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Abstract
Study Objectives: Alterations in sleep spindles have been linked to cognitive impairment. This finding has contributed to a growing interest in identifying sleep-

based biomarkers of cognition and neurodegeneration, including sleep spindles. However, flexibility surrounding spindle definitions and algorithm parameter 

settings present a methodological challenge. The aim of this study was to characterize how spindle detection parameter settings influence the association between 

spindle features and cognition and to identify parameters with the strongest association with cognition.

Methods: Adult patients (n = 167, 49 ± 18 years) completed the NIH Toolbox Cognition Battery after undergoing overnight diagnostic polysomnography recordings 

for suspected sleep disorders. We explored 1000 combinations across seven parameters in Luna, an open-source spindle detector, and used four features of detected 

spindles (amplitude, density, duration, and peak frequency) to fit linear multiple regression models to predict cognitive scores.

Results: Spindle features (amplitude, density, duration, and mean frequency) were associated with the ability to predict raw fluid cognition scores (r = 0.503) and 

age-adjusted fluid cognition scores (r = 0.315) with the best spindle parameters. Fast spindle features generally showed better performance relative to slow spindle 

features. Spindle features weakly predicted total cognition and poorly predicted crystallized cognition regardless of parameter settings.

Conclusions: Our exploration of spindle detection parameters identified optimal parameters for studies of fluid cognition and revealed the role of parameter 

interactions for both slow and fast spindles. Our findings support sleep spindles as a sleep-based biomarker of fluid cognition.

Key words:  sleep spindle; EEG; cognition; sleep
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Statement of Significance

With the recent surge of sleep research examining sleep spindles and their role in various neuropsychiatric conditions, automated spindle detection algorithms 

have become increasingly popular research tools. However, the selection of automated spindle detector parameters may influence the subset of detected spindles 

and their relevance to cognitive networks remains unclear. This study confirms that detected spindles and their functional relevance for studies of cognition vary 

depending on the parameter settings used. Our findings provide reference spindle detection parameters for other studies and highlight the importance of both 

optimizing parameter settings and accounting for interactions in studies of associations between spindles and cognition.
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Introduction

Brain health is an emerging research focus that describes “the 
preservation of optimal brain integrity and mental and cognitive 
function at a given age in the absence of overt brain diseases that 
affect normal brain function” [1]. Because sleep disturbances [2] 
and neurocognitive diseases [3] are associated with heightened 
morbidity and mortality in older adults, sleep has become an in-
creasingly popular therapeutic target for brain health. Changes 
in sleep macrostructure, including decreased sleep efficiency 
and duration and increased nighttime wakefulness and sleep 
fragmentation, have been linked to aging [4, 5] and an increased 
risk of cognitive impairment [6, 7].

More recently, age-related changes in sleep microstructure 
have also been described [8] and are notably more pronounced 
than changes in sleep macrostructure [9]. These findings have 
led to a surge of research using electroencephalogram (EEG) sig-
nals to extract sleep microfeatures, particularly sleep spindles, 
as electrophysiologic markers of neurodegenerative and psychi-
atric diseases [10–12]. Spindles are a hallmark of non-rapid eye 
movement (NREM) stage 2 sleep and are characterized by inter-
mittent waxing and waning 11–16 Hz oscillations that last 0.5 to 
3 s. Spindle mechanisms play a role in memory consolidation 
and relative sensory deafferentation of sleep, function as infor-
mation carrier waves, and contribute to the cohesion of sleep 
itself. Although they vary greatly across individuals, spindles are 
a NREM EEG “fingerprint” [13] and show high heritability [14] and 
strong night-to-night stability [15].

Although spindles are sometimes visually recognizable, the 
spindle frequency range defined in the literature starts any-
where between 8 and 12 Hz [16, 17] and ends between 15 and 
17 Hz [18, 19]. While it is commonly accepted that the spindle 
minimum duration is 0.5 s, the origins of this criterion are also 
unclear and not physiologically based, with studies reporting 
spindles as brief as 0.3 s [18, 20, 21]. Such open-endedness may 
not make a difference in the clinical practice of sleep medicine, 
where the primary use of spindle detection is scoring of NREM 
sleep. However, the use of spindle analysis as a precision tool to 
identify electrophysiologic markers of specific health outcomes 
requires more stringent and physiologically relevant criteria.

Spindles are further classified into “slow” and “fast” subtypes 
as a function of EEG topographical and frequency distributions. 
Slow spindles are preferentially detected in frontal regions 
while fast spindles are localized to central and parietal regions 
[22]. Similar to the definition of spindles themselves, there is no 
consensus on the delineation of these two subtypes, which has 
ranged from 12 Hz to 14 Hz across studies [9, 16, 17].

The current gold standard for spindle detection is visual in-
spection of the EEG. However, manual spindle detection by ex-
perts is time consuming, prone to errors, costly, limited to small 
data sets, and suffers from interrater variability due to subjective 
spindle definitions and varying expertise [20, 23]. Automatic de-
tection methods, by contrast, allow for reproducible analysis 
and are being optimized to concur with visual inspection. This 
approach, however, suffers from the lack of consensus regarding 
spindle definitions and presumes that the physiological import 
of the spindle correlates with the current gold standard of visu-
alization. Further, it overlooks potential associations between 
specific parameter settings of automated detection algorithms 
and the physiological relevance of detected spindles. Here, we 
hypothesized that parameter settings influence the association 
between sleep spindle features and cognition. To evaluate this 

hypothesis, we used cognitive measures as the gold standard 
and identified spindle detection parameters that best correlate 
with cognitive performance.

Methods

Participants

Adult patients (≥ 18 years of age) referred to the Massachusetts 
General Hospital Sleep Laboratory between November 2018 and 
October 2019 for overnight diagnostic polysomnography (PSG) 
were offered the option to return within 40  days of their PSG 
exam to complete a cognitive test battery. Participants pro-
vided written informed consent for participation in the study, 
which was approved by the Mass General Brigham Institutional 
Review Board.

Exclusion criteria included any baseline diagnosis of de-
mentia or learning disability, prior exposure to the cognitive 
test battery, or inability to complete the battery due to English 
language non-fluency or motor, visual, or hearing impairments. 
Use of benzodiazepines was not an exclusion criterion. However, 
given their ability to increase spindle activity [24], we performed 
sensitivity analysis to quantify the effect of benzodiazepine 
usage on the overall results. Medication usage was collected 
through self-reports on the night of the PSG.

Cognitive test battery

All participants completed the NIH Toolbox Cognition Battery [25], 
one of the four core domains of the NIH Toolbox for Assessment 
of Neurological and Behavioral Function [26]. The NIH Toolbox 
Cognition Battery contains seven subtests, each of which meas-
ures a cognitive subdomain (Supplementary Table S1). Five 
subtests are categorized under fluid cognition: Dimensional 
Change Card Sort (DCCS), Flanker Inhibitory Control & Attention 
(ICA), List Sorting Working Memory (LSWM), Pattern Comparison 
Processing Speed (PCPS), and Picture Sequence Memory (PSM) 
tests. The other two subtests are categorized under crystallized 
cognition and assess language: Picture Vocabulary (PVT) and 
Oral Reading Recognition (ORR) tests. Absolute (uncorrected) 
and age-corrected standard scores are generated for each in-
dividual subtest and three composite cognitive measures: total 
cognition, fluid cognition, and crystallized cognition. Higher 
scores indicate better cognitive function for each cognitive do-
main. In adults, individual subtests have shown good test-retest 
reliability [26] and composite scores have shown good internal 
consistency, excellent test-retest reliability, and strong conver-
gent and discriminant validities [27].

EEG recordings and signal processing

EEG and ECG recordings were collected from six channels 
during diagnostic PSG. EEG signals were recorded at 512 Hz 
and segmented into nonoverlapping 30-second epochs, which 
were manually scored by licensed sleep technicians following 
American Academy of Sleep Medicine standards [28] as part 
of clinical care. Each epoch was assigned one of the following 
labels: wake (W), rapid eye movement, Non-REM stage 1 (N1), 
Non-REM stage 2 (N2), or Non-REM stage 3 (N3). A sleep neur-
ologist manually reviewed and checked sleep scores for quality 
control.
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We extracted EEG signals from central channels referenced 
to the contralateral mastoid (C3-M2 and C4-M1) and a single 
ECG channel. EEG and ECG signals were resampled to 256 Hz 
and filtered with a zero-phase band-pass filter from 0.3 Hz to 35 
Hz and 0.3 Hz to 40 Hz, respectively. A previous study showed 
that spindle density was higher across different studies when 
cardiac interference was removed from EEG signals [29]. Based 
on these findings, we applied ECG-correction to EEG signals. To 
remove ECG artifacts, we calculated a subject’s instantaneous 
heart rate, smoothed it using a window size of 3 s, and detected 
R peaks using the Pan-Tompkins algorithm [29, 30]. The R peaks 
were then aligned with the EEG to create an average signature 
that was then subtracted from the EEG signal, as described pre-
viously [29]. We then retrieved the subject’s average EEG signa-
ture by averaging over intervals of 0.5 s and subtracted any EEG 
signature that aligned with an R peak.

Following ECG correction, EEG signals were bandpass filtered 
between 0.1 Hz and 20 Hz. Signal artifacts were then detected 
and removed through a previously described filtering method 
[31]. Finally, to remove any extreme outliers, a threshold for out-
lier detection was set iteratively to remove epochs that were 
more than 3 standard deviations above or below the mean of 
four per-epoch summary metrics (the root mean square and 
three Hjorth parameters [32]). Only epochs from NREM stage 2 
sleep were included for analysis.

Automated spindle detection

Sleep spindle features were generated using Luna (http://zzz.
bwh.harvard.edu/luna/). The automated spindle detector com-
ponent of Luna relies on a previously published Morlet wavelet 
transformation [33] that has been comprehensively evalu-
ated [20]. Seven parameters were chosen for exploration: (1) 
cycles, which improve frequency resolution at higher values 
and improve temporal resolution at lower values; (2) target 
frequency (fc); (3) spindle quality metric (q); (4) multiplicative 
threshold for spindle detection; (5) minimum spindle duration 
(min); (6) maximum spindle duration (max); and (7) the max-
imum number of seconds between spindles across which they 
should be considered a single spindle and therefore merged, 
unless the resulting spindle is larger than the max parameter 
(merge). The range of exploration for each parameter is listed in 
Supplementary Table S2.

Statistical analyses

Pairing all possible parameter values resulted in 29 393 280 pos-
sible combinations. We sampled 1000 random combinations 
using Monte Carlo-based selection and ran Luna with each set-
ting to extract spindle features. This method of parameter com-
binations selection was chosen because exploring all possible 
combinations of parameters is not possible, and systematic grid 
search experiments are known to be less efficient than random 
sampling [34]. A second exploratory analysis of 500 combinations 
was completed following the preliminary findings. Spindle fea-
tures were averaged across both channels (C3-M2 and C4-M1) 
for each patient. Four spindle features of interest were selected 
a priori for cognitive performance prediction: spindle ampli-
tude, density, duration, and mean spindle frequency. All cogni-
tive measures were standardized (z-transform) prior to analysis.

Using these features, we fitted a linear regression model 
to predict cognitive performance on each of the NIH Toolbox 
subtests and on the overall composite uncorrected standard 
scores. Pearson’s correlation was performed to compare meas-
ured cognitive scores with cognitive scores predicted by the 
optimized regression model. To avoid overfitting, we evaluated 
model performance using 10-fold cross validation. In detail, the 
dataset was randomly split into 10 folds where each fold con-
tains the same number of PSGs (or approximately the same if 
not divisible by 10). A  linear regression model was trained on 
9 folds and tested on 1-fold, and this process rotated to ensure 
the whole dataset was used for testing. The reported correlation 
is the average of the 10 correlations across the 10 testing folds. 
Finally, a model was refitted on the whole dataset to get a single 
overall set of model coefficients. To generate 95% confidence 
intervals of the correlations and coefficients, we repeated the 
above process 1000 times using bootstrapping (sampling with 
replacement to create bootstrapped datasets of the same size as 
the original dataset). Confidence intervals are defined using the 
nonparametric 2.5th–97.5th percentiles of all bootstrapped es-
timates. A representative histogram of the bootstrapped values 
(and the point estimate from actual dataset) for the Pearson’s 
correlations for fluid intelligence using the best parameter com-
bination is shown in Supplementary Figure S1.

A modified percentile bootstrap method [35] was then per-
formed to compare Pearson’s correlation across models. This 
method accounts for any heteroscedasticity and non-normality 
in the data. To apply this method, we first identified the model 
with the largest Pearson’s correlation value and then applied 
the bootstrapping method to calculate the confidence intervals 
of the differences between the best model and each of the re-
maining models. The top model was considered significantly 
better if the confidence interval comparing the two models did 
not include zero. Our first aim was to identify spindle detection 
parameters that best measured the raw association between 
spindles and cognition, regardless of confounding factors, using 
absolute (uncorrected) scores for data analysis. Our second aim 
was to identify the independent association between spindles 
and cognition after adjusting for age, using age-corrected scores, 
to explain the variation in cognition explained by spindle fea-
tures after accounting for age.

To examine the role of parameter interactions in model per-
formance, we visually inspected grouping behaviors for par-
ameter combinations using a dimensionality reduction tool, 
t-distributed stochastic neighbor embedding (t-SNE [36, 37]). We 
also examined whether including spindle feature regression co-
efficients changed t-SNE grouping behaviors. Finally, we com-
pared these t-SNE plots to a third that only included average 
spindle features for each combination. To identify the best 
hyperparameters for visualization, the perplexity parameter in 
t-SNE was varied and the best values were selected visually. All 
other parameters were set to default options. Parameter inter-
actions were also examined through parallel coordinates [38]. 
For each parameter, a Cuzick test for trend [39] was computed 
to measure the trend of performance across parameter values. 
Following visualization, a final run of 495 selected parameter 
combinations were analyzed. Spindle features for top combin-
ations at 12.5 Hz and 14.5–16 Hz were visually inspected by age 
and cognitive performance through scatter plots.

To evaluate our results in cognitively impaired patients, we 
reviewed polysomnograms acquired in the Sleep Laboratory at 
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Massachusetts General Hospital from 2009 to 2017 and identified 
patients with dementia and mild cognitive impairment (MCI). 
Dementia was defined, as in our prior work, using the following 
criteria: prescription of one or more dementia-related medica-
tion, record of dementia diagnosis in the patient’s active, re-
occurring medical problem list, Montreal Cognitive Assessment 
score ≤ 19 prior to the sleep study and <27 after the sleep study, 
or Mini-Mental State Examination score < 25. Criteria for MCI 
included record of MCI in the patient’s active, reoccurring med-
ical problem list or a Montreal Cognitive Assessment score be-
tween 20 and 25 prior to the sleep study and <27 after the sleep 
study. For both groups, exclusion criteria were age <50 years or 
history of developmental delay, brain tumor, neoplasm, stroke, 
brain injury/trauma, or seizure prior to the sleep study. Our final 
dataset included 215 dementia patients and 308 MCI patients. 
Spindle features (amplitude, density, duration, frequency) were 
extracted using the best and worst performing models. We in-
vestigated the association between spindle features and cogni-
tive impairment status using a Cuzick test for trend.

External validation was performed using the Sleep Heart 
Health Study [40–43] (SHHS), which is a composite cohort 
overlapping with the Framingham Heart Study [44] (FHS). 
Participants were included if they completed a neuropsycho-
logical test battery [45] in the FHS within three years of their 
SHHS PSG exam date. Participants with incomplete Wechsler 
Memory Scale (WMS) data or who were diagnosed with cog-
nitive impairment were excluded from analysis. A total of 476 
participants were included in the validation dataset. Model per-
formance was evaluated for the 1000 randomly selected param-
eter combinations from the preliminary stage, along with the 
best, default and worst combination parameters.

When examining associations between continuous variables, 
Pearson correlations were performed. Statistical significance of 
estimated associations was defined based on confidence inter-
vals, presented following the format X [Y, Z]. Associations were 
considered statistically, significantly different from zero when 
their 95% interval did not include zero. To determine associ-
ations across discrete variables, a Cuzick’s test for trend was 
used. For the Cuzick’s test for trend, statistical significance was 
defined using a p-value < .05. All statistical analyses were per-
formed using code written in-house using Python (https://www.
python.org/). Source code used to produce the figures and com-
plete regression analysis is available on our GitHub page: https://
github.com/mghcdac/spindle_optimization.

Of note, Luna provides recommended default parameter 
values for spindle detection. Our goal in this work was to iden-
tify which part of the parameter space maximizes correlations 
with cognition rather than to specifically evaluate the Luna de-
fault parameters. Nevertheless, the reference parameters repre-
sent an important reference point, thus we provide comparisons 
with the default parameters throughout the manuscript.

Results

Patient characteristics

We enrolled 167 participants. Six were subsequently excluded: 
two participants did not complete cognitive measures and 
four had poor EEG signal quality. The final sample included 
161 participants (89 women) with a mean age of 49 years. On 
the night of the PSG, 23 (14%) patients reported regular use of 

benzodiazepines. Participant demographics are described in 
Table 1. Score distributions on the NIH Toolbox cognitive battery 
and performance by age across all the subtests and composite 
tests are shown in Figures 1 and 2, respectively.

Overall performance trends

For fluid intelligence, 632/1000 models significantly predicted 
cognitive scores and had 95% confidence intervals that did not 
contain the null hypothesis value for either the correlation or 
regression coefficients. Of these models, 286 (45.25%) showed 
moderate correlation values (≥0.4). The best performing model 
(0.501 [0.175, 0.595]) had the following spindle detector param-
eters: cycles = 6, central frequency (fc) = 15.5 Hz, quality metric 
(q) = 0.3, threshold = 5.5, minimum spindle duration = 0.4 s, max-
imum spindle duration = 2.6 s, merge = 0.7 s. Model details and 
performance are shown in Table 2 and Figure 3, respectively. 
Specification curve analysis is shown in Supplementary Figure 
S2. Using a modified percentile bootstrap method to compare 
Pearson’s correlations across all models, we found that the best 
performing model performed significantly better than 395 (40%) 
models. Of the 605 remaining models which did not significantly 
differ in accuracy, 360 (60%) were characterized by fast spindle 
activity (FFT average > 13Hz).

After examining each fluid subtest, we found that 34/62 (55%) 
models with similar performance were characterized by fast 
spindle activity for the Flanker ICA test, 116/280 (41%) for LSWM, 
221/290 (76%) for DCCS, 262/458 (57%) for PCPS, and 337/528 
(64%) for PSM. The best performing model for each subtest is 
shown in Table 2 and Figure 3, respectively.

With respect to crystallized intelligence, all models poorly 
predicted composite and subtest scores (Supplementary Figure 
S3). The parameter combination with the best performance 
showed negative correlation between predicted and true com-
posite (−0.38 [−0.47, 0.06]), PVT (−0.39 [−0.48, 0.06]), and ORR 
(−0.35 [−0.45, 0.01]) scores (Figure 3).

For total intelligence, 299/1000 models significantly predicted 
cognitive scores and had 95% confidence intervals that did not 
contain the null hypothesis value for either the correlation or 
regression coefficients. Of these models, three (1%) showed 
moderate correlation values (≥0.4). The best performing model 
(0.407 [0.066, 0.495]) had the following spindle detector param-
eters: cycles = 7, central frequency (fc) = 14 Hz, quality metric 
(q) = 0.7, threshold = 6, minimum spindle duration = 0.4 s, max-
imum spindle duration = 3.5 s, merge = 1 s. Model details and 
performance are shown in Table 2 and Figure 3, respectively. 
Specification curve analysis is shown in Supplementary Figure 
S4. Using a modified percentile bootstrap method to compare 
Pearson’s correlations across all models, we found that the best 
performing model performed significantly better than 301 (30%) 
models. Of the 699 models with similar performance, 203 (29%) 
were characterized by fast spindle activity (FFT average>13Hz).

Potential effect of benzodiazepine use on cognition for the 
best parameter combination was assessed using linear regres-
sion. The coefficient of benzodiazepine use (25.00 [−0.20, 43.54]) 
and its interaction with predicted scores (−25.34 [−45.30, 0.67]) 
were not statistically significant. Similarly, the effect of AHI on 
cognition for the best parameter combination was not significant 
in terms of its model coefficient (−9.33 [−38.00, 20.04]) or in its 
interaction with predicted scores (7.47 [−20.98, 34.40]). Although 
not statistically significant, the net effect of benzodiazepines, 
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defined by the sum of the coefficient of benzodiazepine use (25) 
and its interaction with predicted scores (−25*predicted score), is 
negative and, thus, is correlated with worse predictions of cogni-
tion. This finding aligns with clinical findings that show altered 
sleep architecture profiles during use of benzodiazepines.

Isolating parameter settings from 
performance trends

To understand what drove specific parameter combinations to 
excel when predicting fluid cognition, we performed exploratory 
predictor analysis. Our first exploratory question was whether 
interactions between parameters were negligible. When visu-
ally inspected, certain parameter settings exhibited consistently 
poor performance (small correlation coefficients), such as com-
binations with fc < 11.5 Hz (Supplementary Figure S5). A Cuzick 
test for trend showed a significant trend of performance across 
parameter values for cycles, central frequency, and minimum 
spindle duration (cycles: p = .002; central frequency: p < 2.2e-16; 

minimum duration: p = .02; maximum duration: p = .46; quality 
metric: p = .22; threshold: p = .19; merge: p = .87).

Effect of parameter settings and interactions

t-SNE maps generated similar cluster arrangements with respect 
to both shape and relative location of Pearson’s correlation values 
for three-dimensionally reduced features. Overall, t-SNE map 
topographies suggested discrete boundaries between models 
that poorly predicted cognition (small correlation coefficients) 
and moderately predicted cognition (larger correlation coeffi-
cients) when different parameter values were used (Figure 4A),  
and the delineation slightly improved with the addition of re-
gression coefficients and when only average spindle features 
were used (Figure 4B and C).

To visualize parameter interactions, we used parallel coord-
inates plots. For slow spindle combinations, we observed that 
model performance peaked at fc = 12.5 Hz. When fc > 12 Hz, com-
binations with minimum spindle duration < 6 s and threshold 

Table 1. Patient characteristics (N = 161)

 Women (N = 89) Men (N = 72) 

Age, years, mean ± SD‡ 46.8 ± 17.29 52.6 ± 18.52
Years of education, mean ± SD 16.0 ± 2.88 16.8 ± 3.11
Race
 White 63 (70.8%) 59 (81.9%)
 Black 7 (7.9%) 4 (5.6%)
 Hispanic/Latino 1 (1.1%) 0 (0%)
 Asian 5 (5.6%) 4 (5.6%)
 Multiracial 13 (14.6%) 5 (6.9%)
Hollingshead index, mean ± SD 47.5 ± 14.4 53.4 ± 13.9
Employed or self-employed, n (%) 49 (55%) 38 (53%)
Marital status (married), n (%) 36 (40%) 36 (50%)
Benzodiazepines 13 (14.6%) 10 (13.9%)
Current smoker, n (%) 2 (2%) 4 (6%)
AUDIT, median (IQR)‡ 2.0 [0,3] 2 [0,4]
History of alcohol abuse, n (%) 6 (7%) 11 (15%)
History of substance abuse, n (%) 9 (10%) 12 (17%)
Body mass index, kg/m2, median (IQR) 28.3 [23.6, 33.0]  28.4 [25.4, 32.5]
Diabetes, n (%) 4 (4.5%) 6 (8.3%)
Cardiovascular disease, % (n) 6 (6.7%) 8 (11.1%)
Charlson Comorbidity Index, median (IQR) 1.0 [0.0, 3.0] 1.0 [0.0,3.0]
PHQ-4, median (IQR) 2.0 [1.0, 4.0] 2 [0.0, 5.0]
Family history of dementia, n (%)* 41 (46%) 25 (35%)
PSQI, median (IQR) 9.29 [5, 12.8] 8.30 [5, 10]
AHI, median (IQR)§ 2.2 [0.5, 5.7] 6.1 [1.8 12.8]
Normal (< 5), n (%) 64 (71.9%) 29 (40.3%)
Mild sleep apnea (5 ≤ AHI < 15), n (%) 21 (23.6%) 26 (36.1%)
Moderate sleep apnea (15 ≤ AHI < 30), n (%) 4 (4.5%) 12 (16.7%)
Severe sleep apnea (AHI ≥ 30), n (%) 0 (0%) 6 (8.3%)
PSG referral reasons
 Sleep apnea evaluation 55 (62%) 55 (76%)
 Sleepiness 43 (48%) 35 (49%)
 Insomnia 30 (34%) 21 (29%)
 Non-restorative sleep 3 (3%) 1 (1%)
 Restless legs syndrome 15 (17%) 18 (25%)
 REM sleep behavior disorder 1 (1%) 1 (1%)

AUDIT, Alcohol Use Disorders Identification Test; AHI, apnea-hypopnea index (# apnea events per hour of sleep) at 4% desaturation for hypopnea. IQR, interquartile 

range; PHQ-4, Patient Health Questionnaire for Depression and Anxiety; PSQI, Pittsburgh Sleep Quality Index; SD, standard deviation. ‡<0.05; § <0.0001.

*Family history of one patient was unknown as patient was adopted.
‡<0.05.
§ <0.0001.
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values > 4 generally corresponded with better model perform-
ance. An inverse relationship was also seen between cycles and 
fc: model performance improved at lower cycles for higher fc 
values and at higher cycles for lower fc values. No clear param-
eter interactions or model performance patterns were found for 
maximum spindle duration, q, or merge settings.

Because parameter combinations were sampled randomly 
during preliminary analysis, the reliability of certain patterns 
was unclear. For example, although lower fc values appeared to 
favor higher cycles, we lacked parameter combinations that had 
cycles = 6, fc = 12.5 Hz, and threshold > 4. To address these un-
certainties, we ran a select range of combinations (n = 500) after 
parallel coordinates visualization (Supplementary Table S3). 
Because q showed no trend and did not have any missing values 
of interest, it was set to zero for these runs. The top performing 
model from this run showed slightly improved performance 0.504 
[0.198, 0.594]) and had the following parameters: cycles = 5, fc = 15, 
q = 0, threshold = 5, minimum spindle duration = 0.4 s, maximum 
spindle duration = 3.9 s, and merge = 0.7. Final inspection revealed 
that model performance consistently peaked for slow spindles 
when fc = 12.5, cycles = 12, threshold > 4.5, and minimum spindle 
duration < 0.5 s (Figure 5B). Fast spindle parameter combinations 
were less restrictive and resulted in larger correlations when fc > 14 
Hz. At 14.5 Hz, performance improved when cycles = 7, threshold 
> 4.5, and minimum spindle duration < 0.5 s. Performance peaked 
between when fc was between 15 and 15.5 Hz, cycles = 5, and min-
imum spindle duration < 0.5 s. At fc = 15.5 Hz, no clear distinction 
was observed for thresholds > 4, while minimal improvement was 
seen at a threshold of 5 compared to 5.5 at fc = 15 Hz (Figure 5C).

Key predictive spindle features

The distribution of average spindle features across frequencies 
are shown in Supplementary Figure S6. When examining the top 
parameter combination for each central frequency, we a found a 

discrepancy between measured frequency values (FFT) and cen-
tral frequency (fc) settings greater than 14 Hz (Table 3). Spindles 
detected by these combinations had an average FFT-based cen-
tral frequency approximately 14 Hz.

Plotting spindle features detected by the top five parameter 
combinations from Table 3 against age revealed that spindle 
density declined with age across fast and slow spindle fre-
quencies. However, in older patients, fast spindles resulted in 
a slightly higher frequency relative to younger patients, despite 
the decreased spindle density, and worse performance (smaller 
correlations) on fluid cognitive tests was linked with higher fast 
spindle FFT averages (Figure 6).

Age-adjusted performance trends

For our second aim, we used age-corrected scores to evaluate 
all parameter combinations. For fluid intelligence, 141/1500 
models (1000 preliminary and 500 exploratory combinations) 
significantly predicted cognitive scores and had 95% confidence 
intervals that did not contain the null hypothesis value for ei-
ther the correlation or regression coefficients. Of these models, 
29 (20.56%) showed moderate correlation values (≥ 0.3). The best 
performing model (0.315 [0.109, 0.402]) had the following spindle 
detector parameters: cycles = 8, central frequency (fc) = 15 Hz, 
quality metric (q)  =  0, threshold  =  5.5, minimum spindle dur-
ation = 0.2 s, maximum spindle duration = 3.9 s, merge = 0.7s. 
Using a modified percentile bootstrap method to compare 
Pearson’s correlations across all models, we found that the best 
performing model performed significantly better than the 859 
(86%) nonsignificant models. Of the 141 remaining models which 
did not significantly differ in accuracy, 110 (78%) were character-
ized by fast spindle activity (FFT average > 13 Hz). Specification 
curve analysis is shown in Supplementary Figure S2.

When examining fluid subtests, we found only one significant 
model for the DCCS test, which was characterized by fast spindle 
activity. Additionally, 122/125 (98%) models with similar perform-
ance were characterized by fast spindle activity for PCPS and 89/97 
(92%) for PSM tests. All models correlated poorly with Flanker ICA; 
including the model with the strongest correlation (−0.34 [−0.45, 
0.05]). The best performing model (largest correlation coefficient) 
for LSWM showed a trend for significance (0.25 [−0.02, 0.36]).

Both crystallized (Supplementary Figure S3) and total 
(Supplementary Figure S4) intelligence composite and subtest 
scores were poorly predicted by all models. The parameter com-
bination with the best performance showed negative correlation 
between predicted and true total composite (−0.34 [−0.53, 0.14]), 
crystallized composite (−0.40 [−0.45, 0.01]), PVT (0.31 [−0.45, 
0.02]), and ORR (−0.38 [−0.49, 0.04]) scores.

Comparing performance trends for best and default 
settings

When absolute scores were used, the following default param-
eter combinations and resulted in better predictive performance 
(larger correlation coefficients): total (0.32 [0.02, 0.42]), fluid (0.43 
[0.11, 0.52]), LSWM (0.31 [0.04, 0.42]), PCPS (0.37 [0.05, 0.47]), PSM 
(0.37 [0.05, 0.48]). In contrast, crystallized (−0.18 [−0.41, 0.10]), PVT 
(−0.21 [−0.41, 0.08]), Flanker ICA (0.26 [−0.04, 0.38]), DCCS (0.27 
[−0.004, 0.378]), and ORR (−0.09 [−0.36, 0.11]) tests resulted in 
poor model performance (small correlation coefficients). Using a 
modified percentile bootstrap method to compare Pearson’s cor-
relations across all models, we only found a difference between 
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Figure 1. Patient performance on the NIH Toolbox Cognition Battery. Box plot of 

the absolute scores (N = 161) for each subtest and composite cognitive measures. 

The box signifies the upper and lower quartiles. The median is represented by 

a short black line within the box for each cognitive measure, while the mean 

is represented by a dashed line within each box. Standard deviation is repre-

sented by the dashed diamond and outliers are depicted by black dots. Greater 

variability in performance was seen for the fluid subtests (second to sixth 

boxes). Patients completed the cognitive assessment between 2 and 40 days fol-

lowing their polysomnography visit. DCCS, Dimensional Change Card Sort; ICA, 

Inhibitory Control & Attention; LSWM, List Sorting Working Memory; ORR, Oral 

Reading Recognition; PCPS, Pattern Comparison Processing Speed; PSM, Picture 

Sequence Memory; PVT, Picture Vocabulary Test.
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Figure 2. Performance on each subtest and composite measure on the NIH Toolbox Cognition Battery by age. Scatter plots of the absolute scores (N = 161) for each subtest 

and composite cognitive measures. Crystallized scores showed poor positive correlations with age, which appears to be driven by the PVT subtest. Fluid scores showed 

moderate to strong negative correlations with age. DCCS, Dimensional Change Card Sort; ICA, Inhibitory Control & Attention; LSWM, List Sorting Working Memory; ORR, Oral 

Reading Recognition; PCPS, Pattern Comparison Processing Speed; PSM, Picture Sequence Memory; PVT, Picture Vocabulary Test.

Table 2. Top performing model predicting total and fluid composite and subtest scores on the NIH Toolbox Cognition Battery

Test cycles fc (Hz) q th min (s) max (s) merge (s) 

FFT (Hz) Duration (s) Density (spm) Amplitude (uV) Pearson’s r

Value 95% CI Value 95% CI Value 95% CI Value 95% CI Value 95% CI 

Total Comp. 7 14 0.7 6 0.4 3.5 1 −2.40 [−4.26,−0.61] 2.63 [0.27, 4.56] 3.06 [1.14, 5.18] 1.05 [0.21, 2.49] 0.41 [0.07, 0.50]

Fluid Comp. 6 15.5 0.3 5.5 0.4 2.6 0.7 −6.48 [−9.30, −3.72] 0.49 [−2.41, 3.46] 4.30 [1.88, 6.93] 1.60 [0.13, 3.73] 0.50 [0.18, 0.60]

Fluid Comp.* 5 15 0 5 0.4 3.9 0.7 −5.08 [−7.42, −2.57] −2.51 [−4.98, 0.29] 7.15 [4.67, 9.57] 2.31 [−0.05, 4.64] 0.50 [0.20,0.59]

PSM 7 16 0.6 3.5 0.9 3.1 0.8 −7.19 [−10.00, −4.76] 2.67 [0.54, 4.21] 2.13 [−0.52, 4.29] 1.79 [0.65, 3.31] 0.46 [0.11, 0.56]

DCCS 5 15.5 0 4.5 0.4 3.9 0.7 −4.13 [−6.00, −2.12] −2.90 [−4.94, −0.32] 3.29 [1.52, 5.01] 2.28 [−0.85, 4.11] 0.45 [0.12, 0.57]

PCPS 5 15.5 0 4.5 0.4 3.9 0.7 −6.86 [−10.17, −3.18] −5.54 [−9.00, −1.84] 7.42 [4.06, 10.49] 4.25 [1.07, 7.46] 0.47 [0.15, 0.57]

Flanker ICA 12 12.5 0 5 0.2 2.6 0.5 2.02 [0.93, 3.02] 0.19 [−1.03, 1.52] 3.21 [1.80, 4.59] 0.55 [−0.16, 1.14] 0.36 [0.15, 0.42]

LSWM 11 13 0.7 2.5 0.3 2.9 1 −0.46 [−2.25, 1.24] 4.55 [1.88,7.11] 1.36 [−1.21, 3.82] 0.25 [−1.58, 1.63] 0.37 [0.11, 0.46]

Linear multiple regression was used to predict cognition from 4 sleep spindle features: amplitude, density, duration, and FFT (mean spindle frequency). Pearson’s correlation was then performed to 

compare measured cognitive scores with cognitive scores predicted by the optimized regression model. Sleep spindle features were generated using Luna.

comp, composite; fc, central frequency; DCCS, Dimensional Change Card Sort; ICA, Inhibitory Control & Attention; L, Lower; LSWM, List Sorting Working Memory; q, quality metric; PCPS, Pattern 

Comparison Processing Speed; PSM, Picture Sequence Memory; th, threshold; U, Upper.

*Top performing model from the final Luna run, which showed slight improvement in model performance.
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the best performing and default parameter models for crystal-
lized cognition and PVT scores: total (−0.09 [−0.6, 0.05]), fluid 
(−0.08 [−0.35, 0.21]), crystallized (−0.37 [−0.56, −0.06]), PVT (−0.43 
[−0.60, −0.01]), Flanker ICA (−0.10 [−0.37, 0.09]), LSWM (−0.06 

[−0.33, 0.20]), DCCS (−0.18 [−0.45, 0.13]), PCPS (−0.09 [−0.40, 0.19]), 
PSM (−0.09 [−0.39, 0.23]), and ORR (−0.28 [−0.56, 0.11]).

When age-adjusted scores were used, all default param-
eter combinations showed weak performance (small correlation 
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Figure 4. t-distributed stochastic neighbor embedding (t-SNE) visualization shows discrete boundaries between poor model performance and good performance 

defined by Pearson correlation values. t-SNE map topographies were generated using (A) parameter combinations, (B) parameters combinations with regression coef-

ficients for the four spindle features, and (C) spindle features. The color bar represents Pearson r values. Hyperparameters were varied until a good visualization was 

obtained. Perplexity was set to 30.
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Figure 3. Sleep spindles moderately predict fluid cognition and poorly predict crystallized cognition. Scatter plots of the absolute scores (N = 161) and predicted scores for each 

subtest and composite cognitive measures on the NIH Toolbox Cognition Battery. True cognitive scores are compared with cognitive scores predicted by the optimized regres-

sion model for each cognitive test and measure. Sleep spindle features were generated using Luna. DCCS, Dimensional Change Card Sort; ICA, Inhibitory Control & Attention; 

LSWM, List Sorting Working Memory; ORR, Oral Reading Recognition; PCPS, Pattern Comparison Processing Speed; PSM, Picture Sequence Memory; PVT, Picture Vocabulary Test.
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coefficients): total (0.15 [−0.16, 0.27]), fluid (0.23 [−0.09, 0.34]), crys-
tallized (−0.06 [−0.37, 0.16]), PVT (−0.095 [−0.38, 0.14]), Flanker ICA 
(0.05 [−0.23, 0.20]), LSWM (0.10 [−0.19, 0.23]), DCCS (0.03 [−0.28, 0.20]), 
PCPS (0.27 [−0.06, 0.38]), PSM (0.22 [−0.10, 0.34]), and ORR (−0.08 
[−0.35, 0.13]). Using a modified percentile bootstrap method to com-
pare Pearson’s correlations across all models, we found no differ-
ence between the best performing and default parameter models: 
total (−0.12 [−0.43, 0.23]), fluid (−0.10 [−0.41, 0.24]), crystallized (−0.26 
[−0.54, 0.19]), PVT (−0.28 [−0.59, 0.14]), Flanker ICA (−0.13 [−0.44, 0.21]), 

LSWM (−0.15 [−0.43, 0.14]), DCCS (−0.19 [−0.50, 0.16]), PCPS (−0.10 
[−0.43, 0.21]), PSM (−0.10 [−0.42, 0.23]), and ORR (−0.27 [−0.55, 0.15]).

Performance trends in patients with cognitive 
impairment

To evaluate our results in cognitively impaired patients, we com-
pared the association between cognitive impairment status and 
spindle features generated from the best and worst performing 

Figure 5. Model performance, defined by Pearson’s r, for the different parameter combinations by central frequency (fc) and cycles. (A) Scatter plot of all parameter 

combinations with single fc value (N = 1495) shows that predicting cognition improves with higher central frequencies. (B) Scatter plot for slow spindle models (N = 610) 

shows that model performance peaks for slow spindles when the cycles parameter is set to 12 and central frequency (fc) is 12.5 Hz. Threshold > 4.5 and minimum 

spindle duration<0.5 s. (C). Scatter plot for fast spindle models (N = 818) shows good performance over 14 Hz that peaks when central frequency (fc) is 15–15.5 Hz and 

the cycles parameter is set to 5. Opaque circles represent threshold > 4.5 and minimum spindle duration < 0.5 s and cycles of 12 for (B) and 5 for (C).
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models across our original, non-dementia dataset and a dataset of 
215 dementia and 308 MCI patients. Distributions of spindle fea-
tures are shown in Figure 7. A Cuzick test for trend showed sig-
nificant trends for all spindle features when the best performing 
parameter combination was selected (density: p  <  2.2e-16; 

duration: p = .03; frequency: p = 8.5e-11; amplitude: p = 3.8e-08). For 
the worst performing combination, significant trends were found 
for spindle density and amplitude (density: p = 6.7e-06; duration: 
p  =  0.30; frequency: p  =  0.54; amplitude: p  =  5.9e-07), although 
density values were close to 0 for all groups (Figure 7). Performance 

Figure 6. Spindle feature by age for the top 5 regression models by central frequency (fc). In older patients, fast spindles had a slightly higher frequency relative to 

younger patients, despite the decreased spindle density, and poor performance on fluid cognitive tests was linked with higher fast spindle FFT averages. The color bar 

represents absolute scores for fluid cognition from the NIH Toolbox Cognition Battery. Each data point represents one patient. AMP, Amplitude; FFT, Frequency; DENS, 

Density; DUR, Duration.

Table 3. Luna parameters, spindle features (mean +/− SD), and Pearson correlation values (p < .001) for the top linear multiple regression 
models predictive of fluid cognition for each central frequency (fc) value

cycles fc (Hz) q th Min (s) Max (s) Merge (s) 

FFT (Hz) Duration (s)
Density 
(spm)

Amplitude 
(uV)

Pearson’s r 95% CI Mean SD Mean SD Mean SD Mean SD 

10 9 0.8 3.5 0.3 2.4 1 9.19 0.22  0.83 0.12 0.06 0.03 32.70 29.91 0.21 [−0.07, 0.32]
12 9.5 −0.4 2 0.3 2.3 0.3 9.42 0.13 0.66 0.05 6.03 0.93 29.93 42.64 0.38 [0.05, 0.48]

6 10 0 2 0.3 2.8 0.6 10.02 0.33 0.66 0.08 2.34 0.45 32.29 45.97 0.36 [0.05, 0.45]
5 10.5 0.6 5 0.6 3 0.9 10.82 0.48 0.89 0.12 0.12 0.10 42.62 55.87 0.34 [0.05, 0.45]
7 11 1 3 0.7 3.9 0.4 11.31 0.42 0.96 0.12 0.08 0.07 32.76 8.56 0.42 [0.24, 0.51]
5 11.5 1 2 0.5 3.1 0.3 11.88 0.55 0.74 0.08 0.21 0.18 30.15 8.72 0.46 [0.25, 0.56]

10 12 1 4.5 0.3 3.1 0.8 12.07 0.31 0.79 0.10 0.25 0.18 30.81 8.27 0.46 [0.27, 0.56]
12 12.5 0 5 0.2 2.6 0.5 12.52 0.21 0.87 0.09 1.77 0.66 34.04 46.15 0.49 [0.30, 0.55]

9 13 −0.4 6 0.2 3 0.3 12.95 0.22 0.84 0.11 1.33 0.61 36.60 44.88 0.47 [0.16, 0.56]
6 13.5 0.8 2.5 0.2 2.4 0.4 13.31 0.35 0.68 0.10 0.88 0.48 33.47 68.80 0.46 [0.11, 0.54]
9 14 −0.2 6 0.4 3.9 0.2 13.72 0.27 0.82 0.10 1.30 0.64 34.80 47.25 0.49 [0.16, 0.57]
7 14.5 0 5 0.2 3.9 0.7 13.91 0.34 0.76 0.10 1.25 0.71 33.36 53.52 0.49 [0.17, 0.58]
5 15 0 5 0.4 3.9 0.7 13.98 0.42 0.74 0.10 0.83 0.61 32.30 52.45 0.50 [0.20,0.59]
6 15.5 0.3 5 0.4 2.6 0.7 14.32 0.43 0.74 0.09 0.60 0.49 30.79 54.78 0.50 [0.18, 0.60]
5 16 0.4 5 0.2 2.7 0.5 14.47 0.44 0.71 0.09 0.53 0.46 27.42 57.20 0.50 [0.18, 0.58]

fc, central frequency; th, threshold; q, quality metric.
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for the 1000 randomly selected parameter combinations from the 
preliminary stage, along with the best, default and worst combin-
ation parameters are listed in Supplementary Table S4.

External validation

External validation of our results was performed using 476 par-
ticipant data from SHHS/FHS. When the best performing par-
ameter combination was selected, spindle features showed a 
significantly better ability to predict the WMS score compared to 
the worst performing combination (best: 0.27 [0.09, 0.38]; worst: 
−0.05 [−0.33, 0.13]) and similar performance with the default 
settings (0.23 [0.01, 0.35]). Performance for the 1000 randomly 
selected parameter combinations from the preliminary stage, 
along with the best, default and worst combination parameters 
is shown in in Supplementary Figure S7.

Discussion
Our key finding is that the strength of associations between cog-
nition and sleep spindle features depends on the spindle de-
tection parameters used and type of cognition being measured. 
Specifically, spindle features variably predict fluid cognition de-
pending on spindle detection parameter values and poorly pre-
dict crystallized cognition regardless of the parameters chosen. 
The total cognition model resulted in a weaker association, which 
became nonsignificant when age-adjusted scores were used. 
Model performance for fluid composite and subtests was further 
influenced by spindle type (fast vs. slow). Fast spindle features 
generally showed better performance for predicting fluid cogni-
tion. Of the five fluid cognition subtests, only working memory 
showed preference for slow spindle features, with 59% of its sig-
nificant models originating from slow spindle features. When 
age-adjusted scores were used, the performance gap between 
fast and slow spindle features widened, as 78% of fluid models 
were characterized by fast spindle features compared to 60% 

when absolute scores were used. Finally, interactions between 
parameters were noted for slow and fast spindle types. Overall, 
our findings provide evidence that parameter settings for auto-
mated spindle detection influence how well fluid cognition can 
be predicted and highlight the importance of considering param-
eter interactions when using automated spindle detectors.

Performance trends for best and default detector 
settings

When absolute scores were predicted, we found no significant 
difference between the best (0.503) and default (r = 0.427) par-
ameter combinations at our sample size. Models predicting age-
adjusted scores showed somewhat lower performance for all 
cognitive tests when default parameter settings were selected, 
and thus the variation in cognition explained by spindle features 
after accounting for age was smaller when default parameters 
are used, although the difference found was not statistically 
significant (modified bootstrap method) at our sample size. The 
purpose of predicting absolute versus age-adjusted scores are 
different, where the former assesses the association between 
sleep spindles and cognition, while the latter attempts to as-
sess the independent contribution of spindle characteristics to 
cognition. Overall, we find that changing parameter settings can 
lead to variability in observed associations, with both higher 
and lower performance, although default parameters are gener-
ally representative of the overall associations.

Crystallized versus fluid cognition

When using optimized parameters to maximize correl-
ation coefficients, the automated spindle detector extracted 
spindle features that moderately predicted (r  =  0.503) fluid 
intelligence. Fluid intelligence relies on the capacity to use 
logic or abstract thinking to identify patterns and solve 
problems independently from accumulated knowledge. In 
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contrast, spindle features failed to accurately predict crys-
tallized intelligence, which measures acquired knowledge 
and skills through experience and education. Although the 
best crystallized cognition model showed a moderate nega-
tive correlation between predicted and true scores, the as-
sociation was not significant. To note, fluid and crystallized 
intelligence are strongly correlated and reflect higher-order 
general cognitive ability. Although these two constructs are 
interrelated, they are commonly evaluated and reported 
separately for research and treatment purposes [46] and are 
thought to be differentially influenced by different aspects 
of brain health [47].

Our findings of fluid model performance agree with previous 
reports that show significant correlations between spindle fea-
tures and fluid cognition [48, 49]. Using multimodal imaging (EEG 
and functional magnetic resonance imaging [fMRI]), one study 
observed associations between fluid cognition and specific brain 
region activations that were time-locked to spindle events [48]. 
Spindle amplitude was found to significantly correlate with three 
fluid cognition measures: deductive reasoning (r = 0.516), spatial 
planning (r = 0.444), and polygons (r = 0.445) subtests. Evidence 
for an association with spindle amplitude and general cognitive 
ability was also found in a meta-analysis [50]. Although one large 
study found no association between spindle features and general 
cognitive ability in a birth cohort of adolescents [51], this differ-
ence is attributable to small sample size, as meta-analysis found 
a correlation value of r ~ 0.2 using the same birth cohort [50]. For 
example, one study found an association between spectral power, 
maximal amplitude, duration, and frequency and cognitive im-
pairment and specifically noted that spindle amplitude was as-
sociated with general cognitive ability, while spindle frequency 
was inversely related to executive function in patients with sub-
jective cognitive complaints and MCI [52]. Because fluid cognition 
declines at earlier stages of Alzheimer’s Disease (AD), and crys-
tallized cognition is hypothesized to compensate for age-related 
declines in fluid cognition by increasing with age [53], a large 
crystallized > fluid cognition discrepancy may serve as sensitive 
marker for early AD pathological changes. These observations 
point to distinct neural circuitries underlying these two intelli-
gence domains. Given the apparent greater fragility of fluid cogni-
tive networks and its relation to early AD vulnerability, it supports 
the idea that spindles are a biomarker of fluid cognition and are 
less suited to measure crystallized knowledge.

Fluid cognition and spindle frequency

Of the fluid cognition models with equivalent performance, 
360 (60%) were characterized by fast spindle activity (FFT 
average>13Hz). Similarly, models for each fluid subtest generally 
favored fast spindle activity. This observation was most clear 
for the DCCS (measures cognitive flexibility), where 76% of the 
best performing models originated from fast spindle features. 
Additionally, models for the Flanker ICA, PCPS, and PSM (meas-
ures visual episodic memory) tests consisted of 55%, 57%, and 
68% fast spindle models, respectively. The LSWM test was the 
only subtest that showed preference for both slow models, with 
59% of its top models corresponding to slow spindle activity. 
Notably, when age-adjusted scores were used for analysis, 100% 
of the best performing models originated from fast spindle fea-
tures for the DCCS test. Similarly, 98% of PCPS models and 92% 
of PSM models originated from fast spindle features. In contrast 

the Flanker ICA and LSWM age-adjusted scores were poorly pre-
dicted by all models, although the latter showed a trend for sig-
nificance when slow spindles were used.

Our finding that most fluid composite and subtest models 
showed better performance with fast spindle activity aligns 
with extensive literature supporting the selective association 
of fast spindles with cognitive functions characteristic of fluid 
intelligence [54-57]. For instance, one fMRI study assessed 
memory consolidation and found that fast sleep spindles se-
lectively exhibited strong interaction with functional connect-
ivity between the hippocampus and areas of the neocortex 
[55]. Other studies have linked episodic memory [56, 57], verbal 
learning [58], motor [59] and declarative [57] memory consoli-
dation, and visuospatial reasoning ability [60] specifically to 
fast spindle activity.

Our findings are also in keeping with evidence that fast spin-
dles are significantly reduced in AD [10] and MCI [10, 12] relative 
to healthy controls. The preferential role of fast spindles has also 
been shown in aging-related sleep microstructural changes [9] 
and with cognitive decline in AD and MCI [11]. In one study, the 
largest age-related sleep changes were decreases in delta power in 
N3, K-complex density, and fast spindle density. Notably, the effect 
size of age on fast spindle density was the largest across features, 
while no effects of age were seen on slow spindle density [9].

Although working memory was the only fluid subdomain that 
was predicted better by slow spindle features, this inconsistency 
might reflect distinct neural circuitries underlying the different 
spindle types. Although fast and slow spindles both overlap in 
their thalamic origin, fast spindle activity exclusively involves 
memory-related cortical regions, such as the hippocampus, while 
slow spindle activity involves the superior frontal gyrus [61], an 
area that has shown significant contribution to cognitive tasks 
like working memory [62]. Taken together, it appears that fast 
spindles influence all fluid intelligence-related tasks while slow 
spindles influence a limited number of these tasks.

Parameter interactions

Using a dimensionality reduction method, t-SNE [36, 37], we ob-
served that parameter combinations alone were sufficient to 
visually separate models that resulted in small correlation coef-
ficients from those that performed better and resulted in larger 
correlation coefficients. To assess the physiological basis for this 
clustering pattern we then confirmed with t-SNE that the raw 
spindle features were also capable of distinguishing weak vs. ex-
cellent performance.

Once parameter interactions were globally confirmed using 
t-SNE, we inspected these relationships using parallel coordin-
ates [38]. Across both fast and slow spindle types, performance 
was optimized (correlation coefficients were maximized) when 
the threshold was greater than 4 and the minimum spindle 
duration was lower than 0.5 s. Slow spindles, however, showed 
consistently superior predictions for fluid intelligence when the 
central frequency was set to 12.5 Hz and cycles to 12, while fast 
spindles showed superior model performance when the cen-
tral frequency was 15–15.5Hz and cycles was 5.  Generally, the 
higher the central frequency, the worse it performed at higher 
cycles. Because the cycles parameter favors temporal resolution 
at lower values and frequency resolution at higher values, this 
observation may be attributed to shorter durations of faster 
spindles (Supplementary Figure S6). This distinction can lead 
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to confusion, when comparing fast spindle model performance. 
Fast spindles detected with a central frequency of 15–15.5Hz 
and cycles of 5 had an average measured frequency (FFT) of 14 
Hz (pink and orange markers on Figure 5C). Ultimately, these 
settings detected spindles that had an average frequency of 14 
Hz. When the central frequency was set to 14 Hz and the cycles 
was set to 12 (favoring frequency resolution) or 14.5 Hz and a 
lower cycles value, the detected spindles also had an average 
frequency of approximately 14 Hz yet showed inferior model 
performance (blue and purple markers on Figure 5C). Thus, even 
though these settings all detected spindles with a frequency of 
14 Hz, model performance differed. This discrepancy may sug-
gest a subset of spindles with a 14 Hz frequency with shorter 
durations that are important for fluid intelligence or could re-
flect a limitation of the spindle detector algorithm.

External validation

Using an internal validation dataset of patients with MCI and 
dementia, we found significant and strong trends between cog-
nitive impairment status and each spindle feature when the best 
parameter combination was selected. Similarly, the best param-
eter combination showed superior performance in the external 
validation SHHS/FHS dataset, although overall performance was 
reduced compared to our MGH dataset. This reduction can be 
attributed to the different neuropsychological batteries used 
across the two datasets and the larger gap between cognitive 
testing and PSG date for SHHS/FHS (≤1095  days) compared to 
MGH (≤40 days).

Limitations

Our analysis was limited to central EEG derivations, which 
may be important given development of wearable EEG acqui-
sition systems which focus on frontal or even occipital deriv-
ations. Because slow spindles are mostly attributed to frontal 
regions, model performance may have favored fast spindle fea-
tures. However, one previous study found that spindle density 
at central derivations were generally highly predictive of global 
spindle density for both fast and slow types, suggesting that cen-
tral derivations should efficiently capture within-channel vari-
ance in slow spindles at other locations [29]. Our analysis was 
also restricted to a single spindle detector; thus, findings do not 
directly generalize directly to other spindle detection methods. 
A recent paper compared the performance of seven spindle de-
tection algorithms, although evaluation was restricted to de-
fault parameter settings [20].

Other limitations of this study include sample bias, as the 
patients were recruited from a single center, low racial/ethnic 
(76% White) and socioeconomic diversity, and variation in the 
number of days between PSG visit and cognitive assessment. 
Finally, our optimal parameters are specific for the NIH Toolbox 
cognition battery and may not translate to other measures of 
cognition.

Conclusion
In summary, when using automated spindle detectors with 
the intention of examining brain health, parameter settings 
and interactions should be taken into consideration as they 

moderate the detected spindle features and their physiological 
implications. By setting cognitive measures as the gold standard 
when tuning spindle detection parameters, spindle features 
showed significant association with the ability to predict ab-
solute fluid cognition scores (r  =  0.503). Our analysis further 
identifies two parameters of space that show weak vs mod-
erate predictive performance. Fast spindle features also showed 
better performance relative to slow spindle features, although 
future studies are needed to evaluate the functional difference 
between these spindle types.

Supplementary Material
Supplementary material is available at SLEEP online.
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