
 

 

 University of Groningen

Distributed linear quadratic optimal control
Jiao, Junjie; Trentelman, Harry L.; Camlibel, Kanat

Published in:
IEEE Control Systems Letters

DOI:
10.1109/LCSYS.2019.2922189

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2020

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Jiao, J., Trentelman, H. L., & Camlibel, K. (2020). Distributed linear quadratic optimal control: Compute
locally and act globally. IEEE Control Systems Letters, 4(1), 67 - 72.
https://doi.org/10.1109/LCSYS.2019.2922189

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 20-11-2022

https://doi.org/10.1109/LCSYS.2019.2922189
https://research.rug.nl/en/publications/848e98d3-8af6-46cd-9015-09e365ba2ad2
https://doi.org/10.1109/LCSYS.2019.2922189


IEEE CONTROL SYSTEMS LETTERS, VOL. 4, NO. 1, JANUARY 2020 67

Distributed Linear Quadratic Optimal Control:
Compute Locally and Act Globally

Junjie Jiao , Harry L. Trentelman , Fellow, IEEE , and M. Kanat Camlibel , Member, IEEE

Abstract—In this letter we consider the distributed lin-
ear quadratic (LQ) control problem for networks of agents
with single integrator dynamics. We first establish a general
formulation of the distributed LQ problem and show that
the optimal control gain depends on global information on
the network. Thus, the optimal protocol can only be com-
puted in a centralized fashion. In order to overcome this
drawback, we propose the design of protocols that are com-
puted in a decentralized way. We will write the global cost
functional as a sum of local cost functionals, each asso-
ciated with one of the agents. In order to achieve “good”
performance of the controlled network, each agent then
computes its own local gain, using sampled information
of its neighboring agents. This decentralized computa-
tion will only lead to suboptimal global network behavior.
However, we will show that the resulting network will reach
consensus.

Index Terms—Distributed control, linear quadratic
optimal control, decentralized computation, consensus,
multi-agent systems.

I. INTRODUCTION

THE DISTRIBUTED linear quadratic (LQ) optimal con-
trol problem is the problem of interconnecting a finite

number of identical agents according to a given network graph
to achieve consensus optimally. Each agent receives input only
from its neighbors, in the form of a linear feedback of the rel-
ative states amplified by a certain constant gain. Such control
law is called a distributed diffusive control law. The problem
of minimizing a given quadratic cost functional over all dis-
tributed diffusive control laws that achieve consensus is then
called the distributed LQ problem corresponding to this cost
functional.

In the case that the agent dynamics is given by a general
state space system, this optimal control problem is non-convex
and difficult to solve, and it is unclear whether a solution
exists in general, see [1]. In contrast, for the case of sin-
gle integrator dynamics it is fairly easy to find an explicit
expression for the optimal distributed diffusive control law,
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see, for example, [2]. Although a solution to the problem is
available, it turns out however that global information on the
network is needed to compute this optimal control law. More
specifically, the optimal distributed diffusive control law can
be computed only by a (virtual) supervisor that knows the
network graph and the initial states of all the agents. Thus,
although the resulting optimal control law operates in a dis-
tributed fashion, its actual computation can only be performed
in a centralized way.

Formulating the distributed LQ problem as a problem of
minimizing a global cost functional is therefore not practi-
cal. Indeed, the centralized computation requires that the local
optimal gains needs to be re-designed by the supervisor in case
that changes in the network occur. For example, by adding or
removing agents from the network, its graph will change, and
new initial states will occur while existing ones will disappear.

In this letter we will address this drawback and present a
decentralized design method to compute a distributed con-
troller: each agent will compute its own local control law. For
this computation, the agent will not need knowledge of the
network graph or the initial states of all other agents. This
will then enable ‘plug-and-play’ operations on the network,
since each agent will be able to automatically recompute its
local gain whenever a new agent is added or removed.

In order to achieve this decentralized computation scheme
we will write the original global cost functional as the sum of
local LQ tracking cost functionals, each associated with one
of the agents. The agents can not solve these optimal track-
ing problems explicitly because the reference signals depend
on the future dynamics of the neigbours. However, using
sampling, suboptimal local gains are obtained. This decen-
tralized computation will not necessarily result in optimality
of the global network behavior. We will however show that
the resulting network will reach consensus.

The distributed LQ control problem has attracted much
attention in the past, see, e.g., [2]–[5]. In [3], a suboptimal dis-
tributed controller for a global cost functional was developed
to stabilize a network with general agent dynamics. A sim-
ilar cost functional was also considered in [6] for designing
distributed controllers with guaranteed performance. The dis-
tributed LQ control problem with general agent dynamics was
also dealt with in [7] and [8] by adopting an inverse optimal
control approach. In [9] a game theoretic approach was con-
sidered to obtain a suboptimal solution. Also, [1] considers
a suboptimal version of this problem. In [10], a suboptimal
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consensus controller design was developed by employing a
hierarchical LQ control approach for an appropriately chosen
global performance index, and a similar idea for constructing
a particular cost functional was employed in [11] to design
a reduced order distributed controller. In [12] a distributed
optimal control method was adopted to decouple a class
of linear multi-agent systems with state coupled nonlinear
uncertainties.

The common feature of all work referred to above is that
the computation of the control gains needs global information
on the network. This disadvantage can be avoided by adopting
adaptive control methods [13] or by using reinforcement learn-
ing [14], [15]. In [16] and [17], it was shown that diffusive
couplings are necessary for minimization of cost function-
als of a particular form, involving the weighted squared
synchronization error.

Below we list the contributions of this letter.
1) We show that for agents with single integrator dynamics,

in any distributed LQ cost functional, the state weight-
ing matrix must be equal to a weighted square of the
Laplacian of the network graph.

2) We give a solution to this general distributed LQ
problem, and show that computation of the optimal pro-
tocol requires exact knowledge of the Laplacian as well
as the initial state of the entire network.

3) We represent the global cost functional as a sum of
local LQ tracking cost functionals, one for each agent.
Using sampling, suboptimal local gains are obtained.
Computation of these gains is completely decentralized.

4) We show that these gains lead to a protocol that achieves
consensus of the network.

The outline of this letter is as follows. In Section II, we
derive a general formulation of the distributed LQ problem.
In Section III, we show that computation of the optimal con-
trol laws requires complete knowledge of the network graph
and the initial state of the entire network. In Section IV, we
propose a decentralized method to compute suboptimal (local)
control laws. In order to do this, we need to apply ideas from
linear quadratic tracking, and these are reviewed in Section V.
Then, in Section VI, we compute these local control laws, and
show that the network reaches consensus if all agents apply
their own local gain. Finally, in Section VII, we will give some
concluding remarks.

Notation: We denote by R the field of real numbers. The
space of n-dimensional real vectors is denoted by R

n. The
vector in R

N with all components equal to 1 is denoted by
1N . The identity matrix of dimension n × n is denoted by In.
For a symmetric matrix P, we write P > 0 (P ≥ 0) if P is
positive (semi-)definite. We use diag(a1, a2, . . . , an) to denote
the n × n diagonal matrix with a1, a2, . . . , an on its diagonal.
For a linear map A : X → Y , the kernel and image of A are
denoted by ker(A) := {x ∈ X |Ax = 0} and im(A) := {Ax|x ∈
X }, respectively.

In this letter, a graph is denoted by G = (V, E) with
V = {1, 2, . . . , N} the node set and E ⊂ V × V the edge
set. For i, j ∈ V , an edge from node i to j is represented
by (i, j) ∈ E . The neighboring set of node i is defined as
Ni := {j ∈ V|(i, j) ∈ E}. The adjacency matrix of G is

equal to A = [aij] ∈ R
N×N , where aij = 1 if (j, i) ∈ E

and aij = 0 otherwise. The degree matrix of G is given
by D = diag(d1, d2, . . . , dN) with di = ∑N

j=1 aij, and the
Laplacian matrix is defined as L := D − A. A graph is
called simple if E only contains edges (i, j) with i �= j, and
it is called undirected if (i, j) ∈ E implies that (j, i) ∈ E .
Obviously, a graph is undirected if and only if L is sym-
metric. A simple undirected graph is called connected if
for each pair of nodes i and j there exists a path from i
to j. Throughout this letter, it will be a standing assump-
tion that the network graph is a connected simple undirected
graph.

II. THE GENERAL FORM OF A DISTRIBUTED LQ
COST FUNCTIONAL

In this section we will show that in any distributed LQ
cost functional, the state weighting matrix must be a weighted
square of the Laplacian of the network graph. We will also give
two important examples of distributed LQ cost functionals.

We consider a network of agents described by scalar single
integrator dynamics

ẋi(t) = ui(t), xi(0) = xi0, i = 1, 2, . . . , N, (1)

with xi0 ∈ R the initial state of agent i. By collecting the
states and inputs of the individual agents into the vectors
x = (x1, x2, . . . , xN)� and u = (u1, u2, . . . , uN)�, (1) can be
written as

ẋ(t) = u(t), x(0) = x0. (2)

A general class of LQ cost functionals are those of the form

J(x0, u) =
∫ ∞

0
x�(t)Qx(t) + u�(t)Ru(t)dt, (3)

where Q ∈ R
N×N , R ∈ R

N×N and Q ≥ 0 and R > 0.
In the context of distributed LQ control we only allow dis-

tributed diffusive control laws that achieve consensus, i.e., the
controlled trajectories converge to im(1N), the span of the vec-
tor of ones. Thus the class of control laws over which we want
to minimize (3) consists of those of the form u = −gLx, with
L ∈ R

N×N the Laplacian of the network graph and where
g > 0, see, e.g., [18].

We will now show that for a cost functional (3) to make
sense in this context, the weighting matrix Q must be of the
form Q = LWL for some positive semi-definite matrix W.

Lemma 1: J(x0, u) < ∞ for all x0 ∈ R
N and control laws

of the form u = −gLx with g > 0 only if there exists a positive
semi-definite W ∈ R

N×N such that Q = LWL.
Proof: Write Q = CTC for some C. Now, let x̄(t) denote

any nonzero state trajectory generated by the control law u =
−gLx with g > 0 and let ū(t) = −gLx̄(t). It is well known
that this control law achieves consensus (see [18]) so we have
x̄(t) → c1N for some nonzero constant c. Now assume that the
control law u = −gLx gives finite cost, i.e., J(x0, ū) < ∞. This
implies

∫ ∞
0 x̄�(t)C�Cx̄(t)dt < ∞ and hence Cx̄(t) → 0. Thus

we obtain 1N ∈ ker(C), equivalently, ker(L) ⊂ ker(C). We thus
conclude that there exists a matrix V such that C = VL so the
state weighting matrix Q must be of the form Q = LV�VL for
some matrix V . This proves our claim.
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We have thus shown that, for a general LQ cost functional
to make sense in the context of distributed diffusive control
for multi-agent systems, it must necessarily be of the form

J(u, x0) =
∫ ∞

0
x�(t)LWLx(t) + u�(t)Ru(t)dt, (4)

for some W ≥ 0 and R > 0. The corresponding distributed LQ
problem is to minimize, for the system (2) with initial state
x0, the cost functional (4) over all control laws of the form
u = −gLx with g > 0.

As an illustration, we will now provide two important spe-
cial cases of LQ cost functionals. The first one was studied
before in [1] and [2]:

J(u, x0) =
N∑

i=1

∫ ∞

0

∑

j∈Ni

q(xi(t) − xj(t))
2 + ru2

i (t)dt, (5)

where q and r are positive real numbers. Clearly, (5) is equal
to J(x0, u) = ∫ ∞

0 x�(t)2qLx(t)+ru�(t)u(t)dt. Note that 2qL =
L(2qL†)L with L† the Moore-Penrose inverse of L (which is
indeed positive semi-definite). Thus this cost functional is of
the form (4) with W = 2qL† and R = rI.

As a second example, consider

J(x0, u) =
N∑

i=1

∫ ∞

0
q(xi(t) − ai(t))

2 + ru2
i (t)dt, (6)

with

ai(t) := 1

di + 1

(
xi(t) +

∑

j∈Ni

xj(t)
)
. (7)

Here, q and r are positive weights, di denotes the node degree
of agent i and Ni its set of neighbors. The idea of the cost
functional (6) is to minimize the sum of the deviations between
the state xi(t) and the average ai(t) of the states of its neighbors
(including itself) and the control energy. In order to put this
in the form (4), define

G := (D + IN)−1(A + IN) ∈ R
N×N, (8)

where D ∈ R
N×N is the degree matrix and A ∈ R

N×N

the adjacency matrix. Then clearly a(t) = Gx(t), where
x = (x1, x2, . . . , xN)� and a = (a1, a2, . . . , aN)�. It is then
easily seen that

J(x0, u) =
∫ ∞

0
qx�(t)(IN − G)�(IN − G)x(t) + ru�(t)u(t)dt.

Since (IN −G)�(IN −G) = L(D+IN)−2L, we conclude that (6)
is a special case of (4) with W = q(D + IN)−2 and R = rIN .

III. CENTRALIZED OPTIMAL GAIN

In this section we will briefly give a solution to the general
distributed LQ problem with cost functional (4) as intro-
duced in Section II, thus generalizing the result from [2] to
general distributed LQ cost functionals. We will show that,
indeed, computation of the optimal protocol requires global
information on the network graph and the initial state of the
entire network.

Consider the cost functional (4) together with the dynam-
ics (2) with given initial state x0. Since the admissible control
laws are given by u = −gLx, the associated state trajectory is

x(t) = e−gLtx0 and u(t) = −gLx(t). Substituting this into the
cost functional yields

J(g) := x�
0 (

∫ ∞

0
e−gLt

(
LWL + g2LRL

)
e−gLtdt)x0 (9)

Clearly, we need to minimize J(g) over g > 0. Substituting
gt = τ , we find

J(g) := x�
0

∫ ∞

0
e−τL

(
1

g
LWL + gLRL

)

e−τLdτ x0.

Define X0 := ∫ ∞
0 e−τLLWLe−τLdτ and Y0 :=∫ ∞

0 e−τLLRLe−τLdτ . It turns out that both integrals indeed
exist, and can be computed as particular solutions of the
Lyapunov equations

− LX − XL + LWL = 0, (10a)

−LY − YL + LRL = 0. (10b)

Indeed, although L is not Hurwitz, these equations do have
positive semi-definite solutions X and Y and, in fact, X0 is
the unique positive semi-definite solution X to (10a) with the
property that im(1N) ⊂ ker(X). Likewise Y0 is the unique
positive semi-definite solution Y of (10b) with the property
that im(1N) ⊂ ker(Y) (see [19, Proposition 1]). It follows
from (10b) that, in fact, ker(Y0) = im(1N). Thus we see that
J(g) = 1

g x�
0 X0x0 + gx�

0 Y0x0.
In order to minimize J(g) we distinguish three cases. (i) If

x0 ∈ ker(Y0) = im(1N) then we must have x0 ∈ ker(X0) as
well, so J(g) = 0 for all θ and every g > 0 is optimal. (ii) If
x�

0 Y0x0 > 0 and x�
0 X0x0 = 0 then no optimal g > 0 exists. (iii)

If x�
0 Y0x0 > 0 and x�

0 X0x0 > 0 then an optimal g > 0 exists

and can be shown to be equal to g∗ = (
x�

0 X0x0

x�
0 Y0x0

)
1
2 . It is clear that

the computation of the optimal gain g requires exact knowl-
edge of the network graph in the form of the Laplacian L.
Also, the optimal gain clearly depends on the global initial
state of the network.

IV. TOWARDS DECENTRALIZED COMPUTATION

In this section we will propose a new approach to compute
‘good’ local gains that can be computed in a decentralized way.
Instead of doing this for the general LQ cost functional (4),
we will zoom in on the particular case given by (6)-(7).

In order to decentralize the computation, instead of min-
imizing the global cost functional (6) for the multi-agent
system (2), we write it as a sum of local cost functionals,
one for each agent in the network.

More specifically, the associated local cost functional for
agent i is given by

Ji(ui) =
∫ ∞

0
q(xi(t) − ai(t))

2 + ru2
i (t) dt, (11)

where ai(t) is defined in (7), for i = 1, 2, . . . , N. This local
cost functional penalizes the squared difference between the
state of the ith agent and the average of the states of its
neighboring agents (including itself), and the local control
energy. By minimizing (11), agent i would make the differ-
ence between its own state and the average of the states of
its neighbors (including itself) small. Note, however, that it is
impossible for agent i to minimize this local cost functional
since the trajectory ai(t) for t ∈ [0,∞) associated with the
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neighboring agents is not known, so also not available to the
ith agent. Thus, because direct minimization of (11) is impos-
sible, as an alternative we will replace each of these local
optimal control problems by a sequence of linear quadratic
tracking problems that do turn out to be tractable.

More specifically, we choose a sampling period T > 0, and
introduce the following sampling procedure. For each non-
negative integer k, at time t = kT the ith agent receives the
sampled state value xj(kT) of its neighboring agents and takes
the average of these, which is given by

ai(kT) = 1

di + 1

(
xi(kT) +

∑

j∈Ni

xj(kT)
)
. (12)

Then, the ith agent minimizes the cost functional

Ji,k(u) =
∫ ∞

0
e−2αt

(
q(xi(t) − ai(kT))2 + ru2

i (t)
)

dt. (13)

In fact, this is a discounted linear quadratic tracking problem
with constant reference signal ai(kT) and discount factor
α > 0. By solving this linear quadratic tracking problem,
agent i obtains an optimal control law over an infinite time
interval. However, agent i applies this control law only on the
time interval [kT, (k + 1)T).

Then, at time t = (k +1)T the above procedure is repeated,
i.e., agent i receives the updated average ai((k + 1)T), and
subsequently solves the discounted tracking problem with
cost functional Ji,k+1(u) which involves the constant updated
reference signal ai((k + 1)T). By performing this control
design procedure sequentially at each sampling time kT , we
then obtain a single control law for agent i over the entire
interval [0, ∞).

Based on this control design procedure for the individual
agents, we will obtain a distributed control protocol for the
entire multi-agent system, simply by letting all agents com-
pute their own control law. In the sequel we will analyze this
protocol and show that it achieves consensus for the network.

Definition 1: A distributed control protocol is said to
achieve consensus for the network if xi(t) − xj(t) → 0
as t → ∞ for all initial states of agents i and j, for all
i, j = 1, 2, . . . , N.

In order to obtain an explicit expression for the control
protocol proposed above, we will study the linear quadratic
tracking problem for a single linear system. This will be done
in the next section.

V. THE DISCOUNTED LQ TRACKING PROBLEM

In this section, we will deal with the discounted linear
quadratic tracking problem for a given linear system. The lin-
ear quadratic tracking problem has been studied before, see,
e.g., [20]. Here, however, we will solve it by transforming it
into a standard linear quadratic control problem.

Consider the continuous-time linear time-invariant system

ẋ(t) = Ax(t) + Bu(t), x(0) = x0, (14)

with A ∈ R
n×n and B ∈ R

n×m, and where x(t) ∈ R
n, u(t) ∈ R

m

denote the state and the input, respectively. We assume that
the pair (A, B) is stabilizable. Given is also a contant reference

signal rref(t) = r with r ∈ R
n. Next, we introduce a discounted

quadratic cost functional given by

J(u) =
∫ ∞

0
e−2αt[(x(t) − r)�Q(x(t) − r) + u�(t)Ru(t)]dt

(15)

where Q ∈ R
n×n, R ∈ R

m×m and Q > 0 and R > 0 are given
weight matrices and α > 0 is a discount factor [20]. The
linear quadratic tracking problem is to determine for every
initial state x0 a piecewise continuous input function u(t) that
minimizes the cost functional (15).

To solve this problem, we introduce the variables

z(t) = e−αtx(t), zr(t) = e−αtr, v(t) = e−αtu(t), (16)

and denote ξ(t) = (z�(t), z�
r (t))�. Then we obtain an auxiliary

system in terms of ξ and v, given by

ξ̇ (t) = Aeξ(t) + Bev(t), ξ0 = (x�
0 , r�)�,

where ξ0 ∈ R
2n is the initial state and

Ae =
(

A − αIn 0
0 −αIn

)

, Be =
(

B
0

)

.

In terms of the new variables ξ and v, the cost functional (15)
can be written as J(v) = ∫ ∞

0 ξ�(t)Qeξ(t) + v�(t)Rv(t) dt,

where Qe =
(

Q −Q
−Q Q

)

∈ R
2n×2n. The problem is now to

find, for every initial state ξ0, a piecewise continuous input
function v(t) that minimizes this cost functional. This is a
so-called a free endpoint standard LQ control problem, see
[21, p. 218]. Since the pair (A, B) is stabilizable, the pair
(Ae, Be) is also stabilizable and hence the input function v(t)
that minimizes the cost functional J(v) is generated by the
feedback law

v(t) = −R−1B�
e P−

e ξ(t), (17)

where P−
e ∈ R

2n×2n is the smallest positive semi-definite
solution of the Riccati equation

A�
e P−

e + P−
e Ae − P−

e BeR−1B�
e P−

e + Qe = 0. (18)

Now, partition P−
e :=

(
P1 P12

P�
12 P2

)

, where all blocks have

dimension n×n. Recalling (16) and (17), we then immediately
find an expression for the input function u(t) that minimizes
the cost functional (15) for the system (14) and reference
signal rref(t) = r.

Theorem 1: The input function u(t) that minimizes the cost
functional (15) is generated by the control law

u(t) = K1x(t) + K2r, (19)

where K1 = −R−1B�P1 and K2 = −R−1B�P12.
The proof follows immediately from the above considera-

tions. See also [20].
Remark 1: Let e(t) := x(t) − r denote the tracking error.

Because Q > 0, the control law (19) only guarantees that
ē(t) := e−αte(t) tends to zero as t goes to infinity. Thus,
the feedback law that minimizes the LQ tracking cost func-
tional (15) only guarantees the actual tracking error e(t) to be
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exponentionally bounded with growth rate α > 0. Note that
α > 0 can be taken arbitrarily small.

It will be shown however that, for the multi-agent system
case, the control design method established in this section will,
nevertheless, lead to a protocol that achieves consensus.

VI. CONSENSUS ANALYSIS

In this section, we will show that, by adopting the control
design method for the multi-agent system (2) as proposed in
Section IV, the resulting distributed control protocol achieves
consensus for the entire network.

As already explained in Section IV, we choose a sampling
period T > 0 and introduce a sampling procedure. For each
nonnegative integer k, at time t = kT the ith agent receives
the sampled state value of its neighboring agents (includ-
ing itself) and minimizes the cost functional (13), which is
a discounted linear quadratic tracking problem with constant
reference signal rref(t) = ai(kT) and discount factor α > 0.

According to the theory on the discounted LQ tracking
problem described in Section V, the local optimal control law
for agent i at time t = kT over the whole time horizon [0,∞)

is therefore of the form

ui,k(t) = gi,kxi(t) + g′
i,kai(kT), (20)

in which the control gains gi,k and g′
i,k can be computed explic-

itly by solving the Riccati equation (18) associated with the
LQ tracking problem for agent i.

Lemma 2: Consider, at time t = kT , the ith agent of
the multi-agent system (1) with associated local cost func-
tional (13). Denote

Ā =
(−α 0

0 −α

)

, B̄ =
(

1
0

)

, Q̄ =
(

q −q
−q q

)

.

Let P̄ :=
(

p1 p12
p12 p2

)

be the smallest positive semi-definite

solution of the Riccati equation

Ā�P̄ + P̄Ā − r−1P̄B̄B̄�P̄ + Q̄ = 0. (21)

Then the local control law (20) with gi,k := −r−1p1 and g′
i,k :=

−r−1p12 minimizes the cost (13) for agent i.
Proof: This follows immediately from Theorem 1.
Next, agent i applies the control law (20) only on the time

interval [kT, (k + 1)T). Then, at time t = (k + 1)T the above
procedure is repeated.

Since, for all i = 1, 2, . . . , N and k = 0, 1, . . ., the matrices
Ā, B̄ and Q̄ are independent of i and k, the same holds for the
gains gi,k and g′

i,k. In the sequel, we will therefore drop the
subscripts in the control gains gi,k and g′

i,k and denote them
by g and g′, respectively. Moreover, using (21), we compute
g = r−1(α − √

α2 + rq) and g′ = −g.
By performing this procedure sequentially at each sampling

time kT , we then obtain a single control law for agent i over
the entire interval [0,∞) as

ui,k(t) = gxi(t) − gai(kT), t ∈ [kT, (k + 1)T), (22)

where g = r−1(α − √
α2 + rq) < 0.

Recall that a(t) = Gx(t), with G given by (8), and that
a(kT) = Gx(kT). Therefore, the local control laws for the
individual agents lead to a distributed control protocol

uk(t) = gx(t) − gGx(kT), t ∈ [kT, (k + 1)T). (23)

Now, by applying the protocol (23) to the multi-agent
system (1), we find that the controlled network is
represented by

ẋ(t) = gx(t) − gGx(kT), t ∈ [kT, (k + 1)T). (24)

In the remainder of this section, we will analyze this repre-
sentation, and show that consensus is achieved, i.e., for each
initial state x(0) = x0 we have xi(t) − xj(t) → 0 as t tends to
infinity.

In order to do this, note that the solution of (24) with initial
state x(0) = x0 is given by

x(t) = eg(t−kT)x(kT) −
∫ t

kT
eg(t−τ)gG x(kT) dτ, (25)

for t ∈ [kT, (k + 1)T), k = 0, 1, 2, . . . Obviously, for each
initial state x0, the corresponding solution x(t) is continu-
ous. From (25) we see that the sequence of network states
x(kT) evaluated at the discrete time instances kT , k = 0, 1, . . .

satisfies the difference equation

x((k + 1)T) = �x(kT), (26)

� = egTIN − (egT − 1)G ∈ R
N×N .

Clearly, the network reaches consensus if and only if for
each x0, xi(kT) − xj(kT) → 0 as t tends to infinity.

We proceed with analyzing the eigenvalues of G.
Lemma 3: The matrix G has an eigenvalue 1 with algebraic

multiplicity equal to one and associated eigenvector 1N . The
remaining eigenvalues of G are all real and have absolute value
strictly less than 1.

Proof: Since L = D − A, we have G = IN − (D + IN)−1L.

Hence we have D̃
1
2 GD̃− 1

2 = IN − D̃− 1
2 LD̃− 1

2 where D̃ =
D + IN . Note that the right hand side is symmetric and
hence has only real eigenvalues. Thus, by matrix similarity, G
also has only real eigenvalues.

Next, we show that G has a simple eigenvalue 1 with
associated eigenvector 1N . First note that

G1N = (IN − (D + IN)−1L)1N = 1N . (27)

Hence, indeed, 1 is an eigenvalue of G with eigenvector 1N .
Since G is similar to a symmetric matrix, it is diagonalizable,
so the algebraic multiplicity of its eigenvalue 1 must be equal
to its geometric multiplicity. Suppose now that 1 is not a sim-
ple eigenvalue. Then there must exist a second eigenvector, say
v, which is linearly independent of 1N . This implies Gv = v.
Then Lv = 0, so v must be a multiple of 1N . This is a contra-
diction. We conclude that the eigenvalue 1 is indeed simple.

Finally, it follows from Gershgorin’s Theorem [22] that
every eigenvalue λ of G satisfies −1 < λ ≤ 1.

Before we give the main result of this letter, we first review
the following proposition.

Proposition 1: Consider the discrete-time system

x(k + 1) = Ax(k), x(0) = x(0), y(k) = Cx(k)

with A ∈ R
n×n and C ∈ R

p×n, where x(k) ∈ R
n is the state,

x0 is the initial state and y(k) ∈ R
p is the output. Then,
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y(k) → 0 as k → ∞ for all initial states x0 if and only if
X+(A) ⊂ ker(C). Here, X+(A) is the unstable subspace, i.e.,
the sum of the generalized eigenspaces of A associated with
its eigenvalues in {λ ∈ C||λ| ≥ 1}.

Proof: A proof can be given by generalizing the results
[21, p. 99] to the discrete time case.

We are now ready to present the main result of this letter.
Theorem 2: Consider the multi-agent system (1). Let T > 0

be a sampling period, α > 0 a discount factor, and let
q, r > 0 be given weights. Let P̄ be the smallest positive
semi-definite solution of the Riccati equation (21) and partition

P̄ :=
(

p1 p12
p12 p2

)

. Then the distributed control protocol (23)

with g = −r−1p1 and g′ = −r−1p12 achieves consensus for
the controlled network (24).

Proof: The network reaches consensus if and only if
Lx(kT) → 0 as k → ∞. Since ker(L) = im(1N), it then
follows from Proposition 1 that consensus is achieved if and
only if X+(�) ⊂ ker(L), equivalently, the sum of the general-
ized eigenspaces of � corresponding to the eigenvalues λ with
|λ| ≥ 1 is equal to im(1N).

Indeeed, we will show that all eigenvalues λ of � are real
and satisfy −1 < λ ≤ 1, and λ = 1 is a simple eigenvalue
with associated eigenvector 1N .

Recall that � = egTIN − (egT − 1)G. Hence, μ is an eigen-
value of � if and only if μ = egT − λ(egT − 1) where λ is an
eigenvalue of G. It was shown in Lemma 3 that all eigenval-
ues λ of G are real and satisfy −1 < λ ≤ 1 and, moreover,
λ = 1 is a simple eigenvalue. Using the fact that g < 0 we
thus obtain that the eigenvalues μ of � satisfy −1 < μ ≤ 1
and μ = 1 is a simple eigenvalue of �.

Finally, we will show μ = 1 has eigenvector 1N . Indeed,
this follows from �1N = (egTIN − (egT − 1)G)1N = 1N . This
completes the proof.

Remark 2: By analyzing the eigenvalues μ of � satisying
−1 < μ < 1, it can be seen that, for given α, the convergence
rate of the difference equation (26) increases with increasing
sampling period T . The total time it takes to reach a disagree-
ment smaller than a given tolerance is then the product of
the number of iterations in (26) and this sampling period.
It might therefore be more advantageous to use a smaller
sampling period with a larger number of required iterations,
but yet leading to a smaller total time. In other words, the
choice of sampling period is a trade-off between the total time
required to obtain an acceptable disagreement, and the number
of iterations in (26).

For a simulation example, we refer to [23].

VII. CONCLUSION

We have studied the distributed linear quadratic control
problem for a network of agents with single integrator dynam-
ics. We have shown that the computation of control gains that
minimize global cost functionals need global information, in
particular the initial states of all agents and the Laplacian
matrix. We have also shown that this drawback can be
overcome by transforming the global cost functional into
discounted local cost functionals and assigning each of these
to an associated agent. In such a way, each agent computes its

own control gain, using sampled information of its neighbor-
ing agents. Finally, we have shown that the resulting control
protocol achieves consensus for the network.

REFERENCES

[1] J. Jiao, H. L. Trentelman, and M. K. Camlibel. (2018). A Suboptimality
Approach to Distributed Linear Quadratic Optimal Control. [Online].
Available: https://arxiv.org/abs/1803.02682

[2] Y. Cao and W. Ren, “Optimal linear-consensus algorithms: An LQR
perspective,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 40, no. 3,
pp. 819–830, Jun. 2010.

[3] F. Borrelli and T. Keviczky, “Distributed LQR design for identical
dynamically decoupled systems,” IEEE Trans. Autom. Control, vol. 53,
no. 8, pp. 1901–1912, Sep. 2008.

[4] A. Mosebach and J. Lunze, “Optimal synchronization of circulant
networked multi-agent systems,” in Proc. Eur. Control Conf. (ECC),
Jul. 2013, pp. 3815–3820.

[5] A. Mosebach and J. Lunze, “Synchronization of autonomous agents by
an optimal networked controller,” in Proc. Eur. Control Conf. (ECC),
Jun. 2014, pp. 208–213.

[6] P. Deshpande, P. P. Menon, C. Edwards, and I. Postlethwaite, “A dis-
tributed control law with guaranteed LQR cost for identical dynamically
coupled linear systems,” in Proc. Amer. Control Conf. (ACC), Jun. 2011,
pp. 5342–5347.

[7] K. H. Movric and F. L. Lewis, “Cooperative optimal control for
multi-agent systems on directed graph topologies,” IEEE Trans. Autom.
Control, vol. 59, no. 3, pp. 769–774, Mar. 2014.

[8] H. Zhang, T. Feng, G.-H. Yang, and H. Liang, “Distributed cooperative
optimal control for multiagent systems on directed graphs: An inverse
optimal approach,” IEEE Trans. Cybern., vol. 45, no. 7, pp. 1315–1326,
Jul. 2015.

[9] E. Semsar-Kazerooni and K. Khorasani, “Multi-agent team cooperation:
A game theory approach,” Automatica, vol. 45, no. 10, pp. 2205–2213,
2009.

[10] D. H. Nguyen, “A sub-optimal consensus design for multi-agent systems
based on hierarchical LQR,” Automatica, vol. 55, pp. 88–94, May 2015.

[11] D. H. Nguyen, “Reduced-order distributed consensus controller design
via edge dynamics,” IEEE Trans. Autom. Control, vol. 62, no. 1,
pp. 475–480, Jan. 2017.

[12] V. Rezaei and M. Stefanovic, “Distributed decoupling of linear
multiagent systems with mixed matched and unmatched state-coupled
nonlinear uncertainties,” in Proc. Amer. Control Conf. (ACC), May 2017,
pp. 2693–2698.

[13] Z. Li and Z. Ding, “Fully distributed adaptive consensus control of multi-
agent systems with LQR performance index,” in Proc. IEEE Conf. Decis.
Control (CDC), 2015, pp. 386–391.

[14] K. G. Vamvoudakis, F. L. Lewis, and G. R. Hudas, “Multi-agent differ-
ential graphical games: Online adaptive learning solution for synchro-
nization with optimality,” Automatica, vol. 48, no. 8, pp. 1598–1611,
2012.

[15] H. Modares, S. P. Nageshrao, G. A. D. Lopes, R. Babuška, and
F. L. Lewis, “Optimal model-free output synchronization of hetero-
geneous systems using off-policy reinforcement learning,” Automatica,
vol. 71, pp. 334–341, Sep. 2016.

[16] J. M. Montenbruck, G. S. Schmidt, G. S. Seyboth, and F. Allgöwer,
“On the necessity of diffusive couplings in linear synchronization prob-
lems with quadratic cost,” IEEE Trans. Autom. Control, vol. 60, no. 11,
pp. 3029–3034, Nov. 2015.

[17] H. J. van Waarde, M. K. Camlibel, and H. L. Trentelman, “Comments
on ‘On the necessity of diffusive couplings in linear synchronization
problems with quadratic cost,”’ IEEE Trans. Autom. Control, vol. 62,
no. 6, pp. 3099–3101, Jun. 2017.

[18] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of
agents with switching topology and time-delays,” IEEE Trans. Autom.
Control, vol. 49, no. 9, pp. 1520–1533, Sep. 2004.
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