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The Scotland Formation onshore Barbados is often called the only example of a 
successful hydrocarbon producing accretionary prism reservoir. In spite of this, the 
hydrocarbon system elements of the BAP have nevertheless not been well studied. Seven 
outcropping locations of the Scotland were examined to document stacking patterns, key 
surfaces, depositional element geometries, facies occurrences their vertical and lateral 
extent, and the unit’s gamma response. Six facies were identified in outcrop: silty muds; 
laminated, centimeter-scale sandstones interbedded with silts and muds; cross-stratified 
sandstones; massive, medium to coarse-grained sandstones; very coarse grained sands 
with gravel or pebbles; and rare conglomerates. These facies combine to form 
architectural elements—channels, levees, and depositional lobes. Observations from 
petrographic, outcrop and seismic data   suggest that the Scotland Formation was never 
deeply buried within the prism proper and was possibly deposited  within the much larger 
proto-Tobago Basin. 
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Chapter One: Introduction 
 

The study area of the Barbados Accretionary Prism (BAP), also called the Lesser 

Antilles Accretionary Prism by some workers, is located in a convergent margin setting 

near the eastern edge of the Caribbean plate. At this location the Caribbean plate is 

overriding the westward dipping Atlantic plate, moving eastward at a rate of 

approximately 20 mm a year, (Mann, 1999; Weber, et al., 2001; Perez, et al., 2001) 

(Figure 1.1). This plate boundary is marked by the presence of classic convergent margin 

features such as an accretionary prism (The Barbados Accretionary Prism), a volcanic 

island arc (The Lesser Antilles Island Arc and an associated forearc basin (The Tobago 

Basin) and a back arc basin (The Grenada Basin).  

The Barbados Accretionary Prism (BAP) is the considered to be the only 

hydrocarbon producing prism in the world.  One of the goals of this research is to 

examine the petroleum system of the BAP and determine whether the conditions that 

have made hydrocarbon production possible are unique or whether they exist within 

similar settings and can be successfully exploited. The following research problems will 

be investigated. 

How has the Southern Barbados Accretionary Prism (BAP) developed through 

time?  

What is the sedimentation history of the Southern BAP and what is the 

composition and timing of the Tobago Forearc Basin fill? 

What is the nature of the petroleum system of the southern BAP? 

 

 



 2

1. Development history of the southern BAP 

Convergent margins can be accretionary, erosive or a combination of the two. 

Accretionary margins are defined as those which are experiencing net accretion over 

recent geologic time (Clift and Vannucchi, 2004) (Figure 1.2). Even so at margins 

experiencing net overall accretion, up to 70 % of the sediment may be being subducted 

(von Heune and Scholl, 1991; Clift and Vannucchi, 2004). 

In the study area sediments which have accumulated on the Atlantic abyssal plain 

are accreted to the front of the Caribbean plate, as the Atlantic plate is subducted. This 

has resulted in the growth of an accretionary prism that is greater than 300 km wide and 

has sediment thicknesses that exceed 18 km (Torrini and Speed, 1989; Westbrook et al., 

1973, Moore et al., 1982; Valery et al., 1985; Speed, 1983; Brown and Westbrook, 1987).  

Accretionary prisms grow through frontal accretion and underplating. Frontal 

accretion is the mechanism by which seaward sediments are off-scraped above a basal 

decollement and incorporated into the growing accretionary prism. In this manner 

accretionary prisms become wider (Moore and Biju-Duval, 1984, Shipley and others, 

1982; DiTullio and Byrne, 1990; Von Heune and Scholl, 1991; Morris et al. 2002). 

Underplating occurs when off-scraped sediment passes beneath the sediment pile and is 

added to the base of the prism. This is the mechanism by which prisms thicken (Moore 

and Biju-Duval, 1984, Shipley et al., 1982; DiTullio and Byrne, 1990; Von Heune and 

Scholl, 1991; Morris et al. 2002).   

The Barbados Accretionary prism has an extraordinarily thick sediment pile- up 

to 18 km (Speed, 1983; Brown and Westbrook, 1987) that may partially be the result of 

thickening of the prism by underplating. At 20 mm a year, it also is experiencing one of 

the slowest rates of convergence recorded at accretionary margins world wide (von 

Heune and Scholl, 1991).  The evolution of the Tobago Basin is recorded by the 

sedimentary units within it that show its steady decrease in size since the Mid-Miocene 

(Chaderton, 2005). The existence of a broad proto-Tobago Basin (Speed et al., 1983; 
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Brown and Westbrook, 1987) has been previously documented however charting the 

progressive evolution and the sedimentation history of the TFB will allow us to better 

understand the development history of the Southern BAP. 

 

2. The nature and origin of the sediments in the southern BAP 

Four stratigraphic units are identified in the onshore geology of Barbados. They 

consist of: the Scotland Formation (Lower-Middle Eocene and possibly Oligocene) 

(Trechmann, 1925, 1933, 1937; Senn 1944), a unit of interbedded sands and muds, the 

Joes River Formation (post-Miocene), an intrusive unit interpreted to be paleo-mud 

volcano sediments, the Oceanic Formation (Middle Eocene to Middle Miocene), which 

are pelagic muds, marls and interbedded volcanic ash beds and Pleistocene Limestones  

(Trechmann, 1925, 1933, 1937; Senn 1944) which cap the island Barbados. 

There is a long standing dispute about the relationship of the Oceanic Formation 

with the Scotland Formation. The Oceanic Formation is a unit comprised of pelagic 

muds, marls and interbedded volcanic ash beds (Speed and Torrini, 1989; Torrini and 

Speed, 1994). It has been described as both an in situ deposit uplifted through the simple 

rise of the prism (Pudsey, 1982) and as a deposit that has been thrust into place forming 

nappes (Speed and Torrini, 1989; Torrini and Speed, 1994). The Oceanic Formation that 

is recognized onshore Barbados has been identified as a unit formed within the Tobago 

Forearc Basin.  The Scotland Formation comprised of sands and muds and has been 

interpreted as off-scraped abyssal plain or trench deposits that were tectonically 

incorporated into the accretionary prism (Speed and Larue, 1982; Larue and Speed, 1984; 

Torrini et al., 1985; Gortner and Larue, 1986). 

Pudsey (1982) suggested that the Oceanic Formation is an in situ deposit which 

has been tectonically uplifted along with the Barbados Ridge. In support of this 

hypothesis, Poole and Barker’s (1980) geological map of Barbados featured a generalized 

vertical section in which the Oceanic Formation conformably overlies the Scotland 
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Formation.  This interpretation requires the Scotland Formation to be an older unit than 

the Oceanic Formation; however some age over lap has been noted by some workers. 

Speed (1982) contended that the Oceanic Formation was deposited within the 

Tobago Forearc Basin and has subsequently been thrust more than 20 km eastward to its 

present position. Speed interpreted the Oceanic Formation as having a lower section 

which exhibited nappe geometries as a result of its eastward transportation, and an upper 

section which was a single undisrupted sheet. The timing of the emplacement of this 

sheet is said to be late Miocene or Pliocene when the sheet was thought to have fully 

covered the underlying Scotland Formation. This interpretation accounts for the over-

lapping age dates of the Scotland and Oceanic Formation but requires significant 

translation and over thrusting of sediments that is not observed in seismic data. 

There are inconsistencies with both of the previously mentioned interpretations 

and further examination of the Scotland Formation that outcrops onshore Barbados and 

analysis of the seismic data will allow us to gain an understanding of the depositional 

environments and location of the Scotland and the Oceanic Formations. Outcrops of the 

Scotland Formation on the island of Barbados were examined, to determine the lateral 

continuity and vertical facies associations and architectural elements within the Scotland 

outcrops, to define an environment of deposition for each described outcrop and to place 

these disparate outcroppings of the Scotland in a large-scale framework of depositional 

setting for these units.  

 

3. The nature of the Petroleum System of the southern BAP 

Oil and gas is produced from the Woodbourne Oil field in onshore Barbados from 

what are believed to be structurally segmented Scotland Formation sandstones within a 

petroleum system where the play elements are poorly understood.  The Sandy Lane #1 

well drilled offshore Barbados proved significant sands in the sections of interest in 

offshore basins and recorded gas shows; however no liquid hydrocarbon shows have been 
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reported. The Scotland reservoir rock outcrops onshore in several localities and has been 

the subject of preliminary work to understand the sedimentology, depositional 

environments and reservoir architecture.  It is often steeply dipping and highly deformed 

complicating the details of its nature; however several outcrops do lend themselves to 

laterally extensive observations of facies distribution and surface relationships. 

The fine grained pelagic muds and marls of the Oceanic Formation are considered 

to be the broad regional seal of the petroleum system. Understanding the regional extent 

and distribution of the Oceanic Formation across the southern BAP will help us with our 

understanding of the BAP petroleum system as a whole. 

No source rocks are exposed onshore Barbados, nor have they been penetrated by 

offshore drilling or identified in seismic data. However, geochemical work carried out by 

geoscientists from the United States Geological Survey (USGS) suggests that Barbados 

oils are of uniform thermal maturity and originate from a Cretaceous source rock (Hill 

and Schenk, 2005). 

Fluid migration within accretionary prisms occurs along extension fractures, veins 

faults and also through sediment pores as a result of high fluid pressure created by the 

reduction of pore volume due to sediment burial (Moore, 2001). Within the BAP, mud 

volcanoes are associated with thrust faults.  Fluid-rich mud that reaches the surface forms 

expulsion features, suggesting that these structural features are fluid migration pathways.   

This dissertation focuses on the defining the characteristics and distribution of the 

onshore reservoir the Scotland Formation and examining its potential distribution 

offshore Barbados. In addition the relationship with the Scotland Formation and its 

equivalents with the Oceanic Formation; which is the regional seal, will be examined. 

Source rock and migration pathway analysis was not undertaken as part of this study. 
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DATA AND METHODOLOGY 

Extensive work undertaken over the course of four field seasons of varying length 

offered the opportunity to revisit the previous geoscientists’ observations of fault 

frameworks and structural relationships. The field observations benefited from 

knowledge of the extensive 2D seismic data surrounding the island (Figures 1.3, 1.4).  A 

number of faults are observed on the island and had to be taken into consideration when 

mapping stratigraphic relationships.  The active tectonic setting has resulted in extensive 

post depositional modification of the Scotland Formation. The study area is characterized 

by seismic and outcrop scale thrust faulting and folding. Thrust faults, antiformal and 

synformal features observed in outcrop all have the NE-SW orientation noted by Speed, 

(1983).  

The lateral continuity of Scotland Formation sands were mapped across outcrops. 

Several measured sections were made at each large outcrop to analyze the stacking 

patterns, lateral continuity and geometries of beds. Facies descriptions, and sample 

collection for petrography was also undertaken in the field. 

A total of 44 samples were made into thin sections. The samples were left 

unpolished and without slip covers and were stained in two separate batches. The 

Houghton (1980) methodology that stains potassium feldspar yellow and plagioclase 

feldspar pink. All of the samples were examined under microscope. Ten samples were 

identified as representative and chosen for more in depth analysis for point counting and 

measurements. Only 10 samples were chosen for point counting because most were 

measured at one outcrop location. The selected samples were scattered across and so a 

smaller number of samples were scattered across the field area.  

Existing 2D seismic utilized in previous research (Chaderton, 2005) were 

available for further analysis and integration with field and subsurface observations. In 

addition 200 well logs from the Woodbourne oilfield were available for correlation and 

integration with field and seismic observations.  
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Chapter 2: The Anatomy of a Coarse Grained Turbidite, Scotland 
Formation, Barbados West Indies 

 

If production in the BAP hydrocarbon province is to continue in the future, and 

perhaps increase, then there is an imperative need to improve understanding of the BAP 

hydrocarbon system and its elements.  One of the most important elements of the system 

is the primary reservoir unit; the Scotland Formation. 

The primary producing oil field on the island of Barbados, the Woodbourne 

oilfield is located in the south of the island and produces from the Eocene-Oligocene age 

interbedded sandstone and shale succession of the Scotland Formation. Outcrops of the 

Scotland Formation and other Tertiary units are exposed where the island’s Pleistocene 

limestone cap has been eroded in northeastern Barbados (Figure 2.1, 2.2). 

DATA  

Twenty-seven measured sections were constructed for seven different outcrop 

locations across the island of Barbados (Figure 2.3, 2.4). Outcrops were also documented 

with photomosaics and gamma scans. Rock samples were selected for petrographic 

analysis and diagenetic history.  Each outcrop location varied in terms of the extent of 

rock exposure, type and intensity of structuring, accessibility and weathering conditions.  

The number of sections measured at each locality varied from one, at Inner Turners Hall 

Ridge (ITR) to six at Chalky Mount Ridge (CMR). Photomosaics and walking surfaces 

for correlation helped document the nature of lateral stratigraphic associations and 

vertical stacking patterns.   
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DESCRIPTIVE METHODOLOGY 

Each section documented sedimentary structures, degree and type of bioturbation, 

grain size, bed thickness, paleocurrent indicators and paleocurrent directions.   These 

characteristics were used to define six facies the facies associations and other 

architectural elements that they comprise. The six facies have also been described based 

on the spectrum of deposits defined by Lowe (1982) that discusses a full range of 

sediment gravity flows, including both high and low density flows (Figure 2.5).  The six 

facies identified in the Scotland Formation outcrops include: 1. conglomerates, 2. very 

coarse grained sands with gravel or pebbles 3. massive, medium- to coarse-grained 

sandstones; 4. cross-stratified sandstones, 5. laminated centimeter-scale sandstones 

interbedded with silts and shales, and 6. silty shales with rare sand beds (Figure 2.6, 2.7).   

These facies combine to make up channel fill, channel-margin/levee, master 

levee/overbank levee and lobe facies associations. 

 

Channels 

A single channel element is the product of a single cycle of channel cutting, 

filling and avulsion and abandonment (Sprague et al., 2002; Abreu et al., 2003). Channels 

in the Scotland Formation have large levees but most channels have small levees or are 

unleveed.  Channel fill bodies are composed of the coarsest sediments seen in outcrop, 

the channel fill axes are comprised of basal conglomerate lag deposits of Facies 1, pebbly 

sandstones of Facies 2 thick-bedded medium coarse grained sandstones of Facies 3, and 

thin bedded fine grained turbidites (Facies 5) (Lowe,1982) (Figure 2.7).   

 

Levees 

Levee (or inter-channel) deposits are channel marginal wedges formed by the 

overbanking of flows causing the deposition of thin bedded turbidites of Facies 5. In 
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ancient systems they include by channel-related overbank deposits, overbank wedges 

lacking sizeable channel fill units but locally containing discrete meter-thick packages of 

thin-bedded and fine-grained sandstone or mudstones of Facies 6 that are laterally 

persistent. These deposits are not commonly recognized in ancient fans and it has been 

suggested that they are often mistaken for ‘distal’ turbidites (Stow, Reading and 

Collinson, 1996) (Figure 2.7).  

Where these deposits overlie channel complexes, they record an abandonment 

phase in space or time of the channel complexes or channel complex set (Schwarz and 

Arnott, 2007).   Levee deposits are characterized by the occurrence of thin bedded 

turbidites that occur as bundles of up to a few meters thick, with even- and parallel-

bedding surfaces and minor lensing and wedging. Levee or inter-channel deposits are 

distinguished from basin plain deposits by the occurrence of broad and shallow channels 

that do not occur in basin plain deposits (Mutti, 1977).   

Lobes 

Lobes occur as roughly tabular, non-channelized bodies, 3 to 25 m thick 

composed of well-graded to thick-bedded classic turbidites, commonly developed as very 

small-scale, thinning- and thickening- upward cycles. This facies association is 

comprised of Facies 3, 4 and 5 of the Scotland Formation outcrops. Erosive bases are not 

common and have less erosional relief when they do occur than in some other elements 

of a fan system (Reading, 1991) (Figure 2.7).   

 

Deep Water Hierarchy 

Channel fill and channel margin/levee facies associations are comprised of high 

and low density turbidite deposits. A channel complex is comprised of two or more 

vertically or laterally stacked channel elements- of similar architectural style (Campion, 

2000; Sprague et al., 2002; Abreu et al., 2003) (Figure 2.8).   
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Two or more channel complexes stack vertically to form a channel complex set 

The channel complex set is bound at its base by a basinward shift in facies and at its top 

by a surface of abandonment. Genetically related, stacked channel complex sets form a 

channel complex system (Campion, 2000; Sprague et al., 2002. Abreu et al. et al., 2003) 

(Figure 2.9).  

Chalky Mount 

The Chalky Mount outcrop (CM) is approximately 100 m high at its highest point 

and has over 400 m of continuous lateral exposure (Figure 2.10). Steep surfaces and the 

friable nature of the outcrop constrained the location of the measured sections. It is at 

location 1 in Figures 2.3 and 2.4. 

Description 

At the Chalky Mount exposure five stratigraphic sections were measured to 

document the vertical stacking of stratigraphic units and the lateral relationships between 

beds. The Chalky Mount section is composed of several separate depositional cycles 

which stack to form an overall fining up stratigraphic succession that is overlain by 

several meters of fine grained muds and silts (Figure 2.5, 2.6).  The stratigraphic section 

consists of over 90% coarse-grained to granule sized sands. Individual beds at this 

location are predominantly S1 and S3 beds of Facies 2 and 3 that have wavy or scoured 

bases  (Figure 2.11) along with the ripple laminated Tc beds of Facies 4 (Figure 2.12) and 

the cm scale, interbedded sand, silt and mud Tb, Td and Te f beds that comprise Facies 5 

(Figure 2.13, 2.14). The coarse grained beds of Facies 2, 3 and 4 comprise the channel 

axis fill (Sprague et al., 2002; Abreu et al., 2003; Schwarz and Arnott, 2007) (Figures 2.8 

and 2.9). The thin bedded turbidites of Facies 5 laterally inter-finger with channel fill 

associations and are interpreted as the margins or localized levees of the channels 

(Deptuck, 2003; Schwarz and Arnott, 2007). Up to nine individual channel elements 

made up of channel fill and margin facies associations are at this location. Channel 
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element number 6 has the mostly deeply eroded base at this location with approximately 

5 m of scour (Figure 2.15).   Together the eight stacked channel elements form a channel 

complex in the sense of Campion (2000) (Figure 2.8 and 2.15). The upper portion of the 

outcrop is characterized by 10 m of laminated silts, muds and rare sand beds that 

comprise Facies 6. It is possible that more of this facies existed at one, time but was 

eroded. Thin bedded turbidite deposits that overlie a channel complex such as those of 

Facies 6 at this location, record an abandonment of the channel complex in space or time 

(Schwarz and Arnott, 2007). 

  

Chalky Mount Lower (CML) 

This section is located at the base of the prominent Chalky Mount Ridge.   

Although the contact between the two areas is obscured by thick vegetation, it is thought 

to be a fault due to the appearance that the entire Chalky Mount Upper package seems to 

have been thrust into place with beds at the southern end of the outcrop as the beds are 

almost vertical.  The Chalky Mount Upper package is nevertheless still interpreted to 

overlie the Chalky Mount Lower at this locality.  However, one must bear in mind that 

the upper part has been displaced some unknown distance from its original location of 

deposition.  

Description 

The Chalky Mount Lower (CML) section is a large thickness of finer-grained 

sediments geographically located beneath the Chalky Mount Upper section.  However, 

the exact stratigraphic relationship to the CMU is not known due to separation of the two 

intervals by a thrust fault.  

The CML consists of 50 meters of continuous section characterized at its base by 

several thicker bedded (20-70 cm), sharp-based, coarse-grained sands (Figure 2.16a-c). 
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These poorly sorted sands are laterally continuous for the length of the outcrop 

(approximately 20 m). These sands are coarse grained with some granules. 

  The bases of these sands are erosive and are locally overlain by a lag of armored 

mud balls.  Sandstone beds become thinner up-section and finer. The finer-grained sands 

have both planar laminations and climbing ripples.  However, ripples are not found up-

section as the uppermost sands show only parallel laminations. Dewatering structures 

related to the loading of sand beds onto finer grained silt and mud beds was also noted.  

Although there are thin (2-4 cm) sand beds at the top of the section, the majority of the 

prominent sand beds occur at the base of the section.  Some unidentified trace fossils 

appear in the units. 

The lower 10 meters of the section is dominated by interbedded centimeter scale 

Te, Tb beds, minor Tc, Td and rare Ta beds that make up the sands, silts and muds of Facies 

6. In this lower 10 m, there are medium grained sands with erosive bases that are absent 

in the upper portion of the section. Successions of thin bedded turbidite deposits that are 

10’s of m thick (> 40 m) are interpreted to record an abandonment of the channel 

complex set in space or time (Campion, 2000; Schwarz and Arnott, 2007). In addition the 

presence of sand beds with scoured bases confirm that this thick deposit of Facies 6 is not 

a distal basin plain deposit, but a thick master levee deposit as described by Mutti (1977). 

 

Sleeping Giant Ridge (SGR) 

The Sleeping Giant Ridge outcrop (Figure 2.17) is separated from the Chalky 

Mount by a NE-SW oriented thrust fault (Poole and Barker, 1980; Speed, 1983). 

Although there is a clear relationship between the two outcrops, the amount of 

displacement from one outcrop to another is unknown.  Therefore, although the Sleeping 

Giant Ridge outcrops are interpreted as the same depositional “phase” of the system as 

the Chalky Mount Upper, the beds that have been measured at each locality cannot be 

traced from one outcrop to the other. 



 13

Description 

Four stratigraphic sections were measured to document the vertical stacking of 

stratigraphic units and the lateral relationships between beds at the Sleeping Giant Ridge 

exposure.    

Individual beds at this location are predominantly S3 beds with Tc, and rare S1 beds 

(Figure 2.18) that have wavy or scoured bases that comprise the coarse and medium 

grained sand beds of Facies 2, 3 and 4, (Figure 2.20). In addition Tb, Td and Te make up 

the cm scale, interbedded sand, silt and mud beds that comprise Facies 5 (Figure 2.21).  

Coarser grained beds of Facies 3 and 4 overlying finer grained beds of Facies 5 load into 

the finer grained beds resulting in soft sediment deformation features such as flame 

structures (Figure 2.22). The coarsest grained beds of Facies 2, 3 and 4 comprise the 

channel axis fill (Schwarz and Arnott, 2007) and the thin bedded turbidites of Facies 5 

laterally inter finger with the channel fill facies associations and represent the margins of 

the channels or local levees (Deptuck, 2003) (Figures 2.7). Up to 6 channel elements as 

defined by Sprague (2002) comprise Facies 1, 2, 3 and 4 channel fill and Facies 5 channel 

margin deposits at this location (Figure 2.18). These stacked channel elements form a 

portion of a channel complex as defined by Sprague (2002). 
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East Coast Road  

Although the East Coast Road outcrop at the East Coast Road cut is not directly 

accessible when walking from the SGR outcrops, the SGR outcrop is located less than 

100 meters from the East Coast Road exposures.  Therefore, the stratigraphic 

relationships between these two outcrops are uncertain, but they are probably related.  

The lower portion of the outcrop is heavily vegetated and overgrown, nevertheless after a 

bit of effort, descriptions were made of a continuous 325 m section (Figure 2.9).  

Description 

This section is the easternmost exposure of Sleeping Giant Ridge and it is 

identified using the acronym of CRBSGRF. The section that is ~ 325 m long was 

measured to document the vertical stacking of stratigraphic units and the lateral 

relationships between beds at the East Coast Road exposure Figure 2.23a-h). Vegetation 

cover in this area is extensive and several portions are likely now obscured by vegetation 

cover or rock falls.  

At this location S1, S3 and R3 beds make up Facies 1, 2 and 3 with the Tb, Tc, Td and 

Te comprising Facies 4 and 5. Channel fill associations are made up of the combination of 

Facies 1, 2, 3 and 4 that make up the coarsest grained beds within the system that overlie 

erosive channel bases. The channel margins are comprised of thin bedded turbidites of 

Facies 4 and 5 that are interpreted as the margins or localized levees of the channels due 

to their lateral interfingering relationship with channel-fill facies associations (Deptuck, 

2003; Schwarz and Arnott, 2007). Up to 14 individual channel elements make up channel 

fill and margin facies associations at this location (Figure 2.23a-g). At this location 10 

stacked channels form a channel complex (Figure 2.23b-f) that is 167 m thick. This 

channel complex is overlain by at least 7 m and possibly up to 10 m, of thin-bedded 

turbidites of Facies 5 that record a localized abandonment phase as discussed by 

Campion (2000). This channel complex is overlain by four stacked channels that form a 
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second channel complex (Figure f-g) that is 28 m thick. This channel complex is overlain 

by at least 79 m of   thin-bedded turbidites of Facies 5 and 6 that make up an extensive 

master levee (after Mutti, 1977). 

The stacked channel complexes are bounded below by 31 m of Facies 6 of 

channel master levee facies (Figure 2.23a) as described by Mutti (1977), Deptuck (2003) 

and Schwarz and Arnott  (2007). They are also bounded above by 79 m of Facies 6 

(Figure 2.23h). Two channel complexes can be identified at this location and they are 

vertically  stacked and bound below  by 31 m of an extensive master levee sequence and 

above by 79 m of a master levee sequence that records a more regional abandonment of 

the system set in space or time (Campion, 2000; Schwarz and Arnott, 2007).  

Two or more channel complexes stacked vertically are called a channel complex 

system. The channel complex system is bound at its base by a basinward shift in facies 

and at its top by a surface of abandonment (Campion, 2000; Sprague et al., 2002; Abreu 

et al., 2003). This location has two channel complexes that combine to form a channel 

complex system set and is bound below by 31 m of a basinward shift in facies and above 

by a surface of abandonment. The entire 325 m of this outcrop is therefore interpreted as 

an entire channel complex system set as described by other authors (Campion, 2000; 

Sprague et al., 2002; Abreu et al., 2003).   

 

Ermy Bourne 

The Ermy Bourne (EB) locality is the first package with high sand content that 

overlies the abandonment facies that cap the Sleeping Giant Ridge section.  

Description  

The Ermy Bourne (EB) section is exposed in a series of spectacular folds that 

allow accessibility for closely spaced correlation of beds.  Three stratigraphic sections 

were measured at the locality.  The entire upper outcrop is underlain by a thick 
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succession of interlaminated siltstones and mudstones, with thin interbedded sands; very 

similar in appearance to those that outcrop at the Walker Ridge locality.  These fine-

grained units stratigraphically overlie the Sleeping Giant Ridge section, suggesting a 

second period of sand rich deposition.  

 S3 beds with scoured bases (Facies 3) and Tc, and Td beds of Facies 4 and 5 are 

the most common individual beds identified at this outcrop. Channel fill at this location is 

made up of the stacked medium to coarse grained sands of Facies 3 and the levee facies 

association that are comprised of the thin bedded turbidites of Facies 4 and 5 are 

interpreted to represent the margins or localized levees of the channels due to their lateral 

interfingering relationship with the channel fill facies association (Deptuck 2003, 

Schwarz and Arnott, 2007). Only one complete channel that is at least 5 m in height is 

identified at this location and it overlies 9 m of a Facies 5 levee association (Figure 2.24). 

The EB section appears to record a return of the channelized depositional system 

after abandonment following the deposition of the Sleeping Giant Ridge channel complex 

set   

 

Walker’s Ridge 

The Walker’s Ridge outcrop (Figures 2.25, 2.26, 2.27) is the most northerly 

location (Figure 2.3, 2.4) and the stratigraphic relationships with the other locations to the 

south are unclear. 

Description 

The Walker’s Ridge section is an extensive outcrop of laminated shales and sands 

(60 + meters) overlain by stacked thick sands separated by silty shale intervals.  Three 

measured sections; WRA, WRB and WRC were correlated across the outcrop and they 

define a continuous 70 meter thick section. Trace fossils have been identified as 

Diplocraterion habichi (J. MacEachern, pers. comm., 2007).   These trace fossils are 
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common in shallower marine water environments but can also be indicative of a 

depositional setting near the apex of a fan complex (Figure 2.28). The U-shaped burrow 

of Diplocraterion is indicative of high energy environments which experience erosional 

and abrupt depositional events (Pemberton and MacEachern, 1995).  

Individual beds at this location are predominantly S3 beds (Facies 3) with Tb, Tc, Td 

(Facies 5) and rare R3 beds (Facies 1) that overlie scoured bases (Figures 2.29, 2.30, 

2.31). Channel-fill associations at this location are dominated by stacked beds of Facies 3 

coarse-grained beds within the system that overlie erosive channel bases. The channel 

margins are comprised of thin bedded turbidites of Facies 5 that are interpreted as the 

margins or localized levees of the channels due to their lateral interfingering relationship 

with channel fill facies associations (Deptuck, 2003; Schwarz and Arnott, 2007). Up to 5 

individual channel elements make up channel fill and margin facies associations at this 

location. The five stacked channels form a channel complex (Figure 2.27) that is 40 m 

thick.  

Thick successions of thin bedded turbidite deposits (10’s of m thick- > 40 m) are 

interpreted to record an abandonment of the channel complex set in space or time 

(Campion, 2000; Schwarz and Arnott, 2007). The presence of sand beds with scoured 

bases (figure 2.32) confirm that this thick succession of Facies 6  is not a distal basin 

plain deposit, but a thick master levee deposit as described by Mutti (1977). 

The Walker’s Ridge lower section is interpreted to have been deposited as outer 

levees in association with a laterally adjacent large, deep water channel system.  These 

deposits appear to be classic deep water levee deposits as described by Mutti (1977).  The 

Walker’s Ridge is expected to be laterally associated with a channel sequence similar to 

the overlying Walker’s Ridge Upper. 
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Mount All 

The beds of the Mount All outcrop are almost vertical and stratigraphic 

relationships between this and the other study locations are uncertain.  Even the 

stratigraphic relationship between Mount All and Inner Turner’s Hall Ridge, located less 

than 1000 m to the northwest, is unclear. 

Description 

The Mount All outcrop has been extensively folded and no lateral relationships 

could be ascertained between individual measured sections. The short measured sections 

were made at the exposed limb of the anticline (MAA, 8 m thick section) and at the 

vertical beds adjacent to this anticlinal feature, MAB (20 m thick section). MAA appears 

to occur stratigraphically higher than MAB. 

Very robust and abundant Thalassinoides (Figure 2.33) and as well as Planolites 

trace fossils are observed at the Mount All location. Thalassinoides is interpreted as a 

combined feeding and dwelling burrow, but has been observed as a boring geometry in 

some cases. The probable trace maker was an arthropod. Planolites is interpreted as a 

feeding burrow made by a worm-like animal. 

 

MAA locality 

Individual beds at this location are predominantly S3 beds (Facies 3) along with, 

Td beds and Te beds of Facies 5. Channel fill associations at this location are dominated 

by stacked beds of Facies 3 coarse grained beds within the system that overlie erosive 

channel bases. The channel margin association at this location is made up of thin bedded 

turbidites of Facies 5 that are interpreted to represent the margins or localized levees of 

the channels (Deptuck, 2003; Schwarz and Arnott, 2007) and are overlain by the channel 

fill deposits (Figure 2.34). 
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MAB locality 

S3 beds of Facies 3 along with Tb, Tc beds and Te beds of Facies 5 are the most 

common individual beds observed at this location. Channel fill facies associations are 

dominated by stacked Facies 3 coarse grained beds within the system that overlie erosive 

channel bases. The channel margin facies associations are comprised of thin bedded 

turbidites of Facies 5. Because the beds at this outcrop are almost vertical, lateral 

relationships cannot be determined. This section is a vertical succession of alternating 

channel fill and channel margin facies associations (Figure 2.35). 

 

Turner’s Hall Ridge 

Description 

This location consists of ~ 70 m of continuous exposure. Because there appears to 

be little lateral variation in lithology or bed architecture across the 60 m width of outcrop, 

only one section was measured to characterize the location (Figure 2.36). Sandstone beds 

vary from medium-grained (Figure 2.37) to fine-grained and are thickest at the base of 

the section with a maximum thickness of 420 cm. Sand beds are capped with ripple-

laminated, fine-grained sands and silts. Minor loading and planar lamination is observed 

through out the section. There is no very coarse-grained sand or conglomerate component 

and no erosive bases were observed. 

The first 20 m of the section is dominated by S3 (Facies 3) beds that are 

interbedded with Tb, Tc and minor Td beds (Facies 4 and 5). Up section S3 are rare and Tc 

and Td beds make up the bulk of the section. (Figure 2.38 a-e). This section is distinct 

from the Chalky Mount Shale Ridge and Lower Walker’s Ridge sections as it has a 

higher sand content, but does not show the scoured bases, intermittent very coarse 

grained sands seen at the other two outcrops.  
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Lobes are non-channelized bodies, 3 to 25 m thick composed of well-graded to 

thick-bedded classic turbidites in which erosive bases are uncommon (Stowe, Reading 

and Collinson, 1996).  Based on this description, the ITR succession is interpreted to 

represent a lobe deposit. 

 

Spa Hill 

Description 

Two stratigraphic sections were measured to document the vertical stacking of 

stratigraphic units and the lateral relationships between beds at the Spa Hill Fold (SHF) 

exposure. The entire outcrop is only 35 m in length. 

The SHF section is ~ 13 meters thick and sandstones vary from very coarse 

grained to medium grained and are massive and blocky with no fining upward trends 

(Figure 2.39). 
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DISCUSSION 

General Depositional Model 

Mixed sand and mud systems submarine systems are defined as those that have 

sand to mud ratios of 30-70% (Reading, 1991; Richards et al. 1998). This type of 

submarine fan system is characterized by two main architectural elements; a channel-

levee system and down-dip depositional lobes (Normark, 1978; Walker, 1978; Normark 

et al., 1979; Droz and Bellaiche, 1985).  Channel sand bodies are offset stacked and 

bounded by levee fines. Down dip equivalents are stacked lobate sand bodies made up of 

mudstones and sandstones (Reading, 1991; Richards et al., 1998). Channel-levee systems 

form the conduits through which sediment is distributed to the main area of the fan. 

These systems may become mud-filled if fan abandonment is rapid or can contain a 

central core of coarse-grained, highly heterogeneous channel fill deposits, flanked by 

levee siltstones and mudstones if the fan is progradational (Walker, 1978; Winn and Dott, 

1979; 1985 Tyler et al., 1984; Mutti et al., 1985a; Weuller and James, 1989; Schuppers, 

1992; Richards et al., 1998). Channel facies in these systems vary from sandy 

conglomerates and pebbly sandstones with thick-bedded, high density turbidites to fine-

grained thin bedded turbidites and hemipelagic mudstones (Richards et al., 1998).  

The Chalky Mount locality is a good example of this fan architecture.  The 

Chalky Mount Ridge has channel-levee-overbank complex architectural elements. Sandy 

channel fill within the channel axes are deposits from individual channelized flows within 

the larger erosionally confined channel complex system. Silty mudstone intervals are out 

of channel levees, deposited after the individual abandonment of coarse-grained channels 

(Figure 2.40).   

It is believed by the author that this is a mud-rich fan system; however, The sand-

mud ratio in the measured sections is skewed toward higher sand percentages by the fact 

that the thick sandy units are what more prevalently expose themselves for analysis.  
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Sandy units are the most resistant to weathering and generate poorer soils for the growth 

of vegetation.  The muddier and siltier portions of the outcrop generate good soils for 

vegetation growth, and usually do not form extensive outcrops.  Interpreting this 

system to be a mud-rich fan system has implications for the distribution of sands in the 

system.  Mud-rich fans can be large systems (up to 1000s of km) dominated by well-

developed channel-levee complexes with sand mostly restricted to axial channel fill 

within the channel levee complexes (Imperato and Nilsen, 1990; Weimer, 1990, 1995; 

Richards et al., 1998). 

Lobes 

Constructional lobes form layered sand bodies. The core of the lobe may be 

dominated by massive thick-bedded high density turbidites (Kleverlaan, 1989; Kulpecz 

and VanGeuns, 1990, Richards et al., 1998). Some lobes may display more classic 

turbidites and interbedded hemipelagic shales. Examples are the Stevens Fan, 

(MacPherson, 1978; Webb, 1981) and the Marenosa-Arenacea Fan, (Ricci-Lucchi and 

Valmori, 1980; Richards et al., 1998). 

Based on this definition of constructional lobes, it is thought that Inner Turners 

Hall Ridge locality is consistent with channel mouth or depositional lobe development 

and is interpreted as the most distal feature within the system (Figure 2.40). The Inner 

Turner’s Hall Ridge location has layered sandstone beds that vary from medium-grained 

to fine-grained and are thickest at the base of the section with a maximum thickness of 

420 cm. Sand beds are capped with ripple-laminated, fine-grained sands and silts. Minor 

loading and planar lamination are observed throughout the section. There is no coarse-

grained sand or conglomerate component and no erosive bases. 
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COMPARISON WITH LARUE’S RADIAL FAN MODEL 

In Larue’s 1985 paper, five principal units of turbidite successions were described 

on Barbados and interpreted in the context of the classic “radial fan model” of Mutti and 

Ricci-Lucchi (1972). Progradational and rejuvenational sequences of the basin plain and 

lobe, channelized successions of the mid-fan and inner fan; retrogradational and 

abandonment sequences were identified.  

The Breedy’s (Walker’s Ridge Lower) outcrop was interpreted by Larue (1985) 

as an extensive abandonment sequence characterized by thick accumulations of basin 

plain mudstones. In this study, this succession has been reinterpreted as an extensive 

levee sequence, similar to that described by Mutti (1977), based on the presence of 

erosive based sand beds. The implication of the latter interpretation is that this sequence 

and the overlying sand-rich Breedy’s outcrop (Walker’s Ridge Upper) does not record an 

abandonment of the system followed by a rejuvenation as proposed by Larue, but is 

instead a system that experienced lateral shifts in the channel axis through time. The 

Scotland Formation as a whole does not record up and down system changes from mid-

fan to basin plain, but more subtle lateral changes within the mid fan from the axis of the 

channel complex to the levees of the system. The most distal facies seen in outcrop is the 

channel mouth complex at Inner Turner’s Hall Ridge (Figure 2.36, 2.38a-e). This was the 

only shift of the system in the dip direction observed in the study area. This outcrop 

probably records a slight retrogradation of the system. 
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SUMMARY DEPOSITIONAL SETTING OF THE SCOTLAND FORMATION DEPOSITS 

The facies identified in the Scotland Formation outcrops range from 

conglomerates, coarse-grained sands with gravel and pebbles to laminated silty muds and 

fine grained sands.  The facies and architectural components of the Scotland Formation 

fit into the mixed sand and mud submarine fan system of Reading (1991). The absence of 

slump deposits in outcrops, and the sand content of the system suggests a mid-fan 

depositional location for the Scotland as opposed to either a proximal, slope location or a 

distal basin plain location.  

Trace fossils can be locally well developed in submarine fans, particularly in mid 

to outer fan settings. Thalassinoides and Planolites were observed at the Mount All 

location. These trace fossils were locally abundant on the bases of mudstone beds. A 

similar assemblage of Thalassinoides, Scalarituba and Planolites were identified in the 

Nihoptupu and Tirikohua Formations of New Zealand that are comprised of deep water 

turbidites deposited in an inter-arc basin of the Northland volcanic arc (MacEachern et 

al., 2007).   

Middle fan environments often contain trace fossils along the soles of sandy 

turbidites that can suggest “shallow water” deposition (Crimes, 1977; Howell and 

Normark, 1982). Trace fossils, such as Diplocraterion habichi, that are rare in the 

Scotland Formation are generally shallow-water, high energy indicators ~ 200 m water 

depth (Pemberton and MacEachern, 1995). This anomalous trace fossil association is the 

result of the imitation of the high energy neritic environment in a mid fan setting.  This 

occurs because fast flowing depositional currents result in short lived episodes of high 

oxygenation that, coupled with the slow build-up of organic detritus in the middle fan 

leads to an imitation of high energy neritic environments (Howell and Normark, 1982). 
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ANALOGS FOR THE SCOTLAND FORMATION 

The Scotland Formation of Barbados shows similarities to the Juniper Ridge 

Conglomerate (JRC) and the associated Upper and Lower Waltham Shales which are part 

of the Great Valley Group (GVG) of California. These GVG sediments were deposited in 

a Cretaceous age forearc basin (Lowe, 2004). 

The JRC and associated Upper and Lower Waltham Shales are made up of five 

lithofacies.  Including: 

  (1) Coarse, cobble and pebble conglomerate channel fill, 

 (2) Thick bedded sandstone fill, 

  (3) interbedded sandstone and mudstone levee-deposits flanking the channels, 

  (4) thick-bedded channel mouth and proximal lobe deposits and 

  (5) Intervening thick mudstone formations made up of thin fine grained muddy 

turbidites, recording periods of low coarse clastic-sediment influx.  (Lowe, 2004) 

Facies 1, 2, 3 and 5 of the Scotland Formation correspond to the JRC channel-

levee complex system. Facies 4 corresponds to the JRC channel mouth and proximal lobe 

sandstone. Facies 6 is the equivalent of the closely associated setting of the Upper and 

Lower Waltham Shales (Figures 2.6, 2.7, 2.41 and 2.42). 
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Chapter Three: Petrographic Analysis of the Scotland Formation 
Sandstones 

Eocene-Oligocene sandstones found interbedded with sand and shale in the 

succession known as the Scotland Formation, onshore Barbados, are the equivalents of 

the reservoirs that are being produced from in the Woodbourne oilfield in the southern 

part of the island. Outcrops of this formation are exposed in the northeastern portion of 

Barbados where the Pleistocene limestone cap has been eroded to expose the underlying 

Tertiary sediments.  

The Scotland Formation sediments have been interpreted as abyssal plain or 

trench deposits that were tectonically incorporated into the accretionary prism (Speed 

1982; Larue and Speed, 1983; Torrini et al., 1985; Gortner and Larue, 1986). Their 

location onshore Barbados Island means that, if these sediments were originally deposited 

in a trench setting, they would had to have been tectonized during  subduction 

deformation, transported westward and subsequently uplifted after becoming part of the 

prism. If this is the case, these deposits were potentially translated > 100 km westward 

from the trench to the present location through shortening of the prism. 

Although none of the previous workers have disputed a trench origin for the 

Scotland Formation, the results of previous petrographic analyses suggest that the 

Scotland Formation did not experience such a tectonic history (Larue and Kasper, 1985; 

and Larue, et al., 1987; Punch, 2004).  
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PREVIOUS RESEARCH 

The source terranes of the Scotland Formation were interpreted by Kasper and 

Laure (1986) to include the Guyana Shield, the Caribbean Mountain System and possibly 

the Lesser Antilles or predecessor arc.   It is important to note that in 1985, workers wrote 

that the Eocene sandstones exposed onshore Barbados had not been deeply buried (< 40 

km) or exposed to high temperatures (< 60˚C) (Larue et al. 1985; Larue, Gortner and 

Torrini, 1987), based on extensive petrographic analysis of the Scotland Formation 

sandstones. Larue and Kasper (1986) and Larue, et al. (1987) further stated that the 

Scotland Formation was no more diagenetically mature “…than the sediments that lay 

passively on the floor of the Atlantic Ocean for 40 my…” These authors also interpreted 

the Scotland to represent abyssal plain or trench deposits that were tectonically 

incorporated into the accretionary prism.  It is hard to reconcile these two observations 

because sediments deposited so distal in the prism to their current outcropping location 

would require significant tectonic displacement associated with trench subduction, 

tectonic burial and subsequent uplift.  

In 1986, Baldwin undertook fission track analysis on the sandstones of the 

Scotland Formation. She reported that the ages of the youngest populations were 20-90 

Ma.  The results of her study also showed that the maximum temperature that the 

Scotland Formation sediments underwent was 80˚C (Baldwin, 1986). 

Punch (2004) examined 13 samples from the Scotland sandstones onshore 

Barbados found at the Chalky Mount outcrops and along the East Coast Road outcrops 

(Previous location Figure 2.3). The analyzed samples ranged from mature quartz arenites 

to feldspathic sublitharenites, sublitharenites and arkoses. Punch concluded that the 

sandstones were compositionally mature, but texturally submature and had only been 

transported a short distance.  She observed that formation fluids had caused the 

dissolution of some but not all of the feldspars. Her conclusion was that the sediments 
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had not been buried deeply or long enough to result in complete dissolution (Punch 

2004). 

All of these previous results lead to the questions of 1. How can sediments 

deposited in a trench setting now be uplifted to the highest point of the prism core with 

little or no diagenetic imprint on the sediments? and 2. If they have been subducted in 

this transport process why do they show limited signs of high pressure and temperature 

history? To address these questions we needed to reexamine the samples of the Scotland 

and reassess the diagenetic history of the deposits within the context of their depositional 

setting and within the context of previous work by Chaderton (2005) regarding the 

history of Tobago Forearc Basin development. 

 

METHODOLOGY 

Samples were cut and made into thin sections then impregnated with blue dyed 

epoxy and left unpolished.  The sections were then stained for identification of potassium 

feldspars (yellow) and calcium plagioclase (pink) 

Forty samples were examined for petrographic content and sandstone 

characteristics.  However, the majority (33) of these samples were measured from a 

single locality (SGRF) therefore, only 10 samples were chosen for detailed analysis and 

point counting.  The goal of this analysis was to investigate possible variations in 

petrographic character between localities and between facies. In each of the 10 samples 

200 grains were point counted and 100 grains were measured in each sample along the 

long axis. Pore spaces and grains were not counted separately. The intergranular volume 

(IGV) was calculated based on the results of point counting using the following formula: 

IGV= Primary pores + Pore-filling Cements + Matrix 
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The initial intergranular volume is assumed to be 40-45% (Beard and Weyl,1973; 

Pryor,1973; Atkins and McBride, 1992; Paxton et al., 2002). The amount of compaction 

that the rock has undergone can be estimated based on the difference between the IGV 

and the assumed initial intergranular volume of 40-45%. If cement and depositional 

matrix are subtracted, the intergranular volume (IGV) is the maximum potential 

intergranular porosity of the rock (Paxton et al., 2002). 

Paxton’s IGV curve shows that mechanical compaction in the upper 1500 m of 

burial corresponds to IGV values of 28-42%. From 1500-2500 m of burial, compaction 

values range from 26 to 30% IGV and below 2500 m, sandstones reach maximum 

mechanical compaction that corresponds to an IGV of 26% (Paxton et al., 2002). 

 

FRAMEWORK GRAINS 

Quartz 

The quartz grains in the samples studied are predominantly monocrystalline with 

less common polycrystalline quartz. These samples are dominated by common quartz. A 

few quartz grains do have sutured boundaries and exhibit undulose extinction. Some 

quartz grains are highly fractured (Figure 3.1). 

Previous workers have documented quartz cement in the form of overgrowths.   

Examination of the samples collected  in this study shows that many of the overgrowths 

in the samples are abraded and there are many grains with distinctive dust rims that allow 

the overgrowths to be readily identified (Figure 3.2). This evidence suggests that the 

quartz in these samples is of recycled origin and not part of the cementation history of 

these rocks.  
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Feldspars 

Calcium Plagioclase Feldspar 

Calcium plagioclase feldspar was identified by the distinctive pink color imparted 

by the staining process (Figure 3.3). Some grains also exhibit polysynthetic twinning. 

Weathered samples show some dissolution and in some grains a secondary moldic 

porosity is present. 

Potassium Feldspar 

Potassium feldspar (K feldspar) was identified by the appears yellow-brown color 

imparted by the staining process. Both fresh and weathered varieties are present in thin 

section. Some grains show distinctive microcline (tartan) twinning. Weathered samples 

show some dissolution and in some cases secondary moldic porosity is present. 

 

Rock Fragments 

Lithic rock fragments are not common in these samples but examples of volcanic, 

sedimentary and metamorphic rock fragments are observed within the thin sections in 

minor amounts.  

Altered Volcanic Rock Fragments 

Altered volcanic rock fragments are made up of feldspars that have been altered 

to clay in association with pyrite. Pyrite is opaque in cross polarized light but has a gold 

color in reflected light (Figure 3.2, 3.4). 

Low Grade Metamorphic Rock Fragments 

 Low grade metamorphic rock fragments occur as folded micaceous rock 

fragments that are possibly phyllite. 
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Argillaceous Rock Fragments 

Argillaceous rock fragments appear brown in color in plane polarized light.  They 

are generally deformed and in some cases transformed into pseudomatrix.  

Chert  

Chert is microcrystalline quartz. Like the other types of quartz, it is transparent in 

plane polarized light but exhibits a salt and pepper appearance in cross polarized light.  

Accessory Minerals 

Several accessory minerals occur in minor amount and are identified by the 

criteria listed below. These include: 

 Biotite - identified by the distinctive brown to dark brown pleochroism in plane 

polarized light.   

White mica - probably muscovite, exhibits second-order bi-refringence colors in 

cross-polarized light and is white to transparent in plane polarized light. Grains are thin, 

platy and elongate. They are often deformed and are more abundant in finer-grained 

samples.  

Chlorite - is present as rare chlorite grains with distinctive green-darker green 

pleochroism. 

Glauconite - is rare, but is distinctive with its green color in plane and cross 

polarized light and its rounded grain shape. 
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Authigenic Minerals 

Authigenic minerals occur as both pore filling and grain replacements.  Various 

types are described below:  

Quartz overgrowth – occurs as a pore-filling authigenic material nucleated as 

overgrowths in optical continuity with the detrital grain. This type of cement is best 

identified when there is a dust rim present that delineates the original boundary of the 

quartz grain. 

Kaolinite – also occurs as pore-filling material that appears grey or light brown in 

plane polarized light. A vermicular appearance (wormlike kaolinite “books”) is visible in 

cross polarized light. 

Chlorite – a pore-filling cement that is pale green in plane polarized light. 

 

Grain Replacement  

 The most common grain replacement cements in these samples is kaolinite. Its 

vermicular appearance (wormlike kaolinite “books”) is visible in cross polarized light. In 

plane polarized light, it can have a bluish grey appearance. Kaolinite commonly takes on 

the shape of the grain it is replacing, most typically feldspar but also other minerals. 
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TEXTURE 

The samples examined ranged from medium- to coarse-grained sandstones, most 

are interpreted to have been deposited in mid-fan submarine channels (see Chapter 2 this 

dissertation). Two of the samples from Inner Turner’s Hall Ridge (ITR) are interpreted to 

have been deposited in slightly more distal channel mouth lobes. The mean grain size of 

all the samples combined is 3.23 phi and the average standard deviation of the samples is 

0.80, moderately sorted. Extremely fractured quartz grains are observed within many of 

the samples. Some of the fractured quartz grains are still recognizable; however it is 

likely that some of the smaller grains are actually fractured pieces of larger grains. Much 

of the apparent moderate to poor sorting may be a result of fracturing due to tectonic 

activity and may not be the result of source area or burial compaction processes. 

 

Sample: SGRF 1C 

This sample was taken from the first bed in the measured section labeled SGRF- 

Sleeping Giant Ridge; section F (Figure 3.5). This measured section is a part of an 

overturned 250 m vertical succession that has been exposed by a road cut. The entire 

succession thickens and coarsens upward although individual beds fine upward. The 

sample was taken from the upper portion of a 150 cm thick bed from an area of coarse- to 

medium-grained sand that has been interpreted to be a channel fill deposit. This outcrop 

has been interpreted to be a stacked channel-levee sequence that has been deposited in a 

mid-fan depositional setting. 

 

Mineralogy  

There is grain-to-grain contact within the sample but a significant amount of pore 

space remains.  There is minor biotite, white mica, rare chlorite grains, chert, and minor 
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amounts of chlorite and kaolinite cement. Some K feldspar and plagioclase feldspar are 

present.  Some of these grains are altered and a few are being dissolved to produce 

secondary porosity. Quartz overgrowths are present but broken and no other quartz 

cementation is observed. A large number of quartz grains are fractured (Figure 3.6). 

 

Sample: SGRF 9C 

This sample was taken from bed 9 in the measured section labeled SGRF- 

Sleeping Giant Ridge; section F (Figure 3.5). This bed has been described in outcrop as 

90 m of fine-grained, parallel-laminated sand that fines up to very fine-grained sand and 

silt with well-developed ripples. This bed is part of a levee facies deposit that is part of 

the channel-levee sequence described at this location. The sample was taken from the 

parallel-laminated section of the bed, although in thin section there is no variation in 

grain size or composition that can be observed. 

Mineralogy 

 Grains are in contact with each other, but there is a great deal of pore space.  

There is minor biotite, white mica, one pyrite grain, hematite and kaolinite cement. Some 

K feldspar and minor plagioclase feldspar are present, some of these grains have 

undergone significant alteration (Figure 3.7). A number of quartz grains are fractured to 

varying degrees, however most porosity primary. 

 

Sample: SGRF 11B 

This sample was taken from bed 11 in the measured section labeled SGRF- 

Sleeping Giant Ridge, section F (Figure 3.5). This measured section records a portion of 

an overturned 250 m vertical succession that has been exposed by a road cut. The sample 

was taken from the upper portion of a 150 cm thick bed from an area of coarse- to 

medium-grained sand that was interpreted as a channel-fill deposit. This outcrop has been 
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interpreted to be a stacked channel-levee sequence that has been deposited in a mid-fan 

depositional setting. 

Mineralogy 

Grains are in point contact with each other, but there appears to be significant 

amount of  relict pore space present.  There is minor biotite, white mica, rare chert and 

volcanic rock fragments, and minor amounts of hematite and kaolinite cement. Larger 

amounts of K feldspar and plagioclase feldspar are present. Quartz overgrowths are 

present but broken. No other quartz cementation is observed (Figure 3.8). A large number 

of quartz grains are fractured to varying degrees and secondary intragranular fracture 

porosity is moderate. 

 

Sample: SGRF 19C 

This sample was taken from bed 19 in the measured section labeled SGRF- 

Sleeping Giant Ridge; section F (Figure 3.9). This bed is comprised of a 170 cm of 

coarse-grained to medium-grained sand that has at least two secondary erosive surfaces 

within the bed. The sample was taken 10 cm from the top of this bed that has been 

interpreted to be a channel-fill deposit. 

Mineralogy 

There is minor biotite, white mica, a single chlorite grain, chert, and minor 

amounts of chlorite and kaolinite cement. K feldspar and plagioclase feldspar are present, 

some of these grains are being altered and a few feldspar grains are partly replaced by 

kaolinite cement. Quartz overgrowths are present but broken. No other quartz 

cementation is observed (Figure 3.10). A number of quartz grains are fractured to 

produce secondary intragranular porosity. 
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Sample: WRA 16 

This sample was taken from the bed 16 in the measured section labeled WRA- 

Walkers Ridge; section A (Figure 3.11). The Walker’s Ridge section is an extensive 

outcrop of laminated shales and sands (60 + meters) overlain by stacked thick sands 

separated by silty shale intervals.  The sample was taken from a coarse-grained sand bed 

interpreted as a channel fill deposit. Three measured sections; WRA, WRB and WRC 

were correlated across the outcrop to define a continuous 40 meter thick section at this 

locality. This outcrop has been interpreted to be a stacked channel-levee sequence that 

has been deposited in a mid-fan depositional setting. 

Mineralogy 

This sample is dominated by common quartz. Potassium (K) feldspar and 

plagioclase feldspar are present in small quantities, kaolinite and hematite cement is rare 

and no accessory minerals are observed. Quartz grains are extremely fractured and 

secondary intragranular porosity has been created. It is important to note that while 

fractured quartz is dominant, no quartz cement has formed on fresh, clean fractured 

surfaces (Figure 3.12). 

 

 

Sample: WRB 8 

This sample was taken from bed 8 in the measured section labeled WRA- 

Walkers Ridge, section B (Figure 3.13). This measured section records 12 m of a very a 

sand-rich succession in which very coarse-grained sands dominate and conglomerate lag 

deposits are observed overlying erosive channel bases. This sample was taken from a 

coarse-grained sand bed that was interpreted to be a channel-fill deposit. 
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Mineralogy 

This sample is dominated by common quartz and although K feldspar and 

plagioclase feldspar are present in small quantities, no accessory minerals are observed. 

Hematite cement is present in greater quantities than in WRA 16 (Figure 3.11). Quartz 

grains are extremely fractured and secondary intragranular porosity is a significant 

portion of overall porosity (Figure 3.14). As in the sample labeled WRA 16, fractured 

quartz is dominant. No quartz cement has formed on fresh, clean fractured surfaces. 

 

Sample: ITR 9 

This sample was taken from bed 9 in the measured section labeled ITR- Inner 

Turners Hall Ridge (Figure 3.15). The sample was taken from a bed that has been 

interpreted to be a channel-mouth sand lobe. This measured section records 70 m of 

continuous exposure. Sandstone beds vary from medium- to fine-grained and are thickest 

at the base of the section with a maximum thickness of 420 cm. Sand beds are capped 

with ripple-laminated, fine-grained sands and silts. Minor loading structures and planar 

lamination is present through out the section. No coarse-grained sand or conglomerate 

component and no scoured bases were observed. This outcrop was interpreted to be a 

portion of a channel-mouth lobe. 

Mineralogy 

  The quartz content of this sample is lower and K feldspar and plagioclase 

feldspar are more abundant (Figure 3.16).  A small number of lithic fragments are present 

and they include altered volcanic rock fragments, argillaceous rock fragments, rare 

metamorphic rock fragments and chert. Minor amounts of biotite and white mica are 

present and the most abundant cement is hematite with minor amounts of pore-filling 

chlorite and kaolinite. Quartz overgrowths are present, but broken. No other quartz 
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cementation is observed. A number of quartz grains are fractured to produce secondary 

intragranular porosity. 

 

Sample: ITR 14 

This sample was taken from the bed 14 in the measured section labeled ITR- 

Inner Turners Hall Ridge (Figure 3.15). Bed 14 has been interpreted to be a channel-

mouth sand lobe. This measured section records 70 m of continuous exposure. Sandstone 

beds vary from medium- to fine-grained and are thickest at the base of the section with a 

maximum thickness of 420 cm.  

Mineralogy 

The quartz content of this sample is lower and K feldspar and plagioclase feldspar 

are more abundant.  A small number of lithic fragments are present and they include 

altered volcanic rock fragments, argillaceous rock fragments, rare metamorphic rock 

fragments and chert. Minor amounts of white mica are present and there are minor 

amounts of pore-filling chlorite and kaolinite. Hematite cementation has completely 

occluded porosity in some cases and blocked pore throats in others (Figure 3.17). Quartz 

overgrowths are present, but broken. No other quartz cementation is observed.  Some 

organic matter is present in this sample. 

 

Sample: CMRA 

This sample was taken from the first bed in the measured section labeled CMR- 

Chalky Mount Ridge section A (Figure 3.18). This measured section records almost 60 m 

of a stacked channel-levee sequence. The sample was taken from the upper portion of a 3 

m thick bed that ranges from gravel overlying an erosive base and fines upward to a 

medium-grained sand. The sample was taken from the middle of a bed that was 

interpreted to be a channel-fill deposit 
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Mineralogy 

There is minor biotite, white mica, rare volcanic rock fragments and chlorite and 

kaolinite cement. K feldspar and plagioclase feldspar are present, some of these grains 

are  altered and a few feldspar grains are replaced by kaolinite cement. There is a 

significant amount of hematite cement and some siderite (Figure 3.19). Quartz 

overgrowths are present, but broken. No other quartz cementation is observed. A number 

of quartz grains are fractured to produce secondary intragranular porosity. 

 

Sample: Breedy’s 

This sample was taken from a sand bed that overlies an extensive out of channel-

mud sequence in a mid-fan depositional system. There was not sufficient exposure to 

create a measured section.  This 1 m sand bed consists of coarse- to medium-grained sand 

topped by ripple-laminated, fine-grained sands. The sample was taken from a sand that is 

thought to be an out of channel sand in an overbank levee sequence. 

Mineralogy  

There is white mica, chert, sedimentary and metamorphic rock fragments and 

minor amounts of chlorite and hematite cement present in this thin section. K feldspar 

and plagioclase feldspar are more abundant than in previous samples, and many of the K-

feldspar grains are altered. Quartz overgrowths are present, but broken. No other quartz 

cementation is observed. Fractured quartz grains dominate this sample and secondary 

intragranular porosity is present. Some organic matter and a rare glauconite grain are also 

present (Figure 3.20). 
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COMPARISON WITH PREVIOUS WORK 

Punch (2004) and Kasper (1985) classified the Scotland Formation sandstones as 

moderately-to-poorly sorted. In this study, however, grains that had been completely 

fractured apart, but appeared to have been part of a single, larger grain were counted as 

one grain.  This approach possibly explains why only two of the samples in my study 

exhibit poor sorting. Samples WRA 16 and WRB 8 (Figures 12 and 14) have a large 

number of fractured grains and it is unclear how many grains produced the fragments. 

Punch’s (2004) samples when plotted on a QFL diagram range from quartz 

arenites to subarkoses (Figure 3.21). Kasper and Larue’s (1986) samples ranged from 

quartz arenites, to sublitharenites with some sub arkoses (Figure 3.22). 

Punch (2004) concluded that formation fluids caused the dissolution of some 

feldspars in the samples. She determined that burial had not been deep or long enough for 

dissolution of all of the feldspars to occur. Quartz overgrowths found on clean surfaces 

void of clay rims were recorded as quartz cement. 

Kasper and Larue (1986) noted the abraded quartz overgrowths that are indicative 

of reworked sedimentary source rocks and recorded that feldspars were rare in the 

samples they examined. Both Punch’s 2004 work and this study (Figure 2.23) observed 

feldspar in greater amounts.  
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DISCUSSION 

Although many of the samples from this study appear to be poorly sorted when 

visually inspected in outcrop, thin section examination shows them to actually range from 

moderately to well sorted. The sorting and measurement of grain sizes is affected by the 

presence of deformation bands, which can cause larger quartz grains to be broken into 

smaller fragments. In addition several samples showed fractured quartz grains that were 

not associated with deformation bands.  Where possible, grains that appeared to be part of 

a larger whole were visually reconstructed and considered a single grain in an effort to 

maintain the integrity of the grain size measurements. 

The Scotland Formation samples range lithologically from quartz arenites to 

arkoses. The quartz arenites and subarkoses samples were all obtained from the channel-

fill sandstones. One subarkose and one arkose sample were obtained from the finer-

grained channel mouth sandstone at Inner Turner’s Hall Ridge (ITR). The more distal 

facies at ITR were not only more feldspar rich but also finer grained as one would expect 

in an unconfined setting. Pudsey (1982) observed that the feldspar content in the Scotland 

Formation deposits decreased with increasing distance from the Lesser Antilles Island 

Arc, suggesting that the feldspar was derived from the volcanic island arc. It is possible 

that there was increased volcanic activity when ITR channel mouth sands were deposited 

and that resulted in an increased amount of feldspar. 

The preservation of K feldspar in these samples suggests that the rocks of the 

Scotland Formation have not undergone deep burial. K feldspar normally undergoes 

extensive dissolution during burial diagenesis (Milliken et al., 1989; Harris, 1992; 

Wilkinson and Haszeldine, 1996; Wilkinson et al., 2001). In rift and passive margin 

settings, K feldspar preservation is commonly absent in rocks that been buried more than 

four kilometers. In volcanic arc or strike-slip basins, high K+/H+ ratios, high SiO2 

activity or a lack of illite-smectite clay mineral assemblage in the mudrocks may enable 
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K feldspar preservation to slightly greater depths, perhaps, five kilometers (Wilkinson et 

al., 2001). These well-established relationships taken in tandem with the field 

observations suggest that the Scotland Formation exposed on the island of Barbados has 

never been buried much more than five kilometers and possibly less than four kilometers 

of burial. 

Quartz overgrowths on detrital quartz grains are common in the Scotland 

Formation sandstones. Studies of the Moogooloo Sandstone, in Western Australia 

showed that these types of overgrowths increased with thermal maturity and less than 1% 

of quartz cementation occurred at less than 60˚C (Baker et al., 2000). However, many 

quartz overgrowths in this study are broken which suggests that the quartz grains are 

recycled and thus the phase of quartz cementation is not related to the diagenesis of this 

rock. The lack of quartz cementation that is local to the Scotland Formation suggests that 

the rocks were not subject to temperatures < 60˚C. 

Deformation bands are tabular structures of finite width that are the result of 

strain localization. These features develop in sand and porous sandstone (Aydin, 1978; 

Dragantis et al., 2005) and may form during soft sediment deformation or post burial 

faulting (Fossen et al., 2007).  Deformation bands are often classified based on the 

amount of shear offset that they have undergone. In the thin sections from the Scotland 

Formation no shear offset has been observed. The deformation features observed in these 

samples include grain fracturing, a reduction in grain size and in porosity and an apparent 

reduction of volume within the deformation band. Using the kinematic classification 

system (Aydin et al., 2006; Fossen et al., 2007), these features would place the Scotland 

Formation deformation bands within the class of compactional deformation bands.  

Within the mechanical classification these features would be characterized as cataclastic 

deformation bands.  Cataclastic deformation bands have been found in unconsolidated 

marine sand buried less than 50 m (Cashman and Cashman, 2000; Fossen et al., 2007). 
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They are common in accretionary prism settings (Fossen et al., 2007).  Deformation 

bands were observed in 2 of the 10 samples point counted. 

There is a reduction in porosity and permeability along deformation bands. 

However there is thought to be an initial dilation that may aid in fluid flow and lead to 

preferential cementation along these linear features (Ngwenya et al., 2000; Olgivie and 

Glover, 2001; Fossen et al., 2007). Fractured quartz grains provide clean sites for 

nucleation of quartz cements that are so abundant in sand (Walderhaug, 1996, Fossen and 

Bale, 2007).  

Although it is often thought that deformation band zones are baffles to fluid flow, 

Fossen and Bale (2007) showed that the impact of deformation bands on reservoir 

performance may be small or negligible. 

Within the Scotland Formation samples, no quartz cementation was observed 

within the deformation bands.  This observation further supports the idea that the 

Scotland Formation did not experience temperatures greater than 60˚C. In addition the 

observations that cataclastic deformation bands develop at depths of 2.5 km or less and 

even in sediments buried as shallowly as 50 m also support the concept that the Scotland 

Formation was never buried very deeply.  

Based on the calculations of the IGV of the samples which ranged from a 

minimum of 27.5% to a maximum of 42 % the rocks of the Scotland Formation appear to 

have been buried less than 2500 m and possibly only about 1500 m. 
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CONCLUSIONS 

1. No quartz cementation occurs during diagenesis of the Scotland 

Formation. Quartz cementation as overgrowths is fractured and 

interpreted to be of recycled origin. 

2. Scotland Formation sediments have never been exposed to 

temperatures greater than ~ 60 C. 

3. Scotland Formation sediments have probably been buried less than 

2500 m and possibly have never been buried much more deeply than 

1500 m. 

4. Sandstones within channels, lobes and levee facies have all preserved 

significant amounts of primary porosity and all of them have an IGV of 

27.5% or higher.  

5. Cementation is minor and although some samples have kaolinite, 

chlorite and hematite cements that obstruct pore throats, they are 

probably not present in large enough quantities to present a major 

hindrance to fluid flow. 

6. The sample from the levee facies sands appears to have been more 

compacted and this combined with these sands being the thinnest (on 

the scale of cms) and the least laterally continuous of all the facies, 

indicate that these sands make the least favorable reservoirs. 
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Chapter Four: The Evolution of the Tobago Forearc Basin 

The objective of this chapter is to define the timing and structural history of the 

Tobago Basin and its relationship to the larger accretionary prism processes, as well as to 

interpret the origin of two major stratigraphic units—the Scotland Formation (lower to 

middle Eocene (possibly Oligocene) and the Oceanic Formation (middle Eocene to 

middle Miocene)—which fill the basin. The Scotland and the Oceanic Formations 

comprise known hydrocarbon reservoir and seal units, respectively, in the basin. 

Understanding their individual depositional and post-depositional histories will in turn 

enable a better understanding of younger Tertiary units of similar setting in this basin.   

 

The Oceanic Formation  

The Oceanic Formation was first recognized in the late 1800’s by Jukes-Brown 

and Harrison (1890), who produced a detailed map of the geology of Barbados and 

identified the Coral Rock, the Oceanic Series, the Scotland Series, and the Joes River 

Formation. They interpreted the Oceanic Series as abyssal sediments that had been raised 

to their current position by tectonic uplift.  

Until the late 1970’s, because most geological research on Barbados centered on 

hydrocarbon exploration, the clastic succession of the Scotland Formation had been 

extensively studied and the Oceanic Formation was largely ignored. This situation 

changed when Robert Speed began in the early 1980’s to investigate the structure and 

sedimentation of the Barbados Accretionary Prism. Speed described the Oceanic 

Formation as consisting of calcareous clays and muds and marls with volcanic ash layers 

(Speed and Torrini, 1989, Speed 1991, 1994). Likewise, micro-paleontologic analysis of 

the Oceanic units by Saunders et al. (1984) led to the conclusion that these sediments had 

been deposited in 2,000 to 4,000 m of water.  
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The highest point of the island, is 336 m above sea level, is located at Mount 

Hillaby, St. Thomas. At this location there are exposures of the Oceanic Formation. East 

of this location the Scotland Formation is exposed. According to work carried out on the 

limestone terraces on Barbados, the island is uplifting in the Quaternary at a rate of 0.44 

mm/yr (Taylor and Mann, 1991). Assuming a constant rate of rise of 0.44 mm/yr show 

that simple uplift could have raised the Oceanic Formation 4,840 m since middle 

Miocene times. The vertical rise of the Barbados Ridge due to underplating  can account 

for emergence of the Oceanic Formation, with no need for lateral translation by thrust 

faulting.  

This is consistent with the failure to find nappe geometries in seismic reflection 

profiles in the Forearc Basin sediments (the Oceanic Formation). This observation lends 

support to the hypothesis that the Oceanic Formation was deposited in situ on top of the 

accretionary prism sediments.  

 

DATA 

The primary data used in this study are a 2D seismic data set measured on 10-km 

spacing of lines and traces, covering approximately 450 km2 (Figure 4.1). The data, 

which image up to 12 seconds of strata, have a good signal-to-noise ratio and are the 

most complete seismic coverage of an accretionary forearc basin in the world. They were 

obtained from two industry seismic surveys—one shot in 1979 by Mobil and the other 

shot in 1999 by ConocoPhillips. Parameters from the 1979 data are not known. The data 

measured in 1999 were shot using 38-inch air guns as the energy source at a depth of 6 

m, with a shot interval of 25 m. The streamer length was 6,000 m, and streamers were 

towed at a depth of 8 to 9 m below the vessel. The sample rate was 2 milliseconds. Data 

were acquired predominantly over the Barbados Ridge and the east part of the Tobago 

Basin (Figure 4.1). Also available for interpretation is a single, long, regional seismic line 
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that extends 180 km from the Atlantic Abyssal Plain in the east, westward to the east 

flank of the Lesser Antilles Island Arc High (Figure 4.1). Two additional lines are 

contained in the data set that trend north-northeast from the north-coast marine area of 

Trinidad, paralleling the east and west coasts of the island of Tobago, extending 

northward and paralleling the east and west flanks of the Barbados Ridge. The two 

additional north-south-oriented, southern regional lines intersect the long east-west-

trending regional line. These southern regional lines allow a tie to well data southward in 

the north-coast marine area of Trinidad (Figure 4.1).  

Published age data from wells on the southernmost margin of the Tobago Basin 

were used for chronostratigraphic control on the younger, Tertiary parts of the 

stratigraphic section (Robertson and Burke, 1989). However, little information exists in 

the public domain regarding the age of fill to the north. This lack of data meant that we 

had to rely on published accounts of stratigraphic ages, as well as personal 

communication with industry colleagues who had access to proprietary information.  
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STRATIGRAPHIC FRAMEWORK ONSHORE TO OFFSHORE 

The layered Tobago Forearc Basin units (Figure 4.2) are equivalent to the 

Oceanic Formation recognized in outcrop on the island’s eastern side. Although within 

the TFB it is believed that this unit ranges from Middle Eocene to Upper Miocene in age, 

onshore units are at youngest Middle Miocene in age (Barker and Poole, 1982) and are 

believed to have been deposited in water depths between 2000 to 4000 m based on 

foraminiferal data (Saunders, 1984). The Middle Miocene marks the initiation of TFB 

closure and the emergence of the Barbados Ridge. Based on onshore analyses, these 

rocks are interpreted throughout the region as deep marine pelagic clays and marls which 

are interbedded with volcanic ash deposits (Speed, 1989, 1994). The entire unit thins to 

the west onto the Lesser Antilles Island Arc high and post Mid-Miocene unconformity 

sediments thin onto the Barbados Ridge. Sediments below the Mid-Miocene 

unconformity drape over the Barbados Ridge and extend into the zone of piggyback 

basins. The seismic character of this unit is that of layered, continuous reflectors with 

minimal deformation by small-scale normal faulting. This seismic character is expected 

as the pelagic deposits are interbedded with volcanic ash layers and are locally cut by 

normal faults in outcrop. 

 

Scotland Formation 

The Scotland Formation is dated in outcrop as Lower Eocene in age and includes 

the oldest rocks exposed on the island. This unit thickens onshore into a thick, (up to 

2800 m), succession of sands and clays comprised of very coarse grained turbidites and 

leveed channels deposits, with a conglomerate lag at the base of some large channels 

indicating a high energy erosive system. In seismic data, this formation has been equated 

with the western portion of the Barbados Accretionary Prism sediments and shows up as 
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highly discontinuous, bright amplitude reflectors. Within the Tobago Forearc Basin, 

channels and channel fill facies have been identified that suggest that this basin was once 

a fairway for clastic sediment deposition (Figure 4.3). 

 

Joes River Formation 

The Joes River Formation is dark gray to black in color, slickensided, often oil 

soaked with a distinct bituminous odor. It is comprised of a mélange of structureless 

clays, sands, and scattered limestone rafts (Poole and Barker, 1980). It has been 

interpreted to be emplaced as diapiric shales and extrusive muds. Such mobile shale 

processes are common in accretionary prism settings (Wood, 2004). Mud volcanoes 

today are most active on the island of Trinidad and its offshore regions (Brooks and 

others, 2004). Offshore, evidence of continued mud volcano eruption indicates that this is 

an ongoing process triggered by over-pressurization created by compressional forces 

within the prism. On the island, this unit is intrusive and post-dates deposition of the 

Oceanic Formation. The timing of the intrusion of the Joes River Formation is based on 

observations by Speed (1991) that the Joes River Formation is mushroomed beneath the 

Oceanic Formation. This phenomenon suggests that although the matrix has been dated 

with pollen to be Paleocene to Middle Eocene (Speed, 1991) the timing of the 

deformation and emplacement of the diapirs is after the Oceanic Formation was 

deposited. The Joes River Formation on Barbados is interpreted as a complex of paleo-

mud volcanoes which were extruded in response to the compressional regional setting. 

They pre-date the localized extensional faulting that characterizes the crest of the 

Barbados Ridge. Both offshore and onshore, diapiric shale and extrusive muds are 

isolated pods and more laterally extensive mounds. The unconsolidated nature of the unit 

makes it prone to mass wasting. These features can be easily identified in seismic 

reflection profile by the chaotic response of the subsurface material and capped by the 

spectacular extrusion of mud at the seafloor. 
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STRUCTURAL FRAMEWORK OF THE BARBADOS ACCRETIONARY PRISM 

 

Convergent margin settings tend to be structurally complex regions of the world, 

characterized by shortening and local extension or strike-slip tectonics. Deformation 

involves mud-rich sediments which are tectonized as they dewater, using fluid flow that 

can cause mud volcanism (Moore, 2001). The Barbados Accretionary Prism (BAP) 

region is no exception to typical convergent tectonic margins. Although the overall 

setting of the study area is convergent, as this study documents, there is large-scale, 

normal faulting that occurs on a sub-regional scale. The west and east margins of the 

accretionary prism are bounded by thrust faults that dip towards the west and east, 

respectively (Figure 4.4). The Barbados Ridge, the westernmost high of the prism, is 

dominated by northwest-southeast-trending normal faults (Figure 4.4, Figure 4.5). 

The prism is characterized by five structural regions: the zone of initial accretion, 

the zone of stabilization, the zone of piggyback basins, the Barbados Ridge, and the Inner 

Forearc Deformation Front (Figure 4.5) which includes the Tobago Forearc Basin—each 

having its own unique structural characteristics (Brown and Westbrook, 1987). Data 

availability did not allow for much analysis of the zone of initial accretion. The 

remaining regions are summarized in the following section on the basis of observations 

by Brown and Westbrook (1987), as well as those of the authors. 
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Zone of Initial Accretion 

The zone of initial accretion, composed of an imbricate fan of east-facing 

thrust faults, marks the youngest phase of deformation in the prism. Because it is 

the zone where previously undeformed sediments are first accreted to the prism, it 

is the starting point or initiation of accretion. These thrusts all sole into a  

décollement, below which Atlantic Abyssal Plain sediments are passing relatively 

undeformed beneath the prism proper, to be ultimately subducted along with the 

downgoing Atlantic Plate. 

Zone of Initial Stabilization 

Deformation in the zone of initial stabilization appears less intense than in 

areas to the east and west. This zone marks a transition in the direction of 

thrusting in the prism; to the east of this zone, thrusts and thrust sheets dip 

westward, while to the west of this zone, thrusts and thrust sheets dip eastward 

(Figure 4.5).  

 Zone of Piggyback Basins 

The zone of piggyback basins is a region in which several asymmetric 

basins have formed on the eastern side of thrusts that dip toward the west. Huyghe 

et al. (1999) called this zone “the arcward piggyback basins.” These basins are 

filled with Holocene sediments derived from the Venezuela-Trinidad margin to 

the south, as well as from pelagic deposition and sediments transported on 

offshore currents from regions along the Amazon shelf. Several canyons and 

channels cut these basins, as well as form linkages across uplifts that separate the 

basins. Dropcore measured by Faugeres et al., (1993) shows that the most recent 

fill of the basin is prevalently thin, silty to sandy sequences; however, some thick, 

sandy sequences are present. The clay portion makes up 10 to 50% of the 

succession and is primarily illite with minor smectite (Faugeres et al., 1993). 
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Sandy material is primarily quartz (75–95%) with minor lithic grains, micas, and 

heavy minerals (Faugeres et al., 1993).  

The largest of the prism’s many piggyback basins, the Barbados Basin, 

was the focus of a 2001 exploration well, the Sandy Lane #1 (Figure 4.1). A near-

seafloor dredge sample taken from the basin as part of this effort recovered fine-

grained quartzose sandstone. These sediments were measured from what was 

interpreted on the basis of seismic morphology to be a deposit of deep-marine 

lobate sediments, internally composed of tabular sheet sands (Dolan et al., 2004). 

These results suggest that even in this confined, tectonically active basin setting, 

reservoir quality sands are deposited as fans and sheet sands in very deep water. 

Barbados Ridge 

The Barbados Ridge is the topographically highest part of the accretionary 

prism and the region along which the island of Barbados is emergent. The island 

of Barbados is rising at a rate of approximately 0.44 mm/yr (Taylor and Mann 

(1991). The arcuate ridge, subparallel to the Lesser Antilles Island Arc (Figure 

4.1), is formed as accretionary prism material moves westward and interacts with 

the string basement of the Caribbean Plate, moving up and over the metamorphic 

basement. In some cases, this material is overriding the lowermost Tobago 

Forearc Basin sediments, which are deformed by these movements. As a result, 

the west side of the Barbados Ridge is characterized by large, west-facing thrust 

faults, while a number of northwest-southeast-striking normal faults dominate the 

crestal region (Figure 4.6).  

The east margin of the Barbados Ridge is characterized by a step-like 

succession of normal faults. The largest of these, the Barbados Fault, bounds the 

east coast of the island of Barbados (Figure 4.6). This fault has more than 3 km of 

down-to-the-east vertical displacement. Underplating of forearc basin and 

accretionary prism sediments, as well as the presence of basement ridges (Brown 
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and Westbrook, 1987), are thought to be responsible for the 3,000 m of rise on the 

prism’s interior. Brown and Westbrook (1987) identified the presence of WNW-

ESE Atlantic basement ridges beneath the prism using long-range side-scan sonar 

images and seabeam bathymetry. Their investigations show a correlation between 

the orientation of these basement ridges and the structural features of the prism. 

The west- and east-facing thrust faults and associated piggyback basins and 

sediment ridges are oriented roughly parallel to the deformation front. However, 

at oblique angles to these roughly north-south features are the NW-SE-trending 

extensional faults of the Barbados Ridge, which have a similar orientation to that 

of these basement ridges. Compression and thrust faulting occur on the west side 

of the Barbados Ridge, where basement ridges act as a buttress to westward 

movement, causing thrusting and uplift to occur.  

Inner Forearc Deformation Front 

The Inner Forearc Deformation Front (IFDF) delimits the east margin of 

the Tobago Forearc Basin and forms the boundary between the highly deformed 

sediments of the accretionary prism and the relatively undeformed sediments of 

the Tobago Forearc Basin (Figures 4.4 and 4.6). It is characterized by east dipping 

thrust faults that are the result of interaction between the downgoing Atlantic 

Plate and the strong crystalline basement.  

Tobago Forearc Basin 

The Tobago Forearc Basin, filled with as much as 12 km of sediment, 

shows little evidence of deformation at its center (Figure 4.6). Several small-scale 

normal faults along the west and north margins of the basin, confined to the 

youngest part of the section have very minor throw and appear to terminate at a 

common shallow horizon. It is not uncommon for normal faults to occur on the 

stable flanks of forearc basins, and it has been speculated that they form as a 
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result of extension caused by flexural loading of the crust in response to 

encroaching fold belts (Harding and Lowell, 1979; Harding and Tuminas, 1989). 

Dickinson (1995) noted that these faults may act to step the basin downward from 

the elevated island arc high as localized extension occurs across the forearc belt. 

The large Barbados Fault (previously discussed) is an example of one of these 

faults. 

 

TIMING AND PROCESSES IN THE EVOLUTION OF THE TOBAGO BASIN 

Observations from Seismic Data 

The Tobago Basin is the largest sedimentary accumulation within the 

basins of Barbados Accretionary Prism system. Nine horizons were mapped 

across the basin, and six fill units were identified. Isochron maps created on these 

units show that the basin has evolved from a proto-Tobago Basin that was quite 

broad, into segments that are the present-day Tobago Forearc Basin (TFB) and 

more eastward piggyback basins of the Barbados Ridge. Pre-Eocene-age TFB 

sediments (Unit One of Figure 4.6 and Figure 4.7a) are thickest in the northeast 

parts of the present-day basin, whereas Eocene to early-Oligocene-age sediments 

(Unit Two of Figures 4.6 and 4.7b) were deposited within a more central 

depocenter. This later unit is found south of the older depositional center, 

suggesting a migration of subsidence to the south part of the basin. During the 

early Oligocene to early Miocene (Unit Three of Figures 4.6 and 4.7c), sediments 

were deposited across a broad area, extending as far as the present-day  zone of 

piggyback basins. The thickest sediment deposition at that time was in the 

southeast part of the basin, adjacent to the present-day Inner Forearc Deformation 

Front. Sediments deposited after initiation of the closure of the TFB and the 

emergence of the Barbados Ridge, were confined to a smaller TFB. Isochron 
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maps of the lower to upper Miocene units (Unit Four of Figures 4.6 and Figure 

4.8a) show continued thickening in the southwest part of the TFB, suggesting that 

subsidence in southwest parts of the basin continued well into late Miocene time.) 

and increased subsidence and thickening of strata in the southwest part of the 

basin continued through late Miocene (Unit Five of Figures 4.6 and 4.8b) times 

until the basin attained the shape that we see represented in the Plio-Pleistocene 

fill (Unit Six of Figures 4.6 and 4.8c). By Pliocene time, sediments were 

thickening along a narrow, well-defined TFB, whose east margin is limited by 

thrusting of the IFDF. 

 

IMPLICATIONS 

The concept of a large proto-Tobago Basin is not new.  Speed and Torrini 

(1989) acknowledged that the TFB has experienced shortening over time and 

noted the shifting depocenter within the basin (Speed and Torrini, 1989; Torrini 

and Speed, 1989). However, Speed thought that the layered sediments of the TFB 

(Oceanic Formation) and those of the western BAP (Scotland Formation) were in 

unconformable contact along thrusted nappes (Speed, 1982, 1983, 1991). 

Observations from seismic data in this study reveal no such unconformable 

relationship. We propose, on the other hand, a greater lateral extent of the TFB 

sediments than previous authors have acknowledged, concurring with Pudsey 

(1982) and Poole and Barker (1980), who proposed a conformable relationship of 

TFB sediments and the western BAP sediments versus the allochthonous 

emplacement of TFB sediments proposed by Speed.   

Origin of the Oceanic Formation 

The Oceanic Formation is composed of calcareous clays and muds and 

marls along with volcanic ash layers (Speed and Torrini, 1989; Speed 1991, 
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1994). The origin of the Oceanic Formation has been debated for more than two 

decades, and two distinct hypotheses persist that offer opposing explanations. 

The first hypothesis, introduced by Speed (1982), puts forward an Oceanic 

Formation that was deposited within the proto-Tobago Forearc Basin and that has 

subsequently been thrust more than 20 km eastward to its present position (Figure 

4.9). This hypothesis seeks to reconcile the potential age overlap of the Oceanic 

and Scotland Formations, the latter of which has been dated as young as 

Oligocene in age (Baldwin, 1986). Speed interpreted the Oceanic Formation as 

having a lower section that exhibited nappe geometries as a result of eastward 

transport of the lower section and an upper section that was a single, undisrupted 

sheet The timing of the emplacement of this upper sheet is said to be late Miocene 

or Pliocene, when the sheet was thought to have fully covered the underlying 

Scotland Formation. Speed (1982) used erosion prior to deposition of the 

Pleistocene reef to explain thinning of the sheet of the Oceanic Formation that 

occurs over the island of Barbados.  

The second hypothesis, proposed by Pudsey (1982), suggests that the 

Oceanic Formation is an in situ deposit that has been tectonically uplifted along 

with the Barbados Ridge. Poole and Barker’s (1980) geological map of Barbados 

features a generalized vertical section in which the Oceanic Formation 

conformably overlies the Scotland Formation of Barbados. These researchers 

postulated that the Oceanic Formation formed in situ after the rapid submergence 

of the island and surrounding areas. The Oceanic Formation has been constrained 

to deposition in 2,000 to 4,000 m of water (Saunders et al., 1984). To 

accommodate this depth of deposition, Poole and Barker (1982) invoked a 

subsidence and re-submergence of the island of at least 2,000 m, to allow for 

deposition of the sediments, followed by a reemergence. 
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Observations from Seismic Data 

In seismic data, these Forearc Basin Sediments show simple onlap 

relationships with the underlying crystalline basement of the Lesser Antilles 

Island Arc (Figure 4.5). Time-equivalent units along the east flank of the Tobago 

Basin show simple onlap relationships onto the accretionary prism sediments. 

Although there is some deformation of Tobago Forearc Basin units, no nappe 

geometries or duplex relationships as reported by previous workers (Torrini and 

Speed, 1989; Speed and Torrini, 1989; Speed and Larue (1982) are observed in 

the seismic data. The presence of channels, observed on seismic data, within the 

TFB proper suggests episodes of clastic deposition occurred within the basin 

(Figure 4.3). 

 

Reconstruction of the Tobago Basin 

The closure of the Tobago Basin, as recorded by the sedimentary fill, 

shows that the basin has steadily decreased in size since the mid-Miocene (Figure 

4.10a-e). The earliest stage of development was when Eocene- and possibly 

Cretaceous-age sediments were deposited into the basin from a southern sediment 

source, and in lesser amounts from the Lesser Antilles Island Arc (LAIA) (Figure 

4.10a). The direction of influx from the LAIA is shown with arrows pointing 

toward the Tobago Basin. These units fill the deepest part of the basin, 

immediately west of the thrust front. Sediments are also delivered to the Atlantic 

Abyssal Plain and are incorporated into the growing accretionary prism at the 

Outer Deformation Front (ODF). Sediments are accreted adjacent to the basin 

where the downgoing Atlantic plate (AP) is subducting beneath the Caribbean 

plate (CCB). 
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Oligocene-age sediments are deposited over a broadening, deep, Tobago 

Basin. Sediments of the Barbados Accretionary Prism (BAP) continue to be 

accreted beneath the Tobago Basin and sediments deposited on the Atlantic 

Abyssal Plain are thrust beneath older BAP sediments.  This latter action causes 

the prism to broaden and thicken, particularly at the thrust front. During this time, 

sedimentation within the Tobago Basin keeps pace with the increasing height of 

the prism, eventually surpassing the prism growth and depositing sediments over 

the prism (Figure 4.10b). During the Early to middle Miocene, sediments 

accumulate across the  entire area of the very broad Tobago Basin. The most 

regionally extensive stratigraphic surface, the Mid-Miocene Unconformity, 

developed in the basin at this time (Figure 4.10c).    

Following the extensive erosional event of the Middle Miocene, the BAP 

continued to thicken through the processes of accretion and underplating. The 

Barbados Ridge became emergent, uplifted through ongoing accretion of 

sediments due to increased thrusting and underplating (Figure 4.10d).  The 

Caribbean Plate continued to inhibit the westward movements of the Atlantic 

Plate prism sediments causing increased offscraping and accretion of sediments, 

which caused the broad pre-Middle Miocene Tobago Basin to become segmented 

into several sub-basins.  

The Tobago Basin continued to diminish in size to the present, and since 

the Late Miocene, Tobago Basin sediments have accumulated in a much narrower 

area than the pre-late Miocene sediments (Figure 4.10e). Today, subduction of the 

Atlantic plate is ongoing and the Barbados Ridge continues to rise as a result of 

ongoing underplating.  This process has led to extensive crestal faulting along the 

Barbados Ridge creating steep slopes and resulting instability along the ridge.  

The largest of these extensional normal faults is the Barbados Fault.  This fault, 
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located off the east coast of the modern island of Barbados see Fig. 4.4), has 

played a significant role in the emergence of the island. 

 In Eocene times the proto-Tobago Basin was originally very broad with 

ill-defined margins. Data from Woodbourne oilfield onshore Barbados support 

this extended east margin of the Tobago Basin, showing today that the basin 

deposits extended eastward, well beyond the basin’s present margins. However, 

today this older basin has been segmented into the present-day Tobago Basin and 

several smaller, more eastwardly located piggyback basins with well-defined 

margins. The largest of these segmented basins is the Barbados Basin, which lies 

to the east of the Barbados Ridge. This ridge is composed partly of Tobago 

Forearc Basin (TFB) sediments, consisting of clastic deep-water sands of the 

Scotland Formation and the deep pelagic muds that overlie them (Oceanic 

Formation). It is herein interpreted that the Barbados Ridge was once much 

deeper than it is today. Data supporting this observation include (1) lower to 

upper Miocene deep-water units stratigraphically draping the Barbados Ridge and 

(2) biostratigraphic data on the aforementioned deposits that compose the modern, 

subaerially exposed Barbados Ridge, which indicate deposition in water depths of 

2,000 to 4,000 m (Saunders et al., 1985) (Chaderton, 2005; Chaderton and Wood, 

2006). Both observations suggest a significant uplift occurring throughout the 

Tertiary in the interior of the accretionary prism.  

Although two hypotheses have been put forward to explain the occurrence 

of the Oceanic Formation onshore Barbados, only one of these hypotheses is 

supported by the data and all of the geological observations contained in this 

dissertation. Data suggest that the channelized deposits of the Scotland Formation 

were deposited within the TFB in its present position and the Oceanic Formation 

was deposited conformably on top.  
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The observation of channel geometries within the TFB along with the 

presence of a regional depocenter during Eocene to Oligocene times suggest a 

clastic sediment fairway within the broader proto-Tobago Forearc Basin. These 

sediments would then have been incorporated into the present day western BAP 

on the eastern margin of the TFB. As the TFB closed the sediments on the basin 

margin became uplifted and deformed. These observations helped us to expand 

upon the premise of the second hypothesis.  Deepwater background sedimentation 

is pelagic mud and marl such as those that comprise the Oceanic Formation (that 

appear layered in seismic reflection profiles). Upon initiation of clastic 

sedimentation within the basin, a mud-rich submarine fan system was deposited 

within the broader TFB (Scotland Formation). When clastic sedimentation within 

the Tobago Forearc Basin ceased, pelagic sedimentation dominated once more 

(Oceanic Formation) (Figure 4.11).  Continued closure of the basin and 

underplating of sediments uplifted the Scotland and Oceanic Members to their 

present day position onshore Barbados. 

Both of these sedimentary packages were later uplifted with the rest of the 

Barbados Ridge to form the newly defined margin of the shrinking Tobago Basin.  

 

CONCLUSIONS 

The Tobago Forearc Basin was broader prior to the Middle Miocene than 

it is in the present day. It has been segmented into smaller basins with the TFB 

being the largest. 

The Oceanic Formation was deposited in situ and not thrust into place 

over the Scotland Formation.  
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Chapter 5: Conclusions 

SEDIMENTATION AND HYDROCARBON EXPLORATION WITHIN FOREARC BASINS 

The study area is a classic forearc basin depositional setting.  Hydrocarbons have 

been produced economically from some forearc basins such as Cook Inlet, Alaska (Bruhn 

et al., 2000; Clough et al., 2001), and the ancient Great Valley forearc basin in California 

(Rentschler, 1985; Vermeesch et al., 2006). In addition to conventional hydrocarbon 

production, there is thought to be up to 245 tcf of gas available in the unconventional 

resource of coal bed methane in Cook Inlet, Alaska (Clough et al., 2001; Montgomery 

and Barker, 2003).  

The re-interpretation of the Scotland Formation as a forearc basin deposit has 

implications for hydrocarbon exploration onshore and offshore Barbados. It has been 

accepted for several years that the oil and gas production onshore Barbados is the only 

example of successful hydrocarbon production from true accretionary prism sediments. 

The new model presented in this research re-defines the depositional setting of the 

reservoirs and classifies them as forearc basin plays similar to Alaska or California. 

Sedimentation within forearc basins is a combination of deposition by turbidity 

currents travelling parallel to the volcanic arc along the basin axis or travelling 

perpendicular to the volcanic arc. In the case of island arcs, the sediment sources are 

usually localized to the volcanic islands (Moore et al., 1980). In the case of the Lesser 

Antilles volcaniclastic sediments are interbedded with the longitudinal input from the 

South American continent. 

Clastic sediments within the Tobago Forearc Basin (TFB) were transported 

parallel to the Lesser Antilles Island Arc as evidenced from seismic reflectors prograding 

from south to north and channels that are visible in the strike (east to west) direction 

across the basin. Sediment input from the volcanic arc was minor, as evident from the 

small amounts of volcanic rock fragments that have been identified in thin section. 
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Pudsey, (1982) interpreted smectite and kaolinite rich clays within the Scotland 

Formation as ash fall deposits from the volcanic island arc. Punch, (2004) and Kasper and 

Larue, (1986) also found a minor volcanic input to the Scotland Formation sediments. 

The source of the clastic Scotland Formation sediments was the proto-Orinoco which 

drained from northern South America during Eocene to Oligocene times and deposited 

sediment into d the proto-TFB.  

As the Orinoco River shifted eastward, the main source of clastic sedimentation to 

the TFB ceased and pelagic accumulation became dominant as clastic sedimentation 

lessened. In the TFB-BAP region, the Oceanic Formation is the unit that is comprised of 

pelagic muds and marls, with interbedded volcanic ash layers. The reinterpretation of the 

Scotland Formation means that both the Oceanic Formation and the Scotland Formation 

are now both interpreted to be forearc basin sediments.  

Following deposition in the basin of clastic turbidites of the Scotland Formation, 

the post-Oligocene Oceanic Formation blanketed the basin. Several researchers have 

noted some confusion regarding the age of the Oceanic Formation (Speed, 1982; Pudsey, 

1982; Poole and Barker, 1982). It is probable that the Scotland and the Oceanic 

formations have an inter-fingering relationship and thus the reason for the age 

discrepancies that have puzzled researchers in the region for decades. 

The Cook Inlet, a structurally complex forearc basin, is located between the 

Alaska Range-Aleutian Volcanic Arc to the northwest and the Chugach-Kenai 

accretionary prism to the south. The basin is bounded by active faults and has a number 

of tight asymmetrical folds that form hydrocarbon traps. These folds are associated with 

reverse faults (Montgomery and Barker, 2003). Although the distant sedimentary source 

of the reservoir rocks in the Barbados study area differentiates the TFB fill from most 

forearc basins, the active faults in the area may form traps similar to those in the Cook 

Inlet. In Barbados, similar traps may exist within the BAP region along the Barbados 



 63

Ridge high. The traps would be associated with the large thrust faults that create the 

ridges and mini basins of the Zone of Piggy Back Basins (Figures 4.3 and 4.10). 

The implications of the interpretation of the Scotland Formation as a forearc basin 

are that depositional lobes should be elongated parallel to the major structural highs at the 

time of deposition.  Therefore, it is speculated herein that coarse-grained clastic deep 

water deposits, similar to those seen in outcrop and in seismic to the south, may exist to 

along the trend (to the north and south) of the Barbados Ridge and to the west within the 

Tobago Basin proper. If this is correct, the likelihood of finding deposits similar to or 

time equivalent to the Scotland formation decreases eastward. It is important to note that 

within the piggyback basins of the BAP, the Miocene age and younger, sand and shale 

successions have similar architecture and geometries.  

Hydrocarbon exploration of the BAP region must therefore take into account two 

distinctive play types: 

1. The raised forearc basin reservoir plays that are located along the high 

of the Barbados Ridge and the eastern margin of the present day TFB. 

2. The younger piggyback basin reservoir plays that have been deposited 

within these mini-basins that have formed on the BAP. 

The complex structuring of a convergent margin setting creates folds and faults 

that may give rise to hydrocarbon traps. However active faults may provide permeable 

pathways that cause leakage (Dolan, et al., 2004). Stratigraphic heterogeneity is complex 

as the potential reservoirs are highly channelized (Chapter Two, this volume). 
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The interpretation of the Scotland Formation as a forearc basin-deposited 

reservoir is a simpler model for the evolution of the BAP-TFB petroleum system. 

However the entire petroleum system is still poorly understood. The source rock for the 

hydrocarbons does not outcrop onshore and has not been imaged by seismic reflection 

profiles. T thermal maturation history is also poorly understood as accretionary prisms 

are understood to be regions of low heat flow which is not conducive to hydrocarbon 

maturation. Hydrocarbon exploration within the TFB and BAP region will remain risky 

until additional wells are drilled, 3D seismic is shot and exploration and development in 

the region matures.   
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Figure 1.1: Base map showing location of study area within the southeastern margin of 
the Caribbean Plate BAP.  Direction of plate movement based on GPS 
vectors (Weber 2001). Faults were mapped on seafloor bathymetry based on 
the work of Brown and Westbrook (1987) and Robertson and Burke (1989).
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Figure 1.2: Convergent margins around the world that are experiencing net accretion and have an accretionary prism that is currently growing. Oversized Plate (11x17) requires plotter or printer with tabloid printing. 
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Figure 1.3 Geological Map of Barbados showing the onshore geology and the outcrop 
locations within the study area. Modified from Poole and Baker (1980). 
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Figure 1.4: Data sets that are located in the southern BAP region. The only data shown on 
this map that permission has been granted for integration for this study are 
the blue lines of the ConocoPhilips 2D survey. 
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Figure 2.1: Map of Barbados showing the portion of the island (shown in red) where the 
Pleistocene limestone cap has been eroded to expose the underlying Tertiary 
sediments Modified from Pool and Barker, (1980).
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Figure 2.2: Generalized vertical section of the formations identified onshore Barbados 
after Poole and Barker, 1980.  
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Figure 2.3: Map of Barbados showing the outcrop locations within the study area. 
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Figure 2.4: Detailed Geological map of the Scotland District. Oversized Plate (11x17) requires plotter or printer with tabloid printing.
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Figure 2.5: Descriptions of high and low density turbidite deposits after Lowe (1982) and 
Bouma (1962.)

(Lowe, 1982)

(Bouma, 1962) 
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Figure 2.6: Photographs and illustrations of the six facies identified in outcrops of the Scotland Formation. Oversized Plate (11x17) requires plotter or printer with tabloid printing.
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Figure 2.7: Illustration of the facies associations identified as comprising the Scotland Formation deposits in outcrop.  Oversized Plate (11x17) requires plotter or printer with tabloid printing.
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Figure 2.8: Bedsets on the channel margins are made up of thin bedded, finer grained low density/concentration turbidite deposits. Bedsets in the channel axis are made up of coarse grained high density/concentration 
turbidites. Together these facies associations form an entire channel fill sequence. The channel and channel margin/levee elements form channel complexes and channel complex sets. (Campion, 2000, 
Sprague et al., 2003; Abreu et al., 2003). Oversized Plate (11x17) requires plotter or printer with tabloid printing. 

 

5-20 m 
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Figure 2.9: Two or more stacked channel elements form a  channel complex and two or more stacked channel complexes are called channel complex sets.(Campion, 2000; Sprague et al., 2002; Abreu et al., 2003). 
Oversized Plate (11x17) requires plotter or printer with tabloid printing. 
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Figure 2.10: Photo-panorama of Chalky Mount Ridge. View Looking West. Oversized Plate (11x17) requires plotter or printer with tabloid printing.
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Figure 2.11: Very coarse grained sand at Chalky Mount Ridge. Tape measure is in cm. 

 

Figure 2.12 : Ripple laminated fine grained sand bed at Chalky Mount Ridge. Overlain by 
mm scale parallel laminated silts and muds. Pencil shown for scale. 
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Figure 2.13: Laminated silt and mud overlain by coarse grained sand bed at Chalky 
Mount Ridge. Pen for scale. 

 

 

Figure 2.14: Planar parallel laminated silt and fine grained sand at Chalky Mount Ridge. 
Overlying sand bed is coarse grained and the base of the sand bed is 
cemented with hematite. Hammer for scale.  
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Figure 2.15: Correlation of sections measured at Chalky Mount Ridge showing stacking patterns of channel elements. 
Contacts were walked in the field where possible. Oversized Plate (11x17) requires plotter or printer with 
tabloid printing. 
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Figure 2.16a: Measured section at Chalky Mount Ridge Lower showing the thick overbank/ master levee deposit. 
Oversized Plate (11x17) requires plotter or printer with tabloid printing. 

March 2006
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Figure 2.16b: Measured section taken at Chalky Mount Ridge Lower showing the thick overbank/ master levee deposit. 
Oversized Plate (11x17) requires plotter or printer with tabloid printing. 

. 

 

March 2006 
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Figure 2.16c: Measured section at Chalky Mount Ridge Lower showing the thick overbank/ master levee deposit. 
Oversized Plate (11x17) requires plotter or printer with tabloid printing. 

 

March 2006
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Figure 2.17: Sleeping Giant Ridge outcrop. View looking north. Oversized Plate (11x17) requires plotter or printer with tabloid printing. 
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Figure 2.18: Correlation of sections measured at Sleeping Giant Ridge showing stacking of the six channel elements 
identified at this location. Oversized Plate (11x17) requires plotter or printer with tabloid printing.
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Figure 2.19: Conglomerate bed observed at CRBSGRF section with pencil shown 
for scale. Clasts are well rounded and comprised of iron-rich clasts 
(red and orange) and white lithified mud clasts.   

 

Figure 2.20: Very coarse grained quartz rich sand bed at Sleeping Giant Ridge. 
Orange-red hematite cement is only a surface feature- fresh faces do 
not show this cement.  Mechanical pencil point  for scale. 
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Figure 2.21: Parallel laminated silt and mud overlying wavy beds of silt and mud 
at Sleeping Giant Ridge. Pencil for scale. 

 

Figure 2.22: Parallel laminated silt and mud overlain by a coarser grained sand 
bed that is loading into the underlying finer grained bed at Sleeping 
Giant Ridge. Flame structures have developed. Pencil for scale. 
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Figure 2.23a: Measured section at the East Coast Road Beneath Sleeping Giant Ridge showing a thick master levee 
package. Oversized Plate (11x17) requires plotter or printer with tabloid printing. 

 

Wach, Vincent and Chaderton 
March 2006
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 Figure 2.23b: Measured section at the East Coast Road Beneath Sleeping Giant Ridge showing a master 
levee package overlain by stacked channel fill packages. Oversized Plate (11x17) requires plotter or 
printer with tabloid printing. 

Wach, Vincent and Chaderton 
March 2006 
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Figure 2.23c: Measured section at the East Coast Road Beneath Sleeping Giant Ridge showing a master levee package 
overlain by stacked channel fill packages. Oversized Plate (11x17) requires plotter or printer with tabloid 
printing. 

 

 

Wach, Vincent and Chaderton 
March 2006 
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 Figure 2.23d: Measured section at the East Coast Road Beneath Sleeping Giant Ridge showing a master levee package 
overlain by stacked channel fill packages. Oversized Plate (11x17) requires plotter or printer with tabloid printing. 

 

Wach, Vincent and Chaderton 
March 2006 
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Figure 2.23e: Measured section at the East Coast Road Beneath Sleeping Giant Ridge showing stacked channel fill 
packages interbedded with channel margin packages. Oversized Plate (11x17) requires plotter or printer 
with tabloid printing. 

 

 
  

Wach, Vincent and Chaderton 
March 2006 
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Figure 2.23f: Measured section at the East Coast Road Beneath Sleeping Giant Ridge showing stacked channel fill 
packages interbedded with channel margin packages. Oversized Plate (11x17) requires plotter or printer 
with tabloid printing. 

 

Wach, Vincent and Chaderton 
March 2006 
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Figure 2.23g: Measured section at the East Coast Road Beneath Sleeping Giant Ridge showing a master levee package 
that overlies stacked channel fill packages. Oversized Plate (11x17) requires plotter or printer with tabloid printing.

Wach, Vincent and Chaderton 
March 2006 
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Figure 2.24: Channel element identified at the Ermy Bourne Ridge. Oversized Plate (11x17) requires plotter or printer with tabloid printing. 
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Figure 2.25: Photograph of Walker’s Ridge showing the channelized sands overlying an extensive overbank levee sequence. Blue lines show the location of the measured sections. View looking north. Oversized Plate 
(11x17) requires plotter or printer with tabloid printing. 
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Figure 2.26: Photograph of Walker’s Ridge showing the location of the measured section WRB and shows a dip section view of the outcrop. View looking West. Oversized Plate (11x17) requires plotter or printer with 
tabloid printing. 
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Figure 2.27: Correlation of sections measured at Walker’s Ridge Upper showing the stacking patterns observed at this location. Orange dot on WRRB section identifies the location that Photographs A and B were 
taken. Oversized Plate (11x17) requires plotter or printer with tabloid printing.
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Figure 2.28: Photograph of Diplocraterion habichi found at Walker’s Ridge and 
comparison to example from literature.   
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Figure 2.29 : Sharp based coarse gained sand bed overlying finer grained silt and mud at 
Walker’s Ridge. Marker for scale. 

 

Figure 2.30: Ripple laminations within a fine-grained sand bed at Walker’s Ridge. 
Marker for scale. 
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Figure 2.31: Conglomerate with erosive base that overlies fine grained sand bed at 
Walkers Ridge. Marker for scale. 
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Figure 2.32: Laminated sand, silt and muds of Walker’s Ridge Lower. Lighter colored 
laminae are thin sand beds. Red arrow points to 20 cm thick coarse grained 
sand bed with an erosive base. View looking northwest. 
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Figure 2.33: Thalassinoides trace fossil observed at Mount All. Pencil for scale.  
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Figure 2.34: Mount All measured stratigraphic section A. 
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Figure 2.35: Mount All measured stratigraphic section B. 
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Figure 2.36:  Inner Turner’s Hall Ridge (ITR). Blue arrow shows location of measured section. 
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Figure 2.37: Medium grained sand bed at ITR outcrop. Marker for scale. 
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Figure 2.38a:  Inner Turner’s Hall Ridge measured stratigraphic section, 
interpreted as deposits of a deep water fan depositional lobe. 
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Figure 2.38b: Inner Turner’s Hall Ridge measured stratigraphic section 
interpreted as deposits of a deep water fan depositional lobe. 
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Figure 2.38c: Inner Turner’s Hall Ridge measured stratigraphic section interpreted 
as deposits of a deep water fan depositional lobe. 
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Figure 2.38d: Inner Turner’s Hall Ridge measured stratigraphic section 
interpreted as  deposits of a deep water fan depositional lobe. 
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Figure 2.38e: Inner Turner’s Hall Ridge measured stratigraphic section interpreted 
as deposits of a deep water fan depositional lobe. 
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             Figure 2.39: Spa Hill measured stratigraphic sections and correlation 
panel. The section is interpreted as deep water channel and channel margin 
elements.  
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Figure 2.40: Depositional Model for Scotland Formation deposits 
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Figure 2.41: Interbedded sandstone and mudstone levee-deposits flanking the channels 
within the JRC on the left, Facies 5 of the Scotland Formation on the right 
(photo taken at the Ermy Bourne Ridge). Photo on the left is from Lowe 
(2004). 

 
 

 

Figure 2.42: Coarse, cobble and pebble conglomerate channel fill of the Juniper Ridge 
Conglomerate on the left photo from Lowe, (2004). The Scotland Formation 
is on the right. Photo taken at conglomerate bed exposed n the beach, about 
100 m east of the East Coast Road outcrop. 

 

 

 

 

Juniper Ridge, California Scotland Formation, Barbados

Juniper Ridge, California Scotland Formation, Barbados
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Location Name Latitude Longitude 
Chalky Mount Ridge   13°14'18.88"N  59°33'18.14"W 
Ermy Bourne Ridge   13°14'42.19"N  59°33'3.73"W 
Sleeping Giant Ridge   13°14'27.33"N  59°33'4.13"W 
Sleeping Giant Ridge/ East Coast Rd  13°14'23.74"N  59°32'46.76"W 
Spa Hill   13°12'40.27"N  59°33'53.76"W 
Mount All   13°13'22.84"N  59°34'21.33"W 
Inner Turner's Hall Ridge  13°13'35.54"N  59°34'36.08"W 
Walker's Ridge   13°15'32.09"N  59°34'59.10"W 

Table 2.1:  Latitudes and Longitudes of outcrop locations where data was collected for 
this study. 
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Figure 3.1: Fractured quartz grain (qtz). Secondary porosity is created within factures. 
Also note that no quartz cement has precipitated within fractures. 

 

 

Figure 3.2: Recycled quartz grain. Red arrow shows broken overgrowth. Volcanic rock 
fragment comprised of weathered feldspars and pyrite is labeled VRF. 
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Figure 3.3: Pink stained Ca-plagioclase (plag) that is being weathered. Red arrow shows 
late stage hematite cement and clay that are filling pore spaces. Quartz grain 
are labeled with qtz. 

 

Figure 3.4: Volcanic rock fragment (VRF) surrounded by recycled quartz (qtz). Black 
dots within the VRF grain are pyrite. Red arrow shows a K-feldspar grain 
that has been almost completely dissolved by formation fluids. 
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Figure 3.5: Measured Section of outcrop SGRF showing the beds where samples SGRF 
1C, SGRF 9C, SGRF 11B were collected. 
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Figure 3.6: Photo of sample SGRF 1C showing fractured quartz grains (red arrows) and 
the lack of fine-grained matrix. K feldspar is identified with a K. 

 

 

Figure 3.7: Photo of sample SGRF 9C showing grain-to-grain contact. Note the fractured 
grains and the lack of fine-grained matrix and cement. 

 

K
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Figure 3.8: Photo of sample SGRF 11B showing fractured grains outlined in red 
plagioclase feldspar (plag), pore filling kaolinite (kao) and a volcanic rock 
fragment (VRF).  
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Figure 3.9: Measured Section of outcrop SGRF showing the bed where sample SGRF 
19C was collected. 

 

SGRF 19C

2006



 124

 

 

Figure 3.10: Photo of sample SGRF 19C showing grain to grain contact. Note the 
fractured grains outlined in red and the lack of cement, lack of fine-grained 
matrix and a volcanic rock fragment (VRF).  
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Figure 3.11: Measured Section of outcrop WRA showing the bed where sample WRA 16 
was collected. 
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Figure 3.12: Photo of sample WRA 16 showing fractured quartz grains, some of which 
are outlined in red, organic (O) matter and one feldspar grain that has been 
replaced by kaolinite (kao). Red arrow points to hematite cement.  
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Figure 3.13: Measured Section of outcrop WRB showing the bed where sample WRB 8  
was collected. 
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Figure 3.14: Photo of sample WRB 8 showing fractures in quartz grains (red arrows). 
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Figure 3.15: Measured Section of outcrop ITR showing the beds where samples ITR 9 
and ITR 14 were collected. 
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Figure 3.16: Photo of sample ITR 9 showing increased plagioclase (pink) labeled plag 
and K-feldspar (light brown and yellowish) content labeled K. Hematite 
cement (black/opaque) is present within pore spaces and is in some areas 
occluding pore throats (yellow arrows). 

 

 

Figure 3.17: Photo of sample ITR 14 showing  decreased plagioclase (pink) content. K 
feldspar  (light brown and yellowish) and quartz grains are more abundant in 
this sample.   
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Figure 3.18: Measured Section of outcrop CMRA showing the beds where sample 
CMRA was collected. 

 

2006
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Figure 3.19: Photo of sample CMRA showing plagioclase (pink) and  K-feldspar  (light 
brown and yellowish) along with recycled quartz grains. Pore spaces are 
partially filled with grayish-brownish kaolinite cement 

 

 

 

Figure 3.20: Photo of sample from Breedy’s location (see Figure 2.8) showing 
plagioclase (pink) labeled plag, and K-feldspar  (light brown and yellowish)  
labeled K.. In the lower part of the photo there is a rounded, dark green 
grain that is a glauconite grain. Volcanic rock fragments (VRF) are also 
present.   
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Figure 3.21: Composition of Scotland Formation samples  point counted by Punch 
(2004), plotted on a QFR diagram.  

 

Figure 3.22: Composition of Scotland Formation samples point counted by Kasper and 
Larue, (1986) plotted on a QFR diagram.  
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Figure 3. 23: Composition of Scotland Formation samples point counted in this study  
plotted on a QFR diagram.  
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Sample Facies IGV 
Fracture
Porosity 

Deformation  
Bands Sorting 

Mean Phi  
Grain size Classification 

Breedy's ? 41.0% 6.0% No moderate 3.29 subarkose 

CMRA channel 42.0% 3.5% Yes moderate 3.39 subarkose 

 ITR 9 lobe 38.0% 5.0% No moderate 3.66 arkose 

 ITR 14 lobe 41.0% 3.5% No moderate 3.72 arkose 

SGRF 1C channel 32.5% 2.5% Yes moderate 3.56 subarkose 

SGRF 9C levee 28.5% 6.0% No moderate 3.7 subarkose 

SGRF 11B channel 32.5% 2.5% No moderate 3.56 subarkose 

SGRF 19C channel 32.5% 10.5% No moderate 2.97 subarkose 

WRA 16 channel 28.0% 5.0% No poor 1.99 quartz arenite

WRB 8 channel 29.0% 7.5% No poor 2.18 quartz arenite

 

Table 3.1: Table showing a compilation of some of the results of point counting the thin sections.   
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Figure 4.1: Base map showing seismic line survey and location of seismic lines used for 
interpretation in this study. Numbers indicate lines shown in this paper. BB- 
Barbados Basin TFB- Tobago Forearc Basin, LAIA- Lesser Antilles Island 
Arc.   

 

 

Seismic lines inside green box 
were used to produce isochron 
maps in Figure 4.6 and 4.7 
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Figure 4.2: Sedimentary units in outcrop and the seismic response of their offshore 
equivalents 
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Figure 4.3: Channels within Unit Five. The light blue horizon is the Middle Miocene 
unconformity that bounds the top of Unit Four. 
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Figure 4.4: East-west seismic reflection profile showing the structural provinces within the study area. The location of the seismic line is shown as line 1 in Figure 4.1. The Lesser Antilles Island Arc High bounds the western 
margin of the Tobago Forearc Basin (TFB) that has up to 12 km of sediment fill in its deepest part. The Inner Forearc Deformation Front marks the boundary between the highly deformed Barbados Accretionary Prism 
sediments and the less deformed TFB sediments. The Barbados Ridge is the highest part of the accretionary prism and is characterized by extensive crestal normal faulting. The Barbados Basin is the largest of several 
piggyback basins that have formed on the eastern slopes of west-facing thrusts. The Zone of Stabilization is a region of less intensely deformed sediment that is a transition zone between the Zone of Initial Accretion and the 
Zone of Piggyback Basins. The Zone of Initial Accretion is made up of an imbricate fan of east-facing thrust faults (shown as dark blue lines) and marks the youngest phase of deformation in the prism, thus it is the zone 
where previously undeformed sediments of the Atlantic Abyssal Plain are offscraped and accreted to the prism. The Outer deformation Front marks the boundary between the imbricate fan and the undeformed sediments of 
the Atlantic Abyssal Plain. Oversized Plate (11x17) requires plotter or printer with tabloid printing.
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Figure 4.5: Seismic reflection profile across the Barbados Ridge which shows the Barbados Fault to the east and the Tobago Forearc Basin sediments that onlap the Barbados Accretionary Prism sediments to the west. The 
location of this seismic line is shown as line 2 in Figure 4.1. Oversized Plate (11x17) requires plotter or printer with tabloid printing. 
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Figure 4.6: East-west reflection seismic profile, shown as line 3 in Figure 4.1, showing  9 horizons mapped across the study area. The Tobago Basin fill is bounded by the crystalline Caribbean Basement and the sea floor. 
Surfaces shown in the figure are as follows: Bright red- top of the crystalline Caribbean basement; Black- top of Unit One/ Pre-Eocene (no definitive age data exists on this surface but it is thought to be Cretaceous) Dark 
green, top of Unit Two/ Lower Eocene-Lower Oligocene; Gold -top of Unit Three/ Lower Oligocene to Lower Miocene; Dark blue, top of sub-unit A; White-top of sub-unit B. Light blue- top of sub-unit C/Unit Four/ Lower-
Middle Miocene; Purple-top of Unit Five/ Upper Miocene unit; Pink top of Unit Six/seafloor/ Pliocene-Pleistocene ; Bright Green- top of sediments. Oversized Plate (11x17) requires plotter or printer with tabloid printing.
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Figure 4.7 Isochron maps of the oldest units of the Tobago Forearc Basin (TFB) fill. A. Pre-Eocene which is confined to a narrow 
geographic area has a depocenter to the northeastern portion of the TFB. B. Eocene to Lower Oligocene fill is a thinner unit than the 
previous, older sediments. The depocenter has shifted to the south and is now more centrally located. C. Lower Oligocene to Lower 
Miocene fill with a depocenter located just west of the present day Inner Forearc Deformation Front. Note that this unit covers a 
broader geographic area than the previous units and sediment accumulated in the central part of the basin located  within an ever 
broader region to the east of the depocenter. Seismic lines used to produce these isochron maps are shown inside the green box in 
Figure 4.1. 
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Figure 4.8: Isochron maps of the Lower Miocene to Plio-Pleistocene Tobago Basin fill. A. The Lower Miocene to Middle Miocene 
TFB fill is relatively thin. The thickest portion is preserved in the southwestern corner of the TFB. B. The Upper 
Miocene fill is almost identical in morphology to the underlying unit. The Pliocene to Pleistocene fill is concentrated in a 
narrow depocenter in the southwestern portion of the basin. The depocenter is constrained on its eastern margin by the 
Inner Forearc Deformation Front that is shown in Figures 4.3 and 4.5. Seismic reflection profiles used to produce these 
isochron maps are located inside the green box in Figure 4.1. 
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Figure 4.9: Illustration of the Speed model of tectonic emplacement of the Oceanic Formation (Tobago Forearc Basin sediments) onto 
accretionary prism sediments. 
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Figure 4.10: A series of schematic drawings that illustrates the evolution of the Tobago Forearc Basin.   
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Figure 4.11: Illustration of Hypothesis 2- early pelagic sedimentation (Oceanic 
Equivalents) followed by clastic basin fill (Scotland Formation) and a return 
to pelagic sedimentation (Oceanic Formation) that is deposited conformably 
on the clastic basin fill. 
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Appendix 

 

 

DIRECTIONS TO OUTCROPS 
 

1. Chalky Mount Ridge  
 
From Bridgetown take the Spring Garden Highway NW to the roundabout at the bottom 
University Hill. Turn right up University Hill and this road becomes the ABC highway. 
At Warrens roundabout take the second left exit to travel east and stay on the ABC 
highway until you reach the Jackson Roundabout. Take the first left exit towards Jackson 
and onto Highway 2. Stay on Highway 2  (for about 4 km) until you reach Haggatts. At 
the intersection follow Chalky Mount sign that points East and up a hill. At the top of this 
Hill there will be a blue and yellow rum shop on the right and a Chalky Mount Primary 
School on the left. Turn left at the school and follow the road until it ends. Park vehicle 
on Eastern side of the road, do not park in the clearing because quite large buses turn 
around there. Chalky Mount Ridge should be visible to the West across a valley. Hike 
West to Chalky Mount Ridge. Portions of Chalky Mount outcrop are also accessible on 
the Eastern side of the valley. 
 
 

2. Sleeping Giant Ridge 
This ridge can be reached by hiking approximately 1km North East from where the 
Chalky Mount Village road ends. This route is dangerous as a result of the friable nature 
of the outcrops. A safer route is to follow directions above and stay on Highway 2 until 
you reach BellePlaine. At BellePlaine turn right (onto the Ermy Bourne Highway- also 
locally called “The East Coast Road) and stop just north of Barclays Park. This will take 
you to the “East Coast Road “ outcrop which is the eastern face of Sleeping Giant Ridge. 
The upper portions of the ridge can be reached from hiking up and over the eastern face 
in a westerly direction. 

 
 

3. Ermy Bourne Ridge 
Approximately 500 m north of the Eastern face of Sleeping Giant Ridge.  Outcrop 
marked by a sign in rock with a short write up about “Ermy Bourne”. 

 
4.  Spa Hill 

From Mount All, drive East to junction at the bottom of Mount All. Turn right (south). 
Take left at Fruitful Hill and follow the road until it ends. Park vehicle and hike past ruins 
of old house (Spa House) in a northeasterly direction. You will reach a thicket with trees 
and a great deal of brush- it may be fenced in some areas. A cutlass (machete) is 
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necessary to clear a path. Keep to a northeasterly path for about 300 m, outcrop will be 
visible when brush clears. 

  
 
 
 
5. Mount All 

From Bridgetown take the Spring Garden Highway NW to the  roundabout at the bottom 
University Hill. Turn right up University Hill becomes the ABC highway. At Warrens 
roundabout take the second left exit to travel East and stay on the ABC highway. The 
next roundabout is Jackson Roundabout. Take the first left exit towards Jackson onto 
Highway 2. Stay on Highway 2 until you reach Mount All. Outcrop is located on a dirt 
track on the north side of the road ~ 750 m from the top of Mount All. Track is often 
over-grown and it is best to park at the crest of Mount All and walk down to track. Wear 
reflective clothing if possible and keep an eye out for swift moving cars and buses. 
 

6. Inner Turner’s Hall Ridge 
From Mount All continue on Highway 2. Turn left (West) at Belle Hill and follow the 
road until it ends. Park vehicle and hike west into woods. About 100 m into the woods 
take path on the left, in a southerly direction. Hike South for about 250 m until you reach 
the Inner Turner’s Hall Ridge Outcrop. 

 
7. Walker’s Ridge 

From Mount All follow Highway 2. Highway 2 will travel east and at BellePlaine it 
curves towards the West. Stay on Highway 2 past Shorey Village to Breedy’s. Stop at 
Greenland Clay Tile Factory, located in Breedy’s. Park on grass in front of factory offices 
and ask at office for permission to hike up the hill. Walk behind clay factory proper and 
veer slightly westward to find the Walker’s Ridge Lower section. Walker’s Ridge Upper 
section is located immediately North of Walker’s Ridge Lower. 

 
7.b Breedy’s 

The entrance to the road is 100 m South of the clay tile factory entrance. Turn left and 
follow dirt road into Breedy’s Shale Quarry. Sandstone beds are visible at the Southern 
end of the quarry. Be very careful and do not visit this location when it is or has been 
raining as there is a danger of falling rock and of getting vehicles stuck. 
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Figure A.1: Location map showing Scotland District Outcrops. Oversized Plate (11x17) requires plotter or printer with 
tabloid printing.
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Figure A.2a: Lidar Ridge measured section. 

2006
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Figure A.3a: Chalky Mount Ridge measured section A. 

2006
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Figure A.3b: Chalky Mount Ridge measured section A. 

2006
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Figure A.3c: Chalky Mount Ridge measured section A 

2006
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Figure A.4a: Chalky Mount Ridge measured section B. 

2006
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Figure A.4b: Chalky Mount Ridge measured section B. 

2006
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Figure A.4c: Chalky Mount Ridge measured section B. 

 

2006
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Figure A.5: Chalky Mount Ridge measured section C. 

 

2006
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Figure A.6: Chalky Mount Ridge measured section D. 

 

2006
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Figure A.7a: Measured Section of Chalky Mount Shale Ridge. 

2006
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Figure A.7b: Measured Section of Chalky Mount Shale Ridge. 

 

2006
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Figure A.7c: Measured Section of Chalky Mount Shale Ridge. 

 

2006
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Figure A.8a: Sleeping Giant Ridge Measured Section A. 

 
 

2006
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Figure A.8b: Sleeping Giant Ridge Measured Section A. 

 

2006
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Figure A.9: Sleeping Giant Ridge Measured Section B. 

 

2006
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Figure A.10: Sleeping Giant Ridge Measured Section C. 

 

 

2006
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Figure A.11: Sleeping Giant Ridge Measured Section D. 

 
 
 

2006
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Figure A.12: Sleeping Giant Ridge Measured Section E. 

 

2006
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Figure A.13a: Sleeping Giant Ridge Measured Section F. 

 
 

2006



 169

 
 

Figure A.13b: Sleeping Giant Ridge Measured Section F. 

 

2006
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Figure A.14a: Coast Road Below Sleeping Giant Ridge Measured Section. 

 

2006 
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Figure A.14b: Coast Road Below Sleeping Giant Ridge Measured Section. 

 

2006
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Figure A.14c: Coast Road Below Sleeping Giant Ridge Measured Section. 

 

2006
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Figure A.14d: Coast Road Below Sleeping Giant Ridge Measured Section. 

 

2006
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Figure A.14e: Coast Road Below Sleeping Giant Ridge Measured Section. 

 

2006
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Figure A.14f: Coast Road Below Sleeping Giant Ridge Measured Section. 

 
 

2006



 176

 

Figure A.14g: Coast Road Below Sleeping Giant Ridge Measured Section. 

 

2006



 177

 
 
 

Figure A.14h: Coast Road Below Sleeping Giant Ridge Measured Section. 

 

2006
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Figure A.15: Ermy Bourne Ridge Measured Section 1. 

 

2006
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Figure A.16: Ermy Bourne Ridge Measured Section 1. 

 

2006
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Figure A.17: Spa Hill Fold Measured Section 1. 

 

2006 
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Figure A.18: Spa Hill Fold Measured Section 2. 

 

 

2006
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Figure A.19: Ermy Bourne Ridge Measured Section 1. 

 
 
 

2006
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Figure A.20a: Walkers Ridge Measured Section A. 

2007
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Figure A.20b: Walkers Ridge Measured Section A. 

 

2007
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Figure A.20c: Walkers Ridge Measured Section A. 

 
 

2007
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Figure A.21: Walkers Ridge Measured Section B. 

 

2007
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Figure A.22a: Walkers Ridge Measured Section C. 

2007
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Figure A.22b: Walkers Ridge Measured Section C. 

 

2007
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Figure A.23a: Inner Turner’s Hall Ridge Measured Section.  

 

2007 
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Figure A.23b: Inner Turner’s Hall Ridge Measured Section. 

2007 
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Figure A.23c: Inner Turner’s Hall  Ridge Measured Section. 

2007 
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Figure A.23d: Inner Turner’s Hall Ridge Measured Section. 

 
 

2007 
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Figure A.23e: Inner Turner’s Hall Ridge Measured Section. 

 
 

2007 
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Breedy's CMRA ITR 9 ITR 14 S GR F1C S GR F9 S GR F 11B S GR F19C WRA WR B
2 4 0 0 2 4 5 0 0 0
7 30 19 22 40 31 30 2 15 4

80 32 45 30 72 74 60 85 90 106
3 4 3 5 4 8 1 8 20 11

6 10 10 16 7 8 7 4 6 4
15 16 24 2 0 11 7 0 2

0

1 3 3 2
1 2 2

1 1 1

5 2 3 5 2 4 8 3 0
0 1 0 1 1 0
0 0 0 0 0 0

1 2

36 30 39 27 44 46 35 50 45 50
11 2 8 4 12 0 4 2

1 3 2 1
12 7 10 7 5 5 21 10 15

Authigenic  Minerals

5 10 5 4 1 0 5 3
1 11 4 5 4 1 7 1

15 27 24 9 16 10 3 9 10 6

6 56 20
5 5

Total 200 200 200 200 200 200 200 200 200 200

Kaolinite
Quartz  overgrowths

C hlorite
HematitePore F illing

G rain replacement

K aolinite
C hlorite

Accessory Minerals

Poros ity*

P rimary Intergranular
S econdary Intragranular
S econdary Moldic
S econdary F ractured Intragranular

Muscovite
B iotite
Z ircon
G lauconite
P yrite

R ock F ragments

C hert

Altered Volcanic  R ock fragments ‐ some pyrite,
 feldspars  altered to clay

Argillaceous  R ock fragments

K  F eldspar (s tained yellow) tartan twinning
C a‐ P lagioclase (s tained pink/red) polysynthetic  twinning
Na‐P lagioclase (doesn't take s tain)

Quartz

F eldspar

F ramework grains
P olycrystalline
Monocrystalline
F actured Quartz  grain
Quartz  with recycled quartz  overgrowths

 

Table A.1: Table shows results of point counting of the ten samples selected for petrographic examination of the Scotland Formation. Oversized Plate (11x17) requires plotter or printer with tabloid printing.
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