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ABSTRACT

Sodium-glucose cotransporter-2 (SGLT2) inhibitors have emerged as powerful drugs that can 
be used to treat heart failure (HF) patients, both with preserved and reduced ejection fraction 
and in the presence or absence of type 2 diabetes. While the mechanisms underlying the 
salutary effects of SGLT2 inhibitors have not been fully elucidated, there is clear evidence for 
a beneficial metabolic effect of these drugs. In this review, we discuss the effects of SGLT2 
inhibitors on cardiac energy provision secondary to ketone bodies, pathological ventricular 
remodeling, and inflammation in patients with HF. While the specific contribution of 
ketone bodies to the pleiotropic cardiovascular benefits of SGLT2 inhibitors requires further 
clarification, ketone bodies themselves may also be used as a therapy for HF.

Keywords: Sodium-glucose transporter 2 inhibitors; Ketone bodies; Heart failure; 
Inflammation; Ventricular remodeling

INTRODUCTION

Heart failure (HF) is a devastating condition that affects 40 million people worldwide. The 
prevalence of HF is reaching epidemic proportions, at least partially explained by the global 
burden of cardiovascular risk factors and population aging.1-5 In the past decades, advances 
in medical and device-based therapy have considerably improved outcomes for HF patients.6 
Nevertheless, the mortality rates continue to be very high.7 For instance, a recent meta-
analysis demonstrated that the 10-year survival rate of HF is only 34.9%, irrespective of the 
cause of HF.8

Pharmacotherapy remains the cornerstone of HF treatment, and several powerful new 
therapeutic opportunities have recently emerged,9 such as angiotensin-neprilysin receptor 
inhibitors (ARNi),10 sodium-glucose cotransporter-2 (SGLT2) inhibitors, omecamtiv mecarbil 
(INN),11 and vericiguat.12 Of these, SGLT2 inhibitors have arguably provided the most 
impressive and consistent benefits across the HF spectrum, coupled with an exceptional 
safety profile.13 This feature is all the more remarkable because SGLT2 inhibitors were initially 
designed as antidiabetic drugs, and recent antidiabetic drugs have paradoxically increased 
the incidence of cardiovascular events.14,15
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Despite taking the HF world by storm, the mechanism responsible for the beneficial effects 
on HF outcomes is not fully understood and is often debated. Multiple mechanisms have 
been proposed,16-18 including metabolic, diuretic, and pleiotropic off-target effects.19,20 The 
current review will discuss a prevailing theory in which SGLT2 inhibitors provide the failing 
heart with an additional energy source, secondary to an increase in circulating ketone 
bodies.16,21,22

SGLT2 INHIBITORS

The first SGLT inhibitor was isolated from the bark of apple trees, evoking the aphorism “an 
apple a day keeps the doctor away”.23,24 Nevertheless, the connection between the benefit 
of SGLT2 inhibitors and HF is a serendipitous story.23,24 SGLT2 inhibitors were designed as 
antidiabetic drugs because they block glucose reabsorption in the proximal renal tubules, 
resulting in renal excretion of glucose; promoting glycosuria, they cause a mild insulin-
independent reduction in serum glucose levels.25

Phlorizin, the first-discovered unselective SGLT1/SGLT2 inhibitor, was discovered in 1835 
and was used to treat malaria, nephritis, and sarcoma. It was also noted that phlorizin 
promoted glucosuria and decreased plasma glucose levels.26,27 However, high doses were 
required to achieve glucosuria, often offset by severe diarrhea.28 More recently, the stability, 
specificity, and selectivity of SGLT2 inhibitors have been considerably improved, resulting 
in modern SGLT2 inhibitors with favorable safety characteristics such as dapagliflozin,29 
canagliflozin,30 ertugliflozin,31 sotaglifozin,32 and empagliflozin.33 The main differences lie in 
their selectivity. For example, while canagliflozin is 250-fold more selective for SGLT2 than 
SGLT1, empagliflozin is the most selective, exceeding 2,500-fold.33,34

These compounds are all registered antidiabetic agents that were approved by the United 
States Food and Drug Administration (FDA) to manage type 2 diabetes mellitus (T2DM) in 
2008 and by the European Medicines Agency (EMA) in 2012.28,35

CARDIOVASCULAR EFFECTS OF SGLT2 INHIBITORS

Following the discovery that dipeptidyl peptidase-4 increases ischemic cardiovascular 
risk,14 the monitoring of HF outcomes is currently mandatory in the USA during the clinical 
development of new antidiabetic therapies. Surprisingly, the safety analysis of the EMPA-REG 
OUTCOME trial published in 2015 demonstrated that empagliflozin resulted in a significant 
reduction in HF hospitalizations.36 Furthermore, a similar reduction in HF hospitalizations 
in patients with T2DM was observed with canagliflozin30 and dapagliflozin in the DECLARE-
TIMI 58 trial,37 suggesting a class effect.35

A possible beneficial effect of these drugs in patients with HF was quickly hypothesized. 
Subsequently, this benefit in cardiovascular events was confirmed in HF patients with 
or without diabetes through clinical trials, such as DAPA-HF,38,39 EMPEROR-Reduced,40 
EMPEROR-Preserved,41 and SOLOIST-WHF.32 More recently, systematic reviews with meta-
analyses revealed that the beneficial effects of SGLT2 inhibitors in HF are comparable in 
patients with and without diabetes (hazard ratio [HR], 0.77; 95% confidence interval [CI], 
0.71–0.83 and HR, 0.75; 95% CI, 0.65–0.87, respectively).42
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Within a decade since the first clinical trial in diabetes, SGLT2 inhibitors are now 
recommended as the first-line therapy for patients with HF with reduced ejection fraction 
(HFrEF).6 Furthermore, SGLT2 inhibitors have been shown to reduce HF hospitalization and 
mortality in patients with HF with preserved ejection fraction (HFpEF).41

KETOGENESIS

Ketogenesis is a metabolic pathway that generates ketone bodies, predominantly 
in the liver.43 First, free fatty acids (FFA) are converted to acetyl-coenzyme A (CoA) 
via mitochondrial β-oxidation. Acetyl-CoA is condensed with acetoacetyl-CoA via 
3-methylglutaryl-CoA synthase 2 (HMGCS2) to generate 3-hydroxy 3-methylglutaryl-CoA 
(HMGC), and later converted by HMGC lyase to acetoacetate (AcAc). AcAc is then reduced 
by D-b-hydroxybutyrate dehydrogenase (BDH1) to generate 3-hydroxybutyrate (β-OHB), 
which is released into the circulation by the solute carrier 16A family on hepatocytes.44-47 
β-OHB consequently enters the myocyte mitochondria via monocarboxylic acid transporter 
1/2 (MCT1/2)46,47 and is converted back to AcAc by BDH1,48 subsequently transformed into 
acetoacetyl-CoA by succinyl-CoA, 3-ketoacid-CoA transferase/3-oxoacid CoA-transferase 1 
(SCOT/OXCT1), and finally by conversion of mitochondrial acetoacetyl-CoA thiolase into two 
acetyl-CoA molecules that enter the tricarboxylic acid (TCA) cycle to produce ATP (Fig. 1).49

REGULATION OF KETOGENESIS

Ketone bodies are considered evolutionarily conserved fuels for cellular metabolism designed 
to provide energy during periods of nutritional stress, such as starvation.49,50 Ketone bodies are 
mainly generated in the liver,48,51 with minor if any production of ketone bodies in the kidney 
and the retinal pigment epithelium.49,52-54 Ketogenesis is sensitive to multiple hormonal stimuli 
released during physiological and pathological stress conditions, the most important of which 
is insulin. In the presence of insulin,49,55 lipolysis is reduced, and the ketogenetic flux in the 
liver is diminished.56 Conversely, catecholamines (norepinephrine and epinephrine) stimulate 
lipolysis and, subsequently, ketogenesis.57 Natriuretic peptides (NPs) also stimulate lipolysis.58-61 
Type B natriuretic peptide (BNP), a central peptide in the diagnosis and treatment of HF, has 
been shown to correlate with circulating total ketone body levels.62 This suggests that BNP 
is secreted from the heart under stress to promote lipolysis and ketogenesis and provide an 
endogenous fuel surge during hemodynamic stress.58

Atrial natriuretic peptide (ANP) activates hormone-sensitive lipase (HSL) in adipocytes; as 
a result, it increases lipolysis and mobilizes FFA from adipose tissue deposits to the liver.59,63 
ANP is now increasingly recognized as a metabolic hormone that controls lipid metabolism 
and energy expenditure.61 However, whether its lipolytic effects also translate into a ketogenic 
effect has not been well described.

The myocardium is the largest consumer of ketone bodies per unit mass44,64,65 and 
follows a pattern of circadian oscillations.66 In overnight-fasted adults, total ketone body 
concentrations are approximately 0.1–0.4 mM64 and tend to increase 1–8 mM during 
prolonged fasting, extreme physical activity, and insulin deprivation.65-69 Ketosis is defined 
as a β-OHB concentration above 0.5 mM.18,51 Chu et al.70 recently proposed that the ideal 
therapeutic β-OHB concentration is 1–3 mM, which may be achieved with treatment with 
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SGLT2 inhibitors. However, the available clinical evidence suggests that the ketogenic effects 
of SGLT2 inhibitors are less pronounced.71

THE PHYSIOLOGICAL ROLE OF KETONE BODIES IN THE 
HEART
The heart requires tremendous amounts of ATP, for which it primarily depends on the 
oxidation of fatty acids (60%–90%), followed by glucose at 10%–30%. Finally, ketone bodies 
contribute up to 5% of total ATP under normal conditions.20,72,73 The most abundant systemic 
ketone body is β-OHB. The amount of cardiac ketone body oxidation is strongly correlated 
with its circulating concentrations, and a dramatic spare capacity for ketone body oxidation 
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Fig. 1. Energy production through SGLT2 inhibitors and ketone bodies. 
By reducing plasma glucose levels due to increased insulin sensitivity and enhanced gluconeogenesis, the mobilization of deposits of FFA to the liver increases 
secondary to HSL stimulation. In the liver, FFA are oxidized, generating acetyl-CoA. Two acetyl-CoA derived from FFA are used to produce acetoacetyl-CoA by 
a thiolase reaction; another acetyl-CoA is condensed into acetoacetyl-CoA by HMGCS2 (this synthase is inhibited by insulin and stimulated by glucagon). After 
HMGC, it is lysed by HMGCL, generating AcAc, which is oxidized by BDH1 to generate β-OHB. The latter two substances are probably released into circulation 
through SCL16. Myocytes take up ketone bodies through MCT. β-OHB is converted to AcAc again to be metabolized to acetoacetyl-CoA by SCOT; subsequently, 
through ACAT, acetyl-CoA is generated to enter the TCA cycle and produce ATP. The image was created with BioRender.com. 
ACAT, acetoacetyl-CoA thiolase; AcAc, acetoacetate; ATP, adenosine triphosphate; BDH1, β-hydroxybutyrate dehydrogenase-1; CPT-I, carnitine 
palmitoyltransferase 1; ECT, electron transport chain; FA, fatty acid; FFA, free fatty acids; HMGCS2, 3-methylglutaryl-CoA synthase 2; HMGC, 3-hydroxy 
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CoA: 3-ketoacid coenzyme A transferase; TCA, tricarboxylic acid; TG, triglyceride; β-OHB, β-hydroxybutyrate; β-Oxid, β-oxidation.
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exists.48,72 Of note, when concentrations reach 2.0 mM in ex vivo perfused hearts, ketone 
bodies become the primary source of fuel.74

Ketone bodies in HF
In HF, ketone body concentrations are increased in the circulation of patients with acute 
and chronic HF, both with reduced and preserved ejection fraction75 and also in animal 
models.72,76,77 Furthermore, it has been postulated that the increase in ketone body production 
reflects an autonomous response to cardiac stress in HF that is mediated by NPs and other 
neurohormones.58

A myocardial energy deficit has been well described in patients with HF, and it is attributed to 
a progressive diminution of FFA and glucose oxidation, the “energy-starved heart” theory.78 
ATP production in advanced HF is reduced by approximately 30%–40%,79 associated with 
losses of high-energy phosphates and creatine kinase activity that reduce the delivery of 
ATP to the myofibrils.80,81 In this context, the HF-induced increase in ketone body levels is 
considered to be adaptive for several reasons82-85: 1) ketone body oxidation does not influence 
the oxidation rates of fatty acids (FA) or glucose; thus, ketone bodies provide an additional 
source fuel72,84,86,87; 2) because the failing heart is considered to be oxygen-deprived and 
ketone bodies are more oxygen-efficient than FA, multiple authors have referred to ketones 
as super-fuels, although their oxygen efficiency is lower than glucose48; and 3) there is a 
linear relationship between circulating ketone body concentrations and extraction by the 
heart muscle,20,22,85,88 suggesting that there is an impressive spare capacity for ketone body 
oxidation that can be used to refuel the failing heart.20

The increase in ketone body oxidation is accompanied by a parallel increase in the cardiac 
expression of the ketolytic enzymes BDH1 and SCOT.48,49 Furthermore, in models with cardio-
specific deletion of BDH1 and SCOT, the severity of HF increases.76,89 In contrast, transgenic 
animal models with BDH1 overexpression and increased afterload revealed increased ketone 
oxidation, decreased oxidative stress, and consequent protection against adverse cardiac 
remodeling.77

Mechanism of ketogenesis by SGLT2 inhibitors
The mechanism by which SGLT2 inhibitors increase ketone body concentrations is not 
entirely understood.25,87 By decreasing plasma glucose levels90 secondary to increased insulin 
sensitivity in muscle tissue and endothelium,91,92 glucagon levels increase (thereby decreasing 
the insulin/glucagon ratio), mobilizing fat deposits towards the liver through the stimulation 
of HSL.93,94 In the liver, FFA are oxidized to acetyl-CoA to generate energy.35,95,96 However, 
when gluconeogenesis increases and glucose levels are low, acetyl-CoA is redirected from the 
TCA cycle to produce ketone bodies (AcAc or β-OHB).95

This shift in fuel consumption from glucose to fat oxidation87,97 leads to a decreased insulin-
to-glucagon ratio, which enhances gluconeogenesis,90,95 promotes lipolysis,25,98-101 and 
facilitates ketogenesis (Fig. 2).

Ketone body levels with SGLT2 administration
Since improvements in cardiac energetic efficiency have been attributed to ketone bodies, 
they have been called a “super-fuel”48 and “thrifty substrate”.22 Thus, it is attractive to 
hypothesize that the increased bioavailability of ketones and the use of ketone bodies by the 
myocardium observed during SGLT2 inhibitor therapy102 could explain the cardiovascular 
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benefits observed in HFrEF and HFpEF in clinical trials (Table 1). However, it should be noted 
that experimental and clinical evidence comparing the ketogenic effects of different SGLT2 
inhibitors currently remains sparse.

In an animal HF model, Yurista et al.102 demonstrated an increase in β-OHB levels, associated 
with a significant increase in the expression of BDH1 and SCOT. Santos-Gallego et al.21 also 
showed increased levels of total ketone bodies in a non-diabetic HF animal model treated 
with empagliflozin. Moreover, using a non-selective SGLT1/SGLT2 inhibitor, it has been 
demonstrated that there is an increase in tubular reabsorption of ketone bodies, which 
contributes to the sustained increment in circulating ketone body levels.110-112

The possible mechanism behind the increase in circulating ketone body levels is that 
treatment with SGLT2 inhibitors produce a metabolic state that resembles the accelerated 
starvation response (a quicker shift from glucose to FFA oxidation).113 As a consequence 
of a reduction in glucose oxidation, the mobilization of FA from adipocytes increases and, 
consequently, the levels of β-OHB and acetoacetate rise significantly.25,95 With long-term 
SGLT2 inhibitor treatment, ketone body levels double; for β-OHB, the median percent 
increase is 78% compared to baseline,103 suggesting downstream effects of SGLT2 inhibitors 
on hepatic metabolism.114

In patients with T2DM, Ferrannini et al.87 Identified an increase in fasting β-OHB of up to 
0.56 mmol/L 4 weeks after starting treatment with empagliflozin. Furthermore, Al Jobori 
et al.90 demonstrated a significant increase in ketone body concentrations and a strong 
correlation between plasma FFA levels and plasma ketone concentrations in patients 
with T2DM. Moreover, it has been observed that in patients with a low-carbohydrate diet 
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with BioRender.com. 
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combined with SGLT2 inhibitors, the increase in ketone bodies is more pronounced than in 
those consuming high-carbohydrate diets.106 It should be noted that the association between 
SGLT2-induced ketonemia and the salutary effects observed are descriptive in nature. Future 
studies—for instance research employing cardiomyocyte-specific knockdown of the BDH1 
receptor—are required to define the exact contribution of ketones to the salutary effects of 
SGLT2 inhibitors.

Ketone bodies as a metabolic biomarker in heart failure
The increase of ketone body levels in HF suggests that they could serve as a prognostic 
metabolic biomarker. Moreover, a strong correlation has been found between the 
concentration of ketone bodies and that of BNP.62 Many methods are used to detect elevated 
ketone body levels, such as blood, urine, and exhaled acetone concentrations in the breath of 
HF patients.115-120

Yokokawa et al.119 found elevated exhaled acetone concentrations in patients with acute 
HF and observed a decrease in concentrations after treatment and clinical improvement. 
Furthermore, exhaled acetone concentrations have shown a good correlation with 
hemodynamic severity (pulmonary capillary wedge pressure ≥18 mmHg) in non-ischemic 
HF.120 A similar observation is a higher exhaled acetone concentration in stage C of HF than 
in early stages.121
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Table 1. Relationship of the use of SGLT2 inhibitors and ketone bodies in pre-clinical and clinical studies
Reference SGLT2 

inhibitor
Model HF Diabetes Ketone body measured Outcome

Al Jobori et al.90 EMPA Human No T2DM and  
non-diabetic

β-OHB (µmol/L) Significant increase in glucagon, FFA and β-OHB in 
T2DM vs. non-diabetic

Polidori et al.103 CANA Human No T2DM β-OHB and acetoacetate 
(µmol/L)

Increases in ketone bodies that were greater than 
other metabolic measures in patients with T2DM

Ferrannini et al.87 EMPA Human No T2DM and  
non-diabetic

β-OHB (µmol/L) Lower insulin to glucagon ratio favours ketogenesis. 
T2DM patients doubled fasting β-OHB levels

Daniele et al.97 DAPA Human No T2DM β-OHB and acetoacetate 
(µmol/L)

DAPA caused a shift from glucose to lipid oxidation 
and increased plasma ketone bodies concentration

Inagaki et al.104 CANA Human No T2DM Total ketone body (μmol/L) Canagliflozin is tolerated by patients irrespective 
of their BMI, and total ketone body ≥ 1,000 μmol/L 
tented to be highest in patients with BMI ≤ 22 kg/m2

Oldgren et al.105 DAPA Human No T2DM β-OHB (µmol/L) No differences in plasma levels of β-OHB between 
DAPA vs the placebo group. DAPA reduced heart 
work but limited effects on myocardial function

Yabe et al.106 LUSEO Human No T2DM Ketone bodies (μmol/L) Ketone bodies were significantly higher in the low 
carbohydrate and high glycaemic index diet

Verma et al.107 EMPA C57BL/ 
6J and db/ 

db mice

No Mouse surrogates 
for diabetes  

(db/db mice)

Total ketone body (μmol/L) EMPA treatment is associated with an increase 
in ATP production but did not increase cardiac 
efficiency

Yurista et al.102 EMPA Sprague-Dawley 
rats

Yes 
(MI)

Non-diabetic Total ketone body (μmol/L) EMPA increases circulating levels of total ketone 
body, increase ATP production and improves LVEF 
and cardiac remodelling

Santos-Gallego et al.21 EMPA Yorkshire pigs Yes 
(MI)

Non-diabetic Total ketone bodies 
myocardial uptake  

(ng/g/min)

EMPA switches myocardial fuel to ketone bodies, 
FFA and BCAA. It also ameliorates adverse cardiac 
remodelling and improves LV systolic function

Moellmann et al.108 EMPA Male db/ 
db mice

Yes 
(DD)

Mouse surrogates 
for diabetes  

(db/db mice)

β-OHB and acetoacetate 
(µmol/L)

EMPA improves diastolic function regardless of 
changes in cardiac ketone body metabolism

Connelly et al.109 EMPA Sprague-Dawley 
rats

Yes 
(DD)

Non-diabetic β-OHB (µmol/d) β-OHB does not differ in EMPA compared to the 
control group but improves LV mass and improves 
diastolic dysfunction

ATP, Adenosine triphosphate; BCAA, branched-chain amino acids; BMI, body mass index; CANA, canagliflozin; DAPA, dapagliflozin; DD, diastolic dysfunction; 
EMPA, empagliflozin; FFA, free fatty acids; HF, heart failure; LUSEO, luseogliflozin; LV, left ventricle; LVEF, left ventricle ejection fraction; MI, myocardial 
infarction; SGLT2, sodium/glucose cotransporter-2; T2DM, type 2 diabetes mellitus; β-OHB, β-hydroxybutyrate.
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Other methods have also found a correlation between ketone bodies and HF. For example, 
in animal models with HF due to cardiotoxicity, using positron emission tomography 
of the myocardium, [11C]-acetoacetate has been proposed as a possible early marker of 
damage.122 Moreover, elevated levels of β-OHB in patients with acute HF have been associated 
with increased mortality using nuclear magnetic resonance spectroscopy, suggesting its 
prognostic value.123,124

POTENTIAL BENEFITS SECONDARY TO THE ELEVATION 
OF KETONE BODIES BY SGLT2 INHIBITORS
Increased cardiac energetics
In HF, roadblocks in cardiac substrate metabolism result in impediments in the cardiac 
capacity to oxidize glucose and FA,20,113 so that the falling heart begins to rely more on ketone 
bodies and other substrates.22,125,126 Indeed, ketone bodies can account for up to 20% of 
cardiac metabolism in HF.72 β-OHB has been debated as a “thrifty substrate” because the 
heart takes it up freely, and it is oxidized in preference to FFA. In addition, Ferrannini et al.22 
hypothesized that β-OHB improves work efficiency at the mitochondrial level.

It has been postulated that ketone body oxidation is an additional fuel source72,127 that is 
energy-efficient22 and has a very high extraction by the heart.20,38,40 Moreover, patients without 
T2DM with HFrEF who received a continuous infusion of β-OHB showed increases in cardiac 
output, left ventricular ejection fraction (LVEF), and myocardial oxygen consumption, 
without altering the myocardial external energy efficiency.16 Furthermore, animal models of 
myocardial infarction treated with empagliflozin or a ketone ester diet increased circulating 
ketone body levels and improved left ventricular function.21,102,128 Notwithstanding, different 
studies have not shown an improvement in cardiac efficiency.20,129

Increasing ketone body levels could be a valuable strategy for treating metabolic dysfunction 
in HF, and it is reasonable to assume that the low ketonemia level induced by SGLT2 
inhibitors19,103,106,107 could improve myocardial energetics and contractile function (Fig. 2). 
Recently, the EMPA-TROPISM trial demonstrated improvement in left ventricular systolic 
function in patients with HFrEF without T2DM who received empagliflozin.101 Nevertheless, 
more evidence is required to determine the degree of the contribution of ketone bodies to 
energy metabolism and cardiac contractility.

Reversing cardiac remodeling
Adverse cardiac remodeling manifests as changes in sphericity, enlargement, and decreased 
left ventricular function after cardiac injury.101,130,131 In addition, inflammation, fibrosis, type I 
collagen levels, and cardiomyocyte cell death are involved in this process19,130,132 and can occur 
in HFrEF and HFpEF, worsening the prognosis.133 However, it has been shown that reversing 
cardiac remodeling can reduce mortality and the risk of cardiovascular events.130,134,135 
Moreover, Kramer et al.136 have shown a proportional relationship between the effects of 
drugs or devices on short-term ventricular remodeling and long-term mortality.

Clinical trials such as DAPA-HF,39 EMPEROR-Reduced,40 and EMPA-TROPISM101 have 
repeatedly shown that SGLT2 inhibitors reverse and improve adverse cardiac remodeling in 
patients with HFrEF and HFpEF,41,129,137,138 which could explain the observed cardiovascular 
benefits.38,139 However, since SGLT2 receptors are not expressed in the heart,140 the effect of 
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SGLT2 inhibitors on left ventricular mass is likely indirect and mediated by hemodynamic, 
anti-inflammatory, and metabolic effects.19,35,129

Various hypotheses have been proposed. The diuretic and natriuretic hypotheses suggest that 
the sustained reduction in intravascular volume leads to a reduction in preload with consequent 
improvement in left ventricular systolic and diastolic function.141 This finding was also seen in 
the EMPA-TROPISM trial, which proved a significant reduction in end-systolic and diastolic 
volumes and a significant increase in LVEF compared to placebo (6% vs. −0.1%). Furthermore, 
this hypothesis was also supported by the findings of Mullens et al.,142 who demonstrated a 
significant decrease in mean pulmonary artery pressure after the initiation of SGLT2 inhibitors.

Another hypothesis suggests that ketone bodies may mitigate pathological remodeling. 
β-OHB has previously been shown to inhibit class I histone deacetylases, which can inhibit 
pro-hypertrophic transcription in HF.143-145 In addition, overexpression of key enzymes 
in ketone body oxidation, such as BDH1, protects against cardiac remodeling in models 
with ischemia or increased afterload.77 Moreover, in the SCOT knockout models, greater 
pathological remodeling is evidenced,89 suggesting some benefits of ketone bodies in 
cardiac remodeling. Thus, it is plausible to assume that the increase in levels of ketone 
bodies following SGLT2 inhibitors can ameliorate pathological remodeling. However, the 
mechanism is still unknown and requires further elucidation.

Attenuation of the inflammatory profile
Inflammation is central to HF syndrome, and the levels of several circulating inflammatory 
biomarkers correlate with the prognosis and severity of HF with a reduced or preserved ejection 
fraction.146-148 In particular, the NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) 
inflammasome has recently been recognized as contributing to inflammation in the myocardium 
of patients with chronic HF and has recently emerged as a new promising target in HF.149,150

In patients with T2DM,151 SGLT2 inhibitors attenuate the activation of the NLRP3 inflammasome 
and the secretion of interleukin-1β through an increase in β-OHB levels and decreases in insulin 
and glucose levels, which could improve cardiovascular outcomes.152-154 In addition, by decreasing 
glucose levels, SGLT2 inhibitors minimize the inflammatory response of macrophages.155,156

In HFpEF animal models, it was shown that the increase in β-OHB levels secondary to the 
use of empagliflozin attenuated the formation of the NLPR3 inflammasome, fibrosis, and 
mitochondrial dysfunction. As a mechanism, the authors proposed that mitochondrial 
protein acetylation was diminished due to the decrease in the acetyl-CoA pool through 
activation of citrate synthase and suppression of fatty acid uptake.157 Thus, this finding 
suggests that the SGLT2 inhibitor-mediated increase in β-OHB levels may serve as a 
therapeutic target to mitigate mitochondrial hyperacetylation and inflammation involved 
in the pathogenesis of HFpEF. Of note, in the EMPEROR-Preserved trial, a significant risk 
reduction was described with empagliflozin for the combination of cardiovascular death or 
hospitalization for HF in patients with HFpEF.41

CONCLUSION

SGLT2 inhibitor therapy improves cardiac function and outcomes in patients with HF with or 
without T2DM, through multiple pleiotropic effects including increased ketone body levels. 
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The increase in ketone body levels appears to reflect an adaptive process that optimizes 
cardiac energy metabolism and could explain the improvement in overall cardiac function in 
patients treated with SGLT2 inhibitors.

Moreover, the reduction of adverse cardiac remodeling and fibrosis associated with ketone 
bodies could improve ventricular diastolic function and may also translate into benefits for 
patients with HFpEF. The exact contribution of ketone bodies to the cardiovascular benefits 
of SGLT2 inhibitors is not entirely clear and requires further clarification. Nevertheless, this 
mechanism of ketone bodies suggests that ketone bodies themselves could represent a new 
therapeutic option for HF.
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