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Abstract: Shigella spp. and E. coli are closely related and cannot be distinguished using matrix-assisted
laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS) with commercially
available databases. Here, three alternative approaches using MALDI-TOF MS to identify and
distinguish Shigella spp., E. coli, and its pathotype EIEC were explored and evaluated using spectra
of 456 Shigella spp., 42 E. coli, and 61 EIEC isolates. Identification with a custom-made database
resulted in >94% Shigella identified at the genus level and >91% S. sonnei and S. flexneri at the species
level, but the distinction of S. dysenteriae, S. boydii, and E. coli was poor. With biomarker assignment,
98% S. sonnei isolates were correctly identified, although specificity was low. Discriminating markers
for S. dysenteriae, S. boydii, and E. coli were not assigned at all. Classification models using machine
learning correctly identified Shigella in 96% of isolates, but most E. coli isolates were also assigned
to Shigella. None of the proposed alternative approaches were suitable for clinical diagnostics for
identifying Shigella spp., E. coli, and EIEC, reflecting their relatedness and taxonomical classification.
We suggest the use of MALDI-TOF MS for the identification of the Shigella spp./E. coli complex, but
other tests should be used for distinction.

Keywords: MALDI-TOF MS; Shigella spp.; Escherichia coli; EIEC; custom-made database; biomarker
assignment; machine-learning classifiers

1. Introduction

The E. coli pathotype entero-invasive E. coli (EIEC) is thought to cause the same disease
as Shigella spp. [1]. This pathotype consists of isolates that possess some of the E. coli
phenotypic characteristics and the invasive nature of Shigella spp. [2,3]. EIEC harbors the
same virulence markers as Shigella spp. that are used in molecular diagnostics to detect
both Shigella spp. and EIEC but are not suitable to distinguish them [4]. Shigella spp. and
E. coli are described to belong to one taxonomic species genetically, but classification in two
genera is maintained for practical and taxonomic reasons [2–5]. Therefore, differentiation
is challenging and is historically performed using phenotypical tests, serotyping, and
the determination of virulence markers using PCR [6,7]. Multiple researchers have de-
signed molecular methods to distinguish Shigella and E. coli, and EIEC in particular [8–10].
Although most molecular methods are ≥95% accurate using the initially selected set of
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isolates, they appeared not to be reliable when these methods were used for additional
isolates [3,11].

Most clinical laboratories currently use matrix-assisted laser-desorption ionization
time-of-flight mass spectrometry (MALDI-TOF MS) to identify bacteria in a routine diag-
nostic setting. Commercially available databases, such as MALDI biotyper® in combination
with the MALDI Security-Relevant (SR) library® (Bruker Daltonik GmbH, Bremen, Ger-
many) and VITEK® MS (BioMérieux, Marcy-l’Etoile, France) can distinguish Shigella spp.
and E. coli from other Enterobacteriaceae. However, they cannot distinguish between the
different Shigella species and E. coli, including the EIEC pathotype [12].

The development of custom-made databases to identify bacteria using MALDI-TOF
MS as an alternative to commercially available databases proved successful for multiple
species before [13–15]. Most notably, an earlier study developed a custom-made database
to identify and distinguish Shigella spp. and E. coli specifically. However, EIEC isolates were
not included in their database [16]. Using a database approach, comparisons of unknown
isolates to spectra in a database comprise the whole spectra for species identification.
However, for closer related groups, a more subtle approach can be essential, in which
variations within the spectra are examined in the presence or absence of specific peaks
as biomarkers [17,18]. The biomarker approach was used to type E. coli isolates before,
with varying success rates [18]. These approaches mainly targeted a selection of isolates
representing the pathotype entero- hemorrhagic E. coli (EHEC) or the highly virulent
ST131 clone [18], although two studies used biomarker typing specifically for Shigella
spp. and E. coli, without EIEC isolates [19,20]. One of those studies identified biomarkers
outside the mass range of 2000–20,000 Da used in routine applications [20], and the other
did not specify in which species the biomarkers were present or absent [19]. Besides
determining the presence or absence of single biomarkers, patterns of these biomarkers
can be investigated and recognized with machine-learning algorithms [21]. These machine-
learning-based methods can establish classifiers for identifying groups within species of
bacteria [22,23]. Moreover, these classifiers were developed to identify Shigella spp. and
E. coli before, although EIEC isolates were not included [19].

In this study, the ability of MALDI-TOF MS was assessed for the distinction of the
four Shigella species, EIEC, and non-invasive E. coli using alternatives for the commercially
available databases. First, a custom-made database, including all Shigella species, E. coli,
and EIEC isolates, was developed and evaluated. Second, biomarkers were assigned and
evaluated, and third, classifier models based on machine learning were defined, applied,
and evaluated.

2. Materials and Methods
2.1. Bacterial Isolates

A total of 559 isolates consisting of 36 S. dysenteriae, 156 S. flexneri, 32 S. boydii, 232 S.
sonnei, 61 EIEC, and 42 other E. coli of human and animal origin comprising phylogroups
A, B1, B2, and D [24] were used (Table 1).

Table 1. Isolates used in this study are divided into training and test sets.

Species and Serotype/O-Type Training Set Test Set

n Origin n Origin

S. dysenteriae serotype 1 2 CIP 57.28T; A1 1 1 ci 1

S. dysenteriae serotype 2 5 A2, 4 ci 1 4 4 ci 1

S. dysenteriae serotype 3 5 AMC-43-G-93; 4 ci 1 3 3 ci 1

S. dysenteriae serotype 4 2 AMC 43-G-86; 1 ci 1 0
S. dysenteriae serotype 5 1 AMC 43-G-84 0
S. dysenteriae serotype 6 1 AMC 43-G-81 1 1 ci 1

S. dysenteriae serotype 7 1 AMC 43-G-76 1 1 ci 1

S. dysenteriae serotype 9 2 A58: 1646; 1 ci 1 1 1 ci 1

S. dysenteriae serotype 10 1 A2050-52 0
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Table 1. Cont.

Species and Serotype/O-Type Training Set Test Set

n Origin n Origin

S. dysenteriae serotype 12 2 2 ci 1 1 1 ci 1

S. dysenteriae serotype 14 1 NCTC 11867 0
S. dysenteriae serotype 15 1 NCTC 11868 0

Total number of S. dysenteriae 24 12

S. flexneri serotype 1a 3 B1A; 2 ci 1 0
S. flexneri serotype 1b 5 B1B; 4 ci 1 5 5 ci 1

S. flexneri serotype 1c 4 4 ci 1 3 3 ci 1

S. flexneri serotype 2a 32 CIP 82.48T; B2A; 30 ci 1 32 32 ci 1

S. flexneri serotype 2b 1 B2B 3 3 ci 1

S. flexneri serotype 3a 2 B3A; 1 ci 1 14 14 ci 1

S. flexneri serotype 3b 2 B3B; B3C 3 3 ci 1

S. flexneri serotype 4a 1 B4A 4 4 ci 1

S. flexneri serotype 4av 4 5 ci 1 0
S. flexneri serotype 4b 1 B4B 0
S. flexneri serotype 4c 3 3 ci 1 0
S. flexneri serotype 5b 1 B5 1 1 ci 1

S. flexneri serotype 6 10 B6; 9 ci 1 10 10 ci 1

S. flexneri serotype X 1
S. flexneri serotype Y 2 2 ci 1 2 2 ci 1

S. flexneri serotype Yv 2 2 ci 1 0
S. flexneri provisional 5 5 ci 1 0

Total number of S. flexneri 79 77

S. boydii serotype 1 2 AMC-43-G-58; 1 ci 1 3 3 ci 1

S. boydii serotype 2 3 CIP 82.50T; P288; 1 ci 1 4 4 ci 1

S. boydii serotype 3 1 D1 0
S. boydii serotype 4 2 AMC-43-G-63; 1 ci 1 2 2 ci 1

S. boydii serotype 5 2 P143; 1 ci 1 0
S. boydii serotype 6 1 CDC 9771 (D19) 0
S. boydii serotype 7 1 AMC 4006 (Lavington) 0
S. boydii serotype 8 0 1 1 ci 1

S. boydii serotype 9 1 1296/7 0
S. boydii serotype 10 1 430 1 1 ci 1

S. boydii serotype 11 1 34 0
S. boydii serotype 12 0 1 1 ci 1

S. boydii serotype 13 0 1 1 ci 1

S. boydii serotype 14 0 1 1 ci 1

S. boydii serotype 15 1 CDC C-703 0
S. boydii serotype 18 1 1 ci 1 1 1 ci 1

Total number of S. boydii 17 15

S. sonnei 117 CIP 82.49T; 116 ci 1 115 115 ci 1

EIEC 30

DSM 9027; DSM 9028; CCUG
11335; CCUG 38080; CCUG
38092; CCUG 38093; EW227;

1624-56; 1184-68; 145/46;
L119B-10; 19 ci 1

31 31 ci 1

Other E. coli pathotypes (human) 11 7 STEC ci 1, 4 EPEC ci 1 11 8 STEC ci 1;
3 EPEC ci 1

Other E. coli pathotypes (animal) 2 10 5 mussel, 3 pigeon, 2 turkey 10 4 mussel, 3 pigeon,
2 turkey, 1 oyster

1 ci = clinical isolate. 2 isolated from animals, all other numbers are reference isolates.

All isolates, except the references, were identified using a previously described culture-
based identification algorithm [25]. They were divided into a set of training isolates
(n = 288) and test isolates (n = 271), both having similar species and serotype distributions.
The training set was used to construct the custom-made database, assign biomarkers, and
define and train machine-learning classifier models. The test set was used to test all of
these algorithms in duplicate, with both direct smear and ethanol-formic acid extraction
application methods.
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2.2. MALDI-TOF MS Preparation of Isolates

All isolates were grown overnight on Columbia Sheep Agar (CSA, Biotrading, Mij-
drecht, The Netherlands) at 37 ◦C and were subsequently subjected to the direct smear
method and the ethanol-formic acid extraction with silica beads as previously described [26].
Colonies or 1 µL extract were applied onto a polished steel plate, air-dried, and overlaid
with 1 µL α-Cyano-4-hydroxycinnamic acid in 50% acetonitrile-2.5% trifluoroacetic acid
(HCCA matrix). The samples were analyzed using a Bruker Microflex LT (Bruker Daltonik
GmbH, Bremen, Germany) in a linear and positive mode, with 30–40% laser power and
within a mass range of 2000–20,000 Da.

2.3. Database Development

The MSPs produced from 288 isolates in the training set were used to build a custom-
made database with Maldi Biotyper OC V3.1.66 (Bruker Daltonik). In addition, a den-
drogram to assess the relatedness of these MSPs was inferred using default settings. The
isolates in the test set were identified using this custom-made database. Additionally, the
test isolates were also identified using the commercially available Bruker MALDI Biotyper
database (V8.0.0.0) and the Bruker Security-Relevant Library (V1.0.0.0) and using a combi-
nation of the commercial and custom-made databases. Quality of the results was indicated
by a log-score, calculated by Maldi Biotyper 3.0 RTC: a log-score of 2.000–2.300 corre-
sponds to “secure genus identification, probable species identification”, and a log-score of
>2.300 corresponds to a “highly probable species identification”. Both duplicate spots were
analyzed, the highest log-score of at least 2.000 was considered as the definitive MALDI-
TOF MS identification, as is done in a routine workflow. If an isolate had a log-score < 2.000
caused by a poor spectrum, it was disregarded from further analysis. Isolates were then
assigned to different discrimination levels “genus”, “pathotype”, “group”, and “species”,
as displayed in Figure 1.
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For accurate identification, only matches with database MSPs from the same species
within a log-score range of 2.000–2.300 or >2.300 should be expected in one spot. Therefore,
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the ten MSPs from the database that produced the highest scores within a log-score of
2.000–2.300 or >2.300 per spot were determined. For each species identified with the
culture-dependent identification algorithm, the median number of species resulting from
MALDI-TOF MS and their quartile ranges per spot with a log-score of 2.000–2.300, or >2.300
were calculated and visualized using SPSS 24.0.0.1 (IBM, New York, NY, USA).

2.4. Biomarker Assignment and Principal Component Analysis

Spectra files from MSPs of 288 isolates in the training set were exported as mzXML
files using Compassxport CXP3.0.5. (Bruker Daltonik) or exported via a batch process in
Flexanalysis (Bruker Daltonik). A new database was created in Bionumerics v7.6.3 (Applied
Maths NV, Sint-Martens-Laten, Belgium ) according to the manufacturers’ instructions.
All raw spectra were imported into the Bionumerics database with x-axis trimming to
a minimum of 2000 m/z. Baseline subtraction, noise computing, smoothing, baseline
detection, and peak detection were performed with default settings. Spectra summarizing,
peak matching, and peak assignment were performed according to instructions from
Bionumerics [23].

In short, all raw spectra were summarized into isolate spectra. Peak matching was
performed on isolate spectra using a constant tolerance of 1.9, a linear tolerance of 550, and
a peak detection rate of 10%. Binary peak matching tables were exported to summarize
the presence of peak classes on all discrimination levels, as depicted in Figure 1. Decision
diagrams were produced for the levels genus, pathotype, and groups (Supplementary
Figure S1a–c). The spectra files of isolates from the test set were imported and preprocessed
in Bionumerics, using the same methods and settings as for the spectra from the isolates in
the training set. Peak matching of test isolates was performed using the option “existing
peak classes only” to compare the presence of peaks in the test isolates with peaks in
the isolates from the training set. Decision diagrams (Supplementary Figure S1) and the
presence or absence of peak masses as depicted in Table 2 were applied to assign unknown
isolates from the test set according to the different levels, as shown in Figure 1.

Table 2. Discrimination scheme of biomarkers, percentage of isolates in the training set with specific biomarkers.

Biomarkers (m/z) 2691 2877 3129 3636 3647 3930 3939 4163 4189 4368 4501 4769 4775

S. dysenteriae (n = 24) 92 4 100 0 0 0 100 0 100 100 100 0 100
S. flexneri (n = 46) 100 0 100 0 63 53 18 1 94 97 99 22 97
S. boydii (n = 17) 88 0 100 18 0 0 94 0 100 88 100 18 100
S. sonnei (n = 117) 56 49 59 22 0 1 56 17 89 68 56 23 98
EIEC (n = 31) 100 0 100 3 6 0 97 0 97 100 94 26 97
Other E. coli (n = 21) 52 24 52 71 0 5 62 38 90 67 57 67 100

Biomarkers (m/z) 4784 5156 5239 5386 5415 6262 6322 6412 6488 7275 7295 7715 7868 7879

S. dysenteriae 100 100 8 92 52 100 100 0 0 0 0 0 0 100
S. flexneri 76 97 55 99 45 99 99 4 42 1 83 0 41 23
S. boydii 76 94 18 88 59 100 88 18 6 18 0 6 12 88
S. sonnei 69 86 27 73 0 74 62 13 1 17 0 28 18 75
EIEC 71 100 39 100 42 94 97 19 0 23 6 3 16 84
Other E. coli 19 86 0 67 0 57 67 48 10 52 0 24 43 33

Biomarkers (m/z) 8326 8370 8379 9002 9227 9535 9546 9563 9739 10,300 10,310 10,488 10,934

S. dysenteriae 0 0 100 100 0 0 100 100 0 0 100 0 0
S. flexneri 5 4 90 94 4 17 82 92 8 9 86 0 0
S. boydii 0 18 82 88 12 18 82 88 6 18 82 0 12
S. sonnei 15 15 82 38 12 16 85 54 15 13 70 34 36
EIEC 6 16 77 87 13 23 77 81 6 19 77 0 0
Other E. coli 43 38 38 24 48 48 62 38 43 48 48 0 5

8326 8370 8379 9002 9227 9535 9546 9563 9739 10,300 10,310 10,488 10,934
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By assigning biomarkers, only the presence and absence of peaks were investigated. To
assess quantitative peak data such as peak intensity and peak area, a principal component
analysis (PCA) was performed on all isolates in the training set to visualize the position of
isolates in three dimensions.

2.5. Presence of Biomarkers Identified in Previous Studies

All isolates in the training and test sets were examined for the unique masses (±500 ppm)
found in the biomarker assignment to Shigella spp. and E. coli in previous studies [19,20].
Additionally, because peaks in our study were assigned at m/z values instead of masses
only and because masses could be potentially charged with two electrons, this is corrected
by examining the previously published masses divided by two (±500 ppm) [19,20].

2.6. Classifier Models Based on Machine Learning

Peak data of the summarized isolate spectra of the 288 isolates in the training set
were used to define and train machine learning-based classifiers using Bionumerics v7.6.3
according to the manufacturers’ instructions. In short, peak matching with a constant
tolerance of 1.9 and a linear tolerance of 550 was performed on isolate spectra on the
different levels: genus, pathotype, group, and species. Classifiers were created at all levels
using character values. Support vector machine (linear) learning was used as a scoring
method in which p-values were used for ranking. The classifiers were trained and cross-
validated to check their performance for identification. Subsequently, the classifier models
were used to classify the unknown isolates in the test set at the different discrimination
levels to evaluate their performance.

3. Results
3.1. Database Development

All MSPs of 288 training isolates were added to a custom-made database. The re-
latedness of these MSPs is shown in a dendrogram (Figure 2). The Maldi Biotyper OC
software recognized three large MSPs clusters that are not species-specific within this
custom database. This did not change if clusters were assigned manually with a lower
distance level at 50–100 relative units, indicating that similarity in spectrum profiles is
distributed over the species level (Figure 2).

Additionally, the duplicate spots of test isolates using either the direct smear or
extraction method resulted in a different species designation in 10–15% of the samples.

Furthermore, with an accurate distinction of species, one would not expect assignment
to multiple species above the threshold of log-score 2.000. However, with both application
methods, most isolates were assigned to several species with a log-score of 2.000–2.300 or
>2.300 per spot, indicating no specificity at all (Figure 3).

One isolate from the test set (S. boydii serotype 13) showed a low-quality spectrum
(log score 1.574–1.930), and one isolate (S. dysenteriae serotype 1) had initially been incor-
rectly stored, as this isolate was identified as Corynebacterium diphtheriae using the Bruker
databases. Both these isolates were ignored in further analyses. All other isolates had
log-scores higher than 2.000, and percentages of MALDI-TOF MS identification concordant
with the original identification on all discrimination levels were as displayed in Table 3.
With the Bruker databases only, percentages of correctly identified Shigella spp. on all
discrimination levels are low, ranging from 6% to 45% correct designations, both for the
direct smear and extraction methods (Table 3). In contrast, 90–100% of E. coli isolates were
correctly identified. When identification was based on the custom-made database with or
without the Bruker databases, the percentage of correctly identified E. coli isolates decreased
to a range of 29–71%. In contrast, Shigella spp. were correctly identified, ranging from 94%
to 99% of cases on the genus, pathotype and group levels. In addition, 91–97% of S. flexneri
and S. sonnei were correctly identified at the species level, in contrast to S. dysenteriae and S.
boydii, for which the percentages of correct identification were low (Table 3).
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Table 3. Correct identification results of isolates from the test set.

Correct Identification with MALDI-TOF, Direct Smear Correct Identification with MALDI-TOF, Ethanol

Bruker
Databases 1,

n (%)

Custom
Databases 1,

n (%)

Bruker
Databases 1 +

Custom,
n (%)

Biomarker
Assignment,

n (%)

Classifier
Models,

n (%)

Bruker
Databases 1,

n (%)

Custom
Databases 1,

n (%)

Bruker
Databases 1 +

Custom,
n (%)

Biomarker
Assignment,

n (%)

Classifier
Models,

n (%)

Genus

Shigella (n = 217) 19 (9) 205 (94) 205 (94) 10 (5) 209 (96) 12 (6) 207 (95) 205 (94) 15 (7) 217 (100)
E. coli (n = 52) 49 (94) 26 (50) 29 (56) NA 11 (21) 47 (90) 35 (67) 37 (71) NA 4 (8)
Unassigned 2 2 (1) 1 (0.4) 3 (1) 257 (96) 0 (0) 1 (0.4) 0 (0) 3 (1) 250 (93) 0 (0)

Pathotype

Shigella/EIEC (n = 248) NA 233 (94) 241 (97) 217 (88) 145 (58) NA 245 (99) 242 (98) 225 (92) 147 (59)
Other E. coli (n = 21) 21 (100) 6 (29) 10 (48) NA 14 (67) 21 (100) 11 (52) 13 (62) NA 6 (29)
Unassigned 2 2 1 (0.4) 3 (1) 46 (17) 0 (0) 0 (0) 0 (0) 3 (1) 27 (10) 0 (0)

Group

Shigella (n = 217) 19 (9) 205 (94) 205 (94) 193 (89) 131 (60) 12 (6) 207 (95) 205 (94) 195 (90) 134 (62)
EIEC (n = 31) NA 9 (29) 8 (26) NA 2 (6) NA 19 (61) 19 (61) NA 0 (0)
Other E. coli (n = 21) 21 (100) 6 (29) 10 (48) NA 13 (62) 21 (100) 11 (52) 13 (62) NA 7 (33)
Unassigned 2 2 (1) 1 (0.4) 3 (1) 49 (23) 0 (0) 1 (0.4) 0 (0) 3 (1) 36 (13) 0 (0)

Species

S. dysenteriae (n = 11) 5 (45) 5 (45) 5 (45) 0 (0) 0 (0) 4 (36) 7 (64) 6 (55) 0 (0) 0 (0)
S. flexneri (n = 77) NA 70 (91) 70 (91) 24 (31) 6 (8) NA 73 (95) 73 (95) 30 (39) 3 (4)
S. boydii (n = 14) NA 1 (7) 0 (0) 0 (0) 0 (0) NA 0 (0) 0 (0) 0 (0) 0 (0)
S. sonnei (n = 115) NA 110 (96) 110 (96) 113 (98) 92 (80) NA 112 (97) 112 (97) 108 (94) 101 (88)
EIEC (n = 31) NA 9 (29) 8 (26) 0 (0) 1 (3) NA 19 (61) 19 (61) 1 (3) 3 (10)
Other E. coli (n = 21) 21 (100) 6 (29) 10 (48) 0 (0) 12 (57) 21 (100) 11 (52) 13 (62) 0 (0) 4 (19)
Unassigned 2 2 (1) 1 (0.4) 3 (1) 85 (32) 0 (0) 1 (0.4) 0 (0) 3 (1) 97 (36) 0 (0)

NA = not applicable, as no discriminating peaks were assigned to these classes. 1 Bruker MALDI Biotyper database (V8.0.0.0) and the Bruker Security-Relevant Library (V1.0.0.0).
2 Number of isolates that could not be assigned to a class.
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3.2. Biomarker Assignment and Principal Component Analysis

The decision diagrams based on biomarkers assigned to the isolates in the training
set were used to identify unknown isolates in the test set. Distinctive peaks on the species
levels are summarized in Table 2. High percentages for correct identification of S. sonnei
isolates were achieved at the species level using both the direct smear and the extraction
method. However, the biomarkers are not specific for S. sonnei, as other species contain
them as well. For other species, the identified biomarkers correctly identified isolates below
38%. Specific biomarkers were not detected for all the classes at the different discrimination
levels, as depicted in Figure 1. Consequently, it was not possible to identify S. dysenteriae,
S. boydii, and E. coli isolates at all because of the absence of discriminating peaks for these
species (Table 3).

In the PCA of the detected peaks in the isolates of the training set, one large cluster was
formed, with a few outliers at both ends (Figure 4). If the isolates were colored according to
their identity based on the culture-based identification method, separate groups of isolates
were seen in none of the discrimination levels (Figure 4a–d).
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Figure 4. PCA of isolates in the training set. (a) Colored at genus level: beige = Shigella, teal = Escherichia;
(b) Colored at pathotype level: black = Shigella/EIEC, green = E. coli (other than EIEC); (c) Colored at
group level: orange = Shigella spp., yellow = EIEC, purple = E. coli (other than EIEC); (d) Colored at
species level: light blue = S. dysenteriae, red = S. flexneri, green = S. boydii, pink = S. sonnei, blue = EIEC,
light grey = Other E. coli.
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3.3. Presence of Biomarkers Identified in Previous Studies

The specific biomarkers for S. flexneri, S. sonnei, and E. coli assigned by Everley et al. [20]
were not present in any of the 559 isolates in this study when using an error limit of
±500 ppm. They were also not present if they were corrected for a charge with 2 electrons.
A few biomarkers for Shigella spp. and E. coli described by Khot and Fisher [19] were
present within a range of 500 ppm in isolates used in this study, i.e., 4163 Da, 7157 Da,
8326 Da, and 9227 Da, and corrected for a charge of 2 electrons, 5096 Da and 5752 Da.

3.4. Classifier Models Based on Machine Learning

Using the internal cross-validation of the classifiers at all discrimination levels, all but
one class offered an accuracy of more than 87.5%. The only class with a lower accuracy
(77%) was “Escherichia” at the genus discrimination level.

When using machine learning-based classifiers for identification, 96% of Shigella spp.
isolates and 21% of the E. coli isolates from the test set were correctly identified at the genus
level, using the direct smear application method and, respectively, 100% and 8% using the
ethanol-formic acid extraction method (Table 3). Correct identification percentages for the
pathotype, group, and species level were displayed in Table 3. Although more than 80% of
S. sonnei isolates were correctly identified with the species classifier, specificity was low, as
more than 70% of S. flexneri isolates were also identified as S. sonnei.

4. Discussion

Current commercially available MALDI-TOF MS databases cannot distinguish be-
tween Shigella spp. and E. coli. Therefore, three different alternatives were explored in this
study. A custom-made database was developed, biomarkers were identified, and machine
learning classification models were designed.

Compared to a previous study, our custom-made database assigned fewer E. coli
isolates correctly [16]. This indicates that the inclusion of EIEC isolates in the custom-
made database and the test set complicates the identification. Half of the EIEC isolates
were assigned to one of the Shigella species, thereby decreasing the percentage of correctly
identified E. coli. The poor performance of identifying E. coli with our custom-made
database can result from an overrepresentation of S. flexneri and S. sonnei. A second custom-
made database was developed to investigate this hypothesis, based on 17 isolates of each
species, representing the diversity in serotypes. This database did not perform better or
worse than the custom-made database that contained 288 MSPs (Supplementary Table S1),
indicating that a more even distribution of species in the database does not improve the
identification of E. coli. Although percentages of correct species assignments to S. flexneri
and S. sonnei were high, other species were falsely assigned to them in our study and a
previous study [16]. In the latter study, correct species identification was based on the
majority rule that three out of four spots should indicate the same species. Besides the
fact that the interpretation of four spots per isolate is not feasible in clinical diagnostics,
this indicates that the assignment of species is based on probabilities rather than actual
variations in spectra. Our study confirms this phenomenon because multiple species
identifications within the same log-score range were made per spot. Moreover, 10–15%
of duplicate spots resulted in different species assignments using commercially available
and custom-made databases. Additionally, in the dendrogram inferred from the MSPs of
the training set only into the custom-made database, the same species were not clustering
together, indicating that the resulting database would not be capable of identifying the
isolates from the test set correctly.

Another alternative approach for using commercially available databases is the de-
tection of discriminating biomarkers. However, in our study, many isolates resulted in
inconclusive identification, as specific biomarkers were not detected for most classes. Al-
though more than 90% of S. sonnei isolates were identified at the species level, other species,
such as S. boydii and E. coli, are also frequently falsely identified as S. sonnei. Moreover,
when also analyzing peak intensity and area rather than just peak presence, the PCA
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showed that Shigella spp. and E. coli did not represent separated groups based on their
biomarkers. In contrast, one large cluster with a few outliers was formed, demonstrat-
ing their genetic similarity. Furthermore, the absence of 85% of the masses assigned as
biomarkers in a former study [15] in our isolates indicates that the detected biomarkers
vary amongst isolate sets tested and that a stable variation per species is not observed.
Consequently, we anticipate that the assignment of biomarkers based on yet another set of
isolates will lead to even more diversity in biomarkers, demonstrating their unsuitability
for distinct identification of Shigella spp., E. coli, and EIEC. In fact, peaks described in
specific sets of isolates should not be considered as biomarkers if they are not detectable in
(almost) all isolates of a species.

The use of classifier models based on machine learning resulted in comparable per-
centages of correctly identified Shigella on the genus level, i.e., ≥94%, as reported in other
studies [19]. In our classifier model designed on the pathotype level, EIEC isolates were not
incorporated in the class E. coli; correct identification was 67%, comparable to a previous
study [19]. Nonetheless, the other remaining E. coli isolates were falsely classified as Shigella,
both with our classifiers and with previously published ones [19], decreasing the specificity
for identifying Shigella. Classifiers performed even less at the group and species level, and
most species could not be identified at all. The poor performance of the classifier models
may be caused by an overrepresentation of S. flexneri and S. sonnei, as discussed for the
custom-made database in our study. Therefore, 17 isolates of each species were selected
again, and alternative classifiers were designed. These classifiers did not perform better or
worse than the classifiers designed using all 288 isolates in the training set, indicating that
an absence of an even distribution of species was not the cause for poor identification with
classifiers (Supplementary Table S1).

We used a substantially more extensive set of isolates than previous studies and
included the E. coli pathotype EIEC. Another strength of our study was that multiple
alternative approaches for identifying Shigella spp. and E. coli using MALDI-TOF MS
were explored. Although S. sonnei and S. flexneri isolates were overrepresented in both the
training and test sets, this distribution represents high-resource settings.

In conclusion, none of our explored alternative approaches for identifying Shigella spp.,
E. coli, and EIEC with MALDI-TOF MS were suitable to use in clinical diagnostics, as all
rendered a poor distinction based on spectra or biomarkers. This poor discrimination
merely reflects the problematic taxonomical classification of Shigella spp. and E. coli into
two different genera and does not reflect MALDI-TOF MS’s performance as an identifi-
cation technique in general. Therefore, we propose an identification algorithm in which
MALDI-TOF MS is used to identify and differentiate Shigella/E. coli as a group from other
Enterobacteriaceae, followed by tests other than MALDI-TOF MS to distinguish between the
different Shigella species, E. coli, and specific E. coli pathotypes, including EIEC.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms10020435/s1, Supplementary Figure S1: Decision
diagrams of assigned biomarkers; Supplementary Table S1: Comparison of performance of a custom-
made database and classifiers based on all 288 isolates or based on an even distribution of 17 isolates
for each species.
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