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A B S T R A C T

Text-to-image generation intends to automatically produce a photo-realistic image, conditioned on
a textual description. It can be potentially employed in the field of art creation, data augmentation,
photo-editing, etc. Although many efforts have been dedicated to this task, it remains particularly
challenging to generate believable, natural scenes. To facilitate the real-world applications of text-to-
image synthesis, we focus on studying the following three issues: 1) How to ensure that generated
samples are believable, realistic or natural? 2) How to exploit the latent space of the generator to
edit a synthesized image? 3) How to improve the explainability of a text-to-image generation frame-
work? In this work, we constructed two novel data sets (i.e., the Good & Bad bird and face data
sets) consisting of successful as well as unsuccessful generated samples, according to strict criteria.
To effectively and efficiently acquire high-quality images by increasing the probability of generat-
ing Good latent codes, we use a dedicated Good/Bad classifier for generated images. It is based
on a pre-trained front end and fine-tuned on the basis of the proposed Good & Bad data set. After
that, we present a novel algorithm which identifies semantically-understandable directions in the la-
tent space of a conditional text-to-image GAN architecture by performing independent component
analysis on the pre-trained weight values of the generator. Furthermore, we develop a background-
flattening loss (BFL), to improve the background appearance in the edited image. Subsequently, we
introduce linear interpolation analysis between pairs of keywords. This is extended into a similar
triangular ‘linguistic’ interpolation in order to take a deep look into what a text-to-image synthe-
sis model has learned within the linguistic embeddings. Experimental results on the recent Diver-
GAN generator pre-trained on three benchmark data sets demonstrate that our classifier achieves a
better than 98% accuracy in predicting Good/Bad classes for synthetic samples and our proposed
approach is able to derive various interpretable semantic properties for a conditional text-to-image
GAN model, confirming the effectiveness of our presented techniques. Our data set is available at
https://zenodo.org/record/6283798#.YhkN_ujMI2w.

1. Introduction
The task of text-to-image synthesis aims at automati-

cally generating high-quality and semantically-consistent im-
ages, given natural-language descriptions. It has recently
gathered increasing interest from researchers due to its nu-
merous potential applications, e.g., data augmentation for
training image classifiers, photo editing according to textual
descriptions, the education of young children, etc. With the
advances in the generative adversarial network (GAN) and
the conditional generative adversarial network (cGAN) [1],
text-to-image generation has achieved promising progress
in both image quality and semantic consistency. Never-
theless, it remains extremely challenging to coerce a con-
ditional text-to-image GAN model to generate, with high
probability, believable and natural images.

One particular disadvantage of synthetic image-generation
algorithms is that the performance evaluation is more diffi-
cult than is the case in classification problems where a ‘hard’
accuracy can be computed. In case of the cGAN this is-
sue is most clearly present for end users: How to ensure
that generated images are believable, realistic or natural?
In current literature, the good examples are often cherry
picked while occasionally also the less successful samples
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are shown. However, for actual use in data augmentation or
in artistic applications, one would like to guarantee that gen-
erated images are good, i.e., of a sufficiently believable nat-
ural quality. Given the high dimensionality of latent codes,
there is a very high prior probability of non-successful pat-
terns to be generated for a given input noise probe. How to
construct a random latent-code generator with an increased
probability of drawing successful samples? After the gen-
erator/discriminator pair has done its best effort, apparently
additional constraints are necessary.

Here, we intend to train a classifier to accurately dis-
tinguish successful synthesized samples from unsuccessful
generated pictures after training a text-to-image generation
framework. This is based on the assumption that there is a
non-linear boundary separating high-resolution images from
inadequate samples in the fake image space. To this end, we
created a Good & Bad data set, both for a bird and a face-
image collection (shown in Fig. 3), which consists of a large
number of realistic as well as implausible samples synthe-
sized by the recent DiverGAN [2] that was pretrained on the
CUB bird [3] data set and the Multi-Modal CelebA-HQ data
set [4], respectively. We choose these samples by following
strict principles in order to ensure the quality of the selected
images. To acquire a superior classifier, we train the CNN
model (e.g., ResNet [5]) from the pre-trained weights on our
Good & Bad data set. We expect that the well-trained net-
work can correctly predict the quality class of synthesized
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This bird is brown and white in color, with a brown beak.
The person has wavy hair, and high cheekbones. She is young and 

wears necklace, heavy makeup, and lipstick.

rotation

background

size

pose

hair

smile

Latent-code navigation Latent-code navigation

Figure 1: Interpretable latent-space directions identified in DiverGAN [2] that was pre-trained on the CUB bird [3] (left side)
and Multi-Modal CelebA-HQ [4] (right side) data sets. For each set of pictures, the middle column is the original image based
on a Good latent code, while the samples on the left and right of it are the output by freezing the textual description and moving
the latent vector backward and forward from the center, over the axis discovered by our proposed algorithm.

images. Therefore, we are able to effectively and efficiently
derive photo-realistic images from the synthesized samples
while obtaining corresponding Good latent vectors. More
importantly, the discovery of Good latent codes provides a
strong basis for further research, such as data augmentation
and latent-space manipulation.

Latent vectors contributing to diversity play a significant
role in the image-generation process. Recent works [6, 7, 8]
reveal that there exists a wide range of meaningful seman-
tic factors in the latent space of a GAN, such as facial at-
tributes and head poses for face synthesis [8] and layout for
scene generation [9]. These semantically-understandable
control directions can be utilized for disentangled image
editing, like semantic face editing [8] and scene manipu-
lation [9]. By moving the latent code of a synthetic sample
towards and backwards the direction, we are able to vary
the desired attribute while keeping other image contents un-
changed. That is to say, given a successful latent code,
we can derive a wealth of similar but semantically-diverse
pleasing images via latent-space navigation. To better fa-
cilitate the application of text-to-image synthesis, we need
to address the question: How to identify useful control di-
rections in the latent space of a conditional text-to-image
GAN model? While current approaches mainly focus on
studying the latent space of a GAN, there still is a lack of
understanding of the relationship between the latent space
of a cGAN and the, explainable semantic space in which a
synthetic sample is embedded.

In this paper, we present a novel algorithm to capture
the interpretable latent-space semantic properties for a text-
to-image synthesis model. Considering the fact that identi-
fied directions denote different semantic factors of the edited
object (e.g., pose and smile for the face model), we argue
that these vectors should be fully independent rather than
just uncorrelated. Based on recent studies [6, 7], we as-
sume that the pre-trained weights of a conditional text-to-
image GAN architecture contain a set of useful directions.

In fact, the initial linear layer projects the latent vector to
the visual feature map, where a latent space is transformed
into another space and ultimately into an output image. To
acquire both independent and orthogonal components, we
introduce the independent component analysis (ICA) algo-
rithm under an additional orthogonality constraint [10] to
investigate the pre-trained weight matrix of the first dense
layer. In addition, we mathematically show that Semantic
Factorization (SeFa) [6], GANSpace [7] and regular PCA
[11] typically achieve almost the identical results when sam-
pling enough data for GANSpace. Furthermore, we develop
a Background-Flattening Loss (BFL), to improve the back-
ground appearance in the edited sample. Multiple interest-
ing latent-space directions found by our presented algorithm
are visualized in Fig. 1.

We expect that our proposed semantic-discovery method
can provide valuable insight into the correlation between
latent vectors and image variations. However, it remains
particularly difficult to explain what a conditional text-to-
image GAN model has learned within the text space. How
to understand the relation between the textual (linguistic)
probes and the generated image factors? This constitutes
the last research topic of the current contribution. To allevi-
ate the problem, we qualitatively analyze the roles played by
the linguistic embeddings in the generated-image semantic
space through linear interpolation analysis between pairs of
keywords. We show that although semantic properties con-
tained in the picture change continuously in the latent space,
the appearance of the image does not always vary smoothly
along with the contrasting word embeddings. In addition,
we extend a pairwise linear interpolation to a triangular in-
terpolation for simultaneously investigating three keywords
in the give textual description.

The recent DiverGAN [2] has the ability to adopt a gen-
erator/discriminator pair to synthesize diverse and high-quality
samples, given a textual description and different injected
noise on the latent vector. We therefore carry out a serious
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of experiments on the DiverGAN generator that was trained
on three popular text-to-image data sets (i.e., the CUB bird
[3], MS COCO [12] and Multi-Modal CelebA-HQ [4] data
sets). The experimental results in the current study represent
an improvement in performance and explainability in the an-
alyzed algorithm [2]. Meanwhile, our well-trained classifier
achieves impressive classification accuracy (bird: 98.09%
and face: 99.16%) on the Good & Bad data set and our pro-
posed semantic-discovery algorithm can lead to a more pre-
cise control over the latent space of the DiverGAN model,
which validate the effectiveness of our presented methods.
The contributions of this work can be summarized as fol-
lows:

∙ We construct two new Good & Bad data sets to study
how to ensure that generated images are believable while
training two corresponding classifiers to separate successful
generated images from unsuccessful synthetic samples.

∙ We introduce the ICA algorithm to identify meaningful
attributes in the latent space of a conditional text-to-image
GAN model. Simultaneously, we analyze the correspon-
dences between SeFa, GANSpace and regular PCA.

∙ We introduce linear interpolation analysis between pairs
of contrastive keywords and a similar triangular ‘linguis-
tic’ interpolation for an improved explainability of a text-
to-image generation architecture.

The remainder of the paper is organized as follows. We
introduce the related works in Section 2. Section 3 briefly
depicts the single-stage text-to-image framework and the
corresponding latent space. In Section 4, we describe our
OptGAN approach in detail. The experimental results are
presented in Section 5 and Section 6 draws the conclusions.

2. Related works
In this section, we depict the research fields associated

with our work, i.e., a GAN, cGAN-based text-to-image gen-
eration and latent-space manipulation.

2.1. Generative adversarial network (GAN)
A GAN first presented by Goodfellow et al. [13] builds

a basic model for synthetic tasks via adversarial training,
consisting of a generator and a discriminator. A GAN has
achieved state-of-the-art performance in a variety of appli-
cations including text-to-image synthesis [14], person im-
age generation [15], face photo-sketch synthesis [16], im-
age inpainting [17], image de-raining [18], etc, since it is
capable of producing photo-realistic images.

The initial generator network of a GAN mainly com-
prises multi-layer perceptrons and rectifier linear activations,
while the discriminator net utilizes maxout network [19].
This type of architecture shows competitive samples with
other generative models on simple image datasets, such as
MNIST [20]. Moreover, researchers explore different struc-
tures of a GAN in order to further improve image quality.
Denton et al. [21] designed a Laplacian pyramid frame-
work of an adversarial network namely LAPGAN that pro-
duces plausible results in a coarse-to-fine manner. Rad-
ford et al. [22] introduced a deep convolutional GAN (DC-

GAN) integrating convolutional layers and Batch Normal-
ization (BN) [23] into both a generator and a discrimina-
tor. Mirza et al. [1] proposed a cGAN by imposing con-
ditional constraints (e.g., class labels, text descriptions and
low-resolution images) on both a generator and a discrim-
inator to obtain specific samples. Recently, several models
with a high-computational cost are introduced to yield visu-
ally plausible pictures. Zhang et al. [24] presented SAGAN
which applies the self-attention mechanism to effectively
capture the semantic affinities between widely separated im-
age regions. Brock et al. [25] developed a large-scale archi-
tecture based on SAGAN while deploying orthogonal regu-
larization to the generator, obtaining excellent performance
on image diversity. Karras et al. [26] proposed a novel gen-
erator framework named StyleGAN where adaptive instance
normalization is utilized to control the generator. This pa-
per focuses on studying a conditional text-to-image GAN
model.

2.2. cGAN in text-to-image generation
Owing to the success of a GAN on image quality, the

task of text-to-image synthesis has achieved significant ad-
vances over the past few years. Existing approaches for text-
to-image generation can be roughly cast into two categories:
1) multi-stage models and 2) single-stage methods.

Multi-stage models. Zhang et al. [27, 28] introduced
a multi-stage architecture called StackGAN, in which each
stage comprises a generator and a discriminator, and the
generator of the next stage receives the result of the previous
stage as the input. Xu et al. [29] proposed AttnGAN insert-
ing a spatial attention module into the multi-stage frame-
work to bridge the semantic gap between the words in a tex-
tual description and the related image subregions. Qiao et al.
[30] presented MirrorGAN where an image-to-text model
is leveraged to guarantee the semantic consistency between
natural-language descriptions and visual contents. Zhu et
al. [31] designed DMGAN which introduce a dynamic-
memory module to produce high-quality samples in the ini-
tial stage. OP-GAN presented by Hinz et al. [32] explicitly
modeled the objects of an image while developing a new
evaluation metric termed as semantic object accuracy.

Single-stage methods. Reed et al. [33] were the first
to attempt to employ the cGAN to synthesize specific im-
ages based on the given text descriptions. Tao et al. [34]
proposed DFGAN where a matching-aware zero-centered
gradient penalty loss is introduced to help stabilize the train-
ing of the conditional text-to-image GAN model. Zhang et
al. [35] designed DTGAN by utilizing spatial and chan-
nel attention modules and the conditional normalization to
yield photo-realistic samples with a generator/discriminator
pair. Zhang et al. [36] developed XMC-GAN which studied
contrastive learning in the context of text-to-image gener-
ation while producing visually plausible images via a sim-
ple single-stage framework. Zhang et al. [2] presented an
efficient and effective single-stage framework called Diver-
GAN which is capable of generating diverse, plausible and
semantically-consistent images according to a natural-language
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description. Note that we adopt the DiverGAN generator to
perform comprehensive experiments due to its superior per-
formance on image quality and diversity.

2.3. Study on the Latent Space of a GAN
Recent studies [8, 7, 6] on a GAN reveal that a latent

space possess a range of semantically-understandable infor-
mation (e.g., pose and smile for the face data set), which
plays a vital role in detangled sample manipulation. We
are able to realistically edit the generated image by moving
its latent vector towards the direction corresponding to the
desired attribute. Several methods have been proposed to
capture interpretable semantic factors and mainly fall into
two types: 1) unsupervised models and 2) supervised ap-
proaches.

Supervised latent-space manipulation. Shen et al. [8]
developed a framework termed as InterfaceGAN where la-
beled samples (e.g., gender and age) are utilized to train
a linear Support Vector Machine (SVM) and the acquired
SVM boundaries lead to the meaningful manipulation of the
facial attributes. Goetschalckx et al. [37] proposed GAN-
alyze applying an accessor module to optimize the training
process while learning the latent-space directions as the de-
sired cognitive semantics.

Unsupervised latent-space manipulation. Voynov et
al. [38] introduced a matrix and a classifier to identify inter-
pretable latent-space directions in an unsupervised fashion.
Jahanian et al. [39] studied the attributes concerning color
transformations and camera movements by operating source
pictures. Härkönen et al. [7] designed a novel pipeline
named GANSpace, which performed PCA [11] on a series
of collected latent vectors and employed obtained principal
components as the meaningful directions in the latent space.
Peebles et al. [40] presented the Hessian Penalty, a regular-
ization term for the unsupervised discovery of useful seman-
tic factors. Wang et al. [40] developed Hijack-GAN intro-
ducing an iterative scheme to control the image-generation
process. Shen et al. [6] proposed Semantic Factorization
(SeFa) which directly decomposed the weight matrix of a
well-trained GAN model for semantic image editing. Our
work aims to identify controllable directions in the latent
space of a conditional text-to-image GAN model.

3. Preliminary
In this section, we briefly describe the single-stage text-

to-image synthesis architecture and the corresponding latent
space to help understand the issues we attempt to address.

Single-stage pipeline. The single-stage text-to-image
generation framework (illustrated in Fig. 2) is composed
of a generator network and a discriminator net, which are
perceived as playing a minmax zero-sum game. Let S =
{(Ci, Ii)}Ni=1 denote a collection of N text-image pairs for
training, where Ii is a picture and Ci = (c1i , c

2
i , ..., c

K
i ) com-

prises K textual descriptions. Word-embedding vectors w
and a sentence-embedding vector s are commonly acquired
by applying a bidirectional Long Short-Term Memory (LSTM)

𝐷𝐿0 𝐿1 𝐿2 𝐿3 𝐿4 𝐿5 𝐿6

𝐺
𝑧

𝑤

𝑧
𝑠

word vectors

noise vector

sentence vector
(𝑤, 𝑠)

Figure 2: A simplified single-stage text-to-image generation
architecture consisting of a generator G and a discriminator
D. The input of the generator is a random latent code z and
the word/sentence embeddings (w, s), and the output is a
synthetic sample.

network [41] on a natural-language description ci randomly
picked from Ci. After that, the generator G(z, (w, s)) is
trained to produce a perceptually-realistic and semantically-
related image Îi according to a latent code z randomly sam-
pled from a frozen distribution and word/sentence embed-
ding vectors (w, s). To be specific, G(z, (w, s)) consists of
multiple layers where the first layer F0 maps a latent code
into a feature map and intermediate blocks typically lever-
age modulation modules (e.g., attention models [35, 2]) to
reinforce the visual feature map to ensure image quality and
semantic consistency. The last layer Gc transforms the fea-
ture map into the ultimate sample. Mathematically,

ℎ0 = F0(z) (1)
ℎ1 = B1(ℎ0, (w, s)) (2)
ℎi = Bi(ℎi−1 ↑, (w, s)) for i = 2, 3, ..., 7 (3)

Î = Gc(ℎ7) (4)

where F0 denotes a fully-connected layer and Bi is a modu-
lation block that facilitates the feature map with textual fea-
tures.

Compared withG(z, (w, s)), the discriminator of the single-
stage pipeline aims at distinguishing the real text-image pair
(ci, Ii) from the fake text-image pair (ci, Îi).

Latent-space analysis. For a pre-trained and fixed gen-
erator G(z, (w, s)), the quality of the generated sample de-
pends on the random latent code z, word embeddingsw and
the corresponding sentence vector s. Consequently, the out-
put of the network only relies on z when determining the
input text description. It implicitly means that if we ig-
nore the linguistic space of the conditional input-text probes,
G(z, (w, s)) can be regarded as a deterministic function G:
 →  . Here,  represents the latent space, in which the la-
tent code z ∈ Rl is commonly sampled from a l-dimension
Gaussian distribution.  denotes the synthetic image space
including visually realistic samples as well as implausible
generated pictures. Moreover, the map from  to  is not
surjective [42]. Accordingly, even a superior text-to-image
generation generator fails to ensure the quality of a synthe-
sized sample, given random latent vectors. In order to pro-
mote the applicability of text-to-image generation in prac-
tice, this paper intends to optimize the latent space of a con-
ditional text-to-image GAN model to effectively avoid un-
successful synthetic samples while automatically obtaining
high-quality images.

Page 4 of 18



Latent-space manipulation. It has been widely ob-
served that the latent space of a GAN incorporates certain
semantic information, like pose and size for the CUB bird
data set. Suppose we have a Good latent code zg that con-
tributes to a successful generated sample, and a well-trained
generator G(z, (w, s)) that can yield dissimilar and seman-
tically consistent pictures according to different textual de-
scriptions and injected noise, we target to manipulate the
semantic factor of the successful synthesized sample via
latent-space navigation. To this end, we need to first identify
a series of semantically-interpretable latent-space directions
N = (n1, n2,⋯ , nk), where ni ∈ Rl for all i ∈ 1, 2,⋯ , k.
Then, the attribute of the high-quality sample generated by
zg can be varied by editing zg with zge = zg + �n, where �
denotes the manipulation intensity and n ∈ Rl is the direc-
tion corresponding to the desired property.

4. Proposed methodology
In this section, we elaborate on the proposed procedure

automatically finding successful synthetic samples from gen-
erated images while acquiring corresponding Good latent
codes. After that, based on aGood latent vector, we describe
the independent component analysis method that identifies
meaningful latent-space directions for a conditional text-to-
image GAN model. Subsequently, we introduce linear inter-
polation analysis between contrastive keywords as well as a
similar triangular ‘linguistic’ interpolation for an improved
explainability of a text-to-image generation framework.

4.1. Discovering successful synthesized samples
and Good latent codes

Given a fixed conditional text-to-image GAN model, the
generator G(z, (w, s)) maps the latent space and the linguis-
tic embeddings to the fake data distribution. It is well known
that the synthetic sample space consists of high resolution
pictures from Good latent vectors as well as unreasonable
images from Bad latent codes. However, we only need suc-
cessful generated samples and corresponding Good latent
codes for wide real-world applications. In this subsection,
we concentrate on proposing a framework for recognizing
plausible images from numerous synthesized samples while
deriving corresponding Good latent vectors.

4.1.1. Pairwise linear interpolation of latent codes
It has been extensively observed [2, 8] that when per-

forming the linear interpolation between a successful starting-
point latent vector and a successful end-point latent code,
the appearance and the semantics of generated samples change
continuously. In addition, DiverGAN [2] discovers that the
generator is likely to synthesize a set of high-resolution pic-
tures based on the pairwise linear interpolation between two
Good latent codes. This would imply that there may be
close relation between successful synthesized images in the
fake data space. That is to say, we may acquire a range
of visually realistic pictures by sampling the latent vectors
around a Good latent code.

To further explore the semantic relationship between a
plausible sample and an inadequate image in the synthetic
image space, we visualize the samples generated by linearly
interpolating a successful starting-point latent vector z0 and
an unsuccessful end-point latent code z1. To be specific, the
pairwise linear interpolation of latent codes is defined as:

f () = G((1 − )z0 + z1, (w, s)) for  ∈ [0, 1] (5)

where  is a scalar mixing parameter. In an attempt to quan-
titatively measure if there is a smooth transition from a per-
ceptually plausible sample to an unsuccessful generated im-
age, we calculate the learned perceptual image patch simi-
larity (LPIPS) [43] score and the perceptual loss [44] which
reflect the diversity between two close interpolation sam-
ples.

We empirically observe that although the first and last
part of interpolation results change gradually with the vari-
ations of the latent vectors, both the LPIPS score and the
perceptual loss between intermediate samples are the largest
and considerably increase, which we detail in Section 5.2.1.
In other words, when linearly interpolating an unsuccessful
latent code and a Good latent vector, the appearance and the
semantics do not always vary smoothly along with the la-
tent vectors. We therefore make the assumption that there
exists a non-linear boundary separating successful gener-
ated images from unsuccessful synthesized samples in the
fake image space. It implicitly means that image quality in
the synthetic sample space may be distinguished. Suppose
we have a non-linear image-quality function fq ∶  → t,
where t represents the quality score. We are able to classify
a synthesized sample as realistic or unsuccessful.

4.1.2. Good & Bad data set creation
Our goal is to train a powerful classifier that can distin-

guish successful generated samples from unsuccessful syn-
thetic images. To this end, we built two novel data sets (i.e.,
the Good & Bad bird and face data sets) conditioned on the
CUB bird data set [3] and the Multi-Modal CelebA-HQ data
set [4], respectively. The Good & Bad data set is a collection
of perceptually realistic as well as implausible samples gen-
erated by a well-trained and fixed text-to-image GAN archi-
tecture. The construction of the data set is based on a pilot
study1 on initial manual labeling (210+210 samples), which
was used as the training set for automatic good vs bad binary
classification. However, such a data set is too small to obtain
a training set suitable for end-to-end, deep-learning based
quality classification of generated images. Using strict cri-
teria, an extended collection of mixed manual and automatic
‘good’ and ‘bad’ samples was constructed, within one day.
Specifically, the used Good & Bad bird data set consists of
6,700 synthesized samples, i.e., 2,700 Good and 4,000 Bad
birds. The Good & Bad face data set contains 2,000 success-
ful generated faces as well as 2,000 unsuccessful synthetic
faces. A summary of the Good & Bad data set is reported in
Table 1. We visualize a snapshot of our data set in Fig. 3.

1In prep., 2022
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Table 1
Statistics of the Good & Bad bird and face data sets. ‘Bird’
represents the Good & Bad bird data set and ‘Face’ denotes
the Good & Bad face data set.

Dataset train test total
Bird 5,200 1,500 6,700
Face 3,200 800 4,000

Below, we describe the procedure followed to construct the
Good & Bad data set.

Image collection. The first stage of creating the Good
& Bad data set involves producing a large set of candidate
samples for each data set. The DiverGAN [2] has the ability
to adopt a generator/discriminator pair to produce diverse,
perceptually-plausible and semantically-consistent pictures,
given a textual description and different injected noise on
the latent vector. We therefore choose a pre-trained Diver-
GAN generator to acquire candidate images. We generated
30,000 synthesized samples as the basis for the selection of
a Good & Bad bird data set and a Good & Bad face data set,
respectively.

Image selection. Given a variety of candidate pictures,
we choose images according to the following criteria:

1) A successful generated image is supposed to have
vivid shape, rich color distributions, clear background as
well as realistic details. For the face data set, photo-realistic
images should also have pleasing, undistorted facial attributes
(e.g., eyes, hair, makeup, head and mouth) and expressions.

2) A synthetic picture with strange shape, blurry back-
ground or unclear color is viewed as Bad. Meanwhile, we
reject faces with an implausible facial appearance or orna-
mentation (e.g., hat and glasses) as unsuccessful samples.

3) We exclude ambiguous images of the type where also
for the human judge, the classification as Good or Bad is
difficult. For instance, a bird with only a slightly strange
body (e.g., lacking legs) is judged as an ambiguous-quality
picture.

For the Good & Bad bird data set, we find it inefficient to
manually choose thousands of plausible birds from 30,000
collected samples. To reduce the selection labor, we propose
a process to obtain the desired birds as follows (depicted in
Fig. 4):

1) Based on the principles mentioned before, we select
420 synthesized samples (i.e., 210Good and 210Bad birds)
as the initial Good & Bad bird data set, which is split into a
training set (i.e., 150Good and 150 Bad birds) and a testing
set (i.e., 60 Good and 60 Bad birds). We intend to use these
labeled samples to train a simple classification model to try
to predict the quality class of synthesized images. However,
it is difficult to directly apply a traditional classifier (e.g., a
linear SVM) to separate realistic images adequately from in-
adequate samples, since the image instances exist in a non-
linear manifold [45]. In the meantime, we cannot train a
deep neural network (e.g., VGG [46]) from scratch to label a
synthetic sample asGood orBad due to the small number of
the samples in the initial Good & Bad training set. Bengio et

al. [47] postulate that deep convolutional networks have the
ability to linearize the manifold of pictures into a Euclidean
subspace of deep features. Inspired by this hypothesis, we
expect that Good and Bad samples can be classified by an
approximately linear boundary in such deep-feature space.

2) We adopt the publicly available VGG-16 network trained
on ImageNet to transform the image samples from the train-
ing set (i.e., 150 Good and 150 Bad samples) into the deep-
feature representation of layer VGG-16/Conv5_1. The
obtained deep features and the corresponding labels (i.e.,
Good and Bad) are used to fit a linear SVM model for au-
tomatic labeling of the samples in the deep-feature space.
To evaluate the performance of the model, we transform the
testing samples (i.e., 60 Good and 60 Bad birds) into deep-
feature vectors while applying the learned SVM boundary
to predict the classes for the unseen samples.

3) In order to harvest an expanded set of Good or Bad
samples, we use the trained SVM model to automatically
label the 30,000 collected birds. We manually choose 2,700
Good and 2,000 Bad birds from the images that are classi-
fied asGood, which is not a laborious task due to the perfor-
mance of the SVM. Moreover, to boost the diversity of Bad
birds on our data set, we select 2,000 Bad birds from the
samples that are predicted as Bad. Finally, 2,700 Good and
4,000 Bad birds are acquired as the final, expanded Good &
Bad bird data set. Also for the faces, we discovered that it is
easy to label the synthesized samples as Good or Bad. We
therefore manually select 2,000 Good and 2,000 Bad sam-
ples from 30,000 synthetic faces for the Good & Bad face
data set. The manual selection was realized in one day.

Splitting of the data set. The Good & Bad face data
set is randomly divided into the training and test sets with
a ratio of 4:1. After the splitting, the training set comprises
3,200 images, i.e., 1,600 Good and 1,600 Bad faces. The
test set consists of 800 samples including 400Good and 400
Bad faces. The Good & Bad bird data set contains 6,700
birds, where 5,200 images (i.e., 2200 Good and 3,000 Bad
birds) belong to the training set and the other 1500 images
(i.e., 500 Good and 1,000 Bad birds) belong to the test set.

4.1.3. Synthetic samples classification
Given the extensive training set obtained in this manner,

it is now possible to do the quality classification by end-to-
end deep learning instead of using an unmodified, pretrained
CNN and an SVM. To fully automatically distinguish suc-
cessful synthesized samples from unrealistic images, we at-
tempt to fine-tune a pre-trained CNN model (e.g., ResNet
[5]) on the proposed Good & Bad data set, which we will
detail in Section 5.2.3. We expect that this approach is able
to achieve the best results. We therefore have the ability
to effectively and efficiently identify photo-realistic samples
from generated images while acquiring correspondingGood
latent vectors. These Good latent codes can be exploited for
further research, facilitating and extending the applicabil-
ity of text-to-image generation in practice. For instance, we
can produce a wealth of high-quality samples by conduct-
ing the pairwise linear interpolation between Good latent
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(a) The Good & Bad bird dataset

Good Samples Bad Samples

(a) The Good & Bad face dataset

Good Samples Bad Samples

Figure 3: A snapshot of the Good & Bad bird (three top rows) and face (three bottom rows) data sets: the left column is
from the Good data set; the right column is from the Bad data set. These samples are synthesized by the recent DiverGAN
generator [2].

codes, e.g., for the purpose of data augmentation. Given
a Good latent vector, we can synthesize several similar but
semantically-diverse pleasing generated samples via latent-
space navigation, which will be discussed in the next sec-
tion.

4.2. Identifying meaningful latent-space directions
In this subsection, we mathematically show that Seman-

tic Factorization (SeFa) [6] approximately identifies the prin-
cipal components, as PCA does. Furthermore, we propose a
technique to capture semantically-interpretable latent-space
directions for a conditional text-to-image GAN model. To
optimize the edited sample, the background-flattening trick
is presented to fine-tune the background.

4.2.1. Analyzing the correspondences between SeFa,
GANSpace and PCA

We attempt to discuss the relationship between SeFa [6]
and GANSpace [7], since they both introduce an algorith-
mically simple but surprisingly effective technique to derive
semantically-understandable directions. Specifically,
GANSpace collects a set of latent codes and conducts PCA
on them to identify the significant latent-space directions.

SeFa proposes to directly decompose the pre-trained weights
for semantic image editing. Mathematically, SeFa is formu-
lated as:

ATAni − �ini = 0 (6)

where A ∈ Rd×l is the weight matrix of the first transforma-
tion step in the generator and {ni}ki=1 indicate k most mean-
ingful directions. The solutions to Equation 6 correspond to
the eigenvectors of ATA with respect to the k largest eigen-
values. A is usually normalized by L2 norm when imple-
menting SeFa. The formulation of SeFa can almost be per-
ceived as PCA on A, since the results of PCA are the eigen
vectors of the covariance matrix CA associated with A and
CA is similar to ATA. Specifically, CA is denoted as:

CA = 1
d − 1

(A− < A >)T (A− < A >) (7)

where < A > represents the mean from each column of A
and CA is the covariance matrix of A. The difference be-
tween regular PCA and SeFa is located in the normalization
of A. We therefore argue that SeFa is approximately equiv-
alent to regular PCA on the pre-trained weights. That is to
say, GANSpace and SeFa perform PCA on the latent vectors
and the pre-trained weights, respectively.
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Good Image

Step1: Map samples into the deep-feature space

VGG-16 Network

Bad Image VGG-16 Network

Deep-feature space

Step2: Train a linear SVM

Good samples

Bad samples

SVM boundary

Figure 4: A schematic outline of the first two steps for automatically discovering Good birds from the generated images.

4.2.2. Independent component analysis for semantic
discovery in the latent space

It has been observed that the pre-trained weights of the
standard GAN contain semantically-useful information. We
can capture the meaningful latent-space directions in an un-
supervised manner by exploiting the well-trained weights of
the generator. A conditional text-to-image GAN generator
typically leverages a dense layer to transform a latent code
into a visual feature map, where a latent space is projected
to another space and ultimately into an output image. We
make the assumption that there exists a wealth of seman-
tics in the initial fully-connected weight matrix of a text-
to-image GAN model, due to the linguistic content of the
text. We aim at presenting a simple algorithm extracting the
main patterns of the pre-trained weights as the interpretable
latent-space directions. More specifically, we hypothesize
that when given the pre-trained weight matrix A of the first
linear layer of G(z, (w, s)), we can obtain a suite of k mean-
ingful semantic factors N = (n1, n2,⋯ , nk) by processing
the weight matrix A. Mathematically,

N = f (A) (8)

where f (⋅) is the function for semantic discovery. These
acquired semantics should denote different attributes of the
image. For example, n1 represents pose, n2 represents smile
and n3 represents gender for the face data set. To better
manipulate the image generation, we argue that these com-
ponents should be fully independent rather than just uncor-
related (orthogonal). However, when employing PCA as
f (⋅) to discover the controllable latent-space directions, the
obtained principal components are only uncorrelated, but
not independent. Meanwhile, PCA is optimal for Gaus-
sian data only [10], while the pre-trained weight matrix A is
not guaranteed to be Gaussian. Here, we propose to utilize
independent component analysis (ICA) to identify useful

latent-space semantics for a conditional text-to-image GAN
model.

The goal of ICA is to describe a M × L data matrix X
in terms of independent components. It is denoted as:

X = BS (9)

where B is a M × T mixing matrix and S is a T ×L source
matrix consisting of T independent components.

ICA is commonly viewed as a more powerful tool than
PCA [48], since it is able to make use of higher-order statis-
tical information incorporating a variety of significant fea-
tures. Furthermore, ICA is adequate for analyzing non-
Gaussian data. To maximize both the independence and
the orthogonality between the directions, i.e., n1, n2,⋯ , nk,
we apply a fast ICA under an additional orthogonality con-
straint [10] to directly decompose the pre-trained weight
matrix to derive the meaningful directions in the latent space.
The obtained vectors are therefore not only independent but
also orthogonal. We expect that the components can lead
to a more precise control over the latent space of the Diver-
GAN [2] model.

4.2.3. Background flattening
A movement along an effective direction in the latent

space should not only accurately change the desired attribute,
but also maintain other image content, e.g., the background.
However, when applying existing semantic-discovery meth-
ods even our introduced algorithm on the text-to-image gen-
eration model, we find that the background appearance in
the edited sample usually varies along with the target at-
tribute. To overcome this issue, we develop a Background-
Flattening Loss (BFL) to fine-tune the acquired directions
to improve the background. This loss is defined by using
both low-level pixels and high-level features, ensuring that
the background is optimized and other image contents are
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preserved. Specifically, it is denoted as:

flatten(x1, x2) = ||x1 − x2||1 +LPIPS (x1, x2) (10)

where x1, x2 refer to a source sample and an edited sam-
ple, respectively. We leverage the Adam algorithm [49] to
optimize the independent components.

We empirically find that we are able to employ our pro-
posed BFL to remove the patterns representing the back-
ground. To be specific, we can obtain a sample with a white
background by increasing the distance (i.e., the BFL) be-
tween samples generated by different directions, since the
white background and the black background will lead to the
maximum loss values. After that, to remove the background,
we take the white-background sample as the source image
while reducing the distance between the source sample and
the edited samples.

4.3. Improving the explainability of the
conditional text-to-image GAN

In addition to the latent space, a conditional text-to-image
GAN model also contains the linguistic embeddings, in which
word and sentence vectors are adopted to module the visual
feature map for semantic consistency. Despite high-quality
pictures achieved by the existing approaches, we yet do not
understand what a text-to-image generation architecture has
learned within the linguistic space of the conditional input-
text probes.

In order to understand ‘embeddings’ in deep learning,
several methods have been proposed. A common method is
to visualize the space using, e.g., t-SNE or k-means cluster-
ing. This may give some insights on the location of domi-
nant image categories in the sub space. An alternative ap-
proach is to utilize - yet another - step of dimensionality re-
duction by applying standard PCA on the embedding. How-
ever, this still does not lead to good explanations and an easy
controllability of the image-generation process. In this sub-
section, we start fromGood latent vectors and introduce two
basic techniques to provide insights into the explainability
of a text-to-image synthesis framework.

4.3.1. Linear interpolation and semantic
interpretability

We study the linear interpolation between a pair of key-
words in order to qualitatively explore how well the genera-
tor exploits the linguistic space of the conditional input-text
probes as well as testing the influence of individual, differ-
ent words on the generated sample. We can observe how the
samples vary as a word in the given text is replaced with an-
other word, for instance by using a polarity axis of qualifier
key words (dark-light, red-blue, ...). More specifically, we
can first acquire two word embeddings (i.e.,w0 andw1) and
two corresponding sentence vectors (i.e., s0 and s1) by only
altering a significant word (e.g., the color attribute value and
the background value) in the input natural-language descrip-
tion. Afterwards, the results are obtained by performing the
linear interpolation between the initial textual description
(w0, s0) and the changed description (w1, s1) while keep-
ing the Good latent code z frozen. Mathematically, this

proposed text-space linear interpolation combines the latent
code, the word and the sentence embeddings and is formu-
lated as:

ℎ() = G(z, (1 − )w0 + w1, (1 − )s0 + s1) (11)

where  ∈ [0, 1] is a scalar mixing parameter and z is a
successful latent code.

For the CUB bird dataset, when we vary the color at-
tribute value in the given sentence, we empirically explore
what happens in the color mix: Do we, e.g., get an aver-
age color interpolation in RGB space or does the network
find another solution for the intermediate points between
two disparate embeddings?

In general, our presented text-space linear interpolation
has the following advantages:
∙ The linear interpolation between a pair of keywords can
be utilized to quantitatively control the attribute of the syn-
thetic sample, when the attribute varies smoothly with the
variations of the word vectors. For example, the length of
the beak of a bird can be adjusted precisely via the text-
space linear interpolation between the word embeddings of
‘short’ and ‘long’.
∙ When the attribute of the synthesized sample does not
change gradually along with the word embeddings, we can
exploit a text-space linear interpolation to produce a variety
of novel samples. Take bird synthesis as an example: When
conducting the linear interpolation between color keywords,
G(z, (w, s)) is likely to generate a new bird whose body con-
tains two colors (e.g., red patches and blue patches) in the
middle of the interpolation results, as shown in Fig. 13.
∙ Through the linear interpolation between contrastive key-
words, we can take a deep look into which keywords play
important roles in yielding foreground images as well as
which image (background) regions are determined by the
terms in the text probe.

4.3.2. Triangular interpolation and semantic
interpretability

We extend the pairwise linear interpolation between two
points to the interpolation between three points, i.e., in the
2-simplex, for further studying G(z, (w, s)) and better per-
forming data augmentation. Since this kind of interpolation
forms a triangular plane, we name it the triangular interpo-
lation. The triangular interpolation is able to generate more
and more diverse samples conditioned on three corners (e.g.,
latent vectors and keywords), spanning a field rather than a
line.

Similar to the linear interpolation between a pair of key-
words, we need to derive three word embeddings (i.e., w0,
w1 and w2) and three corresponding sentence vectors (i.e.,
s0, s1 and s2) as corners to define the presented text-space
triangular interpolation:

ℎ(1, 2) = G(z,(1 − 1 − 2)w0 + 1w1 + 2w2,
(1 − 1 − 2)s0 + 1s1 + 2s2)

(12)

where 1 ∈ [0, 1] and 2 ∈ [0, 1] are mixing scalar parame-
ters and z is a successful latent vector.
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For the sake of attribute analysis, we can obtain three
new textual descriptions by replacing the attribute word in
the initial natural-language description with another two at-
tribute words. Then, through the triangular interpolation be-
tween keywords, the generator has the ability to yield pic-
tures based on the above three attributes. Moreover, we ex-
pect that the text-space triangular interpolation should achieve
the same visual smoothness as the text-space linear interpo-
lation. In other words, when fixing the weight (i.e., 2) of
the third text in the triangular interpolation between key-
words, the attributes of the image vary gradually along with
the word embeddings if the interpolation results of a text-
space linear interpolation between the first two textual de-
scriptions change continuously.

The text-space triangular interpolation has obvious ad-
vantages over the linear interpolation between a pair of key-
words. Firstly, the text-space triangular interpolation is able
to produce more image variation to perform data augmenta-
tion than the pairwise linear interpolation. Secondly, we can
simultaneously control two different attributes (e.g., color
and the length of the beak) via the triangular interpolation
between keywords. Thirdly, through the text-space triangu-
lar interpolation, three identical attributes (e.g., red, yellow
and blue) can be combined to synthesize a novel sample.

5. Experiments
5.1. Experimental settings

Datasets. We perform a set of experiments on three
broadly utilized text-to-image data sets, i.e., the CUB bird
[3], MS COCO [12] and Multi-Modal CelebA-HQ [4] data
sets.

∙ CUB bird. The CUB bird data set contains a total
of 11,788 images, in which 8,855 images are taken as the
training set and the remaining 2,933 images are employed
for testing. Each bird is associated with 10 textual descrip-
tions.

∙ MS COCO. The MS COCO data set is a more chal-
lenging data set consisting of 123,287 images in total, which
are split into 82,783 training pictures and 40,504 test pic-
tures. Each image includes 5 human annotated captions.

∙ Multi-Modal CelebA-HQ. The Multi-Modal CelebA-
HQ data set is composed of 24,000 and 6,000 faces for train-
ing and testing, respectively. Each face is annotated with 10
sentences.

Implementation details. We take the recent DiverGAN
generator [2] as the backbone generator, which is pre-trained
on the CUB bird, Multi-Modal CelebA-HQ and MS COCO
data sets. The image size of the proposed Good & Bad data
set is set to 256 × 256 × 3. We set the output dimension
of the CNN models (e.g., ResNet [5] and VGG [46]) to 2.
We adopt the Adam optimizer [49] with a batch size of 64
to fine-tune the classification network pre-trained on Ima-
geNet. We utilize the learning-rate finder technique [50] to
acquire a suitable learning rate. The one cycle learning rate
scheduler [51] is leverage to dynamically alter the learning
rate whilst the model is training. We set the manipulation in-

Methods Accuracy(%)
Image 70.0

PCA-Image 73.3
Latent Code 75.8

VGG-16(conv5_3) 94.2
VGG-16(conv5_2) 96.7
VGG-16(conv5_1) 97.5

Table 2
Classification accuracy on the separation boundary with re-
spect to image quality. Image refers to a direct application of
SVM on the image pixels. PCA-Image refers to using PCA
on the image pixels after reducing the dimensionality to 128
and applying SVM to identify realistic samples. Latent Code
refers to the direct application of SVM in the latent space.

tensity � to 3 for SeFa [6] and our proposed algorithm. The
scalar parameter for GANSpace [7] is set to 20 on the CUB
bird data set and 9 on the COCO data set, respectively. We
employ the Adam optimizer with � = (0.0, 0.9) to fine-tune
the identified directions. We set the learning rate to 0.0001.
The steps of a linear interpolation are set to 10. We set the
steps of 1 and 2 in a triangular ‘linguistic’ interpolation
to 10. Our methods are implemented by PyTorch [52]. We
conduct all the experiments on a single NVIDIA Tesla V100
GPU (32 GB memory).

5.2. Results of finding Good synthetic samples
5.2.1. Results of the pairwise linear interpolation of

latent codes
To better understand the transition process from a suc-

cessful synthesized sample to an unsuccessful generated im-
age, we visualize the results of the pairwise linear interpo-
lation between a Good latent code and a Bad latent vector
in Fig. 5 (a). It can be observed that for the first five and
the last two pictures, both the background and the visual ap-
pearance of footholds vary gradually along with the latent
vectors. However, the background, the visual appearance of
footholds, the positions, the shapes and even the orientations
(7tℎ → 8tℎ sample) of the birds do not change continuously
from the 6tℎ image to the 8tℎ sample. It suggests that there
may exist a non-linear boundary separating Good samples
from Bad images in the fake data space.

We also show the corresponding LPIPS score and the
perceptual loss (presented in Fig. 5 (b) and Fig. 5 (c)) to
quantitatively compare the diversity between two close sam-
ples. It can be seen that the increase of the 6tℎ point (6tℎ →
7tℎ sample) is the largest and the 7tℎ point (7tℎ → 8tℎ sam-
ple) obtains the highest score for both the LPIPS and the
perceptual loss. Meanwhile, both points are over the red line
which is an approximate boundary distinguishing smooth
changes from discontinuous variations and determined by
our observations. The results of Fig. 5 (b) and Fig. 5 (c)
match what observe in Fig. 5 (a), indicating that the vi-
sual appearance of the birds does not always vary smoothly
along with the latent codes.
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(a) An example of pairwise linear interpolation of latent codes

(b) The results of the LPIPS score (c) The results of the perceptual loss

Figure 5: An example of the pairwise linear interpolation of latent vectors (Good → Bad). The red bounding box in (a)
emphasizes a discontinuous range within the linear-interpolation results. The dashed red line in (b) and (c) is an approximate
boundary distinguishing smooth changes from discontinuous variations, determined by our observations. The index number
represents the comparison, starting with 0, i.e., the comparison between the first and the second image on the left. The
discontinuity is quantitatively revealed both in LPIPS and in perceptual loss.
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Figure 6: Example of partitioning of latent-code space be-
tween Good (two top rows) and Bad latent codes (two bot-
tom rows), as determined by the discriminant value (dis-
tance) computed by a linear SVM (training set: Ngood=150,
Nbad=150.)

5.2.2. Results on the initial Good & Bad bird data set
We try different methods to classify a synthetic sample

asGood orBad on the initial Good & Bad bird data set (i.e.,
210 Good and 210 Bad birds). The results are reported
in Table 2. Here, we discover that all methods using the
learned feature vectors of a well-trained VGG-16 network
achieve over 94%, suggesting that there exists a (almost) lin-
ear boundary in the deep-feature space which can accurately
distinguish Good samples from Bad samples. In addition,

Table 3
Classification performance of the deep convolutional net-
works on the Good & Bad bird and face data sets. Bird
refers to the Good & Bad bird data set and Face refers to the
Good & Bad face data set. The best results are in bold.

Classification performance/%

Method Dataset
Bird Face

VGG-11 96.53 98.08
VGG-16 95.70 97.84
VGG-19 97.85 98.20
ResNet-18 97.59 98.68
ResNet-50 98.09 98.56
ResNet-101 97.79 99.16

the conv5_1 activation in the pre-trained network obtains
the best performance (accuracy: 97.5%). We also attempted
to employ the SVM with radial basis function (RBF) kernel
to classify deep features, acquiring the same result as the
linear SVM. Moreover, it can be observed that directly op-
erating on the image pixels (accuracy: 70.0%) and the latent
space (accuracy: 75.8%) does not work well for the classifi-
cation of Good and Bad samples/latent codes. To boost the
accuracy, we conduct PCA on the image pixels to reduce
the dimension to 128 and apply a linear SVM to identify
realistic samples. However, the accuracy is only improved
by 3.3%. The above results confirm the effectiveness of our
proposed framework.

We visualize some typical output samples selected from
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(1) Visualization of the Good & Bad bird dataset

(a) PCA-based visualization

(2) Visualization of the Good & Bad face dataset

(b) t-SNE-based visualization (a) PCA-based visualization (b) t-SNE-based visualization

Figure 7: The visualization for the samples on the Good & Bad data set by utilizing the PCA [11] and t-SNE [53] methods. In
this figure, the yellow color represents the Good sample and the purple color represents the Bad image.

(a) Good Samples (b) Bad Samples
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bird
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Figure 8: Explaining the image classification prediction made by ResNet-50 on the Good & Bad bird data set (three top rows)
and ResNet-101 on the Good & Bad face data set (three bottom rows) using Layer-CAM [54], integrated gradient [55] and
extremal perturbation [56]. The left half of the grid is from the Good data set; the right half of the grid is from the Bad data
set, separated by the dashed line.

the test set (Ngood=60, Nbad=60) in Fig. 6 according to
their distance to the decision boundary of the trained SVM.
It can be observed that Good samples are distinguishable
from Bad samples. Meanwhile, the Bad birds around the
boundary may have higher quality than the Bad birds far

from the decision boundary. It should be noted that in non-
ergodic problems, where there is not a natural single signal
source for the Good (or the Bad) images, but there rather
exists a partitioning of space, the SVM discriminant value
for a sample is not guaranteed to be consistent with the intu-
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itive prototypicality of the heterogeneous underlying class [57]
due to the lack of a central density for that class.

5.2.3. Results on the Good & Bad data set
The classification results. We fine-tune the pre-trained CNN
models (i.e., ResNet and VGG) on the Good & Bad data set
in order to accurately predict the quality classes of gener-
ated images. The comparison between VGG-11, VGG-16,
VGG-19, ResNet-18, ResNet-50 and Res-Net-101 with re-
spect to the classification performance on the Good & Bad
bird and face data sets is shown in Table 3. We can observe
that ResNet-50 achieves the best result (accuracy: 98.09%)
on the Good & Bad bird data set and ResNet-101 impres-
sively acquires the accuracy of 99.16% on the Good & Bad
face data set. It can also be seen that ResNet performs better
that VGG and all the networks obtain a better than 95% ac-
curacy on both the Good & Bad bird data set and the Good
& Bad face data set. The above results demonstrate that the
Good and Bad samples in the synthetic image space can
be effectively distinguished by a well-trained deep convolu-
tional network.
Visualization of the learned representation. To visually
investigate the distribution of the features learned by the
CNN models (i.e., ResNet-50 for the Good & Bad bird data
set and ResNet-101 for the Good & Bad face data set), we
exploit the PCA [11] and t-SNE [53] approaches to embed
the samples on the Good & Bad data set into a 2-dimensional
space as shown in Fig. 7. From this figure, we can see that
the learned representations of the classification networks from
different classes (i.e., Good and Bad) are well separated
indicating that the image classification models can project
the plausible and unrealistic samples into two diverse la-
tent spaces. Therefore, discovering photo-realistic samples
from synthesized images is feasible. It can also be observed
that the samples of different categories on the Good & Bad
face data set are more scattered than the Good & Bad bird
data set, which demonstrates that ResNet-101 trained on the
Good & Bad face data set performs better than ResNet-50
trained on the Good & Bad bird data set. In other words,
faces are easier to recognize than birds, which is consistent
with the classification score.
Explaining the classification prediction. We leverage three
different methods (i.e., Layer-CAM [54], integrated gradi-
ent [55] and extremal perturbation [56]) to explain the im-
age classification prediction obtained by ResNet-50 trained
on the Good & Bad bird data set and ResNet-101 trained on
the Good & Bad face data set. Fig. 8 shows the explanation
for the top 1 predicted class, suggesting that the classifica-
tion network derives the results by concentrates on the dis-
criminative regions of the objects (i.e., birds and face). For
instance, Layer-CAM visualization (2nd and 6tℎ column)
localizes the heads and belly of the birds and the noses,
mouths and eyes of the faces. Meanwhile, integrated gradi-
ent (3rd and 7tℎ column) and extremal perturbation (4tℎ and
8tℎ column) correctly highlight the branches and the whole
bodies of the birds while capturing the hat and the entire
faces, pinpointing the reason why the samples are classified
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(b)
source

(1) SeFa

(a)
source

(b)
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(3) PCA-based method
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Figure 9: Visualization of individual components within the
latent codes, for (1) SeFa [6], (2) GANSpace [7] and (3) regu-
lar PCA. The original source image is in the left column (2 ex-
amples, a and b). For each principal component (pc1-pc4),
example images from the negative and the positive side of
its axis are shown.

into the corresponding categories. More importantly, the
blurry regions of the images (6tℎ, 7tℎ and 8tℎ column) are
accurately identified by these explainable approaches. That
is to say, our classification model can separate implausible
regions from high-quality patches and discover successful
synthetic samples from generated images.

5.3. Results of latent-space manipulation
5.3.1. Comparison between SeFa, GANSpace and PCA

Fig. 9 plots the latent-code manipulation results of SeFa
[6], GANSpace [7] and regular PCA on the CUB bird and
COCO data sets. We discover that these three approaches
derive almost the identical directions although for some com-
ponents (e.g., 4tℎ principal component) the negative and the
positive side is reversed, supporting our claim in Section
4.2.1. Note that GANSpace is implemented by leveraging
the first dense layer of DiverGAN to collect 10,000 sets of
feature maps while performing PCA on them to obtain prin-
cipal components as useful attributes. Additionally, we ad-
just the max manipulation intensity (i.e., � in Section 3) to
20 on the CUB bird data set and 9 on the COCO data set,
respectively. The above analysis suggests that when enough
data is sampled, SeFa is similar to GANSpace for Diver-
GAN.

5.3.2. Comparison with unsupervised methods
For qualitative comparison, we visualize the meaningful

directions identified by our proposed algorithm and SeFa
on the CUB bird and Multi-Modal CelebA-HQ data sets in
Fig. 10. We can tell that our method is able to derive sev-
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(1) Bird dataset

Source rotation background size

(a)

(b)

Source rotation background size

(a)

(b)

Source pose hair smile

Source pose hair smile

(a)

(b)

(a)

(b)

(2) Face dataset

Figure 10: Qualitative comparison of the meaningful latent-space directions discovered by (a) SeFa [6] and (b) our proposed
algorithm on (1) the CUB bird (four top rows) and (2) Multi-Modal CelebA-HQ (four bottom rows) data sets.

eral fine-grained semantics corresponding to rotation, back-
ground and size for the bird model and pose, hair and smile
for the face model, validating its effectiveness. Meanwhile,
our approach leads to a more powerful control over the la-
tent codes than SeFa. For example, when editing the back-

ground on the CUB bird data set and the smile on the Multi-
Modal CelebA-HQ data set, our algorithm better preserves
the size of the bird and the pose of the face, respectively.
It can also be seen that our method captures the same rota-
tion and pose attributes as SeFa. The reason for this may be
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Figure 11: Human test results (ratio of 1st) of SeFa [6] and
our proposed method with respect to the smile and hair se-
mantics on the Multi-Modal CelebA-HQ data set.

source Meaningful directions

Background flatten

Background removal

Figure 12: Visualization of background flatten and back-
ground removal for the meaningful directions acquired by our
proposed method.

that ICA under orthogonal constraint and PCA can discover
exactly the same most representative semantics (rotation for
the bird model and pose for the face model). The above re-
sults demonstrate that based on the Good latent codes found
by our well-trained classification model, we can adopt our
presented algorithm to acquire a wealth of semantically-
diverse and perceptually-realistic samples.

5.3.3. Human evaluation
We conduct a human test on the Multi-Modal CelebA-

HQ data set to compare our method with SeFa. We ran-
domly select 100 successful synthesized faces while em-
ploying the directions (i.e., smile and hair) found by these
two approaches to edit them. Users are asked to choose the
sample with the most accurate change. Simultaneously, the
final results are calculated by two judges for fairness. As
illustrated in Fig. 11, our method performs better than SeFa
with respect to the control of smile and hair, which demon-
strates the superiority of our proposed algorithm.

5.3.4. Results of background flatten
To prove the effectiveness of background flatten, we ap-

ply it to optimize the directions obtained by our proposed al-

Small <color> bird with 

brown wings medium 

tarsus and short beak

Input

Small <color> bird with 

brown wings medium 

tarsus and short beak

Small red bird with 

brown wings medium 

tarsus and <length> 

beak

This bird is brown and 

white in color, with a 

<color> beak

red blue

red yellow

short long

brown red

Figure 13: ‘Linguistic’ interpolation of DiverGAN random
latent-code samples on the CUB dataset, for four text input
probes.
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grass beach
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Figure 14: ‘Linguistic’ interpolation of DiverGAN random
latent-code samples on the COCO dataset, for four text input
probes.
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Figure 15: Unsuccessful ‘linguistic’ interpolation of Diver-
GAN random latent-code samples on the CUB and COCO
datasets, for four text input probes. For the third row, the
desired attribute (i.e., a street) is not emerging.

gorithm. The results are illustrated in Fig. 12. By comparing
the first row with the second row, we can see that the back-
ground is significantly improved and other image contents
are maintained, indicating that the presented background-
flattening method can be employed for existing latent-code
manipulation approaches to fine-tune the backgrounds of
synthetic samples. As can be observed in the third row,
background flatten can also be leverage to remove the back-
ground while keeping the birds unchanged.

5.4. Results of a ‘linguistic’ interpolation
5.4.1. Results of the linear interpolation between

keywords
Fig. 13 shows the qualitative results of the linear ‘lin-

guistic’ interpolation of DiverGAN on the CUB bird data
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set, indicating that the attributes correlated with the synthe-
sized sample do not always change gradually with the vari-
ations of word embeddings. For instance, the color of the
bird does not vary continuously from ‘red’ to ‘blue’ in the
first row. In the medium of interpolation results, DiverGAN
generates multiple novel birds, whose bodies are composed
of red and blue patches. However, the color attribute of the
bird changes gradually from ‘red’ to ‘yellow’ in the second
row. We are able to acquire an average color interpolation
in RGB space by merging the first and second attributes.
We can also see that in the third row, the length of the beak
varies smoothly along with textual vectors while other at-
tributes remain unchanged. Furthermore, while the color of
the beak changes continuously with the variations of word
embeddings, the shape of the bird varies largely in the fourth
row. The above results suggest that DiverGAN has the abil-
ity to capture the significant words (e.g., the color of the
body and the length of the beak) in the given textual descrip-
tion. More importantly, by exploiting the characteristic as
well as the linear interpolation between a pair of keywords,
we can precisely control the image-generation process while
producing various novel samples.

The qualitative results of the linear interpolation between
contrastive keywords on the COCO data set are shown in
Fig. 14. We can observe that DiverGAN accurately identi-
fies ‘beach’, ‘snow’ and ‘men’ while generating the corre-
sponding image samples. In addition, the background (1st
and 2nd row) and the object (3rd row) change continuously
along with linguistic vectors. It can also be seen that al-
though we change the ‘acting’ word from ‘grazing’ to ‘ski-
ing’, the background significantly varies from ‘grass’ to ‘snow’
in the fourth row, which demonstrates that some words (e.g.,
‘skiing’) play a vital role in the generation process of im-
age samples. Furthermore, the above analysis indicates that
when given adequate training images, DiverGAN is able to
control the background (e.g., from grass to beach) and ob-
ject (e.g., from animals to men) of complex scenes with the
help of the linear ‘linguistic’ interpolation, since DiverGAN
is able to learn the corresponding semantics in the linguistic
space of the conditional input-text probes.

In addition to visualizing effective examples of the linear
interpolation between keywords, we also present some un-
successful results in Fig. 15. As can be observed in Fig. 15,
the size of the bird (1st and 2nd row) does not vary with
the variations of the word (from ‘small’ to ‘big’ and from
‘small’ to ‘medium’). In addition, we can see that the back-
ground (3rd row) and the object (4tℎ row) unfortunately do
not change along with the word (from ‘grass’ to ‘street’ and
from ‘animals’ to ‘cows’). At this point we can conclude
that many meaningful contrasts can be learned (Fig. 14), but
there are areas where the method is not able to capture im-
portant variations along a dimension. This may be due to
architectural or data-related limitations. In order to improve
our insights, we will look at a triangular interpolation in the
next subsection.

snow

grass beach

A bunch of animals 
grazing on some 
<background> 

Figure 16: The triangular interpolation of latent codes, for
linguistic attributes snow, grass, beacℎ on two dimensions.
The center is marked in red.

5.4.2. Results of a triangular ‘linguistic’ interpolation
The triangular interpolation for linguistic attributes (i.e.,

the points between snow, grass, beacℎ) in two dimensions
is shown in Fig. 16. We can observe that the transitions to-
wards the three corner points are natural as well as smooth.
Furthermore, the interpolation results achieve a balanced tri-
angular shape within the triangle, such that the center marked
in red is the combination of three linguistic attributes. If the
application concerns data augmentation, 55 believable sam-
ples are obtained by performing the triangular interpolation
between keywords.

6. Conclusion
In this paper, we propose several techniques to over-

come the challenges of text-to-image generation in real-world
applications. To ensure the quality of synthetic pictures,
we created a Good & Bad data set, both for a bird and a
face-image collection, which comprises high-resolution as
well as implausible synthesized samples, in which the im-
ages are chosen by following strict principles. Based on the
Good & Bad data set, we fine-tune the deep convolutional
network trained on ImageNet to classify a generated image
as Good or Bad. To better understand and exploit the latent
space of a conditional text-to-image GAN model, we intro-
duce the independent component analysis (ICA) algorithm
under an additional orthogonal constraint that can extract
both independent and orthogonal components from the pre-
trained weight matrix of the generator as the semantically-
interpretable latent-space directions. In addition, we de-
signed a background-flattening loss (BFL) to optimize the
background appearance in the edited sample. To provide
valuable insight into the relationship between the linguistic
embeddings and the synthetic-sample semantic space, we
conduct linear interpolation analysis between pairs of key-
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words. Meanwhile, we extend a pairwise linear interpola-
tion to a triangular interpolation conditioned on three cor-
ners to further analyze the model.

We evaluate our presented approaches on the recent Di-
verGAN generator that was pre-trained on three popular data
sets, i.e., the CUB bird, Multi-Modal CelebA-HQ and MS
COCO data sets. Extensive experimental results suggest
that our well-trained classifier is able to accurately predict
the quality classes of the samples from the testing set and
our introduced algorithm can derive meaningful semantic
properties in the latent space of DiverGAN, which validates
the effectiveness of our proposed methods. Furthermore, we
show that semantics contained in the image change grad-
ually with the variations of latent codes, but the attributes
of the sample do not always vary continuously along with
the word embeddings. Moreover, we find that DiverGAN
cannot capture the size of the object due to the mechanism
of the convolutional neural network and cannot understand
some words in the given textual description owing to the
limitation of the data set. In the future, we will explore how
to utilize the presented approach to perform data augmen-
tation for training image classifiers. Meanwhile, we plan
to investigate the feasibility of adopting the proposed algo-
rithm for the text-to-video generation task, which has vari-
ous potential applications, such as synthesizing data for the
reinforcement-learning system.
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