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Abstract

This paper studies static output feedback stabilization of continuous-time (incrementally) passive nonlinear systems where
the control actions can only be chosen from a discrete (and possibly finite) set of points. For this purpose, we are working
under the assumption that the system under consideration is large-time norm observable and the convex hull of the realizable
control actions contains the target constant input (which corresponds to the equilibrium point) in its interior. We propose
a nearest-neighbor based static feedback mapping from the output space to the finite set of control actions, that is able to
practically stabilize the closed-loop systems. Consequently, we show that for such systems with m-dimensional input space,
it is sufficient to have m + 1 discrete input points (other than zero for general passive systems or the target constant input
for constant-incrementally passive systems). Furthermore, we present a constructive algorithm to design such m+ 1 nonzero
input points that satisfy the conditions for practical stability using our proposed nearest-neighbor control.

Keywords: Nonlinear passive systems; finite control set; output feedback; binary control; practical stabilization.

1. Introduction

In several applications ranging from control of physical sys-
tems to networked control, exact implementation of a feed-
back control law is not possible due to the constraints at the
level of sensors/actuators, or the constraints at the level of
communication channels. Problems related to analysis, or
the design of control laws, in the presence of such constraints
have received considerable attention in the literature (De Per-
sis and Jayawardhana, 2012; De Persis, 2009; Delchamps,
1990; Elia and Mitter, 2001; Hayakawa et al., 2009; Jafarian
and De Persis, 2015). In this paper, we focus our attention on
continuous-time dynamical systems where the input space is
constrained to finite discrete sets.

Control design methods with appropriate analysis tech-
niques, where binary input or minimal information is con-
sidered, have been discussed, among many others, in (Elia
and Mitter, 2001; Kao and Venkatesh, 2002) for linear sys-
tems, and in (Cortés, 2006; De Persis, 2009; De Persis and
Jayawardhana, 2012; Jafarian and De Persis, 2015) for the
networked control systems setting. As these papers consider
the use of binary input values per input dimension, the sta-
bilization of an m-dimensional input-output system implies
that there should be at least 2m admissible input values and
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the stabilizing control law must dynamically assign one of
these values as control input at every time instance. In this
paper, we shall focus on designing control laws with a set of
discrete control values whose cardinality is at most m+ 1, if
we exclude the origin of the input space.

We consider nonlinear systems described by

Σ :

¨

ẋ = f (x) + g(x)u
y = h(x)

(1)

where the state x(t) ∈ Rn and the input and output signals
u(t), y(t) ∈ Rm. The functions f , g, and h are assumed to
be continuously differentiable, f (0) = 0, g(x) is full-rank for
all x , and h(0) = 0. The underlying assumption throughout
the paper is that the input-output system Σ is passive (in ap-
propriate sense). The basic problem we study is the stabiliza-
tion of Σ under limited actuation/information transmission;
that is, the control input u can only take values from a finite
discrete set U := {u0, u1, u2, . . . , up} with ui ∈ Rm for each
i = 0, . . . , p.

For the nominal system, it is assumed that we have a sta-
bilizing output feedback law y 7→ F(y) (when U is a con-
tinuum). When we impose the constraint that the actua-
tion set U is finite, two relevant questions for its stabiliza-
tion are: a) how to map F(y) to an element in U ?; and b)
how to determine the minimal cardinality of U ? To address
these questions for the system class Σ, we design a mapping
φ : Rm→U , withU being discrete (and possibly minimal),
such that u= φ(F(y)) ∈ U practically stabilizes Σ.

The question of designing the quantization mapping φ :
Rm → U has been addressed in various forms in literature.
Since the input can only take the available values in the dis-
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crete set U , the quantizer φ, in some sense, defines the par-
tition of the input space with respect to U , where each cell
of the partition is associated to an element of the set U . In
most of the existing works, the input set U is chosen such
that the resulting partition has some structure. For instance,
when U := {−N ,−N + 1, . . . , N − 1, N}m, a partition in the
form of a regular grid facilitates design and analysis (Cer-
agioli and De Persis, 2007; De Persis, 2009; De Persis and
Jayawardhana, 2012; Delchamps, 1990; Jafarian and De Per-
sis, 2015; Liberzon and Hespanha, 2005; Tatikonda, 2000).
Other examples include logarithmic quantizers (Elia and Mit-
ter, 2001; Fu and de Souza, 2009), which are optimal with
respect to a certain density metric. In particular, with the use
of static finite-level quantized feedback, the state only con-
verges to a ball around the origin, where the radius of this
convergence ball decreases with the increase in the number
of quantization levels. However, if we fix the cardinality of
the discrete setU , then an interesting question is to find the
quantization mapping, or the partition, which minimizes the
size of ball around the origin where the trajectories converge
asymptotically. The paper (Bullo and Liberzon, 2006) casts
such question as an optimization problem (without taking
system dynamics into consideration), which results in the so-
called Voronoi tessellations. In this paper, we address the
question of designing φ by fixing the cardinality of the set
U which results in convergence to an arbitrarily small ball
around the origin. In particular, by exploiting the passivity
structure and using a quantizer based on Voronoi tessella-
tions, we provide conditions relating system dynamics and
geometry of the partitions that guarantee practical stability
with a discrete input set U of fixed cardinality (which will
be specified precisely in the discussion that follows).

The second question of finding the minimal setU for feed-
back stabilization has also received considerable attention.
One question regarding this matter is on the minimal car-
dinality of the set U . For example, in (Nair et al., 2004),
it is shown that a discrete-time linear system, under some
appropriate setting, is stabilizable if the number of bits per
sample (rate of communication) is greater than the intrin-
sic entropy of the system. Similar results are available for
continuous-time systems setting in (Colonius, 2012; Colonius
and Kawan, 2009). To the best of authors’ knowledge, there
has not been a dedicated study on computing the entropy of
passive nonlinear systems. Therefore, the question of how
many symbols are necessary or sufficient for stabilization of
a passive nonlinear systems has not been addressed. How-
ever, we do find some results on quantized control of passive
system. In (Cortés, 2006; Jafarian and De Persis, 2015), un-
der certain passivity structure in the dynamics, Σ is shown
to be practically stabilizable by using binary control for each
input dimension which directly translates to 2m+1 elements
in U , e.g., U = {0} ∪ {−1, 1}m.

As a relaxation of aforementioned results, and dealing with
a rather generic class of multi-input multi-output passive
nonlinear systems, we show in this paper that such practi-
cal stabilization can be achieved by simply using m+ 1 ele-
ments inU , in addition to {0} or the required constant input

u∗ when the system is required to track a desired constant
reference y∗. We do so by proposing the nearest-neighbor
based control laws and analyze the stability of the closed-
loop systems when the input u can only be taken from the
finite discrete set U . Moreover, we provide algorithmic pro-
cedure to construct minimal discrete sets that are able to
practically stabilize the systems by means of nearest-neighbor
based control law. Our design methodology is such that the
overall closed-loop system is an interconnection of a passive
system with an optimization-based selection rule for the in-
put. Dynamical systems where the inputs are computed from
solving an optimization problem, and are discontinuous ap-
pear in different applications (Brogliato and Tanwani, 2020).
Passivity of the open-loop system is an important structural
property that helps us analyzing the overall system in such
cases. When quantization effect is of a particular concern, the
interconnection of passive systems and quantizers has been
studied for the past decade in various different contexts. For
instance, the practical stability analysis of passive systems in
a feedback loop with a quantizer using an adapted circle cri-
terion for nonsmooth systems is presented in (Jayawardhana
et al., 2011).

The rest of the paper is organized as follows. In Section 2,
we provide some preliminaries on set-valued dynamics re-
sulting from the use of nonsmooth control laws and on con-
vex polytopes; and formulate the control problem. In Sec-
tion 3, we describe our nearest neighbor control (NNC) map
φ, and our main results showing practical convergence for
(constant-incremental) passive systems. Some simple de-
signs of the minimal action set are provided in Section 4.
Finally, some concluding remarks are provided in Section 5.

A preliminary version of the results presented in Sec-
tion 3 has also appeared in the conference version of our
paper (Jayawardhana et al., 2019). However, in this article,
we carry out the proofs differently and with more rigor that
enables us to analyze the closed-loop systems, which involve
the composition of discontinuous NNC map φ and sector-
bound nonlinearity F in the feedback loop and is applicable
to any input-output dimension m≥ 1. The results studied in
Section 3.3, and the design methods proposed in Section 4
have not been addressed in any of authors’ previous works.

2. Preliminaries and Problem Formulation

Notation: For a vector in Rn, or a matrix in Rm×n, we
denote the Euclidean norm and the corresponding induced
norm by ∥ · ∥. For a signal z : R≥0 → Rn, the essential
supremum norm of z over an interval I ⊂ R≥0 is denoted
by ∥z∥I . For any c ∈ Rn, the set Bε(c) ⊂ Rn is defined as,
Bε(c) := {ξ ∈ Rn|∥ξ− c∥ ≤ ε}. For simplicity, we write Bε(0)
as Bε. The inner product of two vectors µ,ν ∈ Rm is denoted
by 〈µ,ν〉. For a given set S ⊂ Rm, and a vector µ ∈ Rm, we
let 〈µ,S 〉 := {〈µ,ν〉 |ν ∈ S }. For a discrete set U , its car-
dinality is denoted by card(U ). The convex hull of vertices
from a discrete set U is denoted by conv(U ). The interior
of a set S ⊂ Rn is denoted by int (S). A unit vector whose
i-th element is 1 and the other elements are 0 is denoted by
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ei . A vector whose entries are 1 is denoted by 1. A continu-
ous function γ : R≥0 → R≥0 is of class K if it is continuous,
strictly increasing, and γ(0) = 0. We say that γ : R≥0→ R≥0
is of class K∞ if γ is of class K and unbounded.

2.1. Passive systems and observability notions

The central object of this paper is the nonlinear control
systems Σ given in (1). The fundamental property that we
associate with Σ is that, it is passive, i.e., for all pairs of in-
put and output signals u, y, we have

∫ T

0 〈y(t), u(t)〉dt > −∞
for all T > 0; see (Willems, 1972; van der Schaft, 2016; Or-
tega et al., 2013) for some primary references on passive sys-
tems. By the well-known Hill-Moylan conditions, the passiv-
ity of Σ implies that there exists a positive definite storage
function H : Rn → R≥0 such that 〈∇H(x), f (x)〉 ≤ 0 and
〈∇H(x), g(x)〉 = h⊤(x). Without loss of generality, we as-
sume that the storage function H is proper, i.e. all level sets
of H are compact.

Using the passivity assumption on Σ, it is immediate to
see that u ≡ 0 implies that all level sets of H are positively
invariant. More precisely, for any c > 0, if H(x(0)) ≤ c then
H(x(t)) ≤ c for all t ≥ 0. In other words, if we initialize the
state of Σ such that x(0) ∈ Ωc := {ξ|H(ξ) ≤ c} with u ≡ 0
then x(t) ∈ Ωc for all t ≥ 0. We will use this property later
to establish the practical stability of our closed-loop systems
in conjunction with the following observability notion from
(Hespanha et al., 2005).

Definition 1. The system (1) is large-time initial-state norm
observable if there exist τ > 0, and γ,χ ∈K∞ such that the
solution x of (1) satisfies

∥x(t)∥ ≤ γ(∥y∥[t,t+τ]) +χ(∥u∥[t,t+τ])

for all t ≥ 0, x(0) ∈ Rn, and locally essentially bounded and
measurable inputs u : R≥0→ Rm.

In this work, we will use the large-time initial-state norm
observability property for the autonomous system (with u =
0):

ẋ = f (x), y = h(x). (2)

In this case, large-time initial-state norm observability of (2)
implies

∃τ > 0,γ ∈K∞ such that, for each x(0) ∈ Rn,

∥x(t)∥ ≤ γ(∥y∥[t,t+τ]), ∀t ≥ 0. (3)

We note that in the standard passivity-based control lit-
erature, the notion of zero-state observability or zero-state
detectability is typically assumed for establishing the conver-
gence of the state to zero in the Ω-limit set. However, these
notions cannot be used to conclude the boundedness of the
state trajectories given the bound on the output trajectories.
Therefore, instead of using these notions, we will use the
above large-time initial-state norm observability for deduc-
ing the practical stability based on the information on y in
the Ω-limit set.

Remark 1. If the dynamics in system (2) are linear, that is,
ẋ = Ax , y = C x , and the pair (A, C) is observable, then one
can quantify γ in (3) using the observability Gramian. In
particular, if for τ > 0

Wτ(t) =

∫ t+τ

t

eA⊤(s−t)C⊤CeA(s−t) ds

then x(t) = (Wτ(t))
−1 ∫ t+τ

t eA⊤(s−t)C⊤ y(s) ds, for each t ≥ 0,
and τ > 0, which in particular yields

∥x(t)∥ ≤ ∥(Wτ(t))
−1∥
∫ t+τ

t

∥eA⊤(s−t)C⊤∥ds sup
s∈[t,t+τ)

|y(s)|

for each t ≥ 0, and any τ > 0.

2.2. Stabilization problem with limited control
We are interested in feedback stabilization of the system Σ

described in (1) using the output measurements. The key el-
ement of our problem is that the input u can only take values
in a discrete set, which is finite. Thus, the objective is to find
a rigorous way to map the outputs (taking values in Rm) to
a finite set such that the closed-loop system is stable in some
appropriate sense. More formally, we address the following
problem:

Practical output-feedback stabilization with limited
control (POS-LC): Consider system Σ as in (1) with an
asymptotically stabilizing static output-feedback law y 7→
F(y) ∈ Rm. For a given ball Bε ⊂ Rn, with ε > 0, deter-
mine the finite set U := {u0, u1, . . . , up} ⊂ Rm with mini-
mal cardinality, and describe the mapping φ : Rm→U such
that the closed-loop system of (1) with u= φ(F(y)) satisfies
x(t)→ Bε as t →∞ for all initial conditions x(0) ∈ Rn.

In our problem formulation, both the construction of a dis-
crete set U , as well as the design of the stabilizing map φ
constitute our control problem. Compared to the numerous
works in the literature on quantized control, our job in solv-
ing POS-LC problem is facilitated under the passivity struc-
ture, along with the appropriate observability notion. In par-
ticular, for the first of results, we will work under the follow-
ing basic assumption for solving POS-LC:

(A0) The system Σ in (1) is passive with a proper and posi-
tive definite storage function H and, the corresponding
autonomous system (2) is large-time initial-state norm-
observable for some τ > 0 and γ ∈K∞.

Remark 2. In (A0), we require the storage function to be
positive definite. In general, passivity of system (1) only im-
plies the existence of a positive semidefinite storage function.
However, if we add zero-state-observability condition, then
the resulting storage function is positive definite (Hill and
Moylan, 1976, Lemma 1). In our setup, inequality (3) im-
plies such an observability notion.

2.3. Set-valued analysis: Basic notions
In studying the aforementioned control problem, we recall

some fundamental definitions found in the literature on dif-
ferential inclusions and convex polytopes, which would be
useful for analysis in later sections.
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2.3.1. Regularized differential inclusions
It turns out that a mapping which maps output from a con-

tinuum to a discrete set of control actions is essentially dis-
continuous (with respect to usual topology on Rm). Differen-
tial equations with such state-dependent discontinuities need
regularization so that the solutions are properly defined. For
a discontinuous map F : Rn→ Rn, we can define a set-valued
map K (F) by convexifying F as follows

K (F(x)) :=
⋂

δ>0

co(F(x +Bδ))

where co(S) is the convex closure of S. The set-valued map-
ping K (F) is the Krasovskii regularization of F , and un-
der certain regularity assumptions on F , K (F) is compact
and convex-valued, and moreover it is upper semicontinu-
ous (Aubin and Cellina, 1984, Chap. 1, Def. 1). For an upper
semicontinuous mapping Φ : Rn⇒Rn, consider the differen-
tial inclusion

ẋ ∈ Φ(x) x(0) = x0. (4)

A Krasovskii solution x(·) on an interval I = [0, T ), T > 0
is an absolutely continuous function x : I → Rn such that
(4) holds almost everywhere on I . It is maximal if it has no
right extension and it is a global solution if I = R≥0. For
any upper semicontinuous set-valued map Φ such that Φ(ξ)
is compact and convex for every ξ ∈ Rn, the following prop-
erties have been established (see, e.g., (Aubin and Cellina,
1984, Chap. 2, Theorem 3)): (i). the differential inclusion
(4) has a solution on an interval I ; (ii). every solution can be
extended to a maximal one; and (iii). if the maximal solution
is bounded then it is global.

2.3.2. Convex polytopes
Next, we present two basic representations of convex poly-

topes and some of their notable examples that are related to
our problem. We refer to (Okabe et al., 2009) and (Toth et al.,
2017) for additional material on this topic. Firstly, the vertex
representation (V-representation) of a convex polytope in Rm

is an m-polytope defined by the convex hull of a finite set of
points U ⊂ Rm; that is the m-polytope PV(U ) := conv (U ).
Another way to define an m-polytope is by intersecting finite-
number of half-spaces (H-representation) that is given by
PH(A, b) := {x ∈ Rm|Ax ≤ b}. Note that both representa-
tions of m-polytopes are equivalent, i.e. PV(U ) = PH(A, b)
with appropriate A∈ Rn×m and b ∈ Rn. When it is clear from
the context, we will omit the arguments in PV and PH in the
rest of this paper.

One simple example of m-polytopes is the m-dimensional
simplex, commonly referred to as m-simplex. For particular
examples, 1-simplex is a line, 2-simplex is a triangle, and 3-
simplex is a tetrahedron.

Definition 2 (m-simplex). Let S := {s0, s1, . . . , sm} with si ∈
Rm, i = 0, 1, . . . , m be an affinely independent set, i.e. for any
si ∈ S , the set fSi := {s̃ ∈ Rm | s̃ = s j − si ,∀s j ∈ S \ {si}} is
linearly independent. An m-simplex Sm is defined by,

Sm = conv (S ) :=

¨

m
∑

i=0

cisi

�

�

�

�

m
∑

i=0

ci = 1, ci ≥ 0

«

,

and we say that bSm
= 1

m+1

∑m
i=0 si is its barycenter.

Example 1. One special case of m-simplices is a regular m-
simplex Sm,reg where all vertices have equal distances to its
barycenter and, one possibly simple choice for such a simplex
is Sm,reg := conv

�

Sreg

�

where

Sreg = λ

�

e1, . . . , em,
1−
p

m+ 1
m

1

�

(5)

for some λ ∈ R>0.

For our purposes, the utility of convex polytopes is seen in
partitioning the output space Rm into a finite number of cells
which can then be associated to a control action. In partic-
ular, given a finite set S ⊂ Rm with card(S ) = q, the space
Rm can be partitioned into q number of cells where every cell
contains all points in Rm that are closer to an element of S
than any other element. Such cells are commonly referred to
as Voronoi cells and are defined as follows.

Definition 3. Consider a countable setS ⊂ Rm. The Voronoi
cell of a point s ∈ S is defined by

VS (s) := {x ∈ Rm | ∥x − s∥ ≤ ∥x − v∥, ∀v ∈ S \ {s}} .

Remark 3. Note that every Voronoi cell is a closed and con-
vex polyhedron since they can always be represented by the
solution of a system of linear inequalities.

3. Nearest-Neighbor Control for Passive Systems

In this section, we present firstly the practical stabiliza-
tion result of the origin of general passive systems with unity
output feedback and is followed by sector-bounded nonlin-
earity in the feedback loop. Secondly, we present briefly its
extension to practically stabilize constant-incrementally pas-
sive systems. The motivation behind our design of these el-
ements is to work with minimal number of elements in the
set U which yield the desired performance using the static
output feedback only. Toward this end, the only assumption
we associate with the set U is the following:

(A1) For a given set U := {u0, u1, u2, . . . , up}, with u0 = 0,
there exists an index set I ⊂ {1, . . . , p} such that the
set V := {ui}i∈I ⊂ U defines the vertices of a convex
polytope satisfying, 0 ∈ int (conv (V )).

An immediate consequence of (A1) is the following lemma,
which is used in the derivation of our forthcoming main re-
sult.

Lemma 1. Consider a discrete setU ⊂ Rm that satisfies (A1).
Then, there exists δ > 0 such that

VU (0) ⊆ Bδ, (6)

that is, the following implication holds for each η ∈ Rm

∥η∥> δ⇒ ∃ ui ∈ U s.t. ∥η− ui∥< ∥η∥. (7)
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Proof. Based on Assumption (A1), consider the sets I :=
{1, . . . , q}, and V := {v1, . . . , vq} ⊂ U such that q ≤ p and
0 ∈ int (conv (V )). Let S = V ∪ {0}. From the definition
of Voronoi cells, it readily follows that VU (0) ⊆ VS (0), and
therefore, it suffices to show that VS (0) ⊂ Bδ. Toward that
end, we first observe that the Voronoi cell VS (0) can be de-
scribed as

VS (0) :=PH

�

�

v1 . . . vq

�⊤
,

1
2

�

∥v1∥2 . . . ∥vq∥2
�⊤
�

.

(8)
Thus, from (8), we know that VS (0) is a closed convex poly-
hedron. It remains to show that VS (0) is bounded. Indeed,
boundedness implies that we can choose δ = max

ṽ∈ VS (0)
(∥ṽ∥),

such that Bδ is the smallest ball containing the set VS (0),
which by definition of Voronoi cell is equivalent to (7).

To show that VS (0) is bounded, we observe that, under
(A1), there exists µ > 0 such that Bµ ⊂ conv(V ). Thus, for
every ṽ ∈ VS (0), µ

ṽ
∥ṽ∥ ∈ conv(V ). Hence, there exist λi ≥ 0

such that
∑q

i=1λi = 1 and µ ṽ
∥ṽ∥ =
∑q

i=1λi vi . Consequently,
from (8), it follows that

µ
ṽ⊤ ṽ
∥ṽ∥

=
q
∑

i=1

λi v
⊤
i ṽ ≤

1
2

q
∑

i=1

λi∥vi∥2

and hence ∥ṽ∥ ≤ 1
2µ

∑q
i=1λi∥vi∥2.

Example 2. A simple example of U in R2, satisfying (A1) is
as follows:

Uex := α
n

0,
�

sin(θex)
cos(θex)

�

,
h

sin(θex+
2π
3 )

cos(θex+
2π
3 )

i

,
h

sin(θex+
4π
3 )

cos(θex+
4π
3 )

io

=:
�

0, uex,1, uex,2, uex,3

	

(9)

with some θex ∈ R and α ∈ (0,∞). For this example,
(A1) holds by taking V := U \ {0}. Following the proof of
Lemma 1, we have VU (0) := conv

�

eV0

�

where

eV0 := α
nh

sin(θex+
π
3 )

cos(θex+
π
3 )

i

,
h

sin(θex+
3π
3 )

cos(θex+
3π
3 )

i

,
h

sin(θex+
5π
3 )

cos(θex+
5π
3 )

io

.

Then, then the smallest δ that satisfies (6) in Lemma 1 is
given by δ = α.

3.1. Unity output feedback

Using the result of Lemma 1 and the assumptions intro-
duced thus far, we can define a feedback mapping φ which
maps the measured outputs to the discrete set U to achieve
practical stabilization. In this regard, we first consider the
mapping φ : Rm⇒U , defined as

φ(η) := arg min
v∈U

{∥v −η∥} . (10)

For a given output feedback y 7→ F(y), the quantized feed-
back control u = φ(F(y)), with φ given in (10), maps F(y)
to the nearest element in the set U with respect to the Eu-
clidean distance. As a straightforward observation, when U
is the continuum space Rm, the solution to the optimization

problem (10) is u = φ(F(y)) = F(y). Let us first restrict
ourselves to the unity output feedback case F(y) = −y . By
choosing u= φ(−y), the closed system is thus given by

ẋ = f (x) + g(x)φ(−y) (11)

y = h(x).

As φ(−y) is a nonsmooth mapping, we consider instead the
following regularized differential inclusion

ẋ ∈K
�

f (x) + g(x)φ(−y)
�

= f (x) + g(x)K (φ(−y))
(12)

y = h(x).

We note that the solution of (11) is basically interpreted in
the sense of (12). In the following result, we analyze the
asymptotic behavior of the solutions of (12) and show that
they converge to Bε, for a given ε > 0, if the constant δ
associated to the set U in (6) is small enough. For a set
U that satisfies (A1), we can reposition its elements without
changing the cardinality ofU to get a desired value of δ > 0,
and such constructions are addressed in Section 4.

Proposition 1. Consider a nonlinear systemΣ described by (1)
that satisfies (A0), and a discrete set U ⊂ Rm satisfying (A1)
so that (6) holds for some δ > 0. For a given ε > 0, assume
that

γ(δ)≤ ε. (13)

Then the control law u = φ(−y), with φ given in (10),
globally practically stabilizes Σ with respect to Bε, that is,
lim supt→∞ |x(t)| ≤ ε.

Proof. For a fixed y ∈ Rm, suppose that φ(−y) = {ui}i∈Jy
for

some Jy ⊂ {0, 1, . . . , p}. It follows from (10) that {ui}i∈Jy
are

the closest points to −y . By definition of φ, the inequality
∥ui + y∥2 ≤ ∥u j + y∥2 holds for i ∈ Jy and j ∈ {0,1, . . . , p}.
By taking u j = 0, and noting that ∥ui + y∥2 = 〈ui + y, ui +
y〉 = ∥ui∥2 + 2〈ui , y〉+ ∥y∥2, we can conclude that 〈ui , y〉 ≤
− 1

2∥ui∥2. Therefore, for each y ∈ Rm, and ui ∈ φ(−y), i ∈
Jy , we get

−∥ui∥ · ∥y∥ ≤ 〈ui , y〉 ≤ −
1
2
∥ui∥2 (14)

Based on this property of 〈φ(−y), y〉, we can now analyze
the behavior of the closed-loop system given by (12).

For the storage function H associated with the open-loop
system, we evaluate its derivative along the solutions of (12)
in following two cases:
(i): 0 ̸∈ φ(−y) = {ui}i∈Jy

so that Jy ⊂ {1, . . . , p}. Let Wy :=
φ(−y), then

Ḣ(x) = 〈∇H(x), ẋ〉 ∈ 〈∇H(x), f (x) + g(x)K (φ(−y))〉
= 〈∇H(x), f (x)〉+ 〈y, conv(Wy)〉.

Based on the computation of 〈φ(−y), y〉, with non-zero
φ(−y), it follows that

〈y, conv(Wy)〉 ⊂
�

− ∥uy,max∥∥y∥ , −0.5∥uy,min∥2
�

,
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where we let ∥uy,max∥ := maxw∈Wy
∥w∥, and ∥uy,min∥ :=

minw∈Wy
∥w∥. Therefore, Ḣ(x) ≤ −0.5∥uy,min∥2; when 0 ̸∈

φ(−y), or the other possibility is that,
(ii): 0 = φ(−y) = {u0} =Wy so that Jy = {0}. In this case,
following the same arguments as in case (i)

Ḣ(x) ∈ 〈∇H(x), f (x)〉+ 〈y, conv(Wy)〉.

Since {0} is the only element of Wy , 〈y, conv(Wy)〉 = {0}.
This implies that, for the case when φ(y) = {0}, we have
Ḣ(x) = 0.

Combining the two cases, it holds that for Jy ⊂
{0,1, . . . , p}, we have Ḣ(x) ≤ 0, and Ḣ(x) = 0, if and
only if 0 ∈ φ(−y). As H(x) is non-increasing along sys-
tem trajectories in both the cases (i) and (ii), and since H
is proper, all system trajectories are bounded and contained
in the compact set Ω0 := {z ∈ Rn |H(z) ≤ H(x(0))}. Let
Zx := {z ∈ Rn |φ(−h(z)) = {0}} and let M be the largest
invariant set (with respect to system (12)) contained in Zx .
By the LaSalle invariance principle, all trajectories belonging
to the compact set Ω0 converge to the set M , see for example
(Brogliato and Tanwani, 2020, Theorem 6.5).

We next show that, because of the large-time norm ob-
servability and Lemma 1, it holds that M ⊂ Bε ⊂ Rn. To
see this, take an arbitrary point z ∈ M , and consider a solu-
tion of system (12) over an interval [s, s + τ] starting from
z; that is, consider x : [s, s + τ] → Rn which solves (12)
and x(s) = z ∈ M . Due to the forward invariance of set M ,
the corresponding solution x(t) ∈ M , for each t ∈ [s, s + τ].
Consequently, φ(−h(x(t))) = {0}, and because of Lemma 1,
|h(x(t))| ≤ δ for each t ∈ [s, s + τ]. Invoking the large-
time initial state norm-observability assumption, it holds that
∥x(s)∥= ∥z∥ ≤ γ(δ)≤ ε, where the last inequality is a conse-
quence of (13). Since z ∈ M is arbitrary, it holds that M ⊂ Bε.

In summary, we have shown that x(t)→ M ⊂ Bε as t →
∞ for all initial conditions x(0) ∈ Rn, and hence the desired
assertion holds.

As the first application of Proposition 1, we are interested
in specifying the invariant set when the set of control action
is described by a set of equidistant points along each axis of
the output space.

Corollary 1. Consider the system Σ as in (1) satisfying (A0),
and U = λ{−N ,−N + 1, . . . , N − 1, N}m, with λ > 0 being
the step size and N a positive integer. Then the control law u=
φ(−y), where φ is as in (10), globally practically stabilizes Σ
with respect to Bε where ε > 0 satisfies γ(λ

p
m)≤ ε.

Proof. The proof follows mutatis mutandis the proof of
Proposition 1. The set U satisfies (A1) by taking V =
λ{−1, 0,1}m \{0}. It is also seen that δ = λ

p
m, and by

requiring γ(λ
p

m) ≤ ε, all the hypotheses of Proposition 1
hold.

Remark 4. In contrast to the choice ofU in Example 2 where
we used (9) to construct the discrete set U in R2, the con-
stant δ in Corollary 1 is less than maxṽ∈ eV ∥ṽ∥. This is due

to the choice of the set V in the proof of Corollary 1 that is
dense enough such that {z |φ(z) = 0} ⊂ conv(V ). From this
corollary, one can conclude that two-level quantization with
N = 1 suffices to get a global practical stabilization property
for passive nonlinear systems. This binary control law re-
stricts however the convergence rate of the closed-loop sys-
tem. It converges to the desired compact ball in a linear fash-
ion and may not be desirable when the initial condition is
very far from the origin. The use of higher quantization level
(e.g., N ≫ 1) can provide a better convergence rate.

3.2. Sector bounded feedback

We next present a generalization of the result in Proposi-
tion 1 on how the nearest neighbor rule can be used to quan-
tize more generic nonlinear feedback laws. In Proposition 1,
when U is the continuum space of Rm, the resulting control
law is simply given by u = −y , i.e., it is a unity output feed-
back law. Using standard result in passive systems theory,
the closed-loop system will satisfy Ḣ ≤ −∥y∥2. Furthermore,
the application of LaSalle invariance principle with zero-state
detectability allows us to conclude that x(t)→ 0 asymptoti-
cally. As the underlying system is passive, we can in fact sta-
bilize it with any sector-bounded nonlinear feedback of the
form y 7→ F(y), where F : Rm→ Rm satisfies

k1∥y∥2 ≤ 〈F(y),−y〉 ≤ k2∥y∥2, 0< k1 ≤ k2 (15a)

∥F(y)∥ ≤ k3∥y∥, k3 ≥ k1, (15b)

for all y ∈ Rm. There are a number of reasons for consider-
ing such feedback laws rather than the unity output feedback
law. For instance, we can attain a prescribed L2-gain distur-
bance attenuation level or we can shape the transient behav-
ior by adjusting the gains on different domain of y . In the
following proposition, we consider such sector-bounded out-
put feedback law F(y), and how the nearest neighbor rule
can be used to map such feedbacks in the limited control in-
put set U to guarantee practical stabilization.

Proposition 2. Consider a nonlinear systemΣ described by (1)
that satisfies (A0), and a discrete set U ⊂ Rm satisfying (A1)
so that (6) holds for some δ > 0. For the mapping φ given in
(10), let µmin,1 ∈ (0,1] be such that1, for all z ∈ Rm,

φ(z) ̸= 0⇒ 〈φ(z), z〉 ≥ ∥φ(z)∥∥z∥µmin,1. (16)

Assume that the constants k1, k2, k3 describing the function F,
as in (15), satisfy

k2
1

k2
3

+µ2
min,1 > 1 (17a)

γ
�

δ/k1

�

≤ ε (17b)

for a given ε > 0. Then the control law u = φ(F(y)) globally
practically stabilizes Σ with respect to Bε.

1The existence of such µmin,1 is guaranteed by the assumption (A1) on
U .
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Proof. We basically show that, for any y ∈ Rm, we have

〈φ(F(y)),−y〉 ∈ {κi,y∥ui∥∥y∥ | i ∈ Jy} (18)

for some Jy ⊂ {0, 1, . . . , p} such that φ(F(y)) = {ui}i∈Jy
and

κi,y > 0. The rest of the proof follows a pattern similar to
that of Proposition 1.

First, with φ(F(y)) = {ui}i∈Jy
, suppose that 0 /∈ φ(F(y)),

so that Jy ⊂ {1, . . . , p}. It follows from (10) that {ui}i∈Jy
are

the closest points to F(y), and we have

〈φ(F(y)), F(y)〉 ∈ {∥ui∥∥F(y)∥µi,1 | i ∈ Jy}, (19)

where µi,1 > 0 is such that 〈ui , F(y)〉 = ∥ui∥∥F(y)∥µi,1.
Under the given hypothesis, µmin,1 ≤ µi,1 for each i ∈ Jy ,
y ∈ Rm. On the other hand, we have

〈F(y),−y〉= ∥F(y)∥∥y∥µ2. (20)

Since k1∥y∥2 ≤ 〈F(y),−y〉 and ∥F(y)∥ ≤ k3∥y∥, the min-
imum value of µ2 (for all choices of y ∈ Rm) is given by
µmin,2 = k1/k3.

Now, note that, in general, κi,y ∈ [−1, 1]. It can be shown
that if (16), (17a), and (20) hold with µ2 ∈ [µmin,2, 1], then
there exist κmin > 0 such that κi,y ∈ [κmin, 1]. For each y ∈
Rm and i ∈ Jy , we introduce the Gram matrix Gi,y as

Gi,y =





〈−y,−y〉 〈−y, F(y)〉 〈−y, ui〉
〈−y, F(y)〉 〈F(y), F(y)〉 〈F(y), ui〉
〈−y, ui〉 〈F(y), ui〉 〈ui , ui〉



 ,

having the property that (see also (Castano et al., 2016))
Gi,y ≽ 0 and thus det(Gi,y)≥ 0. This implies that

0≤ ∥y∥2∥F(y)∥2∥ui∥
2 + 2 〈−y, F(y)〉 〈F(y), ui〉 〈−y, ui〉

− ∥y∥2〈F(y), ui〉
2 − ∥F(y)∥2〈−y, ui〉

2 − ∥ui∥
2〈−y, F(y)〉2.

By rewriting above inequality in terms of their respective
norms in (18)–(20) with constants µi,1,µ2, and κi,y , we have
that, for each y ∈ Rm and ui , i ∈ Jy

κ2
i,y − 2 µi,1 µ2 κi,y ≤ 1− (µ2

i,1 +µ
2
2)

⇒
�

κi,y −µi,1 µ2

�2 ≤ 1− (µ2
i,1 +µ

2
2) +µ

2
i,1 µ

2
2

⇔
�

�κi,y −µi,1 µ2

�

�≤
Ç

1− (µ2
i,1 +µ

2
2) +µ

2
i,1 µ

2
2.

From the last inequality, we can prove whether κi,y > 0
whenever condition (17a) is satisfied, by only investigating
the case where κi,y ≤ µi,1 µ2. The last inequality, paired with
condition (17a), gives the following result

κi,y ≥ µi,1 µ2 −
Ç

1− (µ2
i,1 +µ

2
2) +µ

2
i,1 µ

2
2

= µi,1 µ2 −
Ç

(1−µ2
i,1)(1−µ

2
2)

≥ µmin,1(k1/k3)−
Ç

(1−µ2
min,1) (1− (k1/k3)2)

> µmin,1(k1/k3)−
Ç

µ2
min,1(k1/k3)2 = 0.

Note that the above arguments hold for all i ∈ Jy , and (18)
holds for some κi,y > 0.

Secondly, in case, Jy = {0}, we have φ(F(y)) = {0} and
〈φ(F(y)), y〉= {0}. Thus, (18) holds trivially since u0 = 0.

Combining the two cases, we see that (18) holds for Jy ⊂
{0,1, . . . , p}. Following the same line of arguments as in
the proof of Proposition 1, (18) implies that the storage
function is nondecreasing along the solutions of the closed-
loop system and the solutions converge to a set M , where
M is the largest invariant set contained in Zx := {z ∈
Rn |φ(F(h(z))) = {0}}. Hence for any trajectory starting
with initial condition x(s) = z ∈ M , it holds that the corre-
sponding output satisfies ∥F(y(t))∥ ≤ δ for all t ≥ s. Since
k1∥v∥2 ≤ 〈F(v), v〉 ≤ ∥F(v)∥∥v∥ holds for all v ∈ Rm, it fol-
lows that ∥y(t)∥ ≤ δ

k1
for all t ≥ s. By the property of large-

time initial-state norm-observability of (2), it holds that,

∥z∥= ∥x(s)∥ ≤ γ(δ/k1)≤ ε ∀t ≥ s

and this holds for each z ∈ M . Hence, M ⊆ Bε and in partic-
ular, each trajectory converges to Bε as t →∞.

Remark 5. The condition (17a) requires that the nonlin-
earity should lie in a relatively thin sector bound. When
F(y) = k y , i.e, it is a proportional controller with a scalar
gain k > 0, then the condition (17a) holds trivially, since
µmin,1 > 0 and k1

k3
= k

k = 1. Consequently, it follows from this
proposition that we can make the practical stabilization ball
arbitrary small by assigning a large gain k.

3.3. Nonzero equilibrium points

In many cases, the desired equilibrium point of the passive
nonlinear system Σ as in (1) is not equal to the minimum of
the associated storage function H. Instead, it may correspond
to an arbitrary constant input. For these cases, a constant
input u∗ ∈ Rm with its corresponding steady-state solution
x∗ ∈ Rn defines the steady-state relation given by the set

E :=

�

(x∗, u∗) ∈ Rn ×Rm

�

�

�

�

0= f (x∗) + g(x∗)u∗
�

. (21)

The problem of practically stabilizing the system Σ around
x∗ ∈ Rn is equivalent to practically stabilizing x = x − x∗

around the origin, with (·) = (·) − (·)∗ denoting the incre-
mental variable. Thus, the incremental system is given by

Σ :

�

ẋ = f (x) + g(x + x∗)u,
y = h(x + x∗)− h(x∗),

(22)

with f (x) = f (x + x∗)− f (x∗) + (g(x + x∗)− g(x∗))u∗. For
this matter, the passivity of the mapping u 7→ y is, in the orig-
inal system Σ, referred to as incremental passivity with re-
spect to constant input; and is defined as follows (Jayaward-
hana et al., 2007).

Definition 4 (Constant Incremental Passivity). Consider the
nonlinear system Σ as in (1). The system Σ is said to be
incrementally passive with respect to constant input if, for
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every (x∗, u∗) ∈ E , the corresponding incremental system Σ
in (22) with input u and output y , is passive; that is, there
exists a storage function H0 : Rn→ R≥0 such that

Ḣ0 = 〈∇H0, ẋ〉 ≤ 〈u, y〉. (23)

Note that the incremental passivity is a stronger require-
ment than the passivity notion considered in the preceding
subsections. In particular, one can find examples of systems
which are passive but not incrementally passive. Also, con-
stant incremental passivity defined above is equivalent to
shifted passivity as in (Monshizadeh et al., 2019; van der
Schaft, 2016) and equilibrium-independent passivity as in
(Hines et al., 2011). Nevertheless, the term constant incre-
mental passivity is preferred in this paper because the pair
(x∗, u∗) can be arbitrary and most importantly, the incremen-
tal function is used in the definition.

In the case of constant incremental passivity, the corre-
sponding constant input u∗ is often known from the knowl-
edge of the nominal system (1). Then we can simply design
the finite input set U such that it contains u∗. Thus it is nat-
ural to adapt the assumption (A1) to the current setting that
brings us to the following proposition.

Proposition 3. Consider the system Σ as in (1), and a finite
set of control actionsU = {u0, u1, . . . , up} ⊂ Rm. Assume that:

(A2) Σ is constant-incrementally passive with the proper stor-
age function H0(x , x∗) for all pair (x∗, u∗) ∈ E ;

(A3) u∗ ∈ U , with u0 = u∗, and there exists a subset V ofU
such that u∗ ∈ int (conv (V )); and

(A4) the autonomous incremental system Σu=u∗ is large-time
initial-state norm-observable, i.e. there exists τ > 0
and γ̄ ∈ K∞ such that the solution of Σu=u∗ satisfies
∥x(t)∥ ≤ γ̄
�

∥y∥[t,t+τ]
�

for all x(0) ∈ Rn, t ≥ 0.

Furthermore, for a given ε > 0, assume that γ̄(δ) ≤ ε, where
δ > 0 is the smallest number that satisfies

VU (u
∗) ⊆ Bδ(u∗). (24)

Then the control law u= φ (u∗ − y), withφ : Rm⇒U defined
in (10), globally practically stabilizes Σ with respect to Bε (x∗).

The proof of Proposition 3 can be developed similarly to
the proof of Proposition 1, by noting that

φ(−y) = φ(u∗ − y)− u∗ (25)

with
φ(η) := argmin

v∈U
{∥v −η∥} (26)

where the set

U := {v ∈ Rm | v = v − u∗; v ∈ U } (27)

is defined by shifting the original input set U such that u∗ is
now the origin of the input/output space of the constant in-
cremental system. This means that we can use the constant-
incremental nearest-neighbor map φ so that the constant in-
cremental system has the same structure as (1). Then the rest

of the proof follows from the proof of Proposition 1. Finally,
since the output and state variables of the constant incremen-
tal system converge to Bδ and Bε, respectively, as t →∞, we
can conclude practical stability, i.e. y → Bδ and x → Bε(x∗)
as t →∞.

Similar to the previous results, sector bounded nonlinear
mapping F that satisfies (15) can easily be included in the
constant-incrementally passive systems case. This is due to
the fact given by (25). Then the following proposition is true.

Proposition 4. Consider a nonlinear system Σ described by
(1) that satisfies (A2) and (A4); and a discrete set U ⊂ Rm

satisfying (A3) so that (24) holds for some δ > 0. Let φ be as
given in (10); and let µmin,1 ∈ (0,1] be such that (16) holds
for all z ∈ Rm. Assume that (17a) holds with the mapping
F, along with constants k1, k2, k3, satisfying (15). For a given
ε > 0, assume that

γ̄ (δ/k1)≤ ε.

Then, the control law u = φ(F(y) + u∗) globally practically
stabilizes Σ with respect to Bε(x∗).

3.4. An illustrative example

Example 3. Consider the following nonlinear system

Σex :















ẋ =





−x2 + x3
3

x1
−x1



+





1 0
0 0
0 1



u

y =
�

x1 x3
3

�⊤

(28)

where x :=
�

x1 x2 x3

�⊤ ∈ R3 and y :=
�

y1 y2

�⊤
, u :=

�

u1 u2

�⊤ ∈ R2. It can be checked that by using the proper
storage function H(x) = 1

2 x2
1 +

1
2 x2

2 +
1
4 x4

3 , the system Σex

is passive, i.e. Ḣ = 〈y, u〉. Note that the system Σex can be
written as a nonlinear port-Hamiltonian system, describing a
nonlinear RLC circuit (Castanos et al., 2009): ẋ = J∇H(x)+
gu, y = gT∇H(x) where J =

� 0 −1 1
1 0 0
−1 0 0

�

and g =
� 1 0

0 0
0 1

�

.
Furthermore, it can be shown (following the main results

in (Jayawardhana et al., 2007)) that Σex is also constant-
incrementally passive. Indeed, for any (x∗, u∗) ∈ E , we can
define H0(x , x∗) = H(x)− H(x∗)− (x − x∗)T∇H(x∗) which
has a global unique minimum at x∗ and is related to the
original storage function H(x). It follows immediately that
Ḣ0 = 〈y , u〉.

We will now show that Σex satisfies the large-time initial-
state norm observability condition. As the bound on x3 for
the large-time norm observability can directly be obtained
from the output y , we need to compute the bound on

� x1
x2

�

.
If we consider the sub-system of

� x1
x2

�

with x1 as its output
(and is equal to y1), it is a linear system with A =

�

0 −1
1 0

�

,
B =
�

1
0

�

, C =
�

1 0
�

and its input is x3
3 = y2. Thus as (A, C)

is observable, the observability Gramian is given by

Wπ(t) =

∫ t+π

t

eA⊤(s−t)C⊤CeA(s−t)ds =
π

2

�

1 0
0 1

�

,
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Figure 1: Simulation results of Σex using the control approach pro-
posed in the Proposition 1 with discrete input set Uex as in (9) and
fixed parameters θex = 0 and α= 0.1. It can be seen that once both
the state x and the output y enters their respective convergence
ball, the control input is zero.

whose inverse is simply given by W−1
π =

2
π I2 and ∥W−1

π ∥=
2
π .

Then for any t > 0

�

x1(t)
x2(t)

�

=W−1
π

∫ t+π

t

eA⊤(s−t)C⊤
�

x1(s)−
�

H ∗
�

x3
3

0

��

(s)
�

ds,

where ∗ denotes the convolution operation and H is the con-
volution matrix kernel given by H(t) = CeAt . Since ∥eAt∥= 1
for all t, it follows then that








�

x1(t)
x2(t)

�









≤
2
π
π
�

∥y1∥[t,t+π] + ∥y2∥[t,t+π]
�

≤ 4∥y∥[t,t+π].

Since by the definition of y , ∥x3∥[t,t+π] = ∥y2∥
1
3

[t,t+π] ≤

∥y∥
1
3

[t,t+π], it follows from the inequality above that

∥x(t)∥ ≤ 4∥y∥[t,t+π] + ∥y∥
1
3

[t,t+π].

In other words, the function γ in (3) is given by γ(s) = 4s+s
1
3 .

Following similar routines, we can check that the au-
tonomous incremental system of Σex also satisfies the large-
time initial-state norm observability condition with the func-
tion γ̄ as in assumption (A4). That is, we first consider the
linear incremental subsystem with y2 = x3

3− x∗3
3 as the input

and y1 = x1 − x∗1 as the output which yields similar bounds,
i.e.






�

x1(t)
x2(t)

�





≤ 2
�

∥y1∥[t,t+π] + ∥y2∥[t,t+π]
�

≤ 4∥y∥[t,t+π].

Accordingly, for x3, we have that x3 =
y2

x2
3+x∗3

2+x3 x∗3
. For any

x∗3 ̸= 0, we have that x2
3 + x∗3

2 + x3 x∗3 ≥
3
4 x∗3

2, for all x3.
Hence,

∥x(t)∥ ≤






�

x1(t)
x2(t)

�





+ ∥x3∥ ≤ 4∥y∥[t,t+π] +
4

3x∗3
2 ∥y2∥[t,t+π]

≤ 4∥y∥[t,t+π] +
4

3x∗3
2 ∥y∥[t,t+π].
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Figure 2: Simulation results of Σex using the control approach pro-
posed in the Propostion 3 with discrete input set U ex := Uex + u∗

with Uex given in (9). Here, u∗ ∈ U ex . Once again, when the state
x and the output y enter their respective convergence ball, the con-
trol action is switched to u∗ for the rest of the simulation.

In other words, the large-time initial-state norm-
observability function for the autonomous incremental
system of Σex is given by γ(s) = 4s+ 4

3x∗3
2 s2.

We can now use the results in Proposition 1 and Proposi-
tion 3 to practically stabilizeΣex around any arbitrary steady-
state relation (x∗, u∗) ∈ E . We choose the control set to be
Uex given in (9), and the desired stability margin to be ε= 1.
Then, based on the function γ computed for the system Σex,
we get γ(δ) < 1 if δ ∈

�

0, 1
8

�

. Using the same discrete
set as in (9) along with the function φ as in (10), we can
fix θex = 0 and α = 0.1 such that the system Σex is globally
practically stable with respect to Bε, with ε= 1, as shown in
the simulation results in Figure 1.

Furthermore, if we fix x∗ = [ 0 0 −1 ]⊤, u∗ = [ 1 0 ]⊤, and ε=
0.5. Then, by the large-time initial-state norm-observability
property of the autonomous incremental system, we can
choose δ = 0.1 to generate the discrete set of control ac-
tions. In this case, we can translate the previously used dis-
crete set such that u∗ is among the realizable control actions,
i.e. U ex := Uex + u∗ with Uex being the same the discrete
input as before. The illustration of the resulting control law
with the mapping φ is demonstrated in Figure 2.

4. Minimal Control Actions: Constructions and Bounds

In the earlier sections, we have shown that a nearest neigh-
bor approach is a powerful tool for global practical stabiliza-
tion of passive nonlinear systems. Indeed, for a given limited
choice of static control inputs, assumptions (A1) and (A3)
provide us a way to check the applicability of nearest neigh-
bor approach for the practical stabilization problem. If these
assumptions hold for a finite set U , then it is of interest to
compute the smallest number δ > 0 associated with Voronoi
cell VU (u∗), such that VU (u∗) ⊂ Bδ(u∗). Since our control de-
sign achieves convergence up to a ball of radius γ(δ), with

9



γ(·) being the output-to-state gain in large-time initial-state
norm-observability assumption, the knowledge of δ basically
determines how close the trajectories can get to the desired
equilibrium with our proposed controller. To obtain such U
of minimal cardinality, the following result, borrowed from
(Brondsted, 1983, Corollary 9.5), is of interest:

Lemma 2. For a finite set S ⊂ Rm, the minimal cardinality
of S such that int (conv (S )) ̸= ; is equal to m+ 1.

An immediate consequence is that, for practical stabiliza-
tion of passive systems, it suffices to consider a control setU
with m + 2 elements (including u∗), provided they satisfy a
certain geometric configuration.

Corollary 2. Let the setU be such that u∗ ∈ int (conv (U )). If
conv (U \ {u∗}) is an m-simplex, thenU is a minimal set that
satisfies (A3).

In the remainder of this section, we will work with two
particular choices of the set U with cardinality m + 2 that
satisfy (A1) or (A3). We give a closed-form expression of
δ for these sets in terms of the elements U . For the sake of
simplicity, we fix u∗ = 0 in these computations. The two cases
we consider are: the setU = Sreg∪{0}, whereSreg is defined
as in (5) and the set U = S 0

reg ∪ {0}, and S 0
reg = Sreg − bSreg

with bSreg
= λ

p
m+1−1

m
p

m+1
1. Note that the second case is obtained

by shifting the barycenter of the first case to the origin.
In the next two lemmas, we basically compute a bound on

the sets VSreg∪{0}(0) and VS 0
reg∪{0}(0). It is noted that the results

apply to the case when u∗ ̸= 0 since the set V = (Sreg∪{0})+
u∗ (or V = (S 0

reg ∪ {0}) + u∗) is such that u∗ ∈ int (conv (V ))
and hence it has the same bound.

Lemma 3. Consider Sreg as in (5) for some λ > 0. For the set
VSreg∪{0}(0), the smallest δ > 0 satisfying VSreg∪{0}(0) ⊂ Bδ is
given by

δ =

¨

λ
2 , if m= 1,

λ
2

q

m− 1+ (2−m−
p

m+ 1)
2
, otherwise.

Proof. First, we observe that the vector x =
�

x1 . . . xm

�⊤ ∈ VSreg∪{0}(0) if it satisties

x i ≤
λ

2
, i = 1, . . . , m, (29)

1−
p

m+ 1
m

1
⊤x ≤ λ

�

1−
p

m+ 1
�2

2m
. (30)

Next, we observe that each of the vertices of VSreg∪{0}(0) can
be obtained by solving m equations taken from (29) and/or
(30). Let V be the set of all vertices of VSreg∪{0}(0). Then V =

{λ21}
m
⋃

i=1
{λ2 ṽi} with ṽi being a column vector where the i-th

element is given by 2−m−
p

m+ 1 and the other elements are
1. Therefore, the minimum value of δ for which VSreg∪{0}(0) ⊂
Bδ is given by δm=1 =max

ṽ∈V
{∥ṽ∥}= λ

2 ∥1∥=
λ
2 and

δm>1 =max
ṽ∈V
{∥ṽ∥}=

λ

2
∥ṽi∥=

λ

2

Ç

m− 1+ (2−m−
p

m+ 1)
2
.

which is the desired expression.

Next, let us consider the regular m-simplex centered at the
origin with vertices S 0

reg.

Lemma 4. Consider Sreg as in (5) for some λ > 0. For the
set VS 0

reg∪{0}(0), the bound δ > 0 such that VS 0
reg∪{0}(0) ⊂ Bδ is

given by δ = λm
2

Æ

m
m+1 .

Proof. Similar to the proof of Lemma 3, we consider the set
VS 0

reg∪{0}(0) as the solution set of system of inequalities,

�

ei −
p

m+ 1− 1

m
p

m+ 1
1

�⊤

x ≤
λ

2
m

m+ 1
, i = 1, . . . , m, (31)

−
1

p
m+ 1

1
⊤x ≤

λ

2
m

m+ 1
. (32)

Since all points in S 0
reg have the same distance from the ori-

gin, we can pick all m equations from (31) to obtain one of
the vertices of VS 0

reg∪{0}(0), which is v = λ
2

mp
m+1

1.
Therefore, the minimum bound on the set VS (0) is,

δ = ∥v∥=
λ

2
m

p
m+ 1

∥1∥= λ
m
2

s

m
m+ 1

.

which completes the proof.

From Lemma 3 and Lemma 4, we can, in fact, construct the
minimal set corresponding to the nearest neighbor control
approach. In particular, for given admissible reference signal
u∗, output-to-state gain γ ∈ K obtained by choosing u = u∗,
and a given stability margin ε > 0, we first choose δ > 0
satisfying γ (δ) ≤ ε, a rotation matrix R ∈ Rm×m, and let U
be defined as follows:

1. U :=
�

RSreg ∪ {0}
�

+ u∗ with

λ=min







2δ,
2δ

Ç

m− 1+
�

2−m−
p

m+ 1
�2







,

or;

2. U :=
�

RS 0
reg ∪ {0}
�

+ u∗ with λ= 2δ
m

q

m+1
m .

Example 4. The discrete set Uex in Example 2 can be con-
structed by usingU :=

�

RSreg(0)∪ {0}
�

+u∗; by fixing α= δ
and

R= −
p

2
2

�

sinθex + cosθex sinθex − cosθex
− sinθex + cosθex sinθex + cosθex

�

.

5. Conclusions and Further Research

We have considered practical stabilization of continuous-
time (constant-incrementally) passive nonlinear systems us-
ing output-feedback where the control inputs only take val-
ues among the available actions in a given finite discrete set.
We propose simple ways to select the control actions at each

10



time instance where we have shown that our proposed con-
trol laws are able to stabilize the systems up to some desirable
distance from the equilibrium. In addition, our results pro-
vide an insight on the lower bound on the number of control
elements that guarantee practical stability. We have also pro-
vided methods to design the finite set of control actions with
minimal cardinality. Questions related to improving the con-
vergence rate with more (than necessary) control elements
and/or to eliminate the chattering effects are being investi-
gated as further directions of research.
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