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Genome-wide study of DNA methylation shows 
alterations in metabolic, inflammatory, and cholesterol 
pathways in ALS
Paul J. Hop1†, Ramona A.J. Zwamborn1†, Eilis Hannon2, Gemma L. Shireby2, Marta F. Nabais2,3, 
Emma M. Walker2, Wouter van Rheenen1, Joke J.F.A. van Vugt1, Annelot M. Dekker1,  
Henk-Jan Westeneng1, Gijs H.P. Tazelaar1, Kristel R. van Eijk1, Matthieu Moisse4,5,6,  
Denis Baird7,8, Ahmad Al Khleifat9, Alfredo Iacoangeli9,10,11, Nicola Ticozzi12,13, Antonia Ratti12,14, 
Jonathan Cooper-Knock15, Karen E. Morrison16, Pamela J. Shaw15, A. Nazli Basak17, 
Adriano Chiò18,19, Andrea Calvo18,19, Cristina Moglia18,19, Antonio Canosa18,19, Maura Brunetti18, 
Maurizio Grassano18, Marc Gotkine20,21, Yossef Lerner20,21, Michal Zabari20,21, Patrick Vourc'h22,23, 
Philippe Corcia24,23, Philippe Couratier25,26, Jesus S. Mora Pardina27, Teresa Salas28, 
Patrick Dion29, Jay P. Ross29,30, Robert D. Henderson31, Susan Mathers32, Pamela A. McCombe33, 
Merrilee Needham34,35,36, Garth Nicholson37, Dominic B. Rowe38, Roger Pamphlett39,  
Karen A. Mather40,41, Perminder S. Sachdev40,42, Sarah Furlong38, Fleur C. Garton3, Anjali K. Henders3, 
Tian Lin3, Shyuan T. Ngo43,44,33, Frederik J. Steyn45,33, Leanne Wallace3, Kelly L. Williams38, 
BIOS Consortium§, Brain MEND Consortium§, Miguel Mitne Neto46, Ruben J. Cauchi47, Ian P. Blair38, 
Matthew C. Kiernan48,49, Vivian Drory50,51, Monica Povedano52, Mamede de Carvalho53, 
Susana Pinto53, Markus Weber54, Guy A. Rouleau29, Vincenzo Silani12,13, John E. Landers55, 
Christopher E. Shaw9, Peter M. Andersen56, Allan F. McRae3, Michael A. van Es1, 
R. Jeroen Pasterkamp57, Naomi R. Wray3,44, Russell L. McLaughlin58, Orla Hardiman59,  
Kevin P. Kenna1,57, Ellen Tsai7, Heiko Runz7, Ammar Al-Chalabi9,60, Leonard H. van den Berg1, 
Philip Van Damme4,5,6, Jonathan Mill2‡, Jan H. Veldink1*‡

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with an estimated heritability between 
40 and 50%. DNA methylation patterns can serve as proxies of (past) exposures and disease progression, as well 
as providing a potential mechanism that mediates genetic or environmental risk. Here, we present a blood-based 
epigenome-wide association study meta-analysis in 9706 samples passing stringent quality control (6763 patients, 
2943 controls). We identified a total of 45 differentially methylated positions (DMPs) annotated to 42 genes, 
which are enriched for pathways and traits related to metabolism, cholesterol biosynthesis, and immunity. We 
then tested 39 DNA methylation–based proxies of putative ALS risk factors and found that high-density lipoprotein 
cholesterol, body mass index, white blood cell proportions, and alcohol intake were independently associated 
with ALS. Integration of these results with our latest genome-wide association study showed that cholesterol 
biosynthesis was potentially causally related to ALS. Last, DNA methylation at several DMPs and blood cell 
proportion estimates derived from DNA methylation data were associated with survival rate in patients, suggest-
ing that they might represent indicators of underlying disease processes potentially amenable to therapeutic 
interventions.

INTRODUCTION
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative 
disorder characterized by progressive degeneration of motor neu-
rons in the brain and spinal cord (1). The disease affects about 1 in 
350 people, with death typically occurring within 2 to 5 years after 
onset. The heritability of ALS is estimated to be around 50% (2), 
showing that a considerable portion of the risk could be conferred 
by environmental and lifestyle risk factors. However, the identifica-
tion of these factors has proven difficult because of several challenges 
such as recall and measurement bias, resulting in a large body of 
literature with conflicting results and only a few established factors 
related to ALS risk or patient survival (3–6). Epigenetic patterns, 
which act at the interface between genes and environment, can serve 
as proxies of (past) exposures, therefore enabling the study of these 
exposures and putative risk factors. Moreover, the identification of 

ALS-associated epigenetic factors could provide insights into disease 
etiology and disease processes.

DNA methylation is one of the best characterized and most stable 
epigenetic modifications and plays an important role in gene regu-
lation, genomic stability, and genomic imprinting (7–9). The develop-
ment of standardized assays for quantifying DNA methylation has 
enabled the systematic analysis of associations between methylomic 
variation and a wide range of human diseases, including cancer, 
schizophrenia, and various neurodegenerative diseases (10, 11). DNA 
methylation in whole blood captures a wide range of putative ALS 
risk factors at a molecular level, including smoking, alcohol intake, 
body mass index (BMI), biological age, and various metabolic and 
inflammatory proteins (12–18). Leveraging DNA methylation as 
proxies for these risk factors offers several advantages because it is 
(i) not prone to recall bias (relevant for smoking and alcohol), (ii) may 
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capture information not (accurately) captured by the self-report (such 
as passive and past smoking) and provides a quantifiable measure 
(19), and (iii) is relatively stable in the short term [especially rele-
vant for immunological proteins (18)]. Moreover, many risk factor 
studies have been conducted in small samples (3, 6), whereas our 
large DNA methylation study can provide a well-powered alternative 
that jointly considers the molecular correlates of many risk factors. 
We, therefore, performed a blood-based DNA methylation study of 
ALS incorporating 9706 samples that passed stringent quality control.

RESULTS
Epigenome-wide association study meta-analysis of ALS 
identifies 45 DMPs
We quantified genome-wide DNA methylation in whole blood 
from 10,462 individuals using the Illumina HumanMethylation450 
(450 k) array (6275 samples) and the Illumina MethylationEPIC 
(EPIC) array (4187 samples). We merged individual-level DNA 
methylation array data from 14 countries into four strata (MinE 450 K, 
MinE EPIC, AUS1, and AUS2; see Materials and Methods and 
fig. S1). A total of 6763 patients with ALS and 2943 control individuals 
passed our stringent quality control, which was followed by nor-
malization of signal intensities in each stratum (Table 1, data file S1, 
and tables S1 to S5). Samples excluded from our analyses did not 
show different demographic or clinical characteristics compared 
to the subset selected for analyses (data file S2).

We performed an epigenome-wide association study (EWAS) in 
each of the four strata using two methods to adjust for known and 
unknown confounders. First, we used a linear model adjusting for 
known confounders and a calibrated number of principal components 
(PCs) to adjust for unknown confounding factors (fig. S2), followed 
by correction for residual bias and inflation in test statistics using 
bacon (hereafter referred to as the LB model) (20). Second, we used 
MOA (mixed linear model–based omic association) as implemented 
in the OSCA software in which the random effect of total genome-
wide DNA methylation captures the correlation structure between 
probes and directly controls for the genomic inflation (21). The MOA 
algorithm did not converge for the AUS2 stratum, resulting in a total 
sample size of 9459 for the MOA results. Test statistics across strata 
were combined using an inverse variance-weighted (IVW) fixed-effects 
meta-analysis (22). Inflation of the test statistics was well controlled 
in both the LB ( = 1.046; Fig. 1) and the MOA results, respectively 
( = 0.984; Fig. 1), and we observed little heterogeneity between 
strata (figs. S3 to S5). Various sensitivity analyses indicated that the 
results were robust to changes in analysis strategy, including adjust-
ment for population stratification (10 genetic PCs), using M values 
instead of  values, using functional normalization (23) instead of 
dasen (24), and excluding specific strata or experimental batches 
(figs. S6 to S8). Last, application of a method that we recently 
described (25) led to the removal of likely cross-hybridizing probes, 
including four probes that showed high homology to the C9orf72 
repeat locus (fig. S9). In total, 724,712 positions passed quality control 
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and were included in the meta-analysis. Of these, 332,066 were spe-
cific to the EPIC array, and 26,367 were specific to the 450 k array, 
respectively.

The LB meta-analysis resulted in 44 differentially methylated 
positions (DMPs) (P < 9 × 10−8; Fig. 1, A and B, Table 2, fig. S10, 
and data file S3), and the MOA meta-analysis resulted in 11 significant 
DMPs (P < 9 × 10−8; Fig. 1, C and D, and data file S4) (26). The 
MOA DMPs comprised a subset of the LB DMPs, with the excep-
tion of cg01589155, which is annotated to the C9orf72 locus; this site 
was significant in MOA (P = 1.51 × 10−8) and just below the sig-
nificance threshold in the LB results (P = 2.59 × 10−7) (fig. S11). Effect 
sizes were generally small, and we observed both hypermethylated 
(51%) and hypomethylated (49%) DMPs associated with ALS 
(Fig. 1, B and D). On the basis of the nearest gene mapping, these 
DMPs were annotated to 42 unique genes. In addition, we annotated 
each site with cis-eQTMs (cis expression quantitative trait methylations) 
in blood calculated in an external dataset [six Dutch biobanks included 
in Biobanking and BioMolecular Resources Research Infrastructure 

(BBMRI) (27)]. This revealed that DNA methylation at 18 sites was 
significantly associated with the expression of at least one nearby 
gene [false discovery rate (FDR) < 0.05], which included the nearest 
gene in 14 of 18 sites (Table 2 and data file S5). The DMPs included 
multiple colocalized positions (<250 kb), including four DMPs in 
ZFPM1, two DMPs in C9orf72, two DMPs in SGSM2, two DMPs in 
TTC38, two DMPs near LCK, and two DMPs in and near GPR97. 
Most of the colocalized DMPs were highly correlated (|r| > 0.25), 
and we also found several distant DMPs to be highly correlated 
(figs. S12 and S13).

Sensitivity analyses indicate that ALS-associated differential 
methylation is not driven by genetic variation in cis or trans, 
riluzole use, or C9orf72 status
We performed sensitivity analyses to evaluate whether our results 
were driven by known biological factors associated with ALS or 
by genetic variation. First, we examined the effects of the C9orf72 
repeat expansion by performing an EWAS meta-analysis excluding 

Table 1. Demographic and clinical characteristics of study population. Shown are numbers (and percentages) of samples that passed quality control. 

Project MinE External

MinE 450 k MinE EPIC AUS1* AUS2*

(N = 4474) (N = 3897) (N = 1088) (N = 247)

Diagnosis

  Control 1436 (32%) 915 (23%) 493 (45%) 99 (40%)

  Case 3038 (68%) 2982 (77%) 595 (55%) 148 (60%)

Sex at birth

  Female 1863 (42%) 1700 (44%) 487 (45%) 124 (50%)

  Male 2611 (58%) 2197 (56%) 601 (55%) 123 (50%)

Age (years)

  Mean (SD) 63 (± 11) 61 (± 13) 70 (± 12)

  Missing 438 (9.8%) 949 (24.4%) 77 (7.1%)

Site of onset†

  Bulbar 861 (28%) 739 (25%) 173 (29%) 36 (24%)

  Generalized 98 (3%) 112 (4%) 0 (0%) 0 (0%)

  Spinal 2023 (67%) 2060 (69%) 0 (0%) 0 (0%)

  Thoracic 10 (0%) 5 (0%) 0 (0%) 0 (0%)

  Missing 46 (1.5%) 66 (2.2%) 422 (70.9%) 112 (75.7%)

Survival status†

  Alive 437 (14%) 1112 (37%) 516 (87%) 43 (29%)

  Dead 2564 (84%) 1845 (62%) 79 (13%) 87 (59%)

  Missing 37 (1.2%) 25 (0.8%) 0 (0%) 18 (12.2%)

Survival (months)†‡

  Median (Q1–Q3) 31.4 (31.4–48.9) 31.3 (21.1–47.1) 31.5 (23.6–44.4) 38.3 (25.4–66.5)

  Missing 17 (0.7%) 9 (0.5%) 2 (2.5%) 1 (1.1%)

C9orf72 status†

  Expanded (≥30) 200 (7%) 155 (5%)

  Normal 2809 (92%) 2780 (93%)

  Missing 29 (1.0%) 47 (1.6%)

*Data only included in case/control analyses.     †Case only.     ‡Dead only.
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371 carriers of this mutation. Overall, the results were highly cor-
related (fig. S14), except for cg01589155 and cg23074747 (located 
within the C9orf72 repeat and in a CpG island just upstream of the 
repeat, respectively), which were strongly driven by C9orf72 carrier 
status. Second, to delineate whether DMPs were influenced by riluzole 
use, we performed an EWAS on riluzole use in patients with ALS 
(N users = 1803, N nonusers = 451), finding no evidence of shared 
signals between the ALS EWAS and the riluzole EWAS (fig. S15). 
Last, we investigated whether results were driven by genetic variation. 
For each DMP, we iteratively adjusted for all genetic variants in cis 
(<250 kb, including variants overlapping the CpG site or probe) as 
detected in our overlapping whole-genome sequencing (WGS) data 
(28) (NALS = 5755; Ncontrols = 2184) and blood trans methylation 

quantitative trait loci (trans-mQTLs)s as reported in the Genetics of 
DNA Methylation Consortium (GoDMC) database (http://mqtldb.
godmc.org.uk). We found no evidence that the DMPs were driven 
by either genetic variants in cis or in trans (fig. S16).

Enrichment analyses of genes annotated to ALS-associated 
differential DNA methylation implicate metabolic, 
inflammatory, and cholesterol pathways
Gene set analysis
To characterize the EWAS results, we performed gene set enrichment 
analyses based on both nearest genes and cis-eQTMs annotated to 
each tested position (29, 30). We considered both the default thresh-
old used in the methylGSA package (P < 0.001) and the stringent 

Fig. 1. EWAS meta-analysis. EWAS on 6763 patients and 2943 controls. (A and C) Manhattan plot comparing (A) LB (linear model + bacon) and (C) OSCA MOA association 
P values [−log10(P), y axis] and genomic location (x axis). The dashed line indicates the genome-wide significance threshold (9 × 10−8). Sites were annotated with the 
nearest protein-coding gene in ensembl [some gene labels in (A) could not be clearly displayed; all labels are presented in fig. S10]. (B and D) Volcano plots showing (B) 
LB and (D) OSCA MOA estimated effect sizes (x axis) and association P values [−log10(P), y axis]. Ninety-five percent confidence intervals are shown for DMPs, and the 
nearest genes are shown for the top 10 DMPs identified with the LB algorithm and for all DMPs identified with the MOA algorithm. (E and F) Quantile-quantile plot showing 
observed (E) LB and (F) OSCA MOA P values [−log10(P), y axis] against the expected distribution under the null (x axis).
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genome-wide significance threshold (9 × 10−8) to select DMPs for 
enrichment analyses.

We identified two main categories of enriched pathways: First, 
in both the LB and MOA results, we identified cholesterol/steroid 
biosynthesis–related pathways. These included the Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway steroid biosynthesis and 
the gene ontology (GO) pathway cholesterol biosynthetic process, 
sterol biosynthetic process, organic hydroxy compound biosynthetic 
process, and secondary alcohol biosynthetic process, which were 
enriched among the MOA results (Table 3). In addition, we found 
that these and related pathways were enriched among annotated 
cis-eQTMs in both the LB and MOA results (table S5). The enrich-
ments were mainly driven by four DMPs: three covarying DMPs in 
DHCR24 (cg17901584), MSMO1 (cg05119988), and ABCG1 (cg06500161) 
(figs. S12 and S13) and a DMP in SLC7A11 (cg06690548). Of these, 
cg17901584, cg05119988, and cg06500161 were strongly associated 

with the expression of the nearest gene in blood (DHCR24, MSMO1, 
and ABCG1, respectively; Table 2 and data file S5).

Second, the immune-related KEGG pathways cytokine–cytokine 
receptor interaction and natural killer (NK) cell–mediated cytotoxicity 
were enriched in the LB results (at P < 0.001) but not in the MOA 
results (Table 3).
EWAS database enrichments
To further characterize the results, we assessed whether the DMPs 
overlapped with trait-associated positions reported in publicly avail-
able EWAS databases (31, 32). For the LB results, we found a significant 
overlap (FDR < 0.05) with 23 traits in the MRC Integrative Epide-
miology Unit (IEU) database (Fig. 2A and Table 4) and 20 traits in 
the National Genomics Data Center (NGDC) database (fig. S17 and 
data files S6 and S7), with a total of 23 of 44 DMPs overlapping with 
one or more enriched traits. For the MOA results, we found a signif-
icant overlap (FDR < 0.05) with 20 traits in the MRC-IEU database 

Table 2. Top 10 DMPs. Details of the 10 most strongly associated sites identified with the LB algorithm. Position, Chromosome:bp (GRCh37); Nearest gene, 
nearest gene based on GRCh37 (Ensembl release 75); cis-eQTM, the top cis-eQTM for the respective probe; cis-eQTM FDR, P value corresponding to the top 
cis-eQTM, FDR-corrected for the number of tests for the respective probe; B, regression coefficient (representing the mean change in  values) and their 95% 
confidence intervals; P value, P value from the LB algorithm; PMS indicates that the probe is part of the respective PMS (polymethylation score); Trait, overlap 
with enriched traits from the MRC-IEU and NGDC EWAS databases (showing a maximum of five traits). HGF, hepatocyte growth factor; N.CDase, neutral 
ceramidase; FGF.21, fibroblast growth factor 21; CI, confidence interval. 

Probe Position Nearest gene cis-eQTM 
(direction) cis-eQTM FDR B (95% CI) P value PMS Traits

cg17901584 1: 55353706 DHCR24 DHCR24 (−) 2.9 × 10−62 0.0090 
(0.0069–0.011) 3.6 × 10−17

BMI, HDL-c, 
and
HGF

Hepatic fat, 
BMI, metabolic 

trait, and 
(serum) 

triglycerides

cg06528816 2: 47242277 TTC7A TTC7A (−) 0.13 0.0035 
(0.0026–0.0045) 8.5 × 10−13

Allergic 
sensitization 

and total 
serum IgE

cg06500161 21: 43656587 ABCG1 ABCG1 (−) 1.6 × 10−25 −0.0052 (−0.0066 
to −0.0038) 1.2 × 10−12

BMI, HDL-c,
N.CDase, and

FGF.21

Hepatic fat, 
BMI, metabolic 

trait, and 
(serum) 

triglycerides

cg14945937 19: 30162771 PLEKHF1 PLEKHF1 (−) 0.02 −0.0041 (−0.0053 
to −0.003) 1.9 × 10−12

cg08940169 16: 88540241 ZFPM1 PIEZO1* (−) 0.08 0.0037 
(0.0026–0.0048) 7.8 × 10−12

Allergic 
sensitization, 

total serum IgE, 
childhood 

asthma, and 
schizophrenia

cg07571745 1: 32715428 FAM167B CCDC28B* (−) 0.26 −0.0033 (−0.0042 
to −0.0023) 8.9 × 10−12

cg14195992 8: 48265917 SPIDR SPIDR (−) 0.0059 −0.0053 (−0.0068 
to −0.0037) 4.8 × 10−11 Birth weight

cg08851837 16: 57558820 CCDC102A GPR56* (+) 0.84 0.0045 
(0.0032–0.0059) 5.8 × 10−11

cg09257526 1: 154379696 IL6R ATP8B2* (−) 0.0031 −0.0023 (−0.003 
to −0.0016) 5.9 × 10−11

Alcohol 
consumption 

per day

cg15782984 6: 35993792 SLC26A8 SLC26A8 (−) 0.007 −0.0046 (−0.0059 
to −0.0032) 9.5 × 10−11

*The association between DNA methylation and the nearest gene was not significant (FDR > 0.05)
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(fig. S18) and 14 traits in the NGDC database (fig. S19), with a total of 
8 of 11 DMPs overlapping with one or more of the enriched traits.

Among the strongest enrichments in the MRC-IEU database 
(all results shown in data files S6 and S7) were BMI, total serum 
immunoglubulin E (IgE) (only enriched among the LB results), 
(serum) triglycerides, waist circumference, and high-density lipo-
protein cholesterol (HDL-c), of which all showed effect directions 
opposite to those found for ALS, except for HDL-c (Table 4). Using 
the Louvain clustering algorithm (33), we found that the overlapping 
traits clustered into two (MOA) to three (LB) clusters. These included 
two connected cholesterol-related (including HDL-c and triglycerides) 
and metabolism-related (including BMI and alcohol consumption) 
clusters, which were identified in the results from both EWAS methods. 
In addition, in the LB results, we identified an inflammation-related 
trait cluster that included traits such as total serum IgE and atopy. 
We found that this inflammation-related cluster was independent 
of the other clusters, as indicated by iterative analyses presented in 
Fig. 2B, showing that only the immune-related traits remained 
significant (P < 0.05) after excluding BMI-related probes (figs. S17 
to S19).

Polymethylation scores for BMI, HDL-c, alcohol intake, 
and white blood cell proportions are associated with ALS
To gain further insight into potential intermediate phenotypes 
associated with ALS, we used 39 published polymethylation scores 
(PMSs) as proxies for various traits and exposures, including BMI, 
HDL-c, low-density lipoprotein cholesterol (LDL-c), total cholesterol, 
alcohol consumption, smoking, white blood cell (WBC) proportions 
[CD4T, CD8T, monocytes, granulocytes, and NK cells], biological 
age, and a collection of immunological and neurological proteins 
(12–18, 34, 35).

First, we performed a validation analysis for each of the PMSs 
for which we had relevant clinical/exposure data available (see 
Materials and Methods and table S4). We selected PMSs with an 
explained variance of ≥5%, as indicated by an incremental R2 
between the null model (including known covariates and control 
probe PCs) and the model including the respective PMS (Fig. 3A). 

Two PMSs that were included in the validation analysis did not meet 
the implemented threshold of ≥5% (LDL-c and total cholesterol).

We found that PMSs for HDL-c, monocyte cell proportion, and 
granulocyte cell proportion were positively associated with ALS 
(P < 1.3 × 10−3; Fig. 3, B and C, and data file S8), and the PMSs 
for alcohol intake, BMI, and the other WBC proportions (CD4T, 
CD8T, NK, and B cells) were negatively associated with ALS, a 
result that reflects the nature of proportion data given the positive 
associations of other cell types (P < 1.3 × 10−3; Fig. 3, B and C, and 
data file S8). Although we did find a significant association for 
epigenetic age acceleration [P = 6.7 × 10−5; clock of Zhang et al. (15) 
adjusted for chronological age], there was significant heterogeneity 
between strata (Cochran’s Q test P < 0.1/39; data file S8), which led 
us to exclude age acceleration for further consideration. In addition, 
we considered the multitissue clock of Horvath (36) and the clock of 
Hannum et al. (37), but the associations for both did not pass the 
multiple testing threshold (P = 1.8 × 10−3 and P = 0.23, respectively, 
at a multiple testing threshold of 1.3 × 10−3; fig. S20).

Conditional analyses showed that PMSs HDL-c, BMI, and alcohol 
were independently associated with ALS, although the HDL-c and 
BMI associations were attenuated after mutual adjustment (Fig. 3D 
and fig. S21). The WBC associations also remained significant 
(P < 1.3 × 10−3) after mutual adjustment for the other PMSs, except 
for a subset of immunological proteins that attenuated the associa-
tions (fig. S22). Adjustment for DMPs showed that signal is shared 
between several DMPs and ALS-associated PMSs (fig. S23); most 
notably, the alcohol intake association became not significant 
(P  >  1.3  ×  10−3) upon adjustment for two covarying DMPs in 
SLC7A11 (cg06690548) and C6orf223 (cg18120259) (figs. S12 and S13). 
The HDL-c association became not significant (P > 1.3 × 10−3) upon 
adjustment for two covarying DMPs in DHCR24 (cg17901584) and 
ABCG1 (cg06500161) (figs. S12 and S13). We assessed whether the 
associations were primarily driven by carriers of the C9orf72 repeat 
expansion but found no evidence that this was the case (fig. S24) 
nor were the PMS associations primarily driven by specific strata 
or experimental batches as evidenced by leave-one-out analyses 
(figs. S25 to S28).

Table 3. Gene set enrichments. Details of the gene sets that were significantly enriched (FDR < 0.05) among the MOA and LB results based on nearest genes 
annotated to each site. Method, EWAS method and P value cutoff applied to the respective EWAS test statistics resulting in the input probes for the shown 
enrichment analyses; N overlap, number of genes that overlap with genes in the respective pathway; N genes, total number of genes in the pathway; FDR, 
FDR-controlled P values (Wallenius’ noncentral hypergeometric distribution). 

Method Database Pathway N overlap N genes FDR

LB (P < 0.001) KEGG Cytokine-cytokine receptor 
interaction 36 262 0.0012

KEGG NK cell–mediated cytotoxicity 22 108 0.036

MOA (P < 0.001) – – – – –

LB (P < 9 × 10−8) – – – – –

MOA (P < 9 × 10−8) KEGG Steroid biosynthesis 2 18 0.015

GO BP Cholesterol biosynthetic process 3 71 0.021

GO BP Sterol biosynthetic process 3 77 0.021

GO BP Organic hydroxy compound 
biosynthetic process 4 251 0.021

GO BP Secondary alcohol biosynthetic 
process 3 71 0.021
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Last, in addition to the PC-adjusted models, we also evaluated 
less stringent models, showing that various immunological and 
neurological proteins such as C-reactive protein (CRP), interleukin-6 
(IL-6), transforming growth factor– (TGF-), and chemokine 
eotaxin-1 (CCL11) as well as smoking were significantly associated 
with ALS when PCs were excluded (P < 1.3 × 10−3; Fig. 3, E and F, 
and fig. S29).

Survival analyses indicate that WBC proportions and DNA 
methylation at five ALS-associated DMPs are associated 
with disease progression
A total of 5138 patients met the inclusion criteria for the survival analy-
ses (see the “Survival analyses” section in Materials and Methods). 
Comparison of included and excluded patients (data file S2) shows 
that both exhibit characteristics that match population-based studies 
(38). This indicates that we have included a representative sample of 

patients with the entire spectrum of 
disease characteristics.

We performed multivariate Cox pro-
portional hazards (PHs) meta-analyses on 
the 45 DMPs identified using the MOA and 
LB models. A total of five DMPs showed 
a significant association with survival 
after correcting for known confounders 
and PCs (0.05/45 = P < 1.11 × 10−3) and 
cross-validation between three sensitivity 
analyses. Effect sizes were moderate 
and showed both shorter and longer 
survival time between DNA methylation 
and overall survival (data file S9).

All reported positions were not af-
fected by the addition of time-varying 
effects in the Cox PH model or by apply-
ing a restricted cubic spline with vary-
ing complexity to model the baseline log 
cumulative hazard (fig. S30). Moreover, 
after adjusting for C9orf72 carrier status 
in the multivariate Cox PH model, the 
positions (besides the C9orf72 mapped 
probe) remained significantly associated 
with survival (P < 1.11 × 10−3; fig. S30). 
Four positions showed a significant 
(FDR < 0.05) cis-eQTM effect with 
FKBP5, ATP8B2, SPIDR, and DHCR24 
(Table 5).

We also assessed whether the PMSs 
were associated with survival, finding 
that a higher proportion of granulo-
cytes was significantly associated with 
decreased survival and a higher propor-
tion of NK cells was associated with 
increased survival (P  <  1.3  ×  10−3; 
Fig. 3, B and C, bottom; and data file 
S10). These associations were robust in 
sensitivity analyses (figs. S31 and S32) and 
persisted upon adjustment for C9orf72 
carrier status (fig. S33).

DISCUSSION
In this study, we present genome-wide DNA methylation data on 
more than 10,000 individuals, with extensive clinical data and WGS 
data available for most of the samples. After thorough quality 
control and extensive sensitivity analyses, we identified a total of 
45 DMPs at which variable DNA methylation is robustly associated 
with ALS (P < 9 × 10−8). By using enrichment analyses, PMSs, and 
survival analyses, we highlight a role for metabolic, inflammatory, 
and cholesterol pathways and identify WBC proportions and sever-
al DMPs as potential disease modifiers in ALS.

Genes annotated to DMPs were enriched for pathways related to 
cholesterol biosynthesis. The main drivers of these enrichments 
include cg17901584 (DHCR24), cg06500161 (ABCG1), cg05119988 
(MSMO1), and cg06690548 (SLC7A11), with DNA methylation 
at the first three positions being associated with expression of their 
annotated genes in blood. These genes are all involved in cholesterol 

A B

Fig. 2. EWAS database enrichments. Significant overlap (Fisher’s exact test, FDR < 0.05) between traits included in 
the MRC-IEU EWAS database and ALS-associated positions identified using the LB model. (A) Network showing the 
traits that significantly (FDR < 0.05) overlap with the ALS-associated positions. Nodes indicate the overlap between 
ALS-associated positions and positions associated with indicated traits, with larger nodes indicating more overlap, 
and lighter shades of blue indicating stronger associations. Edges indicate probe overlap between the traits, with 
thicker lines indicating more overlapping probes. Colored surfaces indicate the clusters (cholesterol, metabolic, and 
inflammatory) identified using the Louvain clustering algorithm. (B) Identification of independent clusters of traits. 
The first iteration shows the traits that significantly overlap with the ALS-associated probes at FDR < 0.05. In subsequent 
iterations, the probes belonging to the trait with the lowest-enrichment P value were excluded, and enrichment tests 
were performed using the remaining traits. This algorithm was repeated, retaining traits that were nominally significant 
(P < 0.05, indicated in bold), until at most one trait remained nominally significant. At the third iteration, no traits remained 
nominally significant (P < 0.05), showing that both BMI and related traits (including triglycerides and HDL-c) and IgE 
and related traits (atopy) show independent overlap with the ALS-associated positions. IgE, total serum IgE; 
TG, triglycerides; sTG, serum triglycerides; WC, waist circumference; sHDL-c, serum HDL-c: HW, hypertriglyceridemic 
waist; FG, fasting glucose; AF, atrial fibrillation; BMIc, BMI change; PL, postprandial lipemia; GGT, gamma-glutamyl 
transferase; fINS, fasting insulin; AC, alcohol consumption per day; 2hINS, 2-hour insulin; ATP, atopy; sIgE, high serum 
IgE; pAN, plasma adiponectin; T2D, type 2 diabetes; CKD, chronic kidney disease; HOMA-IR, homeostatic Model 
Assessment of Insulin Resistance.
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biosynthesis and lipid transport, and DNA methylation at these 
positions has been robustly linked to HDL- and total cholesterol, 
triglyceride concentration, and BMI-related traits such as diabetes 
and hepatic fat content (31, 32). Both cg17901584 (DHCR24) and 
cg06500161 (ABCG1) are included in the HDL-cholesterol PMS 
and explain a considerable part of the association that we found 
between elevated HDL cholesterol and ALS. Moreover, we identified 
two covarying probes in SGMS2 (sphingomyelin synthase 2), which 
is of interest given that altered sphingolipid synthesis has recently 
been linked to ALS (39).

cg06690548 (annotated to SLC7A11) has also been previously 
associated with alcohol intake and related factors such as gamma
glutamyl transferase (GGT) and phosphatidylethanol (13, 31, 32), 
and the association between the alcohol PMS and ALS was primarily 
driven by this DMP. Alcohol has been extensively studied in previ-
ous epidemiological studies of risk factors for ALS with varying 
results, but a recent review suggests that alcohol has a risk-decreasing 
effect, which is in line with our current results (40). Previous work 
showed that increased DNA methylation at cg06690548 is associated 
with down-regulation of SLC7A11 in brain tissue (41). SLC7A11 
encodes xCT, a cystine-glutamate antiporter that imports cystine 
while exporting glutamate, the former being an essential precursor 
of glutathione, the major antioxidant in the brain. It is possible, 
therefore, that the association found in SLC7A11—and by extension 
alcohol as risk factor for ALS—is related to two well-established 
pathologic processes in ALS: glutamate excitotoxicity and/or oxida-
tive stress.

Both the EWAS trait enrichments and PMS analyses indicate that 
lower BMI is associated with ALS. The BMI association persisted 
after adjustment for other PMSs, including those for HDL choles-
terol and alcohol intake, although these PMSs are not perfect proxies 
of the respective covariates. Lowered BMI throughout the course of 
the disease (42), as well as various other systemic metabolic alter-
ations, including hypermetabolism and hyperlipidemia (39, 43), 
have been reported in patients with ALS and mouse models of the 
disease. Several pathophysiological mechanisms underlying 

alterations in (lipid) metabolism have been implicated, although it 
is not clear whether these represent a cause or consequence of the 
disease. For example, metabolism may be altered because of mito-
chondrial defects, uncontrolled fasciculations, or increased respira-
tory effort (43). These findings may be connected as patients with 
ALS may compensate for hypermetabolism by increasing energy 
intake that could in turn lead to hyperlipidemia (43). In addition, 
the immune alterations that we found may be related to these find-
ings, because it has been shown that metabolism and the immune 
system are connected (44). However, the metabolic- and cholester-
ol-related findings were statistically independent of the immune-re-
lated findings and thus did not support a shared mechanistic 
pathway. The finding of disrupted metabolic pathways may be a 
potential avenue for therapeutic intervention, because diet rep-
resents a modifiable factor and previous studies in patients with 
ALS and animals suggest that dietary intervention could benefit 
disease prognosis, for example, by compensating for defects in lipid 
metabolism or compensating for increased energy demand or lower 
BMI (45).

It is important to note that our analyses can say little about 
causality, and we need to be cautious in concluding that these 
factors represent major risks for the disease. However, Mendelian 
randomization (MR) analyses in our latest genome-wide association 
study (GWAS) (28) indicate that blood cholesterol is causally related 
to ALS, whereas no causal evidence for (among others) BMI, 
triglycerides, blood pressure, and other metabolic traits was found. 
This shows that the causal role for cholesterol in ALS might be 
independent of other metabolic traits. Although these MR analyses 
assessed blood cholesterol, neurons are thought to use similar 
molecular mechanisms (46), and the shared genetic susceptibility 
between cholesterol and ALS risk could therefore indicate that 
cholesterol is also raised in the spinal cord and brain. Cholesterol is 
involved in many crucial processes in the central and peripheral 
nervous system, including membrane fluidity, synapse formation 
facilitation, neurite growth, and long-term potentiation (39). Alter-
natively, it has been suggested that the energetic needs of large 

Table 4. EWAS database enrichments. Ten strongest enrichments within the MRC-IEU EWAS database. FDR is the FDR-corrected P values from a Fisher’s exact 
test. Effect directions indicate whether the ALS EWAS and trait EWAS effect sizes share the same direction of effect (for example, an opposite direction of effect 
for BMI indicates that DNA methylation changes at overlapping positions associated with a lower BMI are also associated with a higher ALS risk). EWAS method 
indicates whether DMPs identified with respective method were enriched for the given trait. 

Trait FDR Effect directions EWAS method

BMI 1.36 × 10−9 Opposite LB and MOA

Total serum IgE 1.93 × 10−7 Opposite LB

Triglycerides 4.02 × 10−7 Opposite LB and MOA

Serum triglycerides* 1.32 × 10−5 Opposite LB and MOA

Waist circumference 1.85 × 10−4 Opposite LB and MOA

HDL-c 0.0013 Equal LB and MOA

Hypertriglyceridemic waist 0.0024 Equal LB and MOA

Serum HDL-c* 0.0066 Equal LB and MOA

Fasting glucose 0.0097 Opposite LB and MOA

Atrial fibrillation 0.011 Opposite LB and MOA

*Note that we adhered to the trait descriptions as provided in the database: serum, plasma, and whole-blood measurements are included as distinct traits 
(“triglycerides” and “high-density lipoprotein cholesterol” refer to whole-blood measurements).
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motor neurons make it selectively vulnerable for alterations in me-
tabolism or could be the source of oxidative stress (47). Moreover, 
lipid concentration in the blood and autophagy are related (48), as 
illustrated by a recent study showing that high cholesterol leads to 
increased protein aggregation through autophagy impairment in 
mouse models of Alzheimer’s disease (49).

Our results also point toward a role 
for the immune system in ALS. The 
EWAS results were enriched for im-
mune-related traits including IgE and 
allergic sensitization; these results were 
independent of predicted WBC propor-
tions. DMPs driving these enrichments 
included, among others, cg06528816 
(annotated to TTC7A) and a cluster of 
three covarying DMPs in the ZFPM1 
gene, both implicated in immune-related 
traits such as IgE, asthma, and allergic 
sensitization (31, 32). Our PMS analy-
ses corroborate the role of immunity in 
ALS because we found that WBC pro-
portions were altered in ALS, with a 
higher ratio of granulocytes and a lower 
ratio of lymphocytes in patients with 
ALS (CD4T, CD8T, and NK cells). We 
further found that increased granulocyte 
proportions are associated with worse 
prognosis, whereas NK cell proportions 
are associated with better prognosis, 
indicating that WBC proportions might 
have prognostic value. The role of im-
munity is further supported by our ob-
servation that various PMSs for various 
inflammatory proteins including CRP, 
IL-6, TGF-, and CCL11 were elevated 
in patients with ALS; although these 
differences remained after adjustment 
for WBC proportions, they disappeared 
upon adjustment for principal compo-
nents. Our findings are in line with 
previous studies that identified higher 
ratios of neutrophils and/or granulocytes 
to lymphocytes in patients with ALS, 
elevated inflammatory proteins, and an 
association between higher neutrophil 
proportions and worse prognosis (50, 51). 
Although immune alterations could be 
part of a systemic aspect of ALS, there is 
evidence that suggests that the peripheral 
immune system contributes to neuro
inflammation, the latter being an estab-
lished phenomenon in ALS as well as other 
neurodegenerative diseases (50). Espe-
cially interesting in this regard are recent 
analyses showing that mast cells infiltrate 
skeletal muscles at the neuromuscular junc-
tion and degranulate to help recruit neutro-
phils (50), which prevent reinnervation 
capacity and may thus be a potential mech-

anism causing worse prognosis. In line with this, we identified an 
enrichment for IgE (and related traits such as allergy and atopy), 
which activate mast cells, and found that increased proportions of 
granulocytes were associated with ALS and patient survival. Thus, 
these findings could be of interest for new treatments, especially given 
that mast cell activity can be influenced therapeutically (50).

A B

C D

E F

Fig. 3. Polymethylation score analyses on disease risk and patient survival. Polymethylation scores (PMSs) were 
determined as proxies for various traits, exposures, proteins, and WBC proportions, calculated as weighted sums 
based on probes and weights derived from published papers, respectively. Case-control association analyses were 
performed on 6763 patients and 2943 controls; survival analyses were performed within 5162 patients. (A) Explained 
variance of PMSs calculated in samples for which both DNA methylation data and biomarker/clinical data were available 
(N = 800 of 2000). Reduced R2 represents the variance explained by the null model, whereas the incremental R2 
represents the additional variance explained by the PMS over the null model. Last, the explained variance of the 
univariate model of the respective PMS is displayed (see Materials and Methods). The asterisk indicates that the PMS 
was used in the association tests. (B and C) The top panel shows association P values from logistic regression 
[−log10(P), y axis] for each PMS (x axis). (B) WBC proportions and (C) various traits and exposures, colored by whether 
a higher score is associated with increased (black) or decreased (gray) disease risk. The bottom panel shows the Cox 
PH P values [−log10(P), y axis] for each PMS (x axis), colored by whether a higher score is associated with decreased 
(black) or increased (gray) survival, respectively. The dashed line indicates the significance threshold (1.3 × 10−3). 
(D) Original P values [−log10(P), x axis] compared to P values after including all PMSs as fixed covariates in the logistic 
regression model [−log10(P), y axis] for the ALS-associated traits/exposures. (E and F) Association P values [−log10(P), 
y axis] upon incrementally adding principal components (PCs) as fixed covariates in the logistic regression model. 
HGF, hepatocyte growth factor; EN.RAGE, extracellular newly identified RAGE-binding protein; GDF8, growth/
differentiation factor 8; OSM, Oncostatin-M, SKR3, Serine/threonine-protein kinase receptor R3; TNFSF14, tumor 
necrosis factor ligand superfamily member 14; VEGFA, vascular endothelial growth factor A; nPCs, number of 
principal components.
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We do not replicate the recently reported association between 
epigenetic age acceleration and survival (52). In our analyses, we 
adjusted for sampling age, because it has been shown to be crucial 
when studying epigenetic age acceleration (53), especially given that 
age of onset affects disease progression in ALS (1). As we have 
shown, both survival and age of onset were associated with age 
acceleration when sampling age was not accounted for, but the 
associations disappeared upon adjustment. In addition, in our case/
control analysis, we observed substantial heterogeneity among 
strata; hence, our results do not support an unambiguous role for 
age acceleration in ALS.

We must acknowledge the limitations of our study. First, our 
cross-sectional design hinders inferences about causality. MR analy-
ses presented in our recent GWAS (28) did not find evidence for a 
causal role of the DMPs identified in this study; although this may 
indicate a lack of power, it could also indicate that the results 
reflect the consequences of disease processes rather than causal 
mechanisms. In that case, the value of the identified DNA methyl-
ation changes would lie primarily in revealing underlying disease 
processes in ALS. Furthermore, the identified ALS- and survival-as-
sociated DNA methylation patterns could be of interest as potential 
starting points for new disease-modifying treatments.

Second, we note that we collected DNA from whole blood rather 
than from brain tissue. Although some blood DNA methylation 
patterns reflect those in brain tissue more closely than others—as 
previously shown for the DMPs that we identified in the C9orf72 
locus (54)—DNA methylation is often tissue specific (55). However, 
in contrast to brain tissue, blood DNA methylation is accessible, 
allowing for sampling close to disease onset and in large numbers. 
Leveraging the large body of literature available on blood DNA 

methylation allowed us to uncover risk factors and pathways related  
to ALS.

Last, the stringent adjustment for confounding that we applied 
by using PCs and random effects models [OSCA (21)] may have 
obscured biological signals of interest. For example, our results 
indicate that the additional DMPs identified using the LB algorithm 
are enriched for inflammatory pathways and traits, which corrobo-
rates previous findings that suggest that uncaptured variation can 
be explained by cell type heterogeneity and related immune pro-
cesses (56). Similarly, we show that the associations found for various 
immunological proteins such as CRP and IL-6 disappeared upon 
PC adjustment. This relates to the discussion on whether to treat 
variables such as cell type proportions as nuisance variables in an 
EWAS or view them as variables that provide valuable information 
in themselves (57). In this study, we therefore struck a balance by 
opting for a two-way approach, combining a stringently corrected 
EWAS with a more targeted approach where we studied “confounders” 
such as WBC proportions, smoking, and BMI as outcomes of interest, 
assessing them with both stringent (including PCs) and more 
lenient models.

MATERIALS AND METHODS
Study design
This study aimed to identify differential DNA methylation in patients 
diagnosed with definite, probable, and probable laboratory-supported 
ALS according to the revised El Escorial Criteria (58). First, we 
implemented a comprehensive pipeline tailored to large-scale 
epigenome-wide studies to identify individually methylated positions 
in 6763 patients with ALS and 2943 controls without motor neuron 

Table 5. DMPs associated with survival. Details of the positions significantly associated with survival (P < 1.11 × 10−3). Position, Chromosome:bp (GRCh37); 
Nearest gene, nearest gene based on Ensembl GRCh37 (75); cis-eQTM, the top cis-eQTM for the respective probe; cis-eQTM FDR, P value corresponding to the 
top cis-eQTM, FDR-corrected for the number of tests for the respective probe; PMS, probe is part of the respective PMS (polymethylation score); HR, hazard ratio; 
Trait, overlap with significantly enriched traits (FDR < 0.05) from the MRC-IEU and NGDC EWAS databases (showing a maximum of five traits). HGF, hepatocyte 
growth factor. Survival analyses were performed within 5162 patients. 

Probe Position Nearest gene cis-eQTM 
(direction) cis-eQTM FDR HR (95% CI) P value PMS Traits

cg14195992 8:48265917 SPIDR SPIDR (−) 0.0059 0.07
(0.025–0.2) 4.7 × 10−7

cg03546163 6:35654363 FKBP5 FKBP5 (−) 0.016 0.19
(0.087–0.41) 2.7 × 10−5 HDL-c

BMI, waist 
circumference, 

alcohol 
consumption 
per day, and 

chronic kidney 
disease

cg09257526 1:154379696 IL6R ATP8B2* (−) 0.0031 0.0049 
(0.00045–0.053) 1.3 × 10−5

Alcohol 
consumption 

per day

cg17901584 1:55353706 DHCR24 DHCR24 (−) 2.9 × 10−62 4.6
(2.2–9.8) 1.0 × 10−5 BMI, HDL-c, 

HGF

Hepatic fat, 
BMI, metabolic 

trait, and 
(serum) 

triglycerides

cg01589155 9:27573532 C9orf72 47
(6.2–360) 2.0 × 10−4

*The association between DNA methylation and the nearest gene was not significant (FDR > 0.05).
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diseases. We explored the biological meaning of the results by 
performing gene set enrichment analyses and by overlapping our 
results with trait-associated positions reported in publicly available 
EWAS databases. Power analysis calculated with the EPIC array 
online tool (26) showed that for 96.6% of sites, we had >80% power 
to detect a mean DNA methylation difference of 1% using the 
default significance threshold (P < 9 × 10−8). Second, we applied 
39 DNA methylation–based proxies of putative ALS risk factors. 
Last, we leveraged clinical data to perform survival analysis and 
reveal indicators of disease progression.

Samples were collected across 14 countries (2:1 case/control 
ratio). Population-based controls were matched for age, sex, and 
geographical region in a 1:2 ratio and not screened for (subclinical) 
signs of ALS. Experimental batches were processed in the same 
laboratory and sequenced in the same series depicting the origin of 
each DNA sample, resulting in 44 independent batches after quality 
control. Strata, for analyses, were defined as samples within the 
Project MinE sequencing consortium stratified by array technology 
(MinE 450 k and MinE EPIC), and the external Australian data 
were stratified into two strata based on differences in signal intensi-
ties (AUS1 and AUS2) (see Supplementary Materials and Methods 
“QC and normalization” section, fig. S1, and QC figure 50 for 
more details).

DNA methylation was quantified using Illumina 450 k and EPIC 
arrays. We applied extensive quality control leading to the exclusion 
of 756 (7.2%) samples (based on several technical metrics, related-
ness, genotype concordance, and sex concordance) and 175,134 (24%) 
probes (based on technical metrics, cross-reactivity, and overlap 
with common single-nucleotide polymorphisms). For further details 
on cohorts and QC, see Supplementary Materials and Methods. 
The investigators were not blinded to the experimental conditions 
during experiments and the analyses.

Statistical analysis
Epigenome-wide association study
Two approaches were used to perform EWAS analyses:
1)Linear regression was performed at each site, testing for an associa-
tion between DNA methylation  values and case-control status, ad-
justing for the following fixed covariates: sex, experimental batch, 
predicted age, estimated WBC, 30 control probe PCs, and m array-wide 
residual PCs (see Supplementary Materials and Methods). The number 
of array-wide PCs (m) was optimized in each stratum by evaluating 
the sample-size normalized inflation factors (1000). The number of 
PCs (m) were chosen so that for each stratum, 1000 ≤ 1.15 (m is 30, 
15, 25, and 30 for the MinE 450 k, MinE EPIC, AUS1, and AUS2 strata, 
respectively). We then corrected for remaining inflation and/or bias 
in test statistics of each stratum using the bacon algorithm (20). 
Hereafter, we refer to this model as the LB model.
2)Mixed linear model analyses were performed using the MOA 
algorithm implemented in the OSCA software (v0.45) (21). This 
method tests for an association between case-control status and 
DNA methylation at a given position, adjusting for both fixed 
effects (we included predicted age, sex, and experimental batch) 
and a random genome-wide DNA methylation factor per person 
with variance-covariance matrix between individuals built from 
genome-wide DNA methylation sites (11, 21, 59).

For both the linear model and MOA results, test statistics across 
strata were combined using an IVW fixed-effects meta-analysis (22). 
Positions with a two-tailed P value of <9 × 10−8 were considered 

genome-wide significant and termed DMPs (26). DMPs were con-
sidered significantly heterogeneous when Cochran’s Q P values < 0.1 
(corrected for the number of DMPs).
Cis-eQTM analyses
For each position, we tested for an association between DNA methyl
ation and gene expression of genes in cis (<250 kb) using linear re-
gression, adjusting for age, sex, strata, WBC composition, and 20 PCs 
as fixed effects (10 PCs derived from gene expression data and 10 PCs 
derived from the DNA methylation data) (27). We corrected the test 
statistics for bias and inflation (estimated on the basis of the associ-
ation between DNA methylation and expression of all genes using 
the bacon algorithm). For each site, two-tailed P values were corrected 
for the number of tested genes using FDR correction.
Correlation analyses
 values were first adjusted for the covariates used in the LB 
algorithm; pairwise correlations were calculated among the residuals 
of this regression using Pearson’s correlation coefficient. Correlations 
were calculated per stratum (within ALS cases) and combined in an 
IVW meta-analysis of Fisher’s z-transformed correlation values (22).
Enrichment analyses
Gene set analyses were performed using the Wallenius’ noncentral hy-
pergeometric distribution (29, 30). This method takes into account that 
the number of CpGs assigned to each gene differs by accounting for the 
probability of a gene being selected using Wallenius’ noncentral hyper-
geometric distribution. Two-tailed Fisher’s exact tests were used for 
trait enrichment analyses. Resulting P values from the enrichment 
analyses were corrected for multiple testing using FDR correction. The 
filtering procedure for gene sets and traits and the backgrounds used 
are described in Supplementary Materials and Methods.
PMS analyses
Incremental R2 estimates from linear regression were used to deter-
mine whether the PMS increased the predictive ability above and be-
yond that of the null model that included the phenotype measure as the 
dependent variable and case-control status, predicted age, sex, experi-
mental batch, WBC, and 30 control probe PCs as independent vari-
ables. For each stratum, we tested for an association between the PMS 
and case/control status using logistic regression. Sex, predicted age, 
WBC, experimental batch, 30 control probe PCs, and m array-wide 
PCs (see the “Epigenome-wide association study” section) were included 
as fixed covariates for all PMSs except for DNA methylation age and 
WBC proportions. For DNA methylation age, we additionally adjusted 
for chronological age (representing age acceleration). For the WBC 
PMSs, we did not adjust for array-wide PCs because these essentially 
represent WBC proportions (56). Strata test statistics were combined 
using an IVW fixed-effects meta-analysis (22). We corrected for the 
number of PMSs tested using the Bonferroni correction [two-tailed 
P value of <1.3 × 10−3 (0.05/39)]. PMSs were considered significantly 
heterogeneous when Cochran’s Q P values < 2.3 × 10−3 (0.01/39).
Survival analyses
We used a multivariate Cox PH regression model to test for an 
association between survival and DMPs and PMSs, adjusting for 
predicted age, sex, experimental batch, WBC, 30 control probe PCs, 
and m array-wide PCs (see the “Epigenome-wide association study” 
section). The PH assumption of the Cox model was checked using 
Schoenfeld and martingale residuals. In addition, the Royston-Parmar 
spline model was performed using the flexsurvspline function from 
the R package flexsurv. Model complexity was assessed by the 
addition of up to five knots compared to one single knot. Test 
statistics were combined using IVW fixed-effects meta-analysis. 
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We corrected for the number of tests using the Bonferroni correction 
(two-tailed P < 1.11 × 10−3 for DMPs and two-tailed P < 1.3 × 10−3 
for PMSs). Positions were considered significantly heterogeneous 
when Cochran’s Q P values < 0.1 (corrected for the number of 
tests performed).
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Understanding ALS epigenetics
Neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), have been associated to epigenetic
modifications, suggesting that identification of specific epigenetic patterns could provide insights into disease
pathophysiology and help the identification of potential pharmacological targets. Here, Hop et al. analyzed DNA
methylation pattern, one of the most characterized epigenetic modifications, in almost 10,000 individuals with ALS and
controls and identified 45 differentially methylated positions (DMPs) annotated to 42 genes. The changes involved
genes associated to metabolic and inflammatory pathways, and the authors identified several DMPs associated with
disease progression in their cohort. The results will help the identification of disease-relevant mechanisms that could
be targeted to block or delay ALS progression.

View the article online
https://www.science.org/doi/10.1126/scitranslmed.abj0264
Permissions
https://www.science.org/help/reprints-and-permissions

D
ow

nloaded from
 https://w

w
w

.science.org at B
ibliotheek der R

ijksuniversiteit on M
ay 05, 2022

https://www.science.org/about/terms-service



