

 University of Groningen

A Finite Prefix for Analyzing Information Flow Among Transitions of a Free-Choice Net
Adobbati, Federica; Soylu, Gorkem Kilinc; Aubel, Adrian Puerto

Published in:
IEEE Access

DOI:
10.1109/ACCESS.2022.3165185

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2022

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Adobbati, F., Soylu, G. K., & Aubel, A. P. (2022). A Finite Prefix for Analyzing Information Flow Among
Transitions of a Free-Choice Net. IEEE Access, 10, 38483-38501.
https://doi.org/10.1109/ACCESS.2022.3165185

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 20-11-2022

https://doi.org/10.1109/ACCESS.2022.3165185
https://research.rug.nl/en/publications/d6cde951-4b7a-428a-8f1e-bcd5c97a79a4
https://doi.org/10.1109/ACCESS.2022.3165185

Received January 25, 2022, accepted March 17, 2022, date of publication April 6, 2022, date of current version April 14, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3165185

A Finite Prefix for Analyzing Information Flow
Among Transitions of a Free-Choice Net
FEDERICA ADOBBATI 1, GÖRKEM KILINÇ SOYLU 2, AND ADRIÁN PUERTO AUBEL3
1Dipartimento di Informatica, Sistemistica e Comunicazione, Università degli Studi di Milano-Bicocca, 20126 Milano, Italy
2Department of Computer Science, Technical University of Darmstadt, 64289 Darmstadt, Germany
3Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, 9747 AG Groningen, The Netherlands

Corresponding author: Görkem Kılınç Soylu (gorkemklnc@gmail.com)

The work of Federica Adobbati was supported by the Italian Ministero dell’Università e della Ricerca. Görkem Kılınç Soylu gratefully
acknowledges support by the German Federal Ministry of Education and Research and the Hessian Ministry of Higher Education,
Research, Science and the Arts within their joint support of the National Research Center for Applied Cyber-security ATHENE. The work
of Adrián Puerto Aubel was by the Austrian Science Fund FWF under Project P33548.

ABSTRACT In distributed systems, the occurrence of an action can give information about the occurrence
of other actions. This can be an unwanted situation when ‘‘high’’ actions of the system need to be kept secret,
while allowing users to observe ‘‘low’’ actions. If it is possible to deduce information about occurrence of
high actions by observing only low actions, then the system suffers from an unwanted information flow.
‘‘Reveals’’ and ‘‘excludes’’ relations were introduced for modelling and analysing such an information flow
among actions of a distributed system that is modelled via Petri nets. In this paper, we provide a formal basis
for computing reveals and excludes relations of 1-safe free-choice Petri nets. We introduce the ‘‘maximal-
step computation tree’’ to represent the behaviour of a distributed system under maximal-step semantics.
We define a finite prefix of the tree called ‘‘full prefix’’ and we show that it is adequate for analysing
information flow by means of reveals and excludes relations.

INDEX TERMS Concurrency, distributed systems, excludes relation, finite prefix, free-choice nets, full
prefix, information flow, maximal-step computation tree, Petri nets, reveals relation.

I. INTRODUCTION AND RELATED WORK
In this paper, we work on a formal basis for modelling
and analysing information flow in distributed systems.
We consider systems that are modelled with 1-safe free-
choice Petri nets.

Petri nets are a formalism for modelling concurrent and
distributed systems. The concept of Petri nets originates
from the PhD thesis of Carl Adam Petri [1] written in the
early sixties. Since then, Petri nets have been extensively
studied, developed and applied in many different areas. A
comprehensive overview on the Petri net theory and its
applications is given in [2], [3] and [4]. A more recent
overview on Petri nets is presented in [5] from a systems
theory and automatic control perspective. Decidability results
addressing important properties and equivalence notions of
Petri nets are collected in [6].

A Petri net is given by a set of places, and by a set of
transitions. Places may contain tokens. The state of a Petri

The associate editor coordinating the review of this manuscript and

approving it for publication was S. K. Hafizul Islam .

net is given by the distribution of tokens among the whole
set of places. When a transition occurs, or fires, it may alter
the distribution of tokens among some places. In this way,
Petri nets can explicitly encode relations of conflict, causal
dependence and concurrency between transitions.

In the literature, a variety of Petri net classes are intro-
duced. These classes differ in the nature of their places. In the
basic classes (elementary net systems, 1-safe Petri nets),
places represent logical conditions, which can be true or false.
The state of the net (or the marking) is then subset of places
which hold the value true. In Place/Transition nets, places
are counters, which can take nonnegative integer values.
In high-level nets, a place is a container for tokens whose
values range over more general types. Further extensions
of the basic model introduce probabilistic or temporal
parameters.

Formally, the structure of a basic Petri net is given by the
flow relation, which links places and transitions. Restricted
classes of Petri nets are defined by imposing restrictions on
that structure. Here, we are interested in so-called free-choice
nets.

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 38483

https://orcid.org/0000-0002-6356-7026
https://orcid.org/0000-0002-7047-0556
https://orcid.org/0000-0002-2703-0213

F. Adobbati et al.: Finite Prefix for Analyzing Information Flow Among Transitions of Free-Choice Net

FIGURE 1. A 1-safe Petri net and its unfolding.

The class of free-choice Petri nets, initially studied in [7],
is relevant in Petri net theory since a large amount of results
relates the structure of the net to its behaviour, yielding
efficient analysis algorithms. See [8] and [9] for a collection
of the main results on this class.

Free-choice Petri nets allow for modelling systems whose
behaviour include both conflicts and synchronisations as
well as concurrency, but they rule out situations in which
conflicts and synchronisations interfere with each other, the
so called situations of confusion. A typical example of
confusion (asymmetric confusion) is given in the net of Fig. 1:
transitions a and c are concurrently enabled, whereas b is not
enabled. Due to the synchronisation at b, the occurrence of a
influences which one between b and c can occur. If a occurs
before c there will be a choice between b and c; if a occurs
after c, then b will still not be enabled.

Since confusion is excluded, this class of nets cannot
model situation of mutual exclusion or resource sharing as
discussed in [10]; in spite of that, free-choice nets are suitable
to model the flow of control in networks of processors and
they are widely used in many application domains as for
example in process mining [11], [12]. In [13] and [14], Van
der Aalst provides new results in the theory of free-choice
nets, including reduction methods to systematically prove
properties, thus improving the efficiency of analysis.

The behaviour of a Petri net can be described in different
ways. The most used models are the marking graph and the
unfolding [15]. The marking graph is a labelled transitions
system, formed by the reachable markings, connected by
arcs corresponding to transition firings. The unfolding of
a Petri net is an acyclic Petri net, made of occurrences of
the elements of the original net, both transitions and places,
partially ordered by a ‘‘causality’’ relation. In the early stages
of this research project, we explored the use of unfolding
and unfolding prefixes, namely the complete prefix [16]
and the canonical prefix [17]. However, we saw that in the

case of free-choice nets under the maximal-step semantics,
representation of the behaviour as a tree structure allows us
to give simpler axiomatic definitions and provide algorithms.

In the standard semantics, transitions fire asynchronously;
an alternative is given by step semantics, where actions that
are concurrently enabled occur simultaneously. Maximal-
step semantics, in particular, requires that as many actions as
possible occur at a time. An overview of different semantics
can be found in [4]. The relation between step semantics
and maximal-step semantics has been studied for example
in [18], where it is shown that they are equivalent in the case of
systems without asymmetric confusion, and therefore also in
the case of free-choice Petri nets. In our setting, it is assumed
that the system progresses unless it goes into a deadlock.
Also, the order of occurrence of concurrently enabled actions,
or the states reached during occurrence of these concurrent
actions have no significance to our purpose. In fact, we can
assume the concurrent actions that are enabled at the same
state can occur simultaneously.

In distributed systems, security considerations may require
that a user is not able to infer if a given action has been
performed by another component, while still being able
to interact with that component. This kind of unwanted
information flow has been studied in formal models of
concurrent systems through the concept of noninterference.
An informative brief overview on information flow and
noninterference is provided in [19].

The concept of noninterference was introduced by Goguen
and Meseguer for deterministic state machines in [20].
Sutherland and McCullough moved the concept to the
nondeterministic and concurrent systems in [21] and [22].
Since then, various noninterference properties have been
proposed in the literature based on different system models.
Focardi and Gorrieri attempt to provide a classification of
possibilistic security properties for process algebras. They do
not, however, provide a general scheme for the definition of
security [23]. By the use of selective interleaving functions,
McLean provides a uniform framework in [24] which allows
one to compare a subset of different information-flow
security properties and reason about composition. Mantel
provides a more expressive framework in which different
noninterference notions can be defined in a modular way by
assembling basic security predicates [25], [26]. As shown
by Mantel in [27], each property that can be represented in
McLean’s framework of selective interleaving functions can
also be represented in the assembly kit.

In the concept of noninterference, a system is viewed
as consisting of components at two distinct levels of
confidentiality: high (hidden) and low (observable). A system
is then said to be secure with respect to noninterference
if a user, which knows the structure of the system, cannot
deduce information about high actions by interacting only
via low actions. Busi and Gorrieri moved the concept to
1-safe Petri nets in [28] by studying observational equiva-
lences and structural properties. In [29], the authors define
structural noninterference properties for elementary nets

38484 VOLUME 10, 2022

F. Adobbati et al.: Finite Prefix for Analyzing Information Flow Among Transitions of Free-Choice Net

based on absence of particular places in the net. Frau et al., in
[30], investigate the algorithmic properties of these structural
properties and introduce a tool for detecting places that
violate security in elementary net models. Best et al., in [31],
study the decidability of noninterference in Petri nets and
prove that it is undecidable for unbounded nets. Baldan
and Carraro give a characterisation of noninterference based
on unfoldings of 1-safe Petri nets in terms of causalities
and conflicts in [32]. In [33], multilevel noninterference
properties are studied based on causal characterisations in
the unfolding semantics of safe net systems. In [34], the
authors provide an algorithm to compute all the minimal
solutions for enforcing noninterference on bounded Petri nets
by using linear integer programming techniques. In this work,
we follow the line of results from the references [35] and [36]
which introduce two families of relations, namely reveals
and excludes, to model information flow among transitions
of a Petri net and use these relations to define various
noninterference properties for 1-safe Petri nets. The original
reveals relation was defined for events of an occurrence
net by Haar in [37]. In [38] it was applied in the field of
fault diagnosis. Later, in [36], the relation was redefined
for transitions of a Petri net and applied in the field of
information-flow security by means of noninterference.

Noninterference deals with two kinds of information
flow: positive and negative. The first one arises when the
occurrence of a transition allows an observer to infer that
another transition has already occurred or will inevitably
occur in the future. The second one refers to the deduction
of information about nonoccurrence of a transition. More
specifically, this kind of information flow arises when the
occurrence of a transition implies that another transition did
not occur or cannot occur in the future. Reveals relation
models positive information flow, whereas excludes relation
models negative information flow among transitions of a
1-safe Petri net.

The contributions of this paper can be summarised as
follows. We introduce the so called maximal-step compu-
tation tree which represents behaviour of a 1-safe free-
choice net under the maximal-step semantics. We show the
correspondence between this tree and the net unfolding.
We show that there exists a finite prefix of such tree, named
full prefix, on which reveals and excludes relations between
the transitions of the corresponding Petri net can be computed
efficiently. Thus, the full prefix can be used to determine
information flow and to verify noninterference on the basis
of reveals and excludes relations as defined in [35], [36].
We prove that the full prefix is sufficient to directly determine
reveals relations, and we provide an algorithm to compute
excludes relations on it. We consider the notion of footprint,
which is the set of transitions observed along a system
run. We provide an algorithm to compute footprints of all
the maximal runs of a system. The footprints can then be
used for further analysis for information flow among sets
of transitions. The full prefix contains a summary of the
corresponding net’s behaviour, and all possible maximal-step

computations are deducible from it. Thus, in addition to
information-flow analysis, the prefix can be used for the
analysis and verification of various behavioural properties of
a distributed system modelled by a 1-safe free-choice net.

The paper is organised as follows. Section II provides the
necessary background on Petri nets to be reasonably self
contained. Section III recalls the definitions of reveals and
excludes relations in the context of Petri net information flow.
Section IV formalises the maximal-step computation tree and
its full prefix. In Section V, the prefix is used for information
flow analysis by computing reveals and excludes relations.
Section V-C is dedicated to the computation of footprints
of all the maximal paths of the maximal-step computation
tree from its full prefix. We discuss the use of our notions
and methods on some examples in Section VI. Section VII
concludes the paper and discusses some possible futurework.

II. BACKGROUND IN PETRI NET THEORY
In this section, we give a short introduction to Petri net theory.

A net is a triple N = (P,T ,F), where P and T are disjoint
sets, the elements of P are called places, the elements of T
are called transitions, and F ⊆ (P × T) ∪ (T × P) is called
the flow relation. The pre-set of an element x ∈ P ∪ T is
the set •x = {y ∈ P ∪ T : (y, x) ∈ F}. The post-set of x
is the set x• = {y ∈ P ∪ T : (x, y) ∈ F}. Analogously, let
X ⊆ P ∪ T be a subset of elements. Its pre-set is defined as
•X = {y ∈ P ∪ T : ∃x ∈ X : (y, x) ∈ F}, and its post-set is
defined as X• = {y ∈ P ∪ T : ∃x ∈ X : (x, y) ∈ F}.
An (ordinary) Petri net 6 = (P,T ,F,m0) is defined by a

net (P,T ,F), and an initial marking m0 : P → N. A net is
finite if the sets of places and of transitions are finite.
A marking is a map m : P → N. Markings represent

global states of a net. A transition t is enabled at a marking
m, denoted m[t〉, if, for each p ∈ •t , m(p) > 0. Let t be
enabled at m; then, t can occur (or fire) in m producing the
new marking m′, denoted m[t〉m′ and defined as follows:

m′(p) =

m(p)− 1 for all p ∈ •t \ t•

m(p)+ 1 for all p ∈ t• \ •t
m(p) in all other cases.

Example 1: A graphical representation of a Petri net is
illustrated in Fig. 1. Conventionally, places are illustrated as
circles and transitions are illustrated as squares. Themarking
is represented through the tokens inside the places, which are
illustrated as small black circles. The initial marking mi of
the Petri net in Fig. 1 is mi(1) = 1,mi(2) = 1,mi(j) = 0
∀j 6∈ {1, 2}. At the initial marking transitions a, f and c
are enabled, i.e., all the preconditions of these transitions
are marked. When transition c fires it consumes the token
from its precondition, namely place 2, and puts a token to its
postcondition, namely place 4. Hence, the marking obtained
after the occurrence of c is m1(1) = 1,m1(4) = 1,m1(j) = 0,
∀j 6∈ {1, 4}.
A marking q is reachable from a marking m if there exist

transitions t1 . . . tk+1 and intermediate markings m1 . . .mk

VOLUME 10, 2022 38485

F. Adobbati et al.: Finite Prefix for Analyzing Information Flow Among Transitions of Free-Choice Net

such that: m[t1〉m1[t2〉m2 . . .mk [tk+1〉q. The set of markings
reachable frommwill be denoted by [m〉. A markingm is safe
if m(p) ∈ {0, 1} for all p ∈ P. If all the markings in [m0〉 are
safe, then 6 = (P,T ,F,m0) is said to be 1-safe (or, shortly,
safe). 6 is called 1-live if for all t ∈ T there exists m ∈ [m0〉

such that m[t〉. In the rest of the paper, we will consider
systems modelled by 1-safe, 1-live Petri nets such that each
transition has a nonempty preset, in which the underlying nets
are finite. Since we restrict to 1-safe nets, from now on we
will represent markings as subsets of places, where p ∈ m iff
m(p) = 1. With this interpretation, a transition t is enabled in
a marking m iff •t ⊆ m.
Example 2: The net in Fig. 1 is 1-safe, and its initial

marking can be equivalently expressed as {1, 2}. After
the occurrence of transition c, the Petri net reaches the
marking {1, 4}.
Petri nets allow for representing different kinds of relations

between transitions. Given amarkingm, two transitions t1 and
t2 are sequential if the occurrence of t1 is necessary to enable
t2. In Fig. 1, c and e are sequential, because e is enabled by
the occurrence of c. Also, a and b are sequential: even if the
occurrence of a may not be sufficient to enable b (since c
may fire), the occurrence of a is necessary to enable b. In a
marking m, two transitions t1 and t2 are in conflict if they are
both enabled and •t1∩• t2 6= ∅. In this case, only one of them
can fire, because the occurrence of one disables the other.
For example, in Fig. 1, a and f are in conflict, because they
both need the token from place 1, but only one can consume
it. Finally, given a marking m, two transitions t1 and t2 are
concurrent if they are both enabled in m and they can both
fire, no matter in what order. In Fig. 1, c is concurrent with
both a and f (although, as we specified before, a and f are
not concurrent with each other).

Given a marking m, a step is a conflict free subset of
transitions that are all enabled at m. A step is maximal if it
is maximal with respect to set inclusion. In the net in Fig. 1,
the maximal steps enabled in the initial markings are {a, c}
and {c, f }.

A marking is a deadlock if no transition is enabled.
Examples of deadlocks are the markings {6, 8} or {3, 8} in
the net of Fig. 1.
Let Ni = (Pi,Ti,Fi) be a net for i = 1, 2. A map λ :

P1 ∪ T1→ P2 ∪ T2 is a morphism from N1 to N2 if:
1) λ(P1) ⊆ P2; λ(T1) ⊆ T2
2) ∀t ∈ T1 the restriction of λ to •t is a bijection from •t

to •λ(t)
3) ∀t ∈ T1 the restriction of λ to t• is a bijection from t•

to λ(t)•

6 is a free-choice net if for all t1, t2 ∈ T such that
•t1 ∩ •t2 6= ∅, we have •t1 = •t2. Historically, nets with
this property were called extended-free-choice, the term free-
choice referring to nets where conflicting transitions share
exactly one precondition, and have no other preconditions.
In extended-free-choice, transitions can have an arbitrary
number of preconditions, as long as the above property
holds. However, it was shown in [8] that these two classes

are equivalent, and we will henceforth consider free-choice
nets to be those where two transitions sharing at least one
precondition are required to share all of their preconditions.

From Section IV on, we will consider free-choice nets as
defined above.

We now introduce two technical relation that will be useful
to define the idea of unfolding of a Petri net. The ≺ relation
on a net N is the transitive closure of F and � is the reflexive
closure of ≺. Given two elements x, y ∈ P∪ T , x#y, iff there
exist t1, t2 ∈ T : t1 6= t2, t1 � x, t2 � y and there exists
p ∈ •t1 ∩ •t2.
A net N = (B,E,F), possibly infinite, is an occurrence

net if the following restrictions hold:

1) ∀x ∈ B ∪ E : ¬(x ≺ x)
2) ∀x ∈ B ∪ E : ¬(x#x)
3) ∀e ∈ E : {x ∈ B ∪ E | x � e} is finite
4) ∀b ∈ B : |•b| ≤ 1

In an occurrence net, the elements of B are called conditions
and the elements of E are called events; the transitive and
reflexive closure of F forms a partial order. The set of
minimal elements of an occurrence net N with respect to
�will be denoted by min(N). Since we only consider the nets
in which every transition has a nonempty preset, the elements
of min(N) are conditions.

An occurrence net represents the alternative histories of a
system; therefore its underlying graph is acyclic (cond. 1),
and paths branching from a condition, corresponding to
a choice between alternative behaviours, never converge
(cond. 2). A configuration of an occurrence net N =

(B,E,F) is a set C of events which is causally closed and
free of conflicts. C is maximal if it is maximal with respect
to set inclusion.

A B-cut of N is a maximal set of pairwise concurrent
elements of B, and can be intuitively seen as a global state
of the net in a certain moment. An E-cut of N is a maximal
set of pairwise concurrent elements of E , that corresponds
with a maximal step on N . By analogy with net systems,
we will sometimes say that an event e of an occurrence net
is enabled at a B-cut β, denoted β[e〉, if •e ⊆ β. A B-cut is a
deadlock if no event is enabled at it. We will denote by C(γ)
the set of all events in the causal closure of a B-cut γ , i.e.,
C(γ) = {e ∈ E | e ≺ b, b ∈ γ }
Example 3: In Fig. 1, unf(6) is an occurrence net. The

set C1 = {f1, c1, e1, c2, h2} is a maximal configuration
of unf(6). The sets {11, 21} and {31, 22} are examples of
B-cuts, whereas {a1, c1} and {b2} are examples of E-cuts.
In particular, {a1, c1} is a maximal step enabled in {11, 21},
whereas {b2} is a maximal step enabled in {31, 22}. The B-cut
γ = {61, 82} is a deadlock, and C(γ) = C1.
A branching process of a Petri net 6 = (P,T ,F,m0) is a

pair (O, λ), where O = (B,E,F) is an occurrence net, and λ
is a morphism from O to 6 such that:

1) ∀p ∈ P m0(p) = |λ−1(p) ∩min(O)|
2) ∀x, y ∈ E , if •x = •y and λ(x) = λ(y), then x = y

38486 VOLUME 10, 2022

F. Adobbati et al.: Finite Prefix for Analyzing Information Flow Among Transitions of Free-Choice Net

We extend the definition of λ to the set of configurations
on the branching process: for each configuration C , for each
ei ∈ C , λ(C) =

⋃
i λ(ei). The set λ(C) is the footprint of C .

A branching process 51 = (O1, λ1) is a prefix of 52 =

(O2, λ2) if there is an injective morphism f from O1 to
O2 which is a bijection when restricted to min(O1), and such
that λ1 = λ2f .
Any finite Petri net 6 = (P,T ,F,m0) has a unique

branching process which is maximal with respect to the prefix
relation. This maximal process, called the unfolding of 6,
will be denoted by unf(6) = ((B,E,F), λ), where λ is the
morphism from (B,E,F) to (P,T ,F) [15].
A run is the subnet of an unfolding that is induced by

a configuration. A run is maximal if the corresponding
configuration is maximal.
Example 4: In Fig. 1, unf(6) is the unfolding of 6.

A maximal run of unf(6) is the subnet such that: the set of
events is the configuration C1 = {f1, c1, e1, c2, h2}, the set of
corresponding conditions is B1 = {11, 61, 21, 41, 22, 42, 82}
and F is the flow relation on unf(6) restricted to the elements
in B1 ∪ C1. The footprint of C1 is λ(C1) = {f , c, e, h}.

III. INFORMATION FLOW BETWEEN TRANSITIONS
OF A PETRI NET
Consider a concurrent system which has two distinct kinds of
actions: high (hidden) and low (observable). The high actions
are confidential, whereas the low ones are not. It is important
that an attacker or an observer with no authorisation cannot
deduce information about the high actions. Noninterference
formally guarantees that this kind of information flow does
not happen, so that the system is secure.

Petri nets can model concurrency, conflict and causal
dependency. However, these are not the only meaningful
logical relations between transitions of a Petri net when
information-flow security is considered. Two transitions
which are not related to each other in terms of above
mentioned relations can still be related in the sense that the
occurrence of one gives information about the occurrence
of the other. For example, the occurrence of an observ-
able transition might imply the occurrence or nonoccur-
rence of a hidden transition, endangering information-flow
security.

In [36] reveals, extended-reveals and excludes relations
were introduced for the transitions of a Petri net with the
aim of modelling information flow in concurrent systems. A
number of noninterference notions were defined by means
of reveals and excludes relations providing different levels of
security guarantees. Below we recall these relations. For all,
we assume progress of the system, i.e., an enabled transition
either fires or gets disabled by another transition that is in
conflict.

A. REVEALS RELATION
The reveals relation was originally introduced for events
of an occurrence net in [37]. In [38] the authors applied
it in the field of fault diagnosis. In [36] reveals relation

is redefined for the transitions of a 1-live Petri net in
order to express positive information flow. In this paper
we only consider 1-safe nets but reveals relation between
transitions is actually defined without any restriction on
safeness.

We say transition t1 reveals transition t2 if each maximal
configuration which contains an occurrence of t1 also
contains at least one occurrence of t2. This means that,
from the occurrence of t1, we can deduce that t2 has
already occurred or will occur inevitably. In other words, the
occurrence of t1 implies the occurrence of t2 either in the
past or in the future. It can violate security if a low transition
reveals a high transition.
Definition 1: Let 6 = (P,T ,F,m0) be a 1-safe Petri net,

Cmax the set of all its maximal configurations and t1, t2 ∈
T be two transitions. Then t1 reveals t2, denoted t1 B t2, iff
∀ C ∈ Cmax t1 ∈ λ(C) H⇒ t2 ∈ λ(C).

Reveals is a reflexive and transitive relation. However, it is
neither symmetric nor anti-symmetric.
Example 5: In the net in Fig. 1, f B c, whereas

c 6B f , since there is a maximal configuration of the unfolding
with footprint {a, c, h}. Some other reveals relations are
bB a, bB d, hB c

B. EXTENDED-REVEALS RELATION
In some cases, one transition alone does not give much
information about the occurrence of another transition,
however, the occurrence of a set of transitions might give
information about the occurrence of others. For example,
the occurrence of all the transitions in set W can imply the
occurrence of some transitions in set Z . This relation was
originally defined in [39] for the events of an occurrence net
and used in the field of fault diagnosis. Later the relation
was expressed in terms of the transitions of a Petri net [36],
and used to analyse noninterference for information-flow
security. Depending on the chosen noninterference notion,
it can violate security if a group of low transitions extended-
reveals a group of high transitions.
Definition 2: Let W ,Z ⊆ T and Cmax be the set of

all maximal configurations. Then W extended-reveals Z,
denoted W _ Z iff ∀ C ∈ Cmax∧

t1∈W

t1 ∈ λ(C) H⇒
∨
t∈Z

t2 ∈ λ(C)

Extended-reveals relation is reflexive and nontransitive.
It is neither symmetric nor anti-symmetric. The reveals
relation coincides with the extended-reveals relation between
singletons, i.e., t1 B t2 can be written as {t1}_ {t2}.
Example 6: In the net in Fig. 2, although e reveals both b

and c, neither b nor c reveals e alone. However, if both b and
c occur, then e will occur inevitably because of the progress
assumption. So we can write {b, c} _ {e}. Similarly, both
f and g reveal d but d reveals neither f nor g. However,
the occurrence of d implies that either f or g will occur
inevitably. This can be expressed by the extended-reveals
relation, i.e., {d}_ {f , g}.

VOLUME 10, 2022 38487

F. Adobbati et al.: Finite Prefix for Analyzing Information Flow Among Transitions of Free-Choice Net

FIGURE 2. A 1-safe free-choice net.

C. EXCLUDES RELATION
Excludes relation was also introduced in [36] for transitions
of a 1-live Petri net in order to express negative information
flow. In this paper, we focus on the case of 1-safe Petri
nets. Two transitions exclude each other if they never occur
in the same run. This means that the occurrence of one
implies nonoccurrence of the other. Depending on the chosen
noninterference notion, it can violate security if a low
transition excludes a high transition.
Definition 3: Let 6 = (P,T ,F,m0) be a 1-safe Petri

net, Cmax the set of all its maximal configurations and let
t1, t2 ∈ T . t1 excludes t2, denoted t1 ex t2, iff
∀ C ∈ Cmax t1 ∈ λ(C) H⇒ t2 /∈ λ(C).
By definition, excludes is a symmetric relation. It is neither

transitive nor reflexive. Moreover, it does not coincide with
the conflict relation. Transitions which are in conflict at a
reachable marking can still appear in the same maximal run,
so they may not exclude each other.
Example 7: In the net in Fig. 1, b is in conflict with c,

however, the two transitions are not in exclude relation,
since there is a maximal configuration with footprint
{a, b, c, e, d, g}. In the same net, f ex b, since a maximal
configuration displaying f has either {f , c, e} or {f , c, e, h}
as footprint.

IV. MAXIMAL-STEP SEMANTICS ON PETRI NETS
In Section II we have given the definition of maximal step:
a set of conflict-free transitions, all enabled at a marking m.
Transitions belonging to a step can fire concurrently without
interfering with one another.

The behaviour of a Petri net is commonly expressed by
means of its marking graph, which displays the firings of
single transitions. In some applications, however, the so-
called maximal-step semantics is used. Here, the set of
reachable markings is computed by firing only maximal
steps.

For general 1-safe Petri nets, the two semantics produce
different sets of reachable markings; more precisely, any
reachable marking under the maximal-step semantics is
also a reachable marking for the ordinary semantics, but
not vice versa. For example, in Fig. 1 the marking {2, 3}

FIGURE 3. Proof of Lemma 1.

is not reachable for maximal-step semantics, but it is
reachable under the ordinary semantics. This difference has
a counterpart on the set of runs of the unfolding of a net:
some maximal runs of the unfolding of a net system are not
maximal when considering maximal-step semantics.

For free-choice nets, it is still true that the sets of reachable
markings differ, but the sets of maximal runs in the unfolding
coincide, as shown below.

A. THE TREE OF MAXIMAL-STEP COMPUTATIONS
In this section we define a tree structure that represents all
computations of a free-choice net 6 according to maximal-
step semantics. We show that this model is semantically
equivalent to the unfolding for free-choice nets (this does not
hold for more general classes of Petri nets).

The equivalence of semantics is a corollary of the following
lemma.
Lemma 1: Let 6 = (P,T ,F,m0) be a 1-safe, free-choice

Petri net. Let m ∈ [m0〉 be a reachable marking of 6, U ⊆ T
be a maximal step enabled at m, with m[U〉m1, and V ⊆ U.
Then V is enabled at m. Supposem[V 〉m2. If m2[t〉, then either
m[t〉 or m1[t〉.

Proof: Suppose that t is not enabled at m. Then the pre-
set of t can be split in two disjoint subsets, A and B, with
A ⊆ m and B ⊆ V •. In words, an input place of t either
belongs tom or is marked by a transition in V . All places in B
belong tom1. Suppose that there is a place p in Awhich is not
inm1. Then, there must be a transition t2 inU \V which takes
the token from p. Then t and t2 have a common input place;
since the net is free-choice, this implies that t is enabled atm,
contradicting the hypothesis.

The proof is illustrated in Fig. 3 �
The tree of maximal-step computations of 6 (msct(6)) is

a labelled tree, defined inductively. Each node is associated
to a B-cut of unf(6) and each arc is labelled by an E-cut of
unf(6) which corresponds to a maximal step of 6.
Definition 4: The tree of maximal-step computations of6,

denoted by msct(6), is a labelled rooted tree defined by the
following clauses.
• The root of msct(6) is the initial cut of unf(6).
• If γ is a node of the tree, and V is an E-cut such
that •V ⊆ γ , then the cut γ ′ that is reached from γ

when V occurs is a node of the tree, and a child of

38488 VOLUME 10, 2022

F. Adobbati et al.: Finite Prefix for Analyzing Information Flow Among Transitions of Free-Choice Net

γ ; γ ′ = (γ \ •V) ∪ V •. The edge between γ and γ ′

is labelled with V .
• Nothing else is a node of the tree.

A path in the msc-tree from a node γ0 is a sequence of
nodes, γ0γ1 · · · such that, for each i > 0, γi is a child of γi−1.
A path is maximal in the msc-tree if it starts from the root and
cannot be extended. Given two finite paths π1 = γ0γ1 . . . γn
and π2 = γnγn+1 . . . γm such that the last node of π1 is equal
to the first node of π2, we define their concatenation as the
path π1 · π2 = γ0γ1 . . . γm. The tree induces a partial order
between its nodes and arcs. Let γ1 and γ2 be two nodes of the
msc-tree. γ1 < γ2 iff there is a path π = γ1 . . . γ2 starting in
γ1 and ending in γ2.

In msct(6) each path π starting from the root is associated
to a configuration of unf(6); the configuration is obtained
by taking the union of the labels of the arcs along the path.
Clearly this is a configuration as defined in Section II, and
will be denoted by conf(π). λ(conf(π)) denotes the footprint
of the path π .
The correspondence between paths and configurations is

not bijective, since a configuration can include only some
of the events forming a maximal step at a given B-cut.
However, the correspondence is bijective for maximal paths
and maximal configurations, as stated in the following.
Lemma 2: Let C be a maximal configuration of unf(6).

Then there is a maximal path π of msct(6), such that
C = conf(π).
Let π be a maximal path in msct(6); then conf(π) is a

maximal configuration of unf(6).
Proof: Let C be a maximal configuration of unf(6).

The set of events in C inherits from unf(6) a partial order.
Let C1 be the set of minimal elements of this partial order;
then C1 is an E-cut, a maximal step enabled at the initial
B-cut of unf(6), corresponding to a maximal step enabled
at the initial marking of 6; let γ1 be the B-cut reached by
firing the events in C1. In msct(6) there is an arc, labelled
by C1, from the root to the node corresponding to γ1. Now
take the minimal elements in C \ C1; these events form a
maximal step enabled at γ1, leading to a B-cut γ2, and there
is a corresponding arc in msct(6), from γ1 to γ2. By iterating
this procedure, we construct a path of msct(6). The maximal
configuration C can be decomposed into a (possibly infinite)
sequence of stepsC1C2 · · · , giving a maximal, corresponding
path in msct(6).
Let now π be a maximal path in msct(6). By construction

of π , the union of the arc labels along π is a configuration
of unf(6). Let conf(π) be this configuration, and suppose
conf(π) is not maximal; then, there is an event e which is
not in conf(π), and such that conf(π)∪{e} is a configuration.
Then e cannot be in conflict with any event in conf(π). There
must be a cut γ , associated to a node of msct(6), such that
e is enabled by γ , and γ is the first cut enabling e along π .
Let H be the step labelling the arc going out of γ along π .
Since no event in H is in conflict with e, H ∪ {e} is a step at
γ , contradicting maximality of H .

Example 8: In Fig. 4, 61 is a 1-safe free-choice net. Both
the unfolding, unf(61), and the maximal-step computation
tree, msct (61), are illustrated in the figure.
The initial marking of the net is {1}. In the unfolding,

it corresponds tomin(unf(61)), which is the B-cut consisting
of a condition labelled by 11. In the tree, it corresponds to
the node labelled by 11 which is also the root of the tree.
At the initial marking, transitions a and b are enabled. Firing
of b leads the system to a deadlock. We can see a maximal
configuration in the unfolding and a maximal path in the
tree representing the occurrence of b. The firing of a from
the initial marking leads the system to marking {3, 4}. This
marking is represented in the unfolding as a B-cut and it is
represented in the tree as a node labelled by 31, 41. In the
unfolding, c1 and d1 are two concurrent events which can
occur in any order. In case c1 occurs first, {51, 41} is reached.
In case d1 occurs first, {31, 61} is reached. Occurrence of both
of these events leads to {51, 61}. In the tree, only the maximal
steps are considered, so c1, d1 occur together and the node
{51, 61} is reached. There are no correspondences of the B-
cuts {51, 41} and {31, 61} in the tree.
Although some reachable markings are not represented

in the tree, each maximal configuration of the unfolding
correspond to a maximal path in the tree and vice versa.

Lemma 2 does not hold in general for the nets that are not
free-choice.
Example 9: The net in Fig. 1 is not free choice, because

•b ∩ •c 6= ∅, and 3 ∈ •b ∧ 3 6∈ •c. In the initial marking, the
maximal steps are {a, c} and {f , c}, therefore, by considering
only maximal steps we would assume that c must belong
to all the maximal configurations of the unfolding. This
is not true, since there is a maximal configuration with
footprint {a, b, d, g}, in other words, there exist a maximal
configuration in which c is not in the set of labels.
Lemma 3: Let γ1 and γ2 be two nodes in msct(6), such

that λ(γ1) = λ(γ2). Then the two sub-trees ofmsct(6) having
γ1 and γ2 as roots (and as nodes all their descendants in
msct(6)) are isomorphic.

Proof: The proof is directly derived from the definition
of msct(6) and properties of unfoldings (see [15], [16]).

B. SOME NOTATION FOR MAXIMAL-STEP
COMPUTATION TREE
In the following we will introduce some msc-tree related
notations which then will be used throughout the rest of the
paper. In all the following items, A will denote a msc-tree,
or any sub-tree of it.

• 5A is the set of all the maximal paths of A.
• Given a node γ in a tree A, let Aγ denote the largest sub-
tree of A whose root is γ .

• Given a transition a, we write

5a
A :=

⋃
λ(e)=a

{π ∈ 5A | e ∈ conf(π)}

VOLUME 10, 2022 38489

F. Adobbati et al.: Finite Prefix for Analyzing Information Flow Among Transitions of Free-Choice Net

FIGURE 4. A 1-safe free-choice net, its unfolding and its maximal-step computation tree.

• Given a path π of A, and a node γ ∈ π , let π ↓ γ
be the initial segment of π whose last node is γ , and
γ ↑ π := π ∩ Aγ

• Let π and π ′ be two paths, let γ1, γ2 and γ ′1, γ
′

2, be their
respective two first nodes. We say π ' π ′ iff λ(γ1) =
λ(γ ′1), the edges (γ1, γ2) and (γ ′1, γ

′

2) are respectively
labelled with steps V1 and V2 such that λ(V1) = λ(V2),
and γ2 ↑ π ' γ ′2 ↑ π

′.
• Given a finite path π of A, let leaf(π) denote the single
leaf in this path.

C. A FINITE PREFIX OF MAXIMAL-STEP
COMPUTATION TREE
We now define a finite prefix of msct(6), which contains the
information needed to determine the whole reveals relation in
6. The prefix is built starting from the root, and adding nodes
along a path until we meet a B-cut γ such that λ(γ) = λ(γ ′),
for some γ ′ on the path between the root and γ .
Definition 5: Let 6 be a 1-safe free-choice net. The full

prefix of msct (6), denoted fp(6), is a labelled rooted tree
defined by the following clauses.

1) The root of fp(6) is the root of msct (6).
2) Let γ be a node of fp(6). If there is no γ ′ such that

γ ′ < γ and λ(γ ′) = λ(γ), then all the children of γ in
the msct (6) are nodes in fp(6); otherwise γ is a leaf
in fp(6).

Given a leaf l of the full prefix, let rep(l) denote the
ancestor of l corresponding to the same marking. If l
corresponds to a deadlock, then rep(l) is undefined.
Example 10: In Fig. 4, the border of the full prefix is

shown via a dashed line. The corresponding part of the
unfolding is drawn in black whereas the rest is drawn in pale
grey. The nodes of the tree which correspond to deadlocks
are in bold black. If the leaf does not correspond to a
deadlock, then it corresponds to a marking which is already
reached in the same path before. The two corresponding
nodes are drawn in the same colour. For example, the path
in which a1, c1, d1, f1, h1 occur reaches the marking {3, 4}
twice. This path is maximal in the full prefix. In total, there
are four maximal paths in the full prefix of msct(61). In the
following sections we will show that all the reveals and
excludes relations of the net 61 can be computed on the
full prefix.

The full prefix of a msc-tree of a Petri net can be
constructed on the basis of Definition 4 andDefinition 5. Note
that this construction can be done directly from the Petri net
without resorting to the unfolding.
Lemma 4: The full prefix of a msc-tree is finite.
Proof: Since the number of transitions is finite, for each

node the number of children is finite. Let n be the total number
of reachable markings in the net, no path of the tree can have
more than n + 1 nodes without reaching a marking that was
already visited.

38490 VOLUME 10, 2022

F. Adobbati et al.: Finite Prefix for Analyzing Information Flow Among Transitions of Free-Choice Net

Lemma 5: For each maximal path π of a msc-tree, there
is a maximal path π ′ of its full prefix, such that π ′ is a prefix
of π .

Proof: Let π be a maximal path of an msc-tree and γ be
the last node of the intersection between π and the full prefix.
γ cannot have any child in the prefix, otherwise one of them
should also be in the intersection, since by definition, if γ is
not a leaf, all the children in the msc-tree are also in its full
prefix. Hence γ must be a leaf, and the path from the root to
γ is maximal in the prefix.

Next, we describe an operation involving both msc-tree
and full prefix, that is at the core of the main results of this
paper. In particular, it will allow us to show that the full prefix
gathers enough information to directly determine some of the
information flow in the system. It is fundamentally adapted
from [38] to the structures here at stake. Informally, the idea
is that whenever a path contains two nodes representing the
same marking, then we may obtain a new path by collapsing
the whole segment between these two nodes to a single node
representing that marking.
Definition 6 (Peeling): Let A be a msc-tree. We define a

function peel : 5A → 5A. Given a maximal path π of A,
peel(π) is called the peeling of π .
Consider π ′ = π ∩L. From Lemma 5, π ′ ∈ 5L . If leaf(π ′)

is a deadlock, then peel(π) := π . Otherwise, rep(leaf(π ′)) is
well-defined, and there is a single path peel(π) satisfying that
π↓rep(leaf(π ′)) = peel(π)↓rep(leaf(π ′)) and leaf(π ′)↑π '
rep(leaf(π ′)) ↑ peel(π).
In terms of Petri nets, such a path π is nothing but a run

which may cycle back to some previously visited marking.
Then peel(π) and π corresponds to the same run but for
skipping the cycle altogether.
Lemma 6: Let 6 be a free-choice Petri net and fp(6) the

full prefix of msct(6). For each node γ in msct(6), there is
at least a node γ ′ in fp(6) such that λ(γ) = λ(γ ′).

Proof: Let γ be a node of msct(6). If γ is also in fp(6),
the proof is trivial. Otherwise, γ must follow a leaf in fp(6),
since by definition, for each γi internal node on fp(6), for
each child γi+1 of γi in msct(6), γi+1 is also in fp(6). Let
γj be the leaf preceding γ and π a maximal path on msct(6)
including γ . By construction, there must be a node γ ′j < γj
such that λ(γj) = λ(γ ′j). We can peel π by identifying γ ′j with
γj. In the peeled path π ′, let γ ′ be the cut associated to γ by
the peeling operation. There are two cases: (1) there is no pair
of markings γ1, γ ′1 such that λ(γ1) = λ(γ

′

1) and γ1 < γ ′1 < γ ′.
Then, by construction γ ′ is in fp(6). (2) γ ′ follows two cuts
γ1 and γ ′1 with λ(γ1) = λ(γ

′

1). In this case, we can repeat the
peeling procedure until a node associated with γ is in fp(6).
This will happen in a finite number of steps, since each time
the number of nodes between the node associated with γ and
the root decreases.
Remark 1: If γ is not a deadlock, at least an occurrence

of γ ′ as described in Lemma 6 is an internal node. In order
to see it, we can observe that if γ ′ is a leaf and it is not a
deadlock, then there is another node in fp(6) preceding γ ′

and associated to the same marking by construction.

A consequence of Lemma 6 is that at least an occurrence of
all the transitions in 6 appears in fp(6): let t be a transition
in 6, an occurrence of t must appear also in msct(6). Let γ
be a node in msct(6) and V the label of an outgoing arc from
γ such that t ∈ λ(V); by Lemma 6, there is a node γ ′ in fp(6)
corresponding to the samemarking, and an outgoing arc from
γ labelled with V ′, such that λ(V) = λ(V ′).
We now define an extension operation on finite paths.
Definition 7: Let π = γ0γ1 . . . γn be a finite path in

the msc-tree A, and L be the full prefix of A. For each
internal node γ ∈ L such that λ(γ) = λ(γn) and for each
π ′ ∈ 5Lγ , we define the extension of π through π ′ as the
function ext(π, π ′) = π · πex , where πex is the path with first
node γn and such that πex ' π ′.
The existence of πex in Definition 7 is a direct consequence

of Lemma 3. The extension operation allows us to state
another property of the full prefix, that establish a relation
between its paths and the paths of the msc-tree. This is
expressed by the following lemma.
Lemma 7: For eachπ finite path in themsc-tree, ifπ is not

contained in fp(6), then we can find a path including it, by
starting from a maximal path of the full prefix and applying
recursively the extension operation.

Proof: Consequence of Lemma 3, Lemma 6 and
Remark 1.

The result of the previous Lemma applies also to infinite
paths when considering the limit of applying recursively
the extension operation. This means that we can extract all
possible system behaviour under maximal-step semantics
from the full prefix.

V. INFORMATION-FLOW ANALYSIS ON THE FULL PREFIX
In this section we study the relations that are recalled in
Section III on the full prefix. We show that the full prefix
is an adequate basis for computing these relations and so
it can be used to verify information-flow security with the
noninterference notions introduced in [36].

The algorithms provided in this section require a previous
computation of the full prefix, and their running time depends
on the number of distinct transitions of the system, as well
as on the size of the full prefix. It is therefore noteworthy
that the length of the full prefix is at most the number of
markings of the system that are reached under maximal-
step semantics, plus one repeated marking. In case of paths
composed of many cycles, the path will be as large as the
least common multiple of the length of these cycles, since
after this number of maximal steps, each cycle will be back
at its initial conditions. In each node, the number of children
depends on the number of transitions concurrent and in
conflict in the corresponding marking. In particular, if the
marking m enables n groups of concurrent transitions, each
of them with ki, i ∈ {1, . . . , n}, transitions in conflict, then
the node associated with the marking m will have 5n

i=1ki
children. Once the full prefix is computed, it can serve all
the subsequent information flow analysis, as presented next.

VOLUME 10, 2022 38491

F. Adobbati et al.: Finite Prefix for Analyzing Information Flow Among Transitions of Free-Choice Net

A. COMPUTING REVEALS ON THE FULL PREFIX
Let a and b be two transitions of 6, we say that a reveals
b if and only if each maximal configuration which includes
an occurrence of a also includes an occurrence of b (see
Definition 1). This is directly translated to the following due
to the equivalence of maximal configurations of an unfolding
and maximal paths of the corresponding msc-tree. a reveals b
if and only if each maximal path of msct (6) which includes
an occurrence of a also includes an occurrence of b. In other
words, let A be msct (6), aB b iff 5a

A ⊆ 5
b
A.

In the following example, we study the reveals relation
among transitions of a Petri net on the full prefix of its
msc-tree.
Example 11: In Fig. 4, in the net 61, a reveals both c and

d. Similarly, h reveals a, c, d and f . In fact, each maximal
path of the full prefix of msct(61) that contains a also
contains c and d. And each maximal path of the full prefix
which contains h also contains a, c, d and f . Looking at the
other direction, we see that each maximal path of the full
prefix which contains e also contains d and in fact e reveals
d in the net system. However, the converse is not true. There
is a maximal path of the full prefix which contains d but does
not contain e (namely the maximal path which ends with node
{32, 43}) and in fact d does not reveal e in the net system.
Next, we prove that, for 1-safe free-choice nets, the full

prefix is enough to compute the reveals relation. In other
words, if aB b in 6, then each maximal path of fp(6) which
has an occurrence of a also has an occurrence of b and vice
versa.
Theorem 1: Let6 = (P,T ,F,m0) be a 1-safe free-choice

Petri net, a, b ∈ T , A be the msct(6), and L be its full prefix,
fp(6). 5a

A ⊆ 5
b
A ⇔ 5a

L ⊆ 5
b
L .

Proof: We use proof by contraposition, so we first show
that if 5a

L * 5b
L then 5a

A * 5b
A. Let ρ be a maximal

path in L such that ρ ∈ 5a
L and ρ 6∈ 5b

L . If λ(leaf(ρ)) is
a deadlock the conclusion is trivial because ρ is a maximal
path in A. Otherwise, rep(leaf(ρ)) exists in ρ, and we can
extend infinitely many times ρ with an isomorphic copy of
the segment between rep(leaf(ρ)) and leaf(ρ). This procedure
produces a maximal path in A with the same labels of ρ,
therefore without occurrences of b.
We now suppose that 5a

A * 5b
A and we show that 5a

L *
5b
L . The proof proceeds with an iterative procedure meant to

find a maximal path of the prefix with an occurrence of a and
no occurrence of b, thus showing that a does not reveal b in L.
Informally, this procedure constructs, at each step, a maximal
path of A with an occurrence of a and no occurrence of b,
in such a way that the number of elements in the past of its
first occurrence of a is reduced at each step. Since there can
only be finitely many such elements, the procedure will reach
a maximal path of L containing an occurrence of a but not of
b, in a finite number of steps.

By hypothesis, there is a maximal path ρ′ ∈ 5A : ρ
′
∈

5a
A ∧ ρ

′
6∈ 5b

A. By Lemma 5, there is ρ ∈ 5L that is a
prefix of ρ′. Note that ρ has no occurrence of b—otherwise,
so would ρ′—, and so if it has an occurrence of a, then

ρ ∈ 5a
L and ρ 6∈ 5b

L . Now, suppose that a does not occur
in ρ, and γf = leaf(ρ). If γf were a deadlock, we would
necessarily have that ρ = ρ′, but this is a contradiction, since
a occurs in ρ′ and not in ρ. Then rep(γf) is defined, there is
only a finite number of elements in ρ′ which are in the past
of a, and at least one of these must be found between rep(γf)
and γf , not to contradict maximal-step semantics. The path
ρ′′ = peel(ρ′) is maximal in A, and by Lemma 5, there is a
maximal path ρ1 ∈ 5L which is a prefix of it. Clearly, b does
not occur in ρ′′ or ρ1, and so if a occurs in ρ1 we reach the
desired conclusion. Otherwise, consider leaf(ρ1). Clearly, it is
not a deadlock, and by construction, rep(leaf(ρ1)) is defined.
Since the number of elements between the root and the first
occurrence of a in ρ′′ is strictly less than that between the
root and the first occurrence of a in ρ′, we may iterate the
procedure by finding prefixes ρ2, . . . , ρn with no occurrences
of b, until eventually ρn will have an occurrence of a, for a
finite n.
With the above proof, we conclude that all the reveals

relations among the transitions of 6 can be found by
computing the footprints of the maximal paths of fp(6) and
checking for the corresponding labels among them. Note
that maximal paths of fp(6) are finite, whereas maximal
configurations of the unfolding are in general infinite.

B. COMPUTING EXCLUDES ON THE FULL PREFIX
Let a and b be two transitions of 6, we say that a excludes b
(or b excludes a by symmetry of the relation) if, and only if,
no maximal configuration of unf(6) has both an occurrence
of a and of b (see Definition 3). Due to the equivalence of
maximal configurations of an unfolding and maximal paths
of the corresponding msc-tree, this is directly translated to
the following: a excludes b if, and only if, no maximal path
of msct (6) displays both a and b. In other words, let A be
msct (6), a ex b iff 5a

A ∩5
b
A = ∅.

In the following example, we will study the excludes
relation among transitions of a Petri net on the full prefix of
its msc-tree.
Example 12: In the net in Fig. 4, b excludes all the other

transitions of the net. By symmetry of the excludes relation,
each transition (except b itself) excludes b. These are the only
excludes relations in the net.
Now let us examine the full prefix, fp(61), and consider

the transitions a and b. The initial node corresponds to the
marking (1). From the initial node we can either continue with
an occurrence of a or an occurrence of b (and these are the
only occurrences of a and b in fp(61)). None of the maximal
paths of fp(61) has occurrences of a and b together. However,
we cannot conclude a excludes b by looking at the maximal
paths of the full prefix. We need to make sure the maximal
paths of themsct (61) don’t have the two transitions together.
To do this, we do not need to construct the whole tree. We can
use the full prefix as a basis to decide excludes in a finite
number of steps. This procedure is formally defined later in
this section.

38492 VOLUME 10, 2022

F. Adobbati et al.: Finite Prefix for Analyzing Information Flow Among Transitions of Free-Choice Net

The maximal path of fp(61) with the occurrence of b
ends in a deadlock so it is maximal in the msct (61) as
well. It is clear that after the occurrence of b, a cannot
occur. Now we need to check if b can occur after a does.
We can extend the paths by gluing the nodes corresponding
to the same marking. In this way, we can build maximal
paths of msct61. For example, in the maximal path in which
a, {c, d}, f , and h occur (let’s call it π1), the blue nodes
correspond to a repeated marking, namely {3, 4}. So, π1 can
be extended in many different ways by gluing the blue nodes
and repeating the gluing operation on different repeated
marking pairs. It can be extended to a maximal path in
which only a, c, d, f , h, occur. It can be extended so as to
also have occurrences of either e or g or both. But none of
the continuations can have an occurrence of b because the
marking which enables b can never be reached during this
operation. So, we can conclude a excludes b.
Now let’s consider the transitions f and h. We can easily

see that there is a maximal path of fp(61) in which both occur,
namely π1. So we can decide f does not exclude h on the full
prefix, without any further computation.
If we look at the transitions e and g, we can see that the

maximal path of fp(61), in which e occurs, ends in a node
corresponding to the marking {5, 6}, which is repeated in the
path. So the path can be extended so that after e occurs, g
does as well. This path witnesses that e does not exclude g.

In the following we present a finite algorithmic procedure
to check whether a excludes b on the full prefix of the
msc-tree; the pseudocode of this procedure is presented in
Algorithm 1. Theorem 2 then proves the correctness of the
algorithm.

Algorithm 1 takes the full prefix L and two transitions
a, b ∈ T as input. During its execution, it checks whether
there can be an occurrence of b following or being in the step
label as an occurrence of a, in any path of the msc-tree. If this
is the case, the algorithm returns false, and the procedure
terminates. Otherwise, it returns true. In this second case,
in order to determine whether a ex b, Algorithm 1 must be
repeated by exchanging the roles of a and b, so as to check
the case in which an occurrence of a follows an occurrence of
b. If the algorithm also returns true in this case, we conclude
that a ex b.
Next, we discuss the pseudocode as presented in Algo-

rithm 1. The reasoning is analogous when the roles of a and
b are exchanged.

First, the algorithm checks whether there is any maximal
path in the full prefix L with both a and b. If a does not
exclude b on the prefix, then it will certainly not exclude it on
the whole tree. Otherwise, we compute the set sup of nodes
following an occurrence of a and such that for each γi ∈ sup,
there is no γj < γi following an occurrence of a. Until sup
is empty, the function extract removes an arbitrary element
from sup and assigns it to x. For each x, we consider the set
leaves(x) of the leaves in Lx , and we compute the minimum
element of the set ({rep(l) : l ∈leaves(x)\ checked} ∪ {x}).
This element, denoted bym is unique, as proved in Lemma 8.

Algorithm 1 Computing Excludes
procedure ex(L: full prefix, a, b ∈ T) ∈ {true, false}
if 5a

L ∩5
b
L 6= ∅ then

return false
end if
sup← min({γi ∈ L : γi follows an occurrence of a})
checked← ∅
while sup 6= ∅ do
x ← extract(sup)
m← min({rep(l) | l ∈leaves(x)\ checked} ∪ {x})
if m 6= x then
sup← sup ∪{m}
if b ∈ Lm then
return false

end if
for i ∈ sup do
if m < i then

sup← sup \{i}
end if

end for
end if
checked← checked ∪ leaves(x)

end while
return true

If the returned node m is different from x, then we check
whether b occurs in Lm. If it does, a does not exclude b.
Otherwise, we remove from sup all the nodes i such that
m < i, and we mark all the leaves over x as checked.
In the next steps we will not need to visit these leaves again.
When sup is empty we can conclude that there cannot be any
occurrence of b following an occurrence of a.
Lemma 8: Let x be a node in L, and P a set of leaves in

Lx . The minimum element of the set {rep(γ) | γ ∈ P} ∪ {x} is
unique.

Proof: Let γ ′ ∈ {rep(γ) | γ ∈ P}, then x ≤ γ ′ or
x > γ ′: for each γ ∈ P, rep(γ) must be in ↓ γ , and ↓ γ ⊆
↑ x ∪ ↓ x. So, either γ ′ ∈↓ x, or x ≤ γ ′. Note that ↓ x is
totally ordered, since it is the initial segment of a path. Then
any unordered pair γ1, γ2 ∈ {rep(γ) | γ ∈ P} must satisfy
x ≤ γ1 and x ≤ γ2. Since for any subset S, the elements of
min(S) are unordered, we obtain that either γ ∈ min{rep(γ) |
γ ∈ P} is unique, or ∀γ ∈ min{rep(γ) | γ ∈ P} : x ≤ γ ,
which concludes the proof.
Lemma 9: The procedure described in Algorithm 1 is

finite.
Proof: If5a

L ∩5
b
L 6= ∅ then the algorithm immediately

terminates. Else, the procedure terminates when the set sup
is empty. Let n be the number of leaves in L, then initially
n0 = |sup| ≤ n. At every iteration, at least one element x
of sup is removed, and possibly an element i < x is added.
Hence, after a general iteration |sup| ≤ n0. For each x ∈ sup,
the number of elements i : i < x is finite, therefore after
a finite number of steps there is no element left that can be

VOLUME 10, 2022 38493

F. Adobbati et al.: Finite Prefix for Analyzing Information Flow Among Transitions of Free-Choice Net

added to sup, and k = |sup| ≤ n0. When this point is reached,
after at most k iteration the procedure terminates.
Theorem 2: Let 6 = (P,T ,F,m0) be a free-choice Petri

net, a, b ∈ T , A = msct(6), L = fp(6), and ex be the
procedure of Algorithm 1. Then5a

A∩5
b
A = ∅ iff ex(L, a, b) =

true and ex(L, b, a) = true.
Proof: The procedure ex(L, a, b) checks whether some

path of L containing an occurrence of a can be extended
to a path of A containing an occurrence of b, and returns
false in that case. It is then required to check ex(L, b, a)
symmetrically, to ensure that no path of A contains both a
and b.
We first assume that either ex(L, a, b) or ex(L, b, a) return

false. If 5a
L ∩5

b
L 6= ∅, then 5

a
A ∩5

b
A 6= ∅ as an immediate

consequence of Lemma 5.
We assume that5a

L∩5
b
L = ∅, andwe can suppose, without

loss of generality, that ex(L, a, b) = false, the other case
being symmetric with respect to a and b. Since5a

L∩5
b
L = ∅,

there must be an m such that b ∈ Lm.
At every iteration of the while loop, the initial segment of

a path of A is considered, with at least an occurrence of a and
such that its final node is isomorphic to m. It then considers
all its possible extensions with segments isomorphic to
those in Lm. Only if some of these extensions include b
the algorithm returns false, therefore some path of A has
an initial segment containing occurrences of both a and b,
so 5a

A ∩5
b
A 6= ∅.

We now assume that π ∈ 5a
A ∩ 5

b
A 6= ∅, and that the

algorithm returns true, to derive a contradiction.
If a and b occur in π|L , the algorithm returns false in the

first conditional statement. We consider the case in which a
or b do not occur in π|L . As a consequence, and by Lemma 6,
there cannot be any arc in π with occurrences of both a
and b. Without loss of generality, we can assume that the
first occurrence of a precedes the first occurrence of b in π .
We may also suppose that a occurs in π|L . Otherwise, we can
successively peel π until a occurs in the prefix. We also
assume that there are n nodes between γ0 = leaf(π|L) and
the first occurrence of b. Let π0 = π|L , and suppose that for
0 ≤ j, πj is an initial segment of π with an occurrence of
a, but none of b. Suppose that leaf(πj) is isomorphic to some
leaf γj of L, and note that if it were a deadlock, we would have
πj = π , so b would occur in πj. Then rep(γj) must be well-
defined. Furthermore, by Lemma 3, Lrep(γj) is isomorphic to
some prefix of Aleaf(πj), so wemay define πj+1 to be the initial
segment of π , obtained by extending πj with a maximal path
of Lrep(γj). Then πj+1 still contains an occurrence of a, and its
final node is isomorphic to some leaf γj+1 of L. Next, we show
that b cannot occur in πj+1.

Let m be as in Algorithm 1, it follows from its definition,
and Lemma 8, that Lrep(γj) ⊆ Lm. Since by assumption, the
algorithm does not return false, there is no occurrence of
b in Lm, and so no occurrence of b can appear in Lrep(γj).
Hence b cannot occur πj+1. Let k ≥ n, we just showed by
induction that b does not occur in πk , but it must have at
least n nodes after γ0, and since it is a prefix of π , it must

have an occurrence of b. This is a contradiction, so either
5a
A ∩5

b
A = ∅ or the algorithm returns false.

In the next section, we will present a more general
algorithm, that also allows for checking the excludes relation.
In order to justify that Algorithm 1 is in general a better
option, we here provide a means of comparing the two
solutions.

During the first if, Algorithm 1 analyses all the arcs of the
tree exactly once. In the while loop, the algorithm crosses
each arc at most once. Indeed, an appropriate implementation
of the condition b ∈ Lm would not require to check the arcs
of a sub-tree that has already been analysed. As discussed
above, in order to determine whether a ex b, the while loop
must be run twice, therefore the algorithm will check |L|
arcs and so the complexity of determining whether a given
pair of transitions excludes each other is O(|L|). In order
to determine excludes for all the pairs of transitions, this
analysis must be repeated for all the |T | ∗ |T − 1| pairs of
distinct transitions, therefore the complexity is O(|L| ∗ |T |2).
Note that in information-flow analysis, we are only interested
in excludes relation between low and high transitions, not all
pairs of transitions.

It will be shown, in the next section that Algorithm 2would
require, in the same conditions, to performO(|L|2∗2|T |) visits
to the nodes of L. Therefore, it is in general more convenient
to use Algorithm 1 when only the excludes relation needs to
be checked.

C. COMPUTING FOOTPRINTS OF MAXIMAL RUNS
So far, we have considered information flow among two
chosen transitions of a Petri net. The reveals and excludes
relations determine if it may be inferred from the observation
of one transitionwhether the other occurs, or does not occur in
the samemaximal run. In this section, we consider extensions
of these concepts to subsets of transitions.

A natural way of extending information-flow analysis
among the transitions of a Petri net, when it comes to
information-flow security, is to determine whether observing
a set of transitions causes an unwanted information flow
about another set of transitions. Extended-reveals relation
models such information flow (see Definition 2).

A general approach to check extended-reveals requires to
determine the footprints of all runs of the system. Given
a Petri net 6, the footprint of a maximal configuration C
of unf(6) is the set of transitions that can be observed
through the corresponding run, i.e., λ(C). Thanks to the
bijection between maximal configurations of the unfolding
and maximal paths of the msc-tree, let S be the set of labels
found on the edges of a maximal path of the msc-tree, λ(S) is
the footprint of the corresponding maximal run of the system,
and each such footprint can be retrieved in this way.

Furthermore, the set of footprints of all maximal paths of
a msc-tree can be computed from its full prefix. This is made
possible by two key features. First, any path of the msc-tree
can be reconstructed solely with the information provided by
its full prefix. This is enabled by the following properties:

38494 VOLUME 10, 2022

F. Adobbati et al.: Finite Prefix for Analyzing Information Flow Among Transitions of Free-Choice Net

(a) all reachable markings of a msc-tree are represented in
the full prefix; (b) each maximal path of a full prefix which
does not end in a deadlock ends in a node corresponding to
a marking which is repeated in that path; and (c) the sub-
trees of msct(6) whose roots correspond to the samemarking
are isomorphic. Second, since the set of labels of the system
is finite, there are only finitely many possible footprints of
runs. Then only a finite collection of maximal paths needs
to be explored, making sure that each possible footprint is
represented in the collection. Furthermore, only a finite prefix
of each such path needs to be explored, if we make sure that
it displays all labels that will eventually occur along the path.
These notions are formalised in the following lemma.
Lemma 10: Let A be anmsc-tree, andπ be a finite prefix of

some maximal path of A. Consider the final node γ of π , and
suppose there is some other node γ ′ in π such that λ(γ) =
λ(γ ′) and λ(C(γ)) = λ(C(γ ′)). Then the following hold:

a) There is a maximal path π ′ of A such that λ(conf(π ′)) =
λ(C(γ)), and π is a prefix of π ′.

b) For each maximal path πγ 6= π ′ of A containing γ , there
is a maximal path πγ ′ of A such that γ ′ ∈ πγ ′ ,γ /∈ πγ ′ ,
and λ(conf(πγ)) = λ(conf(πγ ′)).

Proof: Let s0 = γ ′ ↑ π , so that π = (π ↓ γ ′) · s0.
Then λ(C(γ)) = λ(conf(π)) = λ(conf(π ↓γ ′))∪λ(conf(s0))
= λ(C(γ ′)) ∪ λ(conf(s0)), and since λ(C(γ)) = λ(C(γ ′)),
we derive that λ(conf(s0)) ⊆ λ(C(γ ′)).

In order to show a), suppose that for some k ∈ N there is
a maximal path πk of A, and a sequence of segments {si}i≤k
such that ∀i ≤ k : si ' s0, and (π ↓ γ ′) · s0 · · · sk is a prefix
of πk . In particular, this is true for k = 0. Since all the si are
isomorphic, and can be concatenated, it must hold for each
of them that its initial and final nodes γi, and γi+1 satisfy
λ(γi) = λ(γi+1). In particular, γk ' γk+1, and it follows from
Lemma 3 that Aγk ' Aγk+1 (see Fig. 5). Put γ0 = γ

′ and γ1 =
γ , clearly ∀i ≤ k + 1 : λ(γi) = λ(γ0) and Aγi ' Aγ0 . Note
that γk ↑πk is a maximal path of Aγk , and that sk is its prefix.
Then there must be a maximal path π ′k in Aγk+1 isomorphic
to γk ↑ πk , with a prefix sk+1 isomorphic to sk , and therefore
also to s0. Then πk+1 = (πk↓γk+1)·π ′k is a maximal path ofA
with prefix (π ↓γ ′) · s0 · · · sk+1. By induction, we may derive
that there is a sequence of isomorphic segments {si}i∈N, and a
path π ′ = (π ↓ γ ′) · s0 · · · sk · · · , maximal in A. Furthermore,
since the segments sk are all isomorphic, we have that
∀k ∈ N : λ(conf(sk)) = λ(conf(s0)) ⊆ λ(C(γ)). Hence,
λ(conf(π ′)) = λ(C(γ)).
This setting also allows one to show b). Consider a

maximal path πγ 6= π ′ of A, containing γ . There must be
some k ∈ N such that γk ∈ πγ , but γk+1 /∈ πγ . ButAγk ' Aγ ′
implies that γk ↑ πγ is isomorphic to some maximal path
π ′
γ ′

of Aγ ′ . Let πγ ′ = (πγ ↓ γ ′) · π ′γ ′ . Clearly γ /∈ πγ ′ ,
since otherwise we would have that γk+1 ∈ πγ . Now note
that since ∀k ∈ N : λ(conf(sk)) = λ(conf(s0)) ⊆ λ(C(γ)),
then λ(conf(πγ)) = λ(C(γ ′) ∪ λ(conf(γk ↑ πγ)). Since
λ(conf(γk↑πγ)) = λ(conf(π ′γ ′)), we have that λ(conf(πγ)) =
λ(conf(πγ ′)).

FIGURE 5. γ0 = γ ′ , and γ1 = γ . The grey sub-trees, rooted at the nodes γn
are all isomorphic as n ∈ N. The path π ′ contains all the nodes γn, and
∀n ∈ N : γn ↑ π ′ ↓ γn+1 ' γ0 ↑ π ′ ↓ γ1. For each path πγ there is a path πγ ′

such that γk ↑ πγ ' γ0 ↑ πγ ′ , and γ1 /∈ πγ ′ .

This lemma provides a stop condition for an exploration of
the msc-tree A, with the aim of finding footprints. Implication
b) provides a bound to the number of maximal paths that need
to be effectively visited, whereas a) lets us know when to stop
exploring a path.

Algorithm 2 simulates such an exploration of A, in recur-
sive depth first, by successively exploiting Lemma 3 to
explore sub-trees of the full prefix L.

We suppose that the full prefix L is implemented thanks
to the structure msct_node. Aside from the field children,
standard in a tree structure, each node γ gathers the following
information. γ.m is the marking λ(γ) corresponding to the
interpretation of γ as a B-cut. Recall that each arc (γp, γ) of
the tree is labelled with the set of events V corresponding to
the step it represents. We suppose to have stored the labelling
of this step λ(V), which is a set of transitions of the net
system, in the variable γ.3. When γ is a leaf of the prefix
which is not a deadlock, then rep(γ) is a well-defined node
of the prefix, and γ.ancestor stores a pointer to that node.
Finally, we need an additional field γ.seen that is required
for Algorithm 2 to terminate. It shall be initialised to ∅ and
will accumulate a collection of partial footprints.
Theorem 3: Let A = msct(6), L be its full prefix, and γr

be the root of L. Let f be the function defined by Algorithm 2.
Then f (γr ,∅) returns {λ(conf(π)) | π ∈ 5A}.

Proof: f is a recursive function that simulates a depth
first exploration of A on its full prefix L. In order to formalise

VOLUME 10, 2022 38495

F. Adobbati et al.: Finite Prefix for Analyzing Information Flow Among Transitions of Free-Choice Net

Algorithm 2 Computing footprints
structure msct_node γ :
m ⊆ P .λ(γ)
3 ⊆ T . λ(V)
seen ⊆ 2T . ∅
ancestor: msct_node . rep(γ)
children: {msct_node}

end structure

procedure f (γ : msct_node, c ⊆ T) ⊆ 2T

value← ∅
if γ.children = ∅ then

if γ.m /∈ deadlocks(6) and c /∈ γ.seen then
γ.seen← γ.seen ∪ {c}
for γi ∈ γ.ancestor.children do
value← value ∪ f (γi, c ∪ γi.3)

end for
else value← {c}
end if

else
for γi ∈ γ.children do

value← value ∪ f (γi, c ∪ γi.3)
end for

end if
return value

end procedure

this, we will say that a pair (γ ′, c) ∈ L× 2T simulates a node
γ of A whenever λ(γ) = λ(γ ′), and c = λ(C(γ)). Note that
since L ⊆ A, out of Lemma 3 it holds thatAγ ′ ' Aγ whenever
(γ ′, c) simulates γ , independently of c.

First, we show that for each call f (γ ′, c), there is a node γ
simulated by (γ ′, c). Indeed, the initial call f (γr ,∅) satisfies
that λ(C(γr)) = ∅. Now suppose that we enter the body of the
function from a call f (γ ′, c) where (γ ′, c) simulates some γ
of A. Further recursive calls are performed either if γ ′ is not
a leaf of L, or when γ ′ is a leaf which is not a deadlock.

In the first case, it follows from Aγ ′ ' Aγ that a node γ ′i
of L is a child of γ ′ if, and only if γ has a child γi such
that λ(γi) = λ(γ ′i). Furthermore, if V and V ′ are the steps
labelling the arcs (γ, γi), and (γ ′, γ ′i) respectively, it holds
that λ(V) = λ(V ′). It is clear that each such γi satisfies
λ(C(γi)) = λ(C(γ) ∪ V), and it follows that λ(C(γi)) =
λ(C(γ)) ∪ λ(V ′) = c ∪ γ ′i .3.

In the second case, simply note that rep(γ ′) is well-defined
and λ(rep(γ ′)) = λ(γ ′) = λ(γ). Then the previous argument
applies to rep(γ ′) instead of γ ′. It follows that each maximal
path of A is explored, up to simulation, and until the stop
condition c ∈ γ ′.seen holds.
Next, we show that each call f (γ ′, c) returns a set

containing only footprints of maximal paths of A. In fact,
it returns the footprints of all maximal paths of A which
contain a node γ simulated by (γ ′, c), unless these footprints
are already returned at a previous call f (γ ′, c). Note in the

function body, that the only return statement concerns the
variable value, which is set to ∅ at the beginning of the call.
We may suppose that all recursive calls inside the body are
effectively returning a set containing only valid footprints.

We distinguish two cases, either γ ′ is a leaf of L or not. If it
is not, then the algorithmwill enter a for loop, at each iteration
of which the content of the variable value will be extended
with whatever is returned by a recursive call to function f .
Thus, by hypothesis, only valid footprints are added to the
contents of value.

If γ ′ is a leaf of L, which is not a deadlock, and such that
c /∈ γ ′.seen, then the same argument applies. If c ∈ γ ′.seen,
variable value gets the singleton {c}. In this case, cmust have
been added to γ ′.seen in a previous call f (γ ′, c), and so there
are two nodes γ0, and γ1 of A, both simulated by (γ ′, c).

Suppose there is a maximal path of A which contains
both γ0 and γ1, then we are in the conditions of Lemma 10.
By 10.a), c must be the footprint of some maximal path of A.
Note that in this case, the simulated visit to γ1 must return
before that to γ0 does, and so the values to be returned by
the latter depend on those returned by the former. However,
from 10.b) we may deduce that if the footprint of a maximal
path containing γ1 is different from c, then it is returned by
the first call f (γ ′, c), independently from the second. Indeed,
for each such path, there is a path with the same footprint
containing γ0, but not γ1, so its footprint is computed without
relying on the second call. Hence, c is the only footprint to
be returned by the second call, which is not redundant with
those returned by the first.

If on the contrary, there is no maximal path of A containing
both γ0 and γ1, then by the second call, the first call f (γ ′, c)
must have already returned and so there must have been an
intermediary call f (γ ′, c) simulating a visit to a node γ2, such
that there is a maximal path of A containing both γ0 and γ2.
Then conditions of Lemma 10 apply to γ0 and γ2, and by the
previous argument, the first call has returned the footprints
of all maximal paths of A containing γ0. Since by Lemma 3,
Aγ0 ' Aγ1 , then a maximal path of A containing γ1 has a
given footprint if and only if A has a maximal path containing
γ0 with the same footprint. Furthermore, by concatenating
infinitely many isomorphic copies of the segment with
initial node rep(γ ′) and final node γ ′ to the path leading
to γ1, we obtain a maximal path of A whose footprint is
precisely c.
The case in which γ ′ is a leaf of L which is a deadlock

remains. But we have seen that (γ ′, c) simulates some γ of A,
and sinceAγ ' Aγ ′ , then γ must be a deadlock as well. Hence
c = λ(C(γ)) is the footprint of the finite maximal path ending
at γ .
Finally, since L and T are finite, there are only finitely

many pairs (γ, c) ∈ L × 2T . Only the first time a call f (l, c)
is performed, the size of the sub-tree of A whose exploration
is simulated increases, and always by at most the size of the
full prefix. Then if w is the number of leaves of L which are
not deadlocks, the size of the explored sub-tree is at most
|L| + w ∗ 2|T | ∗ |L|. This value is an upper bound to the total

38496 VOLUME 10, 2022

F. Adobbati et al.: Finite Prefix for Analyzing Information Flow Among Transitions of Free-Choice Net

number of calls to f , which ensures termination and provides
a worst case asymptotic complexity O(|L|2 ∗ 2|T |).

This proof concludes that the footprints of maximal runs
of a system can be computed on its full prefix in a finite
number of steps. This enables us to identify all the extended-
reveals relations among transitions by looking for labels in
the computed footprints.

VI. EXAMPLES
In this section we discuss some simple application scenarios
in which our approach is meaningful. Our objective is
twofold. On the one hand, we indicate some directions for the
development of effective applications. On the other hand each
scenario is chosen so as to underline a feature of the methods
we have proposed. Although reveals and excludes relations
are defined and studied mainly for information-flow security,
we do not limit our discussions with that and we include some
further discussions on the use of our methods for verification
of other properties like system reliability and conformance.

A. THE DINING CRYPTOGRAPHERS
The notions of information flowwe have studied in this paper
allow for expressing security requirements in a very natural
way. Indeed, either in systems or communication protocols,
reveals and excludes relations allow one to determinewhether
a system is free from information flow, i.e., no information
can be achieved about occurrence of the hidden actions by
observing the public actions. The following example displays
such a situation, in which security specifications can be
checked as proposed in this work. We rely on an example
developed in [40] and [41], in which the authors study
a variant of the dining cryptographers protocol. Here we
provide a 1-safe free-choice net modelling the protocol, and
apply our methods to verify its conformance to the security
specifications.

The two cryptographers Anne and Bob enjoy a meal at the
restaurant. When they ask for the bill, they are informed that
it has already been paid. They want to know whether one
of them or their employer National Security Agency (NSA)
paid, but in case one of them paid, they do not want their
neighbour Eve to discover who. To this aim, they perform
a protocol to exchange information in a secure way. They
toss two coins, visible to both of them, and they state their
parity (’agree’ if the coins show the same side, ’disagree’
otherwise). Eve can hear whatever they say, but she cannot
see the coins. If Anne paid, she will lie about the parity of
the two coins, otherwise she will tell the truth. Bob will do
the same. After this procedure Anne and Bob will know who
paid the bill, whereas Eve will only be able to say whether
one of them or the NSA paid. But if NSA did not pay, Eve
will not be able to know who paid among Anne and Bob.

This protocol is modelled with the 1-safe free choice net
in Fig. 6, where the msc-tree of the net and the legend of
the labels of each transition are also presented. Below we
examine the net with our techniques.

FIGURE 6. The dining cryptographers net and the full prefix of its
maximal step computation tree.

Example 13: The protocol must make sure (1) Eve is not
able to determine who paid among Anne and Bob, (2) Anne
and Bob are able to determine who paid.
The first requirement is a noninterference property. In the

protocol, Eve can observe AdBa,AaBd,ABA and ABD.
Everything else is hidden. We can verify the first requirement
by checking whether the transitions that are observable to
Eve reveal if Anne or Bob paid (AP and BP). As discussed
in Section V-A, by looking at the footprints of the maximal
paths of the full prefix (which is actually the whole msc-tree
in this case), we see that none of the mentioned transitions
reveals AP or BP, e.g., AdBa 6B AP, AdBa 6B BP, etc. We see
that no combination of the observable transitions appears

VOLUME 10, 2022 38497

F. Adobbati et al.: Finite Prefix for Analyzing Information Flow Among Transitions of Free-Choice Net

in the same path, so it is not relevant to check whether any
combination extended-reveals AP or BP. We can conclude
that the first requirement is satisfied.
The second requirement is actually not a noninterference

property but it is a property that the protocol must satisfy
to ensure the required information is exchanged between
Anne and Bob. This property can be expressed in terms of
extended-reveals relation and can be verified by computing
the footprints of the msc-tree as discussed in Section V-C.
However, in this example there are no cycles and so the
full prefix is actually the whole msc-tree. This means further
computation is not required. The set of footprints of maximal
paths of the full prefix and the msc-tree are the same. The
protocol is finalised by one of the following transitions:
AdBa,AaBd,ABA,ABD. All are observable. Nothing else is
observable to Eve, but AP is observable to Anne while BP
is observable to Bob. Looking at the footprints we deduce
that ABA B NP and ABD B NP. We also see that {AdBa} _
{AP,BP} and {AaBd} _ {AP,BP}. This means that by
observing AdBa or AaBd, the observer can deduce either
Anne or Bob paid. So, while Eve is not able to understand
who paid, when Bob pays, Anne understands and vice versa.
In this example, reveals and extended-reveals relations are

used to verify that the protocol is free from positive infor-
mation flow and that it ensures the information exchange.
Negative information flow is not relevant in this example but it
is a nice exercise to look for it. The only negative information
flow is the following. Occurrences of ABA and ABD imply
nonoccurrence of AP and BP, i.e., ABA ex AP, ABA ex BP,
ABD ex AP and ABD ex BP. Since nonoccurrence of AP
doesn’t imply Bob paid (and similarly nonoccurrence of BP
doesn’t imply Anne paid), the secrets are still safe and this
flow doesn’t violate the security of the protocol.

B. A BUSINESS PROCESS MODEL
Free-choice nets are proven to allow efficient analysis of
various properties [14], [42]. This is achieved by eliminating
a certain kind of behaviour, namely interference of choice
and synchronisation. This separation comes natural for
majority of process models used in practice and hence makes
this particular class of Petri nets suitable for modelling
business processes [12]. Here we reason about the use of our
methods in the fields of process mining and business process
management. We foresee that our methods can be useful in
the field for tackling two major aspects: (1) information-
flow security analysis by computing reveals and excludes
relations, (2) conformance check by the use of footprints for
characterising possible runs of the system.

We discuss our techniques on a simple example. The Petri
net in Fig. 7 is adapted from a model in Chapter 2.3 of
‘‘Process Mining’’ book by Aalst [43]. The net models han-
dling of compensation requests within an airline. A customer
may place a request for various reasons. After a request, the
ticket is checked and an inspection is performed in parallel.
However, inspection can be in two different ways which
is modelled via conflicting activities. Transition b and e

FIGURE 7. Petri net model of a business process and the full prefix of its
msc-tree.

model a critical inspection activity which is performed for
suspicious or complex requests. Transition c and f model
a casual inspection activity which is performed for regular
requests. Decision is made only after ticket is checked and the
inspection is performed. There are three possible outcomes of
the decision: the requested compensation is paid, the request
is declined or further processing is needed. In the first two
cases the process is finalised. In the latter case the process
returns to the marking {2, 3}.

Below we apply our techniques on the net in Fig. 7.
Example 14: The full prefix of the msc-tree of the net is

included in Fig. 7. Thick black nodes indicate deadlocks
whereas coloured nodes correspond to a marking which is
repeated in a path. Looking at the footprints of the maximal
paths of the full prefix, we can extract the reveals relations
among the transitions. To start with, all the transitions
reveal transition a. However, this is not a security concern.
In fact, reveals relation raises an information-flow security
concern only when an observable (low) transition reveals
a secret (high) transition. In the example, no transition is
classified as high or low but we can intuitively assume that
what kind of inspection activity is performed is meant to be a
secret, so transitions b, c, e and f are high transitions and
assume everything else is low. We can easily deduce from
the footprints these transitions are not revealed by any low
transition. This means no deductions about the inspection can
be done by observing the low actions. By checking reveals
relations, we proved that the net is secure with respect to
positive information flow. We can further analyse the net for
negative information flow by checking the excludes relations
with the help of Algorithm 1. In this net, no low transition
excludes a high transition so we can confirm that there is no
negative information flow.

38498 VOLUME 10, 2022

F. Adobbati et al.: Finite Prefix for Analyzing Information Flow Among Transitions of Free-Choice Net

The Algorithm 2 computes footprints of all maximal paths
of the msc-tree, so the footprints of all possible maximal
runs of the system, on the full prefix. From information-
flow security perspective, this algorithm helps to investigate
extended-reveals relation which models a more intricate flow
involving more than two transitions. In this net, no low transi-
tion extended-reveals any high transition. The algorithm can
also help us to characterise the possible maximal runs of the
system. For example, {a, b, c, d, e, f , g, h, j} is a footprint of
the msc-tree of the net in Fig. 7. This means that there exists
at least one maximal run of the system in which all these
labels occur. On the other hand, {a, b, g}, {a, c, d, f , g, j, k}
or {a, b, e, h} are not footprints of the maximal paths of msc-
tree of the net. This means that there are no maximal runs of
the system with only these labels.

Business process management and process mining are
widely studied and there is a collection of software
that are effectively used in the industry (e.g., Celonis,
Disco/Fluxicon) as well as scientific tools (e.g., ProM). Our
theoretical results might practically contribute in the field
by extending one of these software with our techniques
with the aim of information-flow security analysis and/or
conformance check.

C. CLIENT AND PROVIDERS
The central role of concurrency in Petri nets make them
suitable models for the design of distributed workflows. They
have become a standard tool for this purpose [44], and the
latest industrial requirements keepmotivating the use of these
models.

We discuss a simple modular example, which could grow
in size to express arbitrarily complex behaviours. We discuss
system reliability and information-flow security in terms of
reveals and excludes relations on a simple instance of this
model. We model a client as a controller interacting with
providers through some actions. Each action may send one or
several service requests in parallel, each to a different service
provider, and remains idle until all the services are performed.
When all services are performed the action is concluded
and control returns to the client. The client controller may
implement an arbitrary program by sequentially determining
which action to take.

Suppose that the client needs to perform an operation for
which she requires data, and some remote computational
power. She then needs to check the outcome against a data set
from a different database. Fig. 8 displays a controller for such
task. It accesses the database of Provider 1 by performing
request cr1. If the query produces an error, the controller
launches an emergency interrupt procedure. If the data is
obtained, the firing of cr23 launches two requests in parallel
to concurrently process the data on the remote cluster of
Provider 2, and query the database of Provider 3 for the
second data set. If this second query does not produce an
error, then cr23′ may fire, allowing the system to check the
processed data against this data set, possibly by invoking yet

other services, and continue with the execution of its arbitrary
program, and service requests.

When a data provider receives the request, it simply
processes it through pr1 or pr3, which sends a positive or
negative reply and enables it to reset. Provider 2 is optimised
so that depending on the request, it may choose to perform
the operation with algorithms algo1, or algo2.
Below, we examine the model illustrated in Fig. 8 for

system reliability and information-flow security by means
of reveals and excludes relations. Note that, in this setting,
client can observe the transitions that are within the
client component (illustrated via dashed rectangle labelled
‘‘Client’’). The transitions belonging to the providers are
hidden from the client. And conversely, the providers can
only observe their own transitions. In the below example, the
observability of the transitions is relevant for the analysis of
security (noninterference) properties.
Example 15: In this model, transition cr23′ reveals tran-

sitions s1, s2, and s3, but does not reveal transitions algo1,
algo2. In fact, no observable transition reveals algo1 or
algo2. This can be interpreted as the fact that once the client
has received all the data, she is sure that the three services
have been provided, but she cannot decide which algorithm
was chosen by Provider 2 to perform its task. Conversely,
transition s1 reveals cr1, and s2 and s3 both reveal transition
cr23; i.e., the providers send a reply only when the client
sends them a request. In general, reveals transition doesn’t
imply any order, i.e., the revealed transition may occur
before or after the revealing transition or even simultaneously
with it. However, knowing the structure of the net, we can
safely say that the mentioned reveals relations guarantee
that the services are provided only when a request is
made.
Note that cr1 does not reveal s1, since the request might

lead to error1. Neither does cr23 reveal s3, but it does
instead reveal s2 since Provider 2 always processes the data it
receives. Also, error1 and error3 exclude each other, because
the system stalls after interrupt.
These properties can easily be verified on the full prefix of

msc-tree. Note that for all practical purpose, the undefined
process in Fig. 8 may be abstracted as a single transition
t. This transition represents the set of transitions T which
represents all the transitions in the abstracted module. In this
context, for a transition t ′ /∈ T , t B t ′ can be interpreted as
∃t0 ∈ T : t0 B t ′, and conversely, t ′ B t as ∃t0 ∈ T : t ′ B t0.
With this abstraction, the full prefix of the msc-

tree has five maximal paths. Three of these correspond
to executions that end in a deadlock after the firing
of interrupt, and have for respective footprints the
sets {cr1, pr1, error1, reset1, interrupt}, {cr1, pr1, reset1,
s1, cr1′, cr23, pr2, algo1, s2, cr23, pr3, error3, reset3,
interrupt}, and {cr1, pr1, reset1, s1, cr1′, cr23, pr2, algo2,
s2, cr23, pr3, error3, reset3, interrupt}. Note that the last
two footprints only differ in the choice of Provider 2 for
the algorithm. This is also the case for the two remaining
paths: each depicts all transitions in the system but for

VOLUME 10, 2022 38499

F. Adobbati et al.: Finite Prefix for Analyzing Information Flow Among Transitions of Free-Choice Net

FIGURE 8. A client exchanging information with three providers.

error1, error3, and interrupt in its footprint, and present
exactly one of the labels among algo1, and algo2.
We may conclude that it is impossible, by observing

the client, or the database providers, to determine whether
Provider 2 used algorithm 1 or 2. On the other hand, the client
may determine that Provider 1 did provide the requested
service s1, by observing cr1′, cr23, cr23′, or resetC. With
analogous computations all the reveals relation can be
derived, as for instance cr23B s1, but cr23 6B algo1.
Another property that we may want to check is the

possibility of error. It is easy to see that error1 ex error3,
i.e., only one error can occur in the system that performs an
emergency stop. However, by applying Algorithm 1 we can
see that cr23′ does not exclude error1 (or error3), i.e., even
when the three services were successfully provided once to
the client, an error could still occur after the first resetC.
This model can be straightforwardly extended by adding

an arbitrary number of actions and providers with possibly
different features. The class of properties discussed in this
example can be verified on these larger models with the same
techniques. In order to do so, however, some care has to be
taken in modelling the system as a free-choice net.

VII. CONCLUSION
In this paper, we have introduced maximal-step computation
tree which is a tree structure to represent the behaviour of
a 1-safe free-choice Petri net under maximal-step semantics.
Nodes of the tree correspond to B-cuts of the net’s unfolding
and arcs are labelled by the E-cuts corresponding themaximal
steps of the net. We have defined a finite prefix of the tree,
called full prefix. This prefix is a compact representation
of a Petri net’s behaviour from which all the possible
maximal configurations of the corresponding unfolding can
be computed.

We have shown that the full prefix forms an adequate basis
for information-flow analysis of concurrent systems that can

be modelled by 1-safe free-choice Petri nets. On the full
prefix, we have studied reveals and excludes relations which
are defined to model information flow among the transitions
of a Petri net. We have proved that reveals relation can be
computed on the full prefix without further computation.
This can be done by traversing the tree and checking for
labels. We have shown that the excludes relation can be
computed on the full prefix in a finite number of steps with
Algorithm 1. As a consequence, reveals and excludes based
noninterference properties can be verified on the full prefix
of a Petri net model.

We have presented the notion of footprint. The footprint
of a path of a msc-tree is the finite set of labels of the
transitions that are fired throughout the corresponding system
run. A footprint can be seen as a summary of a system
run independent from how many times a certain transition
fired. Footprints relate to reveals and excludes relations in the
following way. Transition a reveals transition b if, and only if,
each maximal path of the full prefix whose footprint displays
a also displays b. Transition a excludes transition b (and so
b excludes a) if, and only if, no maximal path of the msc-
tree has both a and b in its footprint. The extended-reveals
relation can be extracted from the footprints of maximal runs
of a Petri net. Algorithm 2 computes these sets when given
the full prefix of the Petri net.

Although the notions of reveals, excludes and footprints
are introduced and studied from the information-flow security
perspective, they can be used for verification of different
properties of systems that can be modelled via 1-safe free-
choice nets. Our methods show potential to be used in various
application areas including fault diagnosis, protocol verifica-
tion, workflow verification, business process analysis.

In the near future, we plan to continue to explore the
notions of msc-tree, full prefix and footprints in more details
and improve our methods. We will work on extending our
results to more general classes of Petri nets which will
broaden the application domain. We will explore the practical
use of our analysis methods on complex systems such as
critical infrastructures, IoT, cloud systems and blockchains.

ACKNOWLEDGMENT
The authors would like to thank Lucia Pomello, Luca
Bernardinello, and Carlo Ferigato for the fruitful discussions,
and Heiko Mantel for his useful comments.

REFERENCES
[1] C. A. Petri, ‘‘Kommunikation mit automaten,’’ Ph.D. dissertation, Dept.

Sci., Tech. Univ. Darmstadt, Darmstadt, Germany, 1962.
[2] T. Murata, ‘‘Petri nets: Properties, analysis and applications,’’ Proc. IEEE,

vol. 77, no. 4, pp. 541–580, Apr. 1989.
[3] J. L. Peterson, ‘‘Petri nets,’’ACMComput. Surv., vol. 9, no. 3, pp. 223–252,

1977.
[4] J. Desel and G. Juhás, ‘‘What is a Petri net?’’ in Unifying Petri Nets,

Advances in Petri Nets (Lecture Notes in Computer Science), vol. 2128,
H. Ehrig, G. Juhás, J. Padberg, and G. Rozenberg, Eds. Berlin, Germany:
Springer, 2001, pp. 1–25.

[5] A. Giua and M. Silva, ‘‘Petri nets and automatic control: A historical
perspective,’’ Annu. Rev. Control, vol. 45, pp. 223–239, Jun. 2018.

38500 VOLUME 10, 2022

F. Adobbati et al.: Finite Prefix for Analyzing Information Flow Among Transitions of Free-Choice Net

[6] J. Esparza and M. Nielsen, ‘‘Decidability issues for Petri nets—A survey,’’
J. Inf. Process. Cybern., vol. 30, no. 3, pp. 143–160, 1994.

[7] M. H. T. Hack, ‘‘Analysis of production schemata by Petri
nets,’’ Massachusetts Inst. Tech., Cambridge, MA, USA, Tech.
Rep. MAC TR-94, 1972.

[8] E. Best, ‘‘Structure theory of Petri nets: The free choice hiatus,’’ in
Petri Nets: Central Models and Their Properties, Advances in Petri Nets
(Lecture Notes in Computer Science), vol. 254. Bad Honnef, Germany:
Springer, 1986, pp. 168–205.

[9] J. Desel and J. Esparza, Free Choice Petri Nets. Cambridge, U.K.:
Cambridge Univ. Press, 1995.

[10] E. Smith, ‘‘On the border of causality: Contact and confusion,’’ Theor.
Comput. Sci., vol. 153, nos. 1–2, pp. 245–270, 1996.

[11] W. van der Aalst, T. Weijters, and L. Maruster, ‘‘Workflow mining:
Discovering process models from event logs,’’ IEEE Trans. Knowl. Data
Eng., vol. 16, no. 9, pp. 1128–1142, Sep. 2004.

[12] W. M. P. van der Aalst, ‘‘Using free-choice nets for process mining
and business process management,’’ in Proc. 16th FedCSIS, M. Ganzha,
L. A. Maciaszek, M. Paprzycki, and D. Slezak, Eds., 2021, pp. 9–15.

[13] W. M. P. van der Aalst, ‘‘Free-choice nets with home clusters are lucent,’’
Fundam. Inf., vol. 181, no. 4, pp. 273–302, 2021.

[14] W.M. P. van der Aalst, ‘‘Reduction using induced subnets to systematically
prove properties for free-choice nets,’’ in Proc. PETRI NETS, vol. 12734,
D. Buchs and J. Carmona, Eds., Paris, France. Cham, Switzerland:
Springer, 2021, pp. 208–229.

[15] J. Engelfriet, ‘‘Branching processes of Petri nets,’’ Acta Inf., vol. 28, no. 6,
pp. 575–591, 1991.

[16] J. Esparza, S. Romer, and W. Vogler, ‘‘An improvement of McMillan’s
unfolding algorithm,’’ in Formal Methods in System Design. Heidelberg,
Germany: Springer-Verlag, 1996, pp. 87–106.

[17] V. Khomenko, M. Koutny, and W. Vogler, ‘‘Canonical prefixes of Petri net
unfoldings,’’ Acta Inf., vol. 40, no. 2, pp. 95–118, 2003.

[18] R. Janicki, P. E. Lauer, M. Koutny, and R. Devillers, ‘‘Concurrent
and maximally concurrent evolution of nonsequential systems,’’ Theor.
Comput. Sci., vol. 43, pp. 213–238, Dec. 1986.

[19] H. Mantel, ‘‘Information flow and noninterference,’’ in Encyclopedia
Cryptography Security, H. C. A. van Tilborg and S. Jajodia, Eds. Boston,
MA, USA: Springer, 2011, pp. 605–607.

[20] J. A. Goguen and J. Meseguer, ‘‘Security policies and security models,’’ in
Proc. IEEE Symp. Secur. Privacy, Oct. 1982, pp. 11–20.

[21] D. Sutherland, ‘‘A model of information,’’ in Proc. 9th Nat. Comput. Sec.
Conf., vol. 247, 1986, pp. 175–183.

[22] D. McCullough, ‘‘Specifications for multi-level security and a hook-up,’’
in Proc. IEEE Symp. Secur. Privacy, Apr. 1987, p. 161.

[23] R. Focardi and R. Gorrieri, ‘‘A taxonomy of security properties for process
algebras,’’ J. Comput. Secur., vol. 3, no. 1, pp. 5–34, 1995.

[24] J. McLean, ‘‘A general theory of composition for a class of ‘possibilistic’
properties,’’ IEEE Trans. Softw. Eng., vol. 22, no. 1, pp. 53–67, Dec. 1996.

[25] H. Mantel, ‘‘Possibilistic definitions of security—An assembly kit,’’ in
Proc. 13th CSFW, Cambridge, U.K., 2000, pp. 185–199.

[26] H. Mantel, ‘‘A uniform framework for the formal specification and
verification of information flow security,’’ Ph.D. dissertation, Dept.
Comput. Sci., Saarland Univ., Saarbrücken, Germany, 2003.

[27] H. Mantel, ‘‘The framework of selective interleaving functions and the
modular assembly kit,’’ in Proc. FMSE, Fairfax, VA, USA, V. Atluri,
P. Samarati, R. Küsters, and J. C. Mitchell, Eds., 2005, pp. 53–62.

[28] N. Busi and R. Gorrieri, ‘‘A survey on non-interference with Petri nets,’’ in
Petri Nets, Advances, vol. 3098. Berlin, Germany: Springer-Verlag, 2003,
pp. 328–344.

[29] N. Busi and R. Gorrieri, ‘‘Structural non-interference in elementary and
trace nets,’’ Math. Struct. Comput. Sci., vol. 19, no. 6, pp. 1065–1090,
2009.

[30] S. Frau, R. Gorrieri, and C. Ferigato, ‘‘Petri net security checker: Structural
non-interference at work,’’ in Proc. 5th FAST, vol. 5491, P. Degano,
J. D. Guttman, and F. Martinelli, Eds., Malaga, Spain. Berlin, Germany:
Springer-Verlag, 2008, pp. 210–225.

[31] E. Best, P. Darondeau, and R. Gorrieri, ‘‘On the decidability of non
interference over unbounded Petri nets,’’ in Proc. 8th SecCo, vol. 51,
K. Chatzikokolakis and V. Cortier, Eds., Paris, France, 2010, pp. 16–33.

[32] P. Baldan and A. Carraro, ‘‘Non-interference by unfolding,’’ in Proc.
PETRI NETS, vol. 8489, G. Ciardo and E. Kindler, Eds., Tunis, Tunisia.
Berlin, Germany: Springer-Verlag, 2014, pp. 190–209.

[33] P. Baldan and A. Beggiato, ‘‘Multilevel transitive and intransitive
non-interference, causally,’’ Theor. Comput. Sci., vol. 706, pp. 54–82,
Dec. 2018.

[34] F. Basile, G. D. Tommasi, and C. Sterle, ‘‘Noninterference enforcement via
supervisory control in bounded Petri nets,’’ IEEE Trans. Autom. Control,
vol. 66, no. 8, pp. 3653–3666, Sep. 2021.

[35] G. Kılınç, ‘‘Formal notions of non-interference and liveness for distributed
systems,’’ Ph.D. dissertation, Dept. Inform., Syst. Commun., Univ.
Milano-Bicocca, DISCo, Milano, Italy, 2016.

[36] L. Bernardinello, G. Kılınç, and L. Pomello, ‘‘Non-interference notions
based on reveals and excludes relations for Petri nets,’’ ToPNoC, vol. 11,
pp. 49–70, Mar. 2016.

[37] S. Haar, ‘‘Unfold and cover: Qualitative diagnosability for Petri nets,’’ in
Proc. 46th IEEE Conf. Decis. Control, Dec. 2007, pp. 1886–1861.

[38] S. Haar, C. Rodríguez, and S. Schwoon, ‘‘Reveal your faults: It’s only
fair!’’ in Proc. 13th ACSD, Barcelona, Spain, 2013, pp. 120–129.

[39] S. Balaguer, T. Chatain, and S. Haar, ‘‘Building tight occurrence nets
from reveals relations,’’ in Proc. 11th ACSD, B. Caillaud, J. Carmona, and
K. Hiraishi, Eds., Newcastle Upon Tyne, U.K., 2011, pp. 44–53.

[40] J. W. Bryans, M. Koutny, and P. Y. A. Ryan, ‘‘Modelling opacity using
Petri nets,’’ Electron. Notes Theor. Comput. Sci., vol. 121, pp. 101–115,
Feb. 2005.

[41] L. Mazaré, ‘‘Using unification for opacity properties,’’ in Proc. WITS,
Barcelona, Spain, 2004, pp. 165–176.

[42] J. Esparza, ‘‘Advances in quantitative analysis of free-choice workflow
Petri nets (invited talk),’’ in Proc. 24th TIME, vol. 90, S. Schewe,
T. Schneider, and J. Wijsen, Eds. Dagstuhl, Germany: Schloss Dagstuhl,
2017, pp. 1–6.

[43] W. M. P. van der Aalst, Process Mining—Data Science Action. Berlin,
Germany: Springer, 2016.

[44] W. M. P. van der Aalst, ‘‘The application of Petri nets to workflow
management,’’ J. Circuits Syst. Comput., vol. 8, pp. 21–66, Feb. 1998.

FEDERICA ADOBBATI received the Graduate
degree in computer science from the University of
Milano-Bicocca, where she is currently pursuing
the Ph.D. degree in computer science. Her research
interest includes the formal methods for the
verification of properties inmulti-agent concurrent
systems.

GÖRKEM KILINÇ SOYLU received the B.S.
degree in computer engineering from the Izmir
Institute of Technology, in 2009, the M.S. degree
in computer engineering from Izmir Yaşar Univer-
sity, in 2012, and the Ph.D. degree in computer
science from the University of Milano-Bicocca,
in 2016. She had continued her research with the
University of Milano-Bicocca as a Postdoctoral
Researcher, until she joined the MAIS Team,
TU Darmstadt, in November 2017. Her research

interests include formal models of concurrent systems and information-flow
security.

ADRIÁN PUERTO AUBEL received the Graduate
degree in pure mathematics from the Complutense
University of Madrid, and the Ph.D. degree
in computer science from the University of
Milano-Bicocca. Since then, he has undertaken
researcher positions at Inria and in the private
sector. He is currently a Researcher with the
University of Groningen. His research interests
include the formal models of distributed systems
and logic.

VOLUME 10, 2022 38501

