
 i

CRWR Online Report 08-04

A Time-Centered Split for Implicit Discretization of Unsteady
Advection Problems

by

Shipeng Fu, B.S.; M.S.

and

Ben R. Hodges, Ph.D.

The University of Texas at Austin
May 13, 2008

This document is available online via World Wide Web at
http://www.crwr.utexas.edu/online.html

 ii

Copyright
by

Shipeng Fu
2008

 iii

Acknowledgements

I would like to begin by expressing my gratitude to my advisor Dr. Ben Hodges. I

am thankful for his guidance and support, and I appreciate the freedom he has given me
to explore and pursue my own research interests. I would also like to thank Dr. Graham
Carey, Dr. Randall Charbeneau, Dr. Spyros Kinnas and Dr. Daene Mckinney for serving
on my committee.

The faculty members, facilities, and the world class program of EWRE have made
my research possible. I am grateful to Dr. Kinnas and Dr. Carey for their input in the
development of the numerical methods in this dissertation. I have gone to Dr. Liljestrand,
Dr. Lawler and Dr. Kinnas many times for help and advice, and they have always been
happy to help. I want to thank them for their encouragement and advice. I would like to
thank Dr. Charbeneau for giving me the opportunity to work with lab experiments (so I
could finally play with the real water!). I would like to thank Sharon Bernard, Marcy
Betak, and Susan Swanson-Cartwright at the CRWR Office for helping with all my
administrative paperwork and questions.

During my Ph.D study at UT, my friends in Austin have been extremely helpful
and supportive. I could not finish this without their friendship. I want to particularly
thank Paula Kulis, Li-Jung Chen and their wonderful husbands for feeding me meals and
listening to my whines. I also want to thank Paula for many discussions in fluid
mechanics and beyond. I want to thank Yihsiang Yu and Vimal Vinayan for their
insightful discussions on numerical methods and wave mechanics. I want to thank Becky
Teasley and John Allen, Rebekah and Nate Johnson, and Jeremy Seibert for graciously
reading and providing valuable feedbacks on my dissertation. I want to thank all my
friends in EWRE and CRWR. Our lunch topic at CRWR is always intellectually
stimulating, and sometimes wild. I also want to thank all the members in the BUSTED
(Best Underpaid Students Turning into Environmental Doctors) club. I really benefited
from the support from everyone. I will miss you girls. I want to thank my running buddy,
Susan De Long, for many interesting discussions about Yoga and philosophy.

I am thankful to my parents. I thank them for teaching me good values, and
encouraging me to think independently since I was very young. My diligent father and
curious mother have always been my role models and inspiration.

My deepest thanks go to my best friend and husband, Yunzhi Yang. I am really
fortunate to have such a wonderful life partner accompanying me for this journey. I want
to thank him for truly understanding me, encouraging me to strive for excellence, and
bringing life into perspective.

 iv

Abstract

Environmental flows (e.g. river and atmospheric flows) governed by the shallow
water equations (SWE) are usually dominated by the advective mechanism over multiple
time-scales. The combination of time dependency and nonlinear advection creates
difficulties in the numerical solution of the SWE. A fully-implicit scheme is desirable
because a relatively large time step may be used in a simulation. However, nonlinearity in
a fully implicit method results in a system of nonlinear equations to be solved at each
time step. To address this difficulty, a new method for implicit solution of unsteady
nonlinear advection equations is developed in this research. This Time-Centered Split
(TCS) method uses a nested application of the midpoint rule to computationally decouple
advection terms in a temporally second-order accurate time-marching discretization. The
method requires solution of only two sets of linear equations without an outer iteration,
and is theoretically applicable to quadratically-nonlinear coupled equations for any
number of variables.

To explore its characteristics, the TCS algorithm is first applied to one-
dimensional problems and compared to the conventional nonlinear solution methods.
The temporal accuracy and practical stability of the method is confirmed using these 1D
examples. It is shown that TCS can computationally linearize unsteady nonlinear
advection problems without either 1) outer iteration or 2) calculation of the Jacobian. A
family of the TCS method is created in one general form by introducing weighting factors
to different terms. We prove both analytically and by examples that the value of the
weighting factors does not affect the order of accuracy of the scheme. In addition, the
TCS method can not only computationally linearize but also decouple an equation system
of coupled variables using special combinations of weighting factors. Hence, the TCS
method provides flexibilities and efficiency in applications.

 v

Table of Contents

List of Tables .. vii

List of Figures .. viii

Chapter 1 Introduction ...1
1.1 Background...1
1.2 Challenge and Motivation of the Numerical model..................................3
1.3 Objective ...4
1.4 Approach...4
1.5 Broad Application...5

Chapter 2 Review of Finite Difference Schemes for Solving the Unsteady Nonlinear
Advection in the Shallow Water Equations ..6
2.1 Explicit Method ..6
2.2 Semi-Implicit Method...7
2.3 Implicit Method ..7
2.4 Summary ...11

Chapter 3 Theoretical Development of the Time-Centered Split (TCS) Method..12
3.1 The Theory of Time-Centered Splitting ...12
3.2 Derivation of the TCS method in a 1D Advection-Diffusion Equation .16
3.3 TCS for Coupled Momentum and Scalar Transport19
3.4 Summary ...20

Chapter 4 Implementation of the TCS Method in 1D Problems22
4.1 Application of the TCS Method to the 1D Conservative Burgers’ Equation

..22
4.2 Applications of the TCS Method to the 1D Non-conservative Burgers’

Equation ...42
4.3 Application of the TCS Method to a 1D Nonlinear Ordinary Differential

Equation ...59
4.4 Summary ...63

 vi

Chapter 5 The TCS Family Method...65
5.1 Derivation of the TCS Family Method ...65
5.2 Application of the TCS Family Method to the 1D Non-conservative

Burgers’ Equation ..68
5.3 Results and Discussion ...70
5.4 Computational Decoupling ...78
5.5 Summary ...81

Chapter 6 Application of the TCS Method to a 2D Depth Averaged Shallow Water
Equations (SWE) ..83
6.1. The 2D Depth Averaged SWE...83
6.2 The TCS Discretized SWE ...84
6.3 Decoupling the SWE...87
6.4 Characteristics of the TCS Decoupled Equation System........................89
6.5 Numerical Tests ..91
6.6 Summary ...109

Chapter 7 Conclusions and Recommendations..110
7.1 Summary of Discussion ..110
7.2 Conclusions...113
7.3 Recommendations for Future Work..113

Appendix A Test of a Progressive Wave in an Open Boundary System.............115
A.1 Initial and Inlet Boundary Condition ...115
A.2 Outlet Boundary Condition..116
A.3 Results and Discussion...119

References..124

 vii

List of Tables

Table 5.1 The mathematical meaning of the value of 1θ and 2θ 70

Table 5.2 Weighting factors for computational decoupling the 2D Burgers’ equation.... 80

Table 6.1 Weighting factors and the solution orders for decoupled Equations (6.11)
through (6.16). .. 89

Table 6.2 Solution procedures of the three TCS discretizations....................................... 91

Table 6.3 Parameters of simulations of a 1D standing wave.. 93

Table 6.4 Parameters of simulations of the 2D standing wave... 97

 viii

List of Figures

Figure 1.1 Sulphur River (Texas) large woody debris at low-flow conditions 2

Figure 4.1 Solution of 1D Burgers’ equation evolving in time for t∈{0, 0.1, 0.2, 0.3, 0.6,
1, 2, 3} using 0.05ν = along with the initial and boundary conditions of Equations
(4.43) through (4.45)... 34

Figure 4.2 Absolute error time evolution for numerical solutions of 1D conservative
Burgers’ equation for TCSF and TCSF-D using { t∆ =0.01, x∆ =1/50, ν=0.05},

where
50

abs model i analytical i
i 1

1(t) u (x , t) u (x , t)
50

=

ε = −∑ and analyticalu (x, t) is numerically

calculated from Equation (4.46) with K=30. ... 35

Figure 4.3 RMSε vs. CFL number of various methods for solution of 1D conservative
Burgers’ equation with three different x∆ , where 0.05ν = and t 0.3/∆ = Γwith
Γ∈{50, 30, 25, 20, 10, 8, 5, 4, 2}. ... 37

Figure 4.4 2L norm vs. CFL number of various methods for solution of 1D conservative
Burgers’ equation with three different x∆ , where 0.05ν = and t 0.3/∆ = Γwith
Γ∈{50, 30, 25, 20, 10, 8, 5, 4, 2}. ... 38

Figure 4.5 L∞ norm vs. CFL number of various methods for solution of 1D conservative
Burgers’ equation with three different x∆ , where 0.05ν = and t 0.3/∆ = Γwith
Γ∈{50, 30, 25, 20, 10, 8, 5, 4, 2}. ... 39

Figure 4.6 RMSε vs. CFL number of TCSF, RK2 and RK4 methods for solution of 1D
conservative Burgers’ equation, where 0.05ν = x∆ =1/50, and t 0.3/∆ = Γwith
Γ∈{500, 200, 100, 80, 50, 30, 25, 20, 10, 8, 5}. ... 40

Figure 4.7 Ideal operations per grid point for one time step using various nonlinear
solution methods for 1D conservative Burgers’ equation. R is the number of outer
iterations taken by Newton method. It is assumed that the Picard method
convergences in R2 outer iterations... 42

Figure 4.8 Absolute error time evolution for numerical solutions of 1D non-conservative
Burgers’ equation for the TCSF and TCSG methods using

{ }t 0.01, x 1/ 50, 0.05∆ = ∆ = ν = where
50

abs model i analytical i
i 1

1(t) u (x , t) u (x , t)
50

=

ε = −∑

and analyticalu (x, t) is numerically calculated from Equation (4.46) with K=30. 54

 ix

Figure 4.9 RMSε vs. CFL numbers of various methods for solution of 1D non-
conservative Burgers’ equation at different CFL numbers, where ν=0.05, x∆ =1/50
and t∆ =0.6/Γ with Γ ∈{50, 30, 25, 20, 10, 8, 5}.. 55

Figure 4.10 2L norm vs. CFL numbers of various methods for solution of 1D non-
conservative Burgers’ equation at different CFL numbers, where ν=0.05, x∆ =1/50
and t∆ =0.6/Γ with Γ ∈{50, 30, 25, 20, 10, 8, 5}.. 56

Figure 4.11 L∞ norm vs. CFL numbers of various methods for solution of 1D non-
conservative Burgers’ equation at different CFL numbers, where ν=0.05, x∆ =1/50
and t∆ =0.6/Γ with Γ ∈{50, 30, 25, 20, 10, 8, 5}.. 57

Figure 4.12 Temporal accuracy of the TCS and RK methods for solution of 1D non-
conservative Burgers’ equation at different CFL numbers, where ν=0.05, x∆ =1/50
and t∆ =0.6/Γ with Γ ∈{500, 200, 100, 80, 50, 30, 25, 20, 10, 8, 5}.................... 58

Figure 4.13 Ideal operations per grid point for one time step using various nonlinear
solution methods for 1D Non-conservative Burgers equation. R is the number of
outer iterations taken by Newton method. It is assumed that the Picard method
convergences in 2R outer iterations.. 59

Figure 4.14 Time evolution of absolute errors for TCS methods applied to the ODE,
Equation (4.101), for t∆ =0.1, where abs model analytical(t) y (t) y (t)ε = − 62

Figure 4.15 RMS error from Equation (4.117) for discrete solutions of the ODE,
Equation (4.101), computed using a range of Γ time steps. 63

Figure 5.1 Temporal accuracy of various combinations of 1θ and 2θ for solution of the
Burgers’ equation at t=0.6, where x 1 50/∆ = , 0 05.ν = and t 0 6. /∆ = Γ
({ }5, 8, 10, 20, 25, 30, 50Γ∈).. 72

Figure 5.2 Temporal accuracy of various combinations of 2θ and 1θ for solution of the
Burgers’ equation at t=0.6, where x 1 50/∆ = , 0 05.ν = and t 0 6. /∆ = Γ
({ }5, 8, 10, 20, 25, 30, 50Γ∈).. 73

Figure 5.3 Temporal accuracy of various combinations of 2θ and 1θ for solution of the
Burgers’ equation at t=0.3, where x 1 50/∆ = , 0 05.ν = and t 0 3∆ = Γ. /
({ }5, 8, 10, 20, 25, 30, 50Γ∈).. 75

Figure 5.4 Temporal accuracy of various combinations of 2θ and 1θ for solution of the
Burgers’ equation at t=1, where x 1 50∆ = / , 0 05ν = . and t 1∆ = Γ/
({ }5, 8, 10, 20, 25, 30, 50Γ∈).. 76

 x

Figure 5.5 Temporal accuracy of various combinations of 2θ and 1θ for solution of the
Burgers’ equation at t=2, where x 1 50/∆ = , 0 05.ν = and t 2∆ = Γ/
({ }5, 8, 10, 20, 25, 30, 50Γ∈).. 77

Figure 6.1 Illustration of Arakawa C grid... 85

Figure 6.2 A standing wave in a rectangular basin... 92

Figure 6.3 Simulations in the inviscid flow with different wave steepness...................... 94

Figure 6.4 Viscous damping effects in the shallow water model 95

Figure 6.5 The initial 2D standing wave and its decomposed x and y direction 1D wave96

Figure 6.6 Computational domain (not to scale) .. 97

Figure 6.7 Normalized surface elevation contours in the computational domain at time
4T. ... 100

Figure 6.8 Normalized surface elevation contours in the computational domain at time
15T. ... 101

Figure 6.9 Normalized U-velocity contours in the computational domain at time 4T. .. 102

Figure 6.10 Normalized U-velocity contours in the computational domain at time 15T.
... 103

Figure 6.11 Normalized V-velocity contours in the computational domain at time 4T. 104

Figure 6.12 Normalized V-velocity contours in the computational domain at time 15T.
... 105

Figure 6.13 Surface displacement at points (0.5, 0) and (0, 0.5) simulated using three
TCS solutions.. 106

Figure 6.14 Snapshot of the standing wave at 0.5 T. The surface displacements at the two
monitored points (0.5, 0) and (0, 0.5) are circled. .. 107

Figure 6.15 Snapshot of the standing wave at 15 T. The surface displacements at the two
monitored points (0.5, 0) and (0, 0.5) are circled. .. 108

Figure A.1 Initial water level, H (x, 0), in the rectangular open channel 115

Figure A.2 Inlet boundary condition H (0, t) .. 116

Figure A.3 Shape function of viscosity... 117

Figure A.4 An open boundary rectangular channel with a sponge layer........................ 117

Figure A.5 Schematic illustrations of grids .. 118

Figure A.6 Water level at point A with/without the sponge layer 118

 xi

Figure A.7 Water level evolutions inside the test section and sponge layer................... 119

Figure A.8 Comparison of wave shape at time 7T and 14T for TCS solution1 and TCS
solution 2 respectively .. 120

Figure A.9 Comparison of wave shape simulated from TCS solution 1 and 2 at time 7T
and 14T respectively ... 121

Figure A.10 Time evolution of a progressive wave at different wave periods from TCS
solution 1... 122

Figure A.11 Time evolution of a progressive wave at different wave periods from TCS
solution 2... 123

 1

Chapter 1 Introduction

Models of river flow using mathematic tools have been developed since last half

century (Cao and Carling 2002). Various numerical river models have been created to
study flood control (Dutta et al. 2007; Liao et al. 2007), water allocation (Fleckenstein et
al. 2006; Luo 2007), sediment and morphological evolution (Giri and Shimizu 2006; Le
et al. 2006) and so on. The river flow is usually modeled at a coarse-grid scale due to the
limitations of the computational power (Dedong et al. 2007; Shaw et al. 2005; Thouvenin
et al. 2007). However, there exist some particular river systems such as a river with many
large woody debris (LWD), as shown in Figure 1.1. The flow information around LWD
is at subgrid-scale, which can’t satisfactorily be modeled at the conventional coarse-grid.

In addition, the river flow is often simulated using two-dimensional (2D) depth
averaged shallow water equations (SWE) as the governing equations (Chen and Peng
2006; Nguyen et al. 2006; Weerakoon et al. 2003). However, the unsteadiness and the
dominant advective mechanism of a river flow create difficulties in SWE based
numerical simulation because of the combination of the “stiffness” (i.e. the unsteady
term) and “nonlinearity” (i.e. the nonlinear advection term) in the momentum equations.
Therefore, in this research, we develop a new numerical algorithm to address the
difficulties in simulating the unsteady nonlinear advection. This numerical scheme can
also serve as a platform to perform the new conceptual model which can integrate the
subgrid-scale physics into a coarse-grid scale model. The detailed development of the
conceptual model can be found in Fu and Hodges (2005). First, let us start with the
background information of the LWD.

1.1 BACKGROUND
Large woody debris (LWD) refers to woody material such as fallen tree trunks or

root balls that become lodged in stream channels. Figure 1.1 gives an example of a river
laden with large woody debris (LWD). The conventional size of LWD is diameters
larger than 0.1 m and lengths greater than 1.0 m (Keller and Swanson 1979; Andrus et al.
1988). LWD accumulations have been historically called “snags”, a pejorative term
reflecting a perception of LWD as a nuisance to river navigation and efficient water use.
River “improvement” schemes typically involve removing LWD (Shields & Nunnaly
1984; Gippel 1995), to improve water conveyance, rejuvenate channels, lessen the risk of
damage to bridges, improve recreational amenity, and remove barriers to fish migration
(Harmon et al. 1986). However, from an ecological perspective, LWD provides a stable
substratum for microorganisms, algae and invertebrates (Minshall 1984; Brown & May
2000; Statzner & Higler 1986). This, in turn, creates grater local productivity for higher
trophic levels such as invertebrates and fish (Price & Lovett 2002). Furthermore, LWD
enhances hydraulic diversity (i.e. a wide range of flow conditions), which in turn
enhances diversity in fish habitat, e.g. providing low-velocity refuges sought by many
fish species (Benke et al. 1985; Matthews & Hill 1980), and also providing cover from
predators (Angermeier & Karr 1984, Everett & Ruiz, 1993), foraging habitat, and

 2

spawning substratum - all of which vary dynamically with flow rate (Bao & Mathews
1991; Mathews & Tallent 1997; Marzolf 1978). In short, LWD creates greater habitat
complexity (O’Conner 1991), which should produce greater biodiversity (Gerhard &
Reich 2000).

Figure 1.1 Sulphur River (Texas) large woody debris at low-flow conditions

(Photo courtesy of Texas Water Development Board)

Over the past two decades, a wide variety of studies demonstrate how woody

debris may be a dominant player in aquatic habitat. Angermeier & Karr (1984)
selectively modified a stream by inducing and removing woody debris, subsequently
showing a greater abundance of fish and benthic invertebrates correlated with the
introduced debris. Benke et al. (1985) examined a low-gradient stream, showing that only
4% of habitat surface was in LWD and yet this supported 60% of the invertebrate
biomass and 16% of overall production. Similar results are noted in Benke et al. 1984 and
Jacobi & Benke1991. Effects of flooding on fish movements and distribution (Hill &
Grossman 1987; Harvey et al. 1999) have confirmed the importance of habitat
complexity (including LWD) for population persistence. More subtle and indirect effects
on habitat have been attributed to LWD’s modification of the flow field and water level
(Triska & Cromack 1980; Sedell et al. 1982; Wallace & Benke 1984). Near LWD,
reduced velocities allow retention of organic matter, building up ecologically-important
debris dams, while water lever effects at high flow rates can influence the seed dispersal
from riparian vegetation (Merritt & Wohl 2002). Studies drawing similar conclusions
have been conducted over a variety of locales and river types, ranging from salmon
spawning streams in Alaska (Dolloff 1986), low-gradient rivers in West Virginia (Lobb
& Orth 1991) to an ephemeral river in Africa (Jacobson et al. 1999). The common theme
is that LWD plays a varied and critical role in aquatic habitat for rivers and streams – a
role determined by the flow field near LWD. Moreover, water management agencies are

 3

interested in including the effects of LWD in aquatic habitat assessments used for water
resource allocations.

The flow structure around LWD is very complicated and varied, which has been
revealed by several previous field studies (e.g. Mutz 2000; Beebe 2001; Daniels &
Rhoads 2003). Moreover, there is a large difference in scales between hydraulic
processes and the critical ecological processes. Because of this scale difference, the
small-scale flow heterogeneity (important to biota) is poorly represented in the channel-
scale numerical models currently used for aquatic habitat analysis (e.g. Waddle 2001). To
address this problem, a new conceptual model is proposed to integrate the subgrid-scale
physics into a coarse-grid scale model (Fu and Hodges, 2005).

1.2 CHALLENGE AND MOTIVATION OF THE NUMERICAL MODEL
In addition to the scale difference, another challenge for solving the river flow

with LWD is to build a numerical model to simulate the unsteady river flow. River flow
is usually characterized as shallow-water flow. As shown in Figure 1.1, the flow around
LWD is indeed shallow as most of the LWD are exposed out of the water surface. This
kind of river system is usually modeled by 2D depth averaged shallow water equations
(SWE) (Arega et al. 2008; Burguete et al. 2006; Gejadze and Monnier 2007). 2D depth
averaged SWE can be obtained by integrating the Navier-Stokes equation over the water
depth with the underlying hydrostatic assumption. One of the difficulties in solving SWE
numerically is the combination of the “stiffness” (i.e. the unsteady term) and
“nonlinearity” (i.e. the nonlinear advection term) in the momentum equations. Numerous
finite-difference numerical models for solving SWE have been developed over the past
several decades. Among these developed numerical models, explicit and semi-implicit
schemes are the most widely used. For example, in the atmospheric or weather research
community, explicit methods such as Leapfrog and Lax-Wendroff-type are the most
popular ones (Mendez-Nunez and Carroll 1993). Casulli (Casulli 1990) proposed a semi-
implicit scheme, on which a number of variations are based. A common property for
both the explicit and semi-implicit methods is that they explicitly discretize the advection
term. Hence, the nonlinearity does not arise in an explicit or a semi-implicit sachem.
However, their stability is restricted by the Courant-Friedrichs-Lewy (CFL) condition
because of the explicitness. A fully implicit scheme is desirable because we can use a
relative large time step in the simulation. A fully implicit solution for an unsteady
nonlinear advection problem involves solving a system of nonlinear equation at each
step. The conventional techniques for solving a system of nonlinear equations require
either 1) iterations of root-finding procedure or/and 2) calculations of the Jacobian. These
two processes make a fully implicit solution more complex and computationally
expensive. These motivate this research to develop a new implicit scheme to solve
unsteady nonlinear advection problems.

 4

1.3 OBJECTIVE
The primary objective of this research is:
Develop a new implicit solution for unsteady nonlinear advection problems. The

new numerical algorithm should have the advantage in both stability and efficiency while
keeping the 2nd-order temporal accuracy as in most existing SWE models. In addition,
this new method would provide a novel approach in decoupling a coupled equation
system.

1.4 APPROACH
To achieve the objective of this research, several steps need to be taken to guide

this study. The major steps are as follows:
Literature review

• Review current finite-difference models for the 2D depth averaged SWE.
• Examine how the nonlinear advection term is treated in different temporal

discretizations.
• Review the merits and limitations of the existing models.

This part of the dissertation work is presented in Chapter 2.

Analytical development of the new numerical algorithm

Illustrate the theoretical principle and concept of the new algorithm. This part of
the dissertation work is presented in Chapter 3.

Verify the new method using 1D test case

• Test the new algorithm using a 1D PDE with time dependent nonlinear
advection term.

• Test the new algorithm using 1D ordinary differential equation (ODE).
• Explore the characteristics of the method in accuracy, stability and

efficiency.
This part of the dissertation work can be found in Chapter 4.

Verify the new method using a multi-variable and multi-dimensional problem

• Theoretically develop the new algorithm in multi-variable and multi-
dimensional problems.

• Demonstrate and analyze the decoupling process of the new method.
• Conduct initial test cases of the numerical algorithm in 2D depth averaged

SWE.
This work can be found in Chapter 5 and Chapter 6.

 5

1.5 BROAD APPLICATION
The initial motivation and application for this research is simulating a river flow

with LWD. The newly developed numerical algorithm for solving unsteady nonlinear
advection problems is not limited only in simulating river flows. In most of the
environmental flows such as atmospheric flow, ocean circulation, storm surge and etc.,
advection is the dominant mechanism and we are often interested in simulating these
flows with a range of different time scales. Therefore, the difficulties arising from the
combination of the unsteadiness and nonlinear advection exist in modeling many types of
environmental flows. This new numerical method provides a new approach to address
this difficulty in these and many other research areas.

 6

Chapter 2 Review of Finite Difference Schemes for Solving the
Unsteady Nonlinear Advection in the Shallow Water Equations

Environmental flows (e.g. river and atmospheric flows) governed by the SWE are

usually dominated by the advective mechanism over multiple time-scales (Vreugdenhil
1994). The combination of time dependency and nonlinear advection creates difficulties
in the numerical solution of the shallow water equations (SWE) (Bourchtein and
Bourchtein 2006). To address this difficulty, numerous numerical schemes have been
developed over the past several decades. Iskandarani et al (2005) reviewed the finite
element/finite volume methods in solving advection equations. More reviews about finite
element methods can be found in the article by Thomee (2001). The research herein
focuses on developing a finite difference algorithm for solving unsteady nonlinear
advection problems. To review the existing finite difference techniques, we first classify
time-marching algorithms into three categories: explicit, semi-implicit and implicit
methods. In the explicit and semi-implicit methods, the nonlinear advection terms are
treated explicitly. Hence, the issue of solving a nonlinear matrix inversion does not arise
in these two temporal discretizations. However, to solve a fully-implicit system, different
computational linearization methods are required treat the nonlinearity, so that the
inversion of a nonlinear matrix can be obtained. Therefore, we briefly review the explicit
and semi-implicit models for solving the SWE and examine different linearization
approaches in the implicit system. Comparisons among different existing methods are
summarized in the last section of this chapter.

2.1 EXPLICIT METHOD
Fully explicit methods are popular in atmospheric or weather research

community. The most widely used explicit methods in atmospheric research are Leapfrog
and Lax-wendroff-type schemes (Mendez-Nunez and Carroll 1993). The Leapfrog
method is a one-step method, requiring two time levels of known values to compute an
unknown level. Modifications of the Leapfrog methods are used in simulating ocean
circulation (Cho and Yoon 1998; Fujima and Shigemura 2000). The Lax-Wendroff-type
method is a two-step Predictor-Corrector method. One of the popular variations of the
Lax-wendroff scheme is developed by MacCormack (1969). The MacCormack scheme is
extended to many research areas such as aerospace engineering (Hirose et al. 1991;
Kurbatskii and Mankbadi 2004) and hydrological science in simulating free surface flow
(Fennema and Chaudhry 1990; Garcia and Kahawita 1986; Kazezyılmaz-Alhana et al.
2005; Keshari and Koo 2007; Li and Jackson 2007), groundwater flow (Keshari and Koo
2007) and dam-break shock wave (Li and Jackson 2007). Another commonly used
explicit Predictor-Corrector method is the Runge-Kutta method (Delis and Katsaounis
2005; Zhou et al. 2007). The Leapfrog and the two-step Predictor-Corrector methods can
maintain 2nd-order temporal accuracy. Although simpler explicit schemes such as

 7

forward-time scheme is also used in solving SWE (Murillo et al. 2008), it can only
maintain 1st-order temporal accuracy.

Explicit schemes are straightforward and easy to implement. Nonlinear advective
terms in partial differential equations (PDE) are readily-computed from known time-
levels using fully-explicit time-marching methods. However, the implementations of
explicit methods are restricted by stability requirements. Runge-Kutta and MacCormack
methods typically require an excessively small time step to satisfy the Courant-
Friedrichs-Lewy (CFL) condition(Mendez-Nunez and Carroll 1993); the Leapfrog
approach must be applied with appropriate numerical strategies such as alternate time
levels of the solution (Agoshkov et al. 1994; Peyret and Taylor 1983; Zhou 2002) or
sophisticated mode-splitting (e.g.Blumberg and Mellor 1987).

2.2 SEMI-IMPLICIT METHOD
Semi-implicit methods have been developed and widely used in temporal

discretized SWE. In most semi-implicit methods, the nonlinear advection terms are
discretized explicitly (Bonaventura and Rosatti 2002; Bourchtein and Bourchtein 2007;
Casulli 1990; Casulli and Cattani 1994; Casulli and Cheng 1992; Kar 2006; Spitaleri and
Corinaldesi 1997) so that the issue of solving a nonlinear matrix inversion does not arise.
For instance, Environmental Fluid Dynamics Computer code (EFDC) uses a three-level
semi-implicit method, in which advection terms are explicitly discretized using upwind
scheme. As a result, the stability is constrained by the explicit advection terms (Hamrick
1992). Some other models (Kar 2006) use the explicit Runge-Kutta method to calculate
the advection term. It is obvious that the stability of this treatment is constrained by the
CFL number.

To overcome the stability constraint, different numerical treatments are
introduced to calculate the linearized advection term. One of the most widely used
techniques is the semi-Lagrangian method (Cullen 2001; Rosatti et al. 2005). Casulli
(Casulli 1990; Casulli and Cattani 1994; Casulli and Cheng 1992) used this method in
UnTRIM and the earlier version, TRIM. Some latest models including ELCIRC (Zhang
et al. 2004) and ELCOM(Hodges 2000) followed this idea. Although Casulli’s approach
has been successful and stable, its accuracy is relatively poor (Hodges, 2004).

The main advantage of the semi-Lagrangian method is that the stability is not
constrained by the CFL condition (Barros and Garcia 2007). However, a set of trajectory
equations need to be solved at each time step and the maximum allowable time step is
restricted by the convergence criteria of the iteration of the trajectory equations
(Bourchtein and Bourchtein 2007).

2.3 IMPLICIT METHOD
An obvious advantage of a fully-implicit method is that the time step is not

restricted by the CFL number. Various fully-implicit finite difference schemes have been
developed. Steppeler (2006) solved a fully implicit, SWE based meteorological model
using the Fourier transformation method at each grid point and each time step. Some

 8

researchers derived a fully-implicit scheme based on Alternating Direction Implicit (ADI)
method (Szymkiewicz 1992; Wilders et al. 1988). Yuan and Wu solved implicit Navier-
Stokes equations using a staggered finite difference Crank-Nicolson scheme (Yuan and
Wu 2004). Burguete and Garcia-Navarro (Burguete and Garcia-Navarro 2004)
implemented a first order upwind implicit scheme to simulate river hydraulics problem.

Although the fully-implicit methods are more accurate and robust, they are less
common, possibly due to computational complexity and expense (Turek 1996).
Nonlinearity in a fully-implicit method results in a system of nonlinear algebraic
equations to be solved at each time step. Existing strategies for solving implicit nonlinear
equations include iterative and non-iterative methods (Moin 2001). In the following, we
will review the conventional techniques for implicit nonlinear solutions.

The Newton method and Picard method (Ferziger and Peric 1999; Lehmann and
Ackerer 1998; Paniconi et al. 1991) are the most widely used two-level iterative
techniques for implicit time-marching of nonlinear equations. For steady-state nonlinear
problems, Newton and Picard iterative algorithms have proven quite successful (Paniconi
and Putti 1994). These methods may be thought of as successive linear solutions of

=Ax b% , where A% is an approximation of A that is iteratively refined to solve the
nonlinear problem. However, for time-evolving CFD problems, each time-marching step
using the Newton or Picard method requires an outer iteration applied over an inner
solution of a linear equation set. When the inner problem also requires an iterative
solution (as is common in CFD), the time march for this doubly-iterative approach is
computationally expensive. The principal differences between the Picard and Newton
methods are that the former is easier to implement and requires fewer computations per
outer iteration but has only 1st-order convergence, whereas the latter is more difficult to
implement but provides 2nd-order convergence. Thus, which method is appropriate
depends upon the difficulty in implementing the Newton method compared to the slower
convergence of the Picard method. A further implicit technique, local linearization, has
not been widely used in CFD but does provide time-marching with 2nd-order accuracy
(Lomax et al. 1999) without an outer iteration. By providing a single linear
approximation of the nonlinear problem, local linearization side-steps the convergence
issue of the outer iteration for Newton/Picard techniques. However, local linearization
requires discretization of the Jacobian, which is often difficult to derive and implement
for typical CFD applications.

To better illustrate these existing implicit linearization methods, we use a simple
scalar ODE with a quadratic nonlinearity as an example. The nonlinear ODE is written as

 d f (, t)
dt
ψ
= ψ (2.1)

Using a finite-difference Crank-Nicolson discretization (the simplest 2nd-order implicit
method), the above can be approximated as

 () (){ } ()n 1 n n 1 n 3t f f t
2

+ +∆
ψ = ψ + ψ + ψ + ∆O (2.2)

 9

where superscripts indicate the discrete time step and ()n 1f +ψ implies a quadratic

nonlinear relationship in n 1+ψ (e.g. n 1+ψ n 1+ψ or n 1
x
+ψ n 1+ψ). Equation (2.2) is our example

of an implicit nonlinear equation. In the following, we will demonstrate the principles of
existing techniques to linearize Equation (2.2) computationally.

2.3.1 Newton methods
The Newton method is one kind of root-finding algorithm. It starts with an initial

guess and iteratively estimates the root of the function. The Newton method can be
derived from a Taylor series expansion or a geometric proof (Amat et al. 2003). One of
the advantages of the Newton method is that it can be applied to equation systems with
complex nonlinearities and keeps the quadratic convergence rate. In petroleum
engineering and other research areas concerning flow through porous media, the Newton
method is a standard approach because of the complex nonlinearities (Cao and Sun 2005;
Dettmer and Peric 2007; Kwok and Tchelepi 2007). Using the Newton method, the
linearized equation system of Equation (2.2) can be written as

 () () () kn 1
k 1 kn 1 n 1

k

n 1

g

g

+
++ +

+

 ψ ψ = ψ −
 ∂
 ∂ψ

 (2.3)

where the outer superscript indicates the iteration number and

 () () (){ }n 1 n 1 n n n 1tg f f
2

+ + +∆
ψ = ψ −ψ − ψ + ψ (2.4)

In general, we can use the value at the previous time step as the value at the first iteration,
which means

 ()1n 1 n+ψ = ψ (2.5)
Equation (2.3) is solved repeatedly until the difference between two successive iterations
satisfies the pre-defined convergence criteria. In Equation (2.3), a first order derivative
()n 1g / +∂ ∂ψ must be calculated and updated at each iteration. If ψ is a vector and

discretized in space, the resulting ()n 1g / +∂ ∂ψ is a matrix and called the Jacobian of the
linearized equation system. However, the Jacobian matrix may be computationally
expensive and difficult to calculate analytically (Ferziger and Peric 1999; Niet et al.
2007).

A number of approaches have been proposed to modify Newton method. For
example, it can be modified with a Chebyshev approximation to accelerate the
convergence (Bagatur 2007). To simplify the Newton method, much research has been
carried out to simplify the calculation of the Jacobian matrix. Niet et al. (2007) evaluated
the Jacobian matrix using a partial-analytical and partial-numerical technique in an
ocean-climate model. Li (1993) attempted to reduce the effort to compute the derivatives.

 10

A Jacobian-free Newton-Krylov (JFNK) method has been developed recently to solve
nonlinear equation systems (Brown and Saad 1990; Chan and Jackson 1984; Knoll and
Keyes 2004; Mousseau et al. 2002; Reisner et al. 2005; Wubs et al. 2006). The key to
JFNK solver is approximating the Jacobian-vector product iteratively instead of
evaluating each element of the Jacobian matrix. Although all these modifications reduce
the computation effort of Jacobian, inconvenient iteration still remains in the Newton
method.

2.3.2 Picard Iteration
The Picard iteration is more straightforward than the Newton method. In the

Picard iteration, the previous outer iteration value, ()kn 1+ψ , is substituted for n 1+ψ on the
RHS of Equation (2.2), resulting in

 () () (){ }k 1 kn 1 n n n 1t f f
2

++ +∆ ψ = ψ + ψ + ψ
 (2.6)

As in the Newton iteration, Equation (2.6) is solved repeatedly until the difference
between two successive iterations satisfies pre-defined convergence criteria. The same
initial condition, Equation (2.5) is used to start the solution. Due to the simplicity, Picard
iteration has been widely used in fully implicit nonlinear solver in Computational Fluid
Dynamics (CFD)(Clement et al. 1994; Kwag 2000; Webster 2007). Different
modifications of the Picard method have been reported in the literature. For example,
Celia et al.(1987) proposed a modified Picard iteration that is a combination of Picard
iteration and Newton iteration. However, this and other modified Picard methods remain
linearly convergent (Lehmann and Ackerer 1998). A detailed comparison of the Picard
and Newton methods is provided by Paniconi and Putti (1994). In general, Newton
methods require more computations per iteration, but converge more rapidly (quadratic)
than Picard methods (linear). However, for advection equations, the overall
computational cost of Newton methods is typically greater than Picard methods because
of the computational cost of the Jacobian (Ferziger and Peric 1999).

2.3.2 Local linearization
In contrast to the above-mentioned Newton and Picard methods, local

linearization is a non-iterative method. Let’s first review the derivation of the local
linearization techniques, which are based on a Taylor-series expansion for n 1f + about nt in
Equation (2.2). The following derivation is based on Lomax et al.(1999),

 ()
n n

n 1 n 2f ff f t t
t

+ ∂ ∂ = + ∆ψ + ∆ + ∆ ∂ψ ∂
O (2.7)

 11

where n 1 n+∆ψ = ψ −ψ . For advection equations, f is generally not an explicit function

of t, so ()nt f / t∆ ∂ ∂ in Equation (2.7) is zero. Substituting Equation (2.7) into Equation
(2.2) provides

 ()
n

n 1 n n n 3t ff f t
2

O+
 ∆ ∂ ψ = ψ + + ∆ψ + + ∆ ∂ψ

 (2.8)

which is equivalent to

n

nt f1 tf
2

 ∆ ∂
− ∆ψ = ∆ ∂ψ

 (2.9)

Equation (2.9) is a linear second-order discrete form of the original nonlinear ODE and
can be solved by any number of standard techniques once ()nf /∂ ∂ψ is explicitly

computed. However, as in the Newton method, the evaluation of the Jacobian ()nf /∂ ∂ψ
complicates the overall computation.

2.4 SUMMARY
SWE is widely used in simulating environmental flows. Mathematically, the

stiffness and nonlinear advection increases the difficulty in the numerical solutions of
SWE. Explicit methods can easily solve the nonlinearity but are restricted by the CFL
stability criteria. Semi-implicit methods treat the advection term explicitly but need
additional numerical treatment such as the semi-Lagrangian method to calculate
advection terms for a higher CFL number. A fully implicit method is desirable but
requires further computational linearization to solve a nonlinear system of equations.
Existing implicit linearization techniques (including Newton, Picard and local
linearization methods) require either 1) additional explicit derivative evaluations to
provide an approximate linear problem, or 2) an outer iteration that converges an inner
approximate linear problem. These two characteristics make implicit systems complex
and expensive to solve. To address the nonlinearity in a fully implicit system, in the next
chapter we propose a new computational linearization method that can linearize the
nonlinear advection term without either 1) the outer iteration or 2) computation of the
Jacobian.

 12

Chapter 3 Theoretical Development of the Time-Centered Split (TCS)
Method

In Chapter 2 we reviewed the current implicit linearization methods that require

either an outer iteration or a computation of the Jacobian. In this chapter, we develop a
new method that is similar to local linearization in that it allows non-iterative
discretization of a temporally 2nd-order approximation of the nonlinear equation set.
Instead of requiring the Jacobian, the new method splits the time-marching nonlinear
problem into two sets of linear problems that are solved in succession. The new method
has both the computational efficiency of a non-iterative local linearization method and
the implementation simplicity of a Picard iterative method. We call this the Time-
Centered-Split (TCS) method.

The theory of the TCS method is first derived using a generic single variable
nonlinear equation in this chapter. The TCS method can generate different discrete forms
by introducing the time-centered split to different terms. This advantage is demonstrated
by applying the TCS method to a 1D advection-diffusion equation (Burgers’ equation).
Four different TCS formats such as TCSF (split the flux term), TCSG (split the gradient
term), TCSF-D (split the flux and diffusion terms) and TCSG-D (split the gradient and
the diffusion terms) are derived and presented for the 1D Burgers’ equation. One of the
key advantages of the TCS method is that it provides non-iterative coupling between
multiple variables. A 1D coupled advection diffusion equation and scalar transport
equation are used as an example to illustrate this advantage. A summary of the principles
of the TCS method and its advantages are provided in the last section.

3.1 THE THEORY OF TIME-CENTERED SPLITTING

3.1.1 Computational Splitting of the Nonlinear Term
The TCS method is based on a nested application of the midpoint rule (i.e. a

centered-time approximation). Midpoint rule discretizations are often used for time-
marching to obtain second-order temporal accuracy (Ferziger and Peric 1999). A
common approach for nonlinear time-marching in meteorology and oceanography is
application of the midpoint rule in an explicit formulation known as the 3-level Leapfrog
method (Dubois et al. 2005; Fujima and Shigemura 2000). The explicit Leapfrog method
can be written as

 ()n 1 n 1 n n n 3f 2 t t+ −φ = φ + φ φ φ ∆ + ∆, O() (3.1)
where superscripts represent time levels and t∆ is the model time step. Equation (3.1)
can be seen as a generic form of a nonlinear equation. The function f is a linear operator
of φφ and φ . Inside the function f, the product term φφ represents a generic quadratic
nonlinear term. This quadratic nonlinear term in a flow and transport problem is of the

 13

interest in this research. To develop the TCS method, we note that in the same vein as
Equation (3.1), the midpoint rule can be written across only two time levels as

 ()n 1 n n 1 2 n 1 2 n 1 2 3f t t+ + + +φ = φ + φ φ φ ∆ + ∆/ / /, O() (3.2)
Equation (3.2) has the desirable property that the time n+1/2 information is retained only
within the computation of the n to n+1 time step so that the advance is not leapfrogging
over alternating data. By introducing a time-centered linear approximation of

 () ()n 1/ 2 n n 1 2/ 2 tO+ +φ = φ + φ + ∆ (3.3)

 in one part of the nonlinear product n 1/ 2 n 1/ 2+ +φ φ in Equation (3.2), the discrete equation
becomes computationally linear in time (i.e. no products with the same time level):

 ()
n n 1

n 1 n 2 n 1 2 n 1 2 3f O t t t
2

+
+ + + φ + φ

φ = φ + + ∆ φ φ ∆ + ∆

/ /, O() (3.4)

Reorganizing Equation (3.4) provides

 () ()n 1 n n n 1 2 n 1 2 n 1 n 1 2 n 1 2 3t tf f t
2 2

+ + + + + +∆ ∆
φ = φ + φ φ φ + φ φ φ + ∆/ / / /, , O() (3.5)

Equation (3.5) is computationally split into two steps and an intermediate variable *φ is
defined as,

 ()* n n n 1/ 2 n 1/ 2 tf ,
2

+ + ∆
φ = φ + φ φ φ (3.6)

Subtracting Equation (3.6) from Equation (3.5) provides

 ()n 1 n 1 n 1 2 n 1 2 3tf t
2

+ + + + ∆
φ = φ + φ φ φ + ∆* / /, O() (3.7)

After introducing the above time-centered split, Equations (3.6) and (3.7) are both
computationally linear. Furthermore, Equation (3.6) is similar to the implicit Euler
approximation of n 1/ 2+φ written as:

 ()
2

n 1 2 n n 1 2 n 1 2 n 1 2 t tf
2 2

/ / / /, O+ + + + ∆ ∆ φ = φ + φ φ φ +

 (3.8)

Using the Taylor expansion, n 1/ 2+φ can be expanded as:

2

n 1 2 n
t

t t
2 2

/ O+ ∆ ∆ φ = φ + φ +

 (3.9)

Substituting Equation (3.9) into the nonlinear term of Equation (3.8), provides

2

n 1 2 n n n 1 2 n 1 2t t tf
2 2 2

/ / /O , O+ + + ∆ ∆ ∆ φ = φ + φ + φ φ +
 (3.10)

Grouping the higher order terms,

 14

 ()
2

n 1 2 n n n 1 2 n 1 2 t tf
2 2

/ / /, O+ + + ∆ ∆ φ = φ + φ φ φ +

 (3.11)

Substituting Equation (3.6) into Equation (3.11), results in

2

n 1 2 t
2

+ ∆ φ = φ +

/ * O (3.12)

Substitution of Equation (3.12) into Equations (3.6) and (3.7) provides a two-step
method

 ()n n 3tf t
2
∆

φ = φ + φ φ φ + ∆* * *, O() (3.13)

 ()n 1 n 1 3tf t
2

+ + ∆
φ = φ + φ φ φ + ∆* * *, O() (3.14)

Equations (3.13) and (3.14) are a computationally linearized implicit equation system.
The summation of Equations (3.13) and (3.14) is a 2nd-order computational equivalent of
Equation (3.2).

Remark:
Although the derivation above provides a two-step direct linearization method, an

outer iteration might also be combined for a big t∆ value. This process can be illustrated
as the following:

1. obtain n 1+φ from Equations (3.13) and (3.14).

2. calculate n 1/ 2+φ using ()n 1 n / 2+φ + φ , where n 1+φ is calculated from step 1.

3. calculate a new n 1+φ using Equations (3.13) and (3.14) with the updated
n 1/ 2+φ in step 2.

Repeat the procedure until the difference between the old and new n 1+φ is
acceptable.

3.1.2 Computationally Splitting the Linear Term
In the previous section, we introduced time-centered split only into the nonlinear

term of φφ . In addition to splitting the nonlinear product term, one can also use the same
splitting idea in the linear termφ , following

() ()
n n 1 n n 1

n 1 n 2 n 1 2 2 3f t t t (t)
2 2

/O , O O
+ +

+ + φ + φ φ + φ
φ = φ + + ∆ φ + ∆ ∆ + ∆

 (3.15)

Equation (3.15) is guaranteed 2nd-order accurate in time because of Equation (3.3).
Reorganizing Equation (3.15) and grouping the higher order terms,

 15

 { }n 1 n n n 1 2 n 1 n 1 2 n n 1 3tf (t)
2

/ /, , , O+ + + + + ∆
φ = φ + φ φ φ φ φ φ + ∆ (3.16)

In Equation (3.16), not only the nonlinear term but also the linear term is split into two
parts. Therefore, a different intermediate variable *φ is defined as

 ()* n n n 1/ 2 n tf ,
2

+ ∆
φ = φ + φ φ φ (3.17)

The second step of the splitting system then becomes,

 ()n 1 * n 1 n 1/ 2 n 1 tf ,
2

+ + + + ∆
φ = φ + φ φ φ (3.18)

Equations (3.17) and (3.18) are different from the split system in the previous section. As
a result, the correspondence between *φ and n 1 2/+φ is proved differently. Instead of the
implicit Euler equation, the explicit Euler approximation for n 1 2/+φ is introduced,

 ()
2

n 1 2 n n n n t tf
2 2

/ , O+ ∆ ∆ φ = φ + φ φ φ +

 (3.19)

Substituting the Taylor expansion of n 1 2/+φ into Equation (3.17) and grouping the higher
order terms,

 ()
2

* n n n n t tf , O
2 2
∆ ∆ φ = φ + φ φ φ +

 (3.20)

Substituting Equation (3.20) into Equation (3.19), we obtain

2

n 1 2 t
2

+ ∆ φ = φ +

/ * O (3.21)

Thus, we can use *φ to replace n 1 2/+φ in Equations (3.17) and (3.18). A different set of
computationally linearized two-step equations can be written as:

 ()* n n * n tf ,
2
∆

φ = φ + φ φ φ (3.22)

 ()n 1 * n 1 * n 1 tf ,
2

+ + + ∆
φ = φ + φ φ φ (3.23)

The key to the TCS method is the second-order time-splitting of quadratic
nonlinear terms to two different time levels, i.e. n *φ φ and n 1 *+φ φ . The result is discretely
linear in any time-level of information. A further application of the same splitting in the
linear terms will give another set of discrete linearized equations. The above derivation
for the single variable φ can be readily extended to a vector of variables, 1 2 N[, ,...]φ φ φ , or
variables and linear operators, e.g. 1 1 2 2 N 2[,L(), ,L()... ,L()]φ φ φ φ φ φ . However, as
additional variables (or operators) are introduced, the discretization method has multiple
implementations. For example, even with a 1D advection diffusion equation, we can

 16

obtain at least four different TCS discrete formats. In the next section, we will present
these four different TCS formats by applying the TCS method to a 1D Burgers’ equation.

3.2 DERIVATION OF THE TCS METHOD IN A 1D ADVECTION-DIFFUSION EQUATION
The Burgers’ equation is the simplest advection-diffusion test case and can be

viewed as a prototype of the Navier-Stokes equation or the SWE. The non-conservative
Burgers’ equation can be written as:

2

2

u u uu
t x x

∂ ∂ ∂
+ = ν

∂ ∂ ∂
 (3.24)

To develop the TCS method, we note that in the same vein as Equation (3.7), the
midpoint rule can be written across only two time levels as

 () ()n 1 n n 1 2 n 1 2 2 n 1 2 3
x xu u u u u t t/ / / O+ + + += + − δ + νδ ∆ + ∆ (3.25)

where xδ is the shorthand notation of the generic discretized spatial derivative of ‘u’.

3.2.1 The TCSF Discrete Format
The nonlinear advection term in Equation (3.24) is constructed by the flux part ‘u’

and the gradient part, ‘ u x/∂ ∂ ’. The time-centered splitting maybe applied to either part
of the advection term. We first introduce a time-centered linear approximation of

() ()n 1/ 2 n n 1 2u u u / 2 tO+ += + + ∆ to the flux term in the nonlinear product in Equation
(3.25). The discrete equation becomes computationally linear in time (i.e. no products
with the same time level):

 ()
n 1 n

n 1 n n 1 2 2 n 1 2 3
x x

u uu u u u t t
2

/ / O
+

+ + + +
= + − δ + νδ ∆ + ∆

 (3.26)

Multiplying the products in Equation (3.26) provides

 () () () ()n 1 n n 1 n 1/ 2 n n 1/ 2 2 n 1/ 2 3
x x x

t tu u u u u u u t O t
2 2

+ + + + +∆ ∆
= + − δ + − δ + νδ ∆ + ∆ (3.27)

A computational-splitting technique is used to obtain a numerically-solvable set of
equations from the discrete form of Equation (3.27). Defining a generic intermediate
variable *u as

 () ()n n n 1 2 2 n 1 2
x x

t tu u u u u
2 2

* / /+ +∆ ∆
= + − δ + νδ (3.28)

and subtracting Equation (3.28) from Equation (3.27) provides

 () () ()n 1 n 1 n 1 2 2 n 1 2 3
x x

t tu u u u u t
2 2

* / / O+ + + +∆ ∆
= + − δ + νδ + ∆ (3.29)

 17

Using an implicit Euler approximation of n 1 2u /+ and the same mathematical derivation as
in Equation (3.12), we can prove

2

n 1/ 2 * tu u
4

O+ ∆
= +

 (3.30)

Substitution of Equation (3.30) into Equations (3.28) and (3.29) provides a two-step
method, which is called the TCSF method:

 { }n n 2
x x

tu u u u u
2

* * *∆
= + − δ + νδ (3.31)

 { } ()n 1 n 1 2 3
x x

tu u u u u t
2

* * * O+ +∆
= + − δ + νδ + ∆ (3.32)

The summation of Equations (3.31) and (3.32) is equivalent to the original Equation
(3.25). The first step is an implicit solution for the variable u* involving only nu and with
an implicit discretization of the diffusion term. n 1u + in the second step can be explicitly
calculated.

3.2.2 The TCSG Discrete Format
Splitting the gradient term instead of the flux term in Equation (3.25) results in a

second basic form of TCS. Thus, instead of Equation (3.26), we obtain

n 1 n

n 1 n n 1/ 2 2 n 1/ 2 3
x x

u uu u u u t (t)
2

O
+

+ + + +
= + − δ + νδ ∆ + ∆

 (3.33)

For this second form, we define a slightly different intermediate variable as

 () ()* n n 1/ 2 n 2 n 1/ 2
x x

t tu u u u u
2 2

+ +∆ ∆
= + − δ + νδ (3.34)

Similarly in Equation (3.30), we have

2

n 1/ 2 * tu u
4

O+ ∆
= +

 (3.35)

Subtracting Equation (3.34) from (3.33) and substituting Equation (3.35) in the same
manner as the transition from Equation (3.27) through (3.32), we obtain a second discrete
split form that we will call TCSG

 { }* n * n 2 *
x x

tu u u u u
2
∆

= + − δ + νδ (3.36)

 { }n 1 * * n 1 2 *
x x

tu u u u u
2

+ +∆
= + − δ + νδ (3.37)

The summation of Equations (3.36) and (3.37) is equivalent to the original Equation
(3.25). The first step is an implicit solution for the variable u* involving nu and with an

 18

implicit discretization of the diffusion term. The second step is an implicit solution for
the variable n 1u + involving only u* and with an explicit discretization of the diffusion
term.

3.2.3 The TCSF-D Discrete Format
The TCSF and TCSG forms are obtained by introducing the time-centered split

into the advection term. Further approximation of the diffusion term using the same time
splitting techniques will create different discretizations. For instance, in Equation (3.26),
we can substitute the time splitting into both the flux and diffusion terms,

 ()
n 1 n n 1 n

n 1 n n 1 2 2 3
x x

u u u uu u u t t
2 2

/ O
+ +

+ + + +
= + − δ + νδ ∆ + ∆

 (3.38)

Defining u* as,

 () ()n n n 1 2 2 n
x x

t tu u u u u
2 2

* /+ ∆ ∆
= + − δ + νδ (3.39)

the second step follows as,

 () () ()n 1 n 1 n 1 2 2 n 1 3
x x

t tu u u u u t
2 2

* / O+ + + +∆ ∆
= + − δ + νδ + ∆ (3.40)

Using an explicit Euler approximation of n 1 2u /+ and the same mathematical derivation as
in Equation (3.21), we can prove that

2

n 1/ 2 * tu u
4

O+ ∆
= +

 (3.41)

Substituting Equation (3.30) into Equations (3.39) and (3.40), we obtained the TCSF-D
format as

 { }n n 2 n
x x

tu u u u u
2

* *∆
= + − δ + νδ (3.42)

 { } ()n 1 n 1 2 n 1 3
x x

tu u u u u t
2

* * O+ + +∆
= + − δ + νδ + ∆ (3.43)

We call Equations (3.42) and (3.43) the TCSF-D method because we apply the time-
centered splitting to both the flux term and the diffusion term. The summation of
Equations (3.42) and (3.43) is equivalent to the original Equation (3.25). The first step is
an implicit solution for the variable u* involving nu and with an explicit discretization of
the diffusion term. The second step is an implicit solution for the variable n 1u + involving
only u* and with an implicit discretization of the diffusion term.

 19

3.2.4 The TCSG-D Discrete Format
Similar to the development of the TCSF-D method, substitution of time-centered

splitting into the diffusion term in the TCSG provides another set of two-step equations
as

 { }* n * n 2 n
x x

tu u u u u
2
∆

= + − δ + νδ (3.44)

 { }n 1 * * n 1 2 n 1
x x

tu u u u u
2

+ + +∆
= + − δ + νδ (3.45)

Equations (3.44) and (3.45) are called the TCSG-D discrete form. The summation of
Equations (3.44) and (3.45) is equivalent to the original Equation (3.25). u* in the first
step can be explicitly calculated and the diffusion term is explicitly discretized. The
second step is an implicit solution for the variable n 1u + involving only u* and with an
implicit discretization of the diffusion term.

We have derived four discrete forms of the TCS method applied to a 1D Burgers’
equation in the previous sections. More possible discretizations will be generated when
we apply the TCS method to an equation system with multiple variables. We will discuss
this characteristic in Chapter 5.

3.3 TCS FOR COUPLED MOMENTUM AND SCALAR TRANSPORT
A key advantage of the TCS method is that it provides non-iterative coupling

between multiple variables. The method is best understood through application to a
simple model problem. First, we will consider the 1D advection-diffusion equation for a
scalar ψ

2

2u
t x x

∂ψ ∂ψ ∂ ψ
+ = κ

∂ ∂ ∂
 (3.46)

where u is the velocity and κ is a diffusion coefficient. Equation (3.46) can be coupled to
the 1D Burgers’ equation for momentum

2

2
u u uu
t x x

∂ ∂ ∂
+ = ν

∂ ∂ ∂
 (3.47)

Applying TCSF to Equation (3.46) provides

2 *

n n
2

t u
2 x x

∗
∗ ∆ ∂ψ ∂ ψ

ψ = ψ − − κ ∂ ∂
 (3.48)

2 *

n 1 n 1
2

t u
2 x x

∗
+ ∗ + ∆ ∂ψ ∂ ψ

ψ = ψ − − κ ∂ ∂
 (3.49)

The first step, Equation (3.48), is an implicit equation for *ψ involving only time ‘n’
values of u, whereas the second step, Equation (3.49), linearly couples solution of n 1+ψ to

 20

n 1u + . To complete the algorithm, Equation (3.47) can be similarly discretized so that the
coupled TCSF method for both scalar transport and momentum can be written as linear
operators,

 () ()2
n n

2
t1 u

2 x x
∗

 ∂ ∂∆ + − κ ψ = ψ ∂ ∂
 (3.50)

 () ()2
n n

2
t1 u u u

2 x x
∗

 ∂ ∂∆ + − ν = ∂ ∂
 (3.51)

2 *
n 1

2

2 *
n 1

2

t t1
2 x 2 x

t u t uu0 1 u
2 x 2 x

∗
+ ∗

∗
+ ∗

 ∆ ∂ψ ∆ ∂ ψ
ψ ψ + κ ∂ ∂ =

 ∆ ∂ ∆ ∂
+ + ν ∂ ∂

 (3.52)

where the parentheses indicate a spatial derivative operator on the term to the right of the
brackets. The first step of the TSCF method for N variables over Q grid cells results in N
independent linear problems of order Q. The second step of TCSF results in a single
linear problem of order NQ. This series of linear problems is a 2nd-order temporal
equivalent of the original time-marching, coupled, nonlinear momentum-advection
problem. As the TCS uses an intermediate solution (,u)∗ ∗ψ followed by final solution

n 1 n 1(,u)+ +ψ , it resembles predictor-corrector schemes. However, classic predictor-
corrector methods are formulated with an explicit predictor of the time n+1 values
followed by an implicit corrector to the time n+1 values, which makes the classic
predictor-corrector methods restricted by the CFL condition; furthermore, predictor-
corrector methods do not provide an avenue for a simple nonlinear solution (see
discussions in Lomax et al, 1999 and Tannehill et al, 1997). In contrast, the new TCS
method provides an implicit linearized predictor of the time n+1/2 values that are used in
a coupled implicit solution of the time n+1 values. This new approach provides a simple
method of linearly-coupling equations that are nonlinearly-coupled in the original
problem. The method requires only linear matrix solutions and does not require the outer
iteration of Picard or Newton methods. As compared to the functional Jacobians required
for local linearization and Newton iteration, the TCS coefficient matrices are relatively
easy to derive and have forms very similar to the original model problem.

3.4 SUMMARY
A new computational linearization method, the TCS, is derived and analyzed in

this chapter. Without iteration and calculation of the Jacobian, the TCS method splits the
quadratic nonlinear term into two steps so that each step is computationally linear. That
is, for time marching from known state nx to unknown state n 1+x we use a linear solution
of n() =A x x b% %% followed by n 1() + =A x x b% %% %% that is a second-order equivalent to

 21

n 1 n 1()+ + =A x x b . In addition to the linearization, the TCS method can generate different
TCS discrete forms. All different TCS formats are mathematically equivalent to the
original implicit midpoint rule discretization. As a result, they share the same 2nd-order
temporal accuracy. Furthermore, we also demonstrated that the TCS method can couple
multiple variables without iterations. Characteristics of the TCS method such as
accuracy, stability and efficiency will be explored in the next chapter using examples
with analytical solutions.

 22

Chapter 4 Implementation of the TCS Method in 1D Problems

The theory of the TCS method is illustrated in Chapter 3. To investigate the

characteristics of the new method, we apply the TCS method to three different test cases:
a 1D conservative Burgers’ equation, a 1D non-conservative Burgers’ equation and a 1D
nonlinear ordinary differential equation (ODE). For each test case, the TCS algorithm is
compared to the conventional implicit nonlinear solution methods (local linearization,
Picard iteration and Newton iteration) applied to Crank-Nicolson discretization. The
temporal accuracy of different TCS discretizations is verified by all three test cases. The
practical stability of the TCS method is confirmed using the unsteady flow test case with
an analytical solution in both conservative and non-conservative forms. The method is
shown to require computational effort similar to local linearization, but does not require
discrete computation of a functional Jacobian for solution.

4.1 APPLICATION OF THE TCS METHOD TO THE 1D CONSERVATIVE BURGERS’
EQUATION

4.1.1 Discrete formats of the 1D Conservative Burger’s equation using various
methods

Burgers’ equation provides a useful model problem for comparing the TCS to
other nonlinear solution methods. We will begin from the conservative form of Burgers’
equation. The application of the TCS method to the non-conservative Burgers’ equation
will be discussed in the next section. The conservative form of the 1D Burgers’ equation
is:

 ()
2

2
2

u 1 uu
t 2 x x

∂ ∂ ∂
+ = ν

∂ ∂ ∂
 (4.1)

Time-Centered Split Method
For an equation with one variable and a simple quadratic nonlinearity, TCSF and

TCSG collapse into a single form. For Equation (4.1), the TCSF and TCSG methods are
identical, and can be presented as linear operators

 () ()n 2
n

2

ut 11 u u
2 2 x x

∗
 ∂ ∂∆ + − ν = ∂ ∂

 (4.2)

 () 2 *
n 1

2

ut t u1 u u
4 x 2 x

∗
+ ∗ ∂∆ ∆ ν ∂

+ = + ∂ ∂
 (4.3)

 23

For simplicity in the following discussion, we use the generic symbols A, x and b to
represent a coefficient matrix, the left-hand-side (LHS) variable vector and the right-
hand-side (RHS) known vector in a matrix equation of the form of Ax = b for various
solution methods. The number of grid points in space is Q. A central difference spatial
discretization is applied to derivatives in Equation (4.2) and(4.3). It is useful to define a
viscous scale, γ ,

 2

t
x

ν∆
γ ≡

∆
 (4.4)

and the ‘i’ grid cell CFL number for the { }L n, ,n 1∈ ∗ + time level for { }i 1,2,...Q= as

L

L i
i

u tC
x
∆

≡
∆

 (4.5)

Similarly, it will be useful to also define a diffusion operator at any time level as

 ()L L L L
i i 1 i i 1D u 2u u+ −≡ γ − + (4.6)

and a nonlinear adjective gradient operator

 L L L L L
i i 1 i 1 i 1 i 1G C u C u+ + − −≡ − (4.7)

It follows that Eq, (4.2), the first step of TCSF can be written in the form Ax = b over Q
grid points where the A matrix is tridiagonal such that

n
2

n n
1 3

n n
Q 2 Q

n
Q 1

C1 0
2 8

C C1
2 8 2 8

C C
1

2 8 2 8
C

0 1
2 8

−

−

 γ
+ γ − +

 γ γ − − + γ − +

 =

γ γ − − + γ − +

 γ

− − + γ

A O O O (4.8)

T* *
1 2 Qu ,u ,...u = x (4.9)

 24

n
n 0
1 0

n
2

n
3

n
Q 1

n
Q 1n

Q Q 1

Cu u
2 8

u

u

u

C
u u

2 8

∗

−

+ ∗
+

 γ
+ +

=

 γ + −

b

M

 (4.10)

with n n
0 0 Q 1C , u , C∗

+ and Q 1u∗
+ implemented as Dirichlet boundary conditions. Neumann

boundary conditions can also be readily invoked, but are not presented here for brevity.
The second step of TCS for the 1D Burgers’ equation can be as evaluated from

another Ax = b problem using

2

1 3

Q 2 Q

Q 1

C1 0
8

C C1
8 8

C C
1

8 8
C

0 1
8

∗

∗ ∗

∗ ∗
−

∗
−

+

 − +

 =

 − +

−

A O O O (4.11)

Tn 1 n 1 n 1

1 2 Qu ,u ,...u+ + + = x (4.12)

 25

0
1 1

2 2

3 3

Q 1 Q 1

Q 1
Q Q

1 Cu D
2 8
1u D
2
1u D
2

1u D
2

C1u D
2 8

∗
∗ ∗

∗ ∗

∗ ∗

∗ ∗
− −

∗
+∗ ∗

+ +

 +

 + =

+

+ −

b
M

 (4.13)

Thus, the TCSF method for the 1D conservative Burgers’ equation requires solution of
two tridiagonal linear problems at each time step.

If we further split the diffusion term, we obtain the TCSF-D form for Equation
(4.1) as,

 ()n 2 n
n

2

ut t u1 u u
4 x 2 x

∗ ∂∆ ∆ ν ∂
+ = + ∂ ∂

 (4.14)

 () ()2
n 1

2

ut 11 u u
2 2 x x

∗
+ ∗

 ∂ ∂∆
+ − ν = ∂ ∂

 (4.15)

The first step is a matrix equation Ax=b with

n
2

n n
1 3

n n
Q 2 Q

n
Q 1

C1 0
8

C C1
8 8

C C
1

8 8
C

0 1
8

−

−

+

− +

 =

 − +

 −

A O O O (4.16)

 26

T* * *

1 2 Qu ,u ,...u = x (4.17)

n
n n 0
1 1

n n
2 2

n n
3 3

n n
Q 1 Q 1

n
Q 1n n

Q Q

1 Cu D
2 8
1u D
2
1u D
2

1u D
2

C1u D
2 8

− −

+

+ +

 +

 +

=

 +

 + −

b
M

 (4.18)

In the second step, we have

*
2

* *
1 3

* *
Q 2 Q

*
Q 1

C1 0
2 8

C C1
2 8 2 8

C C
1

2 8 2 8
C

0 1
2 8

−

−

 γ
+ γ − +

 γ γ
− − + γ − +

 =

γ γ − − + γ − +

γ − − + γ

A O O O (4.19)

Tn 1 n 1 n 1
1 2 Qu ,u ,...u+ + + = x (4.20)

 27

n
* n 10
1 0

*
2

*
3

*
Q 1

n
Q 1* n 1

Q Q 1

Cu u
2 8

u

u

u

C
u u

2 8

+

−

+ +
+

 γ
+ +

 =

 γ + −

b

M

 (4.21)

Similar to TCSF, the TCSF-D method for the 1D conservative Burgers’ equation also
requires solution of two tridiagonal linear problems at each time step. However, TCSF-D
reverses the solution process in TCSF. The first step in TCSF-D is in the same structure
as the second step in TCSF; the second step in TCSF-D is in the same structure as the
first step in TCSF.

To compare the above TCS methods to other temporally 2nd-order accurate
implicit nonlinear solution methods, we apply Crank-Nicolson 2nd-order temporal and
central difference spatial 2nd-order discretization to Equation (4.1), resulting in

n n n n n n n
n 1 n i 1 i 1 i 1 i 1 i 1 i i 1
i i 2

n 1 n 1 n 1 n 1 n 1 n 1 n 1
i 1 i 1 i 1 i 1 i 1 i i 1

2

t u u u u u 2u uu u
2 4 x x

u u u u u 2u u
4 x x

+ + + − − + −

+ + + + + + +
+ + − − + −

∆ − − +
= − − ν ∆ ∆

− − +
+ − ν ∆ ∆

 (4.22)

Conventional linearization methods such as Picard iteration, Newton iteration and local
linearization methods are used to solve Equation (4.22).

Picard Iteration
The simplest approach to implement for a nonlinear equation such as Equation

(4.22) is a lagged-coefficient iteration (Tannehill et al. 1997,pg 450) , which is a form of
Picard iteration. A linear inner equation is formed by estimating the time n+1 flux as

()kn 1
iu + , where the additional superscript ‘k’ is introduced as the outer iteration counter.

Equation (4.22) can then be represented as the Picard method

 28

()

() () () ()

() () ()

n n n n n n nk 1n 1 n i 1 i 1 i 1 i 1 i 1 i i 1
i i 2

k k 1 k k 1n 1 n 1 n 1 n 1
i 1 i 1 i 1 i 1

k 1 k 1 k 1n 1 n 1 n 1
i 1 i i 1

2

t u u u u u 2u uu u
2 4 x x

u u u u
4 x

u 2 u u
x

++ + + − − + −

+ ++ + + +
+ + − −

+ + ++ + +
+ −

= −
∆ − − +

− ν ∆ ∆

−
+

∆
− + − ν ∆

 (4.23)

which is solved for k={1,2,3...} until an appropriate convergence criterion is reached. .
Thus, each outer iteration requires an inner linear solution of the form Ax = b. For
comparison with other methods, it is useful to define an k k 1 k+ = +A x b c form in which
the b vector requires only a single computation in each time step whereas the c vector is
recomputed in each outer iteration. For Equation (4.23), the result is

k
3

k k
2 4

k

k k
Q 2 Q

k
Q 1

C1 0
2 8

C C1
2 8 2 8

C C
1

2 8 2 8
C

0 1
2 8

−

−

 γ
+ γ − +

 γ γ
− − + γ − +

 =

γ γ − − + γ − +

γ − − + γ

A O O O (4.24)

 () () ()
Tk 1 k 1 k 1k 1 n 1 n 1 n 1

1 2 Qu , u ,... u
+ + ++ + + + =

x (4.25)

 29

n n n
1 1 1

n n n
2 2 2

n n n
3 3 3

n n n
Q 1 Q 1 Q 1

n n n
Q Q Q

1 1u G D
8 2
1 1u G D
8 2
1 1u G D
8 2

1 1u G D
8 2

1 1u G D
8 2

− − −

 − +

 − +

 − +

=

 − +

 − +

b
M

 (4.26)

k
0

k

k
Q 1

1 C
2 8

0
0

0
1 C

2 8 +

γ +

 =

 γ

−

c
M

 (4.27)

For the Picard iteration, the first outer iterative solution is started with ()1n 1 n
i iu u+ = . The

outer iteration is stopped when () (){ }k 1 kn 1 n 1++ +− < εu uL where L is an appropriate

linear norm acting on the vector u and ε is the desired convergence. The above method
can be expected to have no better than first order convergence for the outer iteration.
Solution for each time step requires multiple tridiagonal solutions of the = +Ax b c
problem where the A matrix and boundary conditions (possibly) in c are re-calculated at
each outer iteration.

Newton Iteration
The Newton method is commonly used for accelerated convergence in iterative solution
of nonlinear problems. Using classic Newton iteration method, the time-march from ‘n’
to ‘n+1’ of Equation (4.22) can be written as the root-finding problem for the function g
as

 30

()n 1 n 1 n 1 n 1 n
i i 1 i i 1 i i

n 1 n 1 n 1 n 1 n 1 n 1 n 1
i 1 i 1 i 1 i 1 i 1 i i 1

2

n n n n n n n
i 1 i 1 i 1 i 1 i 1 i i 1

2

g u ,u ,u u u

t u u u u u 2u u
2 4 x x

u u u u u 2u u 0
2 x x

+ + + +
− +

+ + + + + + +
+ + − − + −

+ + − − + −

= −

∆ − − +
+ − ν ∆ ∆

− − +
+ − ν =∆ ∆

 (4.28)

Applying Newton iteration(Ferziger and Peric 1999), Equation (4.28) can be written as

 ()
k

k 1n 1 ki
j in 1

j

g u g
u

++
+

 ∂
∆ = − ∂

 (4.29)

where
 () () ()k 1 k 1 kn 1 n 1 n 1

j j ju u u
+ ++ + +∆ = − (4.30)

and
k

i
n 1
j

g
u +

 ∂
 ∂

 is the Jacobian matrix, evaluated using term by term discretizations of

Equation (4.28). The result can be presented as a linearized equation system
k k 1 k+ = +A x b c with

k
2

k k
1 3

k

k k
Q 2 Q

k
Q 1

C1 0
4 2

C C1
4 2 4 2

C C
1

4 2 2 4
C

0 1
4 2

−

−

 γ
+ γ −

γ γ

− − + γ −

=
 γ γ − − + γ −

γ − − + γ

A O O O (4.31)

 () () ()
Tk 1 k 1 k 1k 1 n 1 n 1 n 1

1 2 Qu , u ,... u
+ + ++ + + + = ∆ ∆ ∆

x (4.32)

 31

n n
n 1 1
1

n n
n 2 2
2

n n
Q 1 Q 1n

Q 1

n n
Q Qn

Q

G Du
8 2

G Du
8 2

G D
u

8 2
G D

u
8 2

− −
−

+ −

+ −

= −

 + −

 + −

b M (4.33)

k k k
k 1 1 0
1

k k
k 2 2
2

k

k k
Q 1 Q 1k

Q 1

k k k
Q Q Q 1k

Q

G D cu
8 2 4 2

G Du
8 2

G D
u

8 2
G D c

u
8 2 4 2

− −
−

+

 γ
+ − + +

+ −

= −

 + −

γ + − − +

c M (4.34)

In the present 1D single-variable example, the Jacobian is relatively easy to compute and
thus it is easy to form the A matrix. However, in multi-dimensional, multi-variable
equation systems, the element-by-element calculation of the A matrix from g / u∂ ∂ is
generally difficult to derive and code. As the A matrix must be recomputed for every
outer iteration, the resulting outer iterations can be computationally expensive.

Local Linearization
Local linearization is not widely used for time-marching CFD problems, but is

presented here because it has some similarities to the TCS method. Lomax et al. (1999)
provides an example of solving an ODE using Local linearization which we extend to
solving Equation (4.22). Local linearization approximates the time march to the “n+1”
time level using “n” time level and a Taylor expansion. The result is a linear equation set
without an outer iteration. To apply Local Linearization, Equation (4.22) can be written
as,

 () ()n 1 n n 1 n 1 n 1 n 1 n n 1 n 1 n 1
i i i i 1 i i 1 i i 1 i i 1

tu u F u ,u ,u F u ,u ,u
2

+ + + + + + + +
− − − −

∆ = + + (4.35)

where

 32

 ()
L L L L L L L

L L L L i 1 i 1 i 1 i 1 i 1 i i 1
i i 1 i i 1 2

u u u u u 2u uF u ,u ,u
4 x x

+ + − − + −
− +

− − +
= − + ν

∆ ∆
 (4.36)

for L {n,n 1}∈ + . Following Lomax et al. (1999), apply a Taylor expansion onto n 1
iF + ,

(){

() ()

()} ()

n 1 n n n 1 n 1 n 1
i i i i 1 i i 1

n n 1 n 1 n 1i 1
i i 1 i i 1n 1 n

j j n
jj i 1

n n 1 n 1 n 1 3
i i 1 i i 1

tu u F u ,u ,u
2

F u ,u ,u
u u

u

F u ,u ,u O t

+ + + +
− −

+ + ++
− −+

= −

+ + +
− −

∆
= +

∂
+ −

∂

+ + ∆

∑ (4.37)

Equation (4.37) can be reorganized as

n

n 1 ni
j in

j

t F1 u tF
2 u

+
 ∆ ∂
− ∆ = ∆

∂
 (4.38)

where n n
i jF / u∂ ∂ is the Jacobian and

 n 1 n 1 n
j j ju u u+ +∆ = − (4.39)

Therefore, the Local Linearization system can be written as n 1+ =Ax b :

n
2

n n
1 3

n n
Q 2 Q

n
Q 1

C1 0
4 2

C C1
4 2 4 2

C C
1

4 2 2 4
C

0 1
4 2

−

−

 γ
+ γ −

γ γ − − + γ −

=
 γ γ − − + γ −

 γ − − + γ

A O O O (4.40)

Tn 1 n 1 n 1 n 1

1 2 Qu , u ,... u+ + + + = ∆ ∆ ∆ x (4.41)

 33

n n
n1 0
1

n
n2
2

n
Q 1 n

Q 1

n n
Q Q 1n

Q

G CD
4 4 2

G D
4

G
D

4
G C

D
4 4 2

−
−

+

 γ
− + + +

 − +

=

 − +

 γ − + − +

b M (4.42)

Much like the TCS method, Local Linearization provides a linear equation system that is
a second-order approximation of the original nonlinear system and does not require an
outer iteration. In the above 1D single variable example, the Jacobian is relatively easy
to compute and derive the A matrix, however, in multi-dimensional, multi-variable
systems the Jacobian may be difficult to derive and compute. Indeed, the difficulty of
deriving the Jacobian for general multi-dimensional systems is arguably the principal
reason that local linearization has not been widely used in CFD.

4.1.2 Results and Discussion

Accuracy
The accuracy of the TCS method is demonstrated and compared to the other

nonlinear methods for the unsteady 1D Burgers’ equation. Over the domain 0 x 1≤ ≤
with initial and boundary conditions of

 ()u 0, t 0= (4.43)

 ()u 1, t 0= (4.44)

 u(x,0) sin(x) : 0 x 1= π < < (4.45)
the 1D Burgers’ equation has a solution constructed from truncated Fourier series:

 ()
K

2 2
mk 1

analytical K
2 2

0 kk 1

a exp(k t)ksin(k x)
u (x, t) 2 k 1,2,3,...K

a a exp(k t)cos(k x)
=

=

− π ν π
= πν =

+ − π ν π

∑
∑

 (4.46)

where

 () (){ }
1

1
0

0

a exp 2 1 cos x dx−= − πν − π ∫ (4.47)

 34

 () (){ } ()
1

1
k

0

a 2 exp 2 1 cos x cos k x dx−= − πν − π π ∫ (4.48)

The solution becomes exact as K →∞ . This specific case of Burgers’ equation has been
frequently used to verify numerical methods (Kadalbajoo and Awasthi 2006; Kutluay et
al. 1999). A discrete approximation of Equation (4.46) for a truncated series of K=30
terms is plotted in Figure 4.1. The integrals in Equations (4.47) and (4.48) are
numerically evaluated using “quad” function in MATLAB with x∆ =0.01 and 0.05ν = .

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

u

t =
 0

t =
 0

.6

t = 3

t =
 0

.3

t = 1

Figure 4.1 Solution of 1D Burgers’ equation evolving in time for t∈{0, 0.1, 0.2, 0.3, 0.6,
1, 2, 3} using 0.05ν = along with the initial and boundary conditions of
Equations (4.43) through (4.45).

We have solved this 1D Burgers’ equation for the various nonlinear methods

discretized in the previous session. All methods use 2nd-order central difference spatial
discretization and a sufficiently fine uniform mesh (x 0.02∆ =) such that error is
controlled by temporal accuracy. As a basis for error comparison, we use the time of
maximum absolute error found in these two TCS methods, which is determined from
Figure 4.2 as t = 0.3 for both the TCSF and TCSF-D. Note that the maximum error

 35

occurs when the solution reaches its maximum steepness in Figure 4.1. With a smaller ν ,
the similar asymptotic behavior is obtained when t∆ is sufficiently small.

0 2 4 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

−4

t

ε ab
s

TCSF
TCSF−D

Figure 4.2 Absolute error time evolution for numerical solutions of 1D conservative
Burgers’ equation for TCSF and TCSF-D using { t∆ =0.01, x∆ =1/50,

ν=0.05}, where
50

abs model i analytical i
i 1

1(t) u (x , t) u (x , t)
50

=

ε = −∑ and

analyticalu (x, t) is numerically calculated from Equation (4.46) with K=30.

To evaluate the model error, we examine performance with nine different time

steps over the range 0.006 t 0.15≤ ∆ ≤ and with grid cell spacing of
{ }2 3 3x 2 10 5 10 1 25 10− − −∆ ∈ × × ×, , . . Based on the Burgers’ equation solution for analyticalu ,

the test conditions cover the range 0.25 CFL 50≤ ≤ , where

 36

 analytical
tCFL max u (t)
x
∆

=
∆

 (4.49)

is the maximum CFL number. The error for the different methods has been estimated
using the RMS error, 2L and L∞ over Q grid points. These approaches are similar to
Rueda and Schladow (2002), where

 ()
Q

2

RMS j j
j 1

1 u u
Q

=

ε = −∑ % (4.50)

()

()

1/ 2M
2

k k
k 1

2 1/ 2M
2

k
k 1

u u
L

u

=

=

−

 =

∑

∑

%

%

 (4.51)

 k k

k

max u u
L : 1 k M

max u∞

−
= ≤ ≤

%

%
 (4.52)

and u% is the model solution using an extremely fine time step such that 40.3/10 , which is
0.5% of the smallest time step used in the other simulations. Using a fine-time step
solution is a standard approach (e.g. Ferziger and Peric, 1999) and is preferred over the
approximate numerical solution of Equation (4.46), so that the accuracy measure is not
distorted by the differences in the numerical approximations. Similarly, for consistency in
the inter-model comparison, each model is compared to the small time-step solution for
that model (e.g., the Picard method is compared to the small time-step solution of the
Picard method, not to a small time-step TCSF solution). Figure 4.3 shows the RMS
error associated with different methods over the tested ranges of CFL. It can be seen that
all the methods provide 2nd-order accuracy for fixed x∆ and decreasing t∆ . Error
magnitudes are substantially similar using the same x∆ and t∆ except for the TCSF-D
method. The TCSF-D method has a noticeably smaller error than all the other methods.

2L and L∞ norms behave similar to RMS error and are plotted in Figure 4.4 and Figure
4.5 respectively.

 37

10
0

10
1

10
2

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

CFL

ε R
M

S

TCSF
TCSF−D
Picard
Newton
Local linearization
2nd order slope

∆x=1/50

∆x=1/200

∆x=1/800

Figure 4.3 RMSε vs. CFL number of various methods for solution of 1D conservative
Burgers’ equation with three different x∆ , where 0.05ν = and

t 0.3/∆ = Γwith Γ∈{50, 30, 25, 20, 10, 8, 5, 4, 2}.

 38

10
0

10
1

10
2

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

CFL

L
2

TCSF
TCSF−D
Picard
Newton
Local linearization
2nd order slope

∆x=1/200

∆x=1/800

∆x=1/50

Figure 4.4 2L norm vs. CFL number of various methods for solution of 1D conservative
Burgers’ equation with three different x∆ , where 0.05ν = and

t 0.3/∆ = Γwith Γ∈{50, 30, 25, 20, 10, 8, 5, 4, 2}.

 39

10
0

10
1

10
2

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

CFL

L
∞

TCSF
TCSF−D
Picard
Newton
Local linearization
2nd order slope

∆x=1/800
∆x=1/50

∆x=1/200

Figure 4.5 L∞ norm vs. CFL number of various methods for solution of 1D conservative
Burgers’ equation with three different x∆ , where 0.05ν = and

t 0.3/∆ = Γwith Γ∈{50, 30, 25, 20, 10, 8, 5, 4, 2}.

Stability
Nonlinear stability cannot be generally proven, but is instead demonstrated by

examples. As shown in Figure 4.3, all five numerical methods remain stable over the full
range of tested conditions. The stability of Picard iteration, Newton iteration and Local
linearization may be expected because all the underlying discretizations begin with the
Crank-Nicolson scheme. The TCS method is based on a midpoint rule discretization that
is split, which cannot be guranteed stable even if the split matrices are linearly stable. Our
tests thus far have shown very promising stability characteristics; however, such result
cannot be presumed definitive. The new TCS method may theoretically be applied for
any class of quadratically-nonlinear coupled equations, but its stability characteristics for
different equations remains a subject for future investigation.

 40

The TCS method is in an implicit format, thus it is expected to have stability
advantage over the explicit methods. To compare the TCS method with explicit methods,
we solve the same 1D conservative Burgers’ equation using Runge-Kutta 2nd-Order
(RK2) and Runge-Kutta 4th-Order (RK4) methods. The RMS error over a range of CFL
numbers is plotted in Figure 4.3 for the TCSF, TCSF-D, RK2 and RK4 methods. In this
comparison, we study the performance with 12 different time steps over the range
0 0006 t 0 06. .≤ ∆ ≤ and with grid cell spacing of x 0 02.∆ = . As a result, the test
conditions cover the range, 0 0013 CFL 2 57. .≤ ≤ . The points of th RK2 and RK4
methods are only shown in the left part of Figure 4.6 because these two explicit methods
become unstable when CFL≥0.3. Contrarily, the TCSF and TCSF-D methods remain
stable in the whole range of CFL numbers.

10
−2

10
−1

10
0

10
1

10
−15

10
−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

CFL

ε R
M

S

TCSF
TCSF−D
RK2
RK4
2nd order slope

unstable

unstable

Figure 4.6 RMSε vs. CFL number of TCSF, RK2 and RK4 methods for solution of 1D
conservative Burgers’ equation, where 0.05ν = x∆ =1/50, and

t 0.3/∆ = Γwith Γ∈{500, 200, 100, 80, 50, 30, 25, 20, 10, 8, 5}.

 41

Computational Requirements
To gain a better understanding of the computational requirements of the different

methods, it is useful to compare the ideal operation counts using tridiagonal solutions of
the Ax = b problems. We focus on idealized operation counts rather than CPU time as
we solve the above discrete problems using a MATLAB script, for which the software
overhead tends to dominate the model runtime. Based on algorithms in Press et al
(1992) and Pozrikidis et al (2005, pg50), a tridiagonal solution ideally requires 8Q
operations and a pentadiagonal solution requires 24Q operations, where Q is the number
of grid points. Here we do not distinguish between addition, multiplication or division
operations. If the Newton method requires R outer iterations for convergence, the Picard
method should require R2 outer iterations for the same convergence level. A tridiagonal
Matrix algorithm (TDMA) is used for each method. A comparison of operations per grid
point for the different methods is shown in Figure 4.7. Although these operation counts
are idealized and only for the 1D Burgers’ equation with direct inner solutions, they
represent the general trends that should be expected in any comparison of nonlinear
solution methods. The operation counts for both the TCSF and TCSF-D methods are
identical because the solution processes for both methods are the same although they are
in a reversed manner. For this 1D test case with an analytical Jacobian, the TCS method
does not have any computational efficiency advantage over Local Linearization.
However, the TCS derivation does not require a functional Jacobian computation, so
extending the method to multiple dimensions and multiple variables is arguably easier, an
idea that will be explored in next chapter.

1 2 3 4 5
0

50

100

150

200

250

300

350

R

op
er

at
io

ns
 p

er
 g

rid
 p

oi
nt

TCSF
TCSF−D
local linearization
Newton iteration
Picard iteration

 42

Figure 4.7 Ideal operations per grid point for one time step using various nonlinear
solution methods for 1D conservative Burgers’ equation. R is the number of
outer iterations taken by Newton method. It is assumed that the Picard
method convergences in R2 outer iterations.

4.2 APPLICATIONS OF THE TCS METHOD TO THE 1D NON-CONSERVATIVE
BURGERS’ EQUATION

Unlike in the conservative Burgers’ equation, the TCSF and TCSG formats
remain distinct for the non-conservative Burgers’ equation. Applying the TCS method to
the non-conservative Burgers’ equation can create four different discretizations: the
TCSF, TCSG, TCSF-D and the TCSG-D. In this section, we analyze all four different
discretizations in the same vein as in the conservative case.

4.2.1 Discrete formats of the 1D Non-Conservative Burger’s equation using various
methods

The TCSF Discrete Form
The non-conservative Burgers’ equation can be written as:

2

2
u u uu
t x x

∂ ∂ ∂
+ = ν

∂ ∂ ∂
 (4.53)

Introducing the approximation in the flux term results in the TCSF form as below:

* 2 *

* n n
2

t u uu u u
2 x x
 ∆ ∂ ∂

= + − + ν ∂ ∂
 (4.54)

* 2 *

n 1 n 1
2

u utu u u
2 x x

+ ∗ + ∂ ∂∆
= + − + ν ∂ ∂

 (4.55)

Similar to the analysis in the conservative Burger’s equation, in the following discussion,
we examine each method in a generic matrix equation, Ax=b. A central difference
discretization is used for all the spatial derivatives. The same parameters such as the
number of spatial grid points Q, the viscous scale γ , the grid cell CFL number L

iC , the
diffusion operator L

iD , and the nonlinear adjective gradient operator L
iG are also used in

the following discussion. In the first step of the TCSF,

 43

n
2

n n
1 3

n n
Q 2 Q

Q 1

C1 0 0 0
2 4

C C1 0 0
2 4 2 4

0 0
C C

0 0 1
2 4 2 4

c
0 0 0 1

2 4

−

−

 γ
+ γ − +

γ γ − − + γ − +

=
 γ γ − − + γ − +

 γ

− − + γ

A O O O (4.56)

T* * *
1 2 Qu ,u ,...u = x (4.57)

n
n *0
1 0

n
2
n
3

n
Q 1

n
Q 1n *

Q Q 1

Cu u
2 4

u

u

u

C
u u

2 4

−

+
+

 γ
+ +

=

 γ

+ −

b
M

 (4.58)

The second step of the TCSF is in an explicit format, which can be represented as

()
()

* * *
i i 1 i i 1

n 1
i

* *
i 1 i 1

u u 2u u
2u ; i {1,2,...Q}11 c c

4

∗
+ −

+

+ −

γ+ − +
= =

+ −
 (4.59)

Thus, the TCSF solution for the 1D non-conservative Burgers’ equation only needs one
tridagonal linear problem at the first step and an explicit solution for n 1u + at the second
step.

The TCSG Discrete Form
If the linear approximation is introduced in the gradient rather than the flux part, the
resulting discrete equations are the TCSG form:

n 2 *

* n *
2

u utu u u
2 x x
 ∂ ∂∆

= + − + ν ∂ ∂
 (4.60)

 44

n 1 2 *

n 1 * *
2

u utu u u
2 x x

+
+ ∂ ∂∆
= + − + ν ∂ ∂

 (4.61)

The first step of the TCSG has

()

()

()

()

n n
3 1

n n
4 2

n n
Q Q 2

n n
Q 1 Q 1

C C
1 0

4 2
C C

1
2 4 2

C C
1

2 4 2
C C

0 1
2 4

−

+ −

 − γ
+ + γ −

 −γ γ − + + γ −

 =

− γ γ
− + + γ −

 −γ
 − + + γ

A O O O (4.62)

T* * *

1 2 Qu ,u ,...u = x (4.63)
and

n *
1 1

n
2
n
3

n
Q 1

n *
Q Q 1

u u
2

u

u

u

u u
2

−

+

γ +

 =

 γ +

b
M

 (4.64)

In the second step of the TCSG,

 45

*
1

* *
2 2

* *
Q 1 Q 1

* *
Q Q

C1 0
4

C C1
4 4

C C
1

4 4
C C

0 1
4 4

− −

 −

=

 −

 −

A O O O (4.65)

Tn 1 n 1 n 1
1 2 Qu ,u ,...u+ + + = x (4.66)

and

* *
* n 11 1
1 1

*
* 2
2

*
Q 1*

Q 1

* *
Q Q* n 1

Q Q

D Cu u
2 4

Du
2

D
u

2
D C

u u
2 4

+

−
−

+

+ +

 +

=

 +

 + −

b M (4.67)

Thus the TCSG method for the 1D non-conservative Burgers’ equation requires solution
of two tridiagonal linear problems at each time step.

The TCSF-D Discrete Form
If we further split the diffusion term in the TCSF, we obtain the TCSF-D form. The
TCSF-D form for Equation (4.53) can be written as,

* 2 n

* n n
2

t u uu u u
2 x x
 ∆ ∂ ∂

= + − + ν ∂ ∂
 (4.68)

* 2 n 1

n 1 n 1
2

t u uu u u
2 x x

+
+ ∗ + ∆ ∂ ∂
= + − + ν ∂ ∂

 (4.69)

In the first step,

 46

n
1

n n
2 2

n n
Q 1 Q 1

n n
Q Q

C1 0
4

C C1
4 4

C C
1

4 4
C C

0 1
4 4

− −

 −

=

 −

 −

A O O O (4.70)

T* * *

1 2 Qu ,u ,...u = x (4.71)
and

n n
n *1 1
1 1

n
n 2
2

n
Q 1n

Q 1

n n
Q Qn *

Q Q

D Cu u
2 4

Du
2

D
u

2
D C

u u
2 4

−
−

+ +

 +

=

 +

 + −

b M (4.72)

In the second step,

()

()

()

()

* *
3 1

* *
4 2

* *
Q Q 2

* *
Q 1 Q 1

C C
1 0

4 2
C C

1
2 4 2

C C
1

2 4 2
C C

0 1
2 4

−

+ −

 − γ
+ + γ −

 −γ γ − + + γ −

 =

− γ γ
− + + γ −

 −γ
 − + + γ

A O O O (4.73)

Tn 1 n 1 n 1
1 2 Qu ,u ,...u+ + + = x (4.74)

and

 47

* n 1
1 1

*
2
*
3

*
Q 1

* n 1
Q Q 1

u u
2

u

u

u

u u
2

+

−

+
+

γ +

 =

 γ +

b
M

 (4.75)

It can be observed that the TCSF-D method reverses the solution process of the TCSG
method. The first step in TCSF-D is in the same structure as the second step in TCSG; the
second step in TCSF-D is in the same structure as the first step in TCSG.

The TCSG-D Discrete Form
The TCSG-D is obtained by further splitting the diffusion term in the TCSG

method written as

n 2 n

* n *
2

t u uu u u
2 x x
 ∆ ∂ ∂

= + − + ν ∂ ∂
 (4.76)

n 1 2 n 1

n 1 * *
2

t u uu u u
2 x x

+ +
+ ∆ ∂ ∂
= + − + ν ∂ ∂

 (4.77)

u* in the first step of Equation (4.76) can be explicitly calculated,

()
()

n n n n
i i 1 i i 1

*
i

n n
i 1 i 1

u u 2u u
2u ; i {1,2,...Q}11 c c

4

+ −

+ −

γ+ − +
= =

+ −
 (4.78)

The second step is a matrix equation with

 48

*
2

* *
1 3

* *
Q 2 Q

*
Q 1

C1 0 0 0
2 4

C C1 0 0
2 4 2 4

0 0
C C

0 0 1
2 4 2 4

C
0 0 0 1

2 4

−

−

 γ
+ γ − +

γ γ − − + γ − +

=
 γ γ − − + γ − +

 γ − − + γ

A O O O (4.79)

Tn 1 n 1 n 1
1 2 Qu ,u ,...u+ + + = x (4.80)

*
* n 10
1 0

*
2
*
3

*
Q 1

*
Q 1* n 1

Q Q 1

Cu u
2 4

u

u

u

C
u u

2 4

+

−

+ +
+

 γ
+ +

=

 γ

+ −

b
M

 (4.81)

The TCSG-D method reverses the solution process of the TCSF. The first step in TCSG-
D is in the same structure as in the second step in TCSF; the second step in TCSG-D is in
the same structure as in the first step in TCSF.

Similar to the last section, we first apply CN 2nd-order discretization to Equation
(4.53), such that Equation (4.53) is

n n n n n
n 1 n n i 1 i 1 i 1 i i 1
i i i 2

n 1 n 1 n 1 n 1 n 1
n 1 i 1 i 1 i 1 i i 1
i 2

t u u u 2u uu u u
2 2 x x

u u u 2u uu
2 x x

+ + − + −

+ + + + +
+ + − + −

∆ − − +
= − − ν ∆ ∆

− − +
+ − ν ∆ ∆

 (4.82)

Equation (4.82) is then linearized using conventional Picard, Newton and local
linearization methods.

 49

Picard iteration
Applying Picard iteration to Equation (4.82), the linearized equation can be written as,

()

() () ()

() () ()

n n n n nk 1n 1 n n i 1 i 1 i 1 i i 1
i i i 2

k 1 k 1n 1 n 1
k i 1 i 1n 1

i

k 1 k 1 k 1n 1 n 1 n 1
i 1 i i 1

2

t u u u 2u uu u u
2 2 x x

u u
u

2 x

u 2 u u
x

++ + − + −

+ ++ +
+ −+

+ + ++ + +
+ −

= −
∆ − − +

− ν ∆ ∆

−
+

∆
− + − ν ∆

 (4.83)

where the superscripts n and k indicate the time step and iteration number respectively.
with

k
3

k k
2 4

k

k k
Q 2 Q

k
M

C1 0
2 4

C C1
2 4 2 4

C C
1

2 4 2 4
C0 1

2 4

−

 γ
+ γ − +

γ γ − − + γ − +

=
 γ γ − − + γ − +

 γ

− − + γ

A O O O (4.84)

 () () ()
Tk 1 k 1 k 1k 1 n 1 n 1 n 1

1 2 Qu , u ,... u
+ + ++ + + + =

x (4.85)

 50

n n k
n 1 1 1
1

n n
n 2 2
2

n n
Q 1 Q 1n

Q 1

n n k
Q Q Qn

Q

D G Cu
2 4 2 4

D Gu
2 4

D G
u

2 4
D G C

u
2 4 2 4

− −
−

 γ
− − + +

 − −

=

 − −

 γ − − + −

b M (4.86)

k
1

k

k
Q 1

C
2 4

0

0
C

2 4
+

 γ
+

 =

γ −

c M (4.87)

Newton Iteration
Applying the Newton iteration to Equation (4.82), the linearized equation can be written
as:

 ()
k

k 1n 1 ki
j in 1

j

g u g
u

++
+

 ∂
∆ = − ∂

 (4.88)

with

()n 1 n 1 n 1 n 1 n
i i 1 i i 1 i i

n 1 n 1 n 1 n 1 n 1
n 1 i 1 i 1 i 1 i i 1
i 2

n n n n n
n i 1 i 1 i 1 i i 1
i 2

g u ,u ,u u u

t u u u 2u uu
2 2 x x

u u u 2u uu 0
2 x x

+ + + +
− +

+ + + + +
+ + − + −

+ − + −

= −

∆ − − +
+ − ν ∆ ∆

− − +
+ − ν =∆ ∆

 (4.89)

and
 () () ()k k 1 kn 1 n 1 n 1u u u

++ + +∆ = − (4.90)
Equation (4.88) is a matrix equation Ax=b with

 51

k k
2 3

k k k
2 3 4

k

k k k
Q 2 Q 1 Q

k k
Q 1 Q

G C1 0
4 2 4

C G C1
2 4 4 2 4

C G C
1

2 4 4 2 4
C G

0 1
2 4 4

− −

−

 γ
+ + γ − +

γ γ − − + + γ − +

=
 γ γ − − + + γ − +

 γ − − + + γ

A O O O (4.91)

 () () ()
Tk 1 k 1 k 1k 1 n 1 n 1 n 1

1 2 Qu , u ,... u
+ + ++ + + + = ∆ ∆ ∆

x (4.92)

n n
n 1 1
1

n n
n 2 2
2

n n
Q 1 Q 1n

Q 1

n n
Q Qn

Q

G Du
4 2

G Du
4 2

G D
u

4 2
G D

u
4 2

− −
−

+ −

 + −

= −

 + −

 + −

b M (4.93)

k k k
k 1 1 0
1

k k
k 2 2
2

k

k k
Q-1 Q-1k

Q-1

k k k
Q Q Q 1k

Q

G D Cu +
4 2 2 4

G Du +
4 2

G D
u +

4 2
G D C

u +
4 2 2 4

+

 γ
− + +

 −

=

 −

 γ − + −

C M (4.94)

Local linearization
Applying Local linearization to Equation (4.82), the linearized equation system can be
written as:

 52

n

n ni
j i

j

1 F1 t u tF
2 u

 ∂ − ∆ ∆ = ∆ ∂
 (4.95)

where

 ()
L L L L L

L L L L L i 1 i 1 i 1 i i 1
i i 1 i i 1 i 2

u u u 2u uF u ,u ,u u
2 x x
+ − + −

− +
− − +

= − + ν
∆ ∆

 (4.96)

for L {n,n 1}∈ + and

 n n 1 n
i i iu u u+∆ = - (4.97)

Therefore, Equation (4.95) is a matrix equation Ax=b with

n
2 3

n n
2 3 4

n
Q 2 Q 1 Q

Q 1 Q

G C1 0
4 2 4

C G C1
2 4 4 2 4

C G C
1

2 4 4 2 4
C G

0 1
2 4 4

− −

−

 γ
+ + γ − +

γ γ − − + + γ − +

=
 γ γ − − + + γ − +

 γ

− − + + γ

A O O O (4.98)

Tn 1 n 1 n 1 n 1
1 2 Qu , u ,... u+ + + + = ∆ ∆ ∆ x (4.99)

n
n n 0
1 1

n n
2 2

n n
Q 1 Q 1

n
Q 1n n

Q Q

1 CG D
2 2 4

1 G D
2

1 G D
2

C1 G D
2 2 4

− −

+

 γ
− + + +

 − +
 =

− +

 γ
− + + −

b M
 (4.100)

 53

4.2.2 Results and Discussion

Accuracy
As in the analysis of the conservative Burgers’ equation, we first locate the

maximum absolute error for all four discrete forms of the TCS method. As shown in
Figure 4.8, the maximum absolute error occurs at t=0.6 for all four forms. The exact
solution of the Burgers’ equation at t=0.6 can be found in Figure 4.3.

To evaluate the model error, we examine performance with seven different time
steps over the range, 0 012 t 0 12. .≤ ∆ ≤ , and with grid cell spacing of

{ }2 3 3x 2 10 5 10 1 25 10, , .− − −∆ ∈ × × × . As a result, the test conditions cover the range,
0 41 CFL 66 2. .≤ ≤ . Similar to section 4.1, the fine-time step solution u% is used in the
analysis of RMS error, 2L norm and L∞ norm. Here u% is the model solution of an
extremely fine time step such that 4t 0.6 /10∆ = , which is 0.5% of the smallest time step
used in the other simulations. The RMS 2, L norm, and L∞ε norm associated with different
methods over the tested ranges of CFL numbers are shown in Figure 4.9, 4.10 and 4.11
respectively. All methods are proven to be 2nd-order temporal accurate for fixed x∆ and
decreasing t∆ . For the same x∆ and t∆ , it can be seen that the difference in relative error
among all methods is within one order of magnitude except for the TCSF method. The
TCSF method has a noticeably smaller error than all the other methods, and about 1
magnitude smaller error than the TCSG-D form.

 54

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8
x 10

−4

t

ε ab
s

TCSF
TCSG
TCSF−D
TCSG−D

Figure 4.8 Absolute error time evolution for numerical solutions of 1D non-conservative
Burgers’ equation for the TCSF and TCSG methods using
{ }t 0.01, x 1/ 50, 0.05∆ = ∆ = ν = where

50

abs model i analytical i
i 1

1(t) u (x , t) u (x , t)
50

=

ε = −∑ and analyticalu (x, t) is numerically

calculated from Equation (4.46) with K=30.

 55

10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

CFL

ε R
M

S

TCSF
TCSG
TCSF−D
TCSG−D
Picard
Newton
Local linearization
2nd order slope

∆x=1/50

∆x=1/200

∆x=1/800

Figure 4.9 RMSε vs. CFL numbers of various methods for solution of 1D non-
conservative Burgers’ equation at different CFL numbers, where ν=0.05,

x∆ =1/50 and t∆ =0.6/Γ with Γ ∈{50, 30, 25, 20, 10, 8, 5}.

 56

10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

CFL

L
2

TCSF
TCSG
TCSF−D
TCSG−D
Picard
Newton
Local linearization
2nd order slope

∆x=1/50

∆x=1/200
∆x=1/800

Figure 4.10 2L norm vs. CFL numbers of various methods for solution of 1D non-
conservative Burgers’ equation at different CFL numbers, where ν=0.05,

x∆ =1/50 and t∆ =0.6/Γ with Γ ∈{50, 30, 25, 20, 10, 8, 5}.

 57

10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

CFL

L
∞

TCSF
TCSG
TCSF−D
TCSG−D
Picard
Newton
Local linearization
2nd order slope

∆x=1/50 ∆x=1/200 ∆x=1/800

Figure 4.11 L∞ norm vs. CFL numbers of various methods for solution of 1D non-
conservative Burgers’ equation at different CFL numbers, where ν=0.05,

x∆ =1/50 and t∆ =0.6/Γ with Γ ∈{50, 30, 25, 20, 10, 8, 5}.

Stability
As shown in Figure 4.9, Figure 4.10 and Figure 4.11, all the methods remain

stable over the full range of tested conditions. The RK2 and RK4 methods are also used
to solve this 1D non-conservative Burgers’ equation. The RMS error over a range of
CFL for the TCSF, TCSG, TCSF-D, TCSG-D, RK2 and RK4 methods is plotted in

 58

Figure 4.12. In this comparison, 0 0006 t 0 06. .≤ ∆ ≤ and x 0 02.∆ = provide test
conditions 0 013 CFL 2 57. .≤ ≤ . The RK methods become unstable when CFL>0.1.
However, the TCS methods remain stable in the whole range of CFL number.

10
−2

10
−1

10
0

10
1

10
−15

10
−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

CFL

ε R
M

S

TCSF
TCSF−D
RK2
RK4
2nd order slope

unstable

unstable

Figure 4.12 Temporal accuracy of the TCS and RK methods for solution of 1D non-
conservative Burgers’ equation at different CFL numbers, where ν=0.05,

x∆ =1/50 and t∆ =0.6/Γ with Γ ∈{500, 200, 100, 80, 50, 30, 25, 20, 10, 8,
5}.

Computational requirement
The same assessment of operation counts is used in this non-conservative

Burgers’ equation. All the methods perform similar to the non-conservative Burgers’
equation. The TCSF and TCSG-D have the identical operation counts because they have
the same solution process only in a reverse mode. The same correspondence can be found
between the TCSG and TCSF-D for the same reason. In this 1D non-conservative
Burgers’ equation test case, the TCSF and TCSG-D have the least operation counts.

 59

1 2 3 4 5 6 7
0

100

200

300

400

500

600

R

op
er

at
io

ns
 p

er
 g

rid
 p

oi
nt

TCSF
TCSG
TCSF−D
TCSG−D
local linearization
Newton iteration
Picard iteration

Figure 4.13 Ideal operations per grid point for one time step using various nonlinear
solution methods for 1D Non-conservative Burgers equation. R is the
number of outer iterations taken by Newton method. It is assumed that the
Picard method convergences in 2R outer iterations.

4.3 APPLICATION OF THE TCS METHOD TO A 1D NONLINEAR ORDINARY
DIFFERENTIAL EQUATION

The TCS method can be extended to any equation system with quadratic
nonlinearities. To test this general capability, we use a nonlinear ODE as our example:

 dy y(1 y) 0
dt

+ − = (4.101)

For the initial condition y(0) 1/ 2= , Equation (4.101) has the analytical solution (Moin
2001)
 [] 1y 1 exp(t) −= + (4.102)

4.3.1 The TCS discretizations

The TCSF Discretization
As in the 1D conservative Burgers’ equation, the TCSF and TCSG are the same

for Equation (4.101). Applying the TCSF method to Equation (4.101) provides

 60

 ()n n * * ty y y y y
2

∗ ∆
= + − (4.103)

 ()n 1 * n 1 * * ty y y y y
2

+ + ∆
= + − (4.104)

The discrete form can be written from Equation (4.103) and (4.104) as

n

n

yy t1 y 1
2

∗ =
∆ − −

 (4.105)

* *

n 1

*

ty y
2y t1 y

2

+

∆
−

=
∆

−
 (4.106)

The TCSF-D Discretization
Similarly, the TCSF-D discrete format for Equation (4.101) is written as

n n

n

ty y
2y t1 y

2

∗

∆−
=

∆−
 (4.107)

()

*
n 1

*

yy t1 y 1
2

+ =
∆− −

 (4.108)

It can be seen that Equation (4.108) has the same structure as Equation (4.105) and
Equation (4.107) has the same structure as Equation (4.106). Therefore, the TCSF and
TCSF-D discrete forms for Equation (4.101) are similar but reversed.

4.3.2 Conventional linearization methods
Crank-Nicolson (CN) discretized Equation (4.101) is,

 () ()n 1 n n n n 1 n 1t ty y y 1 y y 1 y
2 2

+ + +∆ ∆
= + − + − (4.109)

To linearize the nonlinear term on right hand side of Equation (4.109), we use the
Newton iteration, Picard iteration and local linearization methods.

 61

Newton method
Applying the Newton iteration approach, Equation (4.109) can be written as:

 () () ()kn 1
k 1 kn 1 n 1

n 1
k

g y
y y

g
y

+
++ +

+

= −
 ∂
 ∂

 (4.110)

where the outer superscript indicates the outer iteration number and

 () () ()n 1 n 1 n 1 n 1 n n nt tg y y y 1 y y y 1 y
2 2

+ + + +∆ ∆
= − − − − − (4.111)

Substituting Equation (4.111) into Equation (4.110), the original ODE in the Newton
linearized CN discretized form is

 () ()
() () () ()

()

k k kn 1 n 1 n 1 n n n
k 1 kn 1 n 1

kn 1

t ty y 1 y y y 1 y
2 2y y t1 2 y 1

2

+ + +
++ +

+

∆ ∆ − − − − − = −
∆ − −

 (4.112)

n 1 n
0y y+ = can be used as the initial condition to start the solution.

Picard method
 A second conventional approach, Picard iteration, in Equation (4.109), results in

 () () () ()k 1 k kn 1 n n n n 1 n 1t ty y y 1 y y 1 y
2 2

++ + +∆ ∆ = + − + −
 (4.113)

The same initial condition, n 1 n
0y y+ = can be used to start the solution.

Local linearization
Applying the third conventional method, local linearization method, Equation

(4.109) can be written as

n

n 1 n
n

tfy y
t f1

2 y

+ ∆
= +

 ∆ ∂− ∂

 (4.114)

where

 ()f y 1 y= − (4.115)

 62

Substituting Equation (4.115) into Equation (4.114) provides the locally-linearized
Equation (4.109) as

()
()

n n
n 1 n

n

t y 1 y
y y

t1 2y 1
2

+
∆ −

= +
∆ − −

 (4.116)

In this specific case, the local linearization, TCSF and TCSF-D are mathematically
equivalent. If we substitute Equation (4.105) to Equation (4.106) and substitute Equation
(4.107) to Equation (4.108), we will have two expressions which are exactly the same as
Equation (4.116).

4.3.3 Comparisons between the TCS and other methods
The evolution of the absolute errors for two TCS methods applied to the ODE is

shown in Figure 4.14. The maximum absolute errors for both TCS discrete formats occur
at time t=1.5.

0 2 4 6 8 10
0

1

x 10
−4

t

ε ab
s

TCSF
TCSF−D

Figure 4.14 Time evolution of absolute errors for TCS methods applied to the ODE,

Equation (4.101), for t∆ =0.1, where abs model analytical(t) y (t) y (t)ε = − .

Figure 4.15 provides a comparison of root-mean-square (RMS) error over Γ time

steps prior to maximum error, defined as

 63

1/ 2

2

RMS mod el i analytical i
i 1

1 y (t) y (t)
Γ

=

 ε ≡ − Γ
∑ (4.117)

 where maxt 1.5= and { }10, 50, 100, 200, 500, 600, 800, 1000, 1200, 1500, 2000Γ∈ . All
tested methods provide second-order accuracy. In this particular case, the iterative
methods have slightly smaller error than non-iterative methods. The errors from the three
non-iterative methods are identical since TCSF, TCSF-D and local linearization are
mathematically equivalent.

10
1

10
2

10
3

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Γ

ε R
M

S

TCSF

TCSF−D

Picard

Newton

Local linearization

2nd order

Figure 4.15 RMS error from Equation (4.117) for discrete solutions of the ODE,
Equation (4.101), computed using a range of Γ time steps.

4.4 SUMMARY
The TCS method has been tested on three different test cases: a 1D conservative

Burgers’ equation, a 1D non-conservative Burgers’ equation and an ODE. The TCS
method has multiple discrete forms for each test case. All the TCS discretizations have
been compared to conventional implicit linearization methods, including Picard iteration,
Newton iteration and local linearization methods. All the TCS discretizations

 64

demonstrate 2nd-order temporal accuracy and are shown stable up to a CFL O (10). All
the TCS discretizations are proved stable when the CFL value is in the order of 10. The
stability advantage of the TCS methods has been further demonstrated by the comparison
with the RK methods. The TCS methods require fewer operation counts than Picard and
Newton method, but are similar to local linearization. The principal advantage of the
TCS method over local linearization is the relative ease with which the TCS method can
be derived and implemented as it does not require discrete evaluation of a function
Jacobian. The TCS method is applicable to any quadratically-nonlinear problems, which
is verified by the ODE case.

For each test case, different TCS discretizations perform similarly in temporal
accuracy, stability and efficiency. However, difference can be observed among different
discretizations. In the 1D conservative Burgers’ equation, the TCSF and TCSG collapse
into one single form. The TCSF-D reverses the solution process of the TCSF.
Nevertheless, the TCSF-D has a noticeably smaller relative error than the TCSF and other
methods. In the 1D non-conservative Burgers’ equation, the TCSF and TCSG hold
distinct forms. The TCSF-D reverses the solution process of the TCSG, and the TCSG-D
reverses the solution process of the TCSF. Among the four discretizations, the TCSF has
the smallest relative error, which is about one order of magnitude smaller than the TCSG-
D. In the 1D nonlinear ODE case, the TCSF and TCSG remain the same. The TCSF-D
reverses the solution process of the TCSF, but they have the same relative error.

 65

Chapter 5 The TCS Family Method

In Chapter 3, we revealed that the key to the TCS method is the 2nd-order

accurate time-centered splitting. Applying this splitting to different terms, different TCS
discretizations can be generated. In Chapter 4, we compared the TCS discretizations with
conventional linearization methods using various examples. In this chapter, we derive the
TCS family method in one general form by introducing weighting factors to different
terms. A significance of this TCS family method is that the value of the weighting factors
does not affect the order of accuracy of the scheme. Since weighting factors can be any
value between zero and one while still providing essentially the same advantages, it may
provide a flexible approach for a variety of problems. To examine the properties of
weighting factors, the 1D non-conservative Burgers’ equation is solved using different
combinations of weighting factors. Furthermore, we demonstrate that the TCS method
can computationally decouple an equation system of coupled variables using special
combinations of weighting factors. This advantage makes the TCS method more efficient
in solving coupled multi-variable equation systems.

5.1 DERIVATION OF THE TCS FAMILY METHOD
Let us start a time marching differential equation from a simplest form:

 () () (){ }f F M L N
t

∂φ
= φ φ φ ∂

, (5.1)

where φ s a generic variable, F, M, L and N represent generic linear operators. The
function f is a linear function of () ()F M Lφ φ and ()N φ . Equation (5.1) then
represents a time marching differential equation with a quadratic nonlinearity of

() ()F M Lφ φ and a linear operator of the variable, ()N φ . This quadratic nonlinearity

can be: the product of the variable itself, 2φ if F, M and L are equal to 1; the product of
the variable and the gradient of the variable, / xφ∂φ ∂ , if F=1, M=1 and L= () / x∂ ∂ ; the

gradient of the product of the variable, () / x∂ φφ ∂ if M=1, L=1 and F= () / x∂ ∂ . Thus,
Equation (5.1) represents a generic time marching differential equation with any kind of
quadratic nonlinearity. Equation (5.1) can be discretized using the midpoint rule, written
as
 () () (){ } ()n 1 n n 1 2 n 1 2 n 1 2 3f F M L N t t+ + + + φ = φ + φ φ φ ∆ + ∆

/ / /, O (5.2)

In the previous chapters, we demonstrated that the time-centered split can be introduced
to the quadratic nonlinear term and/or the linear term. Introducing two weighting factors,

 66

1θ and 2θ , and combining with the time-centered linear approximation,

()
n n 1

n 1 2 2t
2

/ O
+

+ φ + φ
φ = + ∆ , Equation (5.2) can be written as a general discretization

() () ()

() () ()

n n 1 n n 1
n 1 n n 1 2 n 1 2

1 1

n n 1
n 1 2 3

2 2

f F M L 1 F M L
2 2

N 1 N t t
2

+ +
+ + +

+
+

 φ + φ φ + φφ = φ + θ φ + − θ φ

 φ + φ
θ φ + − θ ∆ + ∆

/ /

/

,

O

(5.3)

where the weighting factor iθ ({ }i 1 2,∈) is required that i0 1≤ θ ≤ . Equation (5.3) is
mathematically equivalent to Equation (5.2). Similar to the derivation in Chapter 3, an
intermediate variable *φ is introduced as

() () () () (){

() () ()}

n n n 1 2 n 1 2 n
1 1

n 1 2 n
2 2

f F M L 1 F M L

tN 1 N
2

+ +

+

 φ = φ + θ φ φ + − θ φ φ
∆

θ φ + − θ φ

* / /

/

,
 (5.4)

Subtracting Equation (5.4) from Equation (5.3), the second step is written as:

() () () () (){
() () ()} ()

n 1 n 1 n 1 2 n 1 2 n 1
1 1

n 1 2 n 1 3
2 2

f F M L 1 F M L

tN 1 N t
2

+ + + + +

+ +

 φ = φ + θ φ φ + − θ φ φ
∆

θ φ + − θ φ + ∆

* / /

/

,

O
 (5.5)

Expanding n 1 2/+φ in Equation (5.4) using the Taylor expansion,

()

() ()

() ()

2
n n n

1 t

2
n n

1 t

2
n n

2 t 2

t tf F M L
2 2

t t1 F M L
2 2

t t tN 1 N
2 2 2

 ∆ ∆ φ = φ + θ φ φ + φ +
 ∆ ∆ + − θ φ + φ + φ

 ∆ ∆ ∆ θ φ + φ + + − θ φ

* O

O ,

O

 (5.6)

Organizing Equation (5.6) and grouping the higher order terms,

 () (){ ()}
2

n n n n t tf F M L N
2 2
∆ ∆ φ = φ + φ φ φ +

* , O (5.7)

n 1 2/+φ can be approximated using the explicit Euler approximation as

 67

 () () (){ }
2

n 1 2 n n n n t tf F M L N
2 2

+ ∆ ∆ φ = φ + φ φ φ +
/ , O (5.8)

Therefore, we obtain the correspondence between *φ and n 1 2/+φ from Equations (5.7) and
(5.8) such that

 ()n 1 2 2t* / O+φ = φ + ∆ (5.9)

Substituting Equation (5.9) into Equations (5.4) and (5.5), the original equation set
becomes a computationally linearized two-step equation system:

() () () () (){

() () ()}

n n n
1 1

n
2 2

f F M L 1 F M L

tN 1 N
2

 φ = φ + θ φ φ + − θ φ φ
∆

θ φ + − θ φ

* * *

*

,
 (5.10)

() () () () (){
() () ()} ()

n 1 n 1 n 1
1 1

n 1 3
2 2

f F M L 1 F M L

tN 1 N t
2

+ + +

+

 φ = φ + θ φ φ + − θ φ φ
∆

θ φ + − θ φ + ∆

* * *

*

,

O
 (5.11)

The weighting factor, iθ , distinguishes this derivation above from the original derivation
of TCS method in Chapter 3 because the value of iθ will not affect the 2nd-order accuracy
of the TCS methods. In addition, there is no dependent relationship between 1θ and 2θ . In
other words, as long as i0 1≤ θ ≤ , Equations (5.10) and (5.11) are a 2nd-order equivalent
to Equation (5.2). Although the derivation above uses a single variable, the same
mathematic principles apply to any quadratic nonlinearity. In ordinary differential
equations (ODE), the nonlinearity is simply 2x or xy; in partial differential equations
(PDE), this quadratic nonlinearity can be U U / x∂ ∂ or ()HU / x∂ ∂ . Therefore, the
derivation above is applicable to an ODE or ODE system with quadratic nonlinearity and
typical flow transport equation such as 1D advection-diffusion equation or shallow water
equations. In addition, the more variables are involved in an equation system, the more
weighting factors that can be introduced. As a result, the TCS method provides not a
single kind, but a whole family of TCS discretizations.

As we illustrated in the previous chapters, all the TCS family methods keep 2nd-
order temporal accuracy and they share the same simplicity advantages in computation.
However, with different combinations of iθ , the numerical solutions perform differently.
In the next section, we will use the 1D non-conservative Burgers’ equation as an example
to explore the different performance of different TCS discretizations.

 68

5.2 APPLICATION OF THE TCS FAMILY METHOD TO THE 1D NON-CONSERVATIVE
BURGERS’ EQUATION

With the introduction of the weighting factors 1θ and 2θ , the general format of
the TCS discretized non-conservative Burgers’ equation is written as,

 () () () () (){ }n n n 2 2 n
1 x 1 x 2 x 2 x

tu u u u 1 u u u 1 u
2

* * * *∆
= + θ − δ + − θ − δ + θ νδ + − θ νδ (5.12)

 () () () (){ }n 1 n 1 n 1 2 2 n 1
1 x 1 x 2 x 2 x

tu u u u 1 u u u 1 u
2

* * * *+ + + +∆
= + θ − δ + − θ − δ + θ νδ + − θ νδ (5.13)

The above equations are a two-step matrix equation system in the format of Ax=b. Using
a central difference in spatial derivatives, the LHS coefficient matrix A in the first step is
tridiagonal such that

1,1 1,2

2,1 2,2 2,3

3,2 3,3 3,4

Q 2,N 3 Q 2,Q 2 Q 2,Q 1

Q 1,N 2 Q 1,Q 1 Q 1,Q

Q,Q 1 Q,Q

a a 0
a a a

a a a

a a a
a a a

0 a a

− − − − − −

− − − − −

−

 =

A O O O (5.14)

where Q is the number of the grid points in space, and the non-zero components of A for

{ }i 1,2...Q= are of the form

n1 2
i

n n
i, j 1 i 1 i 1 2

n1 2
i

C : j i 1
4 2
1a 1 C C : j i
4

C : j i 1
4 2

+ −

θ θ− − γ = −

 = + θ − + θ γ =

θ θ+ − γ = +

 (5.15)

Also in the first step,

T* * *

1 2 Qu ,u ,...u = x (5.16)
and

 69

()

()

()

()

n n
n 2 1 1 1 2
1

n
n 2 2
2

n
2 Q 1n

Q 1

n n
2 Q 1 Qn 2

Q

1 D Cu
2 4 2

1 D
u

2

1 D
u

2
1 D C

u
2 4 2

−
−

 − θ γ θ θ γ
+ + +

− θ γ

+

=
 − θ γ +

 − θ γ θ θ γ + − +

b M (5.17)

In the second step, we also have a tridiagonal coefficient matrix A with different
tridiagonal elements as

 () ()

*1 2
i

* *
i, j 1 i 1 i 1 2

*1 2
i

1 1C : j i 1
4 2
1a 1 1 C C 1 : j i
4

1 1C : j i 1
4 2

+ −

− θ − θ− − γ = −

 = + − θ − + − θ γ =

− θ − θ+ − γ = +

 (5.18)

and

Tn 1 n 1 n 1
1 2 Qu ,u ,...u+ + + = x (5.19)

() ()

() ()

**
* 1 1 22 1
1

*
* 2 2
2

*
2 Q 1*

Q 1

* *
2 Q 1 Q* 2

Q

1 C 1Du
2 4 2

Du
2

D
u

2
D 1 C 1

u
2 4 2

−
−

 − θ − θ γθ γ
+ + +

θ γ

+

=
 θ γ +

 θ γ − θ − θ γ + − +

b M (5.20)

where C, γ and D in these two steps have the same definitions as in Chapter 4.

 70

5.3 RESULTS AND DISCUSSION
To explore the properties of different weighting factors, the 1D non-conservative

Burgers’ equation is solved using Equations (5.12) and (5.13) with different
combinations of 1θ and 2θ . Before we analyze the results from various combinations of

1θ and 2θ , it is necessary to review their meanings. In the TCS scheme, n 1 2u /+ in the
Burgers’ equation is either approximated using the time-centered splitting as

() ()n 1 2 n n 1 2u u u 2 t/ / O+ += + + ∆ or u* as ()n 1 2 2u u t/ * O+ = + ∆ . Different iθ indicates

different approximations of n 1 2u /+ . When iθ =0 or iθ =1, n 1/ 2u + is approximated only
using one kind of the approximations. When iθ lies between 0 and 1, n 1/ 2u + is
approximated by the combinations of these two approximations. Table 5.1 lists the
mathematical meaning of different values of iθ .

Table 5.1 The mathematical meaning of the value of 1θ and 2θ .

value 1θ 2θ

0
split the entire gradient term and
approximate the entire flux term using
u*

split the entire diffusion
term

0 and 1< <
split part of the gradient and flux terms
approximate part of the gradient and flux
terms using u*

split part of the diffusion
term and approximate part
of the diffusion term using
u*

1
split the entire flux term and
approximate the entire gradient term
using u*

approximate the entire
diffusion term using u*

5.3.1 Accuracy of Different Weighting Factors
The error analysis of different TCS discretizations is evaluated in the same vein as

in Chapter 4. In figure 5.1, the RMS error is plotted against a range of CFL numbers for
six different 1θ values ({ }1 0 1 3 1 2 2 3 3 4 1, / , / , / , / ,θ ∈). For each 1θ value, four

different 2θ values ({ }2 0 1 3 1 2 1, / , / ,θ ∈) are chosen for comparison, resulting
twenty four different TCS discretizations.

 The total marching time t=0.6 is used as the basis for error comparison in Figure
5.1 because the maximum absolute error occurs at t=0.6 (as demonstrated in Chapter 4).
The CFL number is defined using analyticalu , x 1 50/∆ = and t∆ = 0 6. / Γ , where Γ is the

 71

number of the time steps and { }5, 8, 10, 20, 25, 30, 50Γ∈ . Thus, the tested CFL number
covers the range of 0 4 CFL 4 2. .≤ ≤ . It can be observed that every TCS discretization
has the same 2nd-order temporal accuracy and remains stable in the whole range of the
CFL numbers. The computation requirement of each TCS discretization is essentially the
same since they share the same general structure of matrix equations as in Equations
(5.14) to (5.20). Figure 5.1 clearly shows that for a given value of 1θ , any choice of 2θ
gives an error of the same magnitude. The reverse also holds true, as shown in Figure 5.2.
The RMS error is plotted for six values of 2θ , choosing four 1θ values for each 2θ value.
Again, given a value for 2θ , the choice of 1θ affects the RMS error less than or equal to
one order of magnitude.

Though 1 22 3 1 2/ , /θ = θ = gives the lowest RMS error in these two examples,
the best combination for the smallest error is problem-specific; error arises from
approximations of different terms. To obtain optimal combinations of iθ for the lowest
error, one needs to examine the nature of the solution and each term at the designated
marching time. For this Burgers’ equation, the solution u, the gradient term u x/∂ ∂ , and
the diffusion term 2 2u x/ν∂ ∂ all need to be taken into consideration because
approximations have been introduced to all of these terms.

 72

10
−1

10
0

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CFL

ε R
M

S

θ
1
=0

10
−1

10
0

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CFL

ε R
M

S

θ
1
=1/3

10
−1

10
0

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CFL

ε R
M

S

θ
1
=1/2

10
−1

10
0

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CFL

ε R
M

S

θ
1
=2/3

10
−1

10
0

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CFL

ε R
M

S

θ
1
=3/4

10
−1

10
0

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CFL

ε R
M

S

θ
1
=1

θ
2
=0 θ

2
=1/3 θ

2
=1/2 θ

2
=1 2nd order slope

Figure 5.1 Temporal accuracy of various combinations of 1θ and 2θ for solution of the
Burgers’ equation at t=0.6, where x 1 50/∆ = , 0 05.ν = and t 0 6. /∆ = Γ
({ }5, 8, 10, 20, 25, 30, 50Γ∈).

 73

10
−1

10
0

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CFL

ε R
M

S

θ
2
=0

10
−1

10
0

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CFL

ε R
M

S

θ
2
=1/3

10
−1

10
0

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CFL

ε R
M

S

θ
2
=1/2

10
−1

10
0

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CFL

ε R
M

S

θ
2
=2/3

10
−1

10
0

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CFL

ε R
M

S

θ
2
=3/4

10
−1

10
0

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CFL

ε R
M

S

θ
2
=1

θ
1
=0 θ

1
=1/3 θ

1
=1/2 θ

1
=1 2nd order slope

Figure 5.2 Temporal accuracy of various combinations of 2θ and 1θ for solution of the
Burgers’ equation at t=0.6, where x 1 50/∆ = , 0 05.ν = and t 0 6. /∆ = Γ
({ }5, 8, 10, 20, 25, 30, 50Γ∈).

 74

5.3.2 Stability of Different Weighting Factors
Figure 5.1 and 5.2 display the temporal accuracy of the solution of the Burgers’

equation at t=0.6. All TCS discretizations produce stable solutions for the whole range of
tested CFL numbers. To further explore the stability characteristics, we investigate the
performance of the TCS family method at t=0.3, 1 and 2, and these results are shown in
Figure 5.3, 5.4 and 5.5, respectively. Similar to Figure 5.1, the RMS error is plotted
against a range of CFL numbers for several choices of 2θ given a 1θ value. Similar to
t=0.6, all 24 TCS discretizations stay stable at t=0.3.

At t=1and t=2, though, we find different results. At t=1 (Figure 5.4), for any given
1θ value, the solution of 2 1θ = becomes unstable with the increase of the CFL number,

but the solutions for any 2 1θ ≠ remain stable. At t=2, the solutions of both 2 0θ = and

2 1θ = become unstable with the increase of the CFL number, but the solutions with any

20 1< θ < remain stable.
To understand this stability property associated with the 2θ value, we need to

examine the nature of the solution and the meaning of the weighting factor 2θ . The
solution of the Burgers’ equation evolving with time is plotted in Figure 4.1. It can be
observed that after t=0.6, damping dominates the solution, which suggests that the
diffusion effect dominates. The weighting factor 2θ controls the approximation of the
diffusion term as shown in Table 5.1. If 2 0θ = , the entire diffusion term, 2 n 1/ 2 2u / x+ν∂ ∂ ,
is completely approximated using the time-centered split, which means n 1/ 2u + in the
diffusion term is first approximated as ()n 1 2 n n 1u u u 2/ /+ +≈ + and then we split the

diffusion terms into two steps as 2 n 2u / xν∂ ∂ and 2 n 1 2u / x+ν∂ ∂ . If 2 1θ = , the entire
diffusion term, 2 n 1/ 2 2u / x+ν∂ ∂ , is completely approximated using u* , which means

2 n 1/ 2 2 2 * 2u / x u / x+ν∂ ∂ ≈ ν∂ ∂ . Figures 5.1 to 5.5 indicate that the TCS method remains
stable and the stability is not affected by the values of the weighing factors. If the
diffusion dominates the solution, the weighting factor associated with the diffusion term
can affect the stability. Our results suggest that if the weighting factor, 2 20 and 1θ ≠ θ ≠ ,
the solutions remain stable for the tested CFL numbers. In other words, using only one
kind of approximation for the diffusion term, the solution may become unstable with the
increase of the CFL number; using a combination of the two kinds of approximations for
the diffusion term can stabilize the solution.

 75

10
−1

10
0

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CFL

ε R
M

S

θ
1
=0

10
−1

10
0

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CFL

ε R
M

S

θ
1
=1/3

10
−1

10
0

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CFL

ε R
M

S

θ
1
=1/2

10
−1

10
0

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CFL

ε R
M

S

θ
1
=2/3

10
−1

10
0

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CFL

ε R
M

S

θ
1
=3/4

10
−1

10
0

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CFL

ε R
M

S

θ
1
=1

θ
2
=0 θ

2
=1/3 θ

2
=1/2 θ

2
=1 2nd order slope

Figure 5.3 Temporal accuracy of various combinations of 2θ and 1θ for solution of the
Burgers’ equation at t=0.3, where x 1 50/∆ = , 0 05.ν = and t 0 3∆ = Γ. /
({ }5, 8, 10, 20, 25, 30, 50Γ∈).

 76

10
−1

10
0

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CFL

ε R
M

S

θ
1
=0

10
−1

10
0

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CFL

ε R
M

S

θ
1
=1/3

10
−1

10
0

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CFL

ε R
M

S

θ
1
=1/2

10
−1

10
0

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CFL

ε R
M

S

θ
1
=2/3

10
−1

10
0

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CFL

ε R
M

S

θ
1
=3/4

10
−1

10
0

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CFL

ε R
M

S

θ
1
=1

θ
2
=0 θ

2
=1/3 θ

2
=1/2 θ

2
=1 2nd order slope

Figure 5.4 Temporal accuracy of various combinations of 2θ and 1θ for solution of the
Burgers’ equation at t=1, where x 1 50∆ = / , 0 05ν = . and t 1∆ = Γ/
({ }5, 8, 10, 20, 25, 30, 50Γ∈).

 77

10
−1

10
0

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CFL

ε R
M

S

θ
1
=0

10
−1

10
0

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CFL

ε R
M

S

θ
1
=1/3

10
−1

10
0

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CFL

ε R
M

S

θ
1
=1/2

10
−1

10
0

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CFL

ε R
M

S

θ
1
=2/3

10
−1

10
0

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CFL

ε R
M

S

θ
1
=3/4

10
−1

10
0

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CFL

ε R
M

S

θ
1
=1

θ
2
=0 θ

2
=1/3 θ

2
=1/2 θ

2
=1 2nd order slope

Figure 5.5 Temporal accuracy of various combinations of 2θ and 1θ for solution of the
Burgers’ equation at t=2, where x 1 50/∆ = , 0 05.ν = and t 2∆ = Γ/
({ }5, 8, 10, 20, 25, 30, 50Γ∈).

 78

The general form of TCS method is demonstrated using the 1D non-conservative
Burgers’ equation. The same application of the weighting factors can be used for an
equation system with coupled variables. Hence, a general form of a two-step linearized
coupled equation system can be created using the same principle. Since the values of the
weighting factors will not affect the 2nd-order temporal accuracy of the scheme, TCS
method may provide a flexible approach to solve different problems. Furthermore,
properly chosen weighting factors in the TCS method can computationally decouple a
system of coupled equations. This decoupling advantage of the TCS method is analyzed
in the following section.

5.4 COMPUTATIONAL DECOUPLING
In the previous sections, we demonstrated the effects of weighting factors in the

TCS method on the accuracy and stability of the solution. In this section, we will
introduce the decoupling advantage of the TCS method. The two-dimensional Burgers’
equation provides a convenient example:

2 2

2 2

u u u u uu v
t x y x y

∂ ∂ ∂ ∂ ∂
+ + = ν + ν

∂ ∂ ∂ ∂ ∂
 (5.21)

2 2

2 2

v v v v vu v
t x y x y

∂ ∂ ∂ ∂ ∂
+ + = ν + ν

∂ ∂ ∂ ∂ ∂
 (5.22)

Equations (5.21) and (5.22) are a two-variable two-dimensional system with coupled
variables ‘u’ and ‘v’. If we use the 2nd-order temporal accurate C-N method to discretize
equations (5.21) and (5.22), the resulting equations become

n n 2 n 2 n
n 1 n n n

2 2

n 1 n 1 2 n 1 2 n 1
n 1 n 1

2 2

t u u u uu u u v
2 x y x y

t u v u uu v
2 x y x y

+

+ + + +
+ +

 ∆ ∂ ∂ ∂ ∂
= + − − + ν + ν ∂ ∂ ∂ ∂

 ∆ ∂ ∂ ∂ ∂
+ − − + ν + ν ∂ ∂ ∂ ∂

 (5.23)

n n 2 n 2 n
n 1 n n n

2 2

n 1 n 1 2 n 1 2 n 1
n 1 n 1

2 2

t v v v vv v u v
2 x y x y

t v v v vu v
2 x y x y

+

+ + + +
+ +

 ∆ ∂ ∂ ∂ ∂
= + − − + ν + ν ∂ ∂ ∂ ∂

 ∆ ∂ ∂ ∂ ∂
+ − − + ν + ν ∂ ∂ ∂ ∂

 (5.24)

Equations (5.23) and (5.24) are a coupled nonlinear equation system. Conventionally, to
solve a coupled equation system, either a simultaneous solution or a sequential solution
method can be used (Ferziger and Peric, 1996). However, such an equation system is too
complex and expensive to solve simultaneously due to its nonlinearity. Therefore,
sequential solution methods are more appropriate. To solve this equation system

 79

sequentially, inner iterations are required to solve Equations (5.23) and (5.24)
individually, and outer iterations are required to satisfy Equations (5.23) and (5.24)
together.

Alternatively, we can decouple and linearize Equations (5.23) and (5.24) using
TCS method without iterations by choosing specific weighting factors. Applying the TCS
method to Equation (5.21) results in a two-step system with a specific iθ weighting factor
for each term

() () (){
() () ()

() ()

() () }

n n n
1 x 1 x

n n
2 y 2 y

2 2 n
3 x 3 x

2 2 n
4 y 4 y

tu u u u 1 u u
2

v u 1 v u

u 1 u

u 1 u

* * *

* *

*

*

∆
= + θ − δ + − θ − δ

+ θ − δ + − θ − δ

+ θ νδ + − θ νδ

+θ νδ + − θ νδ

 (5.25)

() () (){
() () ()

()
() }

n 1 n 1 n 1
1 x 1 x

n 1 n 1
2 y 2 y

2 2 n 1
3 x 3 x

2 2 n 1
4 y 4 y

tu u u u 1 u u
2

v u 1 v u

u 1 u

u 1 u

* * *

* *

*

*

+ + +

+ +

+

+

∆
= + θ − δ + − θ − δ

+ θ − δ + − θ − δ

+ θ νδ + − θ νδ

+θ νδ + − θ νδ

 (5.26)

Applying the TCS method to Equation (5.22) results in a two-step system:

() () (){
() () ()

() ()

() () }

n n n
5 x 5 x

n n
6 y 6 y

2 2 n
7 x 7 x

2 2 n
8 y 8 y

tv v u v 1 u v
2

v v 1 v v

v 1 v

v 1 v

* * *

* *

*

*

∆
= + θ − δ + − θ − δ

+ θ − δ + − θ − δ

+ θ νδ + − θ νδ

+θ νδ + − θ νδ

 (5.27)

() () (){
() () ()

()
() }

n 1 n 1 n 1
5 x 5 x

n 1 n 1
6 y 6 y

2 2 n 1
7 x 7 x

2 2 n 1
8 y 8 y

tv v u v 1 u v
2

v v 1 v v

v 1 v

v 1 v

* * *

* *

*

*

+ + +

+ +

+

+

∆
= + θ − δ + − θ − δ

+ θ − δ + − θ − δ

+ θ νδ + − θ νδ

+θ νδ + − θ νδ

 (5.28)

For this two-variable two-dimensional Burgers’ equation, eight different weighting
factors are applied in the general TCS discretized form. Observing Equations (5.21) and
(5.22), we discover that the coupling only occurs in the nonlinear advection term.

 80

Therefore, the weighting factors for the diffusion terms will not affect the computational
decoupling.

In the following discussion, we omit the diffusion terms and their associated
weighting factors. We then discover that the coupling occurs between the nonlinear
advection terms ‘ v u y/∂ ∂ ’ and ‘ u v x/∂ ∂ ’. The two weighting factors for these two terms
are 2θ and 5θ respectively and these two factors are the key to computationally
decoupling the equation system. The other two advection terms ‘ u u x/∂ ∂ ’ and
‘ v v y/∂ ∂ ’ are not coupled. Therefore, we have more choices for their weighting factors

1θ and 6θ . To completely decouple u and v, Table 5.2 shows the possible combinations
of the weighting factors for each advection term.

Table 5.2 Weighting factors for computational decoupling the 2D Burgers’ equation

2θ 5θ 1θ 6θ
0 0
1 0
0 1 0 1

1 1
0 0
1 0
0 1 1 0

1 1

It can be seen from Table 5.2 that two kinds of combinations of 2θ and 5θ can decouple
the 2D Burgers’ equation. For each pair of 2θ and 5θ , four different combinations of

1θ and 6θ can be chosen such as 1 6 0θ = θ = , 1 61 and 0θ = θ = , 1 6 1θ = θ = ,

1 60 and 1θ = θ = . To illustrate the procedure of decoupling, we use the values from the
first row in Table 5.2, applying 2 5 1 60 1 0 0, , ,θ = θ = θ = θ = to Equations (5.25) to
(5.28) and reordering the equation system to

 ()n n n
x y

tv v u v v v
2

* * *∆
= + − δ − δ (5.29)

 ()n n n
x y

tu u u u v u
2

* * *∆
= + − δ − δ (5.30)

 ()n 1 n 1 n 1
x y

tu u u u v u
2

* * *+ + +∆
= + − δ − δ (5.31)

 81

 ()n 1 n 1 n 1
x y

tv v u v v v
2

* * *+ + +∆
= + − δ − δ (5.32)

Each step from Equation (5.29) to (5.32) is computationally linearized, and each
step has only one unknown variable. Variables “u” and “v” are effectively decoupled in
each step. The solution process for these chosen weighting factors is as follows:

1. Solve for v* using nu and nv
2. Solve for u* using nu and v* obtained from step 1
3. Solve for n 1u + using u* obtained from step 2 and v* obtained from step 1
4. Solve for n 1v + using n 1u + obtained from step 3 and v* obtained from step 1
A different combination of weighting factors from Table 5.2 results in a different

equation system, and the order of the solution procedure is changed appropriately. Using
the following set of weighting factors in Equations (5.25) to (5.28): 2 1θ = , 5 0θ = ,

1 0θ = , and 6 0θ = , results in the following system:

 ()n n n
x y

tu u u u v u
2

* * *∆
= + − δ − δ (5.33)

 ()n n n
x y

tv v u v v v
2

* * *∆
= + − δ − δ (5.34)

 ()n 1 n 1 n 1
x y

tv v u v v v
2

* * *+ + +∆
= + − δ − δ (5.35)

 ()n 1 n 1 n 1
x y

tu u u u v u
2

* * *+ + +∆
= + − δ − δ (5.36)

The corresponding solution process is:
1. Solve for u* using nu and nv
2. Solve for v* using nv and u* obtained from step 1
3. Solve for n 1v + using v* obtained from step 2 and u* obtained from step 1
4. Solve for n 1u + using n 1v + obtained from step 3 and u* obtained from step 1
This computational decoupling technique can be extended to equation systems

with more than two variables. The underlying principle for decoupling is that when the
weighting factor is switched from 0 to 1, the approximation for the variable n 1 2/+φ is
changed from *φ to either nφ or n 1+φ . Consequently, we can change the variable in one
equation from unknown to known.

5.5 SUMMARY
A general form of the TCS family method is developed in this chapter by

introducing a weighting factor iθ for each term in a quadratic nonlinear differential
equation. The 1D non-conservative Burgers’ equation is used as an example to test how
the weighting factors affect the solutions. The value of iθ controls the approximations of

 82

the advection and diffusion terms. If iθ =0 or iθ =1, the advection term or the diffusion
term is approximated only by one kind of approximation; if iθ lies between 0 and 1, the
advection term or the diffusion term is approximated by the combination of two
approximations. Although various TCS discretizations can be generated by changing iθ
the 2nd order temporal accuracy of the TCS method is not affected by the choice of the
weighting factor. We proved analytically and by examples that the TCS family method is
2nd-order temporal accurate if i0 1≤ θ ≤ . Different combinations of iθ value have been
tested using 1D Burgers’ equation as an example. The results presented here show that
the optimum combination of the weighting factors for the most accurate solutions is
problem-specific. However, our results indicate that the optimal values for the weighting
factors lie between 0 and 1 such that the advection term and diffusion term are
approximated using the combination of two different approximations. Our examples also
demonstrate the stability advantage of the TCS method. When the advection effect is
dominant, the stability is not affected by iθ value and all the tested TCS discretizations
remain stable for the whole range of CFL numbers. When the diffusion effect is
dominant, the TCS method stays stable under all iθ values except 0 or 1 for the diffusion
term. This observation suggests that the solution from the TCS method may be stabilized
by adjusting the weighting factors. Most of the problems in Environmental Fluid
Mechanics are dominated by advection. Hence, the TCS family method has a promising
stability advantage in simulating environmental flows.

In addition to its accuracy and stability advantages, the TCS method is also
capable of decoupling coupled equation systems by choosing specific combinations of
the weighting factors. This advantage is displayed using the two-dimensional Burgers’
equation as an example. Compared to the conventional decoupling techniques, no
iteration is required in the TCS method. Therefore, the TCS method is more efficient in
solving coupled nonlinear equation systems. Moreover, the TCS family method provides
theoretically unlimited possible discretizations for one problem. This, in turn, provides
flexibility in discretizing specific problems.

In the next chapter, we will apply the TCS method to a multi-variable and multi-
dimensional equation system: depth averaged shallow water equations (SWE). The
advantage of computational linearization and decoupling of the TCS method will be
further illustrated in the next chapter. Numerical experiments will be carried out to test
the TCS discretized depth averaged SWE.

 83

Chapter 6 Application of the TCS Method to a 2D Depth Averaged
Shallow Water Equations (SWE)

The TCS (Time-Centered Split) family of methods are derived and analyzed in

Chapter 5. To investigate the application of the TCS method in a multi-variable and
multi-dimension equation system, depth averaged SWE (shallow water equations) is
solved using the TCS method in this chapter. The computational decoupling
characteristics of the TCS method are explored using depth averaged SWE as an
example. The decoupling procedure is discussed and three representative linearized and
decoupled TCS discretizations are presented in this Chapter. Numerical experiments such
as a one-dimensional standing wave and a two-dimensional standing wave in a
rectangular domain are performed to verify the TCS numerical model. In the one-
dimensional standing wave case, the numerical results are compared with the analytical
solutions; and in the two-dimensional standing wave case, the characteristics and
performance from three TCS discretizations are compared and discussed.

6.1. THE 2D DEPTH AVERAGED SWE
The 2D depth averaged SWE are obtained by integrating the 3D incompressible

Navier-Stokes equations over the water depth with the two following assumptions: 1)
neglecting the vertical velocity and acceleration; 2) applying a hydrostatic pressure
distribution (Vreugdenhil 1994). These equations are widely used in hydraulic science
and engineering (Ancey et al. 2008; Arega et al. 2008; Hunter et al. 2008). The definition
of “shallow” requires that the vertical scale of the flow is small compared to the
horizontal scale. In nature or common engineering practice, many types of flows fall into
this category such as atmospheric flow (Mohebalhojeh and Dritschel 2007), river flow
(Arega et al. 2008), and storm surge (Bajo et al. 2007). Although the 2D SWE cannot
simulate vertical velocity gradients, they are useful for flows where strong turbulence
provides complete vertical mixing of momentum or for flows dominated by barotropic
motions. The 2D shallow water equations can be written as:

2 2

2 2

U U U U UU V g
t x y x x y

 ∂ ∂ ∂ ∂ζ ∂ ∂
+ + = − + ν + ∂ ∂ ∂ ∂ ∂ ∂

 (6.1)

2 2

2 2

V V V V VU V g
t x y y x y

 ∂ ∂ ∂ ∂ζ ∂ ∂
+ + = − + ν + ∂ ∂ ∂ ∂ ∂ ∂

 (6.2)

 H HU HV 0
t x y

∂ ∂ ∂
+ + =

∂ ∂ ∂
 (6.3)

 bH Zζ = + (6.4)

where U and V are depth-averaged velocities in x and y directions; g is the
gravitational acceleration; H is the water depth; ζ is the water surface elevation; and

 84

bZ is the bottom elevation. The above statement of the 2D SWE neglects the turbulence
closure and bottom stress for the test case of the TCS numerical method.

6.2 THE TCS DISCRETIZED SWE
Applying the midpoint rule between time n and n+1 along with central-

differencing of spatial derivatives on an Arakawa C grid (Arakawa and Lamb, 1977), as
shown in Figure 6.1, Equations (6.1), (6.2) and (6.3) can be discretized as a set of coupled
nonlinear equations:

() ()

()

n 1/ 2 n 1/ 2 n 1/ 2 n 1/ 2
i, j 3/ 2 i, j 1/ 2 i 1, j 1/ 2 i 1, j 1/ 2n 1 n n 1/ 2 n 1/ 2

i, j 1/ 2 i, j 1/ 2 i, j 1/ 2 i, j 1/ 2

n 1/ 2 n 1/ 2 n 1/ 2
i, j 1/ 2 i, j 1/ 2 i, j 3/ 22

n 1/ 2 n
i 1, j 1/ 2 i, j 1/ 22

U U U U
U U t U V

2 x 2 y

U 2U U
x

U 2U
y

+ + + +
+ − + + − ++ + +

+ + + +

+ + +
− + +

+ +
− + +

 − −= + ∆ − − ∆ ∆
ν

+ − +
∆

ν
+ −
∆

()

()

1/ 2 n 1/ 2
i 1, j 1/ 2

n 1/ 2 n 1/ 2
i, j 1 i, j

U

g
x

+
+ +

+ +
+

+

− ζ − ζ ∆

 (6.5)

() ()

()

n 1/ 2 n 1/ 2 n 1/ 2 n 1/ 2
i 1/ 2, j 1 i 1/ 2, j 1 i 3/ 2, j i 1/ 2, jn 1 n n 1/ 2 n 1/ 2

i 1/ 2, j i 1/ 2, j i 1/ 2, j i 1/ 2, j

n 1/ 2 n 1/ 2 n 1/ 2
i 1/ 2, j 1 i 1/ 2, j i 1/ 2, j 12

n 1/ 2
i 1/ 2, j i 1/ 2, j2

V V V V
V V t U V

2 x 2 y

v V 2V V
x

v V 2V
y

+ + + +
+ + + − + −+ + +

+ + + +

+ + +
+ − + + +

+
− +

 − −= + ∆ − − ∆ ∆

+ − +
∆

+ −
∆

()

()

n 1/ 2 n 1/ 2
i 1/ 2, j

n 1/ 2 n 1/ 2
i 1, j i, j

V

g
y

+ +
+

+ +
+

+

− ζ − ζ ∆

 (6.6)

()

()

n 1 n n 1/ 2 n 1/ 2 n 1/ 2 n 1/ 2
i, j i, j i, j 1/ 2 i, j 1/ 2 i, j 1/ 2 i, j 1/ 2

n 1/ 2 n 1/ 2 n 1/ 2 n 1/ 2
i 1/ 2, j i 1/ 2, j i 1/ 2, j i 1/ 2, j

1H H t H U H U
x

1 H V H V
y

+ + + + +
+ + − −

+ + + +
+ + − −

= + ∆ − − ∆

− − ∆

 (6.7)

 85

Figure 6.1 Illustration of Arakawa C grid.

As illustrated in Figure 6.1, Arakawa C grid is one kind of staggered grid. Cartesian
staggered grid is standard in modeling SWE (Schoenstadt 1980; Stelling and Duinmeijer
2003). In Equations (6.5) to (6.7), the discrete value of the velocity component U is
defined at (i, j+1/2); and the value of the velocity component V is defined at (i+1/2, j);
and the discrete value of surface elevation ζ is defined at (i, j). In Equation (6.5), V (i,
j+1/2) is obtained by the linear interpolation of the values: V (i+1/2, j), V (i-1/2, j), V
(i+1/2, j+1), and V (i-1/2, j+1). In Equation (6.6), U (i+1/2, j) is obtained by the linear
interpolation of the values: U (i, j+1/2), U (i+1, j+1/2), U (i, j-1/2), and U (i+1, j-1/2). In
Equation (6.7), H (i, j+1/2) is obtained by the linear interpolation of the values of H (i, j)
and H (i, j+1). H (I, j-1/2) is obtained by the linear interpolation of the values of H (i, j)
and H (i, j-1).

To simplify exposition of the TCS method, we will use the shorthand notation xδ
and yδ for spatial derivatives in x and y, resulting in:

()n 1 n n 1/ 2 n 1/ 2 n 1/ 2 n 1/ 2 2 n 1/ 2 2 n 1/ 2 n 1/ 2
x y x y x

tU U U U V U U U g
2

+ + + + + + + +∆ = + − δ − δ + ν δ + δ − δ ζ (6.8)

()n 1 n n 1/ 2 n 1/ 2 n 1/ 2 n 1/ 2 2 n 1/ 2 2 n 1/ 2 n 1/ 2
x y x y y

tV V U V V V V V g
2

+ + + + + + + +∆ = + − δ − δ + ν δ + δ − δ ζ (6.9)

Velocity, U Velocity, V Surface elevation, ζ
j

1 2 3 4

1

2

3

i U

V

j+1/2

i+1/2

 86

 () ()n 1 n n 1/ 2 n 1/ 2 n 1/ 2 n 1/ 2
x y

t H U H V
2

+ + + + +∆ ζ = ζ + −δ − δ (6.10)

Equations (6.8) through (6.10) are a nonlinear three-variable coupled time dependent
system. However, this complex equation system can be computationally linearized and
decoupled by applying the TCS method. The general form of TCS discretized SWE U-
velocity equation is:

() () (){
() () ()

() ()

() ()
() }

n n n
1 x 1 x

n n
2 y 2 y

2 2 n
3 x 3 x

2 2 n
4 y 4 y

n
5 x 5 x

tU U U U 1 U U
2

V U 1 V U

U 1 U

U 1 U

g 1 g

* * *

* *

*

*

*

∆
= + θ − δ + − θ − δ

+ θ − δ + − θ − δ

+ θ νδ + − θ νδ

+ θ νδ + − θ νδ

−θ δ ζ − − θ δ ζ

 (6.11)

() () (){
() () ()

()
()
() }

n 1 n 1 n 1
1 x 1 x

n 1 n 1
2 y 2 y

2 2 n 1
3 x 3 x

2 2 n 1
4 y 4 y

n 1
5 x 5 x

tU U U U 1 U U
2

V U 1 V U

U 1 U

U 1 U

g 1 g

* * *

* *

*

*

*

+ + +

+ +

+

+

+

∆
= + θ − δ + − θ − δ

+ θ − δ + − θ − δ

+ θ νδ + − θ νδ

+ θ νδ + − θ νδ

− θ δ ζ − − θ δ ζ

 (6.12)

where the summation of Equations (6.11) and (6.12) is Equation (6.8). Similarly, for the
other equations, it follows that,

() () (){
() () ()

() ()

() ()
() }

n n n
6 x 6 x

n n
7 y 7 y

2 2 n
8 x 8 x

2 2 n
9 y 9 y

n
10 y 10 y

tV V U V 1 U V
2

V V 1 V V

V 1 V

V 1 V

g 1 g

* * *

* *

*

*

*

∆
= + θ − δ + − θ − δ

+ θ − δ + − θ − δ

+ θ νδ + − θ νδ

+ θ νδ + − θ νδ

−θ δ ζ − − θ δ ζ

 (6.13)

 87

() () (){
() () ()

()
() }

() }

n 1 n 1 n 1
6 x 6 x

n 1 n 1
7 y 7 y

2 2 n 1
8 x 8 x

2 2 n 1
9 y 9 y

n 1
10 y 10 y

tV V U V 1 U V
2

V V 1 V V

V 1 V

V 1 V

g 1 g

* * *

* *

*

*

*

+ + +

+ +

+

+

+

∆
= + θ − δ + − θ − δ

+ θ − δ + − θ − δ

+ θ νδ + − θ νδ

+θ νδ + − θ νδ

− θ δ ζ − − θ δ ζ

 (6.14)

and the summation of Equations (6.13) and (6.14) is equivalent to Equation (6.9). The
two steps of the ζ -equation are:

() () (){

() () ()}

* n * n n *
11 x 11 x

* n n *
12 y 12 y

t H U 1 H U
2

H V 1 H V

∆
ζ = ζ − θ δ + − θ δ

+ θ δ + − θ δ
 (6.15)

() () (){
() () ()}

n 1 * * n 1 n 1 *
11 x 11 x

* n 1 n 1 *
12 y 12 y

t H U 1 H U
2

H V 1 H V

+ + +

+ +

∆
ζ = ζ − θ δ + − θ δ

+ θ δ + − θ δ
 (6.16)

and the summation of Equation (6.15) and (6.16) is equivalent to Equation (6.10). In the
above equation system, iθ is the weighting factor and { }i 1 2 12, , ,∈ K for each term. As
discussed in Chapter 5, properly chosen iθ can computationally decouple and linearize
the equation system. In the next section, we will illustrate the possible decoupled
discretizations for Equations (6.1) through (6.4).

6.3 DECOUPLING THE SWE
Observing Equations (6.1) through (6.4), we discover that the advection terms

V U / y∂ ∂ and U V / x∂ ∂ couple the two momentum equations for U and V. g / x∂ζ ∂ and
HU / x∂ ∂ couple the U-momentum equation and the continuity equation. g / y∂ζ ∂ and
HV / y∂ ∂ couple the V-momentum equation and the continuity equation. Consequently,

the weighting factors associated with these terms are crucial in the decoupling process.
By examining Equations (6.11) through (6.16), the weighting factors are

2 5 6 10 11 12andθ θ θ θ θ θ, , , , , . The other weighting factors, including the ones for the viscous
terms, 3 4 8 9θ θ θ θ, , , and the ones for non-coupled advection terms, 1 7θ θ, , are not
involved in the decoupling process. In other words, the values of the weighting factors,

1 3 4 7 8 9andθ θ θ θ θ θ, , , , , , will not affect the decoupling process.
There are limited combinations of the weighting factors, 2 5 6 10 11 12andθ θ θ θ θ θ, , , , ,

that will produce a completely decoupled equation system. Each combination will create

 88

a unique discretization and a solution order. The principal for the decoupling process is
that only one dependent variable can appear in each equation and we can change the
number of the variables by changing the values of the weighting factors. This can be
better understood by the following example:

• If Equation (6.11) for *U is chosen to be solved first, 2 1θ = and 5 0θ = are
necessary conditions, because only one dependent variable *U can be
included. Thus, the weighting factors for * *V and ζ have to be equal to 0.
It follows that Equation (6.12) for n 1U + will include n 1 n 1V and+ +ζ . To
have a decoupled solution, Equation (6.12) for n 1U + has to be solved at the
last. This unique solution sequence holds true for each variable. If *V or

*ζ is chosen to be solved first, then n 1V + or n 1+ζ has to be solved last.
• If Equation (6.13) for *V is solved right after *U , 6 100 and 0θ = θ = are

necessary conditions. In Equation (6.13), *ζ cannot be included, so 10θ has
to equal to 0, which causes n 1+ζ to be included in Equation (6.14) . To
have a decoupled solution, Equation (6.16) for n 1+ζ has to be solved
before Equation (6.14) for n 1V + . Furthermore, in Equation (6.14), n 1U +
cannot be included since n 1U + will be obtained at the end, therefore 6θ
has to equal to 0. After choosing the second equation, two more weighting
factors are decided and solution order is decided as *U , *V , *ζ then n 1+ζ ,

n 1V + and n 1U + .
• Since n 1+ζ has to be solved before n 1U + and n 1V + , 11 120 and 0θ = θ = are

necessary conditions because n 1U + and n 1V + cannot be included in
Equation (6.16).

• Hence, from the procedure described above, we can see that a solution
order determines a unique combination of weighting factors. Since we
have six equations in the system, six solution orders exist. Table 6.1 lists
all six solution orders and their correspondent combinations of the
weighting factors.

 89

Table 6.1 Weighting factors and the solution orders for decoupled Equations (6.11)
through (6.16).

row 2θ 5θ 6θ 10θ 11θ 12θ solution order

a 0 1 1 0 1 0 *V , *ζ , *U , n 1U + , n 1+ζ , n 1V +
b 1 0 0 1 0 1 *U , *ζ , *V , n 1V + , n 1+ζ , n 1U +
c 1 0 0 0 0 0 *U , *V , *ζ , n 1+ζ , n 1V + , n 1U +
d 0 0 1 0 0 0 *V , *U , *ζ , n 1+ζ , n 1U + , n 1V +
e 1 1 0 1 1 1 *ζ , *U , *V , n 1V + , n 1U + , n 1+ζ
f 0 1 1 1 1 1 *ζ , *V , *U , n 1U + , n 1V + , n 1+ζ

6.4 CHARACTERISTICS OF THE TCS DECOUPLED EQUATION SYSTEM
The main advantage of the TCS method is that it can completely decouple and

linearize an equation system with quadratic nonlinearity. As shown in the previous
section, multiple TCS decoupled and linearized discretizations exist. To explore this
characteristic of the TCS method, we choose values from row a, c and e in Table 6.1 to
create three different TCS discretizations since the continuity equation is solved in
different orders in these three rows.

Choosing weighting factors from row a, Equations (6.11) to (6.16) become a two
step computationally linearized and decoupled equation system. The implicit steps for
solution of intermediate variables (* * *U ,V ,ζ) are

 ()* n n * n * 2 * 2 * n
x y x y x

tV V U V V V V V g
2
∆ = + − δ − δ + ν δ + δ − δ ζ (6.17)

 () ()* n * n n *
x y

t H U H V
2
∆ ζ = ζ − δ + δ (6.18)

 ()* n * n * n 2 * 2 * *
x y x y x

tU U U U V U U U g
2
∆ = + − δ − δ + ν δ + δ − δ ζ (6.19)

where * *
bZ Hζ − = . The implicit steps for the ‘n+1’ values are sequentially solved as

 ()n 1 * * n 1 * n 1 2 * 2 * *
x y x y x

tU U U U V U U U g
2

+ + +∆ = + − δ − δ + ν δ + δ − δ ζ (6.20)

 () ()n 1 * * n 1 n 1 *
x y

t H U H V
2

+ + +∆ ζ = ζ − δ + δ (6.21)

 ()n 1 * n 1 * n 1 * 2 * 2 * n 1
x y x y y

tV V U V V V V V g
2

+ + + +∆ = + − δ − δ + ν δ + δ − δ ζ (6.22)

 90

As we stated in section 6.3, weighting factors for the viscous terms and non-
coupled advection terms will not affect the decoupling process, so the values for these
weighting factors can be anything from 0 to 1. In Equations (6.17) through (6.22), the
weighting factors for the viscous terms: 3 4 8 9 1θ = θ = θ = θ = and the weighting factors
for the non-coupled advection terms: 1 1θ = and 7 1θ = . Thus the original set of the
coupled nonlinear equations becomes a sequence of linear implicit equations for each
variable. All variables in Equations (6.17) through (6.22) are solved in order
as: * * * n 1 n 1 n 1V , , U , U , , and V+ + +ζ ζ . We call the solution from the above equation system
“TCS solution 1”.

In the same vein, if we choose the weighting factors at row c combining
3 4 8 9 1θ = θ = θ = θ = , 1 1θ = and 7 1θ = , a different decoupled and linearized

discretization is obtained. In the first step, intermediate variables (* * *U ,V ,ζ) are solved
as

 ()n n n 2 2 n
x y x y x

tU U U U V U U U g
2

* * * * *∆ = + − δ − δ + ν δ + δ − δ ζ (6.23)

 ()n n n 2 2 n
x y x y y

tV V U V V V V V g
2

* * * * *∆ = + − δ − δ + ν δ + δ − δ ζ (6.24)

 () ()* n n * n *
x y

t H U H V
2
∆ ζ = ζ − δ + δ (6.25)

and in the second step,

 () ()n 1 * n 1 * n 1 *
x y

t H U H V
2

+ + +∆ ζ = ζ − δ + δ (6.26)

 ()n 1 n 1 n 1 2 2 n 1
x y x y y

tV V U V V V V V g
2

* * * * *+ + + +∆ = + − δ − δ + ν δ + δ − δ ζ (6.27)

 ()n 1 n 1 n 1 2 2 n 1
x y x y x

tU U U U V U U U g
2

* * * * *+ + + +∆ = + − δ − δ + ν δ + δ − δ ζ (6.28)

The solution order of the equation set (6.17) to (6.22) is changed to
* * * n 1 n 1 n 1U ,V , , , V , U+ + +ζ ζ . The solution from Equations (6.23) to (6.28) is called “TCS

solution 2”.
Similarly, anther set of equations can be obtained by using the weighting factors

in row e combining 3 4 8 9 1θ = θ = θ = θ = , 1 1θ = and 7 0θ = . In the first step,

 () ()* n * n * n
x y

t H U H V
2
∆ ζ = ζ − δ + δ (6.29)

 ()n n n 2 2
x y x y x

tU U U U V U U U g
2
∆ = + − δ − δ + ν δ + δ − δ ζ

* * * * * * (6.30)

 91

 ()n n n 2 2
x y x y y

tV V U V V V V V g
2
∆ = + − δ − δ + ν δ + δ − δ ζ

* * * * * * (6.31)

and in the second step,

 ()n 1 n 1 n 1 2 2
x y x y y

tV V U V V V V V g
2

+ + +∆ = + − δ − δ + ν δ + δ − δ ζ
* * * * * * (6.32)

 ()n 1 n 1 n 1 2 2
x y x y x

tU U U U V U U U g
2

+ + +∆ = + − δ − δ + ν δ + δ − δ ζ
* * * * * * (6.33)

 () ()n 1 * * n 1 * n 1
x y

t H U H V
2

+ + +∆ ζ = ζ − δ + δ (6.34)

In the above equation system, the solution order is * * * n 1 n 1 n 1, U ,V , V , U ,+ + +ζ ζ . We call
this “TCS solution 3”.

Each TCS discretization has a different solution procedure. Table 6.2 provides the
detailed solution procedures for each TCS method.

Table 6.2 Solution procedures of the three TCS discretizations

Step TCS solution 1 TCS solution 2 TCS solution 3
* n n nV U , V ,← ζ * n n nU U , V ,← ζ * n n nU , V ,ζ ← ζ
* n * nU , V ,ζ ← ζ * * n nV U , V ,← ζ * n n *U U , V ,← ζ 1
* n * *U U , V ,← ζ * * * nU , V ,ζ ← ζ * * n nV U , V ,← ζ

n 1 * * *U U , V ,+ ← ζ n 1 * * *U , V ,+ζ ← ζ n 1 * * *V U , V ,+ ← ζ
n 1 n 1 * *U , V ,+ +ζ ← ζ n 1 * * n 1V U , V ,+ +← ζ n 1 * n 1 *U U , V ,+ +← ζ 2

n 1 n 1 * n 1V U , V ,+ + +← ζ n 1 * n 1 n 1U U , V ,+ + +← ζ n 1 n 1 n 1 *U , V ,+ + +ζ ← ζ

6.5 NUMERICAL TESTS
To test the general performance of the TCS method in solving 2D depth averaged

SWE, a series of numerical experiments are presented in this section. In these numerical
experiments, we want to test 1) how the method treats the nonlinear terms such as
U V / x∂ ∂ , V U / y∂ ∂ , HU / x∂ ∂ and HV / y∂ ∂ ; 2) how the method decouples the terms

U, V, and H; and 3) How different discretizations and different solution procedures
affect the solutions.

A one-dimensional standing wave in a closed basin is first tested to compare our
numerical model with the analytical solution. A two-dimensional standing wave in a
closed basin is simulated to investigate the different characteristics among three TCS

 92

solutions. As an initial attempt to simulating an open boundary case, a one-dimensional
wave traveling through an open boundary system is tested in Appendix A.

6.5.1 One dimensional Standing Waves
As a first test of the TCS method, a free surface standing wave in a rectangular

basin has been simulated and is shown schematically in Figure 6.2. Free-slip boundary
conditions are enforced on all walls. An equally-spaced 20 5× mesh is applied to the
computational domain.

L

H

2a

x

yz

Figure 6.2 A standing wave in a rectangular basin

Analytical Solution
The period of an inviscid free surface wave is (Dean and Dalrymple 1998):

 () 12T tanh kH
g

−πλ
= (6.35)

According to linear wave theory, the wave function is a sinusoid for small amplitude
waves. The surface height (h) above the still water level is:

 () ()h(x, t) a sin kx sin t= σ (6.36)
where the frequency (σ) is 2 / Tπ . For a viscous unconfined wave in deep water, the
evolution of the wave amplitude can be approximated as (Lamb 1932),

22 k ta(t) a(0)e− ν= (6.37)

 93

where ‘a’ is the free surface wave amplitude, ‘ν ’ is kinematic viscosity and ‘ k ’ is the
wavenumber. However, wave damping based on Equation (6.37) is unlikely to be well-
represented in a 2D depth-averaged model as vertical velocity and vertical velocity shears
are part of the closure term. The Reynolds number is defined as:

 LuRe =
ν

 (6.38)

where L is the length of the basin, ν is the kinematic viscosity and u is the
characteristic Cartesian fluid velocity based on the wave amplitude (a) and the wave
frequency (σ) :
 u a= σ (6.39)

Results and Discussion
Simulations have been run for different cases to examine a variety of model

characteristics. Three simulations with different initial wave steepness (i.e. ratio of wave
amplitude to basin length) are presented in Figure 6.3. The three simulations were run in
an inviscid flow to minimize the viscous damping effects. In Figure 6.3, results of the
simulations illustrate the nondimensionalized water surface elevation (i.e. ()H / aζ −)
at x x / 2= ∆ , which is the grid cell center closest to the left wall. The important
parameters for these three test cases are listed in Table 6.3.

Table 6.3 Parameters of simulations of a 1D standing wave

case H/L a/L L /λ
6.4a 0.05 0.05% 0.5
6.4b 0.05 0.2% 0.5
6.4c 0.05 0.5% 0.5

 94

0 1 2 3 4 5 6 7
−1

0

1

t/T

(ζ
−H

)/
a

case a: a/L=0.05%

0 1 2 3 4 5 6 7
−1

0

1

t/T

(ζ
−H

)/
a

case b: a/L=0.2%

0 1 2 3 4 5 6 7
−1

0

1

t/T

(ζ
−H

)/
a

case c: a/L=0.5%

TCS solution 1 TCS solution 2 TCS solution 3 analytical solution

Figure 6.3 Simulations in the inviscid flow with different wave steepness

Figure 6.3 shows results of the three different initial wave steepness. The non-

linearity of the advection term causes nonlinear wave steepening. Hydrostatic
approximation from the depth averaged SWE enhances the nonlinear steepening because
the dispersive effects from the non-hydrostatic effects are neglected (Daily and Imberger
2003). This nonlinear steepening can be observed from Figure 6.3. Furthermore, with the
increase of the nonlinearity of the wave (i.e. the initial wave steepness), the nonlinear-
steepening effects increase. In case 6.3a, a very small initial wave steepness is introduced
and the simulation shows little nonlinear effects. When the initial steepness is increased
in case 6.3b and 6.3c, the nonlinear effects become apparent. In theory, a series of
solitary wave can be formed when the nonlinear steepening is balanced by the non-
hydrostatic pressure gradient (Miropol'sky 2001). However, In Figure 6.3c, a train of
solitary waves can be observed from the TCS simulations, which are solutions under
hydrostatic approximation. This is probably due to the numerical dispersion, which plays
an opposition effect to the nonlinear steepening. This phenomena has been reported in
other literatures (Hodges et al. 2006; Wadzuk 2004).

Figure 6.4 displays the viscous damping effects in our shallow water model. The
Reynolds number is equal to 0.1, which indicates a very viscous flow. The simulation
results damped faster than the analytical solution. This is mainly a result of the staggered
grids used in the numerical model. The staggered grids necessitate averaging from the
cell surfaces, which creates numerical dissipation (Garcia and Kahawita 1986).

 95

0 1 2 3
−1

0

1

t/T

(ζ
−H

)/
a

Re=0.1, H/L=0.05, a/L=0.05%

TCS solution 1 TCS solution 2 TCS solution3 analytical solution

Figure 6.4 Viscous damping effects in the shallow water model

In Figures 6.3 and 6.4, the results from the three TCS discretizations are

indistinguishable. To have a better comparison among three TCS solutions, we run a
simulation of a two dimensional standing wave in a square box in the next section.

6.5.2 Two-dimensional Standing Waves
In this test case, the ability of the TCS method to simulate a two dimensional

finite-amplitude free surface wave in a square box is investigated and the performances
from different TCS discretizations are compared.

A two-dimensional free surface standing wave in a square box is shown in Figure
6.5. This initial wave is linearly composed by two one-dimensional (one in x-direction
and the other one in y direction) identical and orthogonal standing waves, which is also
shown in Figure 6.5. This superimposed condition creates a two dimensional standing
wave that is exactly symmetric to the diagonal plane of the square box. The horizontal
scale of the square box is 10m 10× m, and the initial still water elevation is 0.5m. The
initial wave amplitude for the two one-dimensional waves is 0.005m. The computational
domain is illustrated in Figure 6.6. The surface elevation is measured from the still water
surface and nondimensionalized by the wave amplitude which is the summation of the
one dimensional wave amplitudes. The horizontal length scales are normalized by the
wave length. A 20 20× mesh is used in this simulation and the free slip condition is
enforced on all the side walls. The simulation is run in an inviscid flow condition to
eliminate the viscous effects. Table 6.4 listed all the important parameters in the
simulations of this 2D standing wave.

 96

0.1
0.2

0.3
0.4

0.5
0.1

0.2
0.3

0.4
0.5

−1.5

−1

−0.5

0

0.5

1

1.5

y/λ

initial suface elevation

x/λ

(ζ
−H

)/
2a

(0, 0)

(0, 0.5)

(0.5, 0.5)

(0.5, 0)

0.1
0.2

0.3
0.4

0.5

0.1
0.2

0.3
0.4

0.5

−1

0

1

x/λ

initial x−wave

y/λ

(ζ
−H

)/
a

0.1
0.2

0.3
0.4

0.5

0.1
0.2

0.3
0.4

0.5

−1

0

1

x/λ

initial y−wave

y/λ

(ζ
−H

)/
a

Figure 6.5 The initial 2D standing wave and its decomposed x and y direction 1D wave

 97

10m
10m

0.
5m

initial wave amplitude: 0.01m

Figure 6.6 Computational domain (not to scale)

Table 6.4 Parameters of simulations of the 2D standing wave

L λ a H x∆ y∆ t∆ ν
10m 20m 0.005m 0.5m 0.5m 0.5m 0.01s 0

Although six representative decoupled linearized TCS discretizations and their

correspondent solution orders are listed in Table 6.1, only three discretizations need to be
tested here because velocity U and V are given symmetrically. In TCS solution 1, the
surface elevation *ζ and n 1+ζ are solved in between two velocity equations; In TCS
solution 2, the surface elevation *ζ is solved after the two velocity equations and n 1+ζ is
solved before the two velocity equations; In TCS solution 3, *ζ is solved before the two
velocity equations and n 1+ζ is solved after the two velocity equations.

To explore how different discretizations and solution orders affect the results. We
first compare the results from TCS solutions 1, 2 and 3 at different simulation times. The
simulation time is normalized by the wave period, T. In Figure 6.7, the surface elevation
contour calculated using these three TCS forms are plotted for the whole computational
domain at time 4T. The surface elevation is measured from the still water surface and
normalized by the amplitude. The horizontal length scale is normalized by the wave
length, λ . The surface elevation contour from TCS solution 2 and 3 are nearly identical,
and the result from TCS solution 1 behaves differently than that from solution 2 and 3.

 98

The result from each solution has a symmetric shape. When the simulation time is
increased to 15T (results shown in Figure 6.8), TCS solution 2 and 3 still perform
similarly, but TCS solution 1 has an observable difference. Similar phenomena can be
better observed in the velocity U and V contours. Figure 6.9 and 6.10 demonstrate the U-
velocity simulated using three TCS methods at 4T and 15 T respectively. Figure 6.11 and
6.12 display the V-velocity at 4T and 15T respectively. Each velocity component in the
figures is normalized by its maximum value. The results form TCS solution 2 and 3 are
almost the same, but the result from TCS solution is different.

This can be analyzed by the solution procedures of the three tested TCS
discretizations presented in Table 6.2. First of all, in TCS solution 1, the continuity
equation (solving ζ) is solved in between two momentum equations (solving U and V);
but in both TCS solutions 2 and 3, the two momentum equations are solved
consecutively. The only difference between TCS solution 2 and 3 is that one solve
momentum equations first, the other solve continuity equation first in one time step.
However, this difference between solution 2 and 3 could be reduced with the marching of
the simulation time. Second, in TCS solution 1, the surface elevation *ζ is solved using
the velocity components, nU and *V in the first step; and n 1+ζ is solved using the
velocity components, n 1U + and *V in the second step. Thus, in TCS solution 1, the
surface elevation is obtained using a velocity vector field which is constructed by the
components from different time steps. Third, we further discover that water depth H is
not used symmetrically in the continuity equation. In Equation (6.18), nH is used in the x
direction, but *H is used in the y direction to solve *ζ in the first step; in Equation (6.21),

*H is used in x direction but n 1H + is used in the y direction to solve n 1+ζ . All of these
asymmetric solution procedures introduce extra numerical errors since our initial
condition is symmetric. However, in both TCS solutions 2 and 3, the surface elevation is
obtained using the velocity components and water depth at the same time step although
the velocity field and water depth are not exactly symmetric because of the sequential
solution procedure. The difference caused by different solution procedure is further
exemplified by a cross mode analysis in the following.

 With the given symmetric initial condition, ideally, we should expect this
standing wave oscillates along one diagonal line and no wave motion should be expected
in the cross direction. That means, the wave surface oscillates at point (0, 0) and (0.5, 0.5)
with an amplitude 0.01m (2 0.005m×), and the wave surface should be fixed at point
(0.5, 0) and (0, 0.5). However, the TCS decoupled equation system is solved in a
sequential order, which causes each equation to be solved anisotropically. This in turn
induces numerical error that causes cross mode wave motion. The similar phenomena
have been observed in Alternate Direction Implicit (ADI) method. In ADI method, this
cross mode is induced by solving the equation in different coordinate direction as
observed by Hodges (1997). To examine how cross mode is established in the three TCS
discretizations, we plot the surface displacement at point (0.5, 0) and (0, 0.5) against
simulation time in Figure 6.13. The surface displacement is normalized by the wave
amplitude and the simulation time is normalized by wave period. The results from TCS
solutions 2 and 3 are indistinguishable. The cross mode at the two monitored points are

 99

nearly identical in these two TCS solutions and gradually increase with time. At time 15
T, the surface displacement at those two points is almost 25% of the wave amplitude. In
contrast, this numerical cross mode from solution 1 behaves rather differently. The
surface at the two monitored points oscillates with an amplitude and a period the same as
the initial standing wave. In addition, the oscillation of the cross direction is one half
phase behind the initial standing wave. To have a better visualization of the cross mode,
Figure 6.14 and Figure 6.15 display the snapshots of the standing wave at 0.5 T and 15T
respectively. At 0.5 T, no obvious motion can be observed at the two monitored points
solved from TCS solutions 2 and 3. With the increase of the simulation time, at time 15
T, an observable surface displacement can be discovered from both TCS solution 2 and 3.
In contrast, a maximum oscillation with a displacement of 2a can be observed for TCS
solution 1 at 0.5 T, but no obvious motion can be found at time 15T. This is probably
because in TCS solution 1, the surface elevation is solved using asymmetric velocity
components and water depth components. There is a half time step difference between x
and y direction in both velocity and water depth components, which causes the wave at
the cross direction oscillates with a half phase lag.

 100

x/λ

y/
λ

TCS solution 1

0 0.5
0

0.5

-1

-0.5

0

0.5

1

x/λ

y/
λ

TCS solution 2

0 0.5
0

0.5

-1

-0.5

0

0.5

1

x/λ

y/
λ

TCS solution 3

0 0.5
0

0.5

-1

-0.5

0

0.5

1

4 T

Figure 6.7 Normalized surface elevation contours in the computational domain at time
4T.

 101

x/λ

y/
λ

TCS solution 1

0 0.5
0

0.5

-1

-0.5

0

0.5

1

x/λ

y/
λ

TCS solution 2

0 0.5
0

0.5

-1

-0.5

0

0.5

1

x/λ

y/
λ

TCS solution 3

0 0.5
0

0.5

-1

-0.5

0

0.5

1

15 T

Figure 6.8 Normalized surface elevation contours in the computational domain at time
15T.

 102

x/λ

y/
λ

TCS solution 1

0 0.5
0

0.5

-1

-0.5

0

0.5

1

x/λ

y/
λ

TCS solution 2

0 0.5
0

0.5

-1

-0.5

0

0.5

1

x/λ

y/
λ

TCS solution 3

0 0.5
0

0.5

-1

-0.5

0

0.5

1

4 T

Figure 6.9 Normalized U-velocity contours in the computational domain at time 4T.

 103

x/λ

y/
λ

TCS solution 1

0 0.5
0

0.5

-1

-0.5

0

0.5

1

x/λ

y/
λ

TCS solution 2

0 0.5
0

0.5

-1

-0.5

0

0.5

1

x/λ

y/
λ

TCS solution 3

0 0.5
0

0.5

-1

-0.5

0

0.5

1

15 T

Figure 6.10 Normalized U-velocity contours in the computational domain at time 15T.

 104

x/λ

y/
λ

TCS solution 1

0 0.5
0

0.5

-1

-0.5

0

0.5

1

x/λ

y/
λ

TCS solution 2

0 0.5
0

0.5

-1

-0.5

0

0.5

1

x/λ

y/
λ

TCS solution 3

0 0.5
0

0.5

-1

-0.5

0

0.5

1

4 T

Figure 6.11 Normalized V-velocity contours in the computational domain at time 4T.

 105

x/λ

y/
λ

TCS solution 1

0 0.5
0

0.5

-1

-0.5

0

0.5

1

x/λ

y/
λ

TCS solution 2

0 0.5
0

0.5

-1

-0.5

0

0.5

1

x/λ

y/
λ

TCS solution 3

0 0.5
0

0.5

-1

-0.5

0

0.5

1

15 T

Figure 6.12 Normalized V-velocity contours in the computational domain at time 15T.

 106

0 1 2 3 4 5 6 7 7.5

−1.5
−1

−0.5
0

0.5
1

1.5

t/T

(ζ
−H

)/
2a

7.5 8 9 10 11 12 13 14 15

−1.5
−1

−0.5
0

0.5
1

1.5

t/T

(ζ
−H

)/
2a

 TCS solution 1 at point (0.5, 0) TCS solution 1 at point (0, 0.5)
 TCS solution 2 at point (0.5, 0) TCS solution 2 at point (0, 0.5)
 TCS solution 1 at point (0.5, 0) TCS solution 3 at point (0, 0.5)

Figure 6.13 Surface displacement at points (0.5, 0) and (0, 0.5) simulated using three
TCS solutions

 107

0.1 0.2 0.3 0.4 0.5

0.1
0.2

0.3
0.4

0.5

-1

0

1

x/λ

TCS solution 1

y/λ

(ζ
-H

)/2
a

0.1 0.2 0.3 0.4 0.5

0.1
0.2

0.3
0.4

0.5

-1

0

1

x/λ

TCS solution 2

y/λ

(ζ
-H

)/2
a

0.1 0.2 0.3 0.4 0.5

0.1
0.2

0.3
0.4

0.5

-1

0

1

x/λ

TCS solution 3

y/λ

(ζ
-H

)/2
a

0.5 T

Figure 6.14 Snapshot of the standing wave at 0.5 T. The surface displacements at the two
monitored points (0.5, 0) and (0, 0.5) are circled.

 108

0.10.20.30.40.5

0.1 0.2 0.3 0.4 0.5

-1

0

1

x/λ

TCS solution 1

y/λ

(ζ
-H

)/2
a

0.10.20.30.40.5

0.1
0.2

0.3
0.4

0.5

-1

0

1

x/λ

TCS solution 2

y/λ

(ζ
-H

)/2
a

0.10.20.30.40.5

0.1
0.2

0.3
0.4

0.5

-1

0

1

x/λ

TCS solution 3

y/λ

(ζ
-H

)/2
a

15 T

Figure 6.15 Snapshot of the standing wave at 15 T. The surface displacements at the two
monitored points (0.5, 0) and (0, 0.5) are circled.

 109

6.6 SUMMARY
In this chapter, the TCS method is applied to a multi-variable and multi-

dimension equation system: the depth averaged SWE. The TCS method not only
computationally discretizes the nonlinear term in the equation set, but also decouples the
variables in the SWE. Three TCS discretizations and are derived for the SWE. Each TCS
decoupled and linearized equation system has a unique solution order.

A one-dimensional and two-dimensional standing waves in a closed rectangular
domain are simulated using all three TCS discretizations. In the one dimensional standing
wave case, we compare our numerical results with the analytical solutions. The results
demonstrate that our TCS method well capture the nonlinear effects and display the
combination effects of nonlinear steepening and hydrostatic approximation. In the
viscous flow test case, the staggered grids used in the simulation causes numerical
dissipation. In the two-dimensional standing wave case, we compare the performance
from three representative TCS solutions: TCS solutions 1, 2 and 3. TCS solutions 2 and 3
are solved similarly because the surface elevation is obtained using the velocity
components at the same time step. However, TCS solution 1 performs differently because
the surface elevation is obtained using the velocity components from different time step.

The anisotropically solution process also causes numerical cross mode. The cross
mode analysis shows that TCS solution 2 and 3 has smaller numerical cross mode
compare to TCS solution 1. However, the cross mode gradually increase with simulation
time. The solution procedure in TCS solution 1 causes wave oscillate in the cross
direction. Therefore, when we apply TCS method to decouple the equation system, we
have to be aware of the numerical errors generated by the decoupling process.

 110

Chapter 7 Conclusions and Recommendations

The main objective for this research is:

Develop a new implicit solution for unsteady nonlinear advection
problems. The new numerical algorithm should have the advantage in both
stability and efficiency while keep the 2nd-order temporal accuracy as in
the most existing shallow water equations (SWE) models. In addition, this
new method would provide a novel approach in decoupling a coupled
equation system.

This objective has been accomplished. A new finite difference temporal scheme

(Time-centered split method) is developed to solve the unsteady nonlinear advection
problems. This new method provides a general approach for solving any unsteady
quadratic nonlinearity. In this chapter, we summarize 1) discussions 2) conclusions 3)
recommendations for future work.

7.1 SUMMARY OF DISCUSSION
A new computational linearization method, time-centered split (TCS) method, is

derived from the midpoint rule temporal discretization. The fundamental principle of the
TCS method is that it splits the quadratic nonlinear term into two steps so that each step
is computationally linear. The two-step equation system is 2nd-oder equivalent to the
original midpoint rule discretization. The essential theoretical development of the TCS
method is illustrated in Chapter 3. The derivations in Chapter 3 demonstrate one of the
most important significances of the TCS method: it is a direct linearization method while
in an implicit format. The conventional implicit nonlinear solutions including Newton
method, Picard method and local linearization method require either 1) outer iteration (
Newton and Picard methods) or 2) calculations of the Jacobian (Newton and local
linearization methods). Therefore, compared to the conventional implicit nonlinear
solutions, the TCS method has the advantage in efficiency and stability.

In a time marching differential equation, the time-centered split concept can be
applied to different terms: either part of the quadratic nonlinear term and the linear term.
Different TCS discretizations can be generated when we apply the split to different terms.
Based on this characteristic of the TCS method, a general form of the TCS family method
is created in Chapter 5. A weighting factor iθ (i0 1≤ θ ≤) is introduced in the TCS
general form. The weighting factor iθ combines different approximations (splitting on
different terms) of the nonlinear terms and the linear terms. The value of iθ will not
affect the 2nd-order temporal accuracy of the TCS method. The theoretical proof is shown
in Chapter 5. This revealed another important significance of the TCS method: unlimited
TCS discretized forms can be created for one problem. Thus, the TCS method provides

 111

flexibility when we solve a specific problem because we can choose the discretizations
based on the specific requirement of the problem.

The significance of the weighting factors is further exemplified when the TCS
method is applied to a multi-variable and multi-dimension equation system. Properly
chosen weighting factors can not only linearize but also decouple the equation system
without outer iterations. This property theoretically enhances the efficiency advantage of
the TCS method. The 2D Burgers’ equation is used as the example to show the process
and principle of the decoupling in Chapter 5. The decoupling characteristics of the TCS
method is analyzed in detail using 2D depth averaged shallow water equations (SWE) in
Chapter 6. Both cases show that the TCS method can computationally linearize and
decouple an equation system without outer iterations. Each variable in the TCS linearized
and decoupled two-step system is solved in a sequential order.

To verify and explore the basic characteristics of the TCS method, a 1D problem
is first chosen as the test case. In Chapter 4, three 1D differential equations: 1D
conservative Burgers’ equation, 1D non-conservative Burgers’ equation and 1D nonlinear
ordinary differential equation (ODE) are solved using the TCS method. In all the three
equations, we apply the time-centered split to different terms: either flux or gradient part
in the nonlinear advection term in the Burgers’ equation, the quadratic nonlinear term of
the ODE, the diffusion term in the Burgers’ equation and the linear term in the ODE.
Consequently, multiple TCS disretizations are created such as TCSF (split the flux term),
TCSG (split the gradient term), TCSF-D (split flux and diffusion/linear term) and TCSG-
D (split the gradient and the diffusion/linear term). To compare to the conventional
implicit linearization method, all three equations are also solved using the implicit Crank-
Nicolson scheme combining with the conventional computational linearization methods:
Newton method, Picard method and local linearization method. In the two Burgers’
equation cases, each TCS discretization demonstrates 2nd-order temporal accuracy and
remains stable up to a CFL O (10). The stability advantage of the TCS method is further
demonstrated by comparing it to the Runge-Kutta (RK) method. The efficiency of the
TCS method is examined using operation count at each grid point at each time step.
Results in the two 1D Burgers’ equations show that the TCS method requires fewer
operations than Newton and Picard methods but has a similar computation expense to the
local linearization method. The principal advantage of the TCS method over local
linearization is the relative ease with which the TCS method can be derived and
implemented as it does not require discrete evaluation of a function Jacobian. The test
case in 1D nonlinear ODE verified that the TCS method can be applied to any quadratic
nonlinearity.

In the 1D ODE test case, two different TCS discretizations collapse into one
expression, which is also mathematically equivalent to the local linearization. However,
in both conservative and non-conservative Burgers’ equation cases, different TCS
disretizations have different relative errors although they perform similarly in temporal
accuracy, stability and efficiency. This difference can also be observed in Chapter 5.
Because of the introduction of the weighting factors, more TCS discretizations are tested
for the 1D non-conservative Burgers’ equation in Chapter 5. Our results show that
changing iθ will not affect the overall 2nd-order temporal accuracy of all the TCS

 112

discretizations. However, the relative accuracy of each TCS discretization is different.
The results show that the most accurate solution occurs when the two weighting factors
equal to some value between 0 and 1 but not 0 or 1. The similar results can also be
observed for the stability. The stability is also enhanced when the weighting factors are
not equal to 0 or1. This can be explained by mathematical meaning of the weighting
factors. The weighting factors control how we approximate each term in the equation.
When the weighting factors equal to 0 or1, we only use one kind of approximation: either
approximate n 1/ 2u + using the time-centered split completely or approximate n 1/ 2u + using

*u completely. Our results suggest that combing both approximations will enhance the
performance of the TCS method in both accuracy and stability. However, the best
combinations of the weighting factors for accuracy and stability is problem-specific and
one needs to analyze each approximated term and the nature of the solution itself at the
designated marching time. This phenomenon verified that TCS method provides
flexibility in solving a specific problem because a more accurate or stable solution can be
obtained by changing the choice of the weighting factors.

In Chapter 6, the TCS method is used to solve 2D depth averaged SWE. We
discover that six terms in the SWE couple the entire equation system. These six terms are
V U / y∂ ∂ , U V / x∂ ∂ , HU / x∂ ∂ , HV / y∂ ∂ , / x∂ζ ∂ and / y∂ζ ∂ . Their associated
weighting factors are crucial in the decoupling process. It is revealed that only six
combinations of these weighting factors can fully decouple the SWE. Each combination
of the weighting fact has a unique solution order. Three representative TCS solutions are
chosen to solve the SWE based on the solution order of the continuity equation. In the
one-dimensional standing wave case, how the TCS method treat the nonlinear term is
tested. The results show that that the TCS methods well capture the nonlinear effects and
display the combination effects of numerical dispersion and hydrostatic approximation.
How the solution order affects the results is analyzed in the two-dimensional standing
wave case. The results show that TCS solution 1 perform differently than TCS solutions
2 and 3 because the surface elevation is obtained using the velocity components from
different time step in TCS solution 1. The fully-decoupled TCS-discretized SWE is
solved in a sequential order, which causes each equation solved anisotropically. This in
turn causes the numerical cross modes. The cross mode from TCS solution 2 and 3
behave similarly: the cross mode gradually increases with time. However, the solution
procedure in TCS solution 1 causes wave oscillate in the cross direction with the same
amplitude as the initial standing wave and half phase behind the initial standing wave.
Hence, we need to take into account the numerical errors generated by the decoupling
process when we apply the TCS method to decouple an equation system.

 113

7.2 CONCLUSIONS
The conclusions that may be drawn from the present work are:

• A new time marching numerical algorithm for solving unsteady nonlinear
advection problems is proposed using a time-centered split (TCS)
technique.

• The principle advantage of the TCS method is it computationally
linearizes the implicit nonlinear advection without either 1) iterations or 2)
calculations of the Jacobian.

• The TCS method is 2nd-order temporal accurate and has advantages in
stability and efficiency.

• A family of the TCS discretizations can be generated using the same
principle. This provides flexibility when solving a specific problem using
the TCS method.

• The TCS method can fully decouple an equation system. However,
additional numerical error is introduced through the decoupling process.

 7.3 RECOMMENDATIONS FOR FUTURE WORK
The TCS method is proposed and verified using 1D transport equation, 1D

nonlinear ODE, 2D transport equation. The following potential application is
recommended for future work.
Application of the TCS method to a coupled nonlinear ODE system

This research is motivated by solving unsteady nonlinear advection problems. 1D
and 2D flow transport problems are tested using the TCS method. However, the new TCS
method provides a general approach to solve any quadratic nonlinearity. Although a 1D
nonlinear ODE is used as an example in Chapter 3, application of the TCS method to the
nonlinear ODE can be further investigated. A coupled quadratic nonlinear ODE system
can be used as an example to verify the capability of the TCS method in computational
linearization and decoupling. Moreover, various TCS discretizations can be compared
and tested by changing the weighting factors.

More test cases for the SWE

In Chapter 6, initial tests of 2D depth averaged SWE have been conducted. All the
test cases in 2D standing wave are in an inviscid flow condition. Since the weighting
factors associated with the viscous terms will not affect the decoupling process, the
inviscid flow condition is a valid test condition for investigating decoupling process.
However, the weighting factor associated with the non-coupled advection terms such as
U U / x∂ ∂ and V V / y∂ ∂ can be any value from 0 to 1. In Chapter 6, we didn’t change the
weighting factors for these two terms to see how these two will affect the solution. Based
on the analysis in Chapter 5, the numerical error induced by the decoupling might be
decreased by choosing different weighting factors for these two terms. An additional test
for numerical error could be conducted by decreasing the time interval t∆ .
Solve problems with discontinued flow conditions

 114

We often need to solve a transport problem with a discontinuity flow condition,
for example, hydraulic jump. All the test cases conducted in this research use central
difference spatial discretizations, which cannot represent the sharp front of a shock wave.
Test cases can be designed by the TCS temporal discretization combining upwind spatial
discretization to simulate a shock wave.

 115

Appendix A Test of a Progressive Wave in an Open Boundary System

Another way to verify our numerical method is to simulate a wave progressing in

an open boundary system. This test case simulates a free surface oscillation in a
rectangular channel, which is open at both upstream (inlet) and downstream (outlet
boundary). This also could be thought of as a step leading to the simulation of a river
flow. In this section, a progressive wave is introduced by oscillating the inlet boundary of
an open quiescent water body. A sponge layer is successfully applied as the open
boundary condition at the outlet of the domain. Our numerical models satisfactorily
simulate a progressive wave traveling through an open boundary system. As shown in
Chapter 6, TCS solutions 2 and 3 give similar results. Thus, in this test, only results from
TCS solution 1 and 2 are presented and compared.

A.1 INITIAL AND INLET BOUNDARY CONDITION
Initially, the water is at rest with uniform depth:

 () 0H x,0 h= (A.1)
The inlet water level suddenly raised at t=0 and oscillated as a cosine wave described as

 0H(0, t) h a cos(t)= + σ (A.2)
where a is the progressive wave amplitude and σ is the frequency. The initial condition
and inlet boundary condition is shown in Figure A.1 and A.2.

Figure A.1 Initial water level, H (x, 0), in the rectangular open channel

0h

x

H

 116

Figure A.2 Inlet boundary condition H (0, t)

A.2 OUTLET BOUNDARY CONDITION
One of the challenges to simulate an open boundary system with a finite

computational domain is that open boundary conditions are required at both the inlet and
outlet. Developing outlet non-reflective boundary conditions has been the subject of
extensive research (Blayo and Debreu 2005; Tsynkov 1998).

In the present work we apply an artificial damping layer (or sponge layer)
upstream of the outlet boundary and downstream of the “test section” (i.e. the
computational domain of interest). In this approach, an artificial damping function is
prescribed over a range of grid cells to dissipate the surface wave and its reflections
before it propagates back into the test section (Durran 1999). Although a sponge layer has
additional computational costs associated with computations outside of the test section,
the ratio of the additional cost to the initial cost is generally small (Blayo and Debreu
2005). In the present work, the sponge layer damping function uses an increasing
viscosity from the end of the test section to the outlet (Vinayan 2003). We use an inviscid
progressive wave for the test case, so the viscosity is set to be zero within test section. In
general, the viscosity is represented as a function of position such that max0 (x)≤ ν ≤ ν .

If we define the viscosity is a function of x,

 max(x) f (x)ν = ν (A.3)
where, f (x) is a function satisfying the following conditions:

r

s

r

s

f (x) 0
f (x) 1
df (x) 0

dx
df (x) 0

dx

=
=

=

=

 (A.4)

 117

where xr and xs are the upstream and downstream limits of the sponge layer, as shown in
Figure A.3. If the artificial viscosity changes rapidly, spurious reflections may also
occur. A gradual change, as shown in Figure A.3, can be invoked by defining f (x) as

 r

s r

x x1f (x) 1 cos
2 x x−

 −
= − π

 (A.5)

Figure A.3 Shape function of viscosity

Using the above definitions, a sponge layer is defined by its length (s rx x−) and its
maximum viscosity maxν . In this work, s rx x 2− = λ and maxν is basically a relative big
number obtained by trial and error. The sponge layer arrangement is shown in Figure
A.4.

Figure A.4 An open boundary rectangular channel with a sponge layer

These initial and boundary conditions generate a traveling wave with height 2a,

progressing along the channel. To see the damping effects of the sponge layer, we
monitored the surface height of point A, which is the point in the test section closest to

 118

the sponge layer, and B, which is the point within the sponge layer closest to the outlet, as
shown in Figure A.5.

Figure A.5 Schematic illustrations of grids

0 2 4 6 8 10 12 14 16 18 20
-2

-1

0

1

2

(ζ
-H

)/a
 a

t p
oi

nt
 A

 w
ith

/w
ith

ou
t t

he
 s

po
ng

e
la

ye
r

t/T

with sponge layer without sponge layer

Figure A.6 Water level at point A with/without the sponge layer

Figure A.6 shows the evolution of the nondimensionalized water depth (()H / aζ −) at
point A with and without a sponge layer. Without the sponge layer, when the wave
reaches the solid wall where zero flux is prescribed, reflection occurs and its amplitude is
increased to about two times of the original one. However, with a sponge layer condition,
the wave amplitude stays the same. We also compare the wave at point A and B in Figure
A.7. The wave inside the sponge layer is damped about 10% of the wave in the test
section. Thus the reflection effect is minimized.

A B

x

z

test section sponge layer

 119

0 2 4 6 8 10 12 14 16 18 20

-1

0

1

t/T

(ζ
-H

)/a
 a

t p
oi

nt
 A

 a
nd

 B

 water level at point A, inside the test section
 water level at point B, inside the sponge layer

Figure A.7 Water level evolutions inside the test section and sponge layer.

A.3 RESULTS AND DISCUSSION
Figure A.8 compares the free surface shape in the entire domain (including test

section and sponge layer) at 7T and 14T for TCS solution 1 and 2 respectively. At 7T, the
progressive wave has traveled through the domain. When we double the simulation time
to 14T, the free surface shape remains almost the same. This indicates that we
successfully simulated a wave progress through an open boundary system, and our
numerical results model the wave characteristics such as wave speed and period well.
Both TCS solutions 1 and 2 give us similar results.

To further compare the two TCS solutions in this progressive wave test case, we
compare the free surface shape calculated using both TCS discretizations in the entire
domain at 7T and 14 T, respectively, in Figure A.9. The results simulated using each TCS
discretization overlapped at 7T. After a longer simulation time, this similarity between
two solutions still holds true at 14T.

The time evolution of free surface at different periods in the entire domain for
TCS solutions 1 and 2 are shown in Figure A.10 and Figure A.11 respectively.

 120

0 1

−1

0

1

L/L

(ζ
−H

)/
a

TCS solution 1

0 1

−1

0

1

L/L

(ζ
−H

)/
a

TCS solution 2

7T
14T

7T
14T

Figure A.8 Comparison of wave shape at time 7T and 14T for TCS solution1 and TCS
solution 2 respectively

 121

0 1

−1

0

1

L/L

(ζ
−H

)/
a

7T

TCS solution 1
TCS solution 2

0 1

−1

0

1

L/L

(ζ
−H

)/
a

14T

TCS solution 1
TCS solution 2

Figure A.9 Comparison of wave shape simulated from TCS solution 1 and 2 at time 7T
and 14T respectively

 122

1T 2T

4T 6T

7T 14T

Figure A.10 Time evolution of a progressive wave at different wave periods from TCS
solution 1.

 123

1T 2T

4T 6T

7T 14T

Figure A.11 Time evolution of a progressive wave at different wave periods from TCS
solution 2.

 124

References

Agoshkov, V., Ovchinnikov, E., Quarteroni, A., and Saleri, F. (1994). "Recent
Developments in the Numerical Simulation of Shallow Water Equations. II. Temporal
Discretization." Mathematical Models and Methods in Applied Sciences, 4(4), 533-566.

Amat, S., Busquier, S., and Gutierrez, J. M. (2003). "Geometric constructions of
iterative functions to solve nonlinear equations." Journal of Computational and Applied
Mathematics, 157(1), 197-205.

Anderson, D. A., Tannehill, J. C. and Pletcher, R. H. (1997). Computational Fluid
Mechanics and Heat Transfer. 2nd ed. Hemisphere Publishing, MacGraw-Hill.

Andrus, C. W., Long, B. A., and Froehlich. H. A. (1988). “Woody debris and its
contribution to pool formation in a coastal stream 50 years after logging.” Can. J. of
Fisheries and Aquatic Sci., 45, 2080-2086.

Ancey, C., Iverson, R. M., Rentschler, M., and Denlinger, R. P. (2008). "An exact
solution for ideal dam-break floods on steep slopes." Water Resources Research, 44(1).

Arakawa, A., and Lamb, V.R. (1977). “Computational design of the basic
dynamical processes of the UCLA general circulation model.” Methods in Computational
Physics, 17, 173-265.

Arega, F., Lee, J. H. W., and Tang, H. W. (2008). "Hydraulic jet control for river
junction design of Yuen Long Bypass Floodway, Hong Kong." Journal of Hydraulic
Engineering-Asce, 134(1), 23-33.

Bagatur, T. (2007). "Modified Newton-Raphson solution for dispersion equation
of transition water waves." Journal of Coastal Research, 23(6), 1588-1592.

Bajo, M., Zampato, L., Umgiesser, G., Cucco, A., and Canestrelli, P. (2007). "A
finite element operational model for storm surge predicition in Venice." Estuarine
Coastal and Shelf Science, 75(1-2), 236-249.

Baldwin, B.S., Lomax H. (1978). “Thin-layer approximation and algebraic model
for separated turbulent flows.” AISS paper, No. 78-257.

Baldwin, B.S., Barth T.J. (1990). “A one-equation turbulence transport model for
high Reynolds number wall-bounded flows.” NASA TM-102847.

Barros, S. R. M., and Garcia, C. I. (2007). "A global finite-difference semi-
Lagrangian model for the adiabatic primitive equations." Journal of Computational
Physics, 226(2), 1645-1667.

Bisson, P.A., et al. (1987). Large woody debris in forested streams in the Pacific
Northwest, past, present and future; Contribution No.57. in Streamside management,
forestry and fishery interactions. E. O. Salo and T. W. Cundy. Eds., Coll. Of Forest
Resour, Univ. of Washington, Seattle, Wash., 143-190.

Blayo, E. and Debreu, L. (2005). “Revisting open boundary conditions from the
point of view of characteristic variables.” Ocean Modeling, 9, pp. 231-252.

Blumberg, A. F., and Mellor, G. L. (1987). A description of a three-dimensional
coastal ocean circulation model, In Three-Dimensional Coastal Ocean Models,
American Geophysical Union, Washington, DC.

Bonaventura, L., and Rosatti, G. (2002). "A cascadic conjugate gradient algorithm
for mass conservative, semi-implicit discretization of the shallow water equations on

 125

locally refined structured grids." International Journal for Numerical Methods in Fluids,
40(1-2), 217-230.

Bourchtein, A., and Bourchtein, L. (2006). "Modified Time Splitting Scheme for
Shallow Water Equations." Mathematics and Computers in Simulation, 73, 52-64.

Bourchtein, A., and Bourchtein, L. (2007). "Semi-Lagrangian semi-implicit time-
splitting scheme for the shallow water equations." International Journal for Numerical
Methods in Fluids, 54(4), 453-471.

Brown, P. N., and Saad, Y. (1990). "Hybrid Krylov methods for nonlinear
systems of equations." SIAM J. Sci. Stat. Comput., 11, 450-481.

Burguete, J., and Garcia-Navarro, P. (2004). "Implicit schemes with large time
step for non-linear equations: application to river flow hydraulics." International Journal
for Numerical Methods in Fluids, 46(6), 607-636.

Burguete, J., Garcia-Navarro, P., and Murillo, J. (2006). "Numerical boundary
conditions for globally mass conservative methods to solve the shallow-water equations
and applied to river flow." International Journal for Numerical Methods in Fluids, 51(6),
585-615.

Cao, J. W., and Sun, J. C. (2005). "An efficient and effective nonlinear solver in a
parallel software for large scale petroleum reservoir simulation." International Journal of
Numerical Analysis and Modeling, 2, 15-27.

Cao, Z., and Carling, P. A. (2002). "Mathematical modelling of alluvial rivers:
reality and myth. Part 2: Special issues." Proceedings of the Institution of Civil
Engineers-Water and Maritime Engineering, 154(4), 297-307.

Casulli, V. (1990). "Semi-implicit Finite Difference Methods for the Two-
Dimensional Shallow Water Equations." Journal of Computational Physics, 86, 56-74.

Casulli, V., and Cattani, E. (1994). "Stability, Accuracy and Efficiency of a
Semiimplicit Method for 3-Dimensional Shallow-Water Flow." Computers &
Mathematics with Applications, 27(4), 99-112.

Casulli, V., and Cheng, R. T. (1992). "Semiimplicit Finite-Difference Methods for
3-Dimensional Shallow-Water Flow." International Journal for Numerical Methods in
Fluids, 15(6), 629-648.

Celia, M. A., Ahuja, L. R., and Pinder, G. F. (1987). "Orthogonal collocation and
alternating-direction procedures for unsaturated flow problems " Adv. Water Resour., 10,
178-187.

Chan, T. F., and Jackson, K. R. (1984). "Nonlinearly preconditioned Krylov
subspace methods for discrete Newton algorithms." SIAM J. Sci. Stat. Comput., 5, 533-
542.

Chen, S. C., and Peng, S. H. (2006). "Two-dimensional numerical model of two-
layer shallow water equations for confluence simulation." Advances in Water Resources,
29(11), 1608-1617.

Cho, Y.-S., and Yoon, S. B. (1998). "A Modified Leap-Frog Scheme for Linear
Shallow-Water Equations." Costal Engineering Journal, JSCE, 40(2), 191-205.

Clement, T. P., Wise, W. R., and Molz, F. J. (1994). "A Physically-Based, 2-
Dimensional, Finite-Difference Algorithm for Modeling Variably Saturated Flow."
Journal of Hydrology, 161(1-4), 71-90.

 126

Cullen, M. J. P. (2001). "Alternative implementations of the semi-Lagrangian
semi-implicit schemes in the ECMWF model." Quarterly Journal of the Royal
Meteorological Society, 127(578), 2787-2802.

Daily, C., and Imberger, J. (2003). "Modelling solitons under the hydrostatic and
Boussinesq approximations." International Journal for Numerical Methods in Fluids,
43(3), 231-252.

Davis, J. A. (1986). Boundary Layers, Flow Microenvironments and Stream
Benthos. Limnology in Australia (eds De Deck and Williams), pp. 293-312. CSIRO
Australia, Melbourne. Dr. W. Junk Publishers, Doedercht.

Dean, R. G. and R. A. Dalrymple (1998). Water Wave Mechanics for Engineering
and Scientists. World Scientific Publishing Co. Pte. Ltd., New Jersey.

Dedong, L., Zhongbo, Y., Zhenchun, H., Chuanguo, Y., and Qin, J. (2007).
"Groundwater simulation in the Yangtze River basin with a coupled climate-hydrologic
model." Journal of China University of Geosciences, 18, 155-157.

Delis, A. I., and Katsaounis, T. (2005). "Numerical solution of the two-
dimensional shallow water equations by the application of relaxation methods." Applied
Mathematical Modelling, 29(8), 754-783.

Dettmer, W. G., and Peric, D. (2007). "A fully implicit computational strategy for
strongly coupled fluid-solid interaction." Archives of Computational Methods in
Engineering, 14(3), 205-247.

Dubois, T., Jauberteau, F., Temam, R. M., and Tribbia, J. (2005). "Multilevel
schemes for the shallow water equations." Journal of Computational Physics, 207, 660-
694.

Durran, D. R. (1999). Numerical Methods for Wave Equations in Geophysical
Fluid Dynamics. Springer-Verlag, New York.

Dutta, D., Alam, J., Umeda, K., Hayashi, M., and Hironaka, S. (2007). "A two-
dimensional hydrodynamic model for flood inundation simulation: a case study in the
lower Mekong river basin." Hydrological Processes, 21(9), 1223-1237.

Fennema, R. J., and Chaudhry, M. H. (1990). "Explicit Methods for 2-D Transient
Free-Surface Flows." Journal of Hydraulic Engineering, 116(8), 1013-1035.

Ferziger J.H. (1996). Simulation and Modeling of Turbulent Flows: Large eddy
simulation. M.Y. Hussaini, T. Gatski (eds.), Cambridge Univ. Press, New York. 1996

Ferziger J. H., Koseff, J.R., Monismith, S.G. (2002). “Numerical simulation of
geophysical turbulence.” Computers & Fluids, 31, 557-568.

Ferziger, J. H., and Peric, M. (1999). Computational Methods for Fluid
Dynamics, Springer, New York.Fleckenstein, J. H., Niswonger, R. G., and Fogg, G. E.
(2006). "River-aquifer interactions, geologic heterogeneity, and low-flow management."
Ground Water, 44(6), 837-852.

Fu, S. and Hodges, B. R. (2005). “Grid-scale dependency of subgrid-scale
structure effects in hydraulic models of rivers and streams.” Proc., 2005 Mechanics and
Materials Conference (McMat 2005), Louisiana State University, Baton Rouge.

Fujima, K. and Shigemura, T (2000). “Determination of Grid Size for Leap-Frog
Finite Difference Model to Simulate Tsunamis around A Conical Island.” Costal
Engineering, 42(2), 197-210.

 127

Garcia, R., and Kahawita, R. A. (1986). "Numerical Solution of the St. Venant
Equations with the MacCormack Finite-Difference Scheme." International Journal for
Numerical Methods in Fluids, 6, 259-274.

Gejadze, I. Y., and Monnier, J. (2007). "On a 2D 'zoom' for the 1D shallow water
model: Coupling and data assimilation." Computer Methods in Applied Mechanics and
Engineering, 196(45-48), 4628-4643.

Gippel, C. J.(1995). “Environmental hydraulics of large woody debris in streams
and rivers.” J. Environmental Engineering, 121, 388-395.

Giri, S., and Shimizu, Y. (2006). "Numerical computation of sand dune migration
with free surface flow." Water Resources Research, 42(10).

Grötzner, A. et al. (1996). “The Impact of Sub-grid Scale Sea-ice
Inhomogeneities on the Performance of the Atmospheric General Circulation Model
ECHAM3.” Climate Dynamics,12,477-496.

Grossman, G.D., Rincon, P. A., Farr, M.D., and Ratajczak, R. E. (2002). “A new
optimal foraging model predicts habitat use by drift-feeding stream minnows.” Ecol.
Freshwat. Fish, 11,2-10.

Hamrick, J. M. (1992). "A three-dimensional environmental fluid dynamics
computer code: theoretical and computarional aspects." Virginia Institute of Marine
Science, School of Marine Science, The College of William and Mary, Special Report
317., Gloucester Point, VA 23062.

Harmon, M. E., et al. (1986). “Ecology of coarse woody debris in temperature
ecosystems.” Adv. in Ecological Res, 15, 133-302.

Hirose, N., Asai, K., Ikawa, K., and Kawamura, R. (1991). "Euler Flow-Analysis
of Turbine Powered Simulator and Fanjet Engine." Journal of Propulsion and Power,
7(6), 1015-1022.

Hodges, B. R. (1997). "Numerical simulation of nonlinear free-surface waves on a
turbulent open-channel flow," Ph.D. dissertation, Department of Civil Engineering,
Stanford University.

Hodges, B. R. (2000). "Numerical Techniques in CWR-ELCOM (code release
v.1)." Centre Water Res., Nedlands, Western Australia, Australia.

Hodges, B. R., B. Laval, Wadzuk, B. (2006). “Numerical error assessment and
temporal horizon for internal waves in a hydrostatic model.” Ocean Modeling, 13(1), 44-
64.

Hunter, N. M., Bates, P. D., Neelz, S., Pender, G., Villanueva, I., Wright, N. G.,
Liang, D., Falconer, R. A., Lin, B., Waller, S., Crossley, A. J., and Mason, D. C. (2008).
"Benchmarking 2D hydraulic models for urban flooding." Proceedings of the Institution
of Civil Engineers-Water Management, 161(1), 13-30.

Iskandarani, M., Levin, J. C., Choi, B. J., and Haidvogel, D. B. (2005).
"Comparison of advection schemes for high-order h-p finite element and finite volume
methods." Ocean Modelling, 10(1-2), 233-252.

Kadalbajoo, M. K., and Awasthi, A. (2006). "A numerical method based on
Crank-Nicolson Scheme for Burgers' Equation." Applied Mathematics and Computation,
182, 1430-1442.

 128

Kar, S. K. (2006). "A Semi-Implicit Runge-Kutta Time-Difference Scheme for
the Two-Dimensional Shallow Water Equations." Monthly Weather Review,
134(October), 2916-2926.

Kazezyılmaz-Alhana, C. M., Medina, M. A., and Raob, P. (2005). "On numerical
modeling of overland flow." Applied Mathematics and Computation 166(3), 724-740.

Kutluay, S., Bahadir, A. R., and Ozdes, A. (1999). "Numerical solution of one-
dimensional Burgers equation: explicit and exact-explicit finite difference methods."
Journal of Computational and Applied Mathematics, 103, 251-261.

Keller, E.A., and Swanson, F.J. (1979). “Effect of large organic material on
channel form and fluvial processes.” Earth Surface Processes, 4, 361-380.

Keshari, A. K., and Koo, M. H. (2007). "A numerical model for estimating
groundwater flux from subsurface temperature profiles." Hydrological Processes, 21(25),
3440-3448.

Knoll, D. A., and Keyes, D. E. (2004). "Jacobian-free Newton-Krylov methods: a
survey of approaches and applications." Journal of Computational Physics, 193(2), 357-
397.

Kolmogorov, AN. (1942). “The equations of turbulent motion in an
incompressible fluid.” Isv. Acad. Sci., USSR, Phys. 6, 56-58.

Kurbatskii, K. A., and Mankbadi, R. R. (2004). "Review of computational
aeroacoustics algorithms." International Journal of Computational Fluid Dynamics,
18(6), 533-546.

Kwag, S. H. (2000). "Computation of water and air flow with submerged
hydrofoil by interface capturing method." Ksme International Journal, 14(7), 789-795.

Kwok, F., and Tchelepi, H. (2007). "Potential-based reduced Newton algorithm
for nonlinear multiphase flow in porous media." Journal of Computational Physics,
227(1), 706-727.

Lomax, H., Pulliam, T. H., and Zingg, D. W. (1999). Fundamentals of
Computational Fluid Dynamics, Springer, New York.

Le, V. S., Yamashita, T., Okunishi, T., Shinohara, R., and Miyatake, M. (2006).
"Characteristics of suspended sediment material transport in the Ishikari Bay in snowmelt
season." Applied Ocean Research, 28(4), 275-289.

Lehmann, F., and Ackerer, P. (1998). "Comparison of Iterative Methods for
Improved Solutions of the Fluid Flow Equation in Partially Saturated Porous Media."
Transport in Porous Media, 31, 275-292.

Li, C. W. (1993). "A simplified Newton iteration method with linear finite
elements for transient unsaturated flow." Water Resour. Res., 29(4), 965-971.

Li, G. Y., and Jackson, C. R. (2007). "Simple, accurate, and efficient revisions to
MacCormack and Saulyev schemes: High Peclet numbers." Applied Mathematics and
Computation, 186(1), 610-622.

Liao, C. B., Wu, M. S., and Liang, S. J. (2007). "Numerical simulation of a dam
break for an actual river terrain environment." Hydrological Processes, 21(4), 447-460.

Lomax, H., Pulliam, T. H. and Zingg, D.W. (1996) Fundamentals of
Computational Fluid Dynamics. Springer, New York Inc.

Luo, Q. (2007). "A distributed surface flow model for watersheds with large water
bodies and channel loops." Journal of Hydrology, 337(1-2), 172-186.

 129

MacCormack, R. W. (1969). "The effect of viscosity in hypervelocity impact
cratering." AIAA-1969-354.

Marzolf, G. R. (1978). The potential effects of clearing and snagging on stream
ecosystems. FWS/OBS-78-14, U.S. Dept of Interior. Fish and Wildlife Service, Nat.
Stream Alteration Team, Washington, D.C.

McMahon, T. E., and Hartman, G. F. (1989). “Influence of cover complexity and
current velocity on winter habitat use by juvenile Coho Salmon (Oncorhynchus kisutch).”
Can. J. of Fisheries and Aquatic Sci., 46, 1551-1557.

Mendez-Nunez, L. R., and Carroll, J. J. (1993). "Comparison of Leapfrog,
Smolarkiewicz, and MacCormack Schemes Applied to Nonlinear Equations." Mon.
Weather Rev., 121(February), 565-578.

Miropol'sky, Y. Z. (2001). Dynamics of internal gravity waves in the ocean,
Kluwer.

Mohebalhojeh, A. R., and Dritschel, D. G. (2007). "Assessing the numerical
accuracy of complex spherical shallow-water flows." Monthly Weather Review, 135(11),
3876-3894.

Moin, P. (2001). Fundamentals of Engineering Numerical Analysis. Cambridge,
U.K., Cambridge University Press.

Mousseau, V. A., Knoll, D. A., and Reisner, J. M. (2002). "An implicit
nonlinearly consistent method for the two-dimensional shallow-water equations with
coriolis force." Monthly Weather Review, 130(11), 2611-2625.

Murillo, J., Garcia-Navarro, P., and Burguete, J. (2008). "Analysis of a second-
order upwind method for the simulation of solute transport in 2D shallow water flow."
International Journal for Numerical Methods in Fluids, 56(6), 661-686.

Nguyen, D. K., Shi, Y. E., Wang, S. S. Y., and Nguyen, H. (2006). "2D shallow-
water model using unstructured finite-volumes methods." Journal of Hydraulic
Engineering-Asce, 132(3), 258-269.

Niet, A. d., Wubs, F., Scheltinga, A. T. v., and Dijkstra, H. A. (2007). "A tailored
solver for bifurcation analysis of ocean-climate models." Journal of Computational
Physics, 227 (1), 654-679.

Paniconi, C., Aldama, A. A., and Wood, E. F. (1991). "Numerical Evaluation of
Iterative and Noniterative Methods for the Solution of the Nonlinear Richards Equation."
Water Resources Research, 27(6), 1147-1163.

Paniconi, C., and Putti, M. (1994). "A Comparison of Picard and Newton Iteration
in the Numerical Solution of Multidimensional Varibly Saturated Flow Problems." Water
Resources Research, 30(12), 3357-3374.

Peyret, R., and Taylor, T. D. (1983). Computational Methods for Fluid Flow,
Springer, New York.

Pozrikidis, C. (2005). Introduction to finite and spectral element methods using
MATLAB, Chapman & Hall/CRC, Boca Raton.

Prandtl L. (1925). Uber die ausgebildete turbulenz. ZAMM 5, pp. 331-340.
Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T. (1992).

Numerical recipes in FORTRAN : the art of scientific computing, Cambridge University
Press, New York.Peyret R. and Taylor, T. D. (1983). Computational Method s for Fluid
Flow. Springer-Verlag, New York Inc.

 130

Rabeni. C. F., and Jacobson, R. B. (1993). “The importance of fluvial hydraulics
to fish-habitat restoration in low-gradient alluvial streams.” Freshwater Biology, 29, 211-
220.

Reisner, J. M., Mousseau, V. A., Wyszogrodzki, A. A., and Knoll, D. A. (2005).
"An implicitly balanced hurricane model with physics-based preconditioning." Monthly
Weather Review, 133(4), 1003-1022.

Robert, L. W. (1992). Oceanographical Enginereing, Dover Publications, Inc.,
Mineola, New York.

Rosatti, G., Cesari, D., and Bonaventura, L. (2005). "Semi-implicit, semi-
Lagrangian modelling for environmental problems on staggered Cartesian grids with cut
cells." Journal of Computational Physics, 204(1), 353-377.

Rueda, F. J., and Schladow, G. S. (2002). "Quantitative Comparison of Models
for Barotropic Response of Homogeneous Basins." Journal of Hydraulic Engineering,
128(2), 201-213.

Salvetti, MV, Banerjee, S. (1995). “A priori tests of a new dynamic subgrid-scale
model for finite- difference large-eddy simulations.” Phys. Fluids, 7(11), 2831-2847.

Schoenstadt, A. (1980). "A transfer analysis of numerical schemes used to
simulate geostrophic adjustment." Mon. Weather Rev., 108, 1248-1295.

Shaw, D., Martz, L. W., and Pietroniro, A. (2005). "Flow routing in large-scale
models using vector addition." Journal of Hydrology, 307(1-4), 38-47.

Shields, F.D. Jr., and Nunnally, N.R. (1984). “Environmental aspects of clearing
and snagging.” Journal of Environmental Engineering, 110 (1), 152-165.

Spalart, P.R, Allmaras, S.R. (1992). “A one-equation turbulence model for
aerodynamic flow.” AIAA J. 29, 1819-1835.

Spitaleri, R. M., and Corinaldesi, L. (1997). "A multigrid semi-implicit finite
difference method for the two-dimensional shallow water equations." International
Journal for Numerical Methods in Fluids, 25(11), 1229 - 1240.

Stelling, G. S., and Duinmeijer, S. P. A. (2003). "A staggered conservative
scheme for every Froude number in rapidly varied shallow water flows." International
Journal for Numerical Methods in Fluids, 43(12), 1329-1354.

Steppeler, J. (2006). "HLI, a direct method suitable for partial and fully implicit
time integration of primitive equation meteorological models." Computers &
Mathematics with Applications, 52(8-9), 1357-1372.

Sullivan, K., Lisle, T. E., Dolloff, C. A., Grant, G. E., and Reid, L. M. (1987).
“Stream channels: the link between forest and fishes.” Streamside management, forestry
and fishery interactions. E. O. Salo and T. W. Cundy. Eds., Coll. Of Forest Resour.,
Univ. of Washington, Seattle, Wash., 39-97.

Szymkiewicz, R. (1992). "A Mathematical-Model of Storm-Surge in the Vistula
Lagoon, Poland." Coastal Engineering, 16(2), 181-203.

Tannehill, J. C., Anderson, D. A., and Pletcher, R. H. (1997). Computational fluid
mechanics and heat transfer, Taylor & Francis, Washington, DC.

Thomee, V. (2001). "From finite differences to finite elements - A short history of
numerical analysis of partial differential equations." Journal of Computational and
Applied Mathematics, 128(1-2), 1-54.

 131

Thouvenin, B., Gonzalez, J. L., Chiffoleau, J. F., Boutier, B., and Le Hir, P.
(2007). "Modelling Pb and Cd dynamics in the Seine estuary." Hydrobiologia, 588, 109-
124.

Tsynkov, S. V. (1998). “Numerical solution of problems on unbounded domains.
A review.” Applied Numerical Mathematics, 27, 465-532.

Turek, S. (1996). "A comparative study of time-stepping techniques for the
incompressible Navier-Stokes equations: From fully implicit non-linear schemes to semi-
implicit projection methods." International Journal for Numerical Methods in Fluids,
22(10), 987-1011.

Vinayan, V. (2003). Boundary-Integral Analysis of Nonlinear Diffraction Forces
on a Submerged Body. Master thesis, Department of Ocean Engineering, Florida Atlantic
University.

Vreugdenhil, C. B. (1994). Numerical Methods For Shallow-Water Flow, Kluwer
Academic, Dordrecht, The Netherlands.

Wadzuk, B. M. (2004). "Hydrostatic and non-hydrostatic internerwave models,"
Ph.D dissertation, The Univeristy of Texas at Austin.

Weerakoon, S. B., Tamai, N., and Kawahara, Y. (2003). "Depth-averaged flow
computation at a river confluence." Proceedings of the Institution of Civil Engineers-
Water and Maritime Engineering, 156(1), 73-83.

Webster, R. (2007). "Algebraic multigrid and incompressible fluid flow."
International Journal for Numerical Methods in Fluids, 53(4), 669-690.

Wiegel, R. L. (1964). Oceanographical Engineering. Dover Publication, Inc.,
Mineola, New York.

Wilders, P., Van Stijn, T. L., Stelling, G. S., and Fokkema, G. A. (1988). "A Fully
Implicit Splitting Method for Accuracy Tidal Computations." International Journal for
Numerical Methods in Engineering, 26, 2707-2721.

Wubs, F. W., de Niet, A. C., and Dijkstra, H. A. (2006). "The performance of
implicit ocean models on B- and C-grids." Journal of Computational Physics, 211(1),
210-228.

Yuan, H., and Wu, C. (2004). "An implicit three-dimensional fully non-
hydrostatic model for free-surface flows." International Journal for Numerical Methods
in Fluids, 44(8), 811-835

Zhang, Y., Baptista, A. M., and III, E. P. M. (2004). "A cross-scale model for 3D
baroclinic circulation in estuary–plume–shelf systems: I. Formulation and skill
assessment." Continental Shelf Research, 24(18), 2187-2214.

Zhou, J. T., Lin, J. G., and Xie, Z. H. (2007). "A compact explicit difference
scheme of high accuracy for extended Boussinesq equations." China Ocean Engineering,
21(3), 507-514.

Zhou, W. (2002). "An Alternative Leapfrog Scheme for Surface Gravity Wave
Equations." Journal of Atmospheric and Oceanic Technology, 19(September), 1415-
1423.

