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a b s t r a c t 

While MRI allows to encode the motion of tissue in the magnetization’s phase, it remains yet a chal- 

lenge to obtain high fidelity motion images due to wraps in the phase for high encoding efficiencies. 

Therefore, we propose an optimal multiple motion encoding method (OMME) and exemplify it in Mag- 

netic Resonance Elastography (MRE) data. OMME is formulated as a non-convex least-squares problem 

for the motion using an arbitrary number of phase-contrast measurements with different motion encod- 

ing gradients (MEGs). The mathematical properties of OMME are proved in terms of standard deviation 

and dynamic range of the motion’s estimate for arbitrary MEGs combination which are confirmed using 

synthetically generated data. OMME’s performance is assessed on MRE data from in vivo human brain 

experiments and compared to dual encoding strategies. The unwrapped images are further used to re- 

construct stiffness maps and compared to the ones obtained using conventional unwrapping methods. 

OMME allowed to successfully combine several MRE phase images with different MEGs, outperforming 

dual encoding strategies in either motion-to-noise ratio (MNR) or number of successfully reconstructed 

voxels with good noise stability. This lead to stiffness maps with greater resolution of details than ob- 

tained with conventional unwrapping methods. The proposed OMME method allows for a flexible and 

noise robust increase in the dynamic range and thus provides wrap-free phase images with high MNR. 

In MRE, the method may be especially suitable when high resolution images with high MNR are needed. 

© 2022 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Phase-contrast Magnetic Resonance Imaging (PC-MRI) is a well- 

stablished method for measuring flow velocities ( Srichai et al., 

009; Markl et al., 2012; Dyverfeldt et al., 2015 ) or tissue dis- 

lacements due to harmonic excitation as used in Magnetic Res- 

nance Elastography (MRE) ( Muthupillai et al., 1995; Mariap- 

an et al., 2010; Klatt et al., 2007; Singh et al., 2015; Pepin 

t al., 2015; Dong et al., 2018; Manduca et al., 2021 ). MRE 

s used for the non-invasive characterization of the mechani- 
∗ Corresponding author. 

E-mail address: c.a.bertoglio@rug.nl (C. Bertoglio). 
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al properties of a specific tissue or organ of interest and has 

een used for many different applications in pre-clinical animal 

 Yin et al., 2007; Bertalan et al., 2020; Guo et al., 2019 ) and in vivo

uman studies (e.g. cardiac Elgeti et al., 2009; Sack et al., 2009b , 

uscle Papazoglou et al., 2005; Schrank et al., 2020a , abdomen 

sbach et al., 2008; Venkatesh and Ehman, 2015; Dittmann et al., 

017; Venkatesh et al., 2013 and brain Sack et al., 2009a; Arani 

t al., 2015; Lan et al., 2020; Hiscox et al., 2020; Hughes et al., 

015; Huston III et al., 2016 ). 

Motion is encoded in the phase of the complex trans- 

erse magnetization proportional to the encoding efficiency of 

he motion encoding gradient (MEG). Yet, the phase can only 

e measured in the half-open interval [ −π, π) and phase 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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raps (abrupt jumps of 2 πk , with k ∈ Z ) occur if the encoded

hase exceeds those limits. Consequently, for a given encoding 

fficiency, there is a fixed amplitude range or dynamic range , where 

otion can be acquired without phase wraps. In other words, if 

he encoding efficiency is too large and therefore the true motion 

mplitude exceeds the dynamic range, phase wraps occur. Unfor- 

unately, selecting a large dynamic range leads to poor quality im- 

ges since – for a given signal-to-noise-ratio (SNR) in the magni- 

ude image – the “motion-to-noise-ratio” (MNR) is inversely pro- 

ortional to the dynamic range. Moreover, acquiring and averag- 

ng several images with fixed but high dynamic range (i.e. with 

o wraps) decreases the standard deviation of the averaged image 

ith order O(d G N 

−1 / 2 
G 

) , with N G the number of measurements for 

 fixed dynamic range d G . 

Therefore, it is a common practice to use low dynamic ranges 

nd then to remove the wraps afterwards. This allows a faster de- 

rease of the standard deviation of the estimated motion encoded 

mage than averaging. There are usually two type of approaches. 

First, unwrapping algorithms have been developed by as- 

uming that the motion field is smooth in space, see e.g. 

arnhill et al. (2015) , Loecher et al. (2016) and references therein. 

evertheless, they cannot recover the true underlying motion and 

ventually fail when the aliased regions are highly heterogeneous, 

ubject to noise or include nested wraps (i.e. when | k | > 1 ). In

uch cases, the unwrapped phase appears to be distorted and ob- 

tructs further data processing steps which leads to artifacts in 

he estimates of tissue properties ( Manduca et al., 2021 ). For in- 

tance, the simple 2 π-unwrapping Flynn (1997) algorithm is inher- 

ntly two-dimensional and fails to unwrap noisy complex wraps 

hen no well-defined enclosed region exists. The true motion can- 

ot be recovered because arbitrary 2 π-offsets are added. Gradient 

ased algorithms ( Sack et al., 2008 ) only yield the derivative of the

hase and amplify noise. Laplacian based unwrapping algorithms 

 Schofield and Zhu, 2003 ) remove the constant and linear terms 

rom the data and induce spatial smoothing, altering the resulting 

hase where important details may be lost. 

Second, voxelwise motion reconstructions using the so called 

ual motion encoding strategies have been proposed in PC-MRI 

hich are based on unwrapping low dynamic-range data by ex- 

loiting high-dynamic range data ( Lee et al., 1995; Schnell et al., 

017; Carrillo et al., 2019; Yin et al., 2018 ). In other words, 

easurements with a reduced dynamic range (hence, improved 

NR) are unwrapped using a measurement with a larger dynamic 

ange. Those methods are performed at each voxel independently 

nd therefore they do not assume or enforce smoothness of the 

otion-encoded phase field. This allows the reconstruction of the 

orrect motion images, but, at the cost of additional measure- 

ents. However, dual motion encoding also fails in the presence 

f noise when the MEG amplitudes do not differ largely. 

Hence, the aim of this work is threefold. 

Firstly, we analyze dual motion-encoding strategies showing 

hat dual motion encoding methods are limited to low noise phase 

mages. 

Therefore, we then develop a mathematical framework for mul- 

iple motion encoding, henceforth termed Optimal Multiple Motion 

ncoding (OMME) as an extension of optimal dual motion encod- 

ng reported in Carrillo et al. (2019) . We show that OMME outper- 

orms dual motion encoding in terms of unwrapping’s robustness 

o noise. This improvement comes at the cost of additional scans, 

owever being considerably more cost effective in terms of scan 

ime than standard image averaging. 

Finally, we propose a MRE scan protocol for OMME and test it 

n in vivo brain data. We first confirm that OMME provides ei- 

her a more noise robust unwrapping with similar MNR or im- 

roved MNR with similar noise robustness compared to dual mo- 

ion encoding strategies. Moreover overcoming the limitations of 
2 
nwrapping algorithms not only increases MNR but also allows to 

ecover more detailed stiffness maps than using standard unwrap- 

ing methods. 

. Theory 

In this section, we first introduce the notation and the mathe- 

atical model of phase and motion, including theoretical statistical 

nalysis of dual encoding methods. Then, we introduce OMME and 

erive its statistical properties. Please notice that the theory in this 

ection is formulated for one voxel, one motion encoding direction 

nd one time instance. This means, at the same time, that OMME 

oes not rely on spatio(-temporal) regularity assumptions as con- 

entional unwrapping methods. Therefore, in practice OMME is ap- 

lied to each direction and spatio-temporal location independently. 

.1. Single motion encoding 

For a given MEG “G ”, the model of measured phase can be writ- 

en in the form 

 G (u ) = δu 
G + u 

π

d G 
+ επ (1) 

ith the following notation: 

• u denotes the motion of the media (quantity of interest) in the 

direction of the MEG (dimensions are velocity or displacement, 

depending on the quantity encoded); 
• d G is the “dynamic range” of motion encoding, which depends 

on the MEG’s amplitude, duration, shape and assumption on 

the motion (same dimensions as u ); 
• δu 

G 
is the spatially varying background phase, which in general 

depends on gradient imperfections of spin-echo sequences, the 

MEG (e.g by eddy currents and Maxwell effects) and the motion 

since imaging gradients also encode motion (time dependent); 
• ε is a zero mean Gaussian random variable representing the 

measurement noise in the phase. Its variance depends on the 

SNR of the magnitude measurements. 

The background phase can further be modelled as follows: 

u 
G = ϕ 0 + δG + m (u ) (2) 

ith the following notation: 

• ϕ 0 is the time constant (static) background phase of the imag- 

ing gradients due to gradient imperfections and concomitant 

fields 
• δG is a time constant MEG-dependent phase induced e.g by 

eddy currents and Maxwell effects 
• m (u ) is the motion-dependent phase encoded by the imaging 

gradients. 

In order to separate the unwanted background phase from the 

esired dynamic (time dependent) contributions of the MEG, it is 

ecessary to perform a series of acquisitions with and without 

pplied vibrations and MEGs. In flow velocity–encoded MRI, the 

easurement of δu 
G 

is the common practice (i.e. four points 4D 

low) ( Markl et al., 2012 ). In MRE, we will show in the methods

ection that δu 
G 

can be measured considerably faster compared to 

 G (u ) . 

We define as single encoding the situation where u estimated 

rom a measurement of the background phase δu 
G 

and the full 

hase ϕ G (u ) , for a single MEG G . 

Given measurements of ϕ G (u ) and δu 
G 

with noise realizations ε u 
nd ε δ , respectively, the single-encoding estimation u G is given by: 

 G = (ϕ G (u ) − δu 
G ) 

d G − (ε u − ε δ ) d G . (3) 

π
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or the sake of generality, we will assume different distribu- 

ions for ε u and ε δ , i.e. ε u ∼ N (0 , σ 2 
ϕ ) , ε δ ∼ N (0 , C 2 

δ
σ 2 

ϕ ) , C δ ≥ 0

nd Cov (ε u , ε δ ) = 0 , i.e. they are independent random variables.

he constant C δ represents the proportion in standard deviations 

etween the motion-encoded phase and the background phase 

easurements, which may differ in practice. Consequently, u G ∼
 (u true , (1 + C 2 

δ
) d 2 

G 
σ 2 

ϕ ) , with u true the true motion. 

Therefore, for a fixed value of σϕ , d G should be chosen as small 

s possible in order to minimize Var (u G ) . However, phase can be 

easured only within the interval [ −π, π) . Hence, if d G < | u true | (if
ϕ = 0 ) then u G wraps by a multiple of 2 d G . Wraps can also occur

ven if d G > | u true | in the presence of noise ε � = 0 . 

For a given dynamic range d G , a possible approach to reduce 

ar (u G ) is to average more measurements, say n G times. Then: 

 G ∼ N (u true , (1 + C 2 δ ) d 2 G σ
2 
ϕ n 

−1 
G ) . (4) 

rom this relation it is clear that decreasing d G is more effective 

han increasing the number of measurements n , since Var (u G ) de- 

reases with d 2 
G 
/n G . 

.2. Dual motion encoding 

.2.1. Phase-contrast from two MEGs 

We assume now that we measure phases with two differ- 

nt MEGs amplitudes G 1 � = G 2 = G 1 /β , with β � = 0 . Without loss

f generality, we assume 0 < β < 1 , obtaining dynamic ranges d 1 
nd d 2 = βd 1 , respectively. This results in four measured phases 

 1 , δ
u 
1 
, ϕ 2 , δ

u 
2 

. We assume that these values already include the ad-

itive noise as indicated above. We also assume for the subsequent 

omputation of the variances that these phases have no wraps. 

From the four phase measurements, four motion images can 

hen be estimated: 

 1 = 

ϕ 1 − δu 
1 

π
d 1 u 2 = 

ϕ 2 − δu 
2 

π
d 2 (5) 

 ps = 

ϕ 1 + ϕ 2 − δu 
1 − δu 

2 

π
d ps u pc = 

ϕ 2 − ϕ 1 + δu 
1 − δu 

2 

π
d pc (6) 

ith d ps = (d −1 
1 

+ d −1 
2 

) −1 d pc = (d −1 
2 

− d −1 
1 

) −1 . The indexes pc and

ps denote phase contrast and phase sum , respectively. Notice that 

 

 

 

 

 

d pc = d 1 
β

1 − β
≥ d 1 > d 2 = βd 1 > d ps = d 1 

β

1 + β
, for 1 / 2 ≤ β < 1 , 

d 1 > d pc = d 1 
β

1 − β
> d 2 = βd 1 > d ps = d 1 

β

1 + β
, for 0 < β < 1 / 2 

(7) 

Defining α = Cσϕ d 1 , with C = 

√ 

(1 + C 2 
δ
) , the variances of the 

ifferent motion estimators satisfy: 

ar (u 1 ) = C 2 σ 2 
ϕ d 

2 
1 = α2 Var (u 2 ) = C 2 σ 2 

ϕ d 
2 
2 = α2 β2 (8) 

ar (u pc ) = 2 C 2 σ 2 
ϕ d 

2 
pc = α2 2 β2 

(1 − β) 2 
= α2 β2 (

1 − β√ 

2 

)
2 

(9) 

ar (u ps ) = 2 C 2 σ 2 
ϕ d 

2 
ps = α2 2 β2 

(1 + β) 2 
= α2 β2 (

1 + β√ 

2 

)
2 

. (10) 

.2.2. Classical dual motion encoding unwrapping 

As explained above, when the dynamic ranges are decreased, 

raps appear. Dual encoding reconstructions aim to unwrap a 
3 
otion u low 

obtained with low dynamic range d low 

using a mo- 

ion u high obtained with a high dynamic range d high as follows 

ee et al. (1995) : 

 uw 

= u low 

+ 2 d low 

N.I. 

(
u high − u low 

2 d low 

)
(11) 

ith N.I. the nearest integer operator. This leads to Var (u uw 

) = 

ar (u low 

) when the unwrapping is successful. This method will 

e denoted in as standard dual encoding . We denote as effective 

ynamic range of the dual motion encoding unwrapping method 

 e f f = d high . 

To choose u low 

and u high we apply the following reasoning. 

irstly, we select u low 

= u 2 since it possess a higher dynamic range 

han u ps (e.g. d pc = 3 / 2 d ps for β = 1 / 2 ) only with a slightly higher

ariance (e.g. Var (u 2 ) / Var (u ps ) = 1 . 125 for β = 1 / 2 ). Secondly, we

elect 

 high = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

u 1 β = 1 

u pc 
1 

2 

< β < 1 

u 1 0 < β ≤ 1 

2 

(12) 

ince u pc has the desired effective range d pc = d e f f ≥ d 1 for β > 

 / 2 , but for β ≤ 1 / 2 it holds d 1 = d e f f , and for β = 1 u pc is not

efined and d 1 = d e f f . 

emark 1. Note that a dual encoding approach presented in 

in et al. (2018) – with both MEGs chosen with different polarity, 

.e. differing by a factor −k , with 0 < k < 1 – is equivalent to the

ne defined above. Indeed, it can be shown that for a fixed d e f f 

ts lowest dynamic range corresponds to d pc = (1 − k ) / (1 + k ) d e f f .

hen, the lowest dynamic range is d 2 = d e f f (1 − β) . This leads

o both approaches be equivalent if β = 1 + (k − 1) / (k + 1) . In

in et al. (2018) , it was for instance taken k = 0 . 777 hence equiva-

ent to a β = 0 . 875 . Note that we excludes the case k = 1 from the

nalysis since it does not correspond formally to dual encoding but 

o single encoding because d ps → ∞ . 

.2.3. Optimal dual encoding unwrapping 

In Carrillo et al. (2019) , a new method for unwrapping two 

otion-encoded images was introduced, Optimal Dual Venc (ODV). 

he method is based on the formulation of the phase contrast 

roblem as the minimization of cost functional. For the single mo- 

ion encoding case, the cost functional has the form: 

 i (u ) = 1 − cos 

(
ϕ i − δu 

i − πu 

d i 

)
= 1 − cos 

(
π

d i 
(u i − u ) 

)
(13) 

hich comes from a least squares approximation for the angle by 

easuring the components of a vector. 

It is easy to see that the period of J i (u ) is 2 d i , and there-

ore local minimum among with smallest value (in absolute terms) 

 i + 2 k i d i , k i ∈ Z , corresponds to the single encoding phase-contrast

otion. 

For the dual encoding case, the problem shifts from finding the 

ocal minima of J i (u ) to find the global minima of 

 dual (u ) = J 1 (u ) + J 2 (u ) = 2 − cos 

(
π

d 1 
(u 1 − u ) 

)
− cos 

(
π

d 2 
(u 2 − u ) 

)
. 

(14) 

t was proven in Carrillo et al. (2019) that u true is a global min-

mum of J dual in the noise-free case. Now in Appendix A.1 , we 

rove that in the general case – and possibly with noisy data –

nwrapping is produced by the fact d dual = lcm (d 1 , d 2 ) , with lcm

he least common multiplier function, is the minimal value such 

hat J dual (u ) = J dual (u + d dual ) when d 1 /d 2 ∈ Q .. Moreover, it can be

lso noted that d dual = d e f f . Indeed, writing β = a/b, a < b ∈ N we
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 e f f = d 1 
a/b 

1 − a/b 
= d 1 

a 

b − a 
d dual = d 1 a (15) 

here the last equality follows from the proof in Appendix A.1 . 

f b = a + 1 , then d e f f = d dual . Also by definition, if β < 1 / 2 , then

 e f f = d dual = d 1 . Therefore, in these scenarios both standard dual 

ncoding and ODV methods have the same effective dynamic range 

nd they can be fairly compared to each other. 

Another contribution of this work is the computation of the 

ariance of the ODV estimate u ∗ leads to 

ar (u ∗) = 

Var (u 2 ) 

1 + β2 
< Var ( u 2 ) (16) 

he computation is detailed in Appendix A.2 for the more general 

ase of multiple encoding. 

.2.4. Limitations of dual encoding 

From Eq. (7) , notice that when β → 1 − (left limit), then d e f f →
 . Therefore, one may think that d 1 , d 2 could be chosen arbitrarily

mall to minimize Var (u 1 ) , Var (u 2 ) while keeping d e f f large. How- 

ver, we will show here that noise affects the unwrapping perfor- 

ance of the methods. Therefore, dual motion encoding strategies 

ave limitations which become more important the closer d 1 and 

 2 are. 

Fig. 1 presents the previous findings in a graphical way. There, 

e show the standard deviations of the estimators (i.e. the square 

oot of the variances) versus the effective dynamic ranges for var- 

ous values of β . Each sub-figure was generated for a given value 

f β ∈ { 1 / 4 , 1 / 2 , 2 / 3 , 3 / 4 , 1 } and σφ = { 0 . 01 , 0 . 05 } , by the follow-

ng procedure: 

• Ground truth values are set as: u true = 1 and δu 
1 

= δu 
2 

= 0 . 9 π . 
• For a fixed value of d e f f and β , d 1 are computed as: 

d 1 = 

{ 

d e f f if β = 1 , β ≤ 1 / 2 

d e f f 

1 − β

β
if 1 / 2 < β < 1 

(17) 

• Measurements of motion encoded phases ϕ 1 , ϕ 2 were gener- 

ated using Eq. (1) , the ground truth values of the parameters 

defined above and adding Gaussian noise with standard devia- 

tion σϕ . Measurements were wrapped to the interval [ −π, π ] . 
• δu 

1 
, δu 

2 
are perturbed adding Gaussian noise with standard devi- 

ation σϕ . 
• Then u 1 , u 2 were computed with Eq. (5) . Phase differences were 

wrapped to the interval [ −π, π ] . 
• u uw 

with Eq. (11) and u ∗ with the algorithm detailed in Eq. (21) .
• Similarly u e f f was generated being the single motion phase 

contrast estimate with d G = d e f f is computed for comparison. 
• The standard deviation of such estimates considering the 50 0 0 

realizations is computed. 
• The curves are drawn by repeating this procedure in the inter- 

val d e f f ∈ [1 , 4] . 
• The theoretical standard deviations curves are the ones fol- 

lowing the derivations in the previous sections: 
√ 

2 d e f f σϕ 

(single encoding), 
√ 

2 d 2 σϕ (standard dual encoding) and √ 

2 d 2 / 
√ 

1 + β2 σϕ (ODV). 

The quality of the results depends on both values of β and σϕ . 

or small values of σϕ , the empirical and theoretical standard devi- 

tions match, but the empirical increases – deviating from the the- 

retical one – when d e f f → | u true | , as expected, due to the wraps.

his issue becomes more relevant when σϕ grows. In this low 

oise scenario, the maximum gain with respect to the case of re- 

eating the same measurements (i.e. β = 1 ) is when β = 3 / 4 since

or a fixed d e f f , d 1 = d e f f / 3 and d 2 = d e f f / 4 . 
4 
However, the reconstruction with β = 3 / 4 becomes unstable 

hen increasing σϕ . A similar effect can be observed with β = 1 / 2 .

he most robust variant with respect to noise for both standard 

nd optimal methods appears to be β = 1 / 2 , where d 1 = d e f f and

 2 = d e f f / 2 . In case of the optimal method, this can be explained

y the fact that the local minima of both J 1 and J 2 cost functionals

ave maximal distance. For the other values of β , this distance is 

uch smaller, we refer to Carrillo et al. (2019) for details. 

In particular for β = 1 / 2 , between both methods, the optimal 

ual encoding appears to be more robust with respect to noise, 

specially when d e f f → | u true | , and slightly better than the stan-

ard dual encoding approach when d e f f > | u true | due to (A.10) . The

ossible explanation is that unwrapping and noise compensation 

re done simultaneously, and therefore, a more robust unwrapping 

ethod results. For other values of β , it appears that the stan- 

ard dual approach performs better in terms of robustness when 

 e f f → | u true | . 
.3. Optimal multiple motion encoding (OMME) 

We now propose a systematic method to include N measure- 

ents with dynamic ranges d 1 , . . . , d N in order to extend the effec-

ive dynamic range d e f f while keeping Var (u ∗) as the one for the 

mallest d 1 , . . . , d N . The idea is that by doing so, we can increase

he robustness of the unwrapping when σϕ increases. Therefore, 

uch strategy can be of great utility when high quality images are 

eeded e.g. at high spatial resolutions, for instance. 

The optimal dual encoding formulation allows a straightforward 

xtension to multiple MEGs, i.e. 

 N (u ) = 

N ∑ 

j=1 

(
1 − cos 

(
π

d j 
(u j − u ) 

))
(18) 

he multiple motion encoding reconstruction u ∗ is then the global 

inimum of smallest magnitude within [ −d e f f , d e f f ] , with d e f f the

ynamic range of OMME. From the proof in Appendix A, J N has 

eriodicity equal to the least common multiplier of 2 d 1 = · · · = 2 d N 
hen d j = d 1 (a/b) j−1 , a < b ∈ N , being then d e f f = a N−1 d 1 half of

hat periodicity. 

The variance of u ∗, is given by 

ar (u ∗) = Var (u N ) 
1 − β2 

1 − β2 N 
< Var (u N ) , (19) 

ee detailed computation in Appendix A.2 . For instance for the case 

f β = 1 / 2 – which is the most robust as it was shown above – the

eductions are for N = 2 , 3 , 4 
 

Var (u ∗) = 0 . 89 

√ 

Var (u 2 ) , 
√ 

Var (u ∗) = 0 . 87 

√ 

Var (u 3 ) , 
 

Var (u ∗) = 0 . 86 

√ 

Var (u 4 ) , (20) 

espectively. Therefore, the gain in noise reduction with respect to 

he lowest dynamic range is only slightly reduced. At the same 

ime, the computational complexity of the an exhaustive search of 

he global minimum of J N (u ) increases considerably with N, since 

he interval [ −d e f f , d e f f ] needs to be sampled according to d N .

herefore, we propose here to just use J N (u ) to guide the unwrap-

ing of u N , i.e. to find u ∗ by solving: 

 ∗ = arg min 

k ∈ Z 
J N (u N + 2 d N k ) , subject to − d e f f ≤ u N + 2 d N k ≤ d e f

(21) 

nd then to set u ∗ = u N + 2 d N k ∗. This leads to Var (u ∗) = Var (u N ) .

or image datasets as used in this work, e.g. for N = 3 solving Prob-

em (21) is about 9 times faster than an exhaustive global mini- 

um search of J N (u ) . 

Fig. 2 shows the results OMME using a number of measurement 

ombinations, values of β and σφ . For β � = 1 , the fast version of 
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Fig. 1. Standard deviations v/s effective dynamic range for single and dual encodings for β = { 1 / 4 , 1 / 2 , 2 / 3 , 3 / 4 } (from top to bottom) and σϕ = { 0 . 01 , 0 . 05 } (from left to 

right). Continuous lines represent the empirical ones (i.e. computed from the numerical experiments) and dashed lines the theoretical ones given in the last bullet point in 

Page 8. 

5 
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Fig. 2. Standard deviation v/s effective dynamic range for the OMME reconstruction for β = { 1 / 2 , 2 / 3 , 3 / 4 , 1 } with N = 1 , . . . , 5 for σφ = 0 . 05 (as the worst case in the 

previous Fig. 1 ) and for β = { 1 / 2 , 1 } with σφ = 0 . 1 . The continuous lines represent the empirical results (i.e. the one computed from the numerical experiments) and the 

dashed lines the theoretical results. 

6 
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MME was used, while for β = 1 the standard version of OMME 

hich averages the phases in the complex plane. 

It can be appreciated that, when β � = 1 , OMME with β = 1 / 2

rovides the most robust unwrapping with respect to noise. It can 

e also seen that when further increasing the noise σϕ , OMME de- 

reases its robustness. It can also appreciated that, for β = 1 / 2 , 1 ,

ncreasing N also increases the robustness when d e f f → u true for 

ach level of noise. 

Of course, the unwrapping capabilities of OMME fail when 

he noise grows. In that case, it is recommendable to just re- 

eat the experiment with the same dynamic range and average 

he results, as done for instance in Fig. 2 f. This of course pro-

ides only a linear decrease in the variance with respect to the 

umber of measurements N, as shown in Fig. 2 , instead of expo- 

ential as in OMME. Naturally, both strategies could be eventu- 

lly combined (if enough scan time available) by averaging first 

or each MEG and then use OMME with β = 1 / 2 with a better

NR. 

.4. On the choice of β and N

If the user sets the desired dynamic range d e f f (e.g. 20 μm in 

RE), as presented above the best combination of β and N de- 

ends on σϕ . 

If the dynamic range at the desired MNR is d N , and we fix the

roportion β = a/b, the number of gradients can be found by using 

he relation 

 e f f = d 1 a 
N−1 = 

d N 
βN−1 

a N−1 = d N b 
N−1 (22) 

eading to N = log (d e f f /d N ) / log (b) + 1 . 

For example, if d e f f /d N = 8 , then with β = 1 / 2 N =
og (8) / log (2) + 1 = 4 , and with β = 2 / 3 N = log (8) / log (3) + 1 =
 . 89 ≈ 3 . Notice also that for β > 1 / 2 , this implies that d 1 < d e f f 

nd hence the d 1 image can still contain wraps while d e f f may 

ot. However, what we recommend is first to take β = 1 / 2 , which

rovides the best unwrapping robustness when increasing SNR: in 

he next sections we show that in real MRE images β > 1 / 2 often

ails already when N = 2 . 

. Methods 

.1. Subjects 

In vivo MRE was performed in eight healthy men without a 

istory of neurological diseases (mean age ± SD: 36 ± 9 years). 

he study was approved by the ethics committee of Charite- 

niversitaetsmedizin Berlin in accordance with the Ethical Princi- 

les for Medical Research Involving Human Subjects of the World 

edical Association Declaration of Helsinki. Every participant gave 

ritten informed consent. 

.2. OMME-MRE experimental setup 

All experiments were performed in a 3T MRI scanner (Siemens 

agnetom Lumina, Erlangen, Germany). In order to separate the 

ifferent contributions to the background phase as indicated in 

qs. (1) and (2) , four scans were consecutively acquired in each 

ubject as summarized in Table 1 . 

Measurements with harmonic vibrations sampled eight phase 

ffsets equally spaced over a vibration period using pressurized 

ir drivers as described elsewhere ( Schrank et al., 2020b ). The vi- 

rations were induced with a forerun of 2 s before MRE data ac- 

uisition was started in order to establish a steady state of time- 

armonic oscillations throughout the brain. Measurements with 

ctive MEGs were conducted for three spatial directions along 
7 
ead-feet, left-right and anterior-posterior consecutively and were 

epeated for each single MEG amplitude. The amplitude of the har- 

onic vibrations was the same in all individual acquisitions. It was 

uned to avoid signal voids due to intra-voxel phase dispersion for 

he highest MEG amplitude and to not show any phase wraps for 

he MEG amplitude of 8 mT/m. In three subjects the measure- 

ent without vibration was repeated once with same MEG polar- 

ty (δG + ) and once with opposite MEG polarity (δG −) to investigate 

he influence of MEG polarity on the induced static background 

hase and further detailed in Section 3.5 . 

Using the same polarity has an advantage when doing 

ual multiple encoding. For a given dynamic range d G , either 

−G/ 2 , G/ 2 } (symmetric) or { G ,background} (non-symmetric) need 

o be measured to perform the phase contrast and remove the 

ackground phase. In dual or multiple-encoding, this needs to be 

one before the reconstruction and not afterwards e.g. by the 

ourier analysis. 

With regard to Table 1 it can be appreciated that if, one 

ull MEG measurement requires 1 scan time unit, the symmet- 

ic phase-contrast approach requires 2 while the latter would re- 

uire 1 + 1 / 3 + 1 / 8 + 1 / 24 = 1 . 5 , hence being more time-effective

lready for one single motion encoding. Of course, the symmetric 

pproach has the advantage of being able to decrease the dynamic 

ange with the same MEG amplitude, hence potentially being able 

o obtain better MNR (but more wraps). Also, it only performs 

wo subtractions, instead of 4, leading to a better MNR. However, 

he MNR of the non-symmetric approach can be brought to the 

alue of the symmetric case when φ0 is smoothed and the imag- 

ng gradients are neglected for large MEGs as it is presented later 

n Section 3.8 . 

In multiple encoding, for N dynamic ranges, the symmetric ap- 

roach would lead to 2 N scan time units. The non-symmetric ap- 

roach, would lead to N + 1 / 3 + N/ 8 + 1 / 24 = N(9 / 8) + 9 / 24 scan

ime units. This is a considerable advantage in terms of scalability 

f the non-symmetric approach with respect to the symmetric one. 

.3. OMME-MRE sequence 

Single frequency MRE using a single-shot, spin-echo echo- 

lanar imaging (EPI) sequence was performed for harmonic vibra- 

ions at 31.25 Hz. 17 axial slices with an interslice gap of twice 

he slice thickness were recorded using GRAPPA parallel acquisition 

 Griswold et al., 2002 ) with acceleration factor of 2. Slice position- 

ng was automatically done using the scanner build-in auto align 

unction based on the localizer scan (head-brain). Further imaging 

arameters were: field of view 202 × 202 mm 

2 , voxel size 1.6 ×
.6 × 1.6 mm 

3 , echo time (TE) of 74 msec and repetition time (TR) 

f 2500 msec. Three components of the wavefield in orthogonal di- 

ections were acquired with first order flow-compensated MEGs of 

arying amplitude (32, 24, 16, 8, 4, 2 mT/m) and a fixed frequency 

f 34 Hz with slew rate of 125 mT/m/ms. The corresponding dy- 

amic ranges were 7, 9, 13, 26, 52, 104 μm. The dynamic range of 

he imaging gradients was 149 μm. Each time the MEG amplitude 

as changed, one preparation scan was performed to reduce tran- 

ient effects of eddy-currents. 

Acquisition time for a set of 3D MRE data was approximately 

:55 min ( 70s per MEG amplitude, vibration on and MEG on). Ad- 

itional acquisition time for the individual background phase con- 

ributions was 3:07 min. 

.4. Motion correction and segmentation 

Complex MR images were corrected for stochastic head mo- 

ion in the range of ± 2 mm using SPM12 Penny et al. (2011) .

oreover measurements without vibration were registered to cor- 

esponding measurements with vibration, since deflated actuators 
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Table 1 

Measurement strategy for determining different phase contributions and for the dual motion 

encoding and OMME reconstructions. 

Phase contribution Vibration MEG Timesteps Directions Scan time [norm] 

1 . ϕ G (u ) on on 8 3 1 

2 . ϕ 0 off off 1 1 1/24 

3 . ϕ 0 + δG off on 1 3 1/8 

4 . ϕ 0 + m (u ) on off 8 1 1/3 
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esults in a vertical displacement of axial slices in the order of 1–

 mm with respect to the inflated actuators during vibration. Au- 

omatic segmentation of white matter (WM) and gray matter (GM) 

ased on averaged MRE magnitude images was done using SPM12. 

he tissue probability maps were thresholded at 0.8 for WM and 

.9 for GM to generate logical tissue-associated voxel masks. The 

M threshold was higher to reduce boundary artifacts at cortical 

M/fluid boundaries (see Fig. 3 ). 

.5. Reconstruction of phase contributions 

The individual phase contributions in Eq. (2) were recovered 

y a number of subtractions. ϕ 0 (measurement 2, see Table 1 ) 

as subtracted from measurement 3 to determine the static MEG- 

ependent phase δG . Subtraction of measurement 3 ( ϕ 0 ) and mea- 

urement 4 gave the motion-dependent phase encoded by the 

maging gradients m (u ) . The static background phase components 

 0 and δG were smoothed using a Gaussian filter with 1 mm 

tandard deviation in order to reduce noise enhancement by fur- 

her subtraction of these components. This was justified since both 

tatic phases show low spatial variations within the brain. Finally 

e subtracted the individual phase contributions from measure- 

ent 1 to determine the tissue displacement encoded by the MEG 

nly (1) . From the repeated measurements without vibrations and 

ither same or opposite MEG polarity, we determined pixel-wise 

he relative absolute error (RAE) (RAE + = | δG + − δG + | /π ; RAE − = 

 δG + − δG −| /π ) . The RAE was then averaged over WM and GM and

ubjects for each MEG amplitude. 

.6. Displacement reconstruction 

Single encoding phase contrast images were computed for each 

EG using Eq. (3) (assuming no noise). The background phase was 

btained as detailed in Section 3.5 . Dual and tri-encoding phase 

mages were computed using the OMME formula (21) . Dual encod- 

ng phase images were computed using the combinations of two 

ingle encoding images, namely 32 and 24 mT/m, 24 and 16 mT/m, 

6 and 8 mT/m, 32 and 8 mT/m. In addition, OMME was used to 

ombine three phase images acquired with MEG amplitudes of 32, 

6, 8 mT/m and 32, 24, 16 mT/m. 

As shown in the theory section all these combinations exhibit 

he same dynamic range d G given by the lowest encoding ampli- 

ude of 8 mT/m, which had no more phase wraps. Notice that due 

o the inclusion of m (u ) in the background phase for all MEGs, 

he phase difference measurements are not i.i.d. as assumed in 

he noise analysis. However, recall that Eq. (21) is used for the re- 

onstruction and therefore the unwrapped image does not result 

n the combination of phase differences any more. Therefore, the 

easurements not being i.i.d. does not affect the variance of the 

econstruction. 

We determined the number of wrongly reconstructed voxel in- 

ide WM and GM tissue for each combination of MEG amplitudes 

n order to assess the noise sensitivity of the different combina- 

ion possibilities in vivo as it was simulated before (see Fig. 1 ). We

efined the single phase-contrast image with a MEG of 8 mT/m 
8 
s our ground truth and calculated the voxel wise difference to 

he multiple MEG phase reconstructions. Based on the noise level 

n the image and the maximum encoded displacement, a thresh- 

ld of 0.1 rad phase difference was used to identify wrongly re- 

onstructed voxel in WM and GM. Relative error rates were deter- 

ined by dividing the number of wrongly reconstructed voxels by 

he total number of voxels included in the GM and WM masks in 

ll slices, timesteps and encoding directions. 

To further investigate the noise sensitivity of the displacement 

econstruction, we added complex Gaussian noise with a standard 

eviation of 15% of the mean absolute encoded phase in WM and 

M to the single PC images and repeated the evaluations. 

Furthermore wrapped single motion encoding phase contrast 

mages for the highest MEG of 32 mT/m were unwrapped using 

aplacian and Flynn based unwrapping algorithms. We chose to 

ompare our proposed method with Flynn and Laplacian based un- 

rapping to include two common but different approaches which 

re publicity available at https://bioqic-apps.charite.de . We com- 

ared the different unwrapping approaches in terms of MNR as 

escribed further below and in terms of the visual quality of the 

econstructed elastograms as outlined in the next section. 

.7. Shear wave speed reconstruction 

Wrap-free phase images from unwrapping algorithms and from 

ual and multiple encoding methods were used for reconstruc- 

ion of shear wave speed (SWS) maps based on phase-gradient 

avenumber recovery to avoid noise amplification by the Lapla- 

ian operator which is inevitable in direct inversion techniques 

 Hirsch et al., 2017; Mura et al., 2020 ). SWS is related to tissue

tiffness and will be termed as such in the following. The prin- 

iple of wavenumber (k-) based multi-component, elasto-visco (k- 

DEV) inversion was originally introduced for liver MRE and is 

utlined in Tzschätzsch et al. (2016) . 

It is important to note that each reconstructed voxel of the elas- 

ograms resulted directly from 24 individual voxels of the phase 

mages (8 timesteps and three encoding directions) and indirectly 

rom their surrounding voxels as well. If only one voxel in the 

hase images is wrongly reconstructed, the resulting elastogram 

oxel is corrupted. Therefore we analysed additionally the wrongly 

econstructed voxels with respect to the elastograms for the com- 

arison of different multiple encoding approaches. To calculate rel- 

tive error rates, we divided again the number of wrongly recon- 

tructed voxels by the number of all directly affecting voxels. In 

ontrast to the phase images, the number was not multiplied by 

he amount of timesteps and encoding directions. k-MDEV inver- 

ion was adapted to the resolution of brain MRE as outlined in 

erthum et al. (2021) . Compared to k-MDEV proposed for abdom- 

nal organs ( Tzschätzsch et al., 2016 ), smoothing the phase images 

rior to the unwrapping was omitted since this would have influ- 

nced the MNR estimations. Moreover, the linear radial filter in the 

patial frequency domain was replaced by a radial bandpass But- 

erworth filter of third order with highpass threshold of 15 1/m 

nd lowpass threshold of 250 1/m. 

https://bioqic-apps.charite.de
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Fig. 3. Measured phase ϕ G (u ) of the complex MR signal in one representative slice, encoding direction (anterior-posterior) and subject for different MEG ampltiudes ranging 

from 32 mT/m to 2 mT/m. The separated phase contributions correspond to the model ϕ G (u ) = ϕ 0 + δG + m (u ) + u π
d G 

with u π
d G 

being the motion u encoded by the MEG 

with dynamic range d G and the background phase due to the static phase of the imaging gradients ϕ 0 , the static MEG-dependent phase δG and the motion-dependent phase 

encoded by the imaging gradients m (u ) . Additionally the static-background phase δ−G for toggled MEG polarity is shown. MRE mean magnitude image and masks for white 

matter (WM) and gray matter (GM) are given as reference. The color scale of the phase images was adapted at each figure for better visualization. 
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.8. Noise reduction by adding back imaging gradient’s phase 

In the OMME context, the subtraction of m (u ) is needed for the 

orrect phase contrast when including several gradient strengths. 

owever, it is a common practice to assume that the phase contri- 

ution m (u ) is small with respect to the contribution of the wave

otion for the largest MEG (i.e. smallest dynamic range d N ). In 

uch cases adding back the phase contribution of the imaging gra- 

ient’s to the OMME reconstruction allows theoretically for a re- 

uction factor 1 / 
√ 

2 ≈ 0 . 7 in the standard deviation of the noise of

he displacement field. 

Therefore, the displacements obtained with OMME are postpro- 

essed by the following operation 

 ∗ → u ∗ + 

m (u ) 
d N (23) 
π

9 
This effect is compared quantitatively in terms of MNR as out- 

ined in the next section and qualitatively on the resulting elas- 

ograms in Fig. 5 . All other results, elastograms and wave fields are 

ithout re-added m(u). 

.9. Noise analysis and statistical tests 

Signal power and MNR of the phase images are important pa- 

ameters for the subsequent post-processing and final SWS re- 

onstruction. According to our theory, OMME promises wrap-free 

hase images with MNR corresponding to the highest MEG used 

or OMME phase recovery. To calculate MNR for experimental data 

unwrapped and unsmoothed phase images) we used the blind 

oise estimation method from Donoho et al. (1995) as outlined and 

reviously applied to MRE data in Bertalan et al. (2019) . Noise es- 

imation in the wavelet domain is expected to be well suited for 
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Fig. 4. Different phase reconstructions of a single timestep with the same dynamic range d e f f using multiple motion encoding measurements. Here OMME with three MEGs 

(32, 16, 8 mT/m) and (32, 24, 16 mT/m) is compared to dual encoding using 32 and 24 mT/m, 24 and 16 mT/m, 16 and 8 mT/m, 32 and 8 mT/m. The bottom row shows the 

same reconstructions with added Gaussian noise with a standard deviation of 15% of the mean absolute encoded phase in WM. 
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ave images ( Barnhill et al., 2017; Selesnick et al., 2005 ). We esti-

ated MNR from the dual-tree wavelet transformation of the dis- 

lacement images with the median absolute deviation of the finest 

and of wavelet coefficients ( Donoho et al., 1995 ). The estimated 

ignal power was derived from the L2-norm. Signal and noise lev- 

ls were estimated from automatically segmented WM and GM re- 

ions (see Fig. 3 ) for all slices and components and averaged after- 

ards. 

To test for significant differences in the number of reconstruc- 

ion failures using OMME and dual encoding strategies, a linear 

ixed-effects model with varying intercept was employed. Error 

ates were used as dependent variables and the different meth- 

ds as independent variables. Participants were assigned as ran- 

om effect. To test for significant differences in the MNR of un- 

rapped phase images using OMME, Laplacian and Flynn unwrap- 

ing, a linear mixed-effects model with varying intercept was em- 

loyed. MNR was used as dependent variables and the different 

ethods as independent variables. Participants were assigned as 

andom effect. All P -values were calculated using Tukey’s post hoc 

est with Bonferroni correction for multiple comparisons. All sta- 

istical analysis was done in R (version 4.0.2). Unless otherwise 

tated, errors are given as standard deviation (SD). P -values below 

.05 were considered statistically significant. 

. Results 

.1. Phase images 

Fig. 3 shows the encoded phase of the complex MR signal, 

ith the different contributions modeled by Eqs. (1) and (2) de- 

ived from the measurements listed in Table 1 . One central slice 

f the anterior-posterior encoding direction is displayed for one 

epresentative subject. The third column shows the static back- 

round phase induced by toggled MEGs. For reference the MRE 
10 
ean magnitude and masks for WM and GM are given. Table 2 

ummarizes the encoding efficiency for the different MEG ampli- 

udes and the imaging gradients. Group mean absolute displace- 

ent for all encoding directions averaged over WM tissue in rad is 

iven. Furthermore the averaged RAE of the background phase for 

he same and opposite MEG polarity is tabled, RAE + and RAE − re- 

pectively. The encoded phase u π
d G 

increased with increasing MEG 

mplitude and phase wraps occurred from 16 mT/m on. The static 

ackground phase induced by the MEG δG decreased with ampli- 

ude until no difference compared to the background phase in- 

uced by the imaging gradients ϕ 0 was visible. Toggling the MEG 

esulted in a different background phase which is visible for MEG 

mplitudes. The quantitative analysis using the RAE showed that 

he difference between repeated measurements with same MEG 

olarity (32 mT/m: 2 . 5 ± 2 . 4% ) is lower than with toggled MEG po-

arity (32 mT/m: 10 . 6 ± 7 . 8% ). The error decreased with decreasing

EG amplitude. The displacement encoded by the imaging gradi- 

nts m (u ) was small compared to the displacement encoded by 

he larger MEGs, although this estimate depends on the applied 

ibration frequency and is likely higher for higher frequencies. 

.2. Dual and multiple encoding unwrapping 

Fig. 4 shows the different phase reconstructions of a single 

imestep for different MEG combinations with the same dynamic 

ange of the MEG with 8 mT/m amplitude for one representa- 

ive slice. In addition reconstructed elastograms of SWS are dis- 

layed. At the top, results are given for the original data, which 

s the phase encoded by the MEG only. Results with added noise 

re shown at the bottom. OMME with three MEGs (32, 16, 8 mT/m 

nd 32, 24, 16 mT/m) was compared to dual encoding strategies 

sing 32 and 24 mT/m, 24 and 16 mT/m, 16 and 8 mT/m, 32 and

 mT/m. It is well visible that dual encoding with 32 and 24 mT/m 

erformed worst in terms of reconstruction failures, which sub- 
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Table 2 

Encoding efficiency and mean absolute encoded displacement as group averages for different MEG am plitudes and 

the imaging gradients. In addition, averaged relative absolute differences RAE for repeated measurements with same 

and opposite polarity are given. Standard deviations are given in brackets. 

MEG amplitude in mT/m Dynamic range in μm Encoded displacement in rad RAE + in % RAE − in % 

32 7 3.59 (1.24) 2.5 (2.4) 10.6 (7.8) 

24 9 2.75 (0.97) 2.4 (2.4) 7.8 (5.3) 

16 13 1.87 (0.65) 2.1 (2.2) 6.0 (3.7) 

8 26 0.98 (0.33) 2.2 (2.2) 3.7 (2.7) 

4 52 0.55 (0.15) 2.1 (2.2) 2.8 (2.5) 

2 104 0.36 (0.06) 2.0 (2.2) 2.5 (2.5) 

Imaging gradients 149 0.27 (0.05) 

Fig. 5. SWS maps based on wrap-free phase images using OMME (32, 16, 8 mT/m), without (mid column) and with (right column) applying Formula (23) for selected slices 

in three subjects. The anatomical reference image from T2 weighted MRE magnitude is included. 
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equently corrupted the reconstructed elastogram. Despite no ap- 

arent reconstruction failures in the selected slice, also the other 

pproaches showed defects in the final elastograms, which re- 

ulted from reconstruction failures on other timesteps or compo- 

ents. Moreover encoding approaches using higher MEGs showed 

ess noise in the reconstructed phase image. Adding noise to the 

omplex data before reconstruction increased the number of re- 

onstruction failures and noise of the combined image in all ap- 
11 
roaches. Consequently more corrupted voxels were visible in the 

nal elastogram. 

Table 3 summarizes the findings as relative error rates for the 

hase images ( 3 a) and for the elastograms ( 3 b) compared to the

otal amount of voxels (mean ± SD: 43 , 639 ± 3 , 114 ) inside the GM

nd WM mask for each subject. Incorporating all timesteps and en- 

oding directions resulted in a total 1,047,336 voxel which could 

ossibly fail to be reconstructed properly. In addition MNR of re- 
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Table 3 

Number of wrongly reconstructed voxels in % in phase images and elastograms and MNR for OMME using three MEGs 

and different dual encoding strategies. Group mean values were averaged over WM and GM and tabled as group mean 

(sd). All combinations exhibit the same dynamic range d G with different noise sensitivities to the input image noise σϕ 

and different noise levels of the reconstructed phase images (MNR). In addition results with added Gaussian noise (15% 

of the mean absolute encoded phase in WM) and added m(u) are given. MEG amplitudes are given in mT/m. 

OMME 32, 16, 8 OMME 32, 24, 16 Dual 32, 24 Dual 24, 16 Dual 16, 8 Dual 32, 8 

Phase images 

Original data 0.06 (0.04) 0.07 (0.04) 0.26 (0.18) 0.07 (0.04) 0.06 (0.04) 0.09 (0.06) 

+ 15% noise 0.2 (0.09) 0.33 (0.14) 4.11 (0.89) 0.79 (0.2) 0.2 (0.08) 1.73 (0.06) 

Elastograms 

Original data 0.4 (0.4) 0.5 (0.4) 3.9 (3.4) 0.4 (0.3) 0.4 (0.4) 1.1 (1.0) 

+ 15% noise 1.5 (0.9) 2.6 (1.4) 40.8 (9.9) 6.9 (1.3) 1.4 (0.5) 16.8 (7.7) 

MNR 

Original data 17.2 (3) 17 (3) 17 (3) 15.1 (3.1) 12.4 (2.8) 17 (3) 

+ 15% noise 9.8 (2.2) 9.7 (2.9) 10.1 (1.5) 9.1 (1.4) 5.1 (1.8) 7.8 (3.0) 

+ m(u) 18.8 (2.2) 18.5 (2.4) 18.6 (1.5) 16.8 (1.4) 13.7 (1.8) 18.3 (2.5) 
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onstructed phase images is tabled ( 3 c). All numbers are given as 

roup average and standard deviations in brackets. 

In general, only little reconstruction failures ( < 1% ) were ob- 

erved in comparison to all possible voxels in the phase images. 

nly the dual encoding with 32 and 24 mT/m with 15% added 

oise showed failures above 4% . However, due to the combinatorial 

ature of SWS reconstruction which combines up to 24 phase im- 

ges to one SWS image, the error rates became substantial for the 

lastograms. The relative differences between the reconstruction 

pproaches were conserved. For the original data, dual encoding 

ith 32 and 24 mT/m performed significantly worse ( 3 . 9 ± 3 . 4% )

han OMME with 32, 16, 8 mT/m ( 0 . 4 ± 0 . 4% , p = 0 . 001 ). There

as no statistical difference between the other encoding strate- 

ies ( p > 0 . 99 ). Nonetheless the MNR scaled with the highest MEG

mplitude used, such that approaches with 32 mT/m had a MNR 

f 17 ± 3 dB, 24 mT/m gave 15 ± 3 dB and 16 mT/m gave 12 ± 3

B. Adding noise to the original data inflated error rates in all 

pproaches which became larger than 40% for the noise sensi- 

ive dual encoding approach with 32 and 24 mT/m. With in- 

reased noise, OMME with 32, 16, 8 mT/m ( 1 . 5 ± 0 . 9% ) also sig-

ificantly outperformed the dual encoding with 24 and 16 mT/m 

 6 . 9 ± 1 . 3% , p = 0 . 03 ) and 32 and 8 mT/m ( 16 . 8 ± 7 . 7% , p < 0 . 0 0 01 )

n terms of reduced reconstruction failures. These findings are sup- 

orted in the theory section. OMME with 32, 24, 16 mT/m shows 

igher error rates in the elastograms with added noise ( 2 . 6 ± 1 . 4% )

han the combination 32, 16, 8 mT/m, what is expected due to the 

oor performance of 32, 24 mT/m. Therefore, OMME with 32, 16, 8 

T/m is the most noise robust unwrapping approach tested here. 

eedless to say, that MNR was reduced when noise was added and 

NR differences between the approaches were conserved. The last 

ow of Table 3 indicates an increased MNR with additional post- 

rocessing as described in Section 3.8 . MNR improvements with 

espect to the original data were achieved in all cases. Fig. 5 shows 

he corresponding elastograms in three volunteers for the compar- 

son between the original data and the additional postprocessing. 

he increased MNR is again evident. 

.3. Comparison to other unwrapping methods 

Fig. 6 shows representative results for the SWS maps recon- 

tructed from wrap-free phase images. The unwrapping was either 

erformed using OMME utilizing phase images from MEG ampli- 

ude of 32, 16 and 8 mT/m or by Laplacian and Flynn unwrap- 

ing algorithms applied to the PC image of 32 mT/m MEG am- 

litude. Anatomical reference images are based on T2 weighted 

RE magnitude images. Red arrows indicate areas where OMME 
12 
ased SWS reconstruction visually outperforms the other two ap- 

roaches. Overall the noise outside the brain was largely reduced 

sing OMME and tissue/air interfaces were sharper. Especially the 

ransition between the skull and the brain tissue was properly re- 

onstructed, while the unwrapping methods smoothed that region 

hich lead to spurious stiffness values and reduced contrast. 

In the first subject, it was especially difficult to demarcate the 

issue/air boundary in the area of the left superior temporal sulcus 

sing SWS reconstruction based on Laplacian and Flynn unwrap- 

ing. Only OMME allowed a good boundary detection. A similar 

ffect was visible at the lingula gyrus where the space between 

he two hemispheres was only preserved properly with OMME. For 

ubject two, the central part of the right lateral ventrical showed 

purious SWS values for Laplacian and Flynn unwrapping proba- 

ly due to tissue/fluid boundary artifacts which were enhanced by 

he algorithms. OMME based reconstruction showed higher level of 

etails by fully recovering the boundaries between brain tissue and 

ither ventricles or gyri. In the magnitude image of subject three 

usceptibility artifacts are present. However, OMME based SWS re- 

onstruction showed a good agreement with the anatomical refer- 

nce and correctly reconstructs SWS values associated with tissue 

oxels in the area of the temporal pole. In contrast, Laplacian based 

WS maps are heavily corrupted and no reference to the anatom- 

cal image is present. Flynn performs better but still with noisy 

WS values and blurred CSF/tissue (solid/fluid) boundaries. Simi- 

ar observations are visible in a more cranial area of the tempo- 

al pole in subject four. Noisy SWS values make the demarcation 

f the temporal pole difficult for Laplacian and Flynn unwrapping 

WS reconstructions. 

The MNR analysis based on wrap-free phase images with a MEG 

mplitude of 32 mT/m revealed for Laplacian unwrapping a group 

ean MNR of 15 . 9 ± 2 . 7 dB and for Flynn unwrapping 15 . 6 ± 2 . 4

B. Both results are significantly lower than the MNR for OMME 

ased unwrapping as listed in Table 3 ( p = 0 . 02 ). 

. Discussion 

We have developed, theoretically analyzed and assessed in nu- 

erical and human brain data a new method for combining an 

rbitrary number of motion-encoded PC-MRI images, the Optimal 

ultiple Motion Encoding method (OMME). 

We compared the proposed method with dual motion encod- 

ng strategies and common phase unwrapping algorithms in terms 

f unwrapping success, MNR and quality of subsequently recon- 

tructed SWS maps. To the best of the author’s knowledge, this is 
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Fig. 6. SWS maps based on wrap-free phase images using OMME (32, 16, 8 mT/m), Laplacian unwrapping and Flynn unwrapping for selected slices in four subjects. The 

anatomical reference image from T2 weighted MRE magnitude is included. Red arrows indicate areas where OMME shows more details and greater contrast in the SWS map. 
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he first reported method for combining a larger number of motion 

ncoded images obtained from different MEGs. 

For a fixed effective dynamic range of the encoded motion, 

MME presents a superior performance with respect to noise com- 

ared to standard dual encoding unwrapping. This was assessed 

nalytically and confirmed numerically in a “single voxel” experi- 

ent. The analysis on the in vivo data with respect to reconstruc- 

ion failures and MNR confirm these findings. Additionally it was 

hown that inverting the MEG polarity affects the induced back- 

round phase of the MEG which is not critical for our proposed 

ethod, but it should be considered in classical PC approaches 

here a phase-difference image is calculated to remove contam- 

nant phase information. 

It was shown that unwrapping is most robust to noise when N 

mages are combined which were measured in the dynamic ranges 

 1 , . . . , d N such that d i = 2 −i +1 d 1 . This simplifies the acquisition 

rotocol allowing the scanner operator to select the largest MEG 

nd the number of measurements N only, as it is usually done 

hen the MEG is kept fixed. 
13 
The OMME was compared against standard unwrapping meth- 

ds (Laplacian and Flynn). Remarkably, OMME allows to im- 

rove the SWS maps by reducing the noise in the wave im- 

ges without spatial smoothing as Laplace unwrapping does and 

ithout unwrapping failure as it may occur with Flynn un- 

rapping predominantly at boundaries. This showed that details 

an be preserved which are otherwise smoothed (out) by stan- 

ard unwrapping methods. This can be relevant for higher res- 

lution MRE in a variety of applications including tumor de- 

ection or characterization of lesion in multiple sclerosis (MS) 

treitberger et al. (2012) . Moreover, we showed that standard un- 

rapping methods smear boundaries between fluid filled spaces 

nd brain tissue. This not only affects cortical areas of the brain 

nd their tissue/air boundaries but also interfaces between tissue 

nd fluid filled ventricles. The importance of proper reconstruction 

f stiffness estimates for cortical areas has recently been addresses 

y Lilaj et al. (2021) . If tissue mechanical properties are altered at 

hose boundaries, e.g. as a result of impaired CSF-brain barriers in 

S Takeoka et al. (1983) OMME based wrap-free MRE phase im- 
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ges could be sensitive to those alterations. Also other interfaces 

etween tumor and healthy tissue could potentially be better re- 

olved. Further, the increased dynamic range of OMME with good 

NR properties could be utilized when high frequency vibrations 

nduce heavy wraps near the source and are quickly damped to- 

ards small deflection amplitudes inside the tissue under inves- 

igation. The potential of OMME for higher frequency MRE needs 

o be further investigated. Without heavy wraps, Laplacian and 

lynn unwrapping methods performed similar, which underlines 

hat OMME might be very suitable for high MNR applications. 

The postprocessing introduced in Section 3.8 allows for an im- 

rovement in the SWS image quality at no additional scan time 

nd at negligible computational cost. Since this assumes large MEG 

ncoding efficiencies compared with those of the imaging gradi- 

nts, the applicability should be investigated with respect to each 

pecific scanning protocol. 

As a limitation of OMME, examination times are increased by 

dditional measurements for multiple MEGs. Each applied MEG in- 

reases the total scan time by the acquisition time of one mea- 

urement. Moreover, the background phase (i.e. MEGs on and vi- 

ration off) needs to be measured, which still is required at one 

imestep only for all encoding directions, adding another 1/(num- 

er of timesteps) ∗ acquisition time. Nevertheless, the time in- 

estment pays off when phase wraps can be avoided and maps 

re generated that are more detailed than standard methods. Even 

esolving wraps only partly supports unwrapping algorithms and 

ermits higher encoding efficiencies than standard MRE towards 

easurement of damped waves without corrupting high amplitude 

egions. In addition, noise sources other than those mentioned 

ould also affect OMME performance. For example, induced move- 

ents due to scanner table vibrations are encoded as a function of 

EG amplitude and cannot be corrected. However, this was not a 

roblem here because the wave amplitudes were probably strong 

nough. 

OMME can be also applied to other PC-MRI methods like e.g. 

ow MRI. In that case the dynamic range will be the v enc parame- 

er. However, some careful noise analysis may be needed when the 

hen phase that does not depend on the motion is measured only 

nce, as it is the case in 4D Flow, since then the phase differences

or each v enc will be correlated. This might be investigated in a 

uture work. 
14 
. Conclusion 

In this study, we proposed an optimal multiple motion encod- 

ng (OMME) method which is suitable for motion sensitive PC- 

RI. A detailed theoretical analysis was provided to derive a ratio- 

ale for choosing the combinations of motion encoding gradients 

hat lead to robust unwrapping for a given effective dynamic range 

hen SNR in the phase images decreases. We applied novel OMME 

o MRE measurements of in vivo human brain acquisitions. It was 

hown that OMME outperforms dual encoding strategies and al- 

ows to recover more tissue details due to its increased MNR ra- 

io within a high dynamic range leading to SWS maps which pre- 

erve important details such as discontinuities in the stiffness. Es- 

ecially for applications of high resolution MRE wrap-free images 

ith proper MNR – as provided by OMME – are desired. 

As we showed in the theory section, OMME will fail in unwrap- 

ing to the given dynamic range when further increasing the noise 

n the phase images. Depending on the value of beta, images may 

e wrap-free or not, what is given by the relation between the ef- 

ective dynamic range and beta. 
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