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A B S T R A C T   

Objective: To evaluate performance of AI as a standalone reader in ultra-low-dose CT lung cancer baseline 
screening, and compare it to that of experienced radiologists. 
Methods: 283 participants who underwent a baseline ultra-LDCT scan in Moscow Lung Cancer Screening, be
tween February 2017–2018, and had at least one solid lung nodule, were included. Volumetric nodule mea
surements were performed by five experienced blinded radiologists, and independently assessed using an AI lung 
cancer screening prototype (AVIEW LCS, v1.0.34, Coreline Soft, Co. ltd, Seoul, Korea) to automatically detect, 
measure, and classify solid nodules. Discrepancies were stratified into two groups: positive-misclassification 
(PM); nodule classified by the reader as a NELSON-plus /EUPS-indeterminate/positive nodule, which at the 
reference consensus read was < 100 mm3, and negative-misclassification (NM); nodule classified as a NELSON- 
plus /EUPS-negative nodule, which at consensus read was ≥ 100 mm3. 
Results: 1149 nodules with a solid-component were detected, of which 878 were classified as solid nodules. For 
the largest solid nodule per participant (n = 283); 61 [21.6 %; 53 PM, 8 NM] discrepancies were reported for AI 
as a standalone reader, compared to 43 [15.1 %; 22 PM, 21 NM], 36 [12.7 %; 25 PM, 11 NM], 29 [10.2 %; 25 PM, 
4 NM], 28 [9.9 %; 6 PM, 22 NM], and 50 [17.7 %; 15 PM, 35 NM] discrepancies for readers 1, 2, 3, 4, and 5 
respectively. 
Conclusion: Our results suggest that through the use of AI as an impartial reader in baseline lung cancer screening, 
negative-misclassification results could exceed that of four out of five experienced radiologists, and radiologists’ 
workload could be drastically diminished by up to 86.7%.   

1. Introduction 

Lung cancer is a global problem as it remains the most common cause 

of cancer deaths. In 2020, 1.8 million deaths were attributable to lung 
cancer [1]. Extensive research has now unequivocally shown that lung 
cancer mortality can be significantly reduced through early detection of 

* Corresponding author. 
E-mail address: m.oudkerk@rug.nl (M. Oudkerk).   

1 Authors contributed equally 

Contents lists available at ScienceDirect 

Lung Cancer 

journal homepage: www.elsevier.com/locate/lungcan 

https://doi.org/10.1016/j.lungcan.2022.01.002 
Received 28 June 2021; Received in revised form 4 October 2021; Accepted 3 January 2022   

mailto:m.oudkerk@rug.nl
www.sciencedirect.com/science/journal/01695002
https://www.elsevier.com/locate/lungcan
https://doi.org/10.1016/j.lungcan.2022.01.002
https://doi.org/10.1016/j.lungcan.2022.01.002
https://doi.org/10.1016/j.lungcan.2022.01.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.lungcan.2022.01.002&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Lung Cancer 165 (2022) 133–140

134

preclinical disease represented by lung nodules, using low-dose CT lung 
cancer screening in well-defined high risk populations [2,3]. Therefore, 
the focus has now shifted to implementation research [4]. 

The implementation of LDCT lung cancer screening is about to 
represent a massive increase in workload in radiologist practice. The 
capacity of clinical radiologists is already under extreme pressure due to 
an ever-increasing demand for radiology services and workforce short
ages [5]. Thus, radiologists’ challenging workloads associated with 
LDCT lung cancer screening is a noteworthy hurdle which needs to be 
addressed and overcome in the planning of lung cancer screening 
implementation. 

Artificial intelligence (AI) could offer a solution. Over the last decade 
significant progress has been made to improve AI algorithms for use in 
LDCT lung cancer screening. Computer aided detection/diagnosis (CAD) 
systems that integrate machine learning and image processing have been 
developed to predominantly act as a ‘second reader’ for the radiologist, 
with the aim of improving reader accuracy [6]. However, despite mul
tiple studies presenting a possible value to using CAD as a second reader 
[7,8], too many doubts remain over accuracy and reproducibility for it 
to be clinically accepted [9]. The greatest obstacle is the false-positive 
results (lung nodules classified as clinically significant, which when 
worked-up are benign), and false-negative results (clinically significant 
lung nodules which are not reported). False-positive results lead to an 
increased workload for clinicians and potentially unnecessary psycho
logical stress for the patient as well as morbidity. False-negative results, 
on the other hand, represent clinically significant findings which could 
go undiagnosed. CAD systems are being constantly developed and 
progress has been substantial. Improvements are continuously being 
shown in both sensitivity and specificity. However, for AI to be of 
maximum benefit in lung cancer screening, the system used should be 
robust enough to safely rule out benign lung nodules. 

Additionally, as CT-lung cancer screening involves radiation expo
sure, questions have also been raised over associated hazardous effects. 
Consequently, the use of ultra-LDCT screening is now being deliberated 
[10]. To the best of our knowledge, the efficacy of AI as a standalone 
reader in ultra-LDCT lung cancer screening has never been validated. 

The aim of this study was to evaluate the performance of an AI 
prototype as an impartial reader in ultra-LDCT lung cancer baseline 
screening, and compare it to that of experienced radiologists and a 
consensus read reference standard, when using volumetric measure
ments with the 100 mm3 NELSON-plus/EUPS protocol threshold [4,11]. 

2. Materials and methods 

2.1. Study design and population 

A dataset of CT-scans from 283 participants who underwent a 
baseline ultra-LDCT thorax scan and had at least one solid nodule of any 
size at their baseline scan, between February 2017 and 2018, as part of 
Moscow Lung Cancer Screening (MLCS) was used in this present study. 
MLCS participants’ CT scans were selected for this study if they met the 
following inclusion criteria; 50–80 years of age; ≥ 30 packyears smoking 
history; current smoker or former smoker (ceased smoking < 15 years 
previously); and did not develop lung cancer within two years of their 
baseline ultra-LDCT scan. MCLS participants were excluded based on the 
following criteria: history of lung cancer or lung surgery (not including 
lung biopsy); cancer diagnosis within < 5 years of baseline screening; 
life expectancy of < 5 years due to severe cardiovascular, immunolog
ical, respiratory, or endocrine illness; acute respiratory disease; anti
biotic treatment < 12 weeks prior to screening; hemoptysis; weight loss 
> 10 kg within the year prior to screening; or no lung nodules detected 
during baseline screening. 

MCLS was conducted within the framework of order no. 49 dated 
01.02.2017 in the Moscow Department of Health. All participants signed 
an informed consent document and approval was granted by the Inde
pendent Local Ethics Committee of the Office of the President of the 

Russian Federation, Federal State Budgetary Institution “Central Clinical 
Hospital with Polyclinic” (Moscow) dated 20.05.2017. 

2.2. Ultra-low dose thorax CT (ultra-LDCT) scan protocol 

MCLS ultra-LDCT scan protocol has been published previously [12]. 
In short, MCLS participants underwent a baseline ultra-LDCT scan using 
Toshiba Aquilion 64 (Canon Medical Systems, Japan) slice CT scanners 
with a tube voltage of 135 kV, current from 15 mA to 25 mA, time 
rotation of 0.50 sec, pitch 1.484, slice thickness of 1 mm, and slice 
increment 1 mm. Radiation dose did not exceed one mSv, which is 
recognized by ERS as ultra-LDCT [13]. Participants were scanned from 
lung apices to bases during a single breath hold scan. 

2.3. Data management 

The dataset used in this study was retrospectively collected from the 
MLCS data management systems. All participant data is stored centrally 
in the Unified Medical Information and Analysis System (EMIAS) of 
Moscow and the Unified Radiological Information Service (URIS). 

2.4. AI deep learning-based nodule measurement 

Pulmonary nodules were identified, segmented and classified by an 
automated AI lung cancer screening prototype (AVIEW LCS, v1.0.34, 
Coreline Soft, Co. ltd, Seoul, Korea). The prototype was trained on 888 
CT scans from the public LUNA16 dataset using Densenet and Resnet 
architectures for nodule detection. After nodules were detected, nodule 
segmentation was performed. A threshold of − 450 HU and − 200 HU 
was used to coarsely extract solid component regions for solid and part- 
solid nodules, respectively. To select ground-glass regions for sub-solid 
nodules a histogram-based threshold was applied [14]. Subsequently, 
an asymmetric deformable model that utilized a modified energy func
tion, and intensity constrained averaging function was designed to 
refine the segmentation of nodule regions [15]. Following the segmen
tation of nodules, radiomics features, such as 3D_Texture_first
Order_variance, 3D_Texture_GLCM_CP, were extracted and a random 
forest model was trained with ten most important features to classify 
nodules into solid, part-solid, and ground-glass types. 

2.5. Volumetric lung nodule measurement 

All 283 participants’ ultra-LDCT scans were analyzed independently 
by five thoracic radiologists with more than seven years of experience in 
reading CT scans in lung cancer screening programs. In the case of 
multiple nodules per participant, the largest solid nodule was selected, 
as is recommended in the current CT-lung cancer screening guidelines 
[11,16]. Location of the largest nodules were correlated prior to 
analysis. 

Readers 1, 2, and 3, read the ultra-LDCT for visual detection of 
nodules and used CLS- semi-automated 3D to segment the nodule vol
ume (AVIEW LCS, v1.0.34, Coreline Soft, Co. ltd, Seoul, Korea). Reader 4 
used AGFA-semi-automated volume measurement software (AGFA En
terprise 8.0 Imaging software - Agfa HealthCare, Belgium), and reader 5 
used Syngo.via MM Oncology VB20 semi-automated volume measure
ment software. Our AI lung cancer screening prototype then indepen
dently analyzed all ultra-LDCT scans to automatically detect, measure, 
and classify nodules. Categorization of lung nodules was based on the 
NELSON-plus/EUPS protocol [4]. Nodules < 100 mm3 were classified as 
negative, and ≥ 100 mm3 as indeterminate/positive, as 100 mm3 is the 
upper volume threshold of benign nodule growth. At this threshold lung 
cancer risk probability increases in comparison to patients without 
nodules as reflected in the inclusion criteria of a lung cancer screening 
program [17]. 

An independent consensus read was performed by a panel of three 
radiologists with > 10 years’ experience and an experienced IT 
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technologist, of all the 283 largest nodules. Two of the consensus panel 
were not involved in the first individual read. This consensus read served 
as the reference standard and was used to determine the number of 
positive-misclassification (PM) and negative-misclassification (NM) re
sults. PM’s were nodules classified as ≥ 100 mm3 by readers/AI, which 
at consensus read measured < 100 mm3. NM’s were nodules classified 
as < 100 mm3, which at consensus read measured ≥ 100 mm3. Correct- 
positive (CP) and correct-negative (CN) results were those in agreement 
with consensus read. 

As various segmentation software packages were used (CLS, AGFA, 
and Synco.via), we compared the coherence of the radiologists inter
pretation, by looking at the variation in discrepant results. 

2.6. Statistical analysis 

A case by case analysis was performed to determine the volume of 
the largest nodule per participant. The results of each reader and AI were 
compared to the consensus read to determine the number of PM and NM 
results, and the total number of discrepancies. We report these results as 
absolute frequencies and percentages, and include a negative predictive 
value (NPV) with 95 % confidence interval (CI) where α = 0.05. An 
upper and lower limit for workload reduction when using AI was 
calculated based on nodule presence in a general population. During the 
NELSON-trial, in approximately 50 % of the population no nodules were 
detected [4]. The prevalence of participants with no-nodules/nodules <
30 mm3 reported in a general Dutch population who underwent a LDCT- 
scan was 62 %, although this was not a lung cancer screening trial [18]. 
In a sub-study of the NLST-trial and in the Korean Lung Cancer Screening 
project (K-LUCAS), 40 % and 54 % of participants respectively were in 
the Lung-RADS 1 category; no nodules or definitely benign [19,20]. As 
our dataset contained only participant scans (n = 283) where nodules 
were detected, we extrapolated the number of participants to the 

average nodule distribution in the general lung cancer screening popu
lation (50 %) to a total number of 2 × 283 (n = 566). As an average of 50 
% have no nodules, there can be no NM results in this group, and PM 
results will not exceed the false positive-rate of the population with 
nodules. Hence, the percentage of PM results would be lower in a gen
eral lung cancer screening population. Therefore, the upper limit was 
calculated based on there being no PM results, and the lower limit based 
on the PM findings reported when using AI in the nodule group, which is 
probably a significant overestimation. Workload reduction limits were 
calculated as follows; upper limit = (n + CN + NM)/566 and lower limit 
= ((n + CN + NM) – PM)/566, where n is the number of participants 
with a nodule (n = 283), CN is the number of negative nodules reported 
at consensus read, and NM and PM are the number of negative- 
misclassification and positive-misclassification findings reported by AI, 
discrepant with consensus read. 

3. Results 

3.1. Population characteristics 

A total of 283 participants with one or more lung nodule(s) were 
included. Participants were 50–80 years of age (mean ± SD; 64.6 ± 5.3), 
and 161 (56.9 %) were male. 

3.2. Volumetric lung nodule measurements 

For the included participants, a total of 1149 lung nodules with a 
solid component were detected, of which 878 were classified as pure 
solid nodules. The largest solid nodule per participant was used: the 
consensus read reported 83/283 (29 %) nodules ≥ 100 mm3 (NELSON- 
plus indeterminate/positive nodules), and 200/283 (71 %) nodules <
100 mm3 (NELSON-plus negative nodules). 

Table 1 
Distribution of results per reader.   

Reader 1 [CLS] Reader 2 [CLS] Reader 3 [CLS] Reader 4 [AGFA] Reader 5 [Syngo.via] AI [CLS] 

Positive-misclassification 22 (7.8) 25 (8.8) 25 (8.8) 6 (2.1) 15 (5.3) 53 (18.7) 
Negative-misclassification 21 (7.4) 11 (3.9) 4 (1.4) 22 (7.8) 35 (12.4) 8 (2.8) 
Total Discrepancies 43 (15.1) 36 (12.7) 29 (10.2) 28 (9.9) 50 (17.7) 61 (21.6) 
NPV (95 % CI) 0.89 (0.85–0.94) 0.94 (0.91–0.97) 0.98 (0.96–1.00) 0.90 (0.86–0.94) 0.84 (0.79–0.89) 0.95 (0.91–0.98) 

[semi-automated volume measurement software package]; (percentage % of nodules n = 283); NPV negative predictive value; CI confidence interval. 

Fig. 1. Graphical representation of the number of positive-misclassification and negative-misclassification findings per reader.  
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AI as an impartial reader had 61 [21.6 %; 53 PM, 8 NM] discrep
ancies reported, compared to 43 [15.1 %; 22 PM, 21 NM], 36 [12.7 %; 
25 PM, 11 NM], 29 [10.2 %; 25 PM, 4 NM], 28 [9.9 %; 6 PM, 22 NM], 
and 50 [17.7 %; 15 PM, 35 NM] discrepancies for readers 1, 2, 3, 4, and 5 
respectively. An overview of results per reader can be seen in Table 1 
and graphically in Fig. 1. 

The eight negative-misclassification findings reported by AI were 
analyzed further. Four of the eight NM findings were recognized by AI 
but classified as being part-solid, although the AI correctly measured the 
solid component (≥100 mm3), see Fig. 2. Twelve nodules detected by AI 
were between 90 and 100 mm3 and eleven were between 100 and 110 
mm3. Of these 23 nodules, 7 were PMs and there were no NM findings. 

When looking specifically at the performance of the manual software 
packages (CLS, AGFA and Syngo.via), we see no notable variation in 
performance of volume segmentation. We do however see variation in 
the individual performance of the radiologists, the inter-reader 
performance. 

When using AI in a general lung cancer screening population, based 
on the findings in this study, we could expect a workload reduction 
lower limit of 77.4 % and upper limit of 86.7 %. An overview of the AI 
workload reduction calculations can be found in Fig. 3. 

4. Discussion 

Our aim was to shed light on the performance of AI as an impartial 
reader in ultra-low-dose CT lung cancer baseline screening, and compare 
it to that of experienced radiologists. 

We demonstrated that AI as a standalone reader outperforms all 
except one experienced radiologist, when looking specifically at nega
tive misclassifications. AI had 8 (2.8 %) NM results compared to 21 (7.4 
%), 11 (3.9 %), 4 (1.4 %), 22 (7.8 %), and 35 (12.4 %) for readers 1 to 5 
respectively. Also, only 53 (18.7 %) positive-misclassification results 
were reported by AI for all lung nodules. False-negative results, in our 
study represented by negative-misclassifications, are particularly un
desirable in screening programs as they can lead to a potential delay in 
the detection of cancer, and public confidence in screening could be 
reduced [21]. 

Previous research has demonstrated the value of AI as a ‘second 
reader’. Christe et al., investigated the best pairing of first and second 
reader, human and CAD, when using an anthropomorphic lung phantom 
and artificial lung nodules. They found the highest sensitivity (between 
97 % and 99 %) of lung nodule detection when combining a human 
reader with CAD, independent of the CT-examination dose. When 
comparing any two CAD systems, lower sensitivity was found (between 
85 % and 88 %), which was significantly less than the combination of 

Fig. 2. Automatic classification of nodule density: 
correct volume measurement of part-solid component 
by AI. Axial (A) and coronal (B) CT reformation 
showing a large solid nodule (noted by red outline) 
attached to pleura and abutting the aspect of medi
astinal pleura: the nodule was reported by 4 out of 5 
radiologists and classified as solid, one radiologist 
missed the nodule and AI classified the nodule as part- 
solid. Multiplanar reconstructions capture minimal 
ground-glass opacity surrounding the paracardiac 
space (potentially motion artifact from cardiac cycle), 
which was allegedly conditioned the AI classification 
into part-solid nodule (D, E). The volume rendering 
reconstruction (C) captures the complexity of 
geometrical layout between the large solid nodule 
(noted by red surface) and the solid vessel structure 
that is partially notched into the solid nodule. (For 
interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of 
this article.)   

Fig. 3. AI upper and lower workload reduction limit 
calculations. n is the number of participants with a 
nodule (n = 283), CN is the number of negative 
nodules reported at consensus read, NM and PM are 
the number of negative-misclassification and positive- 
misclassification findings reported by AI discrepant 
with consensus read, and 566 is the extrapolated 
number of participants to the average nodule distri
bution in the general lung cancer screening popula
tion, a total number of 2 × 283.   
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radiologist and CAD, p < 0.003 [7]. Similar research has since taken 
place in ‘real-world’ LDCT lung cancer screening. Liang et al., investi
gated the value of CAD systems in reducing false-negative results. They 
reported CAD would be valuable as a second reader. Up to 70 % of lung 
cancers which were undetected by radiologists during LDCT screening 
were subsequently detected by the CAD system. However, CAD failed to 
detect 20 % of lung cancers previously detected by radiologists [8]. Liu 
et al., has also confirmed the usefulness of AI in nodule identification 
and management. Their deep learning model was robust and showed 
good sensitivity when compared to manual human review. Additionally, 
their model was not dependent on radiation dose, CT-scanner manu
facturer, or patient characteristics [22]. Heuvelmans et al., has recently 
published additional supporting evidence for value of AI. They used US 
National Lung Cancer Screening Trial (NLST) data to train a Lung Cancer 
Prediction Convolutional Neural Network (LCP-CNN) to generate a 
malignancy score for each lung nodule detected. When independently 
evaluated on a European multicenter trial dataset, the LCP-CNN 

performed excellently in the identification of benign nodules [23]. 
While a minority of FP findings, in our study represented by positive- 

misclassifications, is related to interpretation of focal findings, we sus
pect that FP findings of AI could largely be due to nodule attachment (for 
example vessel or pleural attachment, due to overestimation of nodule 
size (see Fig. 4). Multiple studies have shown that through the use of AI- 
based vessel-suppression, the detection and classification of lung nod
ules can be improved [24–26]. Hence, further refinement of the AI 
system to exclude nodule attachment could add further value. During a 
nuanced analysis of NM findings, we found four out of eight NM results 
reported by AI were due to misclassification of the nodule (part-solid in 
place of solid), despite the AI being able to correctly identify the size of 
the solid component (≥100 mm3). Therefore, through fine-tuning of this 
AI to correctly categorize these four nodules, we could yield NM results 
equivalent to that of the best performing reader. A comparison between 
AI nodule findings and radiologists findings is shown in Fig. 5. 

To the best of our knowledge, we show for the first time that AI 

Fig. 4. Positive-misclassification findings of AI due to segmentation of right paravertebral scar, and over-segmentation of solid nodules attached to vessels or pleura. 
Axial (A) and coronal (B) CT reformation showing a right paravertebral focal opacity with elongated shape (noted by red outline) into the expected pattern of 
paravertebral scarring, the automatic detection and characterization classified this finding as solid nodule with volume segmentation in AI reading reported volume 
above 100 mm3 (376 mm3). The volume rendering reconstruction (C) captures the segmentation of the elongated volumetric structure (noted by red surface) and its 
proximity to the paraspinal pleura. Axial (D) and coronal (E) CT reformation showing a solid nodule attached to vessel, the automatic volume segmentation in AI 
reading reported volume above 100 mm3 (149 mm3), which however resulted from inclusion of vessel structure (noted by red outline). The volume rendering 
reconstruction (F) captures the exaggerated segmentation of nodule volume and vessel structure (noted by red surface). A second axial (G) CT reformation showing a 
vessel (vein) interpreted as solid nodule by AI and classified as > 100 mm3 (233 mm3, noted by red outline). The volume rendering reconstruction (H) captures the 
segmentation of the cylindric vascular structure (noted by red surface). Axial (I) and sagittal (J) CT reformation showing a solid subpleural nodule (noted by red 
outline), the automatic segmentation in AI reading reported volume above 100 mm3 (137 mm3). The volume rendering reconstruction (K) captures the segmentation 
of the solid nodule with exaggerated segmentation across the pleural surface into the extrapleural fat space (noted by red surface). Reader 3 measurement in axial (L) 
and sagittal (M) showing the edited segmentation (semi-automated tools based on predefined size and shape tuning) to minimize the segmentation error in solid 
nodule abutting the pleura (N, volume rendering with nodule segmentation noted by red surface). (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 
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acting as an impartial reader in baseline screening can significantly 
reduce a radiologist’s workload whilst not compromising on false- 
negative results of lung cancer screening with volume-based manage
ment of nodules and ultra-LDCT. Radiologists would then only need to 
read scans where nodules ≥ 100 mm3 are present in order to determine 
the follow-up strategy, instead of reading all scans. To confirm this 
outcome, this AI diagnostic algorithm should be implemented as a first 
read filter in an independent non-selected LDCT-lung cancer screening 
dataset including participants without nodules, to rule out lung nodules 
< 100 mm3 (benign nodules). The negative predictive value of AI will 
likely improve due to the inclusion of participants with no nodules. 
Should the results be confirmed, AI could be used as a first reader in lung 
cancer screening, which will be a major step in the standardization and 
implementation of lung cancer screening worldwide. 

Our study nevertheless has limitations. Our dataset only contained 
ultra-LDCT-scans where lung nodules were known to be present, which 
is not representative of lung cancer screening in the general population. 
We know from previous LDCT lung cancer screening trials, depending on 
the detection limit, roughly 50 % of participants have no reported lung 
nodules [4]. Therefore, our study is likely to considerably overestimate 
the rate of positive-misclassification results. If the same AI was used in a 
general LDCT-lung cancer screening population, depending on the FP 
rate in nodule negative participants, we could expect a workload 
reduction of 77.4 %–86.7 %. Second, the use of AI is currently limited to 
lung nodules, which sets apart from other incidental findings episodi
cally reported by CT in lung cancer screening such as mediastinal tu
mors, extrathoracic tumors, and non-neoplastic disease. The reporting of 
incidental findings is a much-debated topic. A consensus statement from 
the British Society of Cardiovascular Imaging/British Society of Cardiac 
Computed Tomography (BSCI/BSCCT) and the British Society of 
Thoracic Imaging (BSTI) recommends that where the heart can be 

visualized on a CT-scan, it is reviewed [27]. However, in a study which 
used CT-scans from the NELSON trial, the impact of such incidental 
extra-pulmonary findings was demonstrated trivial compared to the 
specific purpose of lung cancer screening, notably without perceivable 
advantage for the small number of incidental detections [28]. AI has 
nevertheless proved to be valuable in coronary artery calcium (CAC) 
scoring of LDCT thorax scans. This has been investigated on low-dose 
electrocardiography-triggered cardiac CT scans from the ROBINSCA 
trial, and AI showed high agreement with manual CAC scoring (k = 0.87; 
95 % CI: 0.85–0.89) [29]. Third, non-overlapping reconstructions were 
used, which are known to be suboptimal for the use of volume seg
mentation by software [13]. Segmentation performance is expected to 
improve by overlapping slice reconstruction. 

To conclude, we have shown that AI can achieve a lower negative- 
misclassification result, surpassing that of four experienced radiolo
gists, and when using AI in ultra-LDCT lung cancer screening, radiolo
gists’ workload could be diminished by up to 86.7 %. This AI diagnostic 
algorithm should now be implemented as a first read filter in an inde
pendent non-selected lung cancer screening dataset to rule out nodules 
< 100 mm3. 
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