random strings. Using Yao’s method in this non-standard way,

Bob learns exactly one of two values depending on the output of the function

encoded by the circuit.

We use a similar modification to implement a conditional oblivious

transfer for 1-out-of-m values (as opposed to 1-out-of-2). We encode the con-

dition logic using a Yao circuit which has log2m output wires to encode the m

different possible output values. As in the standard Yao’s construction, each

wire has two random keys associated with it, representing, respectively, 0 and

1. These random keys are used to encrypt a table with m randomly permuted

rows (observe that there is a 1:1 correspondence between the rows, all possible

values of a, and all possible combinations of bit values on the log2m output

wires). For each value of a, the encrypted row contains the index of and the de-

cryption key for the appropriate next node in the evaluation, encrypted under

the output-wire keys corresponding to the bit representation of a.
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For instance, suppose that m = 4, so that each attribute takes values

from 0 to 3, and thus each internal node in the tree has 4 children. We

represent each node by a gate with two output wires, w0, w1. Let w0
i and w1

i

be the random keys representing, respectively, 0 and 1 values for wire i. If the

bit representation of a is αβ, then evaluating this gate reveals to the evaluator

wα0 and wβ1 . Note that the evaluator does not learn a.

Let ha be the string containing the index and the decryption key for the

child node corresponding to the attribute value a. The gate is accompanied by

a random permutation of the following 4 ciphertexts: {{h0}w0
0
}w1

0
, {{h1}w1

0
}w0

1
,

{{h2}w0
1
}w0

1
, {{h3}w1

1
}w1

1
. Observe that the keys wα0 and wβ1 decrypt exactly

one row of this table, namely, the row corresponding to a. By decrypting it,

the evaluator learns exactly one of the m values.

Our prototype implementations make use of two implementations of

Yao’s method: the Fairplay implementation [82] and the Wisconsin imple-

mentation [72]. We refer to it as the Yao subroutine, which, on input of a

two-party functionality, produces its garbled-circuit implementation.

2.5.2 Definitions of privacy

Privacy against semi-honest adversaries. We use a simplified form of

the standard definition of security in the static semi-honest model due to

Goldreich [55] (this is the same definition as used, for example, by Lindell and

Pinkas [78]).
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Definition 2. (computational indistinguishability): Let S ⊆ {0, 1}∗. Two

ensembles (indexed by S), X
def
= {Xw}w∈S and Y

def
= {Yw}w∈S are computa-

tionally indistinguishable (by circuits) if for every family of polynomial-size

circuits, {Dn}n∈N, there exists a negligible ( i.e., dominated by the inverse of

any polynomial) function µ : N 7→ [0, 1] so that

|Pr[Dn(w,Xw) = 1]− Pr[Dn(w, Yw) = 1]| < µ(|w|)

In such a case we write X
c≡ Y .

Suppose f is a polynomial-time functionality (deterministic in all cases

considered in this thesis), and π is the protocol. Let x and y be the parties’

respective private inputs to the protocol. For each party, define its view of the

protocol as (x, r1,m1
1, . . . ,m

1
k) (respectively, (y, r2,m2

1, . . . ,m
2
l )), where r1,2 are

the parties’ internal coin tosses, and mi
j is the jth message received by party

i during the execution of the protocol. We will denote the ith party’s view as

viewπ
i (x, y), and its output in the protocol as outputπi (x, y).

Definition 3. Protocol π securely computes deterministic functionality f

in the presence of static semi-honest adversaries if there exist probabilistic

polynomial-time simulators S1 and S2 such that

{S1(x, f(x, y))}x,y∈{0,1}∗
c≡ {viewπ

1 (x, y)}x,y∈{0,1}∗
{S2(y, f(x, y))}x,y∈{0,1}∗

c≡ {viewπ
2 (x, y)}x,y∈{0,1}∗

where |x| = |y|.
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Informally, this definition says that each party’s view of the protocol

can be efficiently simulated given only its private input and the output of

the algorithm that is being computed (and, therefore, the protocol leaks no

information to a semi-honest adversary beyond that revealed by the output of

the algorithm).

Privacy against malicious and covert adversaries. While semi-honest

adversaries are required to faithfully execute protocols as specified, malicious

adversaries [54] may arbitrarily deviate from protocol specification, and may

even formulate their deviations online in response to earlier messages. In gen-

eral, protocols that are secure in the semi-honest model can be transformed

into protocols that are secure in the malicious model at a constant cost un-

der certain number-theoretic assumptions [66, 79, 125]. The transformation

involves requiring that the parties commit to their inputs, and then prove (in

zero-knowledge) that all messages are consistent with the committed input

and the messages that have already been received in the protocol transcript.

For real-world scenarios, this generic transformation between semi-honest and

malicious protocols is very costly, so there is interest in finding malicious model

protocols that are more efficient. For instance, the protocol that we provide

in Chapter 4 is secure in the malicious model, but does not require the use of

zero-knowledge proofs.

Sitting between the semi-honest and malicious adversaries in strength

is the covert adversary [8, 58]. Like a malicious adversary, a covert adversary
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can deviate arbitrarily from the protocol specification. However, a covert

adversary wishes to avoid being caught doing so. A protocol that is secure

against a covert adversary guarantees that if the privacy of honest participants

is broken, then with high probability the dishonest behavior that caused the

privacy breach is detected. Yao’s garbled circuit protocol can be made secure

against covert adversaries using the “cut-and-choose” techniques [58], where

he circuit sender produces n different versions of the garbled circuit, and then

reveals n−1 of them (chosen by the evaluator) to prove that they are correctly

formed.
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Chapter 3

Background and Related Work

Research in privacy-preserving data mining has a long history that pre-

cedes the popularization of the term “data mining.” Early work on database

privacy examined the problem of databases that answered COUNT and SUM

queries provided by users, where COUNT queries returned the number of

records which satisfied a predicate, and SUM queries summed over a field for

those records which satisfied a predicate. Although these queries in isolation

do not reveal individual record values, researchers observed that an adversary

could analyze the intersection of several queries in order to tease out sensitive

information. Research in the late 70s and early 80s attempted to solve this

problem by either adding noise to the queries, or by restricting the types of

queries that are allowed [1,33,36]. The definitions of privacy in this early work

seem weak by modern standards, since they are only concerned with attacks

that reveal a sensitive value with absolute certainty.

Privacy-preserving data-mining research from the late 90s until today

has greatly expanded the scope of the database privacy research, by consider-

ing different database access scenarios, different types of adversarial abilities,

and different privacy goals. There are three main methodologies commonly
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used in current research, each of which has different and largely incomparable

objectives. The work of Sweeney [112] is concerned with the re-identification

of supposedly anonymous database records by adversaries who link records

with identities using quasi-identifiers—attributes such as age, sex, and zip

code which may be easily found in external databases. Work of this flavor

uses the generalization and suppression of quasi-identifiers to make these link-

age attacks more difficult. The work of Agrawal and Srikant [6] is concerned

that adversaries may learn the exact values of sensitive attributes, so they

add random noise to the data in order to mask true values while still preserv-

ing aggregate statistics that are useful to data mining. The work of Lindell

and Pinkas [78] examines privacy-preserving data mining from a multi-party

computation perspective, in which two parties want to run a data-mining algo-

rithm on a joint database without revealing their own portions of the database

to each other. They apply cryptographic techniques from the area of secure

multi-party computation to execute data-mining algorithms in a manner that

prevents any information other than the algorithm output from being revealed

to the parties.

The field of privacy-preserving data mining is a vast landscape encom-

passing a wide variety of problems, each of which has different trust models,

goals, and scenarios. In this section, we examine work on several popular

privacy-preserving data-mining problems and techniques.
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3.1 Data Collection

The data collection problem is concerned with how a data miner obtains

data in the first place. Unlike almost all other work in privacy-preserving data

mining, it does not presuppose the existence of a database. The assumption

is that the data miner is untrusted, and that individuals providing their data

to the data miner are concerned about the data miner learning their private

information. There are two basic approaches to this problem: the unlinkability

approach, in which the data miner is provided with the exact responses of

each individual, but does not know the associations between individuals and

responses; and the perturbation approach, in which the data miner knows which

individual provided which response, but the responses have been altered in

some way to hide sensitive information.

The problem of collecting data so that the miner is unable to link

any honest respondent to her response was investigated by Yang et al. [129].

Their solution is to choose t of N respondents as “leaders,” and have re-

spondents encrypt their responses with the leaders’ public keys. Each of the

leaders shuffles and rerandomizes the ciphertexts, proving to every respon-

dent in zero-knowledge that the shuffle has been carried out correctly. This

protocol requires O(t2) zero-knowledge proofs, each of which involves several

rounds of communication. The protocol of Yang et al. does not achieve collu-

sion resistance because if the last leader is corrupt and colludes with the data

miner, they can break the anonymity of all honest respondents. This attack
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is due to an incorrect use of zero-knowledge proofs, and is explained in detail

in Section 4.6.

So-called mix networks such as onion routing [34, 113] have been pro-

posed to enable anonymous communications on public networks. Mix networks

aim to hide the identities of message senders, and thus seem to be a poor

match for data-mining scenarios, where the data miner may need to know ex-

actly who the respondents are. Using a mix network to collect responses while

ensuring that respondents are members of a well-defined set and that each

respondent contributes no more than one response requires complicated cryp-

tographic techniques such as group signatures, and is unlikely to be efficient

for practical use.

Instead of submitting their responses anonymously within a peer group,

respondents submitting sensitive data might randomly perturb their responses.

In this case, privacy would be based on the inexactness of the responses, rather

than on the lack of association between respondent and response. Respondents

submitting data using randomized response [121] lie with a certain probabil-

ity, so that the data miner is never certain of the truthfulness of a sensitive

response. Data-mining algorithms must be modified to accept randomized re-

sponse data. For instance, Du and Zhan [37] modify the popular ID3 [103]

decision-tree classification algorithm.
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3.2 Secure Multi-party Computation

In the secure multi-party computation problem, there are two data

mining parties, A and B, in possession of databases a and b, respectively.

For some data-mining functionality f , they wish to compute f on their joint

database; that is, they wish to compute f(a∪ b). Here the union operator ∪ is

domain-specific. Consider the case of a microdata database, which is a multi-

dimensional database in which each record contains information about a single

individual. The two databases a and b may represent a vertical partitioning

(both databases contain the same records, but have different attributes for each

record), horizontal partitioning (both databases have the same attributes, but

contain different records), or an arbitrary partitioning. If a and b are weighted

graphs, then the union could be a graph where each edge is the minimum

weight found in a or b.

In a slightly different secure multi-party computation scenario, party

A is in possession of algorithm g, and party B holds database y. Together,

they want to compute g(y). One of the contributions of this thesis is to

show that this type of “private algorithm” multi-party computation can be

performed efficiently for certain data-mining tasks by trading off increased

communication for decreased computation.

Within the context of data mining, the secure multi-party computation

problem was first investigated by Lindell and Pinkas [78]. It is the most

natural extension of the secure multi-party computation (SMC) paradigm to

the problems encountered in data mining. In the SMC paradigm, party P1
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with input x1 and party P2 with input x2 wish to compute f(x1, x2) without

revealing any more information about their inputs than is necessarily revealed

by the output.

The secure multi-party computation problem is concerned only with

preventing privacy loss from intermediate data. It is assumed that both parties

are willing to leak whatever information about their inputs is revealed by the

computation result. Since both parties run the same algorithm and learn the

same result, it is also assumed that privacy of the algorithm and its output is

not a concern.

Informally, security of a protocol in the SMC paradigm is defined as

computational indistinguishability from some ideal functionality, in which a

trusted third party accepts the parties’ inputs and carries out the computation.

The ideal functionality is thus secure by definition. The actual protocol is

secure if the adversary’s view in any protocol execution can be simulated by

an efficient simulator who has access only to the ideal functionality, i.e., the

actual protocol does not leak any information beyond what is given out by the

ideal functionality. Formal definitions for various settings can be found, for

example, in [11, 23,55].

Any polynomial-time multi-party computation can be done in a

privacy-preserving manner using generic techniques of Yao [132] and Gol-

dreich, Micali, and Wigderson [56]. Some SMC research has used branching

programs instead of circuits as function representation [53, 89]. Generic

constructions, however, are sometimes impractical due to their complexity.
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Recent research has focused on finding more efficient privacy-preserving

algorithms for specific problems such as computation of approximations [46],

auctions [91], set matching and intersection [48], surveys [47], computation

of the k-th ranked element [3] and especially data-mining problems such as

privacy-preserving computation of decision trees [78], mining of association

rules [67, 115], model selection [131], data imputation [64], classification of

customer data [130], and mining of vertically partitioned data [43,126].

In a typical multi-party computation scenario, when computing f(x, y)

securely, f is assumed to be known to both parties, while x and y are their

private inputs. In some scenarios that we consider in Chapters 7–8, we are

computing g(y), where g is the private input of the first party and y is the

private input of the second party. This can be implemented by making f

a generic function evaluator and x a description of the particular function

g. As we show in Section 7.2.5, this approach does not scale to the size of

branching programs that arise in real-world applications. Selective private

function evaluation [24] considers evaluation of functions on large datasets,

but the functions are much simpler than the branching programs considered

in Chapter 7. To achieve practical efficiency, our protocol fundamentally relies

on the structure of branching programs.

Cryptocomputing [108] has a slightly different model, evaluating C(x)

for one party’s private circuit C and another party’s private circuit x. The

result in [108] allows any bounded fan-in circuit of logarithmic depth to be

evaluated privately.
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In this thesis, we develop several secure multiparty computation proto-

cols for specific functionalities which are much faster than applying the generic

Yao transformation to the entire functionality. In general, we achieve this

improvement in speed by trading off computation for interaction. That is,

while the Yao protocol requires only two rounds of communication, our proto-

cols have number of rounds proportional to the size of the problem. Between

rounds, the parties maintain a state which is iteratively improved as the proto-

cols progress. In some cases, this state is a consequence of the function output,

and we may therefore reveal it to the parties in plaintext. For instance, in the

private all-pairs shortest distance algorithm (Chapter 6), we reveal in each

round the length of the next-smallest edge in the final graph. In other cases,

the internal state is maintained by sharing its value between the parties, so

that neither party independently has access to the state.

3.3 Sanitized Data Publishing

In the sanitized data publishing problem, a trusted database owner has

possession of a database D, and he wishes to publish a sanitized version D′

which is simultaneously useful for data mining and does not compromise the

privacy of the constituent individuals.

3.3.1 Generalization and suppression

In order to reveal less identifying information about individuals, at-

tribute values in a database may be replaced with generalized values. Because
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the set of individuals in the population which have a particular attribute value

is larger when the value is more general, this makes it more difficult for an ad-

versary to deduce the identity of an individual in the database. For instance,

a Zip code of 47605 might be replaced with 476**, or an age of 30 might

be replaced by the range 30-39. In some cases attribute values are omitted

entirely (replaced by “*”) in which case they are said to be suppressed. Gen-

eralization and suppression proceed until the database satisfies some syntactic

sanitization property; we describe several such properties in this section.

The k-anonymity property [112] and the related properties of `-

diversity [81] and t-closeness [77] are popular syntactic database properties.

The intention is that if a database satisfies these properties, then it is safe to

release the database for mining. However, it appears that these definitions—

although popular—are flawed, because they do not relate the satisfaction of

a syntactic property with the ability (or inability) of an adversary to learn

sensitive information from the published database. Our research presented in

Chapter 5 supports the conclusion that these definitions are of little use. We

survey several popular syntactic sanitization properties.

The k-anonymity property and related properties rely on the notion

of a quasi-identifier [31]. It was famously observed [112] that removing the

names (identifiers) from a medical records database was insufficient to prevent

re-identification of records in the database, because the records still contained

attributes such as date of birth, sex, and zip code which are also found in other

databases. By linking the two databases together, it is possible to associate
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an identity with a record in the medical database, and then to learn sensitive

information about the identified individual (such as his medical condition).

Determining which record in a database corresponds with a given in-

dividual is known as identity disclosure. It was later noted that it is possible

to learn a sensitive attribute (such as medical condition) even when identity

disclosure does not occur: this is known as sensitive attribute disclosure. The

orthogonal attack of membership disclosure occurs when an adversary is able

to determine whether or not an individual is included in the database (even if

he cannot determine which record belongs to the individual).

Notation. Let T = {t1, . . . tn} be a data table. Each ti is a tuple of attribute

values representing some individual’s record. Let A = {a1, . . . am} be the set

of attributes; t[ai] denotes the value of attribute ai for tuple t. We use the

following notation for subsets of attributes and tuples. If C = {c1, c2, . . . cp} ⊆

A, then t[C] denotes (t[c1], . . . t[cp]). If U = {u1, u2, . . . up} ⊆ T , then U [a]

denotes (u1[a], . . . up[a]).

Let S ∈ A be the sensitive attribute. This is an attribute whose value

the adversary should not be able to associate with an individual (e.g., medical

information). Let S = {s1, . . . sp} be the set of possible attribute values for

the sensitive attribute S.

Let Q ⊂ A \ S be the quasi-identifier, i.e., the set of non-sensitive

attributes whose values may be known to the adversary for a given individual

(e.g., demographic information). Let Q = {q1, . . . qp} be the set of possible
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values for Q. Each qi is actually a tuple of attribute values, since there are

multiple attributes in the set Q.

Two tuples ti and tj are Q-equivalent (denoted ti
Q≡ tj) if ti[Q] = tj[Q].

This equivalence relation partitions T into quasi-identifier equivalence classes,

denoted as 〈tj〉, where ti ∈ 〈tj[Q]〉 iff ti
Q≡ tj. Let EQ ⊆ T be a set of

representative records for each equivalence class imposed by
Q≡.

Consider a subset of tuples U = {u1, u2, . . . up} ⊆ T , and the distribu-

tion of sensitive attribute values within U . For any sensitive attribute value

s, denote by Us the set {u ∈ U | u[S] = s} of tuples in U whose sensitive

attribute value is equal to s, and denote by p(U, s) the corresponding fraction

of tuples in U , computed as |Us||U | . The notation p(U, s) can be understood as

“the probability that a randomly chosen member of U has sensitive attribute

value s.”

Syntactic Privacy Definitions. We will briefly summarize the syntactic

privacy definitions of k-anonymity, `-diversity, and t-closeness.

k-anonymity. k-anonymity is based on the observation that identity disclo-

sure can lead to sensitive attribute disclosure: if an adversary can determine

which database record corresponds to the target individual, then he can de-

termine this individual’s sensitive attribute value.

k-anonymity is a popular definition of privacy [26,107,112], and many

approaches have been proposed for achieving it [10, 50, 63, 74, 75, 97, 102, 111,
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128]. Most use a combination of domain-specific generalization and suppres-

sion on quasi-identifiers.

Definition 4 (k-anonymity [107, 112]). Table T is k-anonymous if and only

if for each tj ∈ EQ, |〈tj〉| ≥ k

Unfortunately, while identity disclosure will always result in sensitive

attribute disclosure, preventing identity disclosure is not sufficient to prevent

sensitive attribute disclosure [81, 114]. Consider, for instance, the original

data presented in Table 3.1 and the 3-anonymous transformation of this data

in Table 3.2. If the adversary knows that an individual lives in ZIP code

47602 and his age is 22, then the adversary knows that he has heart disease,

even without knowing whether his record is 1, 2, or 3. Identity disclosure is

prevented, but the value of the sensitive attribute is completely disclosed.

Limitations of k-anonymity are: (1) it does not hide whether a given

individual is in the database [95, 105], (2) it reveals individuals’ sensitive at-

tributes [77, 81], (3) it does not protect against attacks based on background

knowledge [81,83], (4) mere knowledge of the k-anonymization algorithm can

violate privacy [133], (5) it cannot be applied to high-dimensional data without

complete loss of utility [2], and (6) special methods are required if a dataset

is anonymized and published more than once [22,119,127].

Even though k-anonymity prevents neither membership disclosure, nor

sensitive attribute disclosure, one may hope that k-anonymized datasets pro-

vide significant utility for common data-mining tasks. Unfortunately, popular
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metrics such as the number of generalization steps applied to quasi-identifiers,

average size of quasi-identifier equivalence classes, sum of squares of class sizes,

or preservation of marginals [26,69,81,96] do not imply suitability of the sani-

tized data for data-mining computations. In Chapter 5, we follow [63,76,120],

and measure utility by directly evaluating specific machine-learning workloads

on the sanitized data.

`-diversity. It was recognized by Øhrn and Ohno-Machado [99] that preven-

tion of sensitive attribute disclosure requires “diversity” of sensitive attribute

values corresponding to any quasi-identifier (this is a restatement of privacy

definitions from [99] using the k-anonymity terminology). This concept was

subsequently re-invented as the `-diversity requirement. Intuitively, to pre-

vent attribute disclosure for records in 〈ti〉, the set of sensitive attribute values

〈ti〉[S] in this equivalence class should be “diverse” (which was not the case in

the heart disease example shown in Table 3.2.

Definition 5 (Entropy `-diversity [81]). A table T is Entropy `-Diverse if for

each ti ∈ EQ,

−
∑
s∈S

p(〈ti〉, s) log(p(〈ti〉, s)) ≥ log(`)

where

p(〈ti〉, s) =
|{t ∈ 〈ti〉 : t[S] = s}|

|〈ti〉|
,

is the fraction of tuples in 〈ti〉 with sensitive attribute value equal to s.

Definition 6 (Recursive (c, `)-diversity [81]). Let ri denote the number of

times the ith most frequent sensitive value appears in 〈ti〉. Given a constant
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c, 〈ti〉 satisfies recursive (c, `)-diversity if r1 < c(r` + r`+1 + . . .+ rm). A table

T satisfies recursive (c, `)-diversity if for every ti ∈ Q-groups(T ), 〈ti〉 satisfies

recursive (c, `)-diversity. By definition, (c, 1)-diversity is always satisfied.

Unfortunately, `-diversity is neither necessary, nor sufficient to prevent

sensitive attribute disclosure [77]. Its approach of maximizing entropy of sen-

sitive attribute distribution within each quasi-identifier equivalence class 〈ti〉

relies on an implicit assumption that the distribution of sensitive attribute

values in the original table is nearly uniform.

This assumption may or may not be true for a given database. If the

distribution of sensitive attributes in the original database is skewed (gener-

alization and suppression do not touch sensitive attributes at all, thus this

distribution is always available to the adversary), then learning that some

individual is in an equivalence class 〈ti〉 where the distribution of sensitive

attributes is different may reveal a lot of information, regardless of whether

the latter distribution is high- or low-entropy, “diverse” or not “diverse.”

For example, consider a database in which 1% of individuals have a

rare form of cancer, and the quasi-identifier equivalence class 〈ti〉 in which,

say, 30% of individuals have this form of cancer (or any high percentage, as

required by the diversity criterion). If the adversary’s target individual t ∈ 〈ti〉,

then the adversary can immediately infer that his target is far more likely to

have this form of cancer than a random individual in the database. In general,

probabilistic sensitive attribute disclosure occurs every time when an attribute
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that was not diverse in the original database appears diverse in some quasi-

identifier equivalence class in the sanitized database. On the other hand, if

only 1% of individuals in the quasi-identifier equivalence class have this form

of cancer, then there is no sensitive attribute disclosure, even though the class

is not diverse.

t-closeness. Li et al. [77] assume that the adversary knows the distribution

of sensitive attribute values over the entire table, which is a reasonable as-

sumption because this information would have been revealed even if the quasi-

identifiers had been completely suppressed. Since sanitization methods do not

completely suppress the quasi-identifiers, the adversary can also determine

the equivalence class 〈ti〉 in the sanitized table to which his target individual

belongs. The adversary’s goal is to uncover the probability distribution of

possible sensitive attribute values within 〈ti〉.

Definition 7 (t-closeness [77]). An equivalence class 〈ti〉 has t-closeness if the

distance between the distribution of a sensitive attribute in this class Asan(〈t〉)

and the distribution of the attribute in the whole table Abase is no more than a

threshold t. A table has t-closeness if all equivalence classes have t-closeness.

The critical concern is how to measure the distance between distribu-

tions. Li et al. [77] use the Earth Mover’s distance (EMD), which for nominal

attributes is equivalent to Adiff . This is an additive (as opposed to multiplica-

tive) measure, and does not translate directly into a bound on the adversary’s

ability to learn sensitive attributes associated with a given quasi-identifier.
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Zip Code Age Disease
1 47677 29 Heart Disease
2 47602 22 Heart Disease
3 47678 27 Heart Disease
4 47905 43 Flu
5 47909 52 Heart Disease
6 47906 47 Cancer
7 47605 30 Heart Disease
8 47673 36 Cancer
9 47607 32 Cancer

Table 3.1: Original Patients Table

Zip Code Age Disease
1 476** 20-29 Heart Disease
2 476** 20-29 Heart Disease
3 476** 20-29 Heart Disease
4 4790* ≥ 40 Flu
5 4790* ≥ 40 Heart Disease
6 4790* ≥ 40 Cancer
7 476** 30-39 Heart Disease
8 476** 30-39 Cancer
9 476** 30-39 Cancer

Table 3.2: 3-Anonymous Version of Table 3.1

3.3.2 Perturbation

In the perturbation paradigm, statistical privacy is achieved by ran-

domly perturbing individual data entries while preserving some global prop-

erties [4–6,9,35,45,68]. A survey can be found in [118]. Like the k-anonymity

literature, work on making microdata private through the addition of random

noise has progressed as authors have discovered definitional flaws stemming

from cases not fully considered by previous work.
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Agrawal and Srikant [6] used a simple distortion to hide values. Every

value x was replaced with x+r, where r was a random value drawn either from

a uniform or Gaussian distribution. Privacy was quantified as a confidence

level, defined as follows:

Definition 8 (c% confidence level [6]). If it can be estimated with c% confi-

dence that a value x lies in the interval [x1, x2], then the interval width (x2−x1)

defines the amount of privacy at the c% confidence level.

For example, if we know that the distortion is uniform in the range

[−1, 1], then the 100% confidence interval has width 2.

Later, Agrawal and Aggarwal [4] showed that this definition failed to

take into account background knowledge about the distribution of possible

values for x with the following example:

Let x be uniformly between 0 and 1 with probability .5, and let x be

uniformly between 4 and 4 with probability .5. Now let us add noise y drawn

uniformly from the range [-1,1]. Let z = x + y. Then the 100% confidence

level is 2, as above, and yet if z ∈ [−1, 2] we know x ∈ [0, 1] and if z ∈ [3, 6]

we know x ∈ [4, 5]. In either case, we know that x is in an interval of width 1.

They suggest a definition of privacy based on mutual information, which

attempts to quantify how much more is known about the distribution of pos-

sible values for x after the perturbed value z has been observed.

Later, Efimievski et al. [44] showed that there could still be privacy

breaches for individual records in a database which satisfies the mutual in-
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formation definition given in [4]. A privacy breach occurs when there is a

substantial shift in the likelihood of some property about an individual be-

tween the a priori probability and the probability after seeing the sanitized

database. They considered randomizers R which take unperturbed elements

x in VX to perturbed elements y in VY , and gave the following definition:

Definition 9 (γ-amplifying [44]). A randomization operator R(x) is at most

γ-amplifying for y ∈ VY if

∀x1, x2 ∈ VX :
p[x1 → y]

p[x2 → y]
≤ γ.

Operator R(x) is at most γ-amplifying if it is at most γ-amplifying for

all suitable y ∈ VY .

Intuitively, if γ is low, then given a sanitized value y, most preimage

values x are about equally likely.

3.4 Perturbed Queries

In the perturbed queries scenario, a trusted database owner has access

to a microdata database. A data miner repeatedly queries the database with

statistical queries, such as the average, sum, or maximum value found in a

particular attribute. Rather than giving the exact answers, the database owner

slightly perturbs the answers in order to preserve privacy.

For interactive output perturbation, tradeoffs between privacy and util-

ity are relatively well-understood: there are known fundamental limits on
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privacy [35], as well as perturbation mechanisms that provide strong seman-

tic notions of privacy along with well-defined utility expressed in terms of

machine-learning algorithms that can be computed on the perturbed data [14].

3.5 Differential Privacy

The differential privacy [38,39,85] definition is motivated by the follow-

ing observation. Ideally, it would be possible to achieve the privacy goal that

anything that can be learned about a respondent from a statistical database

could also be learned without access to that database. This is analogous to

the requirement of semantic security for cryptosystems 2.1.1. Unfortunately,

it is impossible for a statistical database to achieve this security property while

still providing any sort of useful information. The following example, taken

from [39] illustrates this impossibility:

Suppose that a statistical database provides the average height for dif-

ferent population subgroups, and suppose that an attacker has the auxiliary

information that “Terry Gross is two inches shorter than the average Lithua-

nian woman.” Then access to the database along with this auxiliary informa-

tion reveals Terry Gross’ height, whereas the auxiliary information by itself

does not.

The key observation is that Terry Gross is not required to be in the

database in order for this disclosure to occur. Thus, she does not increase her

risk of disclosure by participating in the database, nor does she decrease her

risk of disclosure by refusing to participate.
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Since preventing disclosure against adversaries with arbitrary auxiliary

information is impossible, the differential privacy notion instead attempts to

ensure that individuals take on very little risk when they agree to be part of a

database. It does this by requiring that any function of the database is nearly

unaffected by the insertion or removal of any single individual.

More formally, say that two databases D1 and D2 differ in at most one

element if one is a subset of the other and the larger database contains one

additional row. Then ε-differential privacy is defined as follows [39]:

Definition 10. A randomized function K gives ε-differential privacy if for all

data sets D1 and D2 differing on at most one element, and all S ⊆ Range(K),

Pr[K(D1) ∈ S] ≤ exp(ε)× Pr[K(D2) ∈ S],

where the probability space in each case is over the coin flips of the mechanism

K.

The definition of differential privacy does not distinguish between in-

teractive and non-interactive mechanisms K. Thus, the definition can be ap-

plied to both the sanitized database publication and the perturbed queries

paradigms. Recent research has developed many mechanisms that satisfy the

differential privacy definition [40–42].

Note that the privacy guarantees provided by differential privacy and

secure multiparty computation are orthogonal. In the differential privacy

paradigm, we are worried that the result of a computation may reveal informa-

tion about database entries, so the differential privacy definition requires that
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no single entry can substantially influence the computation result. By contrast,

secure multiparty computation assumes that the result of the computation is

“private enough” and seeks to limit the disclosure of additional information

which might be revealed during the process of obtaining the result.

3.6 Private Information Retrieval

A related problem is that of private information retrieval (PIR), in

which a database contains a list of records, and a querier wishes to learn a

single one of these records, but without the database owner learning which one.

In the typical PIR model, the privacy of the database owner is not considered,

so that a trivial (but inefficient) solution is for the database owner to transmit

the entire database. In symmetric private information retrieval (SPIR) there

is an additional requirement that the querier learns only the single requested

record, and that the rest of the records remain private. SPIR is equivalent to

the common cryptographic primitive of oblivious transfer 2.3.

Results in PIR include those in the information-theoretic model, in

which there are no computational assumptions on the participants, but the

database is copied among multiple non-colluding servers [25], and the crypto-

graphic model, in which standard cryptographic assumptions apply [52].

Inference control [65, 124] can be combined with private information

retrieval so that it is possible to limit the number and type of queries that are

made. If an invalid query is made the query is rejected, but the database is

still unable to learn what the query was, or even that it was rejected.
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Chapter 4

Anonymous Data Collection

4.1 Introduction

Consider a scenario in which a data miner wishes to collect data from a

large set of respondents for use in a data-mining experiment. The miner queries

each respondent, who in turn transmits her response back to the miner. If the

respondents are willing to truthfully answer the miner’s query, then the miner

is able to proceed with his experiment. In some cases, however, a respondent’s

willingness to answer truthfully is dependent on a guarantee that her answer

will be used only in the aggregate and cannot be linked back to her. For

example, the miner may be conducting a survey on illegal activities, or on

sensitive medical conditions. If the miner can convince the respondent that

her response will be anonymous among her peer respondents then she will

participate truthfully in the survey; otherwise, she will not.

Data collected with the simple query/response protocol described above

will not be anonymous, because the data miner can easily observe which re-

spondent transmits which response. One way to achieve anonymity would be

to shuffle the responses, so that the miner receives the responses in a random

order. This is easy to do with the assistance of a trusted third-party shuffler,
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as the respondents can submit their responses to the shuffler, who collects all

responses and then forwards them to the miner in a random order.

The goal of this research is to achieve the same security guarantees

without the need for trusted parties. We give a protocol that allows mutually

distrustful respondents to submit their responses to an untrusted data miner in

a manner which guarantees that their responses will be received by the miner,

but that the probability that the miner can link a response to a respondent

is essentially no better than random guessing. Furthermore, our protocol is

collusion resistant. Even if all malicious respondents freely share information

with the malicious miner, they will be unable to learn the associations be-

tween honest respondents and their responses. This strong form of collusion

resistance is important in online data collection scenarios where respondents

cannot communicate directly with one another, and therefore are unable to

determine whether other respondents are genuine participants, or shills set up

by a malicious miner.

Our protocol consists of two parts. In the first part, respondents en-

crypt their responses and shuffle them under encryption, so that it will be im-

possible to determine which encrypted response belongs to which respondent.

In the second part, the integrity of the shuffle is verified, and the respondents

provide information to the data miner so that he can decrypt the responses.

In order to be practical for use in data-mining applications with large

numbers of respondents, protocols for anonymous data collection need to be

efficient as well as secure. In the online data collection scenario, it is especially
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important to limit the number of messages that must be transmitted between

the data miner and the respondents. Our protocol requires that the data miner

send and receive only O(N) messages when there are N respondents. Further-

more, our protocol does not rely on zero-knowledge proofs. The most efficient

currently known zero-knowledge proofs for verifiable shuffles [59, 94] require

7 rounds of communication for each proof. Moreover, it is unclear whether

these proofs preserve their properties when composed in parallel. Therefore,

if multiple proofs are needed at any step of the protocol, they have to be

carried sequentially, rendering the communication complexity of the protocol

impractical.

4.2 Problem Specification

The anonymity-preserving data collection protocol takes place between

a large set of mutually distrustful parties. One of these parties has a special role

and is denoted the “data miner,” while the other N parties have interchange-

able roles and are denoted “respondents.” Each respondent i, 1 ≤ i ≤ N has

a response di. All responses are assumed to be of identical length. The goal

of the protocol is for the miner to learn the responses from each respondent,

but without being able to determine which response came from which respon-

dent. In other words, the miner should learn a random permutation of the set

{d1, ..., dN}, but should not learn anything about that permutation.

We assume that during the protocol, all participants remain online.

Each respondent has a secure communication channel with the data miner.
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These are reasonable assumptions in a scenario where the respondents are

using a Web interface to communicate with a server operated by the data

miner. We assume that prior to the protocol execution each respondent i has

obtained a public encryption key pair (xi, yi) for an IND-CCA2 encryption

scheme, and a signature key pair (ui, vi) for a secure (unforgeable) signature

scheme. Each respondent and the data miner knows the public keys yi and vi

for all respondents. Likewise, the data miner has a public key pair (xDM , yDM),

and the public key yDM is known to all respondents.

In a practical implementation, the distribution of these public keys is

delegated to a trusted certification authority, whose job is to associate in-

dividuals with their public keys. Note that this is the only assumption of

trust required by the protocol. There are several businesses providing trusted

certification authority functionality, so this is a reasonable (and standard)

assumption.

4.3 Protocol Correctness

We prove the correctness of our protocol in the malicious model [54],

where protocol participants may deviate arbitrarily from the protocol specifi-

cation. In this model any participant can prevent the protocol from completing

by refusing to participate, so we are unable to prove that the protocol always

terminates, much less that it always terminates with correct results. Instead,

we prove that if the protocol terminates, certain properties are maintained. In

this section, we give three properties that together define a correct protocol
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for anonymity-preserving data collection in the malicious model.

4.3.1 Collusion resistant anonymity

In an online data collection scenario, a respondent knows nothing about

her peer-respondents except their public keys. Some (or all) of the other

participants may be shills controlled by the data miner who exist only to

lure honest participants into a false sense of anonymity. Because dishonest

respondents colluding with the data miner is a legitimate threat, we require

that our protocol be collusion resistant. This means that even if k of the N

respondents are corrupt and in collusion with the data miner, the data miner

will be unable to determine which of the N − k honest participant responses

belongs to which honest participant. Of course the data miner will be able to

determine whether a response comes from an honest respondent or a colluding

respondent, because a colluding respondent can tell the data miner which

response is hers. Note that if there is only a single honest respondent, the

data miner will be able to collude with all other respondents and learn her

response.

We formalize our notion of anonymity for a data collection protocol

when k out of the N respondents are dishonest by defining an “anonymization

game” which is similar to the distinguishing game given in section 2.1.1. The

anonymization game is played between a challenger and an oracle, who partic-

ipate in the data collection protocol together. The challenger plays the roles

of the data miner and the k dishonest colluding respondents, while the oracle
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plays the role of the honest respondents. The challenger is assumed to not

know the private keys of any honest respondent. The protocol is anonymous

if the challenger can win the game only with negligible probability. Prior

to playing the game, the challenger may choose plaintext responses for all

honest respondents and give them to the oracle, who will then participate in

the anonymity-preserving data collection protocol using those responses for

the honest respondents. The challenger may repeat this process polynomially

many times. Then the actual game begins, and the following happens:

1. The challenger chooses two honest participants hα and hβ, and two plain-

text responses m0 and m1. He also chooses a plaintext response dhi for

each other honest participant hi.

2. The oracle chooses a bit b ∈ {0, 1} uniformly at random. Then the oracle

sets dhα = mb and dhβ = mb̄.

3. The oracle participates in the anonymity protocol with the response of

honest respondent hi as dhi . The oracle plays the role of all honest

respondents. The challenger plays the role of the data miner and all

dishonest respondents, and he may deviate arbitrarily from the protocol

specification.

4. After observing the protocol run, the challenger guesses whether b = 0

or b = 1.
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Let D be a probabilistic polynomial-time challenger. Then

Pr[D(m0,m1, hα, hβ, 0) = 1]

is the probability that D outputs 1 when the bit b = 0, and

Pr[D(m0,m1, hα, hβ, 1) = 1]

is the probability that D outputs 1 when the bit b = 1. In both cases, the

probability is taken over the randomness of the key generation and encryption

algorithms used by the oracle. The challenger’s advantage is equal to

Pr[D(m0,m1, hα, hβ, 1) = 1]− Pr[D(m0,m1, hα, hβ, 0) = 1].

Definition 11. A data collection protocol is anonymous if, for all probabilistic

polynomial-time challengers, the advantage in the anonymity game is negligi-

ble.

Note that this definition is valid only when there are at least two honest

respondents, which corresponds to our notion that it is impossible for any

anonymity to exist when there is only a single honest respondent.

4.3.2 Integrity

Ideally, we would like to ensure that an honest data miner always re-

ceives an unaltered response from each respondent. However, this is diffi-

cult in a protocol where responses pass through every respondent during the

anonymization process, as any of those respondents could be malicious (but
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not in collusion with the data miner) and choose to substitute some subset of

the responses with other data while they are under her control. Since it seems

difficult to provide authenticity guarantees on the responses while maintaining

anonymity, we are satisfied to detect the occurrence of substitutions. We will

say that our protocol maintains integrity if, at the end of protocol execution

with an honest data miner, one of the following two statements is true:

1. The data miner has the correct plaintext responses for all honest respon-

dents, or

2. The data miner is informed that some honest respondent’s response has

been substituted.

We are unable to make integrity claims when the data miner is dishonest,

as a dishonest data miner has the power to corrupt whichever responses he

wishes. However, the assumption is that the data miner is genuinely interested

in learning the responses, and therefore has no such incentive.

4.3.3 Confidentiality

In our scenario, the respondents are taking part in a confidential survey

with the data miner. The data miner should learn all plaintext responses at

the end of the protocol, but a respondent should not learn any response other

than her own. If the data miner is dishonest, then he can reveal the set of

responses {d1, ..., dN} after they have been decrypted, even though he will not

know which response belongs to which respondent. We want to insure that
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dishonest behavior on the part of the data miner is the only way that the

set of plaintext responses can be revealed. In other words, no coalition of

dishonest respondents should be able to learn any response belonging to an

honest respondent if the miner is honest.

4.4 Efficient Anonymous Data Collection

In this section we present our protocol for Anonymous Data Collection.

We then prove that it satisfies all of the properties stated in section 4.3, and

is therefore secure in the malicious model.

4.4.1 Protocol setup

Prior to the protocol execution, the participants must learn one an-

other’s public encryption keys and public signature keys. As is standard

in cryptographic protocols, the associations between identities and keys are

handled by a certification authority. The certification authority is a trusted

party with whom every participant is assumed to have a secure communica-

tion channel. To learn the public encryption key yi and verification key vi

for respondent i, participants query the certification authority who responds

with (yi, vi). Likewise, participants learn the public encryption key yDM for

the data miner.

The participants must also all agree upon a canonical ordering of the

respondents. This can be done, for instance, by having each respondent sign

an ordering sent by the data miner, and then verifying the signatures of all
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other respondents.

Note that this setup needs only to be done once, and afterwards the

protocol participants can perform multiple protocol executions with no need

to make additional contact with the certification authority.

4.4.2 The protocol

Our protocol for anonymous data collection is shown in Algorithms 1–2.

It consists of 5 phases: keypair generation, data submission, anonymization,

verification, and decryption. These phases are described in more detail below.

Generation of temporary keypairs

In this phase, every respondent i chooses a fresh secondary key pair

(wi, zi) which is distinct from the primary key pair (xi, yi) that is registered

with the certification authority. Each respondent i then self-certifies her sec-

ondary public key zi by sending the message

zi,timestamp, sigui{zi,timestamp}

to the data miner, who forwards these messages to the other respondents.

In this way every respondent learns the second public key zi for each other

respondent i, which is guaranteed to be freshly chosen by i because signatures

are not forgeable.
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Data submission

In the data submission phase, respondents encrypt their responses first

with the data miner’s public key, then with all respondents’ secondary public

keys, and finally with all respondents’ primary public keys. The encryptions

are applied in the canonical ordering determined during the protocol setup.

The primary key encryptions are stripped off during the anonymization phase.

Because the cooperation of all respondents is necessary to remove the sec-

ondary key encryptions, every respondent will have a chance to abort the

protocol before anonymity is compromised if the anonymization phase did not

go according to protocol specification.

Anonymization

In the anonymization phase, the respondents take turns shuffling the

encrypted responses and removing a level of encryption. Since every level

of encryption must be removed in order for the verification to pass, every

respondent is ensured an opportunity to shuffle the encrypted responses. If

two ciphertexts are identical, this means a dishonest participant has attempted

to duplicate a response, and the protocol is aborted.

Verification

In this phase the respondents verify that the shuffles have been done

correctly. By taking advantage of the fact that each respondent knows one

of the responses, this is done without the use of zero-knowledge proofs. Each
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respondent i signs a message only if he sees his own ciphertext, C ′i = {C ′′i }zN :z1

among the set of permuted ciphertexts. These signatures are then verified by

all respondents. If all of the signatures verify, an honest respondent can reason

as follows:

• Every other honest respondent saw her ciphertext in the set of permuted

ciphertexts.

• My own shuffle step must have included ciphertexts from all honest re-

spondents.

• Since I performed a random shuffle and did not reveal the permutation,

a dishonest data miner cannot know which honest ciphertext belongs to

me.

Since the respondent knows her ciphertext is anonymous among the honest

respondents’ ciphertexts, she gives the data miner her secondary private key.

Decryption

In this phase the data miner uses the respondents’ secondary private

keys and his own private key to decrypt the responses. He learns the plaintext

responses, but not the associations between responses and respondents.

4.4.3 Security arguments

In this section we argue that the security properties introduced in sec-

tion 4.3 are satisfied by the protocol given in Algorithms 1–2.
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• Phase 0: Secondary Keypair Generation. For i = 1, ..., N

– Respondent i chooses a public key pair (wi, zi).

– Respondent i sends zi,timestamp, sigui{zi,timestamp} to the
data miner:

– The data miner forwards it to all other respondents:

– If any signature fails to verify, the protocol is aborted.

• Phase 1: Data submission. For i = 1, ..., N :

– Respondent i encrypts his data di first with the miner’s public key,
and then with all respondent’s secondary public keys:

C ′′i = {di}yDM , C ′i = {C ′′i }zN :z1

– Respondent i stores C ′i for later use, and encrypts with all respon-
dent’s primary public keys:

Ci = {C ′i}yN :y1

– Respondent i sends the ciphertext Ci to the miner

The miner sets the initial values of (D1, ..., DN) as (C1, ..., CN)

Algorithm 1: Protocol for Anonymous Data Collection (Phases 0–1)
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• Phase 2: Anonymization. For i = 1, ..., N :

– The miner sends (D1, ..., DN) encrypted under the keys yi, ..., yN to
respondent i.

– If any ciphertext is included more than once in (D1, ..., DN), then
respondent i aborts the protocol.

– Respondent i uses her private key xi to strip off the ith level of
encryption, and permutes the pieces. Her output is (R1, ..., RN)
where

Rj = decwi [Dπ(j)]

where π is a random permutation on {1, ..., N}.
– Respondent i sends (R1, ..., RN) to the data miner.

– The data miner sets (D1, ..., DN) = (R1, ..., RN).

• Phase 3: Verification. At the beginning of this phase, the data miner
holds (D1, ..., DN). If the participants have behaved honestly, this should
be a permutation of (C ′1, ..., C

′
N).

– The data miner sends (D1, ..., DN) to all participants.

– Each participant i verifies that C ′i is included among (D1, ..., DN).
If it is, she sends sigui{(D1, ..., DN)} to the data miner.

– The data miner forwards signatures sigui{(D1, ..., DN)}, i =
1, ..., N to all respondents.

– Each respondent i verifies the signatures. If they all verify, respon-
dent i sends his secondary private key wi to the data miner.

• Phase 4: Decryption. Using the keys w1, ..., wN and xDM , the data miner
removes the remaining levels of encryption from D1, ..., DN , resulting in
a permutation of the original responses d1, ..., dN .

Algorithm 2: Protocol for Anonymous Data Collection (Phases 2–4)
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Anonymity

An intuitive argument for the anonymity of the protocol is that the

data miner and colluding respondents have two choices for their behavior. On

the one hand, they can behave honestly, in which case they will learn the final

decrypted plaintexts, but they will not learn the associations between C ′ and

C ciphertexts. On the other hand, they can behave dishonestly and learn some

associations between C ′ and C ciphertexts, but then the verification phase will

fail and they will not learn the decryptions of the C ′ ciphertexts.

Our proof is in two parts. First, we show that when honest respondents

receive ciphertexts for decryption in phase 2, then either there is exactly one

copy of the correct ciphertext for each honest participant, or the deviation

from the protocol is detected and the protocol is aborted before the challenger

is able to win the verification game. Second, we show that a challenger who

can win the anonymity game while maintaining the above property can also

win the distinguishing game, which is a contradiction because the underlying

encryption scheme is IND-CCA2.

Part 1: Suppose that during step hi of phase 2, honest respondent hi

receives ciphertexts (D1, ..., DN), but that there is some honest respondent

hp for which the ciphertext {C ′hp}yN :yhi
appears either more than once or not

at all. If any ciphertext appears more than once, this is detected by honest

respondent hi and the protocol is aborted before the challenger learns the

secondary private keys.
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Now we wish to show that if an honest ciphertext is dishonestly replaced

so that it does not appear in step hi of phase 2, then the verification in phase

3 will fail. Suppose that honest participant hi does not receive {C ′hp}yN :yhi
as

part of the set (D1, ..., DN).

In this case it is infeasible for the challenger to learn {C ′hp}yN :yhi−1

because they did not give {C ′hp}yN :yhi
to participant hi. However, they must

learn C ′hp to satisfy honest participant hp in the verification step. This is

infeasible without the private key xhi . Therefore verification fails and the

protocol is aborted before the challenger learns the secondary private keys.

Now we must show that the challenger cannot win the anonymization

game when he does not learn the secondary private keys. It is possible that by

duplicating or substituting ciphertexts of honest respondents, the challenger

can learn the partially-decrypted ciphertexts C ′hα and C ′hβ for the honest re-

spondents hα and hβ he has chosen in the game. For example, the challenger

could substitute known information for all encrypted responses except Chα .

Then after the decryption phase, he would know C ′hα . However, even if the

challenger learns C ′hα and C ′hβ , each of these ciphertexts is encrypted with the

key zhα (as well as the keys of all other honest participants) which is unknown

to the challenger. Therefore determining which decrypts to m0 and which de-

crypts to m1 is exactly equivalent to the distinguishing game, and cannot be

done due to the assumption that the encryption scheme is IND-CCA2.

Part 2: Now suppose that the challenger honestly handles all cipher-

texts belonging to honest participants. Suppose also that there is a proba-
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bilistic polynomial time algorithm D that allows this challenger to win the

anonymization game with non-negligible probability. We will show how to use

D as a subroutine to probabilistic polynomial-time algorithm A that wins the

distinguishing game with non-negligible probability. Because of the assump-

tion that the underlying encryption scheme is IND-CCA2, this is a contra-

diction, and we will conclude that no such D exists. Let the set of k honest

respondents in the anonymization protocol be H = {h1, ..., hk}. Let D be

an algorithm that allows the challenger to win the anonymization game with

non-negligible probability. Then there exist honest participants hα and hβ

such that for some polynomial f , and for sufficiently large values of ρ (ρ is the

security parameter [55]),

Pr[D(m0,m1, hα, hβ, 1) = 1]

− Pr[D(m0,m1, hα, hβ, 0) = 1]

>
1

f(ρ)
.

To apply D, A must simulate the oracle in the anonymization game to repro-

duce the view of the challenger. We show how A is able to do this.

Algorithm A begins by asking the distinguishing game oracle to gener-

ate a keypair (xo, yo). A will use yo for yhk , the public key belonging to the

last honest respondent hk. A will be able to simulate all messages from honest

respondents despite not knowing xo or yo.

A applies D to learn its choices in step 1 of the anonymization game.

A therefore learns the following:
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• Two honest participants hα and hβ, and two plaintext responses m0 and

m1

• A plaintext response dhi for each other honest respondent hi

Then, for each honest respondent hi, A chooses

• (xhi , yhi), a primary keypair (not chosen for respondent hk),

• (whi , zhi), a secondary keypair, and

• (uhi , vhi), a signature keypair

A selects plaintexts m0 and m1 to be the plaintext responses for hα and hβ.

A is now ready to play the role of the oracle in the anonymization game

by simulating the messages of honest participants in the protocol execution.

For each phase of the protocol, we will explain how A is able to reproduce the

messages sent in that phase.

Phase 0: A has all the necessary keys to reproduce this phase exactly.

Phase 1: For all honest respondents hi other than hα and hβ, A encrypts

response dhi using the appropriate public keys (and the encryption oracle to

encrypt with yhk) which results in the ciphertext Ci. A then encrypts m0 and

m1 in a special way. First, A encrypts using the secondary public keys:

m′0 = {m0}zN :z1 , and

m′1 = {m1}zN :z1 .
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Next, A encrypts with all keys that come after hk in the sequence:

M0 = {m′0}yN :yhk−1
, and

M1 = {m′1}yN :yhk−1
.

Next, A gives M0 and M1 to the distinguishing game oracle, getting back:

Mb = {m′b}yN :yhk
, and

Mb̄ = {m′b̄}yN :yhk
.

Finally, A encrypts Mb and Mb̄ with the remaining public keys to get the final

encryptions:

Chα = {m′b}yN :y1 , and

Chβ = {m′b̄}yN :y1 .

Phase 2: For all honest participant rounds hi of phase 2 other than

round hk, A has the key xhi necessary to decrypt the ciphertexts (D1, ..., DN)

provided by the challenger (who is playing the role of the miner). A permutes

the resulting decryptions and sends them to the challenger.

Round hk is more difficult, because A does not know the key xhk . Here

we must use our assumption that every honest participant’s ciphertext appears

exactly once in (D1, ..., DN). In particular, the ciphertexts

Mb = {m′b}yN :yhk
, and

Mb̄ = {m′b̄}yN :yhk
.
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appear exactly once. For all ciphertexts Dj in (D1, ..., DN) other than Mb and

Mb̄, A may use the decryption oracle provided by the distinguishing game to

obtain decxhk (Dj).

However, A is not allowed to use the decryption oracle on Mb or Mb̄.

Instead, when A sees the ciphertexts {m′b}yN :yhk
and {m′

b̄
}yN :yhk

, he can either

simulate decryption as

{m′0}yN :yhk−1
and {m′1}yN :yhk−1

or

{m′1}yN :yhk−1
and {m′0}yN :yhk−1

,

which are the values M0 and M1 known to A. Because A sends the challenger

a random permutation of the decryptions, the challenger cannot distinguish

between A making the correct choice and permuting, or A making the incorrect

choice and permuting. Thus either choice will suffice, and A may randomly

choose one or the other.

Phases 3 and 4: A has all the necessary keys to reproduce these phases

exactly.

Now A simulates the view of the challenger and applies D to the view.

If D outputs 1, then A outputs 1, and if D outputs 0, A outputs 0.

We will now analyze the probability of A outputting 1 if the distin-

guishing oracle chose b = 0 and if the distinguishing oracle chose b = 1. If

b = 0, then the view of the challenger is (m0,m1, hα, hβ, 0). If b = 1, then the
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view of the challenger is (m0,m1, hα, hβ, 1). Let

p0 = Pr[D(m0,m1, hα, hβ, 0) = 1],

p1 = Pr[D(m0,m1, hα, hβ, 1) = 1].

Based on our assumption that D wins the anonymity game, we have that

p1 − p0 >
1

f(ρ)
. Now we make a simple substitution,

Pr[A(m0,m1, 1) = 1]− Pr[A(m0,m1, 0) = 1]

= p1 − p0

>
1

f(ρ)
.

We conclude thatA can win the distinguishing game with non-negligible proba-

bility, which contradicts the IND-CCA2 property of the underlying encryption

scheme.

Integrity

The honest respondents verify the presence of their C ′i ciphertext in

phase 3 of the protocol; all ciphertexts must be present for any decryption

to take place. When the secondary private keys are handed over to the data

miner for decryption, he can easily confirm whether the private key wi actually

corresponds to the public key zi by encrypting data with zi and determining

whether it decrypts with wi. Then the data miner uses verified keys to decrypt

verified ciphertexts, and as a result learns the correct plaintext responses.

If the verification in phase 3 fails, then the data miner has not received

sigui(D1, ..., DN) from some honest participant hi. In this case the data miner
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learns that participant hi’s response has been substituted. Thus our two-part

definition of integrity given in section 4.3.2 is satisfied.

Confidentiality

The inner-most level of encryption on each response is with yDM .

Therefore only the data miner can perform the final decryption and learn the

responses.

4.5 Efficiency

Our protocol is efficient in terms of communication and computational

complexity. In this section we will quantify the complexity of the protocol.

Computation

Operations requiring computation include key pair generation, encryp-

tion, decryption, signing, and signature verification. In phase 0, each respon-

dent generates 1 key pair, signs 1 message, and performs N signature verifi-

cations. In phase 1, each respondent performs 2N + 1 encryptions. In phase

2, each respondent performs N decryptions. In phase 3, each respondent per-

forms 1 signature and N signature verifications. In phase 4, the data miner

performs N2 +N decryptions. We conclude that the total computational com-

plexity is O(N2). Note, however, that the computational complexity for each

individual respondent is only O(N). This is advantageous because the respon-

dents are more likely to be computationally bounded than the data miner.
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Number of Communication Rounds

Phase 0 is parallelizable and requires 2 rounds. Phase 1 is parallelizable

and requires only 1 round. Phase 2 cannot be parallelized and requires 2N

rounds. Phase 3 can be parallelized and requires 4 rounds. Phase 4 does

not involve communication. We conclude that the protocol requires O(N)

communication rounds.

Total Communication

Let us assume that the size of a response is S bits, the size of a key

is T bits, and that the size of a signature is Q bits. Phase 0 requires the

transmission of N2 signatures and keys, for a total of (Q+T )N2 bits. In phase

1, N S-bit ciphertexts are transmitted. In each iteration of phase 2 , 2SN bits

are transmitted, for a total of 2SN2 bits. Phase 3 transmits SN2 bits for the

broadcast of (D1, ..., DN), (Q + T )N bits to transmit signatures and keys to

the miner, and QN2 bits to broadcast the signatures from the miner back to

the respondents. We conclude that the protocol transmits O((Q+ S + T )N2)

bits. Since Q and T are constant parameters of the cryptosystem, we can

simplify this to O(SN2) bits.

4.6 An Attack on the YZW Protocol

In this section, we show an attack against the data collection protocol

of Yang et al. [129, section 5.2]. We will refer to this protocol as the YZW

protocol. This protocol is intended to be collusion resistant so that t − 1
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dishonest leaders (out of t total leaders), in collusion with a dishonest data

miner, cannot learn any associations between honest respondents and their

responses. Due to a subtle flaw in the use of zero-knowledge proofs, it is

actually possible for a single dishonest leader to collude with the data miner

and learn all associations.

4.6.1 Description of the YZW protocol

Unlike our protocol, which is compatible with any IND-CCA2 cryp-

tosystem, the YZW protocol relies on the ElGamal encryption scheme. In

ElGamal, the public key is (p, g, gx) and the private key is x, where p is a

large random prime, g is the generator of the multiplicative group of integers

modulo p, and x is a random integer such that 1 ≤ x ≤ p− 2. A ciphertext of

message m is a pair (gk mod p,m ·(gx)k mod p), where k is a random integer

such that 1 ≤ k ≤ p− 2.

An important property of ElGamal ciphertexts is that they can be

easily rerandomized without access to the private key, i.e., given a ciphertext

(C(1), C(2)), it is easy to produce, without decrypting, another ciphertext (C(1)·

gk
′

mod p, C(2) · (gx)k′ mod p) which encrypts the same plaintext. Moreover,

given two ciphertexts, it is not feasible to determine whether they encrypt the

same plaintext.

The protocol also makes use of the following three zero-knowledge

proofs, which are intended to prevent any of the protocol participants from

deviating from the protocol:
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• PoK(C), where C is an ElGamal ciphertext. This is a proof of knowledge

of the plaintext of C.

• PoR((C1, ..., CN), (C ′1, ..., C
′
N)), where all Ci and C ′i are ElGamal cipher-

texts. This is a proof that (C ′1, ..., C
′
N) is a permuted rerandomization of

(C1, ..., CN).

• PoD(q, C(2), y), where C(2) is the second component of an ElGamal ci-

phertext and y = gx mod p is a public key. This is a proof that

q = (C(2))x, where x is the private key corresponding to y.

We restate the protocol below. There are N respondents, of whom t

are designated as “leaders.” Each leader i has an ElGamal key pair, in which

xi is the private key, and the public key includes yi = gxi . The public key is

known to all respondents, while the private key xi is known only to leader i.

Let

y =
t∏

y=1

yi

be the product of all public yi values. The protocol consists of three phases:

• Phase 1: N -round data submission.

For i = 1, ..., N

– Respondent i encrypts his data di using the public key y to produce

the ciphertext Ci:

Ci
def
= (C

(1)
i , C

(2)
i ) = (yridi, g

ri),
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where ri is picked uniformly at random.

– Respondent i produces a proof zi = PoK(Ci), proving that he knows

the plaintext of Ci.

– Respondent i sends Ci and zi to the miner, who forwards (Ci, zi) to

all other respondents.

– Each respondent verifies the proof sent by respondent i and if it is

missing or invalid, the protocol is aborted.

– The data miner sets the initial values of (D1, ..., DN) to be

(C1, ..., CN).

• Phase 2: t-round anonymization.

For i = 1, ..., t

– The miner sends (D1, ..., DN) to leader i.

– Leader i rerandomizes and permutes the data, so that (R1, ..., RN)

is a permuted rerandomization of (D1, ..., DN).

– Leader i generates a proof

wi = PoR((D1, ..., DN), (R1, ..., RN)).

– Leader i sends (R1, ..., RN) and wi to the miner, who forwards them

to all other respondents.

– Each respondent verifies the proof sent by leader i and if it is missing

or invalid, the protocol is aborted.
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– The miner sets the new values of (D1, ..., DN) = (R1, ..., RN).

• Phase 3: Decryption

– The miner sends (D1, ..., DN) to all leaders.

– Each leader i computes partial decryptions: for j = 1, ..., N ,

pj,i = (D
(2)
j )xi .

– Each leader i computes a proof

vj,i = PoD(pj,i, D
(2)
j , yi).

– Each leader i sends pj,i and vj,i to the miner, for j = 1, ..., N . The

miner forwards them to the other participants.

– Each participant verifies the proof sent by leader i, and if it is

missing or invalid the protocol is aborted.

– The miner computes the final decryptions: for j = 1, ..., N

d′j = D
(1)
j /

t∏
i=1

pj,i.

4.6.2 Attacking the YZW protocol

The flaw in the YZW protocol is that the zero-knowledge proof of

permuted rerandomization PoR is not a proof of knowledge. It guarantees

that the plaintexts of two ciphertext sets are the same, but this is not enough

for anonymity. As long as (C ′1, ..., C
′
N) is some permuted rerandomization of
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(C1, ..., CN), then an attacker can provide the required proof even if he does

not know the actual permutation.

In this section, we show how this can be exploited by a malicious data

miner who colludes with the last leader and substitutes original ciphertexts

(for which associations with respondents are known) for the honestly permuted

ciphertexts. This enables them to pass all proofs required by the protocol,

and then learn all associations between respondents and responses. Collusion

resistance thus fails completely: it is sufficient for the data miner to corrupt

the last leader in order to completely break security of the protocol.

1. All participants behave honestly until the beginning of the tth round of

phase 2, when it is leader t’s turn to rerandomize and permute the data.

2. At the beginning of the tth round, the data miner sends leader t both the

current values of (D1, ..., DN) and the original values of (C1, ..., CN) ex-

actly as they were collected from the respondents during phase 1. Leader

t produces (R1, ..., RN) by rerandomizing and applying a permutation

πt to (C1, ..., CN), not (D1, ..., DN) as the protocol specifies. Because

(R1, ..., RN) is also a permuted rerandomization of (D1, ..., DN), leader t

is able to produce the proof

PoR((D1, ..., DN), (R1, ..., RN)),

even though he does not know the permutation to produce (R1, ..., RN)

from (D1, ..., DN).
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3. The proof PoR((D1, ..., DN), (R1, ..., RN)) from leader t is verified by all

other leaders, who then decrypt in phase 3. The data miner learns all

plaintext responses permuted only by πt

4. Leader t tells πt to the data miner, who is then able to associate responses

to respondents.

It may appear that this attack is caused simply by an imprecise descrip-

tion of PoR given in [129], and that any actual implementation of the PoR proof

would not allow a party to pass the proof PoR((D1, ..., DN), (R1, ..., RN)) with-

out knowing the permutation. Unfortunately, the implementation suggested

in [129] (and originally proposed in [57]) allows precisely this attack.

The proof in [57,129] relies on the multiplicative homomorphism prop-

erty of ElGamal. If (C
(1)
1 , C

(2)
1 ) and (C

(1)
2 , C

(2)
2 ) are ElGamal encryptions of

plaintexts P1 and P2, then

(C
(1)
1 C

(1)
2 , C

(2)
1 C

(2)
2 )

is an ElGamal encryption of P1P2. In order to prove that two sets of ciphertexts

(C1, ..., CN) and (R1, ..., RN) decrypt to the same set of plaintexts, participants

are asked to prove that the products of the ciphertexts

(
N∏
i=1

C
(1)
i ,

N∏
i=1

C
(2)
i ) and

(
N∏
i=1

R
(1)
i ,

N∏
i=1

R
(2)
i ),
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decrypt to the same values (which are products of the original plaintexts). If

plaintexts are chosen in such a way that it is difficult to find a set of plain-

texts with the same product as the original, then equality of the products of

plaintexts implies equality of the plaintexts themselves.

The reason the protocol of [129] fails is that the above statement about

equality of products is true, and a malicious leader can prove it, even if he does

not know the permutation. In [123], Wikström presents a clever attack that

effectively allows the kth leader to present a convincing zero-knowledge proof

that his output (R1, ..., RN) is a permuted rerandomization of the output from

the k − 1st leader, when in fact (R1, ..., RN) is a permuted rerandomization

of the original ciphertexts in their original order. (In [123], the attack is

described in the context of mix networks, but it also works in the anonymous

data collection setting with very slight modifications.)

4.6.3 Fixing the YZW protocol

The YZW protocol can potentially be fixed by substituting zero-

knowledge proofs of knowledge for the incorrect proofs of [57]. Research on

so called verifiable shuffles [59, 94] has led to zero-knowledge proofs in which

a participant in an ElGamal rerandomization protocol proves not only that

the output ciphertexts decrypt to the same set of plaintexts as the input

ciphertexts, but also that the prover knows the the permutation from input

ciphertexts to output ciphertexts.

Requiring this additional proof of knowledge makes the attack described
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above impossible, since a malicious last leader will no longer be able to reran-

domize original input ciphertexts instead of the ciphertexts provided by the

previous leader and pass the proof of knowledge. Fixing the YZW protocol

in this way, however, still requires O(N2) communication rounds and the use

of expensive zero-knowledge proofs, where N is the number of participants.

It is not clear whether the proofs of [59, 94] can be carried out in parallel (in

general, zero-knowledge proofs do not preserve their properties under concur-

rent composition), and executing them sequentially results in a protocol with

impractical communication complexity. By contrast, our protocol achieves the

same security guarantees with O(N) communication rounds and without any

zero-knowledge proofs.

4.7 Conclusions

We have presented an efficient protocol for anonymity-preserving data

collection that does not rely on zero-knowledge proofs to be secure in the

malicious model. We have provided anonymity by having the respondents

function as mix-servers which shuffle the set of responses. The critical insight of

our research is that by taking advantage of the fact that each respondent/mix-

server knows her own response, we can confirm the validity of the shuffles

without using zero-knowledge proofs. In a traditional mix-net scenario, the

mix-servers and the data providers are distinct entities, so validity confirmation

of this type is not possible. It is our hope that the data-mining community

will find our protocol useful when collecting sensitive data from respondents.
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Chapter 5

Tradeoffs in Sanitized Data Publishing

5.1 Introduction

Microdata records contain information about specific individuals. Ex-

amples include medical records used in public-health research, individual trans-

actions or preferences released to support the development of new data-mining

algorithms, and records published to satisfy legal requirements.

In contrast to statistical databases and randomized response methods,

the records in question contain actual, unperturbed data associated with in-

dividuals. Some of the attributes may be sensitive, e.g., health-related at-

tributes in medical records. Therefore, identifying attributes such as names

and Social Security numbers are typically removed from microdata records

prior to release. The published records may still contain “quasi-identifiers,”

e.g., demographic attributes such as ZIP code, age, or sex. Even though the

quasi-identifier attributes do not directly reveal a person’s identity, they may

appear together with the identity in another public database, or it may be

easy to reconstruct their values for any given individual. Microdata records

may also contain “neutral” attributes which are neither quasi-identifying, nor

sensitive.
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The association of quasi-identifiers with sensitive attributes in public

records has long been recognized as a privacy risk [73, 110]. This type of

privacy breach is known as sensitive attribute disclosure, and is different from

membership disclosure, i.e., learning whether a certain individual is included

in the database [38,95,105].

It is very easy to prevent sensitive attribute disclosure by simply not

publishing quasi-identifiers and sensitive attributes together. Trivial saniti-

zation that removes either all quasi-identifiers, or all sensitive attributes in

each data release provides the maximum privacy possible against an adversary

whose knowledge about specific individuals is limited to their quasi-identifiers

(this adversary is very weak, yet standard in the microdata sanitization liter-

ature [26, 81,112]).

There is large body of research on techniques such as k-anonymity

and `-diversity that apply domain-specific generalization and suppression to

quasi-identifier attributes and then publish them together with unmodified

sensitive attributes. In this chapter, we ask a basic question: what benefit

do these algorithms provide over trivial sanitization? The only reason

to publish generalized quasi-identifiers and sensitive attributes together is to

support data-mining tasks that consider both types of attributes in the san-

itized database. Our goal in this chapter is to evaluate the tradeoff between

this incremental gain in data-mining utility and the degradation in privacy

caused by publishing quasi-identifiers together with sensitive attributes.
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Our contributions. First, we give a semantic definition of sensitive attribute

disclosure. It captures the gain in the adversary’s knowledge due to his obser-

vations of the sanitized dataset. This definition is somewhat similar to privacy

definitions used in random-perturbation databases [44], but is adapted to the

generalization and suppression framework.

Second, we give a methodology for measuring the tradeoff between the

loss of privacy and the gain of utility. Privacy loss is the increase in the ad-

versary’s ability to learn sensitive attributes corresponding to a given identity.

Utility gain is the increase in the accuracy of machine-learning tasks evaluated

on the sanitized dataset. The baseline for both is the trivially sanitized dataset,

which simply omits either all quasi-identifiers, or all sensitive attributes, thus

providing maximum privacy and minimum utility.

Third, we evaluate our methodology on the same datasets from the

UCI machine learning repository as used in previous research on sanitized

microdata utility [76,77,81]. We show that non-trivial generalization and sup-

pression either results in large privacy breaches, or provides little incremental

utility vs. a trivially sanitized dataset. Therefore, even if the adversary’s

knowledge is limited to quasi-identifiers, the data-mining utility must be de-

stroyed to achieve only marginal privacy. To protect against an adversary with

auxiliary knowledge, the loss of utility must be even greater.
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5.2 Definitions and Notation

Let T = {t1, . . . tn} be a data table. Each ti is a tuple of attribute

values representing some individual’s record. Let A = {a1, . . . am} be the set

of attributes; t[ai] denotes the value of attribute ai for tuple t. We use the

following notation for subsets of attributes and tuples. If C = {c1, c2, . . . cp} ⊆

A, then t[C] denotes (t[c1], . . . t[cp]). If U = {u1, u2, . . . up} ⊆ T , then U [a]

denotes (u1[a], . . . up[a]).

Let S ∈ A be the sensitive attribute. This is an attribute whose value

the adversary should not be able to associate with an individual (e.g., medical

information). Let S = {s1, . . . sl} be the set of possible attribute values for the

sensitive attribute S. All of the concepts in this chapter are easily explained

in the single sensitive attribute setting, but can also be generalized to multiple

sensitive attributes.

Let Q ∈ A\S be the quasi-identifier, i.e., the set of non-sensitive (e.g.,

demographic) attributes whose values may be known to the adversary for a

given individual.

Two tuples ti and tj are Q-equivalent (denoted ti
Q≡ tj) if ti[Q] = tj[Q].

This equivalence relation partitions T into quasi-identifier equivalence classes,

denoted as 〈tj〉, where ti ∈ 〈tj〉 iff ti
Q≡ tj. Let EQ ⊆ T be a set of representative

records for each equivalence class imposed by
Q≡.

We make the standard assumption that the adversary knows only the

quasi-identifiers [26,74,112,128]. This weak adversary model makes our results
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stronger because if privacy fails against the weak adversary, it will also fail

against adversaries who have additional knowledge [81,83].

T may also contain attributes in A\(Q∪S), which are neither sensitive,

nor quasi-identifying. For example, a user may wish to construct a classifier

that predicts the values of these “neutral” attributes (e.g., length of hospital

stay) on the basis of both quasi-identifiers (e.g., age) and sensitive attributes

(e.g., diagnosis).

Consider a subset of tuples U = {u1, u2, . . . up} ⊆ T , and the distribu-

tion of sensitive attribute values within U . For any sensitive attribute value

s, denote by Us the set {u ∈ U | u[S] = s} of tuples in U whose sensitive

attribute value is equal to s, and denote by p(U, s) the corresponding fraction

of tuples in U , computed as |Us||U | . The notation p(U, s) can be understood as

“the probability that a randomly chosen member of U has sensitive attribute

value s.”

We assume that whenever an adversary is provided with a sanitized

table T ′, the record rows appear in a random order to prevent “unsorted

matching attacks” [112].

5.3 Sensitive Attribute Disclosure

Sensitive attribute disclosure occurs when the adversary learns informa-

tion about an individual’s sensitive attribute(s). To obtain a meaningful defi-

nition of data privacy, it is necessary to quantify the knowledge about sensitive
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attributes that the adversary gains from observing the sanitized database. We

call our definitions semantic because they capture this shift in the adversary’s

knowledge. The need for semantic definitions of privacy is well-understood

for random-perturbation databases (e.g., [44]). By contrast, research on mi-

crodata privacy has focused on purely syntactic privacy definitions such as

k-anonymity and `-diversity (surveyed in Section 3.3.1), which only consider

the distribution of attribute values in the sanitized database, without directly

measuring what the adversary may learn.

5.3.1 Attack model

We use the standard model from the literature [26, 81]. The adversary

is given a sanitized table T ′ generated from an original table T , and the quasi-

identifier t[Q] for some target individual t known to be in the table T (i.e.,

we are not considering membership disclosure). We re-emphasize that giving

the adversary more background knowledge will result in even worse disclosure

than we demonstrate.

To keep the sanitized database “truthful” [107,112], generalization and

suppression are applied only to quasi-identifiers, with sensitive attributes left

intact. Therefore, the most “private” sanitized table possible with this ap-

proach is the trivial sanitization in which all Q are suppressed. Equally effec-

tive is the trivial sanitization in which all S are suppressed (and released in a

separate, unlinked table).

The adversary’s baseline knowledge Abase is the minimum information
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about sensitive attributes that he can learn after any sanitization, includ-

ing trivial sanitization which releases quasi-identifiers and sensitive attributes

separately. Abase is the distribution of sensitive attributes in the original ta-

ble, which is revealed by any generalization and suppression algorithm be-

cause sensitive attributes are left untouched to keep them “truthful.” We

are concerned about privacy leaks in excess of this baseline knowledge; for

example, if 90% of the individuals in T have cancer, then it should not be

considered an attribute disclosure if the adversary concludes that t has can-

cer with probability 90%, since this baseline distribution is always revealed

to the adversary. We formally define Abase as the vector of probabilities rep-

resenting the distribution of sensitive attribute values in the entire table T :

Abase = 〈p(T, s1), p(T, s2), . . . , p(T, sl)〉.

The adversary’s posterior knowledge Asan is what he learns from the

sanitized table T ′ about the sensitive attributes of his target individual t ∈ T .

Unlike Abase, Asan takes quasi-identifiers into account, because the records

in T ′ contain a mixture of generalized and suppressed quasi-identifiers. Be-

cause the generalization hierarchy on quasi-identifiers is required to be to-

tally ordered [26], the adversary can uniquely identify the quasi-identifier

equivalence class 〈t〉 containing the sanitized record of t in T ′. Asan is the

distribution of sensitive attribute values within this class 〈t〉: Asan(〈t〉) =

〈p(〈t〉, s1), p(〈t〉, s2), . . . , p(〈t〉, sl)〉.

Sensitive attribute disclosure is the difference between the adversary’s

posterior knowledge Asan and his baseline knowledge Abase. It can measured
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additively or multiplicatively.

Adiff(〈t〉) = 1
2

∑l
i=1 |p(T, si)− p(〈t〉, si)|

Aquot(〈t〉) =
∣∣∣log p(〈t〉,s)

p(T,s)

∣∣∣
Informally, it captures how much more the adversary learns by observing san-

itized quasi-identifiers than he would have learned from a “maximally private”

database where sensitive attributes are separated from the quasi-identifiers.

5.3.2 Semantic privacy

To capture the incremental gain in the adversary’s knowledge caused by

the sanitized table T ′, we first consider his baseline knowledge Abase as defined

above. Recall that it consists of the distribution of sensitive attributes in the

table T ∗, where all quasi-identifiers have been suppressed (any sanitization

that does not touch sensitive attributes necessarily reveals T ∗). Furthermore,

the adversary knows t[Q] for all t ∈ T , i.e., the quasi-identifier attribute values

for all individuals in the database. The adversary can easily learn these values

from external databases and other resources.

Definition 12 (δ-disclosure privacy). We say that an equivalence class 〈t〉 is

δ-disclosure-private with regard to the sensitive attribute S if, for all s ∈ S

Aquot(〈t〉) =

∣∣∣∣log
p(〈t〉, s)
p(T, s)

∣∣∣∣ < δ

A table T is δ-disclosure-private if for every t ∈ EQ, 〈t〉 is δ-disclosure private.

Intuitively, a table is δ-disclosure private if the distribution of sensitive

attribute values within each quasi-identifier class is roughly the same as their
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distribution in the entire table. In contrast to [77], we use a multiplicative

definition. It correctly models disclosures when some value of the sensitive

attribute occurs in certain quasi-identifier classes, but not in others. It also

allows us to derive a bound on the gain in adversarial knowledge, by relating

the δ parameter to information gain used by decision-tree classifiers such as

ID3 and C4.5. Gain(S,Q) is defined as the difference between the entropy of

S and the conditional entropy H(S|Q).

Gain(S,Q) = H(S)−H(S|Q)

Lemma 5.3.1. If T satisfies δ-disclosure privacy, then Gain(S,Q) < δ. Let

αs = p(T, s) and let βt,s = p(〈t〉, s). Note that αs =
∑

t∈EQ
|〈t〉|
|T | βt,s.

Proof:

Gain(S,Q)

=
∑
s∈S

−αs logαs −
∑
t∈EQ

|〈t〉|
|T |

∑
s∈S

−βt,s log βt,s

=
∑
s∈S

∑
t∈EQ

−|〈t〉|
|T |

βt,s logαs −
∑
t∈EQ

|〈t〉|
|T |

∑
s∈S

−βt,s log βt,s

=
∑
t∈EQ

|〈t〉|
|T |

∑
s∈S

(−βt,s logαs + βt,s log βt,s)

=
∑
t∈EQ

|〈t〉|
|T |

∑
s∈S

βt,s log
βt,s
αs

<
∑
t∈EQ

|〈t〉|
|T |

∑
s∈S

βt,s · δ =
δ

|T |
∑
t∈EQ

|〈t〉|
∑
s∈S

|〈t〉s|
|〈t〉|

=
δ

|T |
∑
t∈EQ

∑
s∈S

|〈t〉s| = δ

83



Lemma 5.3.1 shows that when a database satisfies δ-disclosure privacy,

the ability to build a predictor for sensitive attributes S based on the quasi-

identifier Q is bounded by δ. Note that definition 12 is stronger than the

bound given by lemma 5.3.1, because it requires that the distributions Abase

and Asan be similar, rather than just have similar entropies.

5.3.3 Measuring privacy of sanitized databases

Semantic privacy definitions, such as our Definition 12, bound sensitive

attribute disclosure, but an actual database instance may have less sensitive

attribute disclosure (and thus more privacy) than permitted by the definition.

Conventional privacy metrics rely on syntactic properties of the sani-

tized dataset: number of records with the same quasi-identifier (k-anonymity)

or frequency of sensitive attributes within each quasi-identifier class (`-

diversity). Unfortunately, the two metrics are incomparable. In [81], k and

` are compared directly, even though the two have different domains: k can

vary from 1 to the total number of records, while ` can vary from 1 to the

number of different sensitive attribute values. For example, a 1000-record

database with a binary sensitive attribute can never be more than 2-diverse,

but it can be anywhere up to 1000-anonymous.

We propose two different metrics to quantify attribute disclosure al-

lowed by a sanitized database T ′ as opposed to T ∗ where all quasi-identifiers

have been trivially suppressed. The first is based on the attribute disclosure
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distance Adiff :

Aknow =
1

|T |
∑
t∈EQ

|〈t〉| · Adiff(〈t〉)

Aknow stands for “adversarial knowledge gain.” It is the average amount

of information about the sensitive attributes of individual t that the adversary

learns because he is able to identify the class 〈t〉 based on t’s quasi-identifier.

One may also consider a metric based on Aquot, but only semantically

private databases achieve a finite privacy score. Other privacy definitions allow

sensitive attribute values to be absent from some quasi-identifier classes, en-

abling the adversary to learn with certainty that the corresponding individual

does not have this value.

The second metric quantifies the adversary’s ability to predict his tar-

get t’s sensitive attribute using his best strategy, which is to guess the most

common sensitive attribute in 〈t〉. For a quasi-identifier class 〈t〉, let smax(〈t〉)

be the most common sensitive attribute value found in 〈t〉. Then,

Aacc =

 1

|T |
∑
t∈EQ

|〈t〉| · p (〈t〉, smax(〈t〉))

− p(T, smax(T ))

Aacc stands for “adversarial accuracy gain” and measures the increase in the

adversary’s accuracy after he observes the sanitized database T ′ compared to

his baseline accuracy from observing T ∗, which is the most private database

that can be obtained by generalization and suppression.

Aacc underestimates the amount of information leaked by the sanitized

table T ′, because it does not consider shifts in the probabilities of non-majority
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sensitive attributes. It is still a useful metric because it can be directly com-

pared to our metrics of data-mining utility, described in Section 5.4.

5.4 Measuring Utility

Utility of any dataset, whether sanitized or not, is innately tied to the

computations that one may perform on it. For example, a census dataset may

support an extremely accurate classification of income based on education, but

not enable clustering based on household size. Without a workload context, it

is meaningless to say whether a dataset is “useful” or “not useful,” let alone

to quantify its utility.

Nevertheless, the stated goal of privacy-preserving microdata publish-

ing is to produce sanitized datasets that have “good” utility for a large variety

of workloads. The unknown workload is an essential premise—if the work-

loads were known in advance, the data publisher could simply execute them

on the original data and publish just the results instead of releasing a sanitized

version of the data.

The need for a workload-independent measure of utility has led to the

use of syntactic properties as a proxy for utility. One approach is to minimize

the amount of generalization and suppression applied to the quasi-identifier

attributes to achieve a given level of privacy [26]. This “minimization” is done

with respect to absolute difference, relative distance, maximum distribution,

or minimum suppression. Other syntactic metrics include the number of gen-
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eralization steps, average size of quasi-identifier equivalence classes, the sum

of squares of class sizes [81], and preservation of marginals [69].

Workload-independent metrics quantify the “damage” caused by saniti-

zation, but they do not measure how much utility remains. For example, small

quasi-identifier equivalence classes do not imply anything about the accuracy

of classifiers that one may compute on the sanitized data [96].

It has been recognized that utility of sanitized databases must be mea-

sured empirically, in terms of specific workloads such as classification algo-

rithms [63, 76, 120]. This does not necessarily contradict the “unknown work-

load” premise of sanitization. It simply acknowledges that even when san-

itization satisfies a syntactic damage minimization requirement, it may still

destroy the utility of a dataset for certain tasks; it is thus essential to measure

the latter when evaluating effectiveness of various sanitization methods.

We can assume that users of the sanitized database are interested in

workloads that take advantage of attribute correlations within the database,

e.g., construction of classifiers. For workloads which consider attributes in iso-

lation, the data publisher can achieve maximum privacy by simply publishing

two tables, one with the permuted quasi-identifiers, the other with the remain-

ing attributes since they cannot be linked to the quasi-identifiers. Intuitively,

utility of a sanitized database should be measured by how well cross-attribute

correlations are preserved after sanitization.

It is critically important to measure both privacy and utility using the
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same methodology. Otherwise, maximizing utility may lead to privacy viola-

tions. For example, if utility is measured as the ability to predict sensitive

attributes from the quasi-identifiers, then it is exactly the same as adver-

sarial sensitive attribute disclosure! Iyengar [63] concludes that classification

accuracy is maximized when attributes are homogeneous within each quasi-

identifier group: this directly contradicts the diversity requirement [81, 114].

Similarly, [128] says that the data publishing process should preserve correla-

tion between quasi-identifiers and sensitive attributes. This contradicts both

diversity and semantic privacy, and immediately leads to sensitive attribute

disclosure.

We aim to measure the tradeoffs between privacy and utility in a single

framework, using semantic definitions for both: privacy in terms of adversarial

sensitive attribute disclosure, utility in terms of concrete machine-learning

tasks.

First, for a given workload w, we measure workload-specific utility of

trivially sanitized datasets, i.e., datasets from which either all quasi-identifiers

Q, or all sensitive attributes S have been removed. Both provide the maxi-

mum privacy achievable using generalization and suppression. Let U (w)
base be the

corresponding empirical utility (to compute U (w)
base, we pick the trivial sanitiza-

tion with the largest utility). We give specific workloads and utility metrics in

Section 5.5; for example, when the workload w involves computing a classifier,

U (w)
base is the accuracy of this classifier.
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Then, we consider several non-trivially sanitized tables T ′, one for each

value of the sanitization parameter. For each table, we compute its workload-

specific utility U (w)
san .

The critical metric is U (w)
san − U (w)

base. This is the incremental utility gain

provided by the release of non-trivially sanitized data. Note that if U (w)
san −

U (w)
base is close to 0, then non-trivial sanitization is pointless for this specific

workload. In this case, a trivial sanitization which suppresses all Q or removes

all S provides as much utility as any sophisticated sanitization algorithm while

providing as much privacy as possible.

Another metric we’ll employ is U (w)
max, the utility of workload w as mea-

sured on the original, pre-sanitization database. If U (w)
max is low (e.g., the cor-

responding classifier has low accuracy), this means that the workload is in-

appropriate for the data regardless of sanitization. It does not make sense to

measure utility in terms of this workload, because even if the users had been

given the entire original database, the utility would have been low.

5.5 Experiments

Our experiments demonstrate that a trivial sanitizer which simply sup-

presses all quasi-identifiers or all sensitive attributes produces datasets with

equivalent utility and better privacy (or equivalent privacy and better utility)

than non-trivial generalization and suppression.

This appears to contradict previous work. For example, it was shown
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that useful machine-learning workloads can be evaluated on k-anonymous

datasets [63, 76]. Of course, k-anonymity is neither necessary, nor sufficient

for privacy. The “useful” datasets in question simply don’t prevent sensitive

attribute disclosure.

At the other end of the spectrum, `-diversity [81] and t-closeness [77] do

limit sensitive attribute disclosure. Utility, however, is measured syntactically,

by the number of generalization steps applied to quasi-identifiers, average size

of quasi-identifier equivalence classes, sum of squares of class sizes, or preser-

vation of marginals. In contrast to this chapter, the actual data-mining utility

is not measured.

Wang et al. [120] give a sanitization which ensures a strong privacy def-

inition and better data-mining utility on the UCI Adult dataset than simple

removal of all sensitive attributes. They do not consider the other trivial saniti-

zation, which is to remove all quasi-identifiers. We repeated their experiments

and observed that their sanitization does not provide significantly better utility

than the trivially sanitized dataset consisting of sensitive attributes only.

5.5.1 Achieving semantic privacy

Semantic privacy, as defined in Section 5.3.2, is easily incorporated

into k-anonymity frameworks such as Incognito [74]. Like `-diversity [81] and

t-closeness [77], semantic privacy has the monotonicity property : a generaliza-

tion of a semantically private table is itself semantically private.

We used the implementation of generalization and suppression from
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Attribute Values Generalization
Age 74 continuous
Workclass 7 hierarchy
Education 16 continuous
Marital Status 7 hierarchy
Occupation 14 hierarchy
Race 5 hierarchy
Sex 2 hierarchy
Native Country 41 hierarchy
Salary 2 hierarchy

Table 5.1: Summary of the UCI “Adult” dataset.

LeFevre et al. [76], and modified the constraint checking portion of the code

to support recursive (c, `)-diversity (c=3 in all of our tests), t-closeness for

nominal sensitive attributes, and semantic privacy from this chapter (in the

figures, s stands for δ from definition 12). This implementation is “workload-

aware,” i.e., when choosing quasi-identifiers in Q to generalize, it attempts to

maximize information gain for some target attribute.

5.5.2 Experimental methodology

To enable direct comparison with previous microdata sanitization

work [77, 81], we used the same data for our experiments: the 45,222-record

Adult database from the UCI Machine Learning Repository [7], described in

Table 5.1. Our classifier learning used Weka with the default settings for C4.5

(J48), Random Forests, and Naive Bayes. For all classification experiments,

we used 10-fold cross-validation.

Choosing the quasi-identifier. In a real database, the set of quasi-identifier
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attributesQ is domain-specific, and includes the attributes to which the adver-

sary is most likely to have access via an external database (e.g., demographic

information). For our experiments, we examined several different sets of at-

tributes for Q. All were picked to maximize the likelihood that sanitization

will produce a useful table.

It is common in the literature to choose large quasi-identifiers, some-

times consisting of all non-sensitive attributes. A larger quasi-identifier, how-

ever, gives more prior information to the adversary and requires heavier gen-

eralization and suppression during sanitization. Large quasi-identifiers thus

underestimate utility of the dataset and increase the risk of a privacy breach.

Our most important criterion for choosing Q was to keep it small, to make the

adversary’s task as hard as possible.

Furthermore, if a legitimate user (whom we will call “researcher”) is to

get more utility out of the sanitized database than the adversary, his task(s)

must be different from the adversary’s. If the sensitive attribute is also the

researcher’s target attribute and all other attributes are quasi-identifiers, then

both the researcher and the attacker are trying to use Q to predict S! This

is why in our measurements of utility, we consider utility of classification on

“neutral” attributes which are neither quasi-identifiers, nor sensitive.

Choosing the workload and the sensitive attribute. We must also

choose a workload for the legitimate researcher. As discussed in Section 5.4,

classification is a good workload because quality of classification depends on
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the correlations between attributes in the database, and the entire purpose of

“truthfully” publishing quasi-identifiers and sensitive attributes together is to

preserve these cross-attribute correlations.

We will look at classification of both sensitive and neutral attributes. It

is important to choose a workload (target) attribute v for which the presence

of the quasi-identifier attributes Q in the sanitized table actually matters. If

v can be learned equally well with or without Q, then the data publisher can

simply suppress all quasi-identifiers.

Table 5.2 shows the difference in decision-tree learning accuracy de-

pending on whether or not the quasi-identifier (age, sex, race) is included.

Only marital status shows a significant drop when the quasi-identifier is en-

tirely suppressed, thus we choose it as the workload attribute for the “Occupa-

tion” dataset. Even though salary is intuitively the sensitive attribute in the

“Adult” dataset, when the workload w is “learning salary,” then U (w)
max ≈ U (w)

base.

Since we are interested in measuring utility of non-trivial sanitization (i.e.,

how much utility it provides over the table in which all quasi-identifiers have

been suppressed), we are only interested in scenarios where U (w)
san > U (w)

base; oth-

erwise, complete suppression of Q provides better privacy and same utility as

any non-trivial sanitization. When U (w)
max ≈ U (w)

base, it cannot be the case that

U (w)
san > U (w)

base, thus we do not choose salary as the sensitive attribute, and use

marital status instead.

Datasets used. In the “Marital” dataset, Q=(age, occupation, education),
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S=marital status, the workload attribute is salary. In the “Occupation”

dataset, Q=(age, sex, race), S=occupation, the workload attribute is mar-

ital status.

5.5.3 Experimental results

Learning the sensitive attribute S. The researcher may wish to build a

classifier for the sensitive attribute S using both the quasi-identifiers and the

neutral attributes as predictors. Of course, if sanitization has been correctly

performed, it is impossible to build a good classifier for S based only on

Q, because good sanitization must destroy any correlation between S and Q

(otherwise, the adversary will easily learn the sensitive attributes associated

with any quasi-identifier). Our results demonstrate that the researcher can

build a classifier for S without using the attributes in Q just as well as when

using sanitized versions of Q.

Figure 5.1 shows the loss of privacy, measured as the gain in the accu-

racy of adversarial classificationAacc for different sanitizations of the “Marital”

Attribute Intact Suppressed
Workclass 74.8618% 74.6672%
Education 41.6899% 41.1658%
Marital Status 69.3623% 58.5777%
Occupation 32.2387% 30.0363%
Country 91.7960% 91.6147%
Salary 82.7916% 82.4311%

Table 5.2: The effect of including age, sex, and race on decision-tree learning
accuracy.
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Figure 5.1: Gain in classification accuracy for the sensitive attribute (marital)
in the “Marital” dataset. With trivial sanitization, accuracy is 46.56% for the
adversary and 58.30% for the researcher.

dataset, and compares it with the gain in workload utility U (w)
san − U (w)

base where

the workload w is building a decision-tree classifier for the “marital status”

attribute. As explained in Section 5.3.3, accuracy of adversarial classification

underestimates the actual amount of sensitive attribute disclosure. Figure 5.1

shows that releasing a sanitized table instead of simply suppressing all Q helps

the adversary associate sensitive attributes with individuals much more than

it helps the researcher to build legitimate classifiers. Figure 5.2 shows the

same result for the “Occupation” dataset, where the workload w is building a

decision-tree classifier for the “occupation” attribute.

Learning a non-sensitive workload attribute. Perhaps it is not surpris-

ing that sanitization makes it difficult to build an accurate classifier for the
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Figure 5.2: Gain in classification accuracy for the sensitive attribute (occu-
pation) in the “Occupation” dataset. With trivial sanitization, accuracy is
13.31% for the adversary and 30.18% for the researcher.

sensitive attribute. We now consider the case when the researcher wishes to

build a classifier for a non-sensitive attribute v.

If both Q and S are correlated with v, then a classifier based on both

Q and S may have higher accuracy than one that considers only Q, only S,

or neither. Our results show that sanitization which removes the correlation

between S and Q also destroys the correlation between S and v.

In these experiments, we compute U (w)
base by running different machine

learning algorithms on both trivially sanitized versions of the database; U (w)
base is

the accuracy of the best classifier. We then compute U (w)
base −U

(w)
san for different

sanitizations and different machine learning algorithms, and compare this to

the increase in adversarial accuracy Aacc.
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Figure 5.3 compares gains in adversary’s and researcher’s respective

accuracies for the “Marital” dataset (workload w is learning the “salary” at-

tribute). The classification accuracies with the sensitive attribute removed

were 80.73% for J48, 77.12% for Random Forests, and 79.45% for Naive Bayes.

Thus, the baseline for utility was set to 80.73%.

Figure 5.4 compares gains in adversary’s and researcher’s respective

accuracies for the “Occupation” dataset (workload w is learning the “mari-

tal status” attribute). Here we see that U (w)
max = 69.52% and U (w)

base = 69.30%

where the baseline comes from J48 learning with the sensitive attribute re-

moved. With such a small gap between U (w)
max and U (w)

base, it is not surprising

that classification accuracies for sanitized datasets are below those of trivial

sanitizations, where the sensitive attribute was simply removed.

Privacy of the sanitized database. Table 5.3 shows the Aacc and Aknow

scores for different sanitizations of the “Occupation” dataset (the accuracies

are low even for the intact database because the quasi-identifiers do not iden-

tify a unique individual). Even for large k, k-anonymity barely changes the

value of Aknow compared to the intact database. In other words, k-anonymity

provides no privacy improvement whatsoever on this dataset. Further-

more, `-diversity is no better than trivial sanitization because it requires

complete suppression of the quasi-identifiers to substantially limit the gain in

adversary’s knowledge.
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Figure 5.3: Gain in the adversary’s ability to learn the sensitive attribute
(marital) and the researcher’s ability to learn the workload attribute (salary)
for the “Marital” dataset. With the trivial sanitization, accuracy is 46.56%
for the adversary, and 80.73% for the researcher.

5.6 Achieving Privacy and Utility

Our experimental results in Section 5.5 indicate that, empirically, it

is difficult to find a database table on which sanitization permits both pri-

vacy and utility. Any incremental utility gained by non-trivial sanitization (as

opposed to simply removing quasi-identifiers or sensitive attributes) is more

than offset by a decrease in privacy, measured as the adversarial sensitive at-

tribute disclosure. It is possible, however, to construct an artificial database,

for which sanitization provides both complete utility and complete privacy,

even for the strongest definition of privacy (semantic privacy).

Consider table T , in which each tuple t has five attributes a1, a2, a3, a4, a5.
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Figure 5.4: Gain in the adversary’s ability to learn the sensitive attribute (oc-
cupation) and the researcher’s ability to learn the workload attribute (marital)
for the “Occupation” dataset. With the trivial sanitization, accuracy is 13.31%
for the adversary, and 69.30% for the researcher.

Their values are defined by three coin flips r1, r2, r3, which are generated in-

dependently at random for each tuple. The attributes are as follows:

a1 = r1 a2 = r2 a3 = (r2, r3) a4 = r1 ⊕ r3 a5 = r1 ⊕ r2

Now consider the case where Q = {a1, a2}, S = a3. This database is a

candidate for sanitization, since Q provides a lot of information about S (half

of the sensitive attribute can be predicted perfectly from the quasi-identifier).

If we sanitize by suppressing a2, then we are left with a database T ′ which is

perfectly private, since a1 reveals nothing about a3. But this database also has

perfect utility, since a researcher can learn a4 exactly from a1 and a3, and he

can learn a5 exactly from a1 and a3, and he can learn a3 exactly from a1, a4,
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Sanitization Aacc Aknow

Intact 0.1034 0.2492
k=10 0.0957 0.2331
k=100 0.0909 0.2236
k=1000 0.0885 0.2131
l=2 0.0966 0.2353
l=5 0.0940 0.2316
l=10 0.0400 0.1217
l=15 0 0
t=.4 0.0924 0.2264
t=.3 0.0861 0.2131
t=.2 0.0396 0.1213
δ=1.2 0.0328 0.0944
δ=1.0 0.0327 0.0937
δ=.8 0.0327 0.0915
Suppressed 0 0

Table 5.3: Aacc and Aknow scores for different sanitizations of the “Occupation”
dataset.

and a5. Furthermore, if Q were completely suppressed, the researcher could

learn nothing about a4 or a5 and he could only learn half the information about

a3 (r2 ⊕ r3). If S were omitted, the researcher could learn nothing about a4

and only half of the information about a5.

This artificial dataset is very unusual, and it is unclear whether any

real datasets exhibit similar properties. For instance, sensitive attributes S

can be split into two parts, one of which is 100% correlated with the quasi-

identifiers Q and the other is completely independent of Q. Sanitization can

thus suppress the dependent part of Q entirely, while leaving the independent

part intact. Furthermore, a4 and a5 are both completely determined by the

joint distribution of S and Q, but independent of either one taken alone. It
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is unclear how often attributes which are pairwise independent but jointly

dependent arise in real data.

5.7 Conclusions

Microdata privacy can be understood as prevention of membership dis-

closure (the adversary should not learn whether a particular individual is in-

cluded in the database) or sensitive attribute disclosure (the sanitized database

should not reveal very much information about any individual’s sensitive at-

tributes). It is known that generalization and suppression cannot prevent

membership disclosure [38, 95]. For sensitive attribute disclosure, perfect pri-

vacy can be achieved—against a very weak adversary who knows just the

quasi-identifiers—by simply removing the sensitive attributes or the quasi-

identifiers from the published data. Of course, these trivial sanitizations also

destroy any utility that depended on the removed attributes.

Algorithms such as k-anonymity and `-diversity leave all sensitive

attributes intact and apply generalization and suppression to the quasi-

identifiers. The goal is to keep the data “truthful” and thus provide good

utility for data-mining applications, while achieving less than perfect privacy.

We argue that utility is best measured by the success of data-mining algo-

rithms such as decision-tree learning which take advantage of relationships

between attributes. Algorithms that need only aggregate statistical informa-

tion can be executed on perturbed or randomized data, with much stronger

privacy guarantees against stronger adversaries than achieved by k-anonymity,
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`-diversity, and so on.

Our experiments, carried out on the same UCI data as was used to

validate existing microdata sanitization algorithms, show that the privacy vs.

utility tradeoff for these algorithms is very poor. Depending on the sanitization

parameter, sanitized datasets either provide no additional utility vs. trivial

sanitization, or the adversary’s ability to compute the sensitive attributes of

any individual increases much more than the accuracy of legitimate machine-

learning workloads.

An important question for future research is whether there exists any

real-world dataset on which quasi-identifier generalization supports meaning-

fully better data-mining accuracy than trivial sanitization without severely

compromising privacy via sensitive attribute disclosure.

Another important question is how to design microdata sanitization

algorithms that provide both privacy and utility. Sensitive attribute disclo-

sure results, in part, from the fact that each individual t can only belong to a

unique quasi-identifier equivalence class 〈t〉 in the sanitized table T ′. This is

a consequence of the requirement that the generalization hierarchy be totally

ordered [26]. This requirement helps the adversary, but does not improve util-

ity. If we consider G(t), the set of records in T ′ whose quasi-identifier values

are generalizations of t[Q], there is no privacy reason why each record of G(t)

must have the same quasi-identifier values. It is possible that a generaliza-

tion strategy that uses, e.g., DAGs instead of totally ordered hierarchies may

provide better privacy than the existing algorithms.
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Chapter 6

Privacy-Preserving Graph Algorithms

6.1 Introduction

In this chapter, we investigate scenarios with two mutually distrustful

parties, each in possession of a graph (representing, e.g., a network topology,

a distribution channel map, or a social network). The parties wish to compute

some algorithm on their combined graph, but do not wish to reveal anything

about their private graphs beyond that which will be necessarily revealed by

the output of the algorithm in question.

For example, consider two Internet providers who are contemplating

a merger and wish to see how efficient the resulting joint network would be

without revealing the details of their existing networks; or two transportation

companies trying to determine who has the greatest capacity to ship goods

between a given pair of cities without revealing what that capacity is or which

distribution channels contribute to it; or two social networking websites wish-

ing to calculate aggregate statistics such as degrees of separation and average

number of acquaintances without compromising privacy of their users, and so

on.

We construct privacy-preserving versions of classic graph algorithms
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for APSD (all pairs shortest distance) and SSSD (single source shortest dis-

tance). Our algorithm for APSD is new, while the SSSD algorithm is a privacy-

preserving transformation of the standard Dijkstra’s algorithm. We also show

that minimum spanning trees can be easily computed in a privacy-preserving

manner. As one of our tools, we develop protocols for privacy-preserving set

union, which are results of independent interest.

We demonstrate that our constructions are significantly more efficient

than those based on generic constructions for secure multi-party computation

such as Yao’s garbled circuits [132]. Some of the efficiency gain is due to our

use of canonical orderings on graph edges. We believe that this technique may

find applicability beyond the problems considered in this chapter.

We prove that our constructions are secure in the semi-honest model.

Assuming that a party correctly follows the protocol, there is no efficient ad-

versary that can extract more information from the transcript of the protocol

execution than is revealed by that party’s private input and the result of the

graph algorithm. Our choice of the semi-honest model follows previous work

on privacy-preserving data mining such as Lindell and Pinkas’ construction for

a privacy-preserving version of the ID3 decision tree learning algorithm [78],

and constructions by Yang et al. for privacy-preserving classification [130].

In general, the semi-honest model seems to be the right fit for our set-

ting, where there is no realistic way to verify that the parties are submitting

their true graphs as private inputs. The best we could hope for in the case of

actively malicious participants is a protocol in which the parties first commit
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to their graphs, and then prove at every step of the protocol that their in-

puts match their commitments. This would greatly complicate the protocols

without providing any protection against parties who maliciously choose their

graphs in such a way that the result of the computation on the joint graph

completely reveals the other party’s input. We leave investigation of privacy-

preserving graph algorithms in the model with malicious participants to future

work.

6.2 Tools

As building blocks for our algorithms, we use protocols for privacy-

preserving computation of a minimum min(x, y) and set union S1 ∪ S2.

In the minimum problem, the parties have as their respective private

inputs integers x1 and x2 which are representable in n bits. They wish to

privately compute m = min(x1, x2). Because this problem is efficiently solved

by a simple circuit containing O(n) gates, it is a good candidate for Yao’s

generic method [132]. An implementation of this functionality with Yao’s gar-

bled circuit requires 2 communication rounds with O(n) total communication

complexity and O(n) computational complexity.

6.2.1 Privacy-preserving set union

In the set union problem, parties P1 and P2 have as their respective

private inputs sets S1 and S2 drawn from some finite universe U . They wish

to compute the set S = S1 ∪ S2 in a privacy-preserving manner, i.e., without
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leaking which elements of S are in the intersection S1 ∩ S2. We will define

|S1| = s1, |S2| = s2, |S| = s, and |U | = u.

In this section, we give two of our own solutions for privacy-preserving

set union: the iterative method, and the tree-pruning method. Both require

communication and computational complexity that is logarithmic in u, pro-

vided s is small (note that even if we are not concerned about privacy, com-

puting the set union requires at least O(s lg u) bandwidth, although it can be

done in 1 round). We also survey several previously proposed techniques that

can be used to compute the set union, but these techniques are all either linear

in u (or worse), or do not fully preserve privacy.

Iterative method. The basic idea of the iterative method is to build up S

one element at a time, from “smallest” to “largest.” Before the protocol begins,

both parties agree upon a canonical total ordering for the entire universe U .

As a result, each element in U is given an integer label with lg u bits. In

addition, we need a label representing∞, for which can simply use the integer

u+ 1. The protocol proceeds as follows:

Step 1. Set S = ∅.

Step 2. P1 selects m1 as the canonically smallest element in S1, or sets m1 =∞

if S1 = ∅. P2 likewise selects m2 as the canonically smallest element in S2, or

sets m1 =∞ if S1 = ∅.

Step 3. Using a protocol for private minimum, P1 and P2 privately compute

m = min(m1,m2).

106



Step 4. If m = ∞, stop and return S. Otherwise, S = S ∪ {m} and the

parties remove m from their input sets (it may be present in one or both).

Then return to step 2.

The protocol preserves privacy because, given the output set S, a sim-

ulator can determine the value of m at each iteration. The protocol used for

computing the minimum is private, so there exists an efficient algorithm that

can simulate its execution to the party P1 given its input and the output m

(likewise for P2). The simulator for the iterative method protocol uses the

simulator for the minimum protocol as a subroutine, following the standard

hybrid argument.

The iterative method protocol requires s + 1 iterations, and in each

iteration the minimum of two (lg u)-bit integers is privately computed. Using

Yao’s method, this requires a circuit with 2 lg u inputs and O(lg u) gates. The

2 lg u oblivious transfers can all take place in parallel, and since Yao’s method

requires a constant number of rounds the whole protocol takes O(s) commu-

nication rounds. The total communication and computational complexity for

the iterative method is O(s lg u).

Tree-pruning method. Before the tree-pruning protocol begins, the par-

ticipants agree on a (lg u)-bit binary label for each element in the universe

(note that a canonical total ordering would automatically provide such a la-

bel). The basic idea of the protocol is that the participants will consider label

prefixes of increasing length, and use a privacy-preserving Bit-Or protocol
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(see Section 6.2.2) to determine if either participant has an element with that

prefix in his set.

Initially, the single-bit prefixes “0” and “1” are set “live.” The protocol

proceeds through lg u rounds, starting with round 1. In the ith round, the

participants consider the set P of i-bit “live” prefixes. For each prefix p ∈

P , each participant sets his respective 1-bit input to 1 if he has an element

in his set with prefix p, and to 0 if he does not have any such elements.

The participants then execute a privacy-preserving Bit-Or protocol on their

respective 1-bit inputs. If the result of the Bit-Or protocol is 1, then p0 and

p1 are set as live (i+ 1)-bit prefixes. Otherwise, p0 and p1 are dead prefixes.

By a simple inductive argument, the number of live prefixes in each

round does not exceed 2 · |S|, because an i-bit prefix pi = b1 . . . bi can be

live if and only if at least one of the participants has an element whose label

starts with b1 . . . bi−1, and the number of such elements cannot exceed the total

number of elements in the union, i.e., |S|.

In the last round (i = lg u), the length of the prefix is the same as the

length of the binary labels, and the entire set P of live prefixes is declared to

be the output S of the privacy-preserving set union protocol.

The tree-pruning protocol preserves privacy because, given the output

set S, a simulator can determine the output of each of the Bit-Or protocols.

As in the case of the iterative method protocol, we can construct a simulator

for the tree-pruning protocol that uses a simulator for the Bit-Or protocol
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as a subroutine, and prove its correctness using a hybrid argument. The

construction is simple and is omitted for brevity.

The tree-pruning protocol requires lg u iterations, and in each iteration

the pairwise Bit-Or of at most 2s bits is computed. These computations

can all take place in parallel, so the protocol requires O(lg u) communica-

tion rounds. Each iteration requires O(s) communication and computational

complexity, so the entire protocol has complexity O(s lg u). Both the itera-

tive method and tree pruning protocols have the same complexity, but dif-

ferent numbers of rounds. The iterative method requires fewer rounds when

s = o(lg u).

Survey of privacy-preserving set union protocols

Generic Yao’s method. It is easy to construct a circuit for computing the

set union. Each party Pp inputs one bit for every element e in the universe

U . The input bit bpi is set to 1 if party Pp has element ei in his set, and 0

otherwise. The circuit consists of |U | AND gates, each of which takes as inputs

b0i and b1i and outputs oi = b0i ∧ b1i. Then oi = 1 iff element ei is in the set

union. Since this circuit has O(u) inputs and O(u) gates, we conclude that the

computational overhead and the communication complexity are both O(u).

Commutative encryption. Clifton et al. [27] present a simple construction

for privacy-preserving set union that uses commutative encryption. Each party

encrypts the elements in its set, exchanges the encrypted sets with the other
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party, and then encrypts the other party’s encrypted elements with its own

key. The double-encrypted sets are then combined. Due to commutativity

of encryption, all elements in the intersection appear as duplicates. They are

removed, and the remaining elements are decrypted. Scrambling the order

of elements may hide which elements are in the intersection, but the size of

the intersection is still revealed, thus this method is not secure in the standard

sense of definition 3. This protocol requires communication and computational

complexity O(|s1|+ |s2|).

Complement of set intersection. When the universe U is small, it is pos-

sible to use complementation and take advantage of the fact that S1 ∪ S2 =

S̄1 ∩ S̄2. Freedman et al. [48] present a privacy-preserving protocol for set

intersection that uses homomorphic encryption which requires O(k) commu-

nication overhead and O(k ln ln k) computation overhead, where k is the size

of the set intersection. For applications considered in this chapter, sets S1 and

S2 are very small, so their complements are of size O(u). As a result, this

method requires O(u ln lnu) computation, which is unacceptable.

Polynomial set representation. Kissner and Song [71] present a method

for representing sets as polynomials, and give several privacy-preserving pro-

tocols for set operations using these representations. They do not provide a

protocol for the standard set union problem. Instead, they give a protocol for

the “threshold set union” problem, in which the inputs are multi-sets and the
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output is the set of elements whose multiplicity of appearance in the union ex-

ceed some threshold; the intersection of the input sets is also revealed. When

applied to regular sets (as opposed to multi-sets) this protocol does not pre-

serve privacy as the intersection is the only information one can hope to keep

private.

6.2.2 Privacy-preserving bit-or

First, observe that the circuit for computing Or of 2 bits consists in a

single gate. Therefore, even the generic construction using Yao’s protocol [132]

is efficient, requiring a single 1-out-of-2 oblivious transfer.

An alternative construction without oblivious transfers is provided by

a semantically secure homomorphic encryption scheme such as ElGamal. Sup-

pose Alice and Bob want to compute Or of their respective bits bA and bB in

a privacy-preserving manner (Alice and Bob are honest, but curious). Alice

picks some cyclic group G of prime order q with generator g where the Deci-

sional Diffie-Hellman problem is presumed hard, e.g., the group of quadratic

residues modulo some large prime p = 2q + 1, and chooses its secret key k

at random from {0, . . . , q − 1}. Alice sends to Bob its public key q, g, gk to-

gether with its ciphertext cA, which is created as follows. If bA = 0, then

cA = (gr, gkr), where r is randomly selected from {0, . . . , q − 1}. If bA = 1,

then cA = (gr, g · gkr).

Upon receipt of cA = (α, β) and Alice’s public key, Bob computes cB

as follows. First, it randomly picks r′ ∈ {0, . . . , q − 1}. If bB = 0, then
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cB = (αr
′
, βr

′
). If bB = 1, then cB = (αr

′
, gr

′ · βr′). Bob returns cB to Alice.

Alice computes bit b by decrypting cB = (γ, δ) with its private key k,

i.e., b = δ
γk

. Clearly, if bA = bB = 0, then b = 1. In this case, Alice declares

that bA ∨ bB = 0. If b 6= 1, then Alice declares that bA ∨ bB = 1.

To verify that this construction preserves privacy, observe that secrecy

of bA follows from the semantic security of ElGamal. Now suppose bA = 1. If

bB = 0, then the decrypted plaintext b = gr
′
. If bB = 1, then b = g2r′ . Since

B does not know r′, it cannot tell the difference. Thus, A does not learn bB if

bA = 1.

6.3 Privacy-Preserving Algorithms on Joint Graphs

We now present our constructions that enable two parties to compute

algorithms on their joint graph in a privacy-preserving manner. Let G1 and G2

be the two parties’ respective weighted graphs. Assume that G1 = (V1, E1, w1)

and G2 = (V2, E2, w2) are complete graphs on the same set of vertices, that

is, V1 = V2 and E1 = E2. Let w1(e) and w2(e) represent the weight of edge e

in G1 and G2, respectively. To allow incomplete graphs, the excluded edges

may be assigned weight∞. We are interested in computing algorithms on the

parties’ joint minimum graph gmin(G1, G2) = (V,E,wmin) where wmin(e) =

min(w1(e), w2(e)), since minimum joint graphs seem natural for application

scenarios such as those considered in section 6.1.
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6.3.1 All pairs shortest distance

The All Pairs Shortest Distance (APSD) problem is the classic graph

theory problem of finding shortest path distances between all pairs of vertices

in a graph (see, e.g., [29]). We will think of APSD(G) as returning a complete

graph G′ = (V,E ′, w′) in which w′(eij) = dG(i, j) and V is the original edge set

of G. Here dG(i, j) represents the shortest path distance from i to j in G. This

problem is particularly well suited to privacy-preserving computation because

the solution “leaks” useful information that can be used by the simulator.

To motivate the problem, consider two shipping companies who are

hoping to improve operations by merging so that they can both take advan-

tage of fast shipping routes offered by the other company. They want to see

how quickly the merged company would be able to ship goods between pairs

of cities, but they don’t want to reveal all of their shipping times (and, in

particular, their inefficiencies) in case the merger doesn’t happen. In other

words, they wish to compute APSD(G) where G = gmin(G1, G2).

The basic idea behind our construction is to build up the solution graph

by adding edges in order from shortest to longest. The following algorithm

takes as input the parties’ complete graphs G1 and G2. The graphs may be

directed or undirected, but they must have strictly positive weight functions.

1. For notational convenience we introduce a variable k, initially set to 1,

that represents the iteration count of the algorithm. Color each edge in

E “blue” by letting B(k) denote the set of blue edges in the edge set E
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at iteration k, and setting B(0) = E. Let R(k) denote the set of “red”

edges, R(k) def= E−B(k). The lengths of red edges have reached their final

values and will not change as the algorithm proceeds, while the lengths

of blue edges may still decrease.

2. A public graph G
(0)
0 = (V,E,w

(0)
0 ) is created. Its edges are all initially

weighted as w
(0)
0 (e) =∞. When the algorithm terminates after n itera-

tions, we will have w
(n)
0 (eij) = dG(i, j) and B(n) = ∅.

3. The parties compute the following public value

m
(k)
0 = min

e∈B(k−1)
w

(k−1)
0 (e) (6.1)

and the respective private values

m
(k)
1 = min

e∈B(k−1)
w1(e), and (6.2)

m
(k)
2 = min

e∈B(k−1)
w2(e) (6.3)

4. Now the parties privately compute the length of the smallest blue edge

among all three graphs, m(k) = min(min(m
(k)
1 ,m

(k)
0 ),min(m

(k)
2 ,m

(k)
0 )),

using a generic protocol for private minimum (section 6.2). This protocol

does not reveal the larger value.

5. The parties form the following public set

S
(k)
0 = {e|w(k−1)

0 (e) = m(k)} (6.4)
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and the respective private sets

S
(k)
1 = {e|w1(e) = m(k)}, and (6.5)

S
(k)
2 = {e|w2(e) = m(k)} (6.6)

By construction, S
(k)
0 , S

(k)
1 , and S

(k)
2 contain only blue edges.

6. First, the parties privately compute the set union S(k) = S
(k)
0 ∪ S(k)

1 ∪

S
(k)
2 . This is done using the privacy-preserving set union algorithm from

section 6.2. Next, the color of each edge e ∈ S(k) is changed from blue

to red by setting B(k) = B(k−1) − S(k). Define a weight function w
′(k)
0 by

w
′(k)
0 (e) =

{
m(k) if e ∈ S(k)

w
(k−1)
0 (e) otherwise

(6.7)

7. Examine triangles with an edge eij ∈ S(k), an edge ejk ∈ R(k), and an

edge eik ∈ B(k). Define the weight function w
(k)
0 by fixing these triangles

if they violate the triangle inequality under w
′(k)
0 . More precisely, if

w
′(k)
0 (eij) + w

′(k)
0 (ejk) < w

′(k)
0 (eik), then define w

(k)
0 (eik) = w

′(k)
0 (eij) +

w
′(k)
0 (ejk). Do the same for triangles with an edge eij ∈ R(k), an edge

ejk ∈ S(k), and an edge eik ∈ B(k).

8. If there are still blue edges, go to step 3. Otherwise stop; the graph G
(k)
0

holds the solution to APSD(G).

The algorithm is proved correct in Section 6.5. The proof of privacy follows.

Privacy. We describe a simulator for P1; the simulator is given P1’s input to

the protocol, x, and the output of the protocol, f(x, y) = G′. The simulators
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are identical for P1 and P2 except for the asymmetry in the simulation of

the set union and minimum subprotocols. We assume that simulators for the

subprotocols exist because they are private protocols. For instance, if Yao’s

protocol is used then we can use the simulator in [80].

We will assume that there are n protocol rounds. The view of P1 is

{RTm(x1, y1), RT u(x2, y2), RTm(x3, y3), . . . , RT u(x2n, y2n)} (6.8)

where RTm denotes the real transcript of the private minimum protocol, and

RT u denotes the real transcript of the private set union protocol.

We will show in later theorems that the output of each of these protocol

executions can be computed by the simulator as a polynomial function of G′,

which we will denote as hmi (G′) and hui (G
′). We will also show that P1’s input

to each of these protocol executions can be computed as a polynomial function

of x and G′ which we will denote as gmi (x,G′) and gui (x,G′). The simulator

can therefore use the subprotocol simulators as subroutines, producing the

simulated transcript

{STm(gm1 (x,G′), hm1 (G′)), . . . , ST u(gu2n(x,G′), hu2n(G′))} (6.9)

where STm and ST u denote the simulated transcripts of the minimum and

union protocols, respectively.

We prove a hybrid argument over the simulated views for the minimum

and set union protocols. First, define the hybrid distribution Hi in which the
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first i minimum/union protocols are simulated and the last 2n − i are real.

Formally, let Hi(x, y) denote the distribution:

{STm(gm1 (x,G′), hm1 (G′)), . . . , ST u(gui (x,G′), hui (G
′)),

RTm(xi+1, yi+1), RT u(xi+2, yi+2), . . . , RT u(x2n, y2n)}

We now prove that H0(x, y)
c≡ H2n(x, y) by showing that for all i,

Hi(x, y)
c≡ Hi+1(x, y). For the sake of contradiction, assume the opposite, and

choose i so that Hi(x, y)
c

6≡ Hi+1(x, y). These two distributions differ in only

one term, so there must be a polynomial-time distinguisher for either

ST u(gui (x,G′), hui (G
′)) and RT u(xi, yi) or

STm(gmi (x,G′), hmi (G′)) and RTm(xi, yi)

However, this contradicts the privacy of the subprotocols, which implies that

no such polynomial-time distinguishers exist.

We now show that for each execution of the set union and minimum sub-

protocols, P1’s subprotocol input and the subprotocol output are computable

as functions of P1’s input and the output of the entire APSD protocol.

Theorem 6.3.1. m(k) is efficiently computable as a function of G′.

Proof. The edge weights found in G′ are m(1) < m(2) < . . . < m(n). Therefore

m(k) is the kth smallest edge weight in G′.

Theorem 6.3.2. S(k) is efficiently computable as a function of G′.
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Proof. S(k) is the set of edges in G′ with weight m(k).

Theorem 6.3.3. m
(k)
1 is efficiently computable as a function of G1 and G′.

Proof. m
(k)
1 is the smallest edge weight in G1 that is > m(k−1), allowing that

m(0) = 0. This is because all edges with weight ≤ m(k−1) are in R(k−1).

Theorem 6.3.4. S
(k)
1 is efficiently computable as a function of G1 and G′.

Proof. S
(k)
1 is the set of edges in G1 with weight m(k).

6.3.2 All pairs shortest path

While there is only a single all pairs shortest distance solution for a

given graph, there may be many all pairs shortest path solutions, because

between a pair of points there may be many paths that achieve the short-

est distance. As a side effect of engaging in the protocol described in sec-

tion 6.3.1, the two participants learn an APSP solution. When defining the

weight function w
(k)
0 by fixing violating triangles in w

′(k)
0 during step 7, a

shortest path solution may be associated with the fixed edge. Specifically, if

w
′(k)
0 (eij)+w

′(k)
0 (ejk) < w

′(k)
0 (eik), then the shortest path from i to k is through

j.

In step 6 of subsequent iterations, when adding an edge eij ∈ S(k) to

the set of blue edges, we can conclude that the shortest path from i to j is the

edge eij itself if eij 6∈ S(k)
0 , or is the shortest path solution as computed above

if eij ∈ S(k)
0 .
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Note that learning this APSP solution does not imply any violation of

privacy, as it is the APSP solution implied by the APSD solution.

6.3.3 Single source shortest distance

The Single Source Shortest Distance (SSSD) problem is to find the

shortest path distances from a source vertex s to all other vertices [29]. An

algorithm to solve APSD also provides the solution to SSSD, but leaks addi-

tional information beyond that of the SSSD solution and cannot be considered

a private algorithm for SSSD. Therefore, this problem warrants its own inves-

tigation.

Similar to the protocol of section 6.3.1, the SSSD protocol on the min-

imum joint graph adds edges in order from smallest to largest. This protocol

is very similar to Dijkstra’s algorithm, but is modified to take two graphs as

input.

1. Set w
(0)
1 = w1 and w

(0)
2 = w2. Color all edges incident on the source s

blue by putting all edges esi into the set B(0). Set the iteration count k

to 1.

2. Both parties privately compute the minimum length of blue edges in

their graphs.

m
(k)
1 = min

esi∈B(k−1)
w

(k−1)
1 (esi),

m
(k)
2 = min

esi∈B(k−1)
w

(k−1)
2 (esi)
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3. Using the privacy-preserving minimum protocol, compute

m(k) = min(m
(k)
1 ,m

(k)
2 ).

4. Each party finds the set of blue edges in its graph with length m(k).

S
(k)
1 = {esi|w(k−1)

1 (esi) = m(k)}, and

S
(k)
2 = {esi|w(k−1)

2 (esi) = m(k)}

5. Using the privacy-preserving set union protocol, compute

S(k) = S
(k)
1 ∪ S

(k)
2 .

6. Color the edges in S(k) red by setting Bk = B(k−1)−S(k). Define a weight

function w
′(k)
1 by

w
′(k)
1 (e) =

{
m(k) if e ∈ S(k)

w
(k−1)
1 (e) otherwise

(6.10)

and a weight function w
′(k)
2 by

w
′(k)
2 (e) =

{
m(k) if e ∈ S(k)

w
(k−1)
2 (e) otherwise

(6.11)

7. Similar to the APSD algorithm, form the weight function w
(k)
1 by fixing

the triangles in w
′(k)
1 that violate the triangle inequality and contain

edges in S(k). w2(k) is likewise formed from w
′(k)
2 .

If there are still blue edges remaining, go to step 2. Otherwise stop; both

parties now have a graph with each edge incident on s colored red, and

with the weight of these edges equal to the shortest path distance from

s to each vertex.
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6.3.4 Minimum spanning tree

Suppose that two frugal telephone companies wish to merge. Each com-

pany has a cost function for connecting any pair of houses, and they want to

connect every house as cheaply as possible using the resources available to the

merged company. In other words, they wish to compute MST(gmin(G1, G2)).

If they can perform this computation privately, then both companies can see

the final result without revealing their entire cost functions.

Both Kruskal’s and Prim’s algorithms for MST are easily turned into

private protocols using our techniques, because the algorithms already consider

edges in order from smallest to largest. At each iteration, Kruskal’s algorithm

adds the shortest edge such that its addition does not form a loop. It is a

simple task for each party to compute the set of edges which would not form

loops, and then to privately compute the length of the shortest edge in this

set. One problem arises when there are multiple edges that share this length.

In the shortest path algorithms, we addressed this issue by adding all edges of

appropriate length at the same time using the private set union protocol, but

this will not work for MST. Instead, we can assign a canonical ordering to

the edges, and at each step find the shortest length edges that are canonically

“first.” This will allow a simulator to determine, given the final MST, in what

order the edges arrived.

121



6.4 Complexity Analysis

For each algorithm considered in this chapter, we calculate the number

of rounds, the total communication complexity, and the computational com-

plexity, and compare them with the generic method. Using Yao’s method on a

circuit with m gates and n inputs requires O(1) rounds, O(m) communication,

and O(m + n) computational overhead. Lindell and Pinkas note in [78] that

the computational overhead of the n oblivious transfers in each invocation

of Yao’s protocol typically dominates the computational overhead for the m

gates, but for correct asymptotic analysis we must still consider the gates.

Complexity of privacy-preserving APSD. For our analysis we will as-

sume that the edge set E has size n, and that the maximum edge length is

l. The generic approach to this problem would be to apply Yao’s Method

to a circuit that takes as input the length of every edge in G1 and G2, and

returns as output G = APSD(gmin(G1, G2)). Clearly, such a circuit will have

2n log l input bits. To count the number of gates, note that a circuit to im-

plement Floyd-Warshall requires O(n3/2) minimums and O(n3/2) additions.

For integers represented with log l bits, both of these functionalities require

log l gates, so we conclude that Floyd-Warshall requires O(n3/2 log l) gates.

To compute gmin requires O(n log l) gates, but this term is dominated by the

gate requirement for Floyd-Warshall. We conclude that the generic approach

requires O(1) rounds, O(n3/2 log l) communication, and O(n3/2 log l) compu-

tational overhead.
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The complexity of our approach depends on the number of protocol

iterations k, which is equal to the number of different edge lengths that appear

in the solution graph. In iteration i, we take the minimum of two (lg l)-bit

integers, and compute a set union of size si. Because each edge in the graph

appears in exactly one of the set unions, we also know that
∑k

i=1 si = n.

First we will determine the contribution to the total complexity made

by the integer minimum calculations. If we use Yao’s protocol, then each inte-

ger minimum requires a constant number of communication rounds, O(lg l) in-

puts, and O(lg l) gates, so the k calculations together contribute O(k) rounds,

O(k lg l) communication complexity, and O(k lg l) computational complexity.

Complexity contribution of the set union subprotocols depends on

whether we use the iterative method or the tree pruning method as described

in section 6.2. If the iterative method is used, then the k invocations of set

union require a total of O(n) rounds, O(k lg n) communication complexity,

and O(k lg n) computational complexity. If the tree-pruning method is used,

then O(k lg n) rounds are required, but the communication and computational

complexity remains the same. The asymptotically better performance of the

iterative method hides the fact that each of the k rounds requires O(lg n)

oblivious transfers, which are considerably more expensive than the O(|si|)

private Bit-Or computations performed in each of the lg u rounds of the

tree-pruning method.

Using the iterative method for set union, and noting that k = O(n),

we conclude that our APSD protocol requires O(n) communication rounds,
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O(n log n + n log l) communication complexity, and O(n log n + n log l) com-

putational complexity. As compared to the generic approach, we have traded

more rounds for better overall complexity.

Complexity of privacy-preserving SSSD. Complexity of SSSD is similar

to that of APSD, except that the number of rounds is k = O(v) and the

total number of set union operations is v, where v is the number of vertices

(O(e1/2)). We conclude that our protocol requires O(v) rounds, O(v(log v +

log l)) oblivious transfers, and O(v(log v+ log e)) gates. A generic solution, on

the other hand, would require O(v2 log l) oblivious transfers.

6.5 Proof of Private APSD Protocol Correctness

Before proving the algorithm correct, we prove some supporting lem-

mas.

Lemma 6.5.1. If an edge e ∈ Rk and w
(k)
0 (e) = l then ∀j > k, w

(j)
0 (e) = l.

Proof. Intuitively, this says that once the protocol establishes the length of a

red edge, it never changes. This follows from the protocol lacking operations

that alter the length of red edges.

Lemma 6.5.2. For an edge e ∈ R(k), w
(k)
0 (e) ≤ m(k)

Proof. In step 6 of iteration k, for edges e ∈ S(k) we set w
(k)
0 (e) = m(k) and

e ∈ R(k). Apply lemma 6.5.1 to complete the proof.
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Lemma 6.5.3. For an edge e ∈ B(k), w
(k)
0 (e) > m(k)

Proof. First, we show that for an edge e ∈ B(k), w
′(k)
0 (e) > m(k). If w

′(k)
0 (e) =

m(k) then e ∈ S(k) (and e 6∈ B(k)). If w
′(k)
0 (e) < m(k) and e ∈ B(k), then

w
(k−1)
0 (e) < m(k) and we would have defined a smaller m(k).

Now, for those edges e where we have w
(k)
0 (e) < w

′(k)
0 (e) because of

step 7, we still have w
(k)
0 (e) > m(k) because the right-hand side of the assign-

ment is strictly greater than m(k).

Lemma 6.5.4. For all edges e, e ∈ R(k) ↔ w
(k)
0 (e) ≤ m(k) and e ∈ B(k) ↔

w
(k)
0 (e) > m(k)

Proof. This is an immediate consequence of lemmas 6.5.2 and 6.5.3.

Lemma 6.5.5. For every red edge eij ∈ R(k), w
(k)
0 (eij) = dG(i, j).

Proof. The proof is by induction on k. For k = 0, the result is trivial. We will

now assume that the result holds for values less than k and prove it for k.

Because of lemma 6.5.1, it is sufficient to prove that for edges eij ∈ S(k),

dG(i, j) = m(k). We consider two cases.

1. The shortest path from i to j in G is the edge eij.

In this case, dG(i, j) = min(w1(eij), w2(eij)). To complete the proof,

it’s enough to show that w
(k−1)
0 (eij) ≥ dG(i, j). Suppose that in some

iteration h < k we set w
(h)
0 (eij) = w

′(h)
0 (eik) + w

′(h)
0 (ekj) in step 7. Then
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by inductive hypothesis, this implies a shorter path from i to j than the

edge eij which is a contradiction.

2. The shortest path from i to j in G is through k.

In this case, dG(i, j) = dG(i, k) + dG(k, j). WLOG, assume that

w
(k)
0 (eik) ≥ w

(k)
0 (ekj). Then by lemmas 6.5.1 and 6.5.4, we have that

for some h < k, w
(k)
0 (eik) = m(h). This means that in step 7 of it-

eration h the protocol set w
(h)
0 (eij) = w

(h)
0 (eik) + w

(h)
0 (ekj). By the

inductive hypothesis, w
(h)
0 (eik) = dG(i, k) and w

(h)
0 (ekj) = dG(k, j).

We conclude that w
(h)
0 (eij) = dG(i, k) + dG(k, j) and therefore that

w
(k)
0 (eij) ≤ dG(i, k) + dG(k, j). By the same argument as in the

first case, we also have w
(k)
0 (eij) ≥ dG(i, k) + dG(k, j). Therefore,

m(k) = dG(i, k) + dG(k, j) = dG(i, j).

It is now a simple task to prove algorithm correctness.

Correctness. Suppose the algorithm terminates after n iterations. ThenR(n) =

E. Apply lemma 6.5.5.

6.6 Conclusions

In this chapter, we presented privacy-preserving protocols that enable

two honest but curious parties to compute APSD and SSSD on their joint

graph. A related problem is how to construct privacy-preserving protocols for
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graph comparison. Many of these problems (e.g., comparison of the graphs’

respective maximum flow values) reduce to the problem of privacy-preserving

comparison of two values, and thus have reasonably efficient generic solu-

tions. For other problems, such as graph isomorphism, there are no known

polynomial-time algorithms even if privacy is not a concern. Investigation

of other interesting graph algorithms that can be computed in a privacy-

preserving manner is a topic of future research.
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Chapter 7

Privacy-Preserving Remote Diagnostics

7.1 Introduction

Diagnostic programs, typically represented as decision trees or binary

branching programs, are the cornerstone of expert systems and data analysis

tools. Learning and evaluating diagnostic programs which classify data on the

basis of certain features are among the most fundamental data mining tasks.

Evaluation of a diagnostic program on a remote user’s data often

presents privacy risks to both the user and the program’s owner. The

program’s owner may not want the user to learn the entire contents of the

diagnostic program, while the user may not want to reveal his local data to

the program’s owner. For example, consider a medical expert system, where

the diagnostic program is the realization of a substantial investment, and the

data on which the program is evaluated contain information about the user’s

health.

Another example is remote software fault diagnosis, which is an in-

creasingly popular support method for complex applications. The details of

remote software diagnostic systems differ (see Section 7.3), but there are many

commonalities. An application does something undesirable (crashes, becomes
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slow or unresponsive, quits with an obscure error message), and the runtime

system gathers some data about the problem. The software manufacturer uses

this information to diagnose the problem, usually by reading a small subset of

the data. Users are typically required to ship all fault-related data to the man-

ufacturer. For example, most users of Microsoft Windows have encountered

the (in)famous “send error report” button.

The data gathered by the runtime system may contain sensitive infor-

mation, such as passwords and snippets of the user’s documents. Many users

are not willing to reveal this information to the software manufacturer. On

the other hand, software manufacturers often view their proprietary diagnostic

programs as valuable intellectual property. Diagnostic programs may reveal

the application’s support history, unpatched security vulnerabilities, and other

information about the implementation and internal structure of the applica-

tion that the manufacturer may prefer to keep secret.

This chapter describes a method for privacy-preserving evaluation of di-

agnostic branching programs. This problem is different from privacy-preserving

learning of decision trees, which is considered in Chapter 8 of this thesis. We

assume that the diagnostic program already exists, in the form of a binary

decision tree or branching program, and investigate how to apply it to the

user’s data in such a way that the program is not revealed to the user, and

the user’s data are not revealed to the program’s owner.

Our contributions. We present a practical, provably secure interactive pro-
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tocol for privacy-preserving evaluation of branching programs. The protocol

takes place between a Server, in possession of a binary branching program T ,

and a User, in possession of an attribute vector v. The User learns c = T (v),

the diagnostic label that T assigns to v. The Server may or may not learn the

label—we consider both variants.

Our protocol does not reveal any useful information except the outcome

of the computation, which is the diagnostic label in this case. In particular, the

User does not learn how the branching program arrived at the diagnosis, nor

which of the User’s attributes it considered, nor the topology of the branching

program, nor any other diagnostic labels that it may contain. The Server, on

the other hand, learns nothing whatsoever about the User’s local data.

We emphasize the strong privacy properties achieved by our protocol.

For example, secrecy of the program being evaluated is not the standard re-

quirement of secure multi-party computation, which usually assumes that the

program is public, and only the parties’ respective inputs are secret. In many

of our applications, the user should not learn which of his attributes are consid-

ered by the branching program. If the attribute vector is very large (as is the

case, for example, in software fault diagnostics, where the attribute vector is a

record of the user’s runtime environment), achieving these security properties

efficiently is a difficult challenge.

Our branching program evaluation protocol combines in a novel way

several cryptographic techniques such as homomorphic encryption, blinding,

and Yao’s “garbled circuits” method. Yao’s method is used in a somewhat
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unusual way, not simply as a black-box realization of secure circuit evaluation.

We exploit the details of circuit representation in Yao’s protocol to implement

a conditional oblivious transfer primitive needed by our protocol.

We present a substantial case study, in which we use our method to

implement a privacy-preserving version of Clarify [60], a system for remote

diagnosis of software faults. We apply our protocol to the decision trees gen-

erated by Clarify for several large, real-world applications such as gcc and

latex, and demonstrate that its performance is efficient for many practical

scenarios.

While there have been many theoretical results in the field of secure

multi-party computation, actual implementations and working systems are

extremely rare. Experimental evaluation of our prototype implementation

demonstrates that our protocol performs significantly better than the generic

methods.

7.2 Secure Evaluation of Branching Programs

We now describe our protocol for the secure evaluation of binary

branching programs. The protocol is executed between a Server, in possession

of a branching program (formally defined in Section 7.2.1), and a User, in

possession of an attribute vector. Let k be the number of nodes in the

branching program, and n be the number of attributes.

In most practical scenarios, n is significantly larger than k; our protocol

131



is optimized for this case. In particular, the size of the securely transformed

branching program is independent of n.

7.2.1 Branching programs

In this section, we formally define branching programs, which include

binary classification or decision trees as a special case. Let V = v1, . . . , vn

be the vector of User’s attributes. Each attribute value is an `-bit integer.

(In our experiments, ` = 32, which appears to be sufficient for most practical

scenarios.)

A binary branching program T is a triple 〈{P1, . . . , Pk}, L,R〉. The first

element is a set of nodes. For i ≤ l, Pi are decision nodes. For i > l, Pi are

classification nodes.

Decision nodes are the internal nodes of the program. Each decision

node is a pair 〈ti, αi〉, where αi is the index of an attribute, and ti is the

threshold value with which vαi is compared in this node. The same value of α

may occur in many nodes, i.e., the same attribute may be evaluated more than

once. For each decision node i, L(i) is the index of the next node if vαi ≤ ti;

R(i) is the index of the next node if vαi > ti. Functions L and R are such that

the resulting directed graph is acyclic.

Classification or diagnosis nodes are the leaf nodes of the program.

Each leaf node consists of a single classification label 〈di〉.

To evaluate the branching program on some attribute vector V , start

at P1. If vα1 ≤ t1, set h = L(1), else h = R(1). Repeat the process recursively
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for Ph, and so on, until reaching one of the leaf nodes and obtaining the

classification.

7.2.2 Security requirements

The objective of our protocol is to securely evaluate T on V . The

protocol should reveal nothing to the Server. The User should learn T (V),

which is a classification label contained in one of the leaves of the branching

program T . The User is also permitted to learn the total number of nodes

of T (see the discussion in Section 7.2.6) and the length of the path from the

root node of T to the leaf containing the result of evaluation, i.e., the label

assigned by T to V .

The User should not learn anything else about T . In particular, the

User should not learn which attributes from V have been considered by T ,

with what threshold values they have been compared, the outcome of any

comparison, and so on.

The requirement that attribute selection be oblivious precludes a näıve

application of secure multi-party computation (SMC) techniques. In standard

SMC, each participant knows which of his inputs have been used in the com-

putation. While it is possible to create a circuit that takes all of the User’s

attributes as inputs and ignores those not used by T , this circuit would be im-

practically large (V may contains tens of thousands of attributes). A detailed

discussion can be found in Section 7.2.5.
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7.2.3 Privacy-preserving offset integer comparison

Our protocol for the evaluation of branching programs requires a secure

sub-protocol for the comparison of integer values. The Privacy-Preserving

Offset Integer Comparison protocol takes place between two parties, Alice and

Bob. Bob has an `-bit integer x, while Alice has `-bit integers b and t, and

output keys h0 and h1. At the end of the protocol execution, Bob learns h0 if

x−b mod 2` < t and h1 otherwise, while Alice learns nothing. We denote this

functionality as Compare(x, b, t, h0, h1). Note that in the special case where

b = 0, and h0 and h1 are the single bits 0 and 1, this is the same as Yao’s

millionaires’ problem.

This problem is also known as conditional oblivious transfer with a

“greater than” predicate [13]. We assume that participants are computation-

ally bounded, since the encryption scheme used in our protocol is only com-

putationally secure. In this case, Yao’s method is the most efficient currently

known approach [13].

Yao’s garbled circuits provide a relatively efficient protocol for integer

comparison because the circuit needed to compare two `-bit integers is rela-

tively small. As described in Section 2.5.1, in our protocol the circuit creator

does not provide the mappings from output-wire keys to actual output-wire

bits, so that Bob learns one of the two keys, but not the actual result of the

comparison.
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7.2.4 Secure branching program protocol

The protocol runs in three phases.

Phase I (offline): Creation of the secure branching program. This

is an offline pre-computation executed by the Server. Using Algorithm 3, the

Server converts the original branching program T into its secure equivalent T ′.

Algorithm 3 does not require any interaction with the User or knowledge of the

User’s identity. For example, the Server may maintain a large store of secure

branching programs (all representing differently randomized transformations

of the same T ), which is replenished during idle periods when the Server’s

machines have many spare cycles.

Algorithm 3 converts the nodes in the branching program T into secure

nodes in the branching program T ′. Each classification node is replaced by an

encryption of its classification label so that its contents will remain unknown to

the User unless the appropriate decryption key is obtained. Each decision node

is replaced by a small garbled circuit implementing offset integer comparison

(see Section 7.2.3). This circuit enables the User to learn one of two keys,

depending on the comparison between the User’s attribute value (offset by

a blinding value) and the decision node’s threshold value. The revealed key

decrypts the next node on the evaluation path.

Because the User should not know which attribute is being compared

to a threshold, the User’s input to the garbled circuit is blinded by the Server

(in phase II, described below) by adding a random (` + `′)-bit value that the
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User does not know. Here `′ is the statistical security parameter, set to 80 bits

in our implementation. The blinding values b1, . . . , bk are generated randomly

by the Server in Phase I. They will be subtracted from the User’s input to the

circuit before it is compared to the threshold.

Phase II: Oblivious attribute selection. In this phase, the User obtains

the blinded attribute values which will be used as inputs to the Compare

circuits in the secure decision nodes created in Phase I. First, the User creates

an instance of the additively homomorphic public-key encryption scheme, and

encrypts each attribute in his attribute vector with the public key y (this can

take place offline). The User sends the entire encrypted attribute vector to

the Server along with the public key y.

For node i, the blinding value chosen in Phase I is bi, and the attribute

to be compared is αi. Thus, the User needs to learn vαi+bi. The Server cannot

compute this value directly without learning vαi (which violates the User’s

privacy), but he can compute {vαi + bi}y since he was provided with {vαi}y,

he can independently compute {bi}y, and the encryption is homomorphic. He

computes this encrypted value and sends it to the User.

The random blinding value bi added by the Server to the encrypted `-bit

attribute vαi is `′ bits longer than vαi . Therefore, it statistically hides vαi (and

thus does not reveal which attribute the Server chose) when `′ is sufficiently

large (80 bits in our implementation). Note that 2`+`
′

is much smaller than

the order of the group in which plaintext addition is done under encryption.

136



Input: Branching program T = 〈{P1, . . . , Pk}, L,R〉 (see Section 7.2.1). For
i ≤ l, Pi is a decision node 〈ti, αi〉. For i > l, Pi is a classification node
containing label 〈di〉.
Outputs:
(i) Secure branching program T ′

(ii) k random `+ `′-bit blinding values b1, . . . , bk
(iii) 2 · k · ` random wire keys w0

ij, w
1
ij for 1 ≤ i ≤ k, 1 ≤ j ≤ `

CreateSecureProgram

1: let Q be a random permutation of the set 1, ..., k with Q[1] = 1
2: Generate random keys κ1, ..., κk to be used for encrypting the decision

nodes.
3: for i = 1 to k do
4: Generate 2 · ` random wire keys w0

ij, w
1
ij for 1 ≤ j ≤ ` (to be used for

encoding the User’s input into the garbled threshold comparison circuit).
5: Generate a random ` + `′-bit blinding value bi; store bi and b′i = bi

mod 2`.
6: let ĩ = Q[i]
7: if Pi is a classification node 〈di〉 then
8: let Sĩ = {“label”, di}κĩ , where {y}κ is the encryption of y under key

κ using a semantically secure symmetric-key encryption scheme. (We
assume that all plaintexts are padded so that the ciphertexts of deci-
sion nodes and classification nodes have the same size.)

9: else if Pi is a decision node 〈ti, αi〉 then
10: Use the subroutine Yao for generating garbled circuits (see Sec-

tion 2.5.1) to generate a secure circuit Ci for the offset integer com-
parison functionality (see Section 7.2.3) Compare(x, b′

ĩ
, ti,L,R) =

if x− b′
ĩ

mod 2` < ti then return L else return R
where L = (Q[L(i)], κQ[L(i)]),

R = (Q[R(i)], κQ[R(i)]))

Use w0
ĩj
, w1

ĩj
(1 ≤ j ≤ `) to encode, respectively, 0 and 1 on the ` wires

corresponding to input x.
11: let Sĩ = {Ci}κĩ
12: end if
13: end for
14: return T ′ = 〈{S1, ..., Sk}, κ1〉
Algorithm 3: Convert a branching program into a secure branching program
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The User uses his private key to decrypt vαi + bi. By taking vαi + bi

mod 2`, the User obtains si, his `-bit input into the garbled offset integer

comparison circuit.

Next, the User acts as the chooser in ` instances of 1-out-of-2 oblivious

transfer with the Server to learn the garbled wire keys corresponding to his

input value si. Note that this does not reveal si to the Server. Now the User

has all the wire key values he needs to evaluate T ′ in phase III.

Phase III: Evaluation of the secure branching program. In the last

phase, the User receives the secure branching program T ′ from the Server along

with κ1, and evaluates it locally by applying Algorithm 5 on inputs (T ′, 1, κ1).

Evaluation does not reveal anything to the User except the label at

the end of the evaluation path. At each step, the User applies one of the

comparison circuits Ch to the value sh (encoded as a set of wire keys—see

Section 2.5.1), but he does not know which of his attributes is hidden in sh.

The User thus learns the index of the next node and the decryption key, but

not the result of the comparison.

The only information leaked by the evaluation procedure is (i) the total

number of nodes in the program T ′, (ii) the number of nodes that have been

evaluated before reaching a classification node (note that in a full decision tree

this number does not depend on the path taken), and (iii) the classification

label d.

If the usage scenario requires the Server to learn the classification label,
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User’s input: Attribute vector v1, . . . , vn with `-bit attribute values
Server’s input: For each node ti of T ′, αi is the index of the User’s attribute
which is being compared in this node (if ti is not a decision node, αi is chosen
randomly); bi is the random (`+`′)-bit value generated as part of CreateSe-
cureProgram.
Outputs for the User:
(i) s1, . . . , sk where ∀i si = vαi + bi mod 2`

(ii) For each i, wire keys wi1, . . . , wi` encoding si = vαi + b′i mod 2` on the
input wires of circuit Ci (see Algorithm 3).
Output for the Server: ⊥
ObliviousAttributeSelection

1: The User generates a public/private key pair (y,x) of a homomorphic en-
cryption scheme, and sends the public key y to the Server.

2: for i = 1 to n do
3: The User sends {vi}y to the Server.
4: end for
5: for i = 1 to k do
6: Server computes {vαi + bi}y from {vαi}y and bi using the homomorphic

property of the encryption scheme, and sends this value to the User.
7: The User decrypts to find vαi + bi and then computes si = vαi + bi

mod 2` = vαi + b′i mod 2`

8: for j = 1 to ` do
9: The Server and the User execute OT 1

2 oblivious transfer protocol.
The User acts as the chooser; his input is si[j], i.e., the jth bit of si.
The Server acts as the sender; his inputs are wire keys w0

ij and w1
ij,

encoding, respectively, 0 and 1 on the jth input wire of threshold
comparison circuit Ci (see Algorithm 3).

10: end for
11: As the result of ` oblivious transfers, the User learns wire keys

wi1, . . . , wi` encoding his input si into the circuit Ci. Note that the
User cannot yet evaluate Ci because he does not know the key κi under
which Ci is encrypted.

12: end for

Algorithm 4: Oblivious attribute selection
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too, the User simply sends d to the Server. If the Server should learn the

classification label and the User should learn nothing, then the Server can

replace the labels with ciphertexts encrypting the labels under the Server’s

public key; when the User obtains a ciphertext at the end of evaluation, he

sends it to the Server.

Inputs: Secure program T ′, node index h with corresponding node encryption
key κh, and, for each i such that 1 ≤ i ≤ k, wire keys wi1, . . . , wi`.
Output: Classification label c such that c = T (V)

EvaluateSecureProgram(T ′, h, κh)

1: Use key κh to decrypt node Sh of T ′ and obtain Ch.
2: if Ch = 〈“label”, d〉 then
3: Ch is a classification node.

return label d.
4: else if Ch is a garbled circuit then
5: Evaluate Ch on inputs wh1, . . . , wh`.
6: As the result of evaluation, obtain the pair (h′, κh′) encoding the output

wire value.
7: return EvaluateSecureProgram(h′, κh′).
8: else
9: error “Secure program is not properly formed!”

10: end if

Algorithm 5: Evaluation of secure branching program

We emphasize that the User cannot simply re-run the program evalua-

tion algorithm of Phase III on the same secure program T ′ and a different at-

tribute vector, thus learning more about the original branching program. After

learning the wire keys corresponding to his (blinded) attributes during Phase

II, the User can evaluate only a single path in the branching program—that

corresponding to the attribute vector he used as his input into the protocol.
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There is no way for the User to learn the random wire keys encoding other

possible inputs to the program.

In order to evaluate T on a different attribute vector, the User must

re-run the entire protocol starting from Phase I. He will then obtain a different

secure program T ′′ and a different set of wire keys. Our protocol maintains

the invariant that, for every secure branching program, there is only one path

that can be evaluated by the User, and this path appears random to the User.

7.2.5 Efficiency and comparison with generic techniques

In the secure branching program created by Algorithm 3, each of the

decision nodes of the original program is replaced by a garbled Yao circuit for

comparing two (offset) `-bit integers. Each such circuit requires log ` gates, for

a total of k · log ` gates (this is a conservative estimate, since some of the nodes

are classification nodes). Note that the size of the circuit is independent of the

number of the User’s attributes n. Algorithm 4 requires k · ` OT 1
2 oblivious

transfers to transfer the wire keys corresponding to the User’s (blinded) inputs

into each of the k nodes.

An alternative to using our protocol from Section 7.2.4 is to use generic

techniques that enable secure computation of any two-party functionality, rep-

resented either as a boolean circuit [80,132] or a binary decision diagram [53]

(the latter may be a better choice for branching diagnostic programs).

A näıve way to implement the secure evaluation of binary branching

programs using generic techniques would be to have the Server take his specific
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branching program, transform it into an equivalent secure program using, say,

the standard garbled circuit techniques (see Section 2.5.1), and have the User

evaluate the garbled circuit on his attribute vector.

This does not satisfy our security requirements. First of all, the topol-

ogy of the program is revealed to the User. In generic secure multi-party

computation (SMC), it is usually assumed that the function to be computed

is known to both parties. Yao’s garbled circuit technique works even if the

circuit evaluator does not know the truth tables associated with the individual

gates, but it reveals the topology of the circuit being evaluated. By contrast,

our protocol only reveals the length of the evaluation path and the total num-

ber of nodes; it leaks no other information about the rest of the branching

program. Even worse, with the näıve approach the User learns on which of his

attributes the program was evaluated, thus violating one of our core security

requirements (see Section 7.2.2).

To ensure obliviousness of the User’s input selection, the SMC func-

tionality must be defined so that it takes any branching program of a given

size (as opposed to the specific Server’s program) and securely applies it to

any attribute vector of a given length.

We have attempted to implement such a functionality using the Fairplay

compiler [82], which converts any two-party functionality into an equivalent

garbled circuit. Unfortunately, the Fairplay compiler is memory-bound, and

in our experiments it was unable to compile functionalities that would allow

us to apply branching programs of realistic size to realistic attribute vectors.
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Server User
Nodes Attrib. Computation Communication Computation Communication

15 100 67 vs. 2 sec 1,292 vs. 263 KB 76 vs. 3 sec 528 vs. 98 KB
63 100 72 vs. 7 sec 1,799 vs. 1121 KB 79 vs. 14 sec 528 vs. 351 KB
15 1000 605 vs. 2 sec 11,388 vs. 263 KB 706 vs. 4 sec 5,277 vs. 255 KB
63 1000 X vs. 7 sec X vs. 1121 KB X vs. 12 sec X vs. 508 KB

Cursive - Fairplay, Bold - our protocol, X - failed to compile

Table 7.1: Comparison of protocols for the evaluation of branching programs

On a machine with 4 Gigabytes of RAM, the compiler runs out of memory

when attempting to compile the functionality that applies a 63-node branching

program to a 400-attribute vector.

Table 7.1 gives comparative measurements of online computation and

communication for a few sample configurations. Our experimental setup, along

with the detailed performance analysis of our protocol, can be found in Sec-

tion 7.4.

Some of the negative aspects of Fairplay, such as running out of memory

even on relatively small configurations, may be due to the particular compiler

implementation rather than the inherent flaws of the generic approach. Nev-

ertheless, our protocol described in Section 7.2.4 provides a superior solution

for the specific task of secure branching program evaluation.

7.2.6 Achieving complete privacy

The protocol of Section 7.2.4 reveals the total number of nodes in the

branching program and the length of the evaluation path corresponding to the

User’s attribute vector. This information appears harmless in practice, but, if

necessary, it can be hidden, provided that there exist upper bounds B on the
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number of nodes and P on the length of the longest evaluation path.

To hide the size of the branching program, the Server can create B− k

random ciphertexts (which will never be decrypted by the User), and mix them

randomly with the real encrypted nodes of the secure program T ′. Semantic

security of the encryption scheme used to encrypt individual nodes guarantees

that the User cannot tell the difference between an encryption of a real node

that he did not reach in his evaluation, and a random ciphertext of the same

size. When padded in this way, secure versions of all branching programs will

contain exactly B ciphertexts.

To hide the length of evaluation paths, first transform the branching

program into a decision tree, so that each node has a fixed depth. Then

transform it into a full tree of depth P by replacing classification nodes at

depth p < P with full trees of depth (P − p+ 1), in which every leaf contains

the original classification. In the resulting tree, every evaluation path has

length P .

7.3 Remote Software Diagnostics

In this section, we give a brief introduction to the problem of remote

software fault diagnostics, and then use our protocol of Section 7.2 to imple-

ment a privacy-preserving version of Clarify, a practical system for software

fault diagnosis [60].

Microsoft error reporting is an example of a remote software diagnosis
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tool [88]. A Microsoft error report has two purposes. The first purpose is

to gather extensive information about a software failure to enable Microsoft

engineers to fix the software problem. This chapter focuses on the problem of

privately evaluating decision trees, while Chapter 8 focuses on the problem of

privately learning decision trees.

The second purpose is to improve the user’s experience by providing a

message describing the user’s problem and how the user can avoid the prob-

lem in the future. Our case study addresses the second purpose, where a

server provides feedback to the user about the user’s problem. Windows Vista

includes a prominent item on the control panel called “Problem reports and

solutions” [87] that allows users to get the latest information about a particular

software problem from Microsoft’s web site. The Ubuntu Linux distribution

also contains new features to generate more information about software failures

to help users [122].

Microsoft’s privacy statement about the information it collects for soft-

ware problem diagnosis [86] acknowledges that problem reports can compro-

mise users’ privacy. Problem reports contain the contents of memory for the

program that failed, and this memory “might include your name, part of a

document you were working on or data that you recently submitted to a web-

site.” The policy says that users concerned about the release of personal or

confidential information should not send problem reports. Of course, users

who do not send problem reports cannot benefit from remote fault diagnos-

tics. Corporate users in particular have expressed concern that remote diag-
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nostics could reveal their intellectual property [92]. Ubuntu’s documentation

also acknowledges security and privacy risks associated with data-rich fault

reports.

The protocol presented in this chapter enables the user to obtain a

support message in a privacy-preserving fashion. The user does not reveal

anything to the software manufacturer about his or her local data, and the

software manufacturer does not reveal to the user how the user’s local data

was mapped to a diagnostic message.

Privacy of diagnostic programs. It may appear that the software man-

ufacturer should simply send the diagnostic program to the user or, better

yet, integrate it directly into the supported application. Many software man-

ufacturers, however, view their diagnostic programs as valuable intellectual

property. They state this explicitly in the legal documents that accompany

the diagnostic software [51] and sue competitors who obtain access to their

diagnostic programs [100]. Updating widely deployed software with new sup-

port messages and diagnostic tools is not always feasible, either, since many

users simply don’t install patches.

Moreover, diagnostic programs can reveal vulnerabilities in deployed

software. For example, a single message from Microsoft’s Dr. Watson diagnos-

tic tool was sufficient to reveal to any user who experienced a particular fault

an exploitable buffer overflow [84] (had the entire Dr. Watson diagnostic tree

been shipped to every Windows user instead of being evaluated on Microsoft’s
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servers, even users who did not experience the fault could discover the vul-

nerability by analyzing the diagnostic tree). In the diagnostic trees produced

by the Clarify toolkit for gzprintf, which is one of our benchmarks, the in-

ner nodes of the diagnostic tree directly point to the function that contains a

security vulnerability. With a lively, semi-legal market in information about

software vulnerabilities [109], software manufacturers have a strong disincen-

tive to completely reveal all known faults and bugs in their applications.

We emphasize that we do not promote “security by obscurity.” Software

manufacturers should patch the bugs and vulnerabilities in their programs

as soon as practicable. From a purely pragmatic perspective, however, they

should not be forced to choose between not providing diagnostic support, or

else revealing every internal detail of their applications and diagnostic tools.

In reality, when faced with such a stark choice, many will decide to not provide

support at all, resulting in a poorer experience for the users who are not willing

to disclose their own local data.

Runtime data collection and fault diagnosis. Typically, the runtime

environment records some abstraction of the program’s behavior. Different

abstractions have different cost and accuracy tradeoffs (e.g., see [32, 60]). For

instance, one abstraction counts how many times each function in the program

was called, another counts function call sites that satisfy a certain predicate

(e.g., equal to zero) on the function’s return value, and so on.

For the purposes of this chapter, we abstract from the details of the
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program behavior “dumps” generated by the runtime environment, and refer

to individual data items simply as attributes. We assume that the vector of

attributes has a fixed maximum size, which can be quite large—for exam-

ple, a vector of function callsite counters may include dozens of thousands

of attributes. Note that the online computational complexity of the User’s

algorithm in the protocol of Section 7.2 does not depend on the number of

attributes.

Diagnostic programs evaluate the data dump produced by the runtime

environment and diagnose the problem. In this chapter, we use diagnostic

programs generated by the Clarify system [60]. We emphasize that Clarify

is a “black-box” diagnostic system, and thus not simply an alternative to

debugging. Commercial applications are often distributed as packed binaries,

compiled without symbols and not accompanied by source code. Investigation

of a fault in such a binary by manual debugging is a laborious process, whereas

even an unsophisticated user can benefit from fast diagnostics provided by

systems like Clarify.

In general, the diagnostic program can be manually created by human

experts, or constructed automatically by training a machine learning classifier

on previously labeled program behaviors (supplied, for example, by beta testers

who are not concerned about privacy of their data). Clarify takes the latter

approach. If necessary, standard methods for privacy-preserving decision-tree

construction can be used to protect data suppliers’ privacy [6,78]. The number

of users whose data are used in constructing the diagnostic program is typically
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Figure 7.1: Diagnostic branching program for the mpg321 benchmark. Dotted
lines are taken when the attribute (normalized count of the feature value)
is less than or equal to the threshold listed in the box, while the solid line
is taken when it is greater than the threshold. The threshold is determined
automatically for each benchmark by the decision-tree algorithm, and can be
different for each node in the tree. Clear boxes are decision nodes. Shaded
boxes are classification nodes.

orders of magnitude lower than the number of users who apply the resulting

program to their data. Therefore, we focus on privacy-preserving evaluation

of diagnostic programs.

The diagnostic program usually has the form of a classification tree or

a branching program. In each internal node, one of the attributes is compared

with some threshold value. Leaves contain diagnostic labels. For example,

Figure 7.1 shows a diagnostic branching program created by Clarify using

function counting for the mp3 player mpg321. The application itself does not

give any consistent error messages for any of these error cases. The model has

four diagnostic labels, including normal execution (no error), file format error

(trying to play a wav file as if it were an mp3), corrupted tag (mp3 metadata,

e.g., artist name is stored in ID3 format tags), and corrupted mp3 frame data.
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The diagnostic branching program distinguishes between these three failure

modes and normal execution.

At the root, the function mad layer III provides almost perfect dis-

criminative information for the wav error class (trying to play a wav as if it

were an mp3): the mad layer III routine is part of the libmad library and is

called when the audio frame decoder runs. Since the wav format is among the

formats not supported by mpg321, it will not successfully decode any audio

frames, and the libmad library will never call mad layer III.

The id3 tag delete routine differentiates between the corrupted tag

and and other classes. The ID3 tag parser in the libid3tag library dynami-

cally allocates memory to represent tags and frees them with id3 tag delete.

If tag parsing fails, the memory for a tag is not allocated. Since no tag parsing

succeeds in the corrupted frames case, id3 tag delete is never called to free

the tag memory, making its absence discriminative for that class. The libmad

audio library’s default error handler error default is used if the application

does not specify one. mpg321 does not specify its own error handler, so the

presence of the function indicates corrupted audio frames, and its absence

indicates corrupted id3 tags. Finally, III freqinver, which performs sub-

band frequency inversion for odd sample lines, is called very frequently as part

of normal decoding of audio frame data. When there are corrupted frames,

this function is called less frequently, and the decision-tree algorithm finds an

appropriate threshold value to separate the normal from the corrupted case.
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App. Attributes Nodes # Errs Accuracy
gcc 2,920 37 5 89.2%
latex 395 1,107 81 85.1%
mpg321 128 9 4 87.5%
nfs 292 17 5 93.3%
iptables 70 9 5 98.5%

Table 7.2: For each benchmark, we give the length of the attribute vector,
number of nodes in the diagnostic tree, number of errors distinguished by the
decision tree, and the tree’s classification accuracy.

Table 7.2 shows the parameters of diagnostic programs for several

benchmark applications.

7.4 Performance

We evaluated our prototype implementation using PCs with an Intel

Pentium D 3 GHz processor, 2 GB of RAM, and 2MB cache. This is a realistic

approximation of what the User might use, but we expect that the Server

would maintain a more powerful dedicated server to process remote diagnostics

requests.

In our analysis of scaling behavior, we created artificial data sets with

varying numbers of nodes and attributes, and measured the offline and online

time separately. Offline time includes all calculations that can be performed

independently of the other party, while online time includes the calculations

that depend on the information sent by the other party earlier in the protocol.

Online time is the more important metric, since it dictates how long the two

parties must maintain a connection. Offline calculations can be performed
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Server User
Application Time Bytes Time Bytes
foxpro 1s 119 KB 2s 78 KB
(7 nodes, 224 attrs)

iptables 2s 155 KB 2s 61 KB
(9 nodes, 70 attrs)

mpg321 2s 155 KB 2s 71 KB
(9 nodes, 128 attrs)

nfs 2s 298 KB 4s 142 KB
(17 nodes, 292 attrs)

gzprintf 3s 506 KB 5s 133 KB
(23 nodes, 60 attrs)

gcc 5s 656 KB 7s 707 KB
(37 nodes, 2920 attrs)

latex 113s 19,793 KB 189s 5,908 KB
(1107 nodes, 395 attrs)

Table 7.3: Privacy-preserving evaluation of Clarify diagnostic programs: com-
putation and communication costs.

during idle times when the CPU is in low demand.

We first analyze the scaling behavior of the Server algorithm, as pre-

sented in Figures 7.2 and 7.3. Here we see that the Server’s computation and

bandwidth requirements are independent of the number of attributes, which is

an attractive property in the software diagnostic scenario where the attribute

vector can be quite large and contain a lot of information which is not rele-

vant for all diagnostic programs. Furthermore, the Server’s algorithm scales

linearly with the number of nodes in the branching program, which is as good

as one can realistically hope to achieve.

Scaling behavior of the User’s algorithm is shown in Figures 7.4 and 7.5.
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Figure 7.2: Server algorithm: scaling
with the number of attributes.
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Figure 7.3: Server algorithm: scaling
with the size of the diagnostic pro-
gram.

As is the case with the Server, the User’s online computation time depends

linearly on the size of the branching program, but is independent of the number

of attributes in the attribute vector. Unlike the Server, the User’s offline

computation time and bandwidth requirements do depend on the number of

attributes. This is because the User must encrypt the entire attribute vector

offline, and then transmit it as part of the protocol.

We also evaluate our prototype implementation on several real appli-

cations, as shown in Table 7.3. These benchmarks have been chosen because

they are common, heavily-used programs that either contain security vulner-

abilities which would be revealed by the diagnostic program (e.g., gzprintf),

or report misleading error messages (or none at all) for non-exotic error con-

ditions, and therefore would benefit the most from remote diagnosis. As our

diagnostic programs, we used classification trees generated by Clarify [32,60],

and as attribute vectors 32-bit invocation counters for each function of the
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Figure 7.4: User algorithm: scaling
with the number of attributes.
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Figure 7.5: User algorithm: scaling
with the size of the diagnostic pro-
gram.

application.

For all applications, the computation and communication cost of exe-

cuting our privacy-preserving protocol is acceptable in many practical scenar-

ios.

7.5 Conclusions

We presented a practical, provably secure protocol which enables a User

to evaluate the Server’s branching program on the User’s local data without re-

vealing any information except the diagnostic label. We applied our prototype

implementation to several realistic benchmarks, using diagnostic decision trees

produced by the Clarify system as our branching programs, and demonstrated

that it performs well in many practical scenarios.
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Chapter 8

Privacy-Preserving Decision-Tree Learning

8.1 Introduction

Privacy-preserving data analysis is one of the most important applica-

tions of secure multi-party computation. In this chapter, we develop a privacy-

preserving version of a fundamental data-analysis primitive: an algorithm for

constructing or learning a classifier. Classifiers, such as decision trees, are a

mainstay of data mining and decision support [103]. Given a database with

multiple attributes (an attribute can be thought of as a column in a database

schema), a classifier predicts the value of a “target” or “class” attribute from

the values of “feature” attributes. One can also think of a classifier as assign-

ing records to certain classes (defined by the value of the class attribute) on

the basis of their feature attributes. A popular machine-learning task is to au-

tomatically learn a classifier given a training set of records labelled with class

attributes. Classifiers built in this way are used for marketing and customer

relationship management, development of better recommendation algorithms

and services, clinical studies, and many other applications.

We focus on the problem of securely constructing a classifier in a two-

party setting where one party provides a database, while the other party pro-
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vides the parameters of the classifier that it wants to construct from the records

in the database. This is a common situation in law-enforcement, regulatory,

and national-security settings, where the entity performing the analysis (for

example, an agency investigating irregular financial transactions) does not

want to reveal which patterns it is mining the database for (for example, to

prevent the target of investigation from structuring their transactions so as to

avoid scrutiny). Confidentiality of the resulting classifier is also important in

scenarios where both the data-analysis techniques and the output of the anal-

ysis process constitute potentially valuable intellectual property, e.g., when

mining patient databases in clinical studies, constructing expert systems and

diagnostic frameworks, and so on.

The key privacy properties that the protocol for privacy-preserving clas-

sifier learning must guarantee are, informally, as follows. First, the records

from which the classifier is constructed should remain confidential from the

party who obtains the classifier (except for the information which is inevitably

revealed by the classifier tree itself). Second, the data owner should not learn

anything about the classifier which has been constructed. While the algo-

rithm for constructing the classifier is standard (e.g., ID3), its parameters—

(i) which attributes are used as features?, (ii) which attributes are used as

class attributes?, (iii) if the classifier is being constructed only on a subset of

database records, what is the record selection criterion?—should remain hid-

den from the data owner. Note that the latter requirement precludes the data

owner from simply computing the classifier on his own.
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Previous work on privacy-preserving classifier learning [78,116,117] fo-

cused on a very different problem in which the resulting classifier is revealed to

both parties. This greatly simplifies the protocol because the classifier can be

constructed using the standard recursive algorithm—since both parties learn

the resulting classification tree, revealing each node of the tree to both parties

as it is being constructed does not violate the privacy property. This is no

longer true in our setting, which presents a non-trivial technical challenge.

Existing protocols cannot be used in practical scenarios where confiden-

tiality of the classifier is essential. For example, a national-security agency may

want to mine records of financial transactions without revealing the classified

patterns that it is looking for (defined by its choice of feature and class at-

tributes and of a certain subset of individuals in the database). Other scenarios

include construction of a recommendation algorithm from transactional data

without revealing it prematurely (e.g., the Netflix Prize competition [98]); clin-

ical studies involving competing medical institutions, each of which is fiercely

protective both of their patient data and their analysis techniques (which sub-

set of patients to look at, which symptoms to focus on, and so on), because

the latter can lead to patentable and potentially lucrative diagnostic methods;

expert systems, where the classifier constitutes valuable intellectual property;

remote software fault diagnostics; and many others.

In this chapter, we use the same basic framework of secure multi-party

computation (SMC) as the original paper on privacy-preserving data mining

by Lindell and Pinkas [78] and aim to provide the same level of cryptographic
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security guarantees. We emphasize, however, that (i) our desired privacy prop-

erties (in particular, confidentiality of the resulting classifier) are very different

and more challenging because the techniques of [78] no longer work; (ii) we

allow, but do not assume or require that the data are partitioned between the

two parties; and (iii) unlike [78], we provide a prototype implementation and

performance measurements in order to evaluate the scalability of the SMC-

based approach to privacy-preserving data classification.

Our contributions. We present a cryptographically secure protocol for

privacy-preserving construction of classification trees. The protocol takes place

between a user and a server. The user’s input consists of the parameters of

the classifier that he wishes to construct: which data attributes (columns) to

use as feature attributes, which as the class attribute, and, optionally, which

predicate on records (rows) to use in order to select only a subset of the

database records for the classifier construction. The server’s input is a rela-

tional database. We assume that the schema of the database (i.e., names of

attributes and the values they can take) is public, but that the actual records

are private.

The user’s protocol output is a classification tree constructed from the

server’s data. The server learns nothing from the protocol; in particular, he

does not learn the parameters of the classification algorithm, not even which

attributes have been used when constructing the classifier. We re-iterate that

the latter requirement precludes the server from computing the classifier on

his own, and also makes existing protocols inapplicable.
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Our protocol exploits the structure of the classifier-construction algo-

rithm in a fundamental way. In each node of the classification tree, the records

are “split” based on the value of some attribute. In order to pick the best at-

tribute for this purpose, the tree-construction algorithm must, in each node

of the tree, count the number of records that fall into several categories. In

contrast to [78], the database owner should not learn how many of his own

records fall into each category, so we must perform this computation in a

privacy-preserving manner. If done näıvely, using generic techniques, the com-

putational cost of the resulting protocol would be prohibitive.

Our key technical innovation is to build the tree “one tier at a time”

by simultaneously counting the categories for an entire tier of nodes rather

than for a single node. By partitioning the categories into mutually exclusive

groups, we are able to compute the counts for a whole tier of nodes using

the same number of secure circuit evaluations as we would have needed for a

single node. This enables a substantial performance gain which bridges the

gap between theoretical and practical efficiency.

Our final contribution is to measure the scalability of our prototype

implementation and evaluate its performance on realistic datasets. While the-

oretical protocol designs in the SMC framework abound, actual implementa-

tions have been very rare. This makes it difficult to determine whether these

(theoretically sound) techniques can actually be applied, even given modern

computing power, to anything other than toy examples. Our performance

measurements show the limits of SMC-based privacy-preserving data analysis.
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Figure 8.1: Example decision tree.

8.2 Problem Formulation

8.2.1 Decision-tree learning

A classifier takes as input a record (or transaction) consisting of sev-

eral attribute values, and outputs a classification label which categorizes the

record. Decision trees are a common type of classifiers. Each internal node

in a decision tree considers a single attribute and redirects evaluation to one

of several child nodes based on the value of that attribute. Once a leaf node

is reached, the classification label contained therein is output as the result of

classification. Fig. 8.1 shows an example decision tree that could be used by

a marketing department to determine whether a consumer is likely to buy a

company’s product.

Decision-tree classifiers can be constructed manually by a human expert

with domain knowledge, but algorithms for decision-tree learning are increas-

ingly popular (e.g., see Algorithm 6). Given a database of records tagged with

classification labels, the algorithm constructs the decision tree recursively from

the top down. At the root node, the algorithm considers every attribute and

measures the quality of the split that this attribute will provide (see below).
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Input:
R, the set of feature attributes.
C, the class attribute.
T , the set of records.
d, the current depth.
D, the desired maximum depth.
DecisionTree(R, C, T, d,D)

1: if d = D or R is empty then
2: return a leaf node with the most frequent class label among the records

in T .
3: else
4: Determine the attribute that best classifies the records in T , let it be A.
5: Let a1, ..., am be the values of attribute A and let T (a1), ..., T (am) be a

partition of T such that every record in T (ai) has the attribute value ai.
6: Return a tree whose root is labeled A (this is the splitting attribute)

and which has edges labeled a1, ..., am such that for every i, the edge ai
goes to the tree DecisionTree(R− {A}, C, T (ai), d+ 1, D).

7: end if

Algorithm 6: The (non-private) recursive decision-tree learning algorithm.

The algorithm chooses the “best” attribute and partitions all records by the

value of this attribute, creating a child node for each partition. The algorithm

is then executed recursively on each partition.

Two popular measures of the “quality” of a split are information gain

and the Gini index. Information gain is used in the ID3 and C4.5 algo-

rithms [103], while the Gini index is used in the CART algorithm [16]. In-

formation gain can be computed privately using the x log x protocol from [78].

Our privacy-preserving protocol for decision-tree learning can use either, but

the private computation of the Gini index is more efficient, so we will focus on

it.
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In the following, suppose that the class attribute (i.e., the target of

classification) can assume k different values c1, ..., ck and that the candidate

splitting attribute A can assume m different values a1, ..., am. Denote by p(ci)

the portion of the records whose attribute C = ci, by p(ai) the portion of the

records whose attribute A = ai, and by p(ci|aj) the portion of the records that

have both attribute C = ci and attribute A = ai.

The Gini index Gini(A) is computed as:

1−
k∑
i=1

(p(ci))
2 −

m∑
j=1

p(aj)
k∑
i=1

p(ci|aj) (1− p(ci|aj)) (8.1)

If we use the notation n(ci) for the number of records with attribute C = ci,

then we can rewrite (8.1) as:

1−
k∑
i=1

(
n(ci)

|T |

)2

−
m∑
j=1

n(aj)

|T |

k∑
i=1

n(ci|aj)
|T |

(
1− n(ci|aj)

|T |

)
(8.2)

Multiplying this equation by |T |3 gives:

|T |3 −
k∑
i=1

(n(ci))
2 |T | −

m∑
j=1

n(aj)
k∑
i=1

n(ci|aj) (|T | − (ci|aj)) (8.3)

Since the number of records |T | is fixed, we can compare the Gini index of

different attributes using only multiplication and addition. These operations

can be easily computed in a privacy-preserving manner using Yao’s garbled-

circuits method.

8.2.2 Distributed decision-tree learning

Conventional decision-tree learning is performed by a single user. The

user has access to some database T and chooses the set of feature attributes
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R, the class attribute C, and the number of tiers D. In this chapter, we

focus on a distributed setting, where the database T resides on a server and a

remote user choosesR, C, and D. We emphasize that for real-world databases,

where the total number of attributes is fairly large, R may be only a small

subset of attributes. For example, attributes of T may include hundreds of

demographic features, and the user may be interested only in a handful of

them for classification purposes.

In the distributed setting, both parties may have privacy concerns.

The server wishes to reveal no more about T than is necessarily revealed by a

decision tree based on T . The user, on the other hand, may not wish to reveal

which feature attributes R and class attribute C he selected for the purposes

of constructing a classifier.

We assume that several parameters are known to both parties: |T |, the

number of records in the database; A, the set of all attributes in the database;

the set a1, ..., am of possible values for each attribute A ∈ A; |R|, the number

of feature attributes selected by the user; and D, the depth of the decision

tree to be constructed.

Branching factor. In the general case, the record database T may contain

nominal attributes whose domains have different sizes. For instance, a con-

sumer database may have 2 possible values for the “sex” attribute, and 50

possible values for the “state of residence” attribute. We refer to the number

of different values that an attribute can assume as its branching factor, because
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it determines the number of children for each internal node corresponding to

that attribute.

When the decision tree is computed in a privacy-preserving manner, all

internal nodes must have the same number of children in order to prevent the

server from learning which attribute is considered in a given node. Therefore,

all attributes must have the same branching factor m. As a pre-processing

step, attributes can be padded with unused values so that all attributes have

the same branching factor. For simplicity, we assume that each attribute value

is encoded as an integer between 0 and m − 1, and can thus be represented

using log2m bits.

8.3 Privacy-Preserving Evaluation of Decision Trees

Our protocol for privacy-preserving decision-tree learning requires that

we have a protocol to privately evaluate decision trees. We use the protocol

from Chapter 7, with several substantial modifications. In the protocol from

Chapter 7, attributes can take one of a large number of different values, and

each internal node selects one of two children based on a threshold comparison.

In this chapter’s setting, each attribute takes one of m values (m is relatively

small), and internal nodes have m children—one for each attribute value.

The privacy requirement is that this evaluation should be oblivious: the

evaluator should not learn anything about the structure of the tree except the

total number of nodes and the length of the evaluation path, nor which of his

attributes were considered during evaluation. To achieve the former, the tree is
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represented as a set of encrypted nodes; decrypting each node reveals the index

of the next node (which depends on the value of the attribute considered in the

parent node) and the corresponding decryption key. To hide which attribute

is considered in each node, the “oblivious attribute selection” protocol from

the previous chapter splits each of the attributes that will be used during

evaluation into two random shares. The circuit creator receives one share and

the evaluator receives the other, without learning to which of his attributes

this share corresponds.

Each oblivious evaluation of an internal node results in moving control

to one of the m child nodes. While in the previous chapter we used 1-out-

of-2 conditional oblivious transfer, now we must use 1-out-of-m conditional

oblivious transfer. For details, see Section 2.5.1.

We need a technical trick so that the decision-tree evaluation protocol

can be efficiently invoked multiple times on the same set of attributes. Recall

that as the result of oblivious attribute selection, the evaluator has a random

share for each of his attributes that will be used in some internal decision node.

We use the circuit logic shown in Algorithm 7 for internal nodes. Since the

evaluator provides as input his shares for all attribute values, he cannot tell

which one was actually selected and combined with the share from the circuit

creator to obtain the complete attribute value.

Modifying the circuit logic in this way ensures that the evaluator’s in-

put is the same for all nodes of all trees created during our protocol. This

enables a substantial efficiency gain. Instead of generating random wire keys
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Creator’s Input:
i, 1 ≤ i ≤ r, the attribute index
aCi , the Creator’s share of attribute value ai
Evaluator’s input:
aE1 , ..., a

E
r , the Evaluator’s shares for all attribute values

Output:
The value ai, using log2m wires.
InternalNodeGate(i, aCi , a

E
1 , ..., a

E
r )

1: return aEi + aCi (mod m)

Algorithm 7: Modified circuit logic for internal nodes

for each bit of the evaluator’s input into each circuit (as in the standard Yao’s

method), we generate them once, and then re-use this representation for the

evaluator’s input wires in all circuits. This allows us to perform only a single

set of oblivious transfers to provide the evaluator with the the wire keys corre-

sponding to his input bits. These wire keys are then used in all of the garbled

circuits.

8.4 Privacy-Preserving Decision-Tree Learning

Our protocol takes place between a server in possession of a database

T and a user who wishes to build a classifier for class attribute C based on

a set R of feature attributes. The tree is constructed from the root down,

as in the conventional algorithm shown in Fig. 6. Unlike the conventional

algorithm, however, ours is non-recursive. Instead, the tree is constructed one

tier at a time. When processing tier i, mi pending nodes are considered. In the

final tier, the pending nodes are transformed into leaf nodes with classification

labels in them; in all intermediate tiers, they become internal decision nodes,
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where the attribute for making the decision is chosen based on the data in T .

We now describe the protocol, which is divided into four phases.

8.4.1 Phase 1: Sharing the attribute values

The set of attributes A found in the database T may be far larger

than the set R∪ {C} of attributes that are relevant to tree construction. For

an attribute Ri ∈ R ∪ {C} and a record t ∈ T , t[Ri] refers to the attribute

value for attribute Ri in record t. For each record t ∈ T and for each relevant

attribute Ri ∈ R∪{C}, Phase 1 enables the user and the server to learn shares

t[Ri]U and t[Ri]S such that t[Ri]U +t[Ri]S (mod m) = t[Ri]. This is done using

the oblivious attribute selection technique from [17], which is outlined below:

1. For all Ai ∈ A, the server encrypts t[Ai] using an additively homomor-

phic encryption scheme, and sends {t[Ai]}y to the user.

2. User creates a blinding value bi for each relevant attribute Ri, and uses

the homomorphic property to add bi and t[Ri] under encryption. User

sends {bi + t[Ri]}y to the server. User’s random share is t[Ri]U = −bi

mod m.

3. Server decrypts to obtain bi+t[Ri] and stores t[Ri]S = bi+t[Ri] mod m.

We use a blinding value bi at least 80 bits longer than the (log2m)-bit

value t[Ri] so that it statistically hides t[Ri]. The shares t[Ri]U and t[Ri]S will

be used in later phases as inputs to small Yao circuits that are generated by
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the user and evaluated by the server. Therefore, the server needs to learn the

random wire keys representing his input shares t[Ri]S in the circuit. As usual,

this is done via a 1-out-of-2 oblivious transfer for each of the log2m bits in the

t[Ri]S values, where the server’s input is the jth bit of t[Ri]S, and the user’s

input is the pair of wire keys representing, respectively, 0 and 1 on the input

wire corresponding to this bit.

Unlike the standard Yao protocol, the same input-wire keys are used

for multiple circuits. The oblivious transfers can thus be done only once per

protocol execution instead of once per circuit evaluation. This results in a

substantial performance improvement, since the bulk of computation in secure

circuit evaluation is spent on the oblivious transfers.

We also observe that our protocol can be applied not only in the case

where the server holds the entire database, but also for any vertical or hor-

izontal partitioning of the database between the user and the server. If the

database is partitioned, the steps described above are carried out only for the

attribute values held by the server. For each value held by the user, the user

simply splits it into two random shares and sends one of them to the server.

Regardless of the database partitioning, after Phase 1 every attribute value of

every record is shared between the user and the server.

After performing these preliminary steps, the user participates in the

PrivateDecisionTree(R, C,D, T ) protocol with the server, which starts

Phase 2.
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Figure 8.2: An incomplete decision tree with 4 pending nodes, and the same
tree augmented with a feature attribute and class attribute

8.4.2 Phase 2: Computing category counts

Phase 2 is shown in Algorithm 8 as lines 3–6.

Let d be the depth of the current tier. Within this tier there are md

pending nodes, and of the original |R| feature attributes, only |R| − d remain

as candidates to be chosen as the splitting attribute for each pending node

because d attributes have already been used. The set of candidate attributes

for splitting at a pending node n depends on which attributes were already

encountered on the path from the root node to n, and may thus be different

for each pending node. For example, Fig. 8.2(a) shows a tree entering Phase

2 on tier 2. The path to the 3rd pending node consists of the edges R1 = 1

169



and R3 = 0, so attributes R1 and R3 are no longer available as candidates for

this node. The candidates for the 3rd pending node are [R2, R4], while the

candidates for the 2nd pending node are [R3, R4],

Let T (n) be the set of records that satisfy the preconditions of node n

(for the 3rd pending node in Fig. 8.2(a), these are records with R1 = 1 and

R3 = 0). Let {Rn1 , ..., Rn|R|−d} be the set of candidate attributes for node

n. Finally, let Tk(n : i, j) be the set of records in T (n) that have Rnk = i

and C = j. To determine the quality of the split that would be provided by

choosing Rnk as the splitting attribute for this node, it is necessary to compute

|Tk(n : i, j)| for all possible values of i and j (0 ≤ i, j ≤ m).

For any choice of n, i, and j, the user can build a decision tree to

determine whether a given record is in Tk(n : i, j). Using oblivious decision-tree

evaluation, the user and the server can then learn shares of |Tk(n : i, j)| without

either revealing his private inputs. The problem with this näıve approach is

that determining the quality of splitting on a single attribute Rnk requires

md ·m2 oblivious decision-tree evaluations on each record in T (one for each

choice of n, i, and j).

Our construction is significantly more efficient because it iterates over

the database only once by counting md ·m2 different mutually exclusive cat-

egories simultaneously. The key observation is that for each record t ∈ T ,

there is a unique pending node n such that t ∈ T (n). Furthermore, for each

t ∈ T (n) and 0 ≤ k ≤ |R| − d, there are unique i, j such that t ∈ Tk(n : i, j).
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Therefore, our construction builds a classifier to determine for which values of

n, i, and j the record t belongs to Tk(n : i, j).

To do this, we augment the partially constructed tree P by replacing

each pending node with a depth-two subtree that considers attributes C and

Rnk . Fig. 8.2(b) shows the result of augmenting the tree from Fig. 8.2(a) when

k = 1. (To avoid clutter, the augmented portion is only shown for the 2nd

pending node.) The md ·m2 leaves of the tree contain vectors of length md ·m2

as their labels. Each leaf is reachable by records in Tk(n : i, j) for a unique

choice of n, i, and j, and the vector used as its label has a single “1” in the

position corresponding to Tk(n : i, j) and “0” elsewhere.

Once the augmented tree P ′ = P.AugmentWithAttAndClass(k, C)

has been constructed, the user and server engage in a privacy-preserving

decision-tree evaluation protocol for each record t ∈ T . To support oblivious

evaluation, the tree must be transformed as follows (see Chapter 7 and

Section 8.3 for details). Each node other than the root is encrypted with a

random key. Each internal node is replaced by a small Yao circuit that takes

as its input the user’s and server’s shares t[Ri]U and t[Ri]S of the relevant

attribute values t[Ri] for each R ∈ R, and outputs the index and decryption

key for the appropriate child node. Each leaf node has as its label a vector

of md · m2 values, encrypted using a user-created instance of an additively

homomorphic encryption scheme. As described above, the vector has “1”

in the position corresponding to its category, and “0” in all other positions.

171



Note that although the same tree is applied to every record, it must be freshly

transformed into a secure tree for each oblivious evaluation.

As the result of oblivious evaluation of augmented trees, the server

learns a vector of md · m2 ciphertexts. All but one are encryptions of “0.”

The sole ciphertext encrypting “1” occurs in the position corresponding to

the category of the record (of course, the server cannot tell which ciphertext

this is). By summing up these vectors under encryption, the server obtains

ciphertexts encrypting the counts |Tk(n : i, j)|. The server must then transform

these encrypted counts into additive random shares (mod |T |), using the same

technique as in Sect. 8.4.1.

The following subroutines are used during Phase 2:

• P.AugmentWithAttAndClass. This method is executed by the

user, and adds two tiers to the tree P : one for the attribute Rnk (different

for each pending node) and one for the class attribute C.

• Prot:EncryptedCounts. This protocol between the user and the

server results in the user and server holding shares for the counts |Tk(n :

i, j)| for n=1 to md, i=1 to m, and j=1 to m. Pseudocode is given in

Algorithm 9.

8.4.3 Phase 3: Selecting the highest-quality split

Phase 3 is shown in Algorithm 8 as lines 7–13.
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User’s Input:
R, the set of feature attributes (|R > D)
C, the class attribute
D, the desired maximum depth
Server’s Input: T , the set of records converted into random wire values.
User’s Output: P , a decision tree to classify C from R
Prot:PrivateDecisionTree(user: R, C,D server: T )

1: P = new tree
2: for d=0 to D − 1 do
3: for k=1 to |R| − d do
4: P ′=P.AugmentWithAttAndClass(k, C)
5: (|Tk(...)|U , |Tk(...)|S) = Prot:EncryptedCounts(user: P ′ server:

T )
6: end for
7: for n=1 to md do
8: for k=1 to |R| − d do
9: (Qk

U , Q
k
S) = Prot:ComputeQuality(|Tk(n : ...)|U , |Tk(n : ...)|S)

10: end for
11: bestatt = Prot:ArgMax (user: Q1

U , ..., Q
|R|−d
U server: Q1

S, ..., Q
|R|−d
S )

12: In P , make node n an internal node splitting on attribute Rnbestatt

13: end for
14: end for
15: P ′ = P.AugmentWithClass(C)
16: (|T (...)|U , |T (...)|S) = Prot:EncryptedCounts(user: P ′ server: T )
17: for n=1 to mD do
18: bestclass = Prot:ArgMax(user: |T (n : ∗, 1)|U , ..., |T (n : ∗,m)|U

server: |T (n : ∗, 1)|S, ..., |T (n : ∗,m)|S)
19: In P , make node n a leaf node with label bestclass
20: end for
21: return p

Algorithm 8: The private “one-tier-at-a-time” decision-tree learning protocol
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User’s Input: A decision tree P with k leaf-nodes. The label of leaf i is a
k-length vector with {1}y in position i and {0}y in all other positions.
Server’s Input: A record set T for which each bit of each attribute value has
been converted into a random wire value.
Output: Let K =

∑
t∈T P (t) be the k-length vector whose ith entry is the

number of records in T landing in leaf node i. The user’s and server’s outputs
are shares KU and KS of K.
EncryptedCounts(P, T )

1: K ← length k vector with each entry set to {0}y
2: for each t ∈ T do
3: J ← PrivateTreeEval(P, t)
4: K ← K + J under encryption
5: end for
6: Split each component of K into shares; user decrypts his share

Algorithm 9: Protocol to determine how many records fall into each of k
categories

After Phase 2, the user and the server share counts |Tk(n : i, j)| for all

pending nodes n in the tier, and for all values of k, i, and j. This enables

them to compute Gini(Rnk) for each node n using (8.3), but over T (n) rather

then the entire record set T . The user and server must compute

|T (n)|3 −
m∑
j=1

|T (n)| |Tk(n : ∗, j)|2 −

m∑
i=1

|Tk(n : i, ∗)|
m∑
j=1

|Tk(n : i, j)| (|T (n)| − |Tk(n : i, j)|) .

In the above, |T (n : ∗, j)| is the number of nodes in T (n) with class

attribute C = j, and |Tk(n : i, ∗)| is the number of nodes in T (n) with attribute

Rnk = i. These values, along with |T (n)|, can be computed from the shares

|Tk(n : i, ∗)|{U,S} which the user and server hold.
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Given the shares of all inputs, a simple circuit produces shares of

Gini(Rnk) for each node n and for each k, using only addition and multi-

plication. For each pending node n, these shares are then fed into another

garbled circuit. This circuit determines which attribute Rnk provides the best

split quality. The user updates the tree P with this information, by replacing

the pending node n with an internal node that splits on the attribute Rnk .

The following subroutines are used during Phase 3:

• Prot:ComputeQuality. This protocol uses a garbled circuit to com-

pute the Gini index for node n and attribute Rnk . This protocol takes

as input shares of the m2 counts |Tk(n : i, j)|, and returns shares of the

Gini index.

• Prot:ArgMax. This protocol takes as input shares of values v1, ..., vn

and provides the user with an index m such that vm is greater than or

equal to all other values. The server learns nothing.

8.4.4 Phase 4: Constructing the bottom tier

Phase 4 is shown in Algorithm 8 as lines 17–20.

Phase 4 completes the decision tree P by adding the correct labels to

its leaf nodes. Each leaf node n should have as its label the most common

classification value among the records in T (n). Similar to Phase 2, we can find

the most popular classification value for all leaf nodes at once. The incomplete

tree P is augmented with a single extra tier which examines the classification

175



node C. Then EncryptedCounts provides the user and server with the

shares of the the counts |T (n : ∗, j)| for n=1 to mD and j=1 to m. Next, a

garbled circuit finds the value c such that |T (n : ∗, c)| is maximal, and makes

it the label for node n.

The following subroutines are used during Phase 4:

• P.AugmentWithClass. This is executed by the user and adds one

additional tier to the tree P for the class attribute C.

• Prot:EncryptedCounts. Same as in Phase 2, and provides the user

and server with shares of |T (n : ∗, j)|.

• Prot:ArgMax. Same as in Phase 3.

8.4.5 Horizontal selection

In many applications of decision-tree learning, the user wants to con-

struct a classifier using the records defined by a certain predicate, i.e., from a

horizontal subset of the database. In other words, the user selects not only a

subset of columns to use as features, but also a subset of records (rows), and

the protocol should construct a classifier using the data in the selected records

only.

This is motivated by real-world scenarios. For example, a proprietary

database may contains records for diverse individuals living throughout a na-

tion, while the user is interested in building a marketing classifier only for
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consumers from a particular region or those belonging to a particular demo-

graphic. In this scenario, the user may wish to keep his record selection cri-

terion private so as to avoid revealing his marketing strategy to competitors.

Previous protocols for privacy-preserving decision-tree learning cannot solve

this problem because, by their design, they reveal the resulting classifier to all

protocol participants.

In this scenario, we assume that the user does not have a vertical parti-

tion of the database and, since he does not have access to the database, cannot

explicitly specify the indices of the records which satisfy his selection criterion.

Instead, he must choose them implicitly by providing a selection predicate to

be evaluated on all records in the database. Clearly, the user wants to keep this

predicate private from the server, while the server wants to keep the attribute

values of each record private from the user. Depending on the scenario, the

number of records which satisfy the predicate may need to be revealed to the

user, to the server, to both, or to neither.

We outline an extension to our protocol for only one of these four vari-

ants, in which the number of satisfying records is revealed to the user but not

to the server. This variant has some useful properties: the user may not be-

lieve that the classifier is of high quality if it is based on too few records (thus

it is helpful for the user to know how many records were used in constructing

the tree), while the server learns a significant amount of information about the

user’s predicate if he learns the number of records which satisfy the predicate

(thus the user may prefer to have this number hidden from the server). This
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particular variant does present some privacy risks to the server: if the pred-

icate, which is hidden from the server, selects a very small subset of records,

then the resulting decision tree will leak a lot of information about the records

in the selected subset.

The extension involves two components: (1) an additional phase of the

protocol, in which the user learns the indices of all records in the database

that satisfy his selection predicate, and (2) a slight change to the category-

counting phase to ensure that the records not selected by the user’s predicate

are not counted as belonging to any category, and thus do not participate in

determining the best attributes for each internal decision node of the classifier.

To determine the indices of the records that satisfy the predicate, the

user and the server engage in an instance of the oblivious decision-tree evalua-

tion protocol described in Section 8.3. The user’s predicate is represented as a

decision tree which evaluates a record and labels it with true if it satisfies the

predicate and false otherwise. This decision tree is then obliviously evaluated

for each record in the database T . The protocol of Section 8.3 guarantees that

the results are revealed only to the user, and not to the data owner.

The records not satisfying the predicate (i.e., those which the user’s

predicate evaluated to false) should not be used when constructing the clas-

sifier. Recall from Sect. 8.4.2 that in order to determine the best splitting

attribute for each internal node of the classifier, the user builds decision trees

whose labels are vectors of ciphertexts that all encrypt “0,” except for a sin-

gle ciphertext—in the position corresponding to the record’s category—that
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encrypts “1.” For the records that he wants to “turn off,” the user simply

constructs the tree where the labels contain encryptions of “0” only. This

effectively means that the corresponding record is not included in any of the

Tk(n : i, j) categories, and thus has no influence on the Gini index computation

which is used to find the best splitting attribute.

8.5 Performance

Recall that there are |A| attributes, each of which has a branching factor

of m; |R| feature attributes; |T | transactions, and depth D. In evaluating

the performance of our protocol, we distinguish between online and offline

computations. Offline computations include generating md+2 homomorphic

encryptions of “0” for each of the |T |(|R| − d) augmented decision trees used

at tier d (user); generating homomorphic encryptions of |T ||A| attributes for

oblivious attribute selection (server); garbling of circuits to compute the Gini

index and ArgMax (server), and garbling of circuits to compute attribute

selection (user). Note that the number of gates in these circuits depends on

|A| and T (Gini), T and m (ArgMax), and |A| and m (attribute selection).

The following cryptographic operations must be performed online

once per protocol execution: |T ||R| homomorphic additions for oblivious

attribute selection (user); |T ||R| homomorphic decryptions (server); and

|T |(|R| + 1) logm 1-out-of-2 oblivious transfers so that the server can learn

wire values for his attribute shares. In addition, the following are per-

formed online to construct tier d (with md nodes): symmetric encryption of
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(
∑d+2

h=1m
h) garbled nodes for each of |T |(|R| − d) augmented decision trees

(user); d + 2 symmetric decryptions and evaluations of garbled attribute

selection circuits for each of |T |(|R| − d) augmented decision trees (server);

|T |(md+2) homomorphic additions (server); md+2 homomorphic decryptions

(user); evaluation of md(|R| − d) garbled circuits to compute the Gini index

at tier d (user); and evaluation of md garbled circuits for ArgMax at tier d

(user).

Because performance is often a concern when using secure multi-party

computation techniques, we evaluated a prototype Java implementation of our

protocol. Fig. 8.3 shows how the online time required by our protocol depends

on several parameters of the decision-tree learning problem: the branching

factor, the number of feature attributes, the number of tiers, and the number

of records. Online time is independent of the number of attributes. This

makes our protocol especially well-suited to scenarios where the set of feature

attributes is a relatively small subset drawn from a very large set of total

attributes.

To evaluate performance on real-world data, we applied our protocol

to the “cars” dataset from the UC Irvine machine-learning repository. This

dataset has 1728 records and 7 attributes with a branching factor of 4. We

chose to build a tree with 5 feature attributes and 2 tiers. Table 8.1 shows the

time consumed by different online components of our protocol.

This experiment demonstrates that, unlike generic techniques, our pro-

tocol can be successfully applied to problem instances of realistic size.
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sym. enc sym. dec homo. dec homo. add OTs eval
user 114s 0s 7.1s 0.07s

185.2s
4.2s

server 0s 171s 8.0s 41.9s 12.7s

Table 8.1: Runtime for the “cars” dataset from the UC Irvine repository.

8.6 Conclusions

The field of privacy-preserving data mining has two approaches to the

problem of executing machine-learning algorithms on private data. One ap-

proach sanitizes the data through suppression and generalization of identifying

attributes and/or addition of noise to individual data entries. The sanitized

version is then published so that interested parties can run any data-mining

algorithm on it.

The other approach is to use cryptographically secure multi-party com-

putation techniques to construct protocols that compute the same answer as

would have been obtained in the non-private case. This approach has typi-

cally been applied when the relationship between the parties is symmetric: for

example, the database is partitioned between them and the result of the pro-

tocol execution is that both parties learn the same output based on the joint

database. By contrast, in the sanitization approach, the parties executing the

data-mining algorithms do not have any data of their own, while the database

owner obtains no output at all.

Even if the data-mining algorithms are the same (e.g., classifier learn-

ing), the privacy-preserving versions for the two settings are substantially dif-
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Figure 8.3: Online performance of the prototype implementation

ferent. We argue that settings where data are asymmetrically distributed and

only one party learns the output are very natural in real-world scenarios. In

this chapter, we show that it is possible to apply secure multi-party compu-

tation techniques to these scenarios. Our protocol requires several technical

innovations (such as the ability to obliviously compute the sizes of several

record categories in a single pass over the database). Unlike most designs in

the literature, our protocol has been implemented, and we demonstrated that

it can be efficiently applied even to problem instances of realistic size.
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Chapter 9

Conclusions

In this thesis, we have examined several aspects of privacy-preserving

data mining. In Chapter 4 we showed how a data miner can collect data from

a group of individuals in such a way that the individuals are assured that

the data miner does not know who provided which response. In Chapter 5

we examined the sanitized data publication paradigm, which alters data prior

to release in order to preserve the privacy of constituent individuals. We

showed how providing even modest privacy guarantees requires that the data

be altered to the point that it is nearly useless.

By providing prototype implementations and performance statistics,

this thesis shows that secure multi-party computation protocols are not only

of theoretical interest, and can in fact be implemented and applied to real-

world problems of modest size. Furthermore, this thesis bridges the gap be-

tween the scenarios that are typically considered in the sanitized publication

and secure multi-party computation frameworks. The sanitized publication

literature has focused on scenarios where the data is controlled by one party,

and the algorithm that is to be run on the data is controlled by a different

party. By contrast, the secure multi-party computation literature has focused
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on scenarios where the algorithm is known to all parties, and where the data

is partitioned between parties. This has made direct comparisons of sanitized

publication and secure multi-party computation approaches difficult, because

the two approaches are used to solve similar problems but in completely dif-

ferent scenarios. In this thesis, Chapters 7 and 8 show how secure multi-party

computation can be applied to problems where one party owns a secret algo-

rithm, and another party owns secret data.

Privacy-preserving data mining remains a difficult problem. Real-world

solutions will need to rely on a combination of legal, regulatory, and tech-

nological components. It is unlikely that we will ever reach a point where

technological solutions alone can completely guarantee the privacy of indi-

viduals while allowing for meaningful exploratory data mining. Nevertheless,

algorithms such as those developed in this thesis remain useful because they

precisely identify what security guarantees are possible under different sce-

narios. This provides a framework that allows legal regulations to be more

precisely followed when they are deployed in actual software to be used in

real-world scenarios.
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