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Abstract 
Numerical models have become an indispensable tool for ocean and inland flow 
modeling.  Such models typically use the hydrostatic approximation based on the 
argument that their horizontal length scales are longer than the vertical length 
scales.  There are a wide variety of physical processes in oceans and inland water 
systems, and many of these processes are adequately modeled with the hydrostatic 
approximation.  However, internal waves contribute to the physics that influence 
mixing in a density stratified system and have been previously shown to be non-
hydrostatic.  The neglect of non-hydrostatic pressure in a hydrostatic model is 
problematic since non-hydrostatic pressure plays a significant role in internal wave 
evolution balancing nonlinear wave steepening.  Where non-hydrostatic pressure is 
neglected in a model, the governing equations are missing a piece of the physics 
that control the internal wave evolution, so it should not be surprising that the 
evolution may be poorly predicted.   

Despite the knowledge that the non-hydrostatic pressure is necessary for 
correctly modeling the physics of a steepening internal wave, the high 
computational cost of solving the non-hydrostatic pressure has limited its use in 
large-scale systems.  Furthermore, the errors associated with hydrostatic modeling 
of internal waves have not been quantified.  This research quantifies the differences 
between hydrostatic and non-hydrostatic simulations of internal wave evolution 
and develops a method to a priori determine regions with non-hydrostatic behavior.  
In quantifying the errors and differences between the two models this research 
provides the characteristics of model error with grid refinement.  Additionally, it is 
shown that hydrostatic models may develop high wavenumber “soliton-like” 
features that are purely a construct of model error, but may seem to mimic physical 
behaviors of the non-hydrostatic system.  Finally, it is shown that regions of 
significant non-hydrostatic pressure gradients can be identified from a hydrostatic 
model.  This latter finding is a building block towards coupling local non-
hydrostatic solutions with global hydrostatic solutions for more efficient 
computational methods.  The work presented here provides the foundations for 
future non-hydrostatic model development and application. 
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Chapter 1. Introduction 

Chapter 1. Introduction 

1.1 Motivation 

Biogeochemical processes in oceans, lakes and 
estuaries evolve against the background of vertical 
density stratification.  Internal waves are one 
mechanism which carry energy and momentum 
through a basin and contribute to mixing events in 
littoral regions that prompt ecosystem changes.  
Internal waves are motions that occur beneath the 
free-surface of a density-stratified waterbody.  As an 
external force (i.e. wind or river inflow) moves the 
density layers from their equilibrium position, an 
internal wave is initiated to restore the system to 
equilibrium (Figure 1.1).  Internal waves propagate 
through the basin and interact with the basin 
boundaries; this internal wave – slope interaction is 
an important source of energy that transports 
nutrients, biota and contaminants through the water 
column (Imberger and Ivey, 1993; Javam, et al., 
1999).  Hydrodynamic processes (e.g. internal 
waves, tides and eddies) are transport mechanisms in 
coastal oceans and lakes and their scope and 
magnitude depends on the processes’ speed and 

length scales.  Table 1.1 shows a large range of 
scales for different hydrodynamic processes and 
internal waves are considered a middle-scale process.   

Quantitative assessment of nutrient and 
constituent transport in a stratified basin requires 
modeling of internal wave evolution (Imberger, 
1994).  To have an unambiguous water quality 
model, the complementary hydrodynamic model, 
which provides the flow field, should simulate all the 
significant physics (Gross, et al., 1999).  
Hydrodynamic models often neglect physics that are 
irrelevant to the focus of an investigation or can be a 
priori scaled as small compared to dominant 
(Marshall, et al., 1997).  Large-scale ocean and 
littoral modeling have traditionally made the 
hydrostatic approximation, which neglects non-
hydrostatic pressure and subsequently vertical 
momentum (e.g. POM: Blumberg and Mellor, 1987; 
EFDC: Hamrick, 1992; ROMS: Haidvogel, et al., 
2000; Ezer, et al., 2002).  The hydrostatic 
approximation fails at open boundaries (Mahadevan, 
et al., 1996a) and at steep slopes with strong vertical 
velocities (Weilbeer and Jankowski, 2000; Horn, et 
al., 2001; Horn, et al., 2002).  Linear waves that are 
damped by viscous effects may be considered to 

b)a)

c) d)

Figure 1.1: Internal wave evolution in a two-layer system.  a) System at rest, where the equilibrium 
position for the free-surface (thick dashed blue line) and pycnocline (thick dashed red line) is flat. b) 
Wind is applied over the free surface (large red arrow) which moves the free-surface (thin blue line) and 
pycnocline (thin red line) from their respective equilibrium positions. c) Continued application of wind 
over the free-surface, so the equilibrium positions for the free-surface and pycnocline are tilted.  The 
free-surface and pycnocline oscillate around the equilibrium position.  d) The wind force stops and the 
free-surface and pycnocline equilibrium position is flat. The free-surface and pycnocline oscillate around 
the equilibrium position, setting up a basin-scale seiche.  
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 Process/Activity Speed (m/s) Length
Oceanic Turbulence 0.1 - 100 1 cm - 100 m

Internal Waves 1 - 3 100 m - 1 km
Diurnal Tides 0.1 - 10 1 km - 1000 km

Mesoscale Eddy 1 10 km - 1000 km
Rossby Waves 0.1 - 9 1000 km - 10000 km

Surface Gravity Waves 1 - 20 1 m - 100 m
Sound waves 1400 200 km

behave hydrostatically, while internal waves that 
steepen nonlinearly are inherently non-hydrostatic 
(Long, 1972).  It is suggested that non-hydrostatic 
pressure is essential for proper modeling of internal 
wave development and propagation (Laval, et al., 
2003).   When numerical models neglect non-
hydrostatic pressure, they are neglecting a physical 
attribute of internal wave evolution.  This neglect has 
repercussions on vertical transport at the topographic 
boundaries of a basin.  Internal waves that 
nonlinearly steepen and degenerate into solitons can 
propagate to a basin’s boundary where the wave may 
shoal and mix, energizing a turbulent benthic 
boundary layer (Boegman, et al., 2003); the 
interaction of internal waves and boundary layer 
mixing is a significant mechanism for nutrient 
transport and other biogeochemical processes (De 
Silva, et al., 1997; Nishri, et al., 2000).  Modeling the 
boundary layer is not of interest to the present 
research, but properly modeling the internal wave 
evolution which contributes to boundary layer is.     

During the past decade there has been interest 
simulating internal waves in numerical models, 
marked by the development of several non-
hydrostatic models (e.g. Mahadevan, et al., 1996a,b; 
Marshall, et al., 1997; Stansby and Zhou, 1998; 
Casulli, 1999; Weilbeer and Jankowski, 2000; 
Fringer and Street, 2003; Daily and Imberger, 2003; 
Yuan and Wu, 2004).  However, there has been little 
work done on quantifying the differences between 
hydrostatic and non-hydrostatic models or the scales 
for which non-hydrostatic pressure impacts internal 
wave evolution.  If the proper scales (i.e. sufficient 
grid resolutions) are not used in a non-hydrostatic 
model, then the results of the non-hydrostatic model 
are no different than a hydrostatic model’s solution, 
as described in §4.2   

Presently, computational power is insufficient 
for application of non-hydrostatic models to large 
domains (i.e. coastal oceans) with sufficient grid 

resolution.  By example, one computational “work 
unit” may be considered the processing power 
required for one operation across the entire domain.  
Thus, a work unit scales on the number of cells 
within a domain (e.g. a grid of N × M size: 1 work 
unit = N × M).  A hydrostatic model’s basic 
operations are solving for the three velocity 
components, salinity transport, temperature transport 
and the free-surface; the computational effort for 
each of these operations scales on one work unit, 
thus totaling six work units for each timestep.  A 
non-hydrostatic model solves for these operations 
twice (once before the non-hydrostatic solver and 
once after) and a pressure solution.  The work 
associated with the pressure solution is N × M × the 
number of smoothing iterations per timestep; the 
number of iterations per timestep for the non-
hydrostatic pressure solver may be O(102) (§3.2 ff.).  
If the non-hydrostatic model is applied with the same 
spatial grid and timestep as the hydrostatic model, 
the non-hydrostatic model requires an additional 106 
work units, that is, about two orders of magnitude 
more computational effort.  However, as discussed in 
§4, the non-hydrostatic model also requires a finer 
spatial grid and timestep than a hydrostatic model.  A 
typical hydrostatic coastal ocean model applies a 
spatial grid with an aspect ratio (∆z/∆x) of O(10-3) 
(Marshall, et al., 1997; Tartinville, et al., 1998), 
while §4 shows that a non-hydrostatic model requires 
a grid with an aspect ratio of at least O(10-2).  This 
refined spatial grid increases the required work units 
by another order of magnitude, to ~103.  
Furthermore, §4 discusses the need for a non-
hydrostatic model to be applied to a smaller timestep, 
which increases the number of work units by another 
order of magnitude.  Thus, O(104) work units are 
needed for the non-hydrostatic model, while the 
hydrostatic computational effort scales on O(10) 
work units.  According to Moore’s law (Moore, 
1965), computational ability doubles about every two 
years.  Assuming that we are reaching the maximum 
capacity of present computers with the hydrostatic 
model, the computational power needed to run a 
coastal ocean non-hydrostatic model with a 
sufficiently fine spatial grid and timestep will not be 
available for another 26 years!  It is computational 
power that limits our ability to use non-hydrostatic 
models.  This motivates the present research to 
quantify the spatial grid and timestep necessary to 
apply a non-hydrostatic model and develop the 
theoretical foundations for future methods that may 
circumvent the constraint of computational power.          

Table 1.1: Scales of oceanic processes (Gill, 1982; 
Cushman-Roisin, 1994; Kantha & Clayson, 2000a; 
Miropol’sky, 2001) 



Chapter 1. Introduction 

1.2 Objectives 

The present research has two main objectives to 
address the motivational issues within internal wave 
modeling: 

• quantify the differences between hydrostatic 
and non-hydrostatic simulations of internal 
wave evolution, and 

• develop a method to a priori determine 
regions with non-hydrostatic behavior. 

The first objective is achieved by: 1) 
quantifying accumulation of error within both 
hydrostatic and non-hydrostatic models of internal 
waves; and 2) comparing the space-time evolution of 
internal wave characteristics in both models.  
Comparing the models’ internal wave evolution and 
error accumulation provides a means of defining the 
conditions for which a hydrostatic model is 
acceptable and those conditions requiring a non-
hydrostatic model to capture an internal wave’s 
propagation.  It is shown that a model’s error 
accumulation and representation of internal wave 
evolution are dependent on spatial and temporal 
resolution.  Delineation of the spatial and temporal 
resolution necessary to adequately resolve non-
hydrostatic processes is included within the first 
objective. 

The second objective is achieved by using a 
hydrostatic model to estimate non-hydrostatic 
pressure effects.  Using this estimation, local regions 
where the non-hydrostatic pressure significantly 
contributes to internal wave evolution are identified.  
Through reaching this objective, the present work 
provides the theoretical basis for future model 
development for a non-hydrostatic solution in 
isolated, “non-hydrostatic” areas, concurrent with a 
hydrostatic solution elsewhere.   
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1.3 Background 

1.3.1 Internal Waves 
Internal waves occur in stably stratified fluids when 
a water parcel is displaced by some external force 
(wind, inflow, etc.) and is restored by buoyancy 
forces; the restoration motion may overshoot the 
equilibrium position and set up an oscillation thereby 
forming an internal wave (Turner, 1973; Kantha and 
Clayson, 2000a).  The buoyancy frequency (N) is the 
upper limit of wave frequencies (ω) that can 
propagate through a system; thus, the only internal 
waves of interest for the present research are those 

where Nω < , as waves where   remain local 
and do not significantly contribute to the system’s 
overall transport and energy (Turner, 1973; Lighthill, 
1978; Javam, et al., 1999).  The lower limit of 
internal wave frequencies is the Coriolis or inertial 
wave frequency, f.  The inertial frequency is defined 
as f = 2Ωsinφ, where Ω is the angular velocity of the 
earth’s rotation and φ is the latitude.  At f, wave 
motions become inertial oscillations, where fluid 
parcels have horizontally circular trajectories 
(Cushman-Roisin, 1994).  While Coriolis forces are 
known to affect internal wave evolution, their impact 
is principally three-dimensional.  To limit the 
number of processes under consideration, this project 
is restricted to vertical stratification in two-
dimensional box models where Coriolis effects 
cannot be represented.  Thus, this project is focused 
primarily on internal waves dominated by gravity, 
which is typically the case for waves breaking on 
sloping boundaries (De Silva, et al., 1997). 

Nω >

Field studies by Garrett and Munk (1979) 
indicated that most internal waves follow a 
consistent energy-wave spectrum (Figure 1.2).  
There is a full range of wave frequencies and 
associated energy, where waves of low-frequency are 
associated with high energy, while those of high-
frequency have low energy.  Internal waves also 
evolve over a wide spectrum of spatial scales.  An 
initial low-frequency, long wavelength internal wave 
may degenerate into a train of high-frequency, short 

Figure 1.2: Energy-Frequency Spectrum.  f is the 
Coriolis frequency, N is the Brunt-Väisälä 
frequency and ω is the frequency, cph (cycles per 
hour) is a frequency scale and m2/cph is an energy 
scale.  (Garrett and Munk, 1979) 
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wavelength waves (Kao, et al., 1985; Horn, et al., 
2001; Boegman, et al., 2003), as seen in Figure 1.3.  
This degeneration is connected to the nonlinearity of 
internal waves.  Several field studies (Farmer, 1978; 
Osborne and Burch, 1980; Apel, 1981; Wiegand and 
Carmack, 1986) and model results (Segur and 
Hammack, 1982; Hutter, et al., 1998; Horn, et al., 
2002) have verified that an internal wave will behave 
nonlinearly if the initial wave is sufficiently steep.  
Steepness is defined as the ratio of a wave’s 
amplitude to its wavelength.  A “sufficiently” steep 
wave is one whose timescale for steepening is 
shorter than its timescale for damping (Farmer, 1978; 
Horn, et al., 2001).  The relationship between the 
total water depth and thickness of the upper layer can 
also contribute to a wave’s nonlinearity.   

The following description of wave evolution is 
adapted from Kinsman (1965), Whitham (1974) and 
Lighthill (1978).  A wave may be viewed as a 
recognizable feature of a disturbance that moves with 
a finite velocity.  An infinite number of sinusoidal 
waves, each with a discrete frequency and discrete 
wavelength, may be superposed to create the 
characteristic material surface recognizable as a 
wave (Figure 1.4 A).  Wave speed (c): 

 c
k
ω

=  (1.1) 

where ω is the wave frequency and k is the total 

wavenumber (i.e. 2 2 2k j l m= + + ; j, l and m are the 
wavenumbers in the x-, y- and z-directions, 
respectively) is dependent on the dispersion 
relationship for an internal wave: 

 
( )

( )
2 2

2 2
2 2 2

j l
N

j l m

+
ω =

+ +
 (1.2) 

where the buoyancy frequency, N2 is: 

 2

o

g dN
dz
ρ

=
ρ

 (1.3) 

It follows that wave speed is dependent upon 
the density gradient of fluid.  Waves on different 
density structures propagate at different speeds (i.e. 
the crest of the wave, with one density gradient, is 
moving faster than the trough of the wave, with 
another density gradient, as seen in Figure 1.4 B&C).  
This density gradient dependency produces a 
nonlinearly steepening wave.  Wave speed is also 
dependent on wavelength (the inverse of the 
wavenumber).   As the different sinusoidal waves 
comprising the material wave move at different 
speeds, the material wave spreads out over time, or 
disperses, into a series of waves (Figure 1.4 D).   

The wave speed dependence on the dispersion 
relationship shows there is a relationship between 

Figure 1.3:  Laboratory experiment, conducted by Horn, et al. (2001), of a steepening, initial 
basin-scale wave that degenerates into a train of solitons.  The first panel is the initial wave setup.  
The second panel shows the wave front steepening.  The third panel shows the beginning of 
smaller waves developing behind the lead wave.  The last two panels are the train of solitons 
traveling through the domain.  The basin is 6m long and 0.29m high. 
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nonlinear acceleration and a dispersive force.  The 
dispersive force that opposes nonlinear wave 
deformation is the non-hydrostatic pressure gradient.  
The dispersion of a wave leads to an energy cascade 
from an initial, low-frequency wave to a resulting, 
high frequency wave series that is more susceptible 
to wave breaking (van Haren, 2004).  When non-
hydrostatic pressure is not modeled while 
nonlinearities are modeled (i.e. typical of a 
hydrostatic model), there are two possible results.  
The first possibility is a wave steepens unabated and 
creates artificial mixing events through density 

overturns.  The second possibility is a build up of 
numerical error that balances nonlinear steepening.   A 

The two dominate forms of numerical error are 
numerical diffusion of mass (from herein called 
numerical diffusion) and numerical diffusion of 
momentum.  The latter results in dissipation of 
energy and is henceforth called numerical 
dissipation.  Numerical diffusion artificially weakens 
sharp gradients across the wave front.  Thus, as a 
wave steepens, numerical diffusion increases and 
smoothes the wave front.  This smoothing impedes 
wave steepening and reduces the available potential 
energy in wave, but increases the background 
potential energy of the system (Figure 1.5 A).  The 
increase in background potential energy is seen in 
the thickening of the layer that contains the density 
gradient between the constant density upper and 
lower layer, which is called the pycnocline (see 
§2.2.1 for a description of available and background 
potential energy).  Numerical dissipation has a 
similar effect in damping wave steepening.  As a 
wave steepens, the velocity shear increases across 
the wave front, thereby increasing the artificial 
spreading of momentum through model error.  The 
artificial spreading of momentum reduces the kinetic 
energy of the wave and inhibits steepening (Figure 
1.5 B).   

B 

C 

D 

Figure 1.4: Cartoon of wave steepening 
and dispersion. A) An initial wave with a 
unique wave speed and amplitude.  B&C) 
Wave steepening where the crest is 
moving faster than trough. D) Wave 
degeneration into a train of waves. 

1.3.2 Modeling 
Several hydrodynamic models for large-scale 
applications use the hydrostatic approximation (e.g. 
POM: Blumberg and Mellor, 1987; EFDC: Hamrick, 
1992; ROMS: Haidvogel, et al., 2000).  The 
hydrostatic approximation neglects non-hydrostatic 
pressure and vertical acceleration, but models 

B A 
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Figure 1.5: Cartoon of wave steepening.  A) Nonlinear steepening wave with numerical 
diffusion.  As the wave steepens, diffusion acts across the wave front and reduces the 
density gradient, available potential energy and steepness.  B) Nonlinear wave 
steepening with numerical dissipation.  The initial wave is primarily moving in a 
horizontal direction.  As the wave steepens, the vertical velocities in front and behind the 
wave increase, increasing the shear.  The increased diffusion of momentum (dissipation) 
reduces the wave’s kinetic energy and limits the wave steepness. 



Wadzuk & Hodges: Hydrostatic and Nonhydrostatic Internal Wave Models 

 6 

nonlinear horizontal momentum.  The hydrostatic 
approximation is generally applicable to processes 
with small aspect ratios (depth: length ≤ O[10-3]); for 
example, most large-scale ocean and atmospheric 
problems.  However, the hydrostatic approximation 
breaks down for mesoscale systems [aspect ratio ~ 
O(10-1 – 10-2)] and small-scale events, such as the 
steepening and breaking of nonlinear internal waves 
(Kantha and Clayson, 2000a).  Hydrostatic models 
often predict excessive steepening (Wadzuk and 
Hodges, 2003), which induces artificial breaking and 
diffusion, thereby developing a weakened pycnocline 
(Laval, et al., 2003).  Hydrostatic models also show 
increased dissipation of internal wave energy which 
artificially reduces internal wave amplitude.  Internal 
wave dispersion is not physically modeled in 
hydrostatic models (as it requires non-hydrostatic 
pressure), but may still appear as a numerical 
phenomenon in a simulated evolution (Hodges and 
Delavan, 2004).  The aforementioned errors, which 
are all numerical, result in an incorrect evolution of 
an internal wave and its energy.  Thus, the need for 
non-hydrostatic models is evident (Horn, et al., 2001; 
Laval, et al., 2003).    

Several quasi-hydrostatic and non-hydrostatic 
models for large-scale systems have been developed 
(e.g. Mahadevan, et al., 1996a,b; Casulli and 
Stelling, 1998; Casulli, 1999; Fringer and Street, 
2003).  Despite this work, there has been little 
research on quantifying the timestep and spatial grid 
scales necessary to model non-hydrostatic behavior.  
The present research shows that a fine spatial and 
temporal resolution is needed to capture non-
hydrostatic behavior (§4 ff.), thus significantly 
increasing computational time over hydrostatic 
models.  The aforementioned models applied the 
non-hydrostatic model over the entire domain, but 
Stansby and Zhou (1998) recognized that non-
hydrostatic effects are local and suggested 
application of the non-hydrostatic solution only in 
these limited areas.  However, their work provides 
neither a method to locally solve the pressure, nor a 
method to locate regions where the non-hydrostatic 
pressure is important.  The present research has 
developed a method to numerically identify regions 
with significant non-hydrostatic effect.   

1.4 Approach 

Achieving the objectives of this study required both 
hydrostatic and non-hydrostatic models.  The 
University of Western Australia Centre for Water 
Research’s Estuary and Lake Computer Model 
(CWR-ELCOM: Hodges, 2000) was used as the 
hydrostatic model.  As part of this project, a non-
hydrostatic pressure solver was developed as a 
modification to CWR-ELCOM.  CWR-ELCOM is a 
three-dimensional hydrodynamic model that applies 
the incompressible, Boussinesq and hydrostatic 
approximations to solve the Euler equations on an 
Arakawa C staggered grid with a semi-implicit 
method and a moving free-surface.  The model 
temporal accuracy is first-order for the flow field, 
third-order ULTIMATE-QUICKEST (Leonard, 
1991) for scalar transport and first-order for the free 
surface.  Surface thermodynamics are solved by bulk 
transfer models that are not used or investigated in 
this work.  The Euler-Lagrange method for 
momentum is third-order spatially accurate, while 
spatial gradients in other terms are second-order.  
Details of the non-hydrostatic solver developed for 
the present research are described in §2 ff.     

The existing and modified models were used to 
perform the analysis fulfilling the two research 
objectives.  The first chapter of this document 
provides the reader with the motivation, objectives 
and background of this project.  The second chapter 
provides the numerical methods applied in the 
hydrostatic model and the design of the non-
hydrostatic solver, as well as the analytical methods 
used to quantify the performance of hydrostatic and 
non-hydrostatic models.  The third chapter 
demonstrates the validation and verification of the 
non-hydrostatic solver.  Chapter four uses the tools 
developed in chapter two to examine the first 
objective (comparing the differences between 
hydrostatic and non-hydrostatic models), including 
an evaluation of model skill on predicting internal 
wave evolution and quantification of numerical error.  
Chapter five develops and demonstrates a method to 
isolate non-hydrostatic effects.  Chapter six 
concludes this work and makes suggestions for 
future work in this area of hydrodynamic modeling.       

 

 



Chapter 2. Methods 

Chapter 2. Methods 
Several different numerical and analytical methods 
are used in the present work to develop the models 
used in analysis and to provide a means to quantify 
and compare model results.  Governing equations 
(§2.1.1) are used to model the physics of internal 
wave evolution and are applied to the numerical 
model with a pressure Poisson solution implemented 
by the fractional-step method described in §2.1.2 and 
§2.1.3.  Along with the governing equations and 
numerical methods, a set of approximations and 
conditions are made to simplify the problem and 
provide boundaries for the solution space.  In 
assessment of model skill, both qualitative and 
quantitative techniques are used.  Section 2.2 
provides qualitative methods for assessing model 
skill by examining the pycnocline displacement and 
quantitative methods for evaluating model skill 
through computing numerical dissipation and 
diffusion.   

2.1 Numerical Model 

This sections discusses a description of the 
governing equations of CWR-ELCOM and the non-
hydrostatic solver and a justification for the inviscid 
approximation (§2.1.1).  The methods used to 
develop the non-hydrostatics solver (§2.1.2 and 
§2.1.3) and the applicable boundary conditions 
(§2.1.4) are also described.       

2.1.1 Governing Equations 
The governing equations for the present research are 
the Euler equations, the free-surface equation with 
the kinematic boundary condition and the linear 
equation of state for density.  In Cartesian tensor 
form, these are:   

Incompressible momentum: 

 
( )i

i
o z '

nh

o i

DU 1g
Dt x x

P1
x

η

α
α α

⎛ ∂η ∂⎜= −δ + ρ
⎜ ∂ ρ ∂⎝
∂

−
ρ ∂

∫ dz
⎞
⎟
⎟
⎠  (2.1) 

Incompressible continuity: 

 i

i

U
0

x
∂

=
∂

 (2.2) 

Free-surface – Kinematic boundary condition 
integrated over depth with continuity applied: 

 
b

U dz
t x

η

α
α

∂η ∂
= −

∂ ∂ ∫  (2.3) 

Density: 

 ( )o 1 Sρ = ρ +β  (2.4) 

In Equations (2.1) - (2.4), i = 1, 2, 3; α = 1, 2; Ui is 
the velocity; η is the free-surface elevation; z’ is the 
vertical position in the water column; Pnh is the non-
hydrostatic pressure; ρ is the density; ρo is the 
reference density; g is gravity.  The haline expansion 
coefficient, β, is constant for a linear equation of 
state and S is salinity.  The density can be 
decomposed as: 

 oρ = ρ +ρ  (2.5) 

whereρ  is a small departure from the reference 
density.  When the hydrostatic approximation is 
used, as in CWR-ELCOM, the non-hydrostatic 
pressure gradient is neglected in Equation (2.1).  
Within the hydrostatic limit, vertical motions are 
assumed small (horizontal velocity ~ 10-1 ms-1, 
vertical velocity ~ 10-4 to 10-5 ms-1); therefore the 
vertical momentum equation is neglected (Cushman-
Roisin, 1994).  However, Long (1972) showed that 
the inclusion of vertical acceleration and non-
hydrostatic pressure is necessary to properly model 
internal wave evolution.  Thus, CWR-ELCOM has 
been modified as described in this chapter to include 
a non-hydrostatic pressure component based on 
Equation (2.1).   

The present research’s focus is on quantifying 
hydrostatic and non-hydrostatic models’ ability to 
represent internal wave evolution and error 
accumulation.  All analysis for the present research 
neglects viscous effects and diffusion terms in the 
momentum and transport equations for two reasons: 
1) the effects of viscous damping and viscous effects 
in wave breaking are at the two extremes of wave 
phenomena, which are of lesser interest than the 
evolution of solitons; and 2) by neglecting viscosity 
and diffusion the dissipation of energy and diffusion 
of mass can be used to quantify numerical error.  
Viscous damping acts primarily through the wall 
boundary layers, which are not modeled in the 
present research, and the shear between density 
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layers.  The viscous effect between 
density layers is immaterial in the 
present work as the timescale for 
damping is longer than the timescale 
for steepening, which is a phenomenon 
of interest for an evolving nonlinear 
wave.  The modulus of decay provides 
the timescale for significance of 
viscous effects.  This viscous timescale 
is the time it takes for a wave’s 
amplitude to decrease to  e-1 of its 
initial amplitude (Lamb, 1932):  

 λ (m) τ (s) τ (d)
10000 1.267E+12 1.466E+07
100 1.267E+08 1.466E+03
1 1.267E+04 1.466E-01

0.01 1.267E+00 1.466E-05
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 (2.6) 

where τ is the modulus of decay, λ is 
wavelength and ν is viscosity.  Figure 
2.1 shows the modulus of decay for 
several different wavelengths.  This 
viscous timescale is small for very short waves (e.g. 
capillary waves, Kinsman, 1965), so viscosity is 
important in their evolution and attenuation.   
Conversely, the viscous timescale for gravity waves 
(e.g. λ > O[1m]) is long compared to the timescales 
of forcing and wave evolution (see discussion of 
wave steepening timescale, §3.3.3 ff.), so viscosity is 
insignificant for the evolution of longer waves.  
Viscous and diffusive effects in wave breaking and 
mixing are not of interest in the present work as 
large-scale coastal oceans and lake models do not 
have sufficient grid resolution to capture the details 
of these processes.  The present research is focused 
on wave behavior prior to breaking, when the wave 
can be considered a smooth material surface that 
effectively suppresses turbulent diapycnal diffusion 
of mass and momentum.   

Figure 2.1:  Modulus of decay for as a function of wavelength, 
determined from Equation (2.6).  Viscosity is 10-6 m2/s.   

2.1.2 Solution Methods 
The fractional step method (Kim and Moin, 

1985) was used to incorporate the non-hydrostatic 
solver into the existing hydrostatic CWR-ELCOM.  
The fractional step method is mass conservative and 
has second-order temporal accuracy for 3D 
incompressible flows with fine spatial discretization 
and coarse temporal discretization (Casulli and 
Stelling, 1998; Casulli, 1999; Armfield and Street, 
1999).  The fractional step method can be outlined as 
follows: 

• Solution of hydrostatic velocity field and 
free surface 

• Solution of non-hydrostatic pressure 

• Update of velocity field and free surface to 
reflect non-hydrostatic pressure. 

The velocity field is initially approximated via 
a hydrostatic solution, providing U* and W*, as well 
as a hydrostatic free surface (η*).     
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− ∆ ρ −ρ ∆⎢ ⎥
ρ ∆⎢ ⎥⎣ ⎦
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⎛ ⎞∆
η = η − − ∆⎜ ⎟⎜ ⎟∆ ⎝ ⎠

∑

∑

 (2.7) 

where subscripts indicate the cell center (integers) 
and cell faces (fractions), as seen in Figure 2.2.   The 
x-direction cell length is ∆xi, while ∆xi+1/2 is the cell 
center to center distance.  The Lagrangian 
discretization of velocity from the Euler-Lagrange 
method is represented by GUn, which uses a particle 
pathline in the time ‘n’ velocity field to estimate the 
Lagrangian momentum term at time ‘n+1.’  This 
method reduces the artificial damping associated 
with most low-order methods and can be applied to 
flows that have a Courant-Friedrich-Lewy (CFL) 
condition up to two (Hodges, 2000). 
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The hydrostatic estimated velocity [Equation 
(2.7)] is subtracted from the discretized non-
hydrostatic momentum equation, written as:  
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to obtain velocity correction equations: 
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The discrete form of continuity [Equation (2.2)] is: 
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which can be applied to the divergence of Equations 
(2.9) and (2.10) to yield a pressure Poisson equation 
(in Einstein summation): 
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Equation (2.12) can be written discretely as:   
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Solution of Equation (2.13) provides a non-
hydrostatic pressure, P , which is used to update 
the horizontal velocity field using Equation (2.9).  
The updated horizontal velocity field is used to 
update the free-surface: 

n 1
nh,i,k

Figure 2.2: Schematic of grid field 
+
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If Equation (2.10) is used to update the vertical 
velocity, the resulting velocity field may not be 
solenoidal due to the residual in the non-hydrostatic 
pressure solver.  To ensure a solenoidal velocity field 
for mass transport, the vertical velocity is updated 
diagnostically from the continuity equation:  
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 (2.15) 

The free-surface update [Equation (2.14)] has 
been treated differently in various models.  The 
quasi-hydrostatic models of Mahadevan, et al. 
(1996a) and Casulli and Stelling (1998) solve only 
for the hydrostatic free-surface [Equation (2.7)] and 
do not account for non-hydrostatic effects on surface 
evolution.  Casulli (1999) addressed this problem by 
correcting the surface elevation for the intermediate 
step [Equation (2.7)] and after the pressure Poisson 
equation was applied [Equation (2.14)].  The 
approach of Casulli (1999) was to advance the 
velocities, pressure and free-surface at time level 
‘n+1’ while still applying the vertical discretization 
(∆z) of the previous time step (n). His approach 
removes a nonlinearity that arises when using 
inconsistent time discretization of ‘∆z’ and the free 
surface, which Hodges (2004) showed exists, but is 
second-order in time.  Thus, the first-order temporal 
accuracy of CWR-ELCOM makes the inconsistency 
irrelevant and Casulli’s (1999) treatment appropriate 
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for the updated free-surface.  A more complex 
approach by Chen (2003) applies a double predictor-
corrector method, updating the velocity first after the 
non-hydrostatic pressure is resolved and again after 
the free-surface is updated. The double predictor-
corrector allows the non-hydrostatic change in the 
free-surface to alter the velocity field.  While this 
method is second-order temporally accurate, Chen 
(2003) states that a comparison between the results 
with his method and those of Casulli (1999) show no 
significant improvement in model performance.    
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2.1.3 Iterative Methods – Pressure Poisson 
Equation 
The pressure Poisson equation [Equation (2.13)] is 
an elliptic equation, which is inefficient for direct 
solution by matrix inversion (Mahadevan, et al., 
1996a) and is therefore solved with iterative 
methods.  Jacobi, Gauss-Seidel (GS), and successive 
over-relaxation (SOR) iterative methods were used 
in the development of the non-hydrostatic solver as a 
learning exercise for the author.  The Jacobi and GS 
methods were impractical because of long 
convergence times (i.e. red-black point GS: ~3500 
iterations for the L∞ norm to converge to 10-8 in the 
manufactured solution case described in §3.1 ff).  
SOR, with a red-black point iteration scheme, has 
proved to have adequate convergence times (i.e. red-
black point SOR: ~1000 iterations for the L∞ norm to 
converge to 10-8; this reduced the run time by about 
70% for the manufactured solution case in §3.1 ff.).  
The SOR scheme used is presented in Equation 
(2.16) with the optimal over-relaxation factor (ψ) 
determined by Equation (2.17). 
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where Q is the source term [i.e. the right hand side of 
Equation (2.13)], a is the coefficient that represents 
that spatial discretization and Ng is the number of 
grid cells in the computational domain.  

Convergence was measured using by the residual 
(R): 

  (2.18) 
n 1 n 1
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+ +
+ + − −
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− − − +

When the residual is reduced to a specified 
convergence criteria (§3.1 ff), the non-hydrostatic 
pressure is considered resolved and the velocity field 
and free surface are updated with the new non-
hydrostatic pressure. Other methods may be used to 
solve the pressure Poisson equation more efficiently 
(e.g. Mahadevan, et al., 1996b; Marshall, et al., 
1997; Casulli and Stelling, 1999; Casulli, 1999; 
Fringer and Street, 2003).  Some possibilities include 
the SOR applied in line-relaxation form, conjugate 
gradient method or multigrid methods.  The 
multigrid method is well suited to handle stiff 
problems, such as the pressure Poisson equation, and 
it may use a Gauss-Seidel iterative scheme, so the 
non-hydrostatic solver could be adapted into multi-
grid form.  However, the multi-grid method may be 
difficult to implement over complex boundaries (He, 
et al., 1996).        

2.1.4 Boundary Conditions 
The model boundary conditions were assigned so 
that the vertical solid boundaries perfectly reflect 
wave propagation and neither vertical nor horizontal 
boundaries have viscous boundary layers.  To 
achieve these requirements, the velocity is assigned 
Dirichlet conditions normal to solid boundaries (U = 
0 or W = 0) and Neumann conditions tangential to 
solid boundaries (dU/dx = 0 or dW/dz = 0).  Scalar 
quantities, including the non-hydrostatic pressure, 
have Neumann conditions (zero gradient) at all solid 
boundaries.  The velocity and scalar conditions are 
implemented in CWR-ELCOM under the 
designation of “free-slip” boundaries.  The non-
hydrostatic pressure at the free surface is a Dirichlet 
condition requiring Pnh = 0.  The boundary 
conditions for the non-hydrostatic pressure are built 
directly into the non-hydrostatic solver in the SOR 
coefficients, ‘a,’ in Equation (2.16).     

2.2 Analysis Methods 

Both qualitative and quantitative analysis methods 
are used to compare and contrast hydrostatic and 
non-hydrostatic model results.  The simplest 
qualitative analysis is visual examination of internal 
wave evolution over several wave periods in both 
models and theory.  The human eye/brain 
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combination is capable of distinguishing the overall 
scope of phase/amplitude errors in an intuitive way 
that provides the first level of screening for model 
results.  Quantitative analysis methods developed 
herein are focused on the energy changes within the 
system.  A principle reason for conducting model 
experiments using the inviscid/diffusionless 
equations is that any change in the modeled total 
energy (ET) is directly attributable to numerical error.  
Therefore, energy changes are an integrator of 
numerical dissipation and diffusion errors in the 
model results.  Furthermore, there is an energy shift 
to smaller wavelengths associated with the 
degeneration of an internal wave, which is used to 
identify numerical error.         

2.2.1 Background 
Total energy (ET) in a system is comprised of kinetic 
(EK) and potential energy (EP), written below for a 
2D system with a constant breadth (B):   

 
L

2
K i

0 b

1E U Bd
2

η

= ρ∫ ∫ zdx

P

B

 (2.19) 
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  (2.20) 
L

P

0 b

E g zBdzdx
η

= ρ∫ ∫

so that ET may be written as: 

  (2.21) T KE E E= +

The potential energy can further be separated 
into background potential energy (EB) and available 
potential energy (EA) (Lorenz, 1955).  The EB is the 
potential energy when the system is at its lowest 
possible energy state.  That is, if a system is 
adiabatically brought to rest and the density field 
settles without mixing, then the system is considered 
to have its lowest possible potential energy, which is 
EB.  The EA is the potential energy of a system 
displaced from its lowest possible energy field, or 
also described as the EP available to be transferred to 
EK.  Thus, the EA is defined as the difference 
between the EP and EB:   

 A PE E E≡ −  (2.22) 

A simple monochromatic standing wave is an 
oscillatory exchange of EA (the potential energy in 
the inclined wave) for EK (kinetic energy when the 
wave is flat), and back to potential energy again.  In 
an inviscid/diffusionless system, the exchange of EA 
for EK must be conservative, so it is convenient to 
define their sum as dynamic energy (ED): 

  (2.23) D AE E E≡ + K

The relationship between energies is seen in Figure 
2.3 

Mass diffusion is the spreading, or weakening, 
of a stratified density field and is characterized by 
the increase in the background potential energy (EB) 
as heavier particles are diffused upwards and lighter 
particles diffused downwards.  Since EB is the 
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Figure 2.3: Schematic of energy behavior over a wave period, for a inviscid/diffusionless 
monochromatic standing wave.  The black lines above the graph show the evolution of the wave 
shape.  The purple (            ) line is the potential energy (EP), the red (               ) line is the 
background potential energy (EB), the blue (            ) line is the available potential energy (EA), the 
yellow (            ) line is the kinetic energy (EK) and the green (           ) line is dynamic energy (ED).  
The EP is the sum of EB and EA and the ED is the sum of EA and EK. 
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density field when restored to its lowest energy state, 
it can only change through physical diffusion of the 
density gradient (Winters, et al., 1995).  That is, 
advection and wave propagation can not directly 
increase EB.  However, in the physical world they 
may cause shear instabilities and wave breaking 
which will more readily allow physical diffusion to 
occur.   

Resort all water parcels (grid cells) by 
density, keeping track of the volume of each 

grid cell. 

Fill the basin, starting at the bottom with 
the heaviest parcel, where the volume 

associated with this parcel is spread evenly 
over the entire horizontal area.  Continue 

filling the basin from most to least dense, as 
in Figure 2.5.   
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Numerical diffusion of mass is 
indistinguishable from physical diffusion of mass in 
the resulting smoothing and spreading of gradients, 
which makes it difficult to quantify the numerical 
diffusion error when the governing equations include 
physical diffusion.  In a model that sets physical 
diffusion to zero, any change in EB is model error 
(Laval, et al., 2003), which is commonly referred to 
as numerical diffusion.  Numerical diffusion is 
dependent on the coarseness of the grid; that is, fine 
grids reduce numerical diffusion (Hodges, et al., 
2000).  Thus, as a grid is refined and numerical 
diffusion is inhibited, modelers typically presume 
that model representation of EB and internal wave 
evolution are improved; however, as shall be seen, 
this is not always true (§4 ff.).      

Calculate the EP for this resorted system 
using Equation (2.20), where ‘ρ’ is the resorted 

density, ‘z’ is the height of the layer in the 
resorted basin, ‘dz’ is the thickness of the 
resorted layer and ‘dx’ is the length of the 

basin.  This is the EB.   

In the physical world, dynamic energy (ED) is 
decreased by: 1) transfer of available potential 
energy (EA) and kinetic energy (EK) to background 
potential energy (EB) through turbulent mixing or 2) 
loss of EK to heat through the action of viscosity.  
The latter is called “dissipation,” while the former 
(mixing) is where waves and advection enhance the 
rate of physical diffusion.  Shear instabilities and 
wave breaking move a fluid around, (i.e. ‘stirring’) 
which raises some of the heavy fluid, increasing EA 
and decreasing EK.  If physical diffusion is present, a 
portion of the stirred fluid is irreversibly mixed.  
Thus, a portion of the EK that went into EA to stir the 
fluid is, in a sense, converted into EB.  Therefore, 
physical diffusion increases the EB of a system while 
decreasing the ED of the system.  The portion of EK 
lost due to diffusion is not considered dissipation of 
energy because the EK was converted to EB rather 
than heat.  Without physical diffusion, stirred fluids 
cannot irreversibly ‘mix’ so the heavier fluid would 
eventually fall back to its lowest energy state, 
thereby converting the EA back to EK with no impact 
on EB or ED.  Hence, in a diffusionless, inviscid 
model any decrease in ED represents energy lost in 
the form of dissipation.  As dissipation decreases EK, 
there is less energy available for conversion to EA 
and consequently a reduction in the ED of a system.   

Figure 2.4: Flow chart of sorting algorithm for 
background potential energy (EB). 

The evolution of background potential energy 
(EB) and dynamic energy (ED) provide a measure of 

numerical diffusion and numerical dissipation.  
While the total potential energy for any particular 
density distribution is a relatively simple 
computation, the calculation of background potential 
energy is more difficult.  Following the example of 
Winters, et al. (1995), an algorithm was developed to 
determine EB, as described in Figure 2.4.  The model 
approximates reality by assigning each cell in a 
system a unique value for density.  By example, a 
5×5 random domain would result in 25 layers in the 
resorted system, as in Figure 2.5. 

Figure 2.5 provides a simple example, but a 
larger domain results in significantly more layers 
(i.e. 4380 for a 60×73 grid).  The resorted density 
field yields a vertical resolution that has a much finer 
scale than the model’s representation of the vertical 
processes.  When the full resorted density field is 
used in calculations, the results are “noisy” and are a 
misleading representation of the model’s resolvable 
vertical structure.  To return the data to the 
appropriate analysis scale, the resorted density 
profile is “binned” into groups of densities to yield a 
resorted density domain that has the same number of 
layers as the original vertical resolution (Figure 2.6).  
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The binned, resorted density field yields a domain 
that produces smoother calculations (Figure 2.7). 

2.2.2 Numerical Diffusion 
Physical diffusion changes stratification by 
smoothing density gradients transferring more dense 
fluid into lower density regions and vice-versa.  
Typically, changes in the background potential 
energy provide a measure of the physical diffusion in 
a system.  In a diffusionless system, any changes in 
the stratification can be attributed to numerical 
diffusion.  Therefore, changes in the background 
potential energy for a diffusionless system provide 
an estimate of numerical diffusion.  Physical 
diffusion is modeled by diffusivity for each of the 
scalars, such as salinity or temperature.  Thus, the 
concept of diffusivity is used to develop a numerical 
diffusion coefficient based on changes in the 
background potential energy.  The numerical 
diffusion coefficient acts as a global parameter to 
compare model performance and error accumulation.   

The resorted density field allows calculation of 
the EB per unit area (A):   
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where ρB is the binned, resorted density.  The 
evolution of EB is:  
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The free surface for the background density 
field is constant in a system without inflows or 
outflows, so the derivative passes through the 
integral in Equation (2.25).  Discretizing Equation 
(2.25) for ‘N’ layers yields: 

 
( ) ( )

N
B

B,k k k k
k 1

E td d t, z z gz
dt A dt

=

⎛ ⎞ ⎧ ⎫⎡= ρ ∆⎜ ⎟ ⎤⎨ ⎬⎣⎩ ⎭⎝ ⎠
∑ ⎦

 

 (2.26) 

 

Figure 2.5: Schematic of a random 5×5 density field resorted into 25 layers from most to least dense. 
The blue indicates least dense and red indicates most dense. 

The density term for layer ‘k’ can be represented as: 

  

Figure 2.6: Schematic of a random 5×5 density field resorted into 25 layers from most to least dense 
and then binned into 5 layers.  The blue indicates least dense and red indicates most dense. 
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Figure 2.7: Typical change in background potential energy (units: Joules) versus the time 
normalized by a wave period (T).  The green line is before the density field is binned, the blue 
line is after the density field is binned, with the errorbars representing the standard deviation.   
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( )

( )
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dt dt A z
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= ⎡ ⎤⎣ ⎦

=

 (2.27) 

where mρ = ∀  and  with ∆zA z∀ = ∆ k constant in 
time.  The vertical mass flux, , represents the rate 
of change in the resorted density field; any change in 
E

Bm

B is due only to the diffusion of mass in the density 
stratified system.  The relationship in Equation (2.27) 
can be substituted into Equation (2.26) to obtain: 

 
( ) ( )N

B B k
k

k 1

E t m t, zd gz
dt A A

=

⎛ ⎞
=⎜ ⎟

⎝ ⎠
∑  (2.28) 

Fick’s law states:  

 Cq D
z

∂
= −

∂
 (2.29) 

where D is the diffusion coefficient, q is the mass 
flux per unit area and C is the mass concentration.  
The vertical mass flux per unit area in Equation 
(2.28) may be expressed in the form of Fick’s law: 

 ( ) ( ) ( )Bm z z
D z

A z
∂ρ

= −
∂

 (2.30) 

Making the substitution for the vertical mass flux per 
unit area into Equation (2.28), yields 

 
( ) ( )N

B
k k

k 1

E t t, zd D gz
dt A z

=

∂ρ⎛ ⎞
= −⎜ ⎟

∂⎝ ⎠
∑ B k

D

 (2.31) 

which can be redefined as 

 
N

k k
k 1

F
=

= σ∑  (2.32) 

where 

 

( )

( )

B

B k
k k

E tdF
dt A

t, z
gz

z

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∂ρ

σ = −
∂

 (2.33) 

F is computed from model results using the rate 
of change of EB and σ is computed from the resorted 
density profiles.  Local diffusion coefficients (Dk) 
cannot be directly computed from the global change 
in EB in Equation (2.32).  However, we can estimate 
an approximate global diffusivity based on a 
simplified treatment of the density field.  In all the 
present investigations, hyperbolic tangents are used 
to construct the density field: 
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1
py

base py
py

xe z cos z
L1 tanh

h2
2

⎧ ⎫⎡ ⎤⎛ ⎞+ η π −⎪ ⎪⎜ ⎟⎢ ⎥⎪ ⎪⎝ ⎠⎣ ⎦ρ = ρ + ∆ρ ⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

  (2.34) 

where ρbase is the density at the center of the 
pycnocline, ∆ρpy is the density change across the 
pycnocline, η is the amplitude, x is the horizontal 
grid location, L is the length of the basin, z is the 
vertical grid location and hpy is the thickness of the 
pycnocline.  The height at the center of the 
pycnocline is zpy and the initial thickness (hpy) is split 
equally on each side of the pycnocline center line to 
designate the initial pycnocline position.  Equation 
(2.34) yields a representative density profile (Figure 
2.8).  The hyperbolic tangent profile models a 
continuous stratification in a real world system with 
three distinct layers; two approximately uniform 
density layers separated by a region of rapidly 
changing density.  Therefore, dividing a stratified 
system into three layers: 1 = upper, 2 = pycnocline 
and 3 = lower (Figure 2.8); Equation (2.32) can be 
written 

  (2.35) 1 1 2 2 3 3D D Dσ + σ + σ =

 15

F

The upper and lower layers have approximately 
constant density, so σ1 = σ2 = 0, which leaves  

 

( )B

2
22

k

E td
dt AFD

gz
z

⎛ ⎞
⎜ ⎟
⎝= = −

∂ρσ
∂

⎠  (2.36) 

Equation (2.36) can be approximated as  

 

( )B

2

1 3
py

py

E td
dt A

D
gz

h

⎛ ⎞
⎜ ⎟
⎝≈ −
⎛ ⎞

⎠
ρ −ρ

⎜ ⎟⎜ ⎟
⎝ ⎠

 (2.37) 

where ρ1 and ρ3 are the densities of the upper and 
lower layers, respectively.  Equation (2.37) yields a 
global approximation for D across the pycnocline 
derived from the change in the background potential 
energy system and changes in the pycnocline 
thickness and density field.  This approximation 
provides a tool with which numerical diffusion can 
be estimated for the simple three-layer system.  Since 
this approximation is taken at each time step there is 
the possibility of oscillations due to small-scale anti-
diffusive fluxes.  The small-scale anti-diffusive 
fluxes arise from non-monotonic advection 
(Leonard, 1991).  Oscillations form around sharp 
wave fronts (i.e. a discontinuity) and are referred to 
as Gibb’s phenomenon (Kreyszig, 1999).  The 
transport algorithm used in the present research is 
ULTIMATE QUICKEST; ULTIMATE (Leonard, 
1991) smoothes the oscillations in QUICKEST 
(Leonard, 1979) so that the scalar concentration 
decreases monotonically in a one-dimensional 
system.  Lin and Falconer (1997) found that 
ULTIMATE QUICKEST is not monotonic for a 
two-dimensional system, such as used in the present 
research.   
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Layer 1 

Model performance over multiple wave periods 
is the focus of this work; thus, the change in EB and 
the pycnocline density gradient are binned over a 
wave period to smooth anti-diffusive fluxes and 
provide a clear indication of numerical diffusion.  
The average form of Equation (2.37) is 

Layer 2 

 

( )B

T
2

1 3
py

pyT

E t1 d dt
T dt A

D
1 gz dt
T h

⎛ ⎞
⎜ ⎟∆ ⎝ ⎠

= −
⎛ ⎞ρ −ρ
⎜ ⎟⎜ ⎟∆ ⎝ ⎠

∫

∫
 (2.38) 

Layer 3 

Figure 2.8: Typical density profile constructed by a 
hyperbolic-tangent function.  The dashed lines 
separate layers 1, 2 and 3. 

where T is the wave period.  The change in hpy is 
slow if the upper and lower layer densities remain 
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constant and the pycnocline has not diffused over the 
entire water column (Figure 2.9).  With this 
assumption, Equation (2.38) can be discretized as 

( )
( ) ( ){ }

1
2

1
2

B n B n 1
n

2 n

1 3
py

py

1 E T E T
A T

D T

gz
h

−
−

−

−
∆

= −
⎛ ⎞ρ −ρ
⎜ ⎟⎜ ⎟
⎝ ⎠

 

  (2.39) 

where the over bar represents the binned data over a 
wave period.   

2.2.3 Numerical Dissipation 
Energy dissipation in a physical fluid is controlled by 
molecular viscosity acting at the smallest scales of 
velocity shear.  However, the energy at the smallest 
scales of motion is fed by the larger scales of motion 
(Kantha and Clayson, 2000b; Kundu and Cohen, 
2002), so the larger scales are considered to be the 
energy-containing scales and control the rate at 
which viscosity can work.  In modeling, turbulence 
is commonly discussed in terms of the eddy viscosity 
associated with a large-scale velocity shear, so that 
the eddy viscosity characterizes the enhancement of 
turbulent dissipation for the large-scale features.  The 
concept of eddy viscosity is well-entrenched in our 
understanding of dissipative phenomenon, so it is 
useful to develop a measure of a numerical viscosity 
associated with the dissipation by numerical error.  

The mechanical energy dissipation rate, 
typically presented on a unit mass basis (ε), 
(Batchelor, 1967) in a 2D, incompressible fluid is  

 
2 2u w u w2 2

z x x z
⎡ ⎤∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ε = ν + + +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝⎢ ⎥⎣ ⎦

2
⎞
⎟
⎠

 (2.40) 

In a diffusionless system, the dissipation rate, 
integrated over a volume, is equivalent to the rate of 

change of the ED.   

 ( )

D

2

o

2 2

dE
d

dt

u w
z x

u w2 2
x z

∀

∀

= ρε ∀

⎡ ∂ ∂⎛ ⎞= ρ + ρ ν +⎢⎜ ⎟∂ ∂⎝ ⎠⎢⎣

⎤∂ ∂⎛ ⎞ ⎛ ⎞ d+ + ∀⎥⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠ ⎥⎦

∫

∫  (2.41) 

Since ρ ρ , the density perturbation from the 
reference density ( ρ ) can be neglected, yielding 

 

2
D

o

2 2

dE u w
dt z x

u w2 2
x z

∀

⎡ ∂ ∂⎛ ⎞≈ ρ ν +⎢⎜ ⎟∂ ∂⎝ ⎠⎢⎣

⎤∂ ∂⎛ ⎞ ⎛ ⎞ d+ + ∀⎥⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠ ⎥⎦

∫
 (2.42) 

The principle velocity shear (and hence 
numerical dissipation) occurs across the pycnocline.  
A characteristic numerical viscosity associated with 
numerical dissipation is developed that is consistent 
with the shear characteristics in the pycnocline.  
Integrating Equation (2.42) over the volume of the 
pycnocline and substituting the characteristic 
numerical viscosity of the pycnocline (νpy) for the 
molecular viscosity (ν) yields: 

 

2
D

o py

2 2

py

dE u w
dt z x

u w2 2
x z

⎡ ∂ ∂⎛ ⎞≈ ρ ν +⎢ ⎜ ⎟∂ ∂⎝ ⎠⎢⎣
⎤∂ ∂⎛ ⎞ ⎛ ⎞+ + ∀⎥⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠ ⎥⎦

 (2.43) 

where  represents a spatial mean.  If the 
pycnocline volume ( py∀ ) is characterized by 
horizontal area (A) and pycnocline thickness (hpy) 
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Figure 2.9: Typical change in pycnocline thickness (normalized by total depth, H) over time 
(normalized by the wave period, T).  This case was scenario 2 for the 30×73 grid (§3.3). 
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then numerical viscosity, binned over a wave period, 
may be approximated as   

( ) ( )
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2

py D n 1 D n
n

2

o py

1
2 2

1 E T E T
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u wAh
z x
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+
−

−

⎡ ⎤ν = −⎣ ⎦∆

⎧ ⎡ ∂ ∂⎪ ⎛ ⎞⎢× ρ +⎨ ⎜ ⎟⎢ ∂ ∂⎝ ⎠⎪ ⎣⎩

⎫⎤∂ ∂ ⎪⎛ ⎞ ⎛ ⎞ ⎥+ + ⎬⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠ ⎥⎪⎦⎭

 

  (2.44) 

where an overbar represents the binned data over the 
wave period.  For internal waves, the dominant 
velocity gradient is ∂u/∂z, so Equation (2.44) can be 
reasonably reduced to
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1
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1 E T E T
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⎤
⎦

 (2.45) 

Equation (2.45) provides an approximation for the 
numerical viscosity in the model, which is used to 
compare the relative importance of numerical 
viscosity with molecular viscosity.   

2.2.4 Spectral Analysis 
As modeled internal waves evolve, dynamic energy 
is transferred to smaller scale waves or lost to 
numerical error.  The computation of numerical 
viscosity (§2.2.3) allows quantification of the energy 
dissipated.  In this section we discuss how spectral 
analysis is used to quantify the transfer of energy 
into shorter wavelength features.   

Spectral analysis describes the distribution of 
signal power over wave frequencies (or 
wavenumbers).  For this work, the spectral analysis 
decomposes the spatial structure of pycnocline 
displacement into the power spectral density 
associated with different wavenumbers (k = 2π/λ).  A 
Matlab® toolbox function (i.e. “pwelch”) was used to 
obtain the power spectral density.  Welch’s method 
is used, which is outlined in the following steps: 1) 
the data is divided into overlapping segments, 2) a 
Hamming window is used to calculate the modified 
periodogram for each segment and 3) the modified 
periodograms are averaged to obtain the estimated 
power spectral density for the entire data set (Signal 

Processing Toolbox User’s Guide, 1998).  A small 
data set may reduce the resolution of the power 
spectral density estimation, thus the data set is 
replicated to create a longer data set (i.e. in this 
work, the replicated data set is used to include basin-
scale waves).  For all analysis in this work, the signal 
data is divided into eight segments with 50% overlap 
between adjacent segments and a Hamming window 
applied on each segment, 32 replicates of the initial 
half wavelength wave are used (to total 16 
wavelengths).  The power spectral density is 
computed at each binned period for all wavelengths, 
thus the data set is sampled at 2π/∆x, which 
corresponds to wavenumber.   

As an internal wave steepens and forms 
solitons, the initial long-wavelength wave evolves 
into a train of short-wavelength waves.  The power 
spectral analysis provides the power distribution of 
the internal wave over different wavenumbers.  As a 
wave evolves, an energy shift may occur, 
transferring energy from the long-wavelength wave 
to smaller-wavelength waves.  For instance, the peak 
energy at time = 0 coincides with the initial, long-
wavelength wave.  However, as the wave evolves 
and dynamic energy (ED) decreases, there is an 
energy transfer through different wavelength waves, 
which appears as a shift in the peak power 
wavenumber through time.  The shift in peak power 
should coincide with the development of solitons.  If 
a wave does not degenerate into solitons, the peak 
power should remain with the initial, long-
wavelength wave.  If a bore develops, then there may 
be a shift in peak power as the bore provides higher 
wavenumber components since the wave is no longer 
sinusoidal.  Comparing expected wave behavior with 
the spectral analysis provides an assessment of 
model skill, in terms of the model’s ability to 
represent soliton formation and the evolution of 
model error.   
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Chapter 3. Verification and validation of 
the non-hydrostatic solver 
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Verification and validation of a computer code are 
two necessary and basic steps to demonstrate that the 
code does what it is intended to do.  According to 
Roache (2002), code verification is an evaluation of 
error from a known solution, a purely mathematical 
exercise, while code validation demonstrates the 
accuracy with which the mathematical model 
captures the physical phenomena based on theory or 
measured in the field or laboratory.  This chapter 
verifies the non-hydrostatic pressure solver with an 
analytical solution, validates the solver’s 
convergence with a simple test case and validates the 
model’s solution against theory and a laboratory 
experiment.   Figure 3.1: Solution space for the manufactured 

solution.  The colorbar represents pressure in 
kg/ms2. 3.1 Verification by the Method of 

Manufactured Solutions 

The purpose of the manufactured solution is to verify 
the model’s accuracy and establish the convergence 
criterion for the numerical model used in this work. 

3.1.1 Setup 
Roache (2002) suggests using the “Method of 
Manufactured Solutions” to verify a numerical code.  
This method uses a continuous mathematical 
solution independent of the code.  The manufactured 
solution must be non-trivial and should exercise all 
terms in the numerical code and the corresponding 
boundary conditions.  The manufactured solution is 
applied to the numerical model’s homogeneous 
governing equations, producing a non-homogeneous 
source term that is discretized and added to the 
numerical model’s governing equations; the resulting 
discrete non-homogeneous governing equations are 
used to approximate the exact manufactured solution.  
This study uses a manufactured two-dimensional 
analytical solution: 

  (3.1) P cos(x)cos(z)=

Figure 3.1 shows the solution for Equation (3.1).  
The pressure Poisson equation has the form 

 
2 2

2 2

P P Q
x z
∂ ∂

+ =
∂ ∂

 (3.2) 

The second derivative of Equation (3.1) is: 

 

2

2

2

2

P cos(x)cos(z)
x
P cos(x)cos(z)

z

∂
= −

∂
∂

= −
∂

 (3.3) 

This produces a manufactured source term: 

  (3.4) Q 2cos(x) cos(z)= −

which is used as the discrete source term for the non-
hydrostatic solver [e.g. the right hand side of 
Equation (2.13)] to compute the discrete pressure 
field of the manufactured solution.  Thus, the 
manufactured solution provides a known solution 
space which can be compared to the model’s solution 
driven by the source term, Equation (3.4).  This 
approach allows verification of model performance 
for different spatial grids and time steps. 

The verification test domain is a square box, 2π 
m in length and 7.5 m in height, represented by four 
different grids, as described in Table 3.1.  The 
boundary conditions of the manufactured solution 
are the same pressure boundary conditions used in 
other simulations within the present research 
(§2.1.4); the domain top (free-surface) has a 
Dirichlet boundary condition, while all other sides 
(solid boundaries) have Neumann boundary 
conditions.   

3.1.2 Error Analysis 
It is necessary to examine the grid convergence error 
to assess the model’s accuracy at different grid 
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)

resolutions.  Following Roy (2003), grid 
convergence error is analyzed using the L1 and L2 
spatial error norms.  The spatial error norms consider 
the entire domain to estimate the order of accuracy of 
the model. 

As defined by Roy (2003), the discretization 
error at grid point (x,z):  

  (3.5) ( ) ( ) (D grid exactx, z P x, z P x, zε = −

is used in the L1 and L2 spatial error norms:   
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Table 3.1: Grids used in the 
manufactured solution (§3.1).   

where Ngrid is the number of grid points in the 
computational domain.  Figure 3.2 shows the L1 and 
L2 spatial error norms.  The three different grids used 
(Table 3.1 cases A - C) were refined in both the 
horizontal and vertical direction.  As the grid is 
refined, the spatial error norms decrease with 
second-order behavior, verifying that the non-
hydrostatic solver is spatially second-order accurate. 

In real world problems, analytical solutions 
typically do not exist.  Another way to look at error 
is the residual [from Equation (3.2)]: 

2 2
grid grid

2

P (x, z) P (x, z)
R(x, z) Q(x, z)

x z
∂ ∂

≡ − −
∂ ∂ 2

 Case Grid (nx × nz)
A 10 × 10
B 20 × 20
C 40 × 40
D 41 × 30

 (3.7) 

Figure 3.2: The L1 and L2 spatial error norms of the manufactured solution for grid 
refinement (Table 3.1 cases A – C). 
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The L1, L2 and L∞ residual norms are then defined: 
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 (3.8) 

Figure 3.3 shows the L1, L2 and L∞ residual 
norms for increasing number of iterations that the 
non-hydrostatic solver performs for the 
manufactured solution.  This iteration count is 
equivalent to the number of iterations per timestep of 
the pressure solution in an unsteady problem (§3.2).  

The change in residual norms with number of 
iterations measures the model’s evolution towards 
convergence for a specific amount of computational 
effort.  The norms continue to decrease with 
increasing number of iterations until the residual 
calculation [Equation (3.7)] reaches machine 
accuracy.  However, the solution at machine 
accuracy will differ from the analytical solution by 
the truncation error in the discrete equations (Hirsch, 
1988).  Convergence is defined when the norms 
decrease by a specified order of magnitude.  Hirsch 
(1988) gives the example of, “a second-order 
accurate space discretization, with ∆x = 10-2, will 
produce an error of the order of 10-4 on the solution, 
which cannot be reduced further even if the residual 
equals 10-14.”  Thus, for second-order discretization 
of the non-hydrostatic solver, the solution is 
considered converged when the L∞ residual norm 
decreases by four orders of magnitude.  The 
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Figure 3.3: Residual norms for manufactured solution (case D, Table 3.1).  Solid blue line is L∞ norm, 
dotted blue line is L2 norm and dashed red line is L1 norm.  The number of iterations are the number of 
iterations the non-hydrostatic solver performs per timestep. 
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manufactured solution drops by four orders of 
magnitude (Figure 3.3) in about 50 iterations.  Figure 
3.4 shows the comparison of L∞ spatial error and 
error norms.  The L∞ spatial error norm flattens at the 
same number of iterations (~50) where the L∞ 
residual norm has decreased by four orders of 
magnitude.  Thus, the L∞ residual norm can be used 
to reasonably represent the error when it is not 
possible to calculate the L∞ spatial error norm (i.e. 
where there is no analytical solution).   

In summary, applying the non-hydrostatic 
solver to the manufactured solution shows that as the 
grid is refined, the error decreases and the computed 
solution converges to the manufactured solution.  
The spatial error norms verify that the method is 
second-order accurate.  The residual norms are a 
good proxy for the spatial error norms when an 
analytical solution is not available.  Thus, the L∞ 
residual norm is used to establish the convergence 
criterion in the above verification of the non-

hydrostatic solver; which is the reduction of the L∞ 
residual norm by four orders of magnitude. This 
convergence criterion is used in all further model 
simulations.       

3.2 Validation and Convergence for an 
Unsteady Internal Wave 

The purpose of this test case is to determine the 
number of iterations to reach a converged solution 
(i.e. based on §3.1) in an unsteady internal wave.  
This test case is sufficiently simple, yet exemplifies 
many of the nuances of internal wave modeling. 

3.2.1  Setup 
The validation test basin used was 10 m long and 7.5 
m deep.  The initial wave was a cosine wave with 
amplitude of 1.125 m, where the upper layer depth to 
total depth ratio was 0.3.  A hyperbolic tangent 
function [Equation (2.34)] was used to construct the 
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Figure 3.4: Spatial error and residual L∞ norms for manufactured solution for case D.  The red 
dotted line is where the L∞ residual norm decreases by four orders of magnitude (i.e. the 
convergence criterion).  The number of iterations are the number of iterations the non-hydrostatic 
solver performs per timestep. 

 22



Chapter 3. Verification and validation 

density profile (Figure 2.8).  The test basin’s density 
profile has an initial pycnocline that is 5m thick with 
a density change of 4 kg/m3.  A square grid of 0.25 
m * 0.25 m was applied to this domain.   

3.2.2 Results 
Akin to the manufactured solution in §3.1, the L1, L2 
and L∞ residual norms for the internal wave test case 
decrease with increasing number of iterations that the 
non-hydrostatic solver performs within each timestep 
of the simulation (Figure 3.5).  However, the 
decrease in convergence is slower than the 
manufactured solution (Figure 3.6).  The L∞ residual 
norm decreases by four orders of magnitude in about 
50 iterations for the manufactured solution case, 
while the L∞ residual norm decreases by the same 
amount in about 180 iterations for the internal wave 
test case.  The longer convergence time for the test 
case compared to that of the manufactured solution is 
discussed in §6. 

The estimated root mean square error is used to 
evaluate the density field for the different number of 

iterations that the non-hydrostatic solver performs 
per timestep.  The estimated RMS error compares the 
difference in density at each grid cell within the 
pycnocline between a simulation with 1000 
iterations, which is considered the converged case, 
against simulations with a lesser number of iterations 
(i.e. 10, 50, 75, 100, 200 and 500).  The estimated 
root mean square error (εRMS) of the density field is: 
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rapid change in the density profile (e.g. Figure 2.8, 

 

 (3.9) 

where k is different numbers of iterations the non-
hydrostatic solver performs per timestep and ∆ρpy is 
the density change across the pycnocline.  The 
estimated RMS error is computed only within the 
pycnocline (e.g. layer 2 in Figure 2.8) because layers 
1 and 3 are essentially uniform density.  The 
pycnocline is defined by the region where there is 
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Figure 3.5: Residual norms for the internal wave test case.  The solid purple line is the L∞ norm, the 
dotted blue line is the L2 norm and the dashed red line is the L1 norm. The number of iterations are the 
number of iterations the non-hydrostatic solver performs per timestep. 
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Figure 3.6: L∞ norm for the manufactured solution (case D, dashed blue line) and the internal 
wave test case (solid red line).  The number of iterations are the number of iterations the non-
hydrostatic solver performs per timestep. 

the pycnocline is demarcated between 998.1 kg/m3 
and 1001.9 kg/m3).  The RMS error is normalized by
the density change across the pycnocline (e.g. in this 
case, 3.8 kg/m

 

3).  Figure 3.7 shows the RMS error 
values for the six different non-hydrostatic solver 
iterations per timestep (i.e. 10, 50, 75, 100, 200 and
500).  Using 200 iterations per timestep, the RMS 
error is one or more order of magnitude smaller tha
the 10, 50, 75 and 100 iteration cases.  After the 
initial growth in the first 200 timesteps, the error 
growth rate for the 200 iteration case [O(10-5) in 8
timesteps] is slower than the growth for cases with 
less iterations [i.e. the 100 iteration case grows to 
O(10-3) in 800 timesteps].   Of course, the RMS err
at 200 iterations is larger than the 500 iteration case, 
but using 500 iterations increases the computational 
time (200 iterations: 0.61 s/timestep; 500 iterations: 
0.75 s/timestep) without necessarily improving the 

model results.  That is, as discussed in §3.1.2, the 
solution cannot reduce the error below truncation a
iterations are increased past the convergence 
criterion (decrease in L∞ residual norm by fou
orders of magnitude) (Hirsch, 1988).  At 200 
iterations, the L∞ residual norm has decreased 
four orders of magnitude, so any further decrease 
the L∞ residual norm provided by increasing the 
number of non-hydrostatic solver iterations per 
timestep is unnecessary.  This estimated RMS er
analysis supports the findings from the norm analysis
in Figure 3.5.   

The non-hy
 computational time.  For example, on a Dell 

Workstation PWS530 Xeon Processor with a 2.4 
GHz CPU and 3.5 GB of RAM, the hydrostatic 
model takes 0.31 seconds/timestep, while the no
hydrostatic model takes 0.66 seconds/timestep for 
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the same timestep and grid resolution where the 
convergence criteria of the non-hydrostatic solve
reducing the L

r is 
∞ norm by four orders of magnitude; 

for a grid with 60 horizontal grid cells × 73 vertical 
grid cells (0.01 m horizontal resolution × 0.004 m 
vertical resolution) and a timestep of 0.012 seconds
simulating 10 wave periods requires 90000 timestep 
iterations, the hydrostatic model takes 7.9 hours, 
while the non-hydrostatic model takes 16.4 hours.
However, the above mechanics understates the scop
of the problem: as discussed in §4 ff., the non-
hydrostatic model requires a finer timestep and
spatial resolution than the hydrostatic model to 
capture the resolvable processes, therefore a more 
meaningful comparison is the computational time 
required for a coarse-resolution hydrostatic model to 
a fine resolution non-hydrostatic model.  While the 
choice of the coarse-resolution grid is somewhat 
arbitrary, for illustration we might consider a 
hydrostatic solution on a 30 × 73 grid on the s
problem, with a 0.2 s time step and 1800 timestep 
iterations.  The resulting solution time is 0.09 hours
(5.5 minutes).  With this example, the difference in 
computational expense between the hydrostatic and 
non-hydrostatic models is evident; the spatial and 
temporal requirements of the non-hydrostatic mode
combined with the pressure Poisson solution, render 

it a huge computational undertaking.  The solution of 
the pressure Poisson equation accounts for 89% of 
the increase in simulation time.  Updating the 
velocity and free-surface field increases the 
simulation time by 10%.  The above discussi
a two-dimensional solution; a three-dimensional 
solution may further increase the difference in 
computational effort.    

The pressure Poiss
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ure at a point using the pressure from the 
surrounding cells.  Other non-hydrostatic mode
(e.g. Marshall, et al., 1997; Casulli, 1999) use the 
pressure from time ‘n’ as the initial estimate of the
pressure field for time ‘n+1,’ however the present 
research found that the time ‘n’ pressure may be a 
poor approximation for the time ‘n+1’ pressure fiel
due to the internal wave propagation (§6.1 ff.).  
Setting the pressure field to zero at each timestep
provides a pressure Poisson solution that converge
faster than solution with the previous timestep’s 
pressure field (Figure 3.8).     
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represents the εRMS for a different number of 
iterations per timestep.  The density range is 
3.8 kg/m3. 

Figure 3.7: Root mean square error (εRMS) for 
density field in the test case.  Each line 
represents the εRMS for a different number of 
iterations per timestep.  The density range is 
3.8 kg/m3. 
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different internal wave phenomena: 1) damping
steepening, 3) shear instability (Kelvin-Helmholtz 
billow formation) and 4) internal bore formations.  
The theoretical timescales are a function of the basin 
and internal wave dimensions, such as length, height 
and amplitude; Figure 3.9 shows a schematic of a 
basin.  From the theoretical timescales, Horn 
developed a regime diagram (e.g. Figure 3.10)
uses the theoretical timescales to determine the 
prevailing wave phenomena under different 
conditions.  Horn tested and validated the the
regimes in a laboratory experiment.  
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Figure 3.8: L∞ norm for the non-hydrostatic solver when the pressure at 
the present timestep is approximated from zero (solid blue line) and the 
previous timesteps solution (dashed red line). 
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 series of model simulations: length 

l 

length, pycnocline thickness, and the density change
across the pycnocline.  While there are many 
possible ways to graph this multidimensional d
set, Horn showed that a graph of wave amplitude to
upper layer depth ratio (a/h) and upper layer depth to
total depth ratio (h/H) provides a clear delineation of 
the timescales and regimes.  Figure 3.10 is an 
example of a regime diagram for the basin used
Horn’s experiments.     

As discussed in Ho
 region where viscous damping dominates 

nonlinear steepening, typically for internal waves 
with small amplitudes.  Regime 2 is where nonline
steepening is dominant and solitons are formed.  
Regime 2 flows have been observed many times i
different field studies (e.g. Boegman, et al., 2003; 
Farmer, 1978; Wiegand and Carmack, 1986).  
Regime 3 is supercritical flow, with large wave
amplitudes and a shallow pycnocline, which are 
associated with internal hydraulic jumps and inte
bores.  Regime 4 physics are dominated by Kelvin-
Helmholtz billows, which predominantly occur in 
shallow systems with deep pycnoclines; they are a 
result of shear instabilities at the interface between 
layers.  Regime 5 physics are characterized by large
amplitude internal waves that develop into bores and 
may include Kelvin-Helmholtz billows.  Waves 
developing in the high-mixing regimes 3, 4 and 5
(supercritical flow, Kelvin-Helmholtz billows and 
bores) have the onset of principle phenomena 
occurring within one-quarter of the wave perio

(damping and soliton formation) typically requires
one or more wave periods to significantly affe
wave characteristics.  Horn’s regime diagram 
provides a framework to validate the non-hydrostatic
solver.  Simulation experiments were performe
several scenarios corresponding to the different 
regimes. 

3.3.2 Hor

The dimensions of Horn’s laboratory experiment 
were used for a
(L) = 6 m, height (H) = 0.29 m and width = 0.3 m 
(Figure 3.9).  The regime diagram in Figure 3.10 is 
defined for the above scales.  Horn’s experimental 
basin is a closed system, with solid boundaries on al
sides and the top.  The present model is designed 
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Figure 3.10:  The regime boundaries from laboratory experiments; ordinate: amplitude-upper 
layer depth ratio, abscissa: upper layer depth-total depth ratio.  A typical interface thickness, 1 
cm, was used to determine the timescales, TKH and Td.  The star represents Kelvin-Helmholtz 
billows and bore, the diamond is the broken undular bore, the triangle is the solitons, the 
square is steepening, and the circle is damped linear waves.  (from Horn, et al, 2001) 

only for free-surface simulations, so this is one area 
where the model and experimental conditions 
diverge.  However, the free-surface remains 
essentially flat (maximum displacement of 0.00
as the initial conditions are an entirely barocl
flow, which has no significant coupling to the free 
surface (Kantha and Clayson, 2000b).  The model
boundary conditions are as described in §2.1.4.  The 
model viscosity is set to zero, which is a second area 
where the model and experimental conditions 
diverge.  However, as discussed in §2.1.1, this only 
effects the damping rate of modeled waves at fine 
grid scales when the numerical dissipation is less 
than the physical dissipation.  Thus, it can be 
expected that the model may show development o
solitons (regime 2) under conditions when Ho
experiments show damped linear waves.  Modeling 
the viscosity in Horn’s experiment is impractical as
the principle viscous damping in the experiment is 
not the shear across the wave interface, but is the 
boundary layers on the sides and top of the tank.  
Modeling the drag of these boundary layers is 
impractical with the present model and of little 
relevance to the present subject of interest.    

Horn’s experiments were set up in a tilted 
with two fluids of different density. The density

rence between the two layers was 20 kg/m  
across a pycnocline thickness of 0.01 to 0.02 m.  The 
tilted tank was quickly moved to a horizontal 
position to initialize the wave.  This impulsive start 
creates an initial condition that is approximately a 
linear tilt.  Model simulations of Horn’s experiments
are initialized with a cosine wave having an 
amplitude that corresponds to the tank’s initial angle 
of tilt in Horn’s experiment.  The difference in initial 
wave setup is the third area of divergence between 
the model simulation and the laboratory experiment.  
However, this difference is not expected to affect the 
wave evolution.  A three layer hyperbolic tangent 
salinity profile [Equation (2.34)] was used to 
establish the initial density profile that is close to 
Horn’s condition (Figure 3.11).  

Nine scenarios were modeled to reproduce 
some of Horn’s experiments, as s

 scenarios were chosen based on Horn’s 
reported results (see Horn, et al., 2001 Figures 5 and 
6).  These scenarios exemplify the influence of 
nonlinearity, and the subsequent development non-
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hydrostatic pressure gradients, on internal wave 
evolution.  Group A maintains the same depth ratio 
(h/H) and varies the amplitude ratio (a/h) to illust
the relationship between nonlinearity and initial 
wave amplitude.  Group B changes the depth ratio 
and amplitude ratio.  Changing the depth ratio als
influences the nonlinearity of the system; that is, as
the depth ratio decreases, the nonlinearity increases.
Scenarios 6 and 9 have a depth ratio of 0.5.  At this 
depth ratio, the wave is considered weakly nonlinear. 
Therefore nonlinear steepening and soliton formation
are not significant wave evolutions.  Scenario 6 has a 
small amplitude ratio (a/h = 0.18), so the expected 
phenomenon is a damped wave.  Scenario 9 has a 
large amplitude ratio (a/h = 1.0) and Kelvin-
Helmholtz billows are expected to form. 

3.3.3 Results 
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experimental results by comparing the evolution o
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emergence of solitons and number of solitons withi
a wave series are the three major points of 
comparison.    

Before a discussion of the model and l
results, it is nec

rence between the model simulations and 
Horn’s experiments; that is the neglect of visc
the model simulations.  The experimental tank is 
narrow and has a lid, so there is significant area (i.e. 
the surface area of the interface is 1.8 m2 and the 
surface area of the tank is 3.8 m2) that creates a 
viscous boundary layer which will dominate the 
wave damping.  The computational domain in th
model simulations is the same size, but the bound
layers are not modeled.  Without viscosity, the mod
simulations have no physical damping to restrain 
wave steepening.  The model does have numerical 
dissipation which may cause some damping, 
however, the numerical viscosity due to numerical 
dissipation is less than molecular viscosity for
wave periods up to the emergence of solitons (§4.1 
ff.).  Therefore, as steepening is occurring, the wav
experiences negligible damping, so the modeled 
wave tends to develop solitons sooner and with 
greater amplitudes than in the experiments with 
viscous effects.     
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Table 3.2: Scenarios used in the laboratory-scale 
case (§3.3)
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5 0.30 0.90
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Figure 3.11: Initial density profile for Horn’s 
laboratory experiment (red, dashed line) and the 
modeled hyperbolic tangent density profile. 
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displacement recorded by the central wavegauge in 
Horn’s tank is used to compare the labora
the isopycnal displacement in the center of the mode
domain.  Figure 3.12 shows the model and Horn’s 
results for group A (§3.3.2., Table 3.2).  In general, 
the model matches the qualitative evolution of wave
phenomena and the period of the waves, but over-
predicts the wave amplitude.  This is consistent with 
comparing an inviscid model to a laboratory 
experiment with viscous fluid.  There tends to be one 
less soliton in the wave series in the model 
simulations than in the laboratory experiments; this 
will be discussed later in this section.     

Scenario 1 is within regime 1 where the 
dominating wave behavior is viscous dam

ical viscous damping is not present and th
damping due to numerical dissipation is less than 
physical damping.  Therefore, it is expected that 
modeled waves within regime 1 will have less 
damping (i.e. these wave will have slightly larger
‘bumps’ develop) than in the laboratory experim
this is seen in a comparison of scenario 1 between 
the model simulation and Horn’s experiment.   

Scenarios 2-4 are in regime 2 with soliton 
development, which the model represents, show

ading wave with the largest amplitude and 
successive wave in the train with smaller amplitudes
The model results qualitatively follow Horn’s trend 
of more rapid soliton formation with increasing 
nonlinearity. 

Scenario 5 is in regime 2 and should 
theoretically s

 observed a broken undular bore in the lead
wave (Figure 3.12).  The wave evolution, as 
described by the model simulation, shows bore 
development (Figure 3.15), but the breaking 
described by Horn is not observed.  While detail
data on the breaking phenomena were not rep
by Horn, it is likely their spatial scales are too fine t
be captured in the present model.  Behind the bore, 
the model shows soliton formation, which is also 
indicated in Horn’s results.  The model simulation 
for scenario 5 shows slightly fewer solitons in the 
wave series than Horn’s experiment.   

The model results for group B (§3.3.2., Table
3.2) show the same characteristics obse

onlinearity of internal wave evolution increases
as the amplitude ratio (a/h) increases and as the depth 
ratio (h/H) decreases (Figure 3.13).  With increased 
nonlinearity, non-hydrostatic pressure effects 
increase, which allows the non-hydrostatic model 
simulations to depict soliton formation.  Witho

non-hydrostatic pressure, the modeled evolution of
the wave is quite different (§4 ff.).  Similar to the 
results for group A, the model simulations of group 
B generally match the qualitative evolution of wav
phenomena and the period of the waves seen in 
Horn’s laboratory experiment.  The wave amplitude 
is over-predicted in the model simulations.         

Scenario 9 has a large amplitude ratio (1.0) and 
is on the boundary between Kelvin-Helmholtz 

ws (regime 4) and bore formation (regime 5).  
The timescale for Kelvin-Helmholtz formation 
s and the timescale for bore formation is exactly one
quarter of the wave period (25 s).  Bores and Kelvin-
Helmholtz billows form when their respective 
timescales are less than one quarter of the wave 
period (Horn, et al. 2001).  For this scenario, K
Helmholtz billows were observed by Horn, while
model simulation showed the wave degenerate into a 
system of higher mode waves (Figure 3.16).  Kelvin-
Helmholtz billows are a fine-scale phenomenon, 
which require a small grid resolution to model them.  
The grid scale (60×73) used may be too coarse 
horizontally to capture this event.   

Emergence of Solitons 
A critical point of c

of solitons.  Horn define
omparison is the emergence 
s the emergence of solitons 

as, “…

s 

 

oliton 

 

 the time when the waves are sufficiently well 
separated that the depth (measured from the crest of 
the leading wave) of the trough between the leading 
solitons (measured from the crest of the leading 
wave) is 25% of the amplitude of the leading wave” 
(Horn, et al., 2001).  Horn used three wavegauge
spaced approximately 1.5 m apart.  As solitons may 
have emerged between wavegauges, Horn reports the
time it took for the wave to move between the 
wavegauge that showed solitons and the upstream 
wavegauge.  Horn’s definition and method of s
emergence was used to identify the emergence of 
solitons for the model simulations.  The period of the 
emergence of solitons for Horn’s experiments and 
model simulations is seen in Figures 3.12 and 3.13. 

Horn defines the timescale of steepening as: 

s
LT =
αη

where L is the basin length, η is the amplitude and 

 (3.10) 

 1 2h h3 c
1 22 h h
−

α =  (3.11) 
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Scenario 3: h/H = 0.30, a/h = 0.45

Scenario 4: h/H = 0.30, a/h = 0.60

Scenario 5: h/H = 0.30, a/h = 0.90
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Figure 3.12: Interfacial displacements for Group A at the center of the tank.  The figures on the left are 
Horn’s experiment (Horn, et al., 2001).  The figures on the right are the model simulations.  In both sets 
of figures, the dotted lines indicate the range in which solitons emerged.   
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Figure 3.13: Interfacial displacements for Group B at the center of the tank.  The figures on the left are 
Horn’s experiment (Horn, et al., 2001).  The figures on the right are the model simulations.  In both sets of 
figures, the dotted lines indicate the range in which solitons emerged. 
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where h1 is the upper layer thickness, h2 is the lower 
layer thickness, H is the total depth, c is the wave 
speed: 

 1 2h h
c g '

H
=  (3.12) 

g’ is reduced gravity.  T ng 
was calcu rted in 
Table 3.3.  The model simulations have soliton 
formation slightly earlier than the timescale of 
steepening and Horn’s observations (Figures 3.14).  
This discr scid 
approxim

Numb

he timescale of steepeni
lated for each scenario and are repo

epancy can be attributed to the invi
ation in the model.   

 

er of Solitons 
Scenarios 3-5 had less solitons emerge in the model 
simulation than in Horn’s laboratory experiment.  
The reason for this is unknown.  The number of 
solito  the 

difference in wave am  time of soliton 
be 
.1 ff.).  
×73) 

ngth (12 m) by 120 grid 
cells.  The author’s hypothesis that this resolution 
would be sufficient is incorrect.  There needs to be 
more investigation into the lower limit of resolution 
needed to capture all of the solitons in the wave 
series.  However, the grid resolution must be 
balanced with viscosity since horizontal grid 
refinement decreases the numerical viscosity to the 
same order of magnitude or smaller than molecular 
viscosity (§4.1 ff).  With decreased numerical 

Figure 3.14: Comparison of timescale of 
steepening with Horn’s observation of the 
emergence of solitons (blue lines with circle) 
and model simulation observation of the 
emergence of solitons (red lines with square). 

ns is not a function of viscosity, like

plitude and
emergence.  The number of solitons appears to 
dependent on the horizontal grid resolution (§4
The grid resolution examined in this section (60
represents the initial wavele
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Table 3.3: Timescale of steepening for scenarios 
in internal wave test case (§3.3). 

Scenario Ts (s)
1 427
2 213
3 142

7 446
8 124
9 --

 

4 107
5 71
6 --

Scenario Ts (s)
1 427
2 213
3 142

7 446
8 124
9 --

4 107
5 71
6 --
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scosity, the modeled wave amplitude and time of 

 Summary 

The manufactured solution (§3.1) verified that the 

in 

e 
solver iterations per timestep needed for 
co s 
ex on-
h hysics 
of internal wave evolution.   

Non-hydrostatic pressure has a dispersive effect 
on internal wave evolution.  The non-hydrostatic 
model clearly demonstrates the emergence of 
solitons for a wave that lies within regime 2.  The 
major difference between Horn’s laboratory 
experiment and the model simulations is the viscous 

orn’s experiment are not included in the 
model simulations.  Horn’s experiment has a large 
boundary layer area compared to volume of the 
basin, thus viscous effects are prevalent in the 
laboratory results.  The model simulations did not 
model viscosity, so solitons emerged earlier and 
soliton amplitudes were larger.  However, the basic 
characteristics of the wave train were captured by the 
model.  The model was orrectly 
represent the number of solitons in the wave series at 
t on-
h  tested 
a e 
n  of 
i

   

 

vi
emergence of solitons may become significantly 
different than what is predicted by theory and shown 
in laboratory experiments.   

3.4
effects in H

non-hydrostatic solver is accurate and convergent.  
The convergence criterion was established to be 
when the L∞ residual norm is decreased by four 
orders of magnitude.  The internal wave test bas
(§3.2) validated the convergence criterion 
established by the manufactured solution and 
determined the number of non-hydrostatic pressur  not able to c

he grid resolution used.  In summary, the n
ydrostatic model is shown to be valid when
gainst theory and a laboratory experiment.  Th
on-hydrostatic model captures the physics
nternal wave evolution.         

nvergence.  Comparison between Horn’
periments and model results validates the n

ydrostatic solver by showing it captures the p
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odel the physics of 
(a non-hydrostatic process), yet 
van (2004) observed significant 

 
id 

c model 
nd 

ares the laboratory 
expe rostatic and non-hydrostatic 
model simulations.  One laboratory-scale internal 
wave ase is examined on different grid meshes to 
examine the effect of grid resolution on model skill 
for the hydrostatic and non-hydrostatic models.  The 
lake-scale simulation is also analyzed on different 
grid meshes.  The analytical techniques in §2.2 are 
used to quantitatively evaluate changes in energy, 
which is used to compare differences between 
hydrostatic and non-hydrostatic models on the 
different grid meshes.           

4.1 Laboratory Scale Comparison 

Results of hydrostatic and non-hydrostatic models 
have been compared with the same laboratory 
experiments (Horn, et al., 2001) used in §3.3.  Non-
hydrostatic pressure is a small-scale effect; thus, it is 
advantageous to model a laboratory-scale internal 
wave because the small-scale grid (e.g. 0.1 m × 
0.004 m) allows the non-hydrostatic pressure to 
affect wave evolution and not be damped out due to 
the size of the grid.  The hydrostatic and non-
hydrostatic models used eight different grid 
resolutions to compare model skill for one scenario 
(scenario 2, Table 3.2).  The grid aspect ratios 
(∆z/∆x) for all resolutions were of O(10-2) or greater.   

4.1.1  Setup 
Basin dimensions and the scenarios are identical to 
those listed in §3.3.1 and Table 3.2.  Each scenario 
was separately simulated using the both hydrostatic 

 

The timestep is dependent on the physics of the 
wave and the grid resolution.  Due to the 
characteristics of the hydrostatic and non-hydrostatic 
models, the timestep required to yield a stable 
solution is different.  For both models, the timestep 
selection is based on the Courant-Friedrich-Lewy 
(CFL) condition for baroclinic motions.  The 
hydrostatic model uses the form of the CFL 
condition: 

 

 

Chapter 4. Comparison of Hydrostatic 
and Nonhydrostatic models 
Hydrostatic models do not m
wave dispersion 
Hodges and Dela
wave dispersion in a hydrostatic model which 
produces soliton-like formations.  Such soliton-like 
formations may mimic the expected internal wave 
evolution, however this coincidence is a false 
positive.  Without non-hydrostatic pressure, the 
soliton-like formations can only be an artifact of the
numerical method, and is thus dependent on gr
resolution and numerical truncation error.  Previous 
literature has not examined the effect of grid 
resolution on hydrostatic and non-hydrostati
performance.  This chapter examines laboratory a
lake scale simulations.  The laboratory-scale 
simulations examine nine different internal waves 
(§3.3) and qualitatively comp

riments to the hyd

 c

and non-hydrostatic models (§4.1.2).  For all 
scenarios, a model grid of 60×73 (∆x = 0.1 m and ∆z 
= 0.004 m) was used.  The pycnocline is represented 
by five cells (hpy/∆z = 5).  Scenario 2 is modeled on 
several different grid meshes, as described in Table 
4.1, to compare model error (§4.1.3).  Each 
simulation for the changing grid resolution was run 
for ten wave periods as this time allows the internal
wave to evolve and develop into solitons.  All 
simulations used the inviscid/diffusionless 
approximation.      

x
tCFL c
x
∆

≡
∆

# Cells in Z-dir
15 29 73 λo/∆x

30 x x x 60
# Cells in X-dir 60 x x x 120

600 x x 1200
hpy/∆z 1 2 5

Table 4.1: Grid meshes for scenario 2 simulations
Those meshes with an ‘x’ were performed. 

.  

 (1.13) 

where ∆t is the timestep for a specific, initial internal 
wave speed (c) and grid resolution (∆x).  The CFL 
condition is a non-dimensional number which limits 
the timestep and grid discretization needed to 
stabilize the conditionally stable explicit Euler 
scheme (Ferziger and Perić, 2002) used in CWR-
ELCOM.  The baroclinic CFL condition is the most 
restrictive condition, as opposed to the barotropic or 
advective CFL condition, for density-stratified flows 
(Hodges, 2000).  In CWR-ELCOM, the maximum 
allowed baroclinic CFLx = √2 (Hodges, 2000), but 
this work uses a conservative CFLx condition of 1/3.  
The hydrostatic model is dissipative (§4.1.3 ff.), so 
strong vertical motions are inhibited.  The CFLx 
condition in Equation (1.13) provides a sufficient 
timestep for the hydrostatic model.  However, the 
non-hydrostatic model is generally less dissipative, 
especially for finer horizontal grid resolutions 
(§4.1.3 ff.), so strong vertical motions may occur.  
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hus, the timestep that was appropriate for the 
hydrostatic model is not suitable for the non-

e 

odel 
l 

FL 

T

hydrostatic model (i.e. strong vertical motions caus
instabilities, Figure 4.1) and the timestep must be 
smaller.  The timestep for the non-hydrostatic m
is determined by the vertical velocity and vertica
grid resolution, yielding a new definition for the C
condition:   

 z
ac tCFL
x z
∆

≡
∆ ∆

 (1.14)

where a is the wave amplitude and ac/∆x is a 
measure of vertical velocity of a bore.  The 
maximum CFL

 

 the 

theoretical number of solitons (N) that will evolve in 

 

z condition allowed is 1/3.  The 
smaller timestep simulation does show a marked 
improvement in the internal wave evolution in
non-hydrostatic model (Figure 4.1), and is thus used 
for further analysis.  The hydrostatic model is not 
significantly altered by the different timesteps.   

4.1.2 Scenario Simulations 
This section uses qualitative comparisons between 
the laboratory experiment and the hydrostatic and 
non-hydrostatic model simulations.  The number of 
solitons that emerge in a wave train for the 
laboratory experiment and the model simulations is 
compared to the theoretical number of solitons that 
will evolve.  Kao, et al. (1985) defined the 

a train as: 

MN 1≤ +
π

 (1.15) 

where M is defined for a two-layer system in a 
model with the Boussinesq approximation: 

 

1
2

1 2
o2 2

1 22 h h
h h3M L

⎡ ⎤−
= η⎢ ⎥
⎣ ⎦

The length of the basin is L, h

 (1.16) 

 

 and the 

1 is the upper layer 
thickness, h2 is the lower layer thickness and ηo is the
wave amplitude.  The results are separated into the 
simulations for group A, group B, scenario 9
number of solitons that emerge in a wave train. 

Group A 
Group A has the same interface depth ratio 
0.3) and varies the a

(h/H = 
mplitude of the wave for each 

scena
olitons 

ic model 
ormation.  Scenario 5 has the greatest 

initial amplitude and forms an undular bore.  The 
boratory experiment shows 

signal, indicating that the bore was initially turbulent 
(Horn, et al., 2001).  The non-hydrostatic model 

iment 
he 

rio (Figure 4.2).  At small amplitudes (scenario 
1), there is some small steepening but no s
emerge; both models show similar evolution.  For 
scenarios with larger amplitudes (regime 2), the 
nonlinearity of the wave increases causing the wave 
to steepen and evolve into a train of solitons with 
decreasing amplitude.  The non-hydrostatic model 
represents this evolution, while the hydrostat
showed bore f

la a high-frequency 

shows the bore formation, but does not show a high-
frequency signal or any other indication of 
turbulence in the wave evolution.  The non-
hydrostatic model was able to characterize the 
soliton train that formed in the laboratory exper
after the bore was damped by turbulent mixing.  T
hydrostatic model developed the initial bore with a 
slightly smaller amplitude than the non-hydrostatic 
model.  As time progresses, the hydrostatic model 
retains the bore shape in the leading wave and 
develops soliton-like features behind it. 

Group B 
Group B varies the interface depth ratio for each 
scenario (Figure 4.3).  For scenarios with larger 
depth ratios, that is a thick upper layer, the 
nonlinearity of the wave is small.  When the depth 
ratio is at mid-depth (h/H = 0.5, scenario 6), the 

Figure 4.1: Scenario 6 pycnocline displacement 
simulated with a coarse timestep, determined by 
CFL , and a fine timestep, determined by CFL . x z
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lacements for Group A measured at the center of the tank.  The figures on t
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system has no appreciable nonlinearity and the 
hydrostatic and non-hydrostatic model produce 
similar results.  A thin upper layer (i.e scenario 8) 
causes the wave to steepen quickly and results in a 
train of solitary waves with larger amplitudes (a ~ 
2.5 cm) than a thicker upper layer (i.e. scenario 7, a ~ 
1.7 cm),

 36

h is seen in the non-hydrostatic model.  
The hydrostatic model is able to predict the onset of 
steepenin ut the wave evolution is entirely 
unphysic

Scenario     

 whic

g, b
al. 

 9    
Horn, et al. (2001) observed shear instabilities 
developing into Kelvin-Helmholtz billows in only 
one experiment (scenario 9).  There is no figure of 
laboratory observations of this experiment, and it is 
not specified how the wave evolves after the 
billowing event, so no direct comparison can be 
made between the laboratory experiments and model 
simulations.  Neither the hydrostatic, nor the non-
hydrostatic models were able to capture Kelvin-
Helmholtz billows.  Horn, et al. (2001) observed two 
bores form at both ends of the tank and propagate 
towards the center, which the non-hydrostatic model 
did simu   The non-hydrostatic model shows the 
bore pro tion, with a series of solitons behind the 
bore (Fig 4.4).  The hydrostatic model has neither 
bore form n, nor Kelvin-Helmholtz billows.  

Number olitons in Wave Train

late.
paga
ure 
atio

of S  
In gener e non-hydrostatic model underestimates 
the number of observed solitons in the wave series 
from the laboratory experiment (§3.3.3).  The 
theoretical number of solitons, as defined by Kao, et 
al. (1985), for each scenario is in Table 4.2.  Figure 
4.5 shows how the number of solitons in a train for 
the model simulations and laboratory experiments 
compare with the theoretical number of solitons.  
The theoretical number of solitons is always larger 
than what was observed in the laboratory experiment 
and the model simulations. 

Summa
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slightly grea plitude
isopycnal dis ement.  T
can be attrib to the 
application o viscid
approximation as discusse

in §3.3.3.  The hydrostatic model captures the 
evolution for weakly nonlinear waves (scenarios 1 
and 6), but presents a poor ntation of 
nonlinear wave evolution ( 2-5, 7 and 8; 
Figures 4.2 and 4.3).  In sc 2-5, 7 and 8, the 
hydrostatic model exactly m  the non-
hydrostatic model  ste  causes the 
hydrostatic model vel a bore while the 
non-hydrostatic model evol o a train of 
solitons.  Bore dev ment in the hydrostatic model 
is typically followed by so on-like 
formations, but these are d from observations 
in the laboratory experimen non-hydrostatic 
model simulations.  The hy ic soliton-like 
formations are near the cre  bore front and 
their amplitudes are small c d to the 
amplitudes of the soliton tr the laboratory 
experiments.  A compariso ernal wave 
evolution for scenario 2 is ure 4.6.  This 
confirms observations of h and non-
hydrostatic internal wave e om the 
isopycnal displacement.    
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Observations of the isopycnal displacement 
demonstrate that the non-h model performs 
better than hydrostatic mod spect 
reproducing the int  wa on of the 
laboratory experim by . (2001).  The 
non-hydrostatic model sho fferences in 
internal wave evolution am fferent 
scenarios, while the hydros l either shows a 
damped wave (scenario 1 a bore with small 
soliton-like formations (sce  7 and 8).  The 
soliton-like formations beh re do not 
disperse or change in ampl e progresses; 
this observation is the same narios where 
bore formation occurs.  Th ostatic model 
shows the train of solitons nd the 
leading wave and decrease de with time, as 
in the laboratory experimen drostatic 
pressu  a dispersive pro g, 1972); the 
non-h static model’s ab ulate 
disper  verifies that the static model 
captures the overarching ph onlinear wave 
evolu        
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Wave evolution in scenario 9 includes the 
appearance of shear instabilities in a Kelvin-
Helmholtz billow (Horn, et al, 2001).  While neither 
the hydrostatic nor the non-hydrostatic models were 
able to capture the billows.  However, the non-
hydrostatic model was able to simulate the bore 
forma
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Horn, et al. (2
evolves after the Kelvin-Helmholtz billow collapses, 
but it is speculated that the wave will degenerate into 
a train of solitons.  The non-hydrostatic model shows 
a series of solitons develop behind the leading bore.  
If the speculation of the wave evolution is correct, 
than the non-hydrostatic model may be a reasonable 
estimation of the wave evolution after the initial 
Kelvin-Helmholtz billow formation and collapse.  

4.1.3 Changing the Grid Resolution 

dynamic energy ev
the power spectral

Isopycnal Displacement

tion propagating from the end of the tank.  
001) does not specify how the wave 

Scenario 2 was examined on several different grids 
(Table 4.1) to asses the effect of grid resolution on 
the models’ performance.  Scenario 2 lies within 
regime 2 and is expected to have steepening and 
soliton formation.  The analysis techniques discussed 
in §2.2 are used to quantify differences between the 
models and grid resolutions.  Specifically, the 
different analysis methods used to quantify model 
results are the isopycnal displacement, background 
potential energy evolution, numerical diffusivity, 

olution, numerical viscosity and 
 density.   

 
The isopycnal displacement of scenario 2 for the 

different grid resolutions is seen in Figures 4.7 and 
4.8.  The wave evolution for a grid refined vertically 
(Figure 4.7) shows that the leading wave moves 
slightly faster for finer vertical grids.  The 
amplitudes of all the solitons within the wave train 
are smaller for finer vertical grids (~ 1 cm difference 

7).  

hydrostatic models.  Horizontal refinement 
substantially changes the pycnocline displacement 
(Figure 4.8).  Horizontal grid refinement also 
develops differences in the wave period.  As the grid 
is horizontally refined, the hydrostatic and non-
hydrostatic models predict a smaller wave period; 
that is in Figure 4.8, the finer horizontal grid has an 
average wave period of 120 s, while the coarser grid 
has an average wave period of 230 s.  Furthermore, 
the effect of grid scale on the wave influences the 
formation of soliton trains.  The non-hydrostatic 
model has more solitons in the wave train for the 
finer grid than the coarser grid.  Finally, the leading 
soliton has approximately the same wavelength (~1 
m) through time and for the different grids in the 
non-hydrostatic model.  In the hydrostatic model, the 
wave evolves into a bore followed by soliton-like 
formations; the wavelengths of the soliton-like 
formations change in size as the grid is refined.   

between the coarsest and finest grids in Figure 4.
This is seen in both the hydrostatic and non-

Background Potential Energy 
Changes in the background potential energy (EB) 
represent numerical diffusion in a diffusionless 
model (§2.2).  The non-hydrostatic and hydrostatic 
models show an increase in the background potential 
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 (Table 4.3).  In the 
odels, refinement 

ows less change in E  
73 

and 60×73) is about an order of magnitude less than 
rse 15 and 60×15).   

The system can be considered unphysical when 
the normalized background potential energy (Figure 
4.9) goes above unity.  In the non-hydrostatic model, 
the EB goes above unity around three wave periods 

he 

ve 

ins physical for only 
nt 

 

vertical grid has more effective numerical diffusion 
than a fine vertical grid, so grid refinement reduces 
the numerical diffusion.   

Numerical Diffusivity

energy (EB), with the hydrostatic model increasing
a slightly lower rate (Figure 4.9).  In both models, 
grid refinement in the horizontal direction (Figure 
4.9 c and d) shows more change in EB over time.  In 
the non-hydrostatic model, the finest horizontal grid
(600×29) has a change in EB of about 92% over nine
wave periods, while the coarsest grid (30×29) has a 
change in EB by 80% (Table 4.3).  The hydrostatic 
model has a change in EB by 89% for the finest grid 
and 77% for the coarsest grid
hydrostatic and non-hydrostatic m
in the vertical direction sh B
(Figure 4.9 a and b).  The finest vertical grid (30×

for the coarsest grid (30×15).  Refining the grid 
horizontally for this vertical resolution decreases t
time when the E

the coa st vertical grid (30×

B goes unphysical to 2.2 wave 
periods.  For the 600×29 grid, the EB increases abo
one around five wave periods, while the 30×29 grid 
is physical until about nine wave periods.  The 
hydrostatic model has slightly less diffusion than the 
non-hydrostatic model and rema
a short time longer.  Conversely, vertical refineme
significantly improves the numerical diffusion in 
both models (Figure 4.9); at ten wave periods the EB
is well below unity for the finest vertical resolution, 
irrespective of the horizontal resolution.  A coarse 

Non-hydrostatic 

Hydrostatic 

0 50 100 150

 
The numerical diffusion coefficient (Figure 4.10) 
derived in §2.2 confirms what was observed in the 
background potential energy (EB); vertical 
refinement reduces the system’s diffusivity, while 
refinement in the horizontal increases the system’s 
diffusivity (Figure 4.10).  The hydrostatic model has 
lower diffusivities than the non-hydrostatic model 
for all grids, except 60×73.   As time progresses, 
there is an initial growth in the diffusivity, followed 
by a continual decline.  This trend matches the 
behavior of EB, which increases rapidly at first and 
flattens with time (Figure 4.9).  The numerical 
diffusivity is orders of magnitude larger than the 

usion 
is significant in the models and physical diffusion (in
diffusivity of salt, indicating that numerical diff
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Figure 4.8: Isopycnal displacement of scenario 2 for h
ic mod

Grid
Hydrostatic Non-hydrostatic

30*15 90 91
60*15 79 90

600*15 77 80
30*29 89 92

% Increase

orizontal grid refinement, measured at the center 
el.  of basin. a) Non-hydrostatic model, b) hydrostat

60*29 78 85
600*29 77 80

Grid
Hydrostatic Non-hydrostatic

30*15 90 91
60*15 79 90

600*15 77 80
30*29 89 92

% Increase

60*29 78 85
600*29 77 80

Table 4.3: Percent increase in background potential 
energy for scenario 2. 
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Fig 10: Numerical diffusivity (κ) of scenario 2 ifferent grid resolutions. a) Horizontal grid = 3
b) horizontal grid = 60, c) vertical grid = 15, d) vertical grid = 29.  Lines represent non-hydrostatic mod
results (nh), markers represent hydrostatic model results (h). κs = 10-9 m2/s. 
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e absence of turbulence and wave breaking) would 
ve a negligible effect on internal wave evolution.   

Dynamic Energy

th
ha

 
Decreases in dynamic energy (ED) represent the 
dissipation by numerical error (§2.2).  The non-
hydrostatic model has lower dissipation rates than 
the hydrostatic model for all grid resolutions (Figure 
4.11).  Horizontal grid refinement (Figure 4.11 c and 
d) decreases the rate at which ED is dissipated.  For 
the finest horizontal grid resolution (600×29), the 
non-hydrostatic model dissipates ED by 8% over nine 
wave periods, whereas the hydrostatic model 
dissipates ED by 85%.  The coarsest grid (30×29) 
dissipates ED by 80% in the non-hydrostatic model 
and the hydrostatic model dissipates ED by 90% 
(Table 4.4).  Vertical grid refinement (Figure 4.11 a 
and b) generally increases the dissipation rate.  
However, the 600×29 grid has less dissipation than 
the coarser 600×15 grid, which is counter to other 
observations of vertical grid refinement (Figure 
4.12).     

Numerical Viscosity 
Numerical viscosity (§2.2) tends to be smaller for 

r resolution grids (Figure 4.13); the non-
rostatic model produces numerical viscosities 

that are smaller than those produced by the 
hydrostatic model.  Generally, the numerical 
viscosity increases and then decreases as time 
progresses.  The decrease in numerical viscosity with 
time corresponds to an overall decrease in dynamic 
energy (Figure 4.11).  Once the dynamic energy 
begins to decrease, the velocity shears that drive the 
numerical viscosity are being reduced.  That is, any 
system with a lower dynamic energy should 
generally lose dynamic energy at a lower rate than a 
system with a higher dynamic energy, and thus a 
lower numerical viscosity is expected, which is seen 
in Figures 4.11 a and b and 4.13 a and b.  The 
numerical viscosity is slightly larger than molecular 
viscosity; as the grid is refined, the numerical 
viscosity decreases and nears the molecular 
viscosity.  Numerical viscosities computed for the 
hydrostatic model are slightly greater than those for 
the non-hydrostatic model, which is expected as the 
hydrostatic model has greater numerical dissipation 
than the non-hydrostatic model.   

Power Spectral Density

fine
hyd

 

evolution is associated with the wavelength that has 
the maximum pycnocline displacement (i.e. 
amplitude).  For all grid resolutions, the hydrostatic 
model had no shift in peak power from the initial 
wavelength within ten wave periods (Figure 4.15).  
However, there is still some energy transferred to 
different wavelength waves.  Timeslices of the 
power spectral density show as the wavelength 
decreases there is energy associated with certain 
wavelengths that follow a harmonic pattern (Figure 
4.16).  The non-hydrostatic model does show a shift 
in peak power between four and seven wave periods 
depending on the grid resolution (Figure 4.15).  Finer 
horizontal grids shift the peak power sooner than 
coarser horizontal grids.  The peak power shifts to 
different wavelengths, although the range is small (~ 
.12 – 0.17 wavelengths).  Once the peak power shift 

has taken place, all grid resolutions for the non-
hydrostatic model show similar peak 
power/wavelength evolution.  For example, as seen 
in Figure 4.15d, the 600×29 grid shifts the peak 
power at t/T = 4 to λ/λo = 0.12.  At t/T = 4.5, the 
600×29 mesh shifts to λ/λo = 0.15, which coincides 
with the peak power shift of the 60×29 grid.  Prior to 
the peak power shift, the non-hydrostatic model 
shows a harmonic energy shift to λ/λo = 0.5 and 
some smaller wavelengths (Figure 4.17).  However, 
after the peak power shift, the peak power is located 
at a wavelength ratio (λ/λo) of 0.2 for all grid 
resolutions.  The spectral analysis shows that the 
peak power shift is to 20% of the initial basin-scale 
wavelength, which is consistent with the 
degeneration of the wave into a train of five solitons 
(Figure 4.2).  The increase in power at small 
wavelengths shows that energy is being directly 
transferred from the basin-scale wave to the train of 
solitons.       

 

 Grid
Hydrostatic Non-hydrostatic

30*15 85 77
60*15 85 47

600*15 80 20
30*29 91 80
60*29 90 52

600*29 89 8

% Increase

Table 4.4: Percent decrease in dynamic energy for 
scenario 2. 

0

The power spectral density (§2.2) quantifies the 
energy transfer of different wavelength waves over 
time (Figure 4.14).  The peak power in a wave 



Wadzuk & Hodges: Hydrostatic and Nonhydrostatic Internal Wave Models 

 44

 

Figure 4.11: Dy  = 60, c) Vertical 
grid = 15, d) V l results (h).  ED 
is normalized b

 

namic energy (ED) of scenario 2 for different grid resolutions, a) Horizontal grid = 30, b) Horizontal grid
ertical grid = 29.  Lines represent non-hydrostatic model results (nh), markers represent hydrostatic mode
y the initial ED. 

0 1 2 3 4 5 6 7 8 9
10

-1

10
0

30x 15  n
30x 15  h
60x 15  n
60x 15  h
600 x1 5  h
600 x1 5  n

h
yd
h
yd

yd
h

t /T
0 1 2 3 4 5 6 7 8 9

10
-1

10
0

30x 15  n
30x 15  h
60x 15  n
60x 15  h
600 x1 5  h
600 x1 5  n

h
yd
h
yd

yd
h

t /T

0 1 2 3 4 5 6 7 8 9 10
10

-1

10
0

t/T

60x15 
60x15 
60x29 
60x29 
60x73 
60x73 

nh
hyd
nh
hyd
nh
hyd

0 1 2 3 4 5 6 7 8 9 10
10

-1

10
0

t/T

60x15 
60x15 
60x29 
60x29 
60x73 
60x73 

nh
hyd
nh
hyd
nh
hyd

0 1 2 3 4 5 6 7 8 9

10
-1

10
0

3 0x 15  nh
3 0x 15  hyd

29  nh
29  hyd
73  nh
73  hyd

3 0x
3 0x
3 0x
3 0x

t /T
1 2 3 4 5 6 7 8 9

10
-1

10
0

3 0x 15  nh
3 0x 15  hyd

29  nh
29  hyd
73  nh
73  hyd

3 0x
3 0x
3 0x
3 0x

t /T

c) 

E
D
 / 

E
D
(0

) 

0

a) 

b) 

E
D
 / 

E
D
(0

) 

E
D
 / 

E
D
(0

)

d) 

E
D
 / 

E
D
(0

)

0 1 2 3 4 5 6 7 8 9

10

10
-1

0

t/T

30x29 nh
30x29 hyd
60x29 nh
60x29 hyd
600x29 nh
600x29 hyd

0 1 2 3 4 5 6 7 8 9

10
0

t/T

30x29 nh
30x29 hyd
60x29 nh
60x29 hyd
600x29 nh
600x29 hyd

10
-1



Chapter 4. Comparison of models 

Discussion

 45

 
The key findings of the laboratory-scale model 
simulation are: 1) in both the hydrostatic an n-
hydrostatic models horizontal grid refinement always 
leads to more growth in the background potential 
energy and larger numerical diffusivities, indicating 
the horizontal grid refinement increases the 
numerical diffusion of the system, 2) the hydrostatic 
model is more dissipative and somewhat less 
diffusive than the non-hydrostatic model and 3) the 
non-hydrostatic model is nearly free of numerical 
dissipation for a sufficiently refined horizontal grid 
and the controlling mechanism for model skill is 
numerical diffusion.  The increase in background 
potential energy with horizontal grid refinement is 
opposite of the conventional wisdom that reducing 
grid size must improve model skill and reduce error.  
This finding corroborates the finding of Hodges and 
Delavan (2004) and may be explained by examining 
the concept of energy exchange from §2.2.  
Dissipation decreases the dynamic energy, which is 
the kinetic and available potential energy.  The 
available potential energy is the energy that activates 
diffusion (when mixing occurs).  Thus, if there is less 
available potential energy to be mixed, then there is 
less possible diffusion.  As the grid is horizontally 
refined, the dissipation rate decreases.  Re ing 

merical dissipation allows the backgrou
ntial energy to continue to grow, thereby 

increasing numerical diffusion.  The non-hydrostatic 
model has less dissipation than the hydrostatic model 
(Figure 4.11), and thus has more diffusion (Figure 
4.9).  Vertical grid refinement generally has less 
numerical diffusion and more numerical dissipation 
in both models, which is tied to bove idea that 
the more dynamic energy is dam  the less energy 
available to be diffused.   

The results indicate that  non-hydrostatic 
model numerical diffusion is s  dependent on 
the vertical grid resolution (F 9 a and b and 
Figure 4.10 a and b) and num on is 
strongly dependent on the hor  grid (Figure 
4.11 c and d and Figure 4.13 c .  That is, as a 
grid is vertically refined, num iffusion 
decreases and horizontal refin decreases 
numerical dissipation.  Indeed merical 
dissipation in fine horizontal  such that the 
numerical viscosity is on the o  molecular 
viscosity.  It is an expensive t  a nearly 
numerically dissipative free m .g. a grid with 
1200 cells per wavelength; fo sin a horizontal 
grid of 600).  However, consi urbulent eddy 
viscosities where it is suppose ddy viscosity is 
100 times the molecular viscosity, all of the grids 
examined would have smaller ical viscosities 
than the eddy viscosity (Figur .  Ev  the 
eddy viscosity is 10 times the lar viscosity, 
several grids (30×73, 60×73, 00×15 and 
600×29) would have numerical viscosities less than 
the eddy viscosity.  This shows that coarser grid 
resolutions may still produce l that performs 
well with respect to numerical ity when 
compared with eddy viscosity peculated that 
with numerical viscosities low  eddy viscosity, 
then the numerical dissipation e 4.11) could be 
considered small.  Following, l with low 
numerical dissipation would h ’ skill controlled 
by numerical diffusion.   

The non-hydrostatic mo ntation of 
internal wave evolution closel  the 
evolution seen in the laborato ent.  The 
wavelength and amplitude is tely the same 
for different resolutions.  The odel 
also shows a shift in peak pow haracteristic 
wavelength of the solitons.  T ccurs at all 
grid resolutions and is an indi he non-
hydrostatic model’s ability to e physics of 
internal wave evolution.  The model 
was not able to always captur of 
observed solitons occurring in  train.  This 
difference is most likely due t  with 
numerical dispersion.  Numerical dispersion is 

Figure 4.12: Dynamic energy of scenario 2 for the 
non-hydrostatic model.  Six grids are displayed 
where the horizontal refinement (horizontal grid = 
30, 60 and 600) is the same for two different vertical 
grids (vertical grid = 15 and 29).  ED is normalized 
by the initial ED.  
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were not analyzed in the present research; it remains 
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Figure 4.14: Representative power spectral density for non-hydrostatic model of scenario 2.  
The colorbar represents the log10 relative PSD. 
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 interest for future research.  The 
hydr odel did not show the soliton 
development observed in the laboratory experiment.  
Analysis of the power spectral density shows the 
hydrostatic model retains most of the wave’s energy 
within the bore (represented as the initial wavelength 
wave in Figure 4.15).  Small soliton-like formations 
were observed behind the bore, but the peak power is 
not shifted to them (Figures 4.15 and 4.16).  The 
soliton-like formations vary for different horizontal 
grid resolutions in both amplitude and wavelength.  
The soliton-like formations are considered an artifact 
of the model and grid resolution because the soliton-
like formations differ significantly from the 
laboratory experiment, vary with the grid resolution 
and the peak power is not transferred to them.  It is 
thought that the hydrostatic model will continue to 
change the soliton train characteristics with grid 
refinement.  

4.2 Lake-Scale Comparison 

The hydrostatic and non-hydrostatic models were 
app
mod
labo
dev
Zhou

scale problems.  Those that do (Marshall, et al., 
1997; Casulli, 1999), do not model internal waves.  
Th  testing the behavior of a non-hydrostatic 
m  on a larger-scale internal wave has not 
previously been done.  Similar to §4.1.3, the grid is 
varied and the analytical methods of §2.2 are used to 
quantify the effect of grid resolution on the model’s 
skill. 

4.2.1 Setup 
A 2D closed basin with length (L) of 12500 m and 
height (H) of 50 m was chosen as representative of a 
medium-sized lake (Delavan, 2003).  The initial 
wave shape was a cosine and the density field was 
constructed with a three-layer hyperbolic tangent 
function [Equation (2.34)].  The density difference 
across the pycnocline was varied to assess the effect 
of density gradient on model performance.  The 
amplitude ratio (a/h) was 0.3 and the depth ratio 
(h/H) was 0.3. The wave used in this simulation has 
amplitude and depth ratios that indicate steepening 
and soliton formation should occur (i.e. regime 2).  
Several different grid meshes were examined, as 
listed in Table 4.5.  The timestep used was based on 
Equation (1.13); this will be discussed further in 

int of
ostatic m

us,
odel

lied to a lake-scale comparison to demonstrate 
el performance on a larger scale than the 
ratory experiment.  Most of the previously 

eloped non-hydrostatic models (e.g. Stansby and 
, 1998; Chen, 2003) do not attempt real-world 

§4.2.2 ff.  Each simulation was conducted over 100 
wave periods.  The inviscid/diffusionless 
approximation was used. 
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Results 
Results are analyzed for nine simulations using the 
loss of dynamic energy (Figure 4.19), computed 
numerical viscosity (Figure 4.20), change in 
background potential energy (Figure 4.21), computed 
numerical diffusivity (Figure 4.22) and the peak 
power spectral density (Figure 4.23).  As a note to 
the results, the finest horizontal grid went completely 
unstable for all vertical resolutions (81×9, 81×27, 
81×81), as seen in the EB, ED, numerical diffusivity 
and 
adve

 50

viscosity in Figures 4.19 - 4.22.  The vertical 
ctive CFL: 

 advective z
tCFL w
z−

∆
≡

∆
 (1.17) 

was greater than one, indicating the presence of 
strong vertical motions.  The Euler-Lagrange Method 
is stable for hydrostatic models (Hodges, 2000), but 
the stability has not been investigated in this research 
or elsewhere in literature for non-hydrostatic models.  
Reducing the timestep to adhere to Equation (1.14) 
did not mitigate the instability.  The addition of 
viscosity had no effect on the instability either.  This 
issue is discussed further in §4.2.3. 

The internal wave initially steepens with small, 
soliton-like features developing (Figure 4.18) and is 
damped out after ten wave periods.  The system is 
dissipative, losing an order of magnitude of dynamic 
energy in less than ten wave periods for all grid 
resolutions (Figure 4.19).  The large numerical 
dissipation accounts for the damping effect observed 
on the wave’s evolution.  For vertical and horizontal 
grid refinement, there is nearly the same loss in 
dynamic energy for the first three wave periods.  
After this time, grid refinement causes more dynamic 
energy to be dissipated.  The most significant 
differences in dynamic energy amongst grid 
resolutions were due to refinement in the vertical 

tory-
scale hydrostatic simulations (i.e. the dynamic 
energy decreases about an order of magnitude in ten 
wave periods).  However, in the laboratory-scale 

 # Cells in Z-dir
9 27 81 λo/∆x

9 x x x 18
# Cells in X-dir 27 x x x 54

81 nh nh x 160
hpy/∆z 1 3 9

grid.  The decrease in dynamic energy in the lake-
scale simulations is comparable to the labora

# Cells in Z-dir
9 27 81 λo/∆x

9 x x x 18
# Cells in X-dir 27 x x x 54

81 nh nh x 160
hpy/∆z 1 3 9

Table 4.5: Grid meshes for lake scale comparison.  
Those meshes with an ‘x’ were performed; nh 
indicates that only the non-hydrostatic model was 
used. 
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Figure 4.18: Internal wave evolution for lake-scale case at t/T = 0.9 and t/T = 2.9. 
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Figure 4.19: Dynamic energy of lake-scale 
for different grid resolutions. a)Vertical grid 
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non-hydrostatic model simulations had less 
numerical dissipation than the hydrostatic model and 
horizontal grid refinement dominated changes in 
numerical dissipation, which was not seen in the 
lake-scale simulations.  After about ten wave 
periods, the numerical viscosity (Figure 4.20) 
becomes scattered.  At ten wave periods the wave is 
damped, so there are small velocities and 
subsequently low numerical dissipation.  Therefore, 
after ten wave periods, small fluctuations in the 
dynamic energy are amplified resulting in scatter.  
This scatter is irrelevant to the present research as we 
are interested in wave evolution before damping.  All 
grids show the numerical viscosity initially increase 
and then decrease after two or three wave periods 
(Figure 4.20).  This is similar to the laboratory-scale 
results (§4.1.3).  Vertically refined grids (Figure 4.20 
d

 52 52

 e) showed lower values for the numerical 
viscosity, similar to the laboratory-scale results; there 
was not a significant difference in the numerical 
viscosity for horizontally refined grids, which was 
not seen in the laboratory-scale results.  One other 
difference between the lake-scale and laboratory-
scale results for numerical viscosity is that the 
numerical viscosity for the lake-scale simulations 
were over 100 times greater than molecular 
viscosity, while the laboratory-scale simulations’ 
numerical viscosity never exceeded 30 times 
molecular viscosity.   

The growth in background potential energy is 
greater for horizontal grid refinement and less for 
vertical grid refinement (Figure 4.21) similar to the 
laboratory-scale.  Vertical grid refinement dominates 
changes in numerical diffusion over different grid 
resolutions.  The normalized change in EB increases 
above unity and is considered unphysical around 
three wave periods for the coarsest vertical grid.  The
finest vertical grid has a change in EB from ~ 0.01 to 
0.4 over 100 wave periods (Figure 4.21 d and e).  
Changes in the horizontal grid have a relatively small 
effect on the growth of EB.  Likewise, the numerical 
diffusivities (Figure 4.22) decrease by an order of 
magnitude for vertical grid refinement, while 
horizontal refinement produces relatively similar 
numerical diffusivities (Figure 4.22).  This confirms 
the vertical grid as the controlling mechanism of 
numerical diffusion, which is the same result in the 
laboratory-scale simulations (§4.1.3).    

The power spectral density (Figure 4.23) shows 
a shift in peak power around ten wave periods; the 
wavelength with peak power varies with the grid 
resolution.  A coarse horizontal grid (e.g. Figure 
4.23a) shows all power shifting to the same 

wavele (λ/λo ~ 0.5) for different vertical 
 finer horizontal resolution, as the 
efined (Figure 4.23 b), the peak 
aller wavelengths (λ/λo = 0.2) and 
ack towards larger wavelengths 
e progresses.  However, unlike the 
imulations where the peak power 
e wavelengths irrespective of the 
e peak power shifts to different 
 the grid is horizontally refined 

the non-hydrostatic model 
tical results to the hydrostatic 

o grid resolutions that showed 
en the hydrostatic and non-
ere the 27×9 and 9×27 grids.  

Figures 4.21 and 4.22 show that the 27×9 and 9×27 
grids had less diffusion in the non-hydrostatic model 
than the hydrostatic model.  After ten wave periods, 
the background potential energy in the non-
hydrostatic model converges to the background 
potential energy in the hydrostatic model.  The 
numerical diffusivities in the non-hydrostatic model 
are less than the numerical diffusivities for the 
hydrostatic model for the entire 100 wave period 
simulation.    

The density gradient across the pycnocline was 
varied (∆ρ = 0.1, 1.0 and 10.0 kg/m3) to asses its 
effect on the modeling of internal waves.  There is no 
significant difference between hydrostatic and non-
hydrostatic simulations for the identical grid 
resolution (Figure 2.24).    

4.2.2 Discussion 
Long (1972) states that there is a relationship 
between nonlinearity and non-hydrostatic pressure; a 
sufficiently steep wave has significant non-
hydrostatic effects affecting the internal wave 
evolution.  The wave simulated in this section is 
nonlinear and lies within regime 2 (a/h = 0.3, h/H = 
0.3).  Thus, non-hydrostatic pressure effects should 
disperse the steepened wave and have different 
numerical error behavior than the hydrostatic model.  
However, the results show the non-hydrostatic model 
is nearly identical in all grid resolutions to the 
hydrostatic model.  The similarity between the 
hydrostatic and non-hydrostatic models can be 
explained by grid resolution.  Grid resolution plays a 
key role in how the non-hydrostatic pressure affects 
internal wave evolution.  The model grid can only 
represent a single, average non-hydrostatic pressure 
for a single cell.  Thus, for cells with small grid 
aspect ratios (i.e. 9×9: aspect ratio = 4[10-3]; 9×81: 

ngth 
resolutions.  For a
grid is vertically r
power shifts to sm
gradually moves b
(λ/λo = 0.5) as tim
laboratory-scale s
shifted to the sam
grid resolution, th
wavelengths when
(Figure 4.23 c-e).  

Application of 
generates nearly iden
model.  The only tw
any difference betwe
hydrostatic models w
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aspect ratio = 4[10-4]), the non-hydrostatic pr
effect is muted.  The 27×9 grid has the largest grid 
aspect ratio (0.012) of all the grids successfully 
applied to the lake-scale wave.  This grid resolutio
did show small differences in numerical diffus
terms of the background potential energy and 
numerical diffusivity) between the hydrostatic and 
non-hydrostatic models.  It is believed by t
if finer grid resolutions with larger aspect ratios had 
remained stable (i.e. the 81×9 and 81×27 cases), 
these cases would have shown effects from the 
inclusion of non-hydrostatic pressure.      

The mechanism causing the model instability 
for fine horizontal grid resolutions is presently 
unknown.  The timestep is not controlling vertical 
motions, unlike the laboratory case (§4.1.1), so this 
is not a simple CFL issue.  There are several possible 
sources of error for this instability.  There may be an 
error in the non-hydrostatic model that was only 
detected in this situation.  The most likely possibilit
is the use of the explicit Euler discretization for the 
baroclinic term in CWR-ELCOM.  While explicit 
Euler discretizations are unstable, they have been 
successfully applied as part of models, such as 
CWR-ELCOM where truncation error serves as 
stabilization.  Stability is clearly only a problem w
the non-hydrostatic pressure solution as the 
hydrostatic model remains stable under all tes
conditions.  The issue with

ecrease in numerical dissipation seen in the 
laboratory-scale simulation.  Another possibility fo
this instability could be a more global problem with 
the application of the fractional-step method for 
internal wave evolution.  While several other non-
hydrostatic models have used the fractional-step 
method, there has been no reported work on grid 
refinement and very little work on internal wave 
modeling.  Most of the known non-hydrostatic 
models (Mahadevan, et al. 1996a, b; Marshall, et a
1997; Stansby and Zhou, 1998; Casulli, 1999; Chen, 
2003) do not explicitly model internal waves and 
present results only for laboratory scale problems.  
lake or ocean scale problems are investigated, 
the general circulation patterns and free-surface 
elevations are reported.  Daily and Imberger (2003) 
model internal waves, however only on the 
laboratory scale.  None of the aforementioned 
models present results for more than one

lity at fine resolutions in a large domain 
remains an open issue for future research.          

4.3 Summary 

The non-hydrostatic model laboratory-scale 
simulations in the present work compared well with 
the theory and laboratory experiments of Horn.  
Horn, et al. (2001) examined data from several 
published field studies and confirmed the 
applicability of the theoretical timescales used to 
develop a regime diagram.  Therefore, it is inferred 
that the results of the laboratory-scale model 
simulations are rele

The non-hydrostatic model provides a 
substantially better representation of internal wave 
evolution than the hydrostatic model for laboratory 
scales.  The features of internal wave developme
(such as soliton formation) are physical in the non-
hydrostatic model, while a function of the grid 
resolution in the hydrostatic model.  There is no 
appreciable difference between the hydrostatic and 
non-hydrostatic model for weakly nonlinear,
subsequently weakly non-hydrostatic waves.  In 
cases with a strongly nonlinear, non-hydrostatic
wave on a sufficiently fine grid, such as in the 
laboratory simulations, the non-hydrostatic pres
effect is significant.  The addition of non-hydrosta
pressure dispe s the non

 into a train of solitons, as observed in the 
laboratory, and captures the energy cascade through 
the wave train.  Adding non-hydrostatic pressure 
does not eliminate numerical error, but it does 
change the characteristics of model error; numerical 
diffusion is the mechanism that determines m
skill, whereas the hydrostatic 
dissipative.  

The largest grid aspect ratio applied to th
scale case for a stable non-hydrostatic simulation is 
0.012 (27×9 grid).  The largest grid aspect ra
applied to scenario 2 is 2.0 (600×15 grid), and 
smallest grid aspect ratio is 0.02 (30×73 grid).  It 
deduced from the results of the laboratory scale and 
lake scale cases that a non-hydrostatic model needs a
sufficiently large grid aspect ratio [∆z/∆x > O(10-2

to affect internal wave evolution.      
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) 
vertical grid = 27, e) vertical grid = 81. Lines represent non-hydrostatic model results (nh), markers represent ults (h). 

 

 

Figure 4.23: Wavelengths with peak PSD of lake-scale for different grid resolutions. a)Horizontal grid = 9, b) horizontal grid = 27m c)vertical grid = 9, d
hydrostatic model res
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Figure 4.24: Varying the density gradient of the lake-scale simulation. a)Background potential energy, b) numerical diffusivity, c) 
dynamic energy, d) numerical viscosity.  Lines represent non-hydrostatic model results (nh), markers represent hydrostatic model 
results (h). 
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W* is the hydrostatic vertical velocity; this is the 
same vertical velocity used in Equation (2.7).  
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dients.  
The approximated and modeled non-hydrostatic 
pressure vertical gradients are symmetrical around 
the wave front, although the modeled non-
hydrostatic pressure vertical gradient shows a 
slightly wider range of influence around the steep 
wave front.  Aside from the principle wave front, 
there is some steepening associated with a higher 
mode wave at the right end of the basin in Figure 5.2.  
Both the approximated and modeled non-hydrostatic 
pressure vertical gradients identify this location.  

.  
 

non-hydrostatic pressure vertical gradient.  Note
‘modeled’ refers to anywhere the non-hydrostati
model is used and ‘approximated’ refers to when th
hydrostatic model is used to make an approximat
of the non-hydrostatic pressure.  The location of pe
values for the approximated non-hydrostatic pressure
vertical gradient is a reasonable match for the peak 
modeled non-hydrostatic pressure vertical gra

Horizontal flow dominates internal wave 
propagation and is prognostically determined in 

hydrostatic models, thus it is practical to use the 
horizontal momentum equation in the development 
of the non-hydrostatic pressure isolation method
The non-hydrostatic horizontal momentum equation
contains the non-hydrostatic pressure horizontal 
gradient:        

 nh

x
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PDU 1 1g dz
Dt x x

η⎛ ⎞ ∂∂η ∂⎜= − + ρ
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ρ ∂
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The non-hydrostatic pressure horizontal 
gradient is not known in a hydrostatic model, b
approximation of the non-hydrostatic pressure 
horizontal gradient effect is required to identify 
regions of significant non-hydrostatic behavior.  The 
approximation for the non-hydrostatic vertical 
gradient can be used to estimate the non-hydrostatic
pressure horizontal gradient.  Vertically integrating 
Equation (5.2) produces an approximation o
non-hydrostatic pressure:   
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The horizontal spatial derivative of the 
approximated non-hydrostatic pressure [Equation 
(5.4)] is: 
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Equation (5.5) approximates the non-hydrostatic 
pressure horizontal gradient, as seen in Figure 5.3.
Similar to the non-hydrostatic pressure vertical 
gradient, the approximated non-hydrostatic pressure 
horizontal gradient matches the occurrence of the 
modeled non-hydrostatic pressure horizontal gradien
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regions of non-hydrostatic behavior compares the 
non-hydrostatic horizontal gradient to the hydrostatic 
horizontal acceleration (DU*/Dt):   
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o

* *

max,n

x

DU DU
Dt Dt

−⎜ ⎟ρ ∂⎝ ⎠γ ≡
⎛ ⎞

−⎜ ⎟⎜ ⎟
⎝ ⎠

 (5.6) 

The difference between the maximum 
horizontal acceleration at a time step (n) and the 
horizontal acceleration at each cell is used to 

tigate the effect of cells with very small horizontal 
accelerations that may amplify the screening 

eter erroneously.  The total horizontal 
acceleration is used to include the horizontal wave 

agation and the nonlinear steepening.   The total 
horizontal acceleration can be decomposed into the 
horizontal wave propagation, which is characterized 

ocal horizontal acceleration: 

P1⎛ ⎞∂

mi

param

prop

by the l

 
*U

t
∂
∂

 (5.7) 

nonlinear steepening, which is characterized 
dvection acceleration: 
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s of the approximated non-hydrostatic 
dient, the screening parameter is: 
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∫
 (5.9) 

Figure 5.4 shows the comparison between the 
approximated and modeled screening parameter.  
The approximated screening parameter slightly over-
predicts non-hydrostatic regions through the water 
column, whereas the modeled screening parameter is 
located only at the steep wave front.   

5.2 Application of the Non-hydrostatic 
Pressure Isolation Method 

The non-hydrostatic pressure isolation method is 
applied to two different internal waves to 
demonstrate the method’s ability to isolate regions 
with significant non-hydrostatic pressure effects.   

5.2.1 Setup 
The test basin is a 2D rectangular basin with an 
initial internal wave setup as specified in Table 5.1.  
The two different internal waves (internal wave 1 
and internal wave 2) were initialized as a cosine 
wave with a three-layer hyperbolic-tangent density 
profile.  The amplitude of internal wave 1 is 1.125 m, 
yielding an amplitude ratio (a/h) of 0.5.  The 
amplitude of internal wave 2 is 0.3 m, yielding a/h = 
0.1.  Internal wave 1 is steep (a/L = 0.11), while 
internal wave 2 is much less steep (a/L = 0.04).   

Internal wave 1 was simulated with three 
different square grids (20×15, 40×30 and 80×60, 
where each grid cell has dimensions of 0.5 m × 0.5 

125 m, 
sen to avoid 

damping the non-hydrostatic effect over a grid with a 
small aspect ratio (§4.3).  Internal wave 2 was 
simulated 

 

ternal wav

7
2.
0

ess hpy

Density gradient ∆ρ

m, 0.25 m × 0.25 m and 0.125 m × 0.
respectively).  Square grids were cho

with the 40×30 grid.   

5.2.2 Results 
The non-hydrostatic pressure isolation method is an
effective way to screen for and target areas that 
require a non-hydrostatic solution.  However, the  

s of test basin. 

Value Units

Table 5.1: Dimension

 
In

Length L
Height H

Upper layer depth h
Depth ratio h/H

Pycnocline thickn

Characteristic Symbol
e 1 Internal wave 2

10 10 m
.5 7.5 m
25 3.0 m
.3 0.4 --
5 5 m
4 4 kg/m3
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Figure 5.4: Comparison of screening parameter, γ. a) Density profile; b,d) γ calculated with the 
approximate non-hydrostatic pressure horizontal gradient; c,e) γ calculated with the model non-
hydrostatic pressure horizontal gradient.  In b and c, as cells scale from dark blue to dark red, 
the cell is considered more non-hydrostatic.      
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reening parameter requires a criterion for 
scriminating hydrostatic and non-hydrostatic 
gions.  Where the screening parameter exceeds the 

riterion, that cell is considered non-hydrostatic, 
hile a cell that has a screening parameter below the 

riterion is considered hydrostatic.  Quantifying the 
riterion as a function of density gradients, wave 
haracteristics and grid resolution is beyond the 
ope of this work.  However, to demonstrate the 

avior of the non-hydrostatic pressure isolation 
method, three different criteria were chosen (γ = 1, 5 
and 10) and applied a posteriori to model results.  
Figures 5.5 and 5.6 show that as the non-hydrostatic 
screening parameter is increased, the region that is 
considered non-hydrostatic decreases.  Figure 5.6 
shows spikes in the number of cells that exceed the 
criterion about every 400 timesteps.  This time 
coincides with when the steep wave fronts reflect off 
the basin wall, where the wave has large vertical 
velocities and therefore the non-hydrostatic effect is 
strong. 

Three grid resolutions were applied to internal 
wave 1.  The finest grid resolution (80×60) identified 
the most cells as non-hydrostatic, while the coarsest 
grid (20×15) identified the least (Figure 5.7).  This 
does not imply that there are more non-hydrostatic 
regions with the finer grid, but rather there are more 
cells representing this region.  Figures 5.4, 5.8 and 
5.9 show that all grids have similar ability to identify 
the region of non-hydrostatic behavior.   

Internal wave 1 is strongly nonlinear and so the 
non-hydrostatic pressure effect is strong at the wave 
front.  Internal wave 2 is weakly nonlinear, 
nonetheless the non-hydrostatic pressure isolation 
method identifies the steepest part of the wave, as 
seen in Figure 5.10.  Figure 5.11 shows a comparison 
between the number of cells with a screening 
parameter greater than one for internal wave 1 and 
internal wave 2.  Internal wave 2 shows large rises in 
the number of cells considered non-hydrostatic when 
the wave is traveling along the basin and has the 
least number of non-hydrostatic cells when the wave 
is at the basin walls.  When the wave is reflecting off 

the basin walls, the vertical and horizontal 
accelerations are greater than anywhere else in the 
basin, so the screening parameter is able to properly 
detect these regions with non-hydrostatic behavior.  
When internal wave 2 is traveling along the basin, it 
should not behave non-hydrostatically, as it is a near-
linear wave.  However, the horizontal accelerations 
are very small so the screening parameter is 
amplified.  The filter used in the screening parameter 
to eliminate small accelerations does not work in the 
limit of very small horizontal accelerations.  Thus, 
the screening parameter delineates regions as non-
hydrostatic erroneously.   

5.3 Summary 

The new non-hydrostatic pressure isolation method 
identifies regions where the non-hydrostatic pressure 
effect is significant.  For a sufficiently steep wave, 
the method is able to predict these regions quite well.  
For weakly nonlinear waves, the non-hydrostatic 
pressure isolation method tends to over-predict non-
hydrostatic regions, due to the nature of a weakly 
nonlinear system.  The method of the screening 
parameter takes the difference between the local 
horizontal acceleration and the maximum horizontal 
acceleration in the field to ameliorate the problem of 
small accelerations.  Despite this construction, a 
weakly nonlinear system has such small 
accelerations that the non-hydrostatic screening 
parameter is still amplified.  Thus, the present 
method is limited by the need to identify a 
characteristic horizontal acceleration scale, which 
herein is taken as the maximum value of the domain.  
If a wave is weakly nonlinear, and therefore 
hydrostatic, the non-hydrostatic pressure isolation 
method is not applicable.  However, if a wave has 
significant steepening, then the non-hydrostatic 
pressure isolation method identifies non-hydrostatic 
regions.  The results from the non-hydrostatic 
pressure isolation method must not be viewed alone, 
but with a general understanding of the nature of the 
modeled wave.  
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Figure 5.7: Number of cells considered non-hydrostatic for internal wave 1.  Each panel has three 
different grids (blue line is 40×30 grid, red line is 20×15 grid and green line is 80×60 grid).  The top 
panel is for a screening parameter, γ > 1; the middle panel has γ > 5 and the bottom panel has γ > 10. 
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Figure 5.8: Comparison of non-hydrostatic screening parameter, gamma, on the 
20×15 grid for internal wave 1. a) Density profile; b) γ calculated with the 
approximate non-hydrostatic pressure horizontal gradient; c) γ calculated with 
the model non-hydrostatic pressure horizontal gradient.   

 

1 2 3 4 5 6 7 8 9 10

2

4

6

Length (m)

H
ei

gh
t (

m
)

b) Approximate γ

e) Model γ

a) Density

1 2 3 4 5 6 7 8 9 10

2

4

6

Length (m)

H
ei

gh
t (

m
)

b) Approximate γ

e) Model γ

a) Density

 67



Wadzuk & Hodges: Hydrostatic and Nonhydrostatic Internal Wave Models 

 68

th

 

1 2 3 4 5 6 7 8 9 10

2

4

6

Length (m)

H
ei

gh
t (

m
)

c) Model γ 

b) Approximate γ

a) Density 

1 2 3 4 5 6 7 8 9 10

2

4

6

Length (m)

H
ei

gh
t (

m
)

c) Model γ 

b) Approximate γ

a) Density 

1 2 3 4 5 6 7 8 9 10

2

4

6

Length (m)

H
ei

gh
t (

m
)

c) Model γ 

b) Approximate γ

a) Density 

Figure 5.9: Comparison of non-hydrostatic screening parameter, gamma, on the 
80×60 grid for internal wave 1. a) Density profile; b) γ calculated with the 
approximate non-hydrostatic pressure horizontal gradient; c) γ calculated with 

e model non-hydrostatic pressure horizontal gradient.  
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Figure 5.11: Number of cells considered non-hydrostatic for internal wave 1 (blue line) and internal 
wave 2 (red line).  γ > 1. 
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Chapter 6. Conclusions and 
Recommendations 
The two main objectives of the present research are: 

• quantify the differences between hydrostatic 
and non-hydrostatic simulations of internal 
wave evolution, and  

• develop a method to a priori determine 
regions with non-hydrostatic behavior. 

Both of these objectives have been accomplished, 
and the results provide insight into the mechanisms 
that control internal wave modeling.  This chapter: 1) 
summarizes the work and conclusions, 2) discusses a 
numerical issue that limits the rapidity of the 
pressure Poisson solution’s convergence and 3) 
provides recommendations for future work. 

6.1  Summary Discussion 

Differences between the hydrostatic and non-
hydrostatic representation of internal waves are 
considerable (§4.1).  The hydrostatic model 
simulates half of the physics necessary to capture 
internal wave evolution (i.e. nonlinear acceleration).  
This allows the wave to nonlinearly steepen, but 
there is no physical term to model dispersion.  Thus, 
the hydrostatic model is limited in capability to 
modeling hydrostatic shallow waves that remain 
essentially linear damped waves (§4.1, scenarios 1 
and 6).    However, the hydrostatic model is 
incapable of physically capturing the dispersion of a 
steepened wave into a train of solitons, as the 
hydrostatic model neglects the physics that control 
this process.  The soliton-like formations observed in 
the hydrostatic model (in this work (§4) and Hodges 
and Delavan, 2004) change when the grid resolution 
for a hydrostatically-modeled wave is varied.  This 
indicates that the size and shape of the soliton-like 
formations are dependent on the grid (§4.1.3) and 
therefore are a model fabrication.  This finding is 
further confirmed by the power spectral density 
distributed over wavelengths; the peak power is not 
shifted to the wavelengths of the soliton-like 
formations, and any power that is seen in these 
waves is a result of harmonics (§4.1.3).  Numerical 
error within the hydrostatic model accumulates to 
reduce the energy in the wave and eventually damp 
out the wave’s steepness.  Numerical diffusion can 
be reduced by vertically refining the grid, but the 
hydrostatic system is numerically dissipative, 
irrespective of the grid resolution.   

 Unlike the hydrostatic model, the non-
hydrostatic model includes the non-hydrostatic 
pressure term, which acts as a dispersive force.  
Thus, as a wave steepens nonlinearly, the non-
hydrostatic pressure applies an effect that disperses 
the wave into a train of solitons.  Grid resolution 
affects the occurrence of the train of solitons (i.e. 
finer horizontal grids simulate more emerging soliton 
trains than a coarser grid, Figure 4.8).  However, the 
characteristic wavelength of the solitons is relatively 
unaffected by grid resolution, compared to the 
hydrostatic model.  The peak power in a wave 
system shifts to the characteristic soliton wavelength 
after solitons have emerged; the shift in power is 
indicative of an energy transfer from basin-scale 
wavelengths to soliton wavelengths.  It is thus 
concluded that the non-hydrostatic model is indeed 
modeling the physics of internal wave evolution.  
Non-hydrostatic models do not eliminate numerical 
error, however, the characteristics of numerical error 
are different in a non-hydrostatic model than in a 
hydrostatic model.  Like the hydrostatic model, 
vertical grid refinement reduces numerical diffusion.  
In contrast to the hydrostatic model, horizontal grid 
refinement greatly reduces numerical dissipation in 
the laboratory-scale case.  The laboratory-scale case 
(§4.1.3) decreases dynamic energy by only 8% over 
nine wave periods for the finest grid resolution 
compared to the coarsest grid resolution which 
decreases dynamic energy by 85%.  It appears that 
the neglect of non-hydrostatic pressure effectively 
acts as a dissipative term in the hydrostatic 
equations.  Perhaps an alternative viewpoint is that 
the non-hydrostatic pressure redistribution of 
momentum reduces the numerical dissipation that is 
associated with shallow water conservation of 
momentum.     

Grid resolution and the subsequent grid aspect 
ratio are the two model parameters that control the 
non-hydrostatic model’s ability to capture internal 
wave evolution.  Most of the lake-scale cases had 
very small grid aspect ratios [O(10-3) – O(10-4)], and 
showed no significant difference between the 
hydrostatic and non-hydrostatic models.  The one 
lake-scale case non-hydrostatic model that differed 
(in diffusion only) from the hydrostatic model had a 
grid aspect ratio of O(10-2); the laboratory scale case, 
where results were significantly different between 
the hydrostatic and non-hydrostatic models, had grid 
aspect ratios of at least O(10-2).  Due to the 
successful use of the non-hydrostatic model for 
larger grid aspect ratios, the present research 
suggests that the grid aspect ratio must be at least of 
O(10-2) to include the effect of non-hydrostatic 
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oblematic for the motion of stiff pressure 
 at the front of an internal wa

yti l solution (§3.1) provides a pressure Pois
 that is independent of a flow field.  

However, the pressure Poisson solution for 
hydrodynamic problems (e.g. internal wave 
evolution) depends upon the gradient of velocity.  
The gradient of velocity generally does not match the 
speed of propagation of the non-hydrostatic pressure 
gradient.  Indeed, this appears to be a key differe
between non-hydrostatic solutions of internal wa
and flows that have been more commonly studie
using non-hydrostatic models. 
over a backwards facing step (e
has an unsteady recirculation region behind th
due to non-hydrostatic pressure.  The non-hydros
pressure gradients in the recirculation oscillate at
same timescale as the motion of the reattachment 
point, which is much longer than the timescale of 
advection.  Thus, the advection velocity limits the 
model time step, from which it follows that local 
changes in the non-hydrostatic pressure gradient 
from one time step to another are small.  As the ti
‘n+1’ pressure field is a good initial guess at the tim
‘n’ pressure field in a backwards-facing step, a 
Poisson solver should be able to rapidly converge.  
In contrast, when modeling an internal wave, for 
common subcritical flows the wave is faster than the 
fluid velocity, so the baroclinic wave speed limits the 
model time step.  As the internal wave propagates 
rapidly through the model grid, non-hydrostatic 
pressure gradients at the wave front are propagated at
the wave speed.  Therefore, the non-hydrostatic 
pressure field may change quite dramatically 
between time steps, such that the time ‘n’ pressure 
field is a poor approximation of the time ‘n+1’ 
pressure field.  This effect is demonstrated by 
simulating a monochromatic wave (§3.2) under two 
different conditions for the Poisson solution: 1) with
the time ‘n’ pressure is used as the starting point for 
the time ‘n+1’ pressure solution; and 2) with zero 
pressure used as the starting point for all pressure 
solutions.  Figure 3.9 shows that using the time ‘n’ 
pressure always requires a larger number of 
iterations to meet the convergence criterion.   

The fine timestep and spatial gr

olution of real-world scale problems a fu
capability.  The present research investigated a ne
method to identify regions with significant non-
hydrostatic behavior.  Using the non-hydrostati
pressure isolation method, a model may be 
developed which would “boot-strap” from a simp
hydrostatic model to a non-hydrostatic model in th
regions identified as “non-hydrostatic.”  Such a 
hydrostatic/non-hydrostatic hybrid model should 
allow faster solution of internal wave evolution.  
However, there is a limit to the ability of the no
hydrostatic pressure isolation method.  The method 
over-predicts non-hydrostatic regions in shallow 
waves.  These shallow waves are ably modeled wi
the hydrostatic model, since steepening and solito
formation is not the dominant phenomenon in t
wave’s evolution.  Thus, the non-hydrostatic 
pressure isolation method should only be applied to
waves which are expected to steepen and form 
solitons (i.e. regime 2, Figure 3.10).   

It is crucial to water quality modeling to have
hydrodynamic model to skillfully simulate the 
internal wave evolution and the flow field in a basin 
(Gross, et al, 1999).  For damped linear internal 
waves, a hydrostatic model may adequately model 
the behavior as long as viscous damping is modeled. 
For internal waves where nonlinear steepening and 
soliton formation are the prevalent features, a no
hydrostatic model provides a physical simulation of
internal wave evolution on a sufficiently fine grid, 
whereas the hydrostatic model does not.  Thus, non
hydrostatic models should be used when nonlinear 
internal waves and solitons are present in the flow 
field; this will in turn create a more realistic 
representation of all the system processes that 
depend on the flow field, such as those in a wat
quality model.      

6.2 Conclusions 

The conclusions that may be drawn from the prese
work are: 

• The present hydrostatic model of the Eule
equations shows soliton-like formations for 
nonlinear/non-hydrostatic waves, which are 
an artifact of the numerical model and grid 
resolution. 

• There is some evidence that the grid aspect 
ratio (∆z/∆x) must be greater than O(10
to capture the effect of non-hydrostatic 
pressure in the present non-hydrostatic 
model.   
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• A hydrostatic model can be used to identif
internal-wave regions with non-hydrostatic 
behavior. 

6.3 Recom

The research presented here investigates emerging 
areas within non-hydrostatic modeling.  This work
began to chip away at some of the issues challenging 
non-hydrostatic modeling, but much remains to be 
investigated.  The most notable issue that mu
examined in non-hydrostatic modeling is sim
time.  To diminish simulation times, this author 
believes there are two main approaches: 1) address 
the issue of stiffness, and 2) construct a hybrid model 
that uses the non-hydrostatic pressure isolation 
method. 

The pressure Poisson equation is inherently 
stiff, but the stiffness is exacerbated by the advectio
methods used.  Presently, the velocity at the previous 
timestep is used in the source term of the pressure 
Poisson equation; this velocity moves much slower 
than the wave and the non-hydrostatic pressure 
gradients.  One suggestion to improve the source 
term of the pressure Poisson equation would be to 
use a predicted advection velocity field from the 
previous two timesteps.  For instance, use a secon
order Adams-Bashforth which predicts the ‘n+1’ 
velocity from the ‘n-1’ and ‘n’ velocities.  Using the 
past two timesteps may better estimate the strong 
velocity gradients near the propagating wave front.   

A second approach to improve the source term
in the pressure Poisson equation is to use the non-
hydrostatic pressure isolation method to identify the 
point at an instant in time with the peak non-
hydrostatic pressure gradient.  This point should 
coincide with the propagating wave front and the 
strongest velocity gradients.  Identifying the location 
with peak non-hydrostatic pressure gradients, alon
with the known timestep, will yield the velocity that
of the peak non-hydrostatic pressure gradient.  This 
velocity should be characteristic of the wave sp
which may be used to provide a better estimation of 
the non-hydrostatic pressure field.     

The non-hydrostatic pressure isolation method 
developed here only provides the relative importan
of the non-hydrostatic pressure effect in the internal
wave’s evolution.  In application, the non-hydrostati
screening parameter needs some criterion to 
delineate a region as “hydrostatic” or “non-

ostatic.” For example, where the screening 

parameter is above a preset criterion, a cell is 
designated as “non-hydrostatic.” At this cell, the 
non-hydrostatic solver may be called to calculate
non-hydrostatic pressure and the updated velocity
field and free-surface.  The criterion for a re
be considered non-hydrostatic must be established.  
The author does not know if there will be a global 
value for the non-hydrostatic screening paramete
criterion, or if it will be dependent on each wave 
characteristics. 

Another issue associated with the 
implementation of the non-hydrostatic pressure 
isolation method is that any change in the velocity 
field propagates instantaneously over the entire 
domain.  Thus, changes within the interior of the 
domain may cause perturbations on the free-surfac
that could feed back into the flow in the form of non-
conservation in mass and volume.  There must be 
some transition between the “hydrostatic” and n
hydrostatic” cells; the transition may b

r cells.  The buffer cells will account for any 
free-surface perturbation and make a correction
the system to ensure conservation of mass and 
volume.  The size of the buffer region must also be 
investigated to determine if it is a function of the 
magnitude of the non-hydrostatic pressure gradients 
or the size of the non-hydrostatic region.   

Finally, the non-hydrostatic model must be 
examined on more real-world scale cases with 
different grid resolutions to determine if the 
instability found in the lake-scale case (§4.2) is a 
model error or an issue with the fractional-step 
method.  To verify the present research’s assessmen
that a grid aspect ratio of at least O(10-2) must b
used to observe differences between the hydrostati
and non-hydrostatic model, the lake-scale case 
should be applied t
present non-hydrostatic pr
adapted to use a pre
method or a multigrid method to improve 
convergence time.     
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