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Abstract
In this work we exploit the universal approximation property of Neural Networks (NNs) to de-
sign interconnection and damping assignment (IDA) passivity-based control (PBC) schemes for
fully-actuated mechanical systems in the port-Hamiltonian (pH) framework. To that end, we trans-
form the IDA-PBC method into a supervised learning problem that solves the partial differential
matching equations, and fulfills equilibrium assignment and Lyapunov stability conditions. A main
consequence of this, is that the output of the learning algorithm has a clear control-theoretic inter-
pretation in terms of passivity and Lyapunov stability. The proposed control design methodology
is validated for mechanical systems of one and two degrees-of-freedom via numerical simulations.
Keywords: Deep Neural Networks, Physics-informed Machine Learning, Nonlinear Control, Passivity-
based Control

1. Introduction

In many nonlinear control techniques the construction of the nonlinear controller is conditioned to
the explicit solution of a set of partial differential equations (PDEs) that embed the design require-
ments, for instance, feedback linearization (Isidori et al., 1995), Lyapunov-based control (Khalil,
2015), and passivity-based control (PBC) (van der Schaft, 2017). The latter approach is a popular
technique in practice due to the clear physical interpretation of the control scheme in terms of en-
ergy. In this context, the IDA-PBC technique, introduced in Ortega et al. (2002), is a well-known
PBC design method for the control of affine nonlinear systems, for which the target closed-loop dy-
namics take the form of a passive pH system with desired passivity and interconnection properties.
A major disadvantage of this method is that to construct the control scheme, it is necessary to solve
a set of PDEs, the so-called matching equations (MEs), in order to obtain the target pH closed-loop
system. While solving these PDEs is non-trivial in general, analytic solutions can be obtained for
some classes of systems by restricting the family of target pH systems. We refer interested readers
to (Nageshrao et al., 2015) for a review on methods to solve the IDA-PBC PDEs.

In the present paper we propose a method to overcome the problem of finding analytical solu-
tions of the MEs by transforming the IDA-PBC design into a supervised learning problem using
NNs where the minimized cost function is systematically constructed to represent the IDA-PBC
methodology and port-Hamiltonian systems’ first-principles, resulting in a control-informed NN
hereupon referred as Neural IDA-PBC. This is motivated by the universal approximation property

© 2022 S. Sánchez-Escalonilla, R. Reyes-Báez & B. Jayawardhana.
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NEURAL IDA-PBC

of NNs (Hornik et al., 1989; Cybenko, 1989; Kratsios and Papon, 2021). Generally, the main focus
of systems & control theory is the analysis of dynamical systems and the design of control input
functions, that can steer the system to a desired state satisfying a set of dynamical properties. Corre-
spondingly, it is natural to use NNs as functional surrogates of the control input functions. Yet, for
the past decades, the application of NNs in the control (such as in data-driven control) of complex
engineering systems is fairly limited due to the lack of explainability of the solution, and their use
is oftentimes discouraged. Fortunately, recent progress in the regularization of NNs has allowed us
to obtain parametric functions that satisfy predefined restrictions. With the seminal work physics-
informed neural networks (PINNs) (Raissi et al., 2017a,b; Karniadakis et al., 2021), it has been
shown that constitutive physical laws (in the form of PDEs) can be encoded in the training process,
which results in NNs that “understand/respect” the physics of the problem. In other words, during
the optimization process, an approximated solution of the underlying physical laws can be obtained.

In the past, researchers have studied different ways of combining learning with control theory.
As an example, finding the right Control-Lyapunov function with desirable closed-loop properties
(such as large basin of attraction) can be cumbersome and often relies in polynomial approaches
that limit the control law to a particular function class. Richards et al. (2018); Chang et al. (2020);
Grüne (2020) propose using NNs to learn new families of Lyapunov candidates. Chang and Gao
(2021) show how the Lyapunov method can be used to regularize the policy optimization process
in Reinforcement Learning, by adding a Lyapunov Critic into the optimization loop. Although the
IDA-PBC method is rewritten as an optimization problem, in the present paper, we do not consider
any performance metrics over the trajectory. For a review in the connection of optimal control and
PBC, the reader is referred to (Fujimoto et al., 2003; Vu and Lefèvre, 2018; Massaroli et al., 2021).

The rest of this paper is divided into 4 sections: Section 2 briefly introduces mechanical systems
in the port-Hamiltonian formulation, followed by the IDA-PBC control methodology as presented
in Ortega et al. (2002); Section 3 contains the main contribution of this paper, starting from the
universal approximation property of NNs, we define a series of residual terms that encode the fun-
damentals of IDA and PBC; Section 4 numerically validates the Neural IDA-PBC approach; and
finally, Section 5 closes with conclusions and future work.

2. Preliminaries

2.1. Mechanical systems in the port-Hamiltonian framework

The dynamics of a standard mechanical system in the pH framework (see van der Schaft (2007))
with generalized coordinates q on the configuration space Q ⊂ Rn and velocity q̇ ∈ TqQ, is

ẋ = [J(x)−R(x)]∂H
∂x

(x) + g(x)u, y = g>(x)
∂H

∂x
(x), (1)

with Hamiltonian function given by the total energy of the system H(x) = 1
2p
>M−1(q)p + U(q),

where x = (q, p) ∈ X is the state and p := M(q)q̇ is the generalized momentum. The scalar func-
tion U(q) is the potential energy, and M(q) = M>(q) > 0 is the inertia matrix. The interconnec-
tion, dissipation and input matrices, respectively are given by J(x) =

[
0n In
−In 0n

]
,R(x) =

[
0n 0n
0n D(x)

]
,

g(x) =
[

0n
B(q)

]
, where the n × n matrix D(x) = D>(x) ≥ 0n is a dissipation term; and In and

0n are the n× n identity and zero matrices, respectively. The input u represents generalized forces
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NEURAL IDA-PBC

while the output y gives the generalized velocity so that their inner-product is power. The input
force matrix B(q) has rank m ≤ n. If n = m then the mechanical system in (1) is fully-actuated.

The rate of change of the energy function, H(x), provides a relation between the internal power
of system (1) and the external supplied power, the so-called power balance analysis:

Ḣ(x) =
∂H>

∂q
(x)q̇ +

∂H>

∂p
(x)ṗ = −∂H

>

∂p
(x)D(x)

∂H

∂p
(x) + y>u ≤ y>u. (2)

where the inner-product y>u is the external supplied power. In the context of dissipativity theory,
the inequality in (2) shows that the map u 7→ y is passive with respect to the storage function given
by the Hamiltonian functionH and the supply rate y>u. The interested reader is referred to (van der
Schaft, 2017, Section 6.2) for a detailed treatment on passivity.

2.2. Interconnection and Damping Assignment Passivity-based Control (IDA-PBC)

The IDA-PBC nonlinear technique, as proposed in (Ortega et al., 2002), is a passivity-based control
design method whose main control objective is to design a static state feedback control law of the
form u(x) = β(x) + v for the pH system in (1), such that the closed-loop dynamics is given by the
target passive pH system

ẋ = [Jd(x)−Rd(x)]
∂Hd

∂x
(x) + g(x)v, y′ = g(x)>

∂Hd

∂x
(x), (3)

where Jd(x) = −J>d (x) and Rd(x) = R>d (x) ≥ 0 are the desired interconnection and damping
matrices, respectively; and Hd(x) is the desired energy function. The desired Hamiltonian function
Hd(x) has a strict local minimum at the desired equilibrium point x? = (q?, 0) and the tuple (v, y′)
is the new power conjugate pair that defines the desired passivity relation with storage function
Hd(x). The main result in Ortega et al. (2002) is the following:

Theorem 1 (IDA-PBC) Consider J(x), R(x), H(x), g(x) of the pH system in (1) and the desired
equilibrium to be stabilized x∗ ∈ X . Assume that there exists functions Jd(x), Rd(x) and Hd(x)
satisfying the matching equation

g⊥(x)[Jd(x)−Rd(x)]
∂Hd

∂x
(x) = g⊥(x)[J(x)−R(x)]∂H

∂x
(x), (4)

where g⊥(x) is the full rank left annihilator of g(x). Then the control law

u = [g>(x)g(x)]−1g>(x)

(
(Jd(x)−Rd(x))

∂Hd

∂x
(x)− (J(x)−R(x))∂H

∂x
(x)

)
︸ ︷︷ ︸

β(x)

+v (5)

locally stabilizes system (1) and the closed-loop system (3) is passive with the new input v and

output y. Moreover, if x∗ is the largest invariant subset in {x ∈ X |∂H
>
d

∂x (x)Rd(x)
∂Hd
∂x (x) = 0}

then x∗ is asymptotically stable. The results holds globally if x∗ is a global minimum of Hd(x) and
Hd(x) radially unbounded.

3



NEURAL IDA-PBC

After some straightforward algebraic manipulations, it is easy to show that the desired functions
can be rewritten as the sum of the functions J(x), R(x), H(x) of the pH system in (1) and some
auxiliary functions Ja(x), Ra(x), Ha(x) such that

Jd(x) := J(x) + Ja(x), Rd(x) := R(x) +Ra(x) Hd(x) := H(x) +Ha(x). (6)

These auxiliary terms are used to assign the desired functions in Theorem 1. Some implicit design
requirements in Theorem 1 are mentioned below as these are key for the constructive procedure that
will be presented in Section 3.

(P1) Structure preservation: the matrices [J(x) + Ja(x)] and [R(x) + Ra(x)] ≥ 0 are skew-
symmetric and symmetric, respectively.

(P2) Integrability: K(x) = ∂Ha
∂x (x) is the gradient of a scalar function, i.e. ∂K∂x (x) =

[
∂K
∂x (x)

]>
.

(P3) Equilibrium assignment: ∂Hd
∂x (x?) = ∂H

∂x (x
?)+ ∂Ha

∂x (x?) = 0, where x? = argminx∈ΩHd(x).

(P4) Lyapunov stability Hd(x) is a positive definite function at x?, e.g. ∂
2H
∂x2

(x?)+ ∂2Ha
∂x2

(x?) > 0.

Under these conditions, the closed-loop system will be a PCH system with the form (3), where
Hd(x) is the closed-loop energy function.

3. Neural IDA-PBC

In this section we introduce how Neural Networks can be used to solve the PDEs in (4). This
methodology is based on the intrinsic property of Neural Networks as Universal Approximators
(Hornik et al., 1989; Cybenko, 1989; Kratsios and Papon, 2021).

3.1. Using PINNs to solve PDEs

As showcased in (Raissi et al., 2017a,b), the universal approximation property of NNs can be ex-
ploited to find the solution of ill-posed problems such as the ones involving PDEs. Considering a
nonlinear parametric partial differential of the form

ut +N [u;λ] = 0, (7)

whereN [·;λ] is a nonlinear operator parameterized by λ and ut is the time derivative of the function
u(t, x). We can define a residual term, f(t, x), as the left-hand-side of (7) such that the NN that
minimizes this residual is considered an approximated solution of (7), i.e.

L(θ;x) : = ut(θ; t, x) +N [u(θ; t, x);λ], θ? = argminθL(θ;x). (8)

In this case, u(t, x) = uθ(θ
?; t, x) + ε, and the result is a deep neural network that encodes the

relation(s) of PDE(s). This methodology is known as Physics Informed Neural Networks (PINNs).
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NEURAL IDA-PBC

3.2. Using PINNs to solve the non-parameterized IDA-PBC

Assuming the existence of solutions for the problem defined by (4), (P1) - (P4), finding the missing
functions Ja(x), Ra(x) and Ha(x) is an inverse problem, in particular an ill-posed one, which
makes it a perfect candidate to be studied under the scope of physics-informed machine learning
(Karniadakis et al., 2021).

To reduce the underdeterminism of the problem, we adopt the non-parameterized IDA-PBC
approach, formalized in (Nageshrao et al., 2015), which requires solving the MEs after fixing the
choice of Jd(x) and Rd(x). However, in order to avoid triviality when choosing these values, we
propose to only fix Jd(x), while iteratively adapting Rd(x) to obtain certain desired properties of
the closed-loop system. At the same time, Hd(x) := H(x) + Ha(x) can be approximated using
NNs. The diagram in Figure 1 illustrates this working strategy.

Figure 1: Neural IDA-PBC diagram. The NN is used to solve the non-parameterized IDA-PBC
problem. It approximates the auxiliary energy and damping functions,Ha, andRa, such that the loss
function L(θ;x, x?) is minimized. This loss function is methodologically constructed in Section
3.3. x is a tuple of points in the state space X . H , J , R and g are the open loop Hamiltonian,
interconnection, damping and input matrices as in Section 2.1. The desired interconnection matrix
Jd(x) and desired equilibrium point x? are fixed and passed directly into the loss function.

3.3. IDA-PBC loss function

This section defines the residuals that encode the IDA-PBC principles listed in Section 2.2. They
are then combined into the objective function needed to be minimized using NNs. For simplicity
in the presentation, we will only consider fully-actuated mechanical systems given by (1) with the
standard Hamiltonian function H . The residuals are created from (P1) - (P4) as follows.

(P1) Structure preservation residual

Interconnection matrix In order to satisfy this property we are forced to choose an auxiliary inter-
connection matrix Ja(x) with a skew-symmetric form. Correspondingly, we consider the following
structure for Ja as proposed in (Ortega and Spong, 2000), Ja(x) =

[
0 J1(x)

−J1(x)> J2(x)

]
, where J1(x)

is an arbitrary n × n matrix and J2(x) ∈ Rn×n is skew-symmetric matrix. Both are fixed by the
user prior to the optimization process.

5
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Dissipation matrix The desired damping matrix Rd in (P1) must be positive semi-definite. For
this matrix, we also choose to adopt the parametric version of the structure in (Ortega and Spong,
2000), Ra(θ;x) =

[
0 0
0 R2(θ;x)

]
, where R2(θ;x) ∈ Rn×n is symmetric and positive-definite matrix

parametrized by θ. The parameterization of Ra is to enable the discovery of admissible damping
functions that fulfill the design criteria during the optimization process. For instance, the chosen
criteria is related to the transient behavior of the closed-loop system, where we can prescribe the
transient behaviour through the enforcement of the rate of energy decrease via Fd(x) = Jd(x) −
Rd(x). In particular, we define the following residual

ftransient(θ;x) := max {0, c+Re(σ(Fd(x))}︸ ︷︷ ︸
fdamping

+ ‖Im(σ(Fd(x))‖︸ ︷︷ ︸
fharmonic

, (9)

where c > 0 is the prescribed convergence rate of the new energy function Hd, Re and Im are
the real and imaginary part, respectively. The first term is related to the residual for prescribing
the damping of target system while the second term corresponds to the residual for minimizing the
harmonic oscillation.

(P2) Integrability residual As the NNs are used to obtain the scalar function Ha(θ;x), the inte-
grability condition (P2) is fulfilled by construction.

(P3) Equilibrium assignment residual The condition in (P3) implies that the closed-loop energy
function, Hd(θ;x) := H(x) + Ha(θ;x), has a global minimum at the desired equilibrium x? =
(q?, 0). Correspondingly, we consider the following residual function to assign the equilibrium
point

feq(θ;x, x
∗) :=

∥∥∥∥∂Hd

∂x
(θ;x?)

∥∥∥∥2

︸ ︷︷ ︸
feq,1

+(Hd(θ;x
?))2 +max{0,−Hd(θ;x)}︸ ︷︷ ︸

feq,2

, (10)

where feq,1 defines that x∗ is a stationary point and feq,2 is used to induce a lower bound on Hd.

(P4) Lyapunov stability residual This condition is equivalent to having the spectrum of ∂
2Hd
∂x2

(θ;x)
to be positive. Therefore the residual function to guarantee (P4) is given by

flyap := max {0, c− σ(Hd(θ;x))} , (11)

where σ denotes the spectrum of a matrix and c > 0 is again a constant value that can be added to
make this condition stricter.

IDA-PBC matching equation residual We can rewrite the IDA-PBC ME (4) in the residual
form moving all the terms to the left-hand-side as it is presented in 3.1,

fmatching := g⊥(x)[Jd(x)−Rd(x)]
∂Hd

∂x
(x)− g⊥(x)[J(x)−R(x)]∂H

∂x
(x). (12)

Finally, we can combine all residuals (9) - (12) to get the final cost function

L = ftransient + feq + flyap + fmatching. (13)

6
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This cost function implicitly encodes the family of admissible solutions of the IDA-PBC control
scheme. As a consequence of the universal approximation theorem (Hornik et al., 1989; Cybenko,
1989), if follows that the NN that minimizes (13) approximates the required auxiliary functions
R?a(x) ≈ Ra(θ?;x) + ε and H?

a(x) ≈ Ha(θ
?;x) + ε, that asymptotically stabilize the system at the

desired equilibrium point x?.

4. Neural IDA-PBC for mechanical systems

This section includes the numerical results for two different examples. The NN used throughout this
section has 3 hidden layers of 20 units each, and the optimizer chosen is Adam with a learning rate
of 0.001, that is interrupted after certain convergence tolerance is reached, followed by L-BFGS-B
as presented in the seminal work (Raissi et al., 2017a).

4.1. Simple Pendulum

The simple pendulum is a well established example in robotics due to its non-linear dynamics and
simple formulation. In this case we consider a system with no natural damping, actuated at its joint
i.e. g(x) =

[
0 1

]>, to be stabilized at an arbitrary configuration x? = (q?, 0). The total energy of
this system is given by H(x) = 1

2ml2
p2 +mgl(1− cos q).

Substituting into (4), we obtain the ME for this problem (1 + J1)
∂Ha
∂p (x) = −J1

∂H
∂p , which

together with (P1) - (P4) encode the family of solutions defined by the IDA-PBC control methodol-
ogy. In Figures 2 and 3 we present the numerical results for two illustrative cases where J1 = −0.5
and J1 = 1 respectively. The choice of these values can be intuitively interpreted changing the
closed-loop inertia by a factor of two.

In both cases we observe that the NN is able to approximate the required Ha(x) and Ra(x),
therefore asymptotically stabilizing the closed-loop system at the desired point x? = (π/2, 0).
Additionally, Figures 2(b) and 3(b) show a comparison of q(t) and p(t) between Neural IDA-PBC
methodology for a non-trivial Ja(x) and the solution of IDA-PBC when J1 = 0 is chosen to simplify
the original MEs (pure potential energy compensation). From this comparison, it is evident that
although (in the simple pendulum case) modifying the kinetic energy of the system is not crucial
for stabilization, being able to solve the MEs for non-arbitrary choices of Ja(x) is important to not
limit the energy-based controller to a particular family of solutions where the trajectory might be
sub-optimal.

4.2. Double Pendulum

The double pendulum system is also very common in robotics and it is normally used to represent a
2-link manipulator. In this example we also consider that there is no natural damping on the system,
that the actuation also occurs at its joints, i.e. g(x) =

[
02×2 I2

]> and we want to stabilize the
system at x? = (q1

?, q2
?, 0, 0). The total energy function for this system is given by H(q, p) =

1
2 [

p1 p2 ]M−1(q) [ p1p2 ]+(m1 +m2)gl1(1− cos(q1))+m2gl2(1− cos(q2)) where the inertia matrix

M(q) is given by M(q) =
[

(m1+m2)l21 m2l1l2 cos(q1−q2)

m2l1l2 cos(q1−q2) m2l22

]
.

7
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(a) Potential maps of different energy functions for J1 = diag(−0.5).

(b) Temporal dynamics of q (left) and p (right) for different initial conditions.

Figure 2: Numerical simulations of the simple pendulum system for different values of Ja(x) pa-
rameterized as in (P1): (a) On the left, the approximatedHa(θ;x) that satisfies the simple pendulum
matching equations when J1 = diag(−0.5). On the right, the resulting closed-loop energy function
Hd(θ;x) = H(x) +Ha(θ;x) (solid curve) which is convex and has a minimum at x? = (π/2, 0);
(b) Neural IDA-PBC (solid line) after fixing J1 = −0.5 vs the analytical solution of the MEs
(dashed line) when Ja(x) = 0 and the potential energy is compensated to be quadratic around x?.

In this case, substituting into (4), we obtain two MEs that need to be satisfied in order to obtain
an IDA-PBC control law that stabilizes the system:

(1 + J11)
∂Ha

∂p1
Ha(x) = −J11

∂Ha

∂p1
(x) and (1 + J12)

∂Ha

∂p2
(x) = −J12

∂Ha

∂p2
(x).

Notice that these MEs, only impose a structure in the generalized momenta directions. There-
fore, in order to ease the discovery of the solution using NNs, we create an additional comple-
mentary residual to steer the closed-loop system in the generalized coordinates direction. Suppose
Hd(x) =

1
2p
>N(q)p + Ud(q − q?), where N(q) is a positive definite matrix, then the gradient in

the coordinates direction ∂Hd
∂q (x) = F (q, p) + ∂Ud

∂q (q − q?) ≈ Gd(q − q?) must be a monotonic
function to guarantee the Lyapunov stability condition (P4). We can choose this function apriori, by

8
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(a) Potential maps of different energy functions for J1 = diag(1.0).

(b) Temporal dynamics of q (left) and p (right) for different initial conditions.

Figure 3: Numerical simulations of the simple pendulum system for different values of Ja(x) pa-
rameterized as in (P1): (a) On the left, the approximatedHa(θ;x) that satisfies the simple pendulum
matching equations when J1 = diag(1.0). On the right, the resulting closed-loop energy function
Hd(θ;x) = H(x) +Ha(θ;x) (solid curve) which is convex and has a minimum at x? = (π/2, 0);
(b) Neural IDA-PBC (solid line) after fixing J1 = 1.0 vs the analytical solution of the MEs (dashed
line) when Ja(x) = 0 and the potential energy is compensated to be quadratic around x?.

defining a complementary residual as

fcomp(θ;x, x
∗) : = Gd(q − q?)−

(
∂H

∂q
(x) +

∂Ha

∂q
(θ;x)

)
L = ftransient + feq + flyap + fmatching + λfcomp

where λ is an extra multiplier that can be adjusted to change the closed-loop temporal dynamics.
In Figure 4 we present the temporal dynamics of q(t) and p(t) for two different cases (J1 =

diag(−0.5), J2 = 0) and (J1 = diag(1.0), J2 = 0). Here, we also compare the Neural IDA-PBC
response with the case where Ja(x) = 0 (pure potential energy compensation).

We can see that the Neural IDA-PBC method is capable of asymptotically stabilizing the system
around a desired point. And again, the comparison with the pure potential energy compensation case
(as it is commonly done in practice), shows how modifying the closed-loop interconnection matrix
has a big impact in the closed-loop system trajectories.

9
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(a) The temporal dynamics of q (left) and p (right) for different initial conditions.

(b) The temporal dynamics of q (left) and p (right) for different initial conditions.

Figure 4: Numerical simulations of the double pendulum system for different values of Ja(x) pa-
rameterized as in (P1): (a) Neural IDA-PBC (solid line) after fixing the pair (J1 = diag(−0.5),
J2 = 0) vs the analytical solution of the MEs (dashed line) when Ja(x) = 0 and the potential
energy is compensated to be quadratic around x?; (b) Neural IDA-PBC (solid line) after fixing the
pair (J1 = diag(1.0), J2 = 0) vs the analytical solution of the MEs (dashed line) when Ja(x) = 0
and the potential energy is compensated to be quadratic around x?.

5. Conclusions

In this paper, we have presented a systematic approach to solve the IDA-PBC problem formulation
using control-informed neural networks. For this purpose we have adapted the residual methodology
presented in (Raissi et al., 2017a,b; Karniadakis et al., 2021) to cover the fundamentals required by
the IDA control method and the PBC theory.

The presented methodology allows to exploit the true dynamics of the system forgetting about
the necessity of solving complex PDEs for non-trivial choices of Jd(x). This is achieved thanks
to the automatic discovery of solutions for Ha(x) and Ra(x). An extra advantage of rewriting the
problem into an optimization framework is that it allows to include residuals that account for phys-
ical limitations such as actuator saturation or unsafe configurations. This, together with improving
the transient behaviour of the controlled system by defining an optimal criteria to choose Jd(x) an
Rd(x) is left as an exercise for the future.
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