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Virtual contractivity-based control of fully-actuated

mechanical systems in the port-Hamiltonian framework

Rodolfo Reyes-Báez a,1, Arjan van der Schaft a, Bayu Jayawardhana a

aJan C. Willems Center for Systems and Control, Faculty of Science and Engineering, University of Groningen, Netherlands

Abstract

We present a trajectory tracking control design method for a class of mechanical systems in the port-Hamiltonian framework.
The proposed solution is based on the virtual contractivity-based control (v-CBC) method, which employs the notions of
virtual systems and of contractivity. This approach leads to a family of asymptotic tracking controllers that are not limited to
those that preserve the pH structure of the closed-loop system nor require an intermediate change of coordinates. Nevertheless,
structure preservation and other properties (e.g., passivity) are possible under sufficient conditions. The performance of the
proposed v-CBC scheme is experimentally evaluated on a planar robot of two degrees of freedom (DoF).

Key words: Port-Hamiltonian systems; trajectory tracking; virtual systems; contractivity; mechanical systems.

1 Introduction

The control of electro-mechanical (EM) systems is a
well-known problem in the systems and control litera-
ture. As an alternative to the Euler-Lagrange (EL) for-
malism for modeling EM systems, the port-Hamiltonian
(pH) framework has been proposed (van der Schaft &
Maschke 1995). This combines the physical systems
analysis approach of analytical mechanics with the
port-based network modeling point of view of complex
physical systems. A number of set-point control design
methods for pH systems have been proposed during the
past two decades. For instance, the standard PI con-
trol (Jayawardhana et al. 2007), PID-PBC (Borja et al.
2021), the well-known Interconnection and Damping
Assignment PBC (IDA-PBC) technique, the Control by
Interconnection (CbI) method, and others expounded
in van der Schaft & Jeltsema (2014). Nonetheless, for
the tracking control problem it is not straightforward to
design controllers for such (nonlinear) pH systems with
an insightful energy interpretation of the closed-loop
system. For instance, it is not trivial to obtain a passive
incremental system via a change of coordinates (Fuji-
moto et al. 2003). This is the case for many mechanical
pH systems that have a state-dependent inertia matrix
or with some degrees of underactuation, because these
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systems cannot be put into normal form, in general; see
Venkatraman et al. (2010).
In Fujimoto et al. (2003), the authors provide necessary
and sufficient conditions based on generalized canonical
transformations (GCTs) to construct an incremental
system with pH structure. By using the new coordi-
nates, the system can be stabilized via standard PBC.
However, this method may easily lead to a non-tractable
problem since nonlinear PDEs need to be solved.
The GCT approach is applied to mechanical pH systems
in the works of Dirksz & Scherpen (2010) and Romero
et al. (2015). In the former, the method is an adaptive
control scheme; whereas in the latter, the authors use
the GCT approach to obtain a pH error system with a
constant inertia matrix. Then the controller is designed
in a structure-preserving manner. While solving the
PDEs that correspond to the existence of GCTs is, in
general, not trivial, some characterizations are presented
in Venkatraman et al. (2010) via partial linearization.
A different approach is taken in Yaghmaei & Yazdan-
panah (2017), where the authors extend the structure-
preserving IDA-PBC method to solve the tracking con-
trol problem of pH systems by means of contractivity
(Lohmiller & Slotine 1998). They characterize a class of
contractive pH systems that are later used in the IDA-
PBC method as target dynamics. Still, similar to GCT
approaches, nonlinear PDEs need to be solved.

A system is contractive if any pair of neighboring tra-
jectories converge to each other. The contractivity prop-
erty can be understood as a local (or differential) notion
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of incremental stability (Angeli 2002), and it does not
require the construction of an incremental model. See
Lohmiller & Slotine (1998), Forni & Sepulchre (2014) for
further details. It allows one to analyze the behavior of
systems subject to (time-varying) inputs (Sontag 2010),
or to design contractivity-based control (CBC) schemes
as in Manchester & Slotine (2014). Using the notion
of differential dissipativity Forni & Sepulchre (2013),
contractive systems enjoy dissipative-like intput/output
and interconnection properties.

In this paper, we propose a constructive procedure to de-
sign a family of controllers based upon the notion of vir-
tual contractivity. Such controllers are suitable to solve
a tracking control problem of mechanical systems in the
pH framework. This family of controllers is not limited
to preserving the pH structure of the closed-loop system
and it can also be applicable to other structural prop-
erties under some sufficient conditions. Furthermore, no
(intermediate) change of (GCT) coordinates is needed.

Virtual contractivity is a generalization of the standard
contractivity to include convergence properties of a spe-
cific behavior like a reference trajectory. This general-
ization exploits the notion of virtual systems to infer
the convergence properties of a given original system.
Roughly speaking, for a given (original) plant a virtual
system can be understood as a system that can produce
all plant’s trajectories, i.e., the plant’s is embedded in the
virtual one (Reyes-Báez 2019). If the virtual system is
contractive then all of its solutions will converge to any
plant’s trajectory (Wang & Slotine 2005), and the orig-
inal plant is said to be virtually contractive. Analogous
to CBC, virtual systems with inputs are suitable for vir-
tual contractivity-based control (v-CBC) design, e.g., see
Manchester et al. (2018), Reyes-Báez et al. (2020).

The v-CBC method consists of three main steps (Reyes-
Báez 2019). Firstly, we define a virtual system which
embeds all the solutions of a given original system. Sec-
ondly, a controller is designed such that the closed-loop
virtual system is contractive and tracks a reference tra-
jectory. Finally, the third step consists of closing the loop
of the original system where the control law is given by
the virtual system’s controller with the virtual state be-
ing replaced by the state of original system.

The paper is organized as follows. In Section 2, we in-
troduce the v-CBC method which is based on the differ-
ential Lyapunov framework for contraction analysis in
Forni & Sepulchre (2014). Section 3 contains the solu-
tion to the tracking problem of fully-actuated mechani-
cal systems in the pH framework via the v-CBC design
method. We later apply the method to the control of a
2-DoF robot, where a detailed controller’s construction
and experiments are presented in Section 4.

2 Preliminaries

Throughout this paper all objects (manifolds, mappings,
etc.) are assumed to be smooth. When it is clear from the
context, arguments will be omitted from the function.

We consider a control system Σu given by

Σu :

{
ẋ = f(x, t) +

∑m
i=1 gi(x, t)ui,

y = h(x, t),
(1)

evolving on an N -dimensional state-space manifold X
with tangent bundle TX ; where x ∈ X , u ∈ U ⊂ Rm
and y ∈ Y ⊂ Rm. The sets U and Y are assumed to be
open subsets of Rm. System Σu in closed-loop with the
feedback (nonlinear) control law u = γ(x, t) is

Σ :

{
ẋ = F (x, t),

y = h(x, t).
(2)

2.1 A differential Lyapunov method for contractivity

Contraction analysis aims at inferring incremental sta-
bility of a nonlinear system from a local analysis via the
linear variational dynamics of a pronlonged system.

Definition 1 The prolonged control system Σδu associ-
ated to the control system Σu in (1) is given by

ẋ = f(x, t) +
∑n
i=1 gi(x, t)ui,

y = h(x, t),

δẋ = ∂f
∂xδx+

∑n
i=1 ui

∂gi
∂x δx+

∑n
i=1 giδui,

δy = ∂h
∂x (x, t)δx.

(3)

with (u, δu) ∈ TU , (x, δx) ∈ TX , and (y, δy) ∈ TY. The
prolonged system Σδ of Σ in (2) is similarly defined.

Similar to a standard Lyapunov function, a (Finsler)
differential Lyapunov function (dL) can be introduced
on TX . Consider the following definition of dL function
which is an adaption from Forni & Sepulchre (2014).

Definition 2 A function V : TX × R>0 → R>0 is a
candidate dL function for (2) if it satisfies

c1‖δx‖px ≤ V (x, δx, t) ≤ c2‖δx‖px, (4)

uniformly in t, for some c1, c2 > 0, and with p a positive
integer where ‖δx‖x is a Finsler metric 2 defined on TX .

2 The reader is referred to (Reyes-Báez 2019, Chapter 2)
and references therein for a definition of a Finsler metric.
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For sake of clarity, along this work we will take p = 2

and ‖δx‖x :=
√
δx>δx that can be understood as an

Euclidean norm in each tangent space TxX .

The following theorem is the key result of the dL-
framework for contraction in Forni & Sepulchre (2014).

Theorem 1 (Differential Lyapunov method)
Consider the prolonged system Σδ in Definition 1, a
connected and forward invariant set C ⊆ X , and a
strictly increasing function α : R≥0 → R≥0. Let V be a
candidate differential Lyapunov function satisfying

V̇ (x, δx, t) ≤ −α(V (x, δx, t)) (5)

for each (x, δx) ∈ TX and all t. Then, system Σ in (2) is

• Incrementally Stable (IS) on C if α(s) = 0 ∀s ≥ 0;
• Asymptotically IS (AIS) if α is a K function 3 ;
• Exponentially IS (EIS) on C if α(s) = βs,∀s > 0.

System Σ in (2) is said contractive if (5) holds with α(s)
in AIS or EIS. Contractive systems exhibit the following
inherent robustness property.

Lemma 1 (Zamani & Tabuada (2011)) Consider
the perturbed system

ẋp = F (xp, t) + p(xp, t), xp ∈ X , (6)

where p(xp, t) is uniformly bounded for every t. Suppose
the unperturbed system (2) is contractive with α(s) = βs,
then system (6) is input-to-state (ISS) EIS.

Lemma 1 is an ISS-EIS adaptation of (Zamani &
Tabuada 2011, Definition 2.6), where the condition in
terms of contraction metrics is replaced by a dL coun-
terpart. This opens the door to use other metrics than
Riemannian, e.g, logarithmic matrix measures Sontag
(2010). Due to space limitations the proof is omitted.

2.2 Virtual contractivity

Virtual contractivity of an (original) system refers to de-
ducing convergence properties of a system’s particular
solution by means of the contractivity of an auxiliary vir-
tual system, which is defined below (Reyes-Báez 2019).

Definition 3 (Virtual system) Consider the systems
Σu and Σ in (1) and (2), respectively. A virtual control
system associated to Σu is defined as the system

Σvu :

{
ẋv = Γv(xv, x, uv, t),

yv = hv(xv, x, t), ∀t ≥ t0,
(7)

3 α is of class K if it is strictly increasing and α(0) = 0.

parametrized by x, with state xv ∈ X , and input uv ∈ U ,
where hv : X×X×R≥0 → Y and Γv : X×X×U×R≥0 →
TX are such that

Γv(x, x, u, t) = f(x, t) +

n∑
i=1

gi(x, t)ui,

hv(x, x, t) = h(x, t), ∀u,∀t ≥ t0,
(8)

hold. Similarly, a virtual system associated to Σ is

Σv :

{
ẋv = Φv(xv, x, t),

yv = hv(xv, x, t).
(9)

with state xv ∈ X and parametrized by x ∈ X , where Φv :
X × X ×R≥0 → TX satisfies uniformly the conditions:

Φv(x, x, t) = F (x, t) and hv(x, x, t) = h(x, t). (10)

Theorem 2 (Virtual contractivity ) Consider sys-
tems Σ and Σv in (2) and (9), respectively. Let Cv ⊆ X
(resp. Cx ⊆ Cv) be a connected and forward invariant
set of Σv (resp. Σ). Suppose that Σv is contractive with
respect to xv for every x. Then, for all initial conditions
x0 ∈ Cx and xv0 ∈ Cv, each solution of Σv converges
asymptotically to the solution of Σ.

2.3 Virtual contractivity-based control (v-CBC)

The design procedure of v-CBC is divided in three steps:

(1) Design of the virtual system (7) for system (1).
(2) Design a controller uv = ζ(xv, x, t) for the virtual

system (7) such that the closed-loop system is con-
tractive and tracks a reference behavior xd(t).

(3) Define the controller for system (1) as u = ζ(x, x, t).

By Theorem 2, it follows that the trajectories (starting
at x0 ∈ Cx) of the original system (1) in closed-loop with
u = ζ(x, x, t) will converge to xd(t) exponentially.

3 Control of mechanical pH systems via v-CBC

The dynamics of fully-actuated mechanical systems,
with generalized position q on the configuration space
Q of dimension n, is modeled by the pH system

ẋ =

[
0n In

−In −D(x)

][
∂H
∂q (x)

∂H
∂p (x)

]
+

[
0n

In

]
u,

y =
[
0n In

] ∂H
∂x

(x),

(11)

with Hamiltonian function given by the total energy

H(x) =
1

2
p>M−1(q)p+ P (q), (12)
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where x = (q, p) evolves in X := T ∗Q (the cotan-
gent bundle of Q), P (q) is the potential energy, p :=
M(q)q̇ is the generalized momentum; the matrixM(q) =
M>(q) > 0n represents the inertia of the system, while
the matrix D(q) = D>(q) ≥ 0n represents the damping.
The matrices In and 0n are the n× n identity and zero
matrices, respectively. A fundamental structural prop-
erty of (11) is that the map u 7→ y is passive with (12) as
the storage function (van der Schaft 2017). As shown in
(Reyes-Báez 2019, Appendix B.2.3), (11) can be equiv-
alently rewritten as the system given by

ẋ =

[
0n In

−In −(E(x) +D(x))

][
∂P
∂q (q)

∂H
∂p (x)

]
+

[
0n

In

]
u,

y =
[
0n In

] [∂P
∂q (q)

∂H
∂p (q, p)

]
,

(13)

where E(x) := SH(x) − 1
2Ṁ(q), and SH(x) :=

SL(q,M−1(q)p) is a skew-symmetric matrix with

SLkj(q, q̇) :=
1

2

n∑
i=1

{
∂Mki

∂qj
(q)− ∂Mij

∂qk
(q)

}
q̇i. (14)

The main motivation of (13) is that the workless forces
of the differential of H(x) in (11) can be decoupled and
arranged into the matrix E(x) in (13). Note that this
decoupling is possible without a GCT as in Dirksz &
Scherpen (2010), Romero et al. (2015). The map u 7→ y
remains to be passive for the alternative system’s form in
(13) with the total energy in (12) as the storage function.

3.1 Tracking controller design using the v-CBC method

In this part, we follow the steps of the v-CBC method
described in Section 2.3; one step per subsection. All the
proofs are presented in Appendix A.

3.1.1 Step 1: Design of the virtual system

Following Definition 3, a virtual control system associ-
ated to the original system in (13) (equivalently (11)) is

ẋv =

[
0n In

−In −(E(x) +D(x))

][
∂Hv

∂qv
(xv, x)

∂Hv

∂pv
(xv, x)

]
+

[
0n

In

]
uv

yv =
[
0n In

] [∂Hv

∂qv
(xv, x)

∂Hv

∂pv
(xv, x)

]
,

(15)

with state xv = (qv, pv) ∈ X and parametrized by the
solution x = (q, p) of system (13) and

Hv(xv, x) =
1

2
p>vM

−1(q)pv + P (qv). (16)

It is straightforward to verify that if uv = u and xv = x,
then we recover (13). The map uv 7→ yv is also passive
with storage function (16) for any x.

3.1.2 Step 2: Design a controller for the virtual system

Proposition 1 Consider a smooth reference position
trajectory qd(t) ∈ Q for system (15). Let us introduce
the following error coordinates

x̃v :=

[
q̃v

σv

]
=

[
qv − qd(t)
pv − pr(q̃v, t)

]
, (17)

where the auxiliary momentum reference pr is given by

pr(q̃v, t) := M(q)(q̇d − φ(q̃v)), (18)

with function φ : Q → TqQ satisfying φ(0n) = 0n and

Π̇(q̃v)−Π(q̃v)
∂φ

∂q̃v
− ∂φ>

∂q̃v
Π(q̃v) ≤ −2βqvΠ(q̃v), (19)

for all q̃v, with βqv > 0, and Π(q̃v) a positive definite
metric tensor. Then, the system (15) in closed-loop with

uv(xv, x, t) = uffv (xv, x, t) + ufbv (xv, x, t),

uffv (xv, x, t) = ṗr +
∂P

∂qv
(qv) +

[
E(x) +D(x)

]
M−1(q)pr,

ufbv (xv, x, t) = −
∫ q̃v

0

Π(%)d%−KdM
−1(q)σv,

(20)

given by the equations

ẋv =

[
−φ(q̃v) +M−1(q)σv

−
∫ q̃v
0

Πdξ − [(E +D)(x) +Kd]M
−1σv

]
, (21)

is contractive with differential Lyapunov function

V (x̃v, δx̃v, x) =
1

2
δx̃>v

[
Π(q̃v) 0n

0n M−1(q)

]
δx̃v, (22)

for every x(t), where Kd > 0 is a symmetric matrix gain.

One can immediately check that the closed-loop system
satisfying the hypotheses in Proposition 1 is EIS. Ana-
lytically finding a non-constant contraction metric Π(q̃v)
in (19) may be difficult (Kawano & Ohtsuka 2017). How-
ever, the problem can be simplified by taking a constant
metric Π or using a numerical approach as in (Manch-
ester & Slotine 2014, Sec.6). Alternatively, one can use
the logarithmic measure (Sontag 2010) as in Reyes-Báez
et al. (2020). The existence of the integral in (20) is
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guaranteed by the smoothness of all functions. A suffi-
cient condition to compute the integral analytically is
that the i-th row of Π(q̃v) is a conservative vector field
for i ∈ {1, . . . , n}. With this the integrand becomes an
exact differential.

3.1.3 Step 3: The controller for the original system

Corollary 1 Consider the controller in (20). Then, all
the solutions of the original mechanical pH system (11)
in closed-loop with the control given by

u(x, x, t) = uffv (x, x, t) + ufbv (x, x, t) (23)

converge exponentially to the reference trajectory xd(t)
with convergence rate given by

β = min{βqv , λmin{D(x) +Kd}λmin{M−1(q)}}. (24)

3.2 Properties of the closed-loop virtual system

Corollary 2 Under the hypotheses of Proposition 1, de-
fine the contraction metric as Π(q̃v) = ∂φ

∂q̃v
(q̃v). Then the

closed-loop virtual system in (21) takes the form

˙̃xv = [Jv(x)−Rv(x)]
∂H̃

∂x̃v
(x̃v, x) (25)

where the matrices Jv(x) and Rv(x) are given by

Jv =

[
0n In

−In −SH

]
, Rv =

[
In 0n

0n (D +Kd − 1
2Ṁ)

]
, (26)

and the x-parametrized Hamiltonian-like function is

H̃(x̃v, x) =
1

2
σ>v M

−1(q)σv +

∫ q̃v

0n

φ(%)d%. (27)

Moreover, if (20) is modified as follows

uv = uffv (xv, x, t) + ufbv (xv, x, t) + ω, (28)

with an external input ω, then ω 7→ ỹσv
= ∂H̃

∂σv
(x̃v, q) is

a passive map with storage function given by (27).

The (line) integral term in (27), denoted by P̃v(q̃v), acts
as a potential energy-like function. Hence, the contrac-
tion rate in (24) is directly related to the Hessian of

P̃v(qv). When (q̃v, σv) = (q̃, σ), system (25) resembles
the drift vector field of system (13), and therefore of the
pH system (11). On the other hand, the second result
of Corollary 2 shows that the closed-loop system with
(28) is simultaneously passive and contractive (when

ω = 0n). This, however, does not imply that the sys-
tem is incrementally passive (van der Schaft 2017, Def.
4.7.1). Also, when (q̃v, σv) = (q̃, σ) the controller (28)
is a PBC controller that solves the tracking problem for
system (13), where P̃v(qv) shapes the potential energy,
and the sliding variable σv shapes the kinetic energy.
This is possible because pr in (18) adds an inner feed-
back loop, mutatis mutandis, vr in Slotine & Li (1987).

Remark 1 For set-point regulation, i.e., for a constant
reference qd in Proposition 1, our result is limited to
fully-actuated mechanical systems. Whereas the works of
Ortega et al. (2002), Romero et al. (2015), Yaghmaei &
Yazdanpanah (2017) are applicable to a larger class of
mechanical systems. However, we have presented an ex-
tension of Proposition 1 in Reyes-Báez et al. (2020) for
a class of underactuated mechanial systems.

Taking Π(q̃v) = ∂φ
∂q̃v

(q̃v) restricts the functions φ(·) that

must satisfy (19). This condition is relaxed below.

Corollary 3 Consider system (15) in closed-loop with
(28). Let Π(q̃v) and φ(q̃v) be such that

∂φ

∂q̃v
(q̃v)Π

−1
q̃v

(q̃v, t) =

(
∂φ

∂q̃v
(q̃v)Π

−1
q̃v

(q̃v, t)

)>
. (29)

Then the closed-loop variational dynamics is

δẋv = [Jv(x)−Rv(x)]
∂2Hv

∂x2v
(xv, x)δxv + gδω,

δyv = g>
∂2Hv

∂x2v
(xv, x)δxv,

(30)

with

∂2Hv

∂x̃2v
(x̃v, x) =

∂2V

∂x̃2v
(x̃v, δx̃v, x),

Rv(x̃v, x) = diag

{
∂φ

∂q̃v
Π−1q̃v , D +Kd −

1

2
Ṁ

}
,

Jv(x̃v, x) =

[
0n In

−In −SH(x)

]
, g =

[
0n

In

]
.

(31)

It is clear that under Corollary 2, the condition in (29)
holds, but no the converse implication. Interestingly, the
form of (30) resembles the form of the variational dy-
namics of the pH system in (11). This does not imply
that (30) is the variational dynamics of a pH system.

4 Case study: Tracking of a planar RR robot

Consider a 2-DoF planar robot from Quanser Consulting
Inc. (2008), whose parameters are given in the Table 1.
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Table 1
Robot parameters and controller gains.

Parameter Value Parameter Value Parameter Value

m1 1.510kg I1 .039kgm2 m2 0.873kg

I2 .0081kgm2 r1 .159m r2 .055m

`1 .343m `2 .267m D1 0.8 Ns/m

D2 0.55 Ns/m Π diag{7, 25} Kd diag{0.2, 0.1}

The robot is modeled as the pH system in (11) with
q = [q1, q2]>, p = [p1, p2]>. The inertia matrix is

M(q) =

[
a1 + a2 + 2b cos(q2) a2 + b cos(q2)

a2 + b cos(q2) a2

]
, (32)

where the constants a1 := m1r
2
1 +m2`

2
1 + I1 and a2 :=

m2r
2
2 + I2; b := m2`1r2, with `i the length of the link i,

and ri the distance from the joint to the center of gravity
of the link i; for i = 1, 2. The matrix E(x) in (13) is

E(x) = b sin(q2)

[
q̇2 −q̇1

q̇1 + q̇2 0

]
q̇=M−1(q)p

. (33)

4.1 Controller construction

Consider the following operators acting on w ∈ Rp

Tanh(w) :=
[
tanh(w1), . . . , tanh(wp)

]>
∈ Rp,

SECH(w) =


sech(w1) · · · 0

...
. . .

...

0 · · · sech(wp)

 ∈ Rp×p. (34)

The controller to be constructed is an example of Corol-
lary 3. For illustration purposes, let Π to be constant.
With φ(q̃v) = Π · Tanh(q̃v), condition in (19) becomes

−2Π2 · SECH2(q̃v) ≤ −βqvΠ, (35)

as the matrix product Π · SECH(q̃v) satisfies (29). Note
that 0n < SECH(q̃v) ≤ In due to sech(·) ∈ (0, 1], and 4

λmin(Π)In ≤ Π ≤ λmax(Π)In. Then, it follows that

−2Π2 · SECH2(q̃v) ≤ −2λmin(Π2)λmin(SECH2(q̃v))In.
(36)

Therefore, the contraction condition in (35) holds with

βq̃v := 2λmin(Π2) · λmin(SECH2(q̃v))/λmax(Π). (37)

The controller gains Π and Kd are given in Table 1.

4 λmin(·) (resp. (λmax(·)) denotes the minimum (rep. maxi-
mum) eigenvalue of its matrix argument.

4.2 Experimental evaluation

The reference qd(t) is given by q1d(t) =
∑18
k=0 a(18−k)t

k

and q2d(t) =
∑18
j=0 b(18−j)t

j , where a(18−k) and b(18−j),

for k, j ∈ {0, 1, . . . , 18}, are 5 such that the q1d(t) and
q2d(t) are as in the first plot of Figure 1.
The experimental performance of the original closed-
loop system is shown in Figure 1, where the first plot
presents the reference trajectories for each joint versus
the measured positions. The second and third plots show
the error performance. The last plot shows the control.
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Fig. 1. Performance of the (Λ,Kd,ΛTanh(·))-controller.

The practical convergence of the signals in Figure 1 is
mainly attributed to the accuracy of the encoder. In or-
der to implement (28), we need the real-time measure-
ment of q and p = M−1(q)q̇. As our experimental setup
Quanser Consulting Inc. (2008) is not equipped with a
momentum (or velocity) sensor, we rely on a (filtered)
numerical approximation based on the available posi-
tion measurement. This approximation also introduces
noise in the feedback action due to the numerical differ-
entiation, which is not contemplated in the robustness
property of contractive systems of Lemma 1.

5 The coefficients are in DOI: 10.13140/RG.2.2.29652.42880.
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5 Conclusions

In this work, we have proposed a family of v-CBC
schemes that solve the trajectory tracking control prob-
lem of fully-actuated mechanical systems in the pH
framework. The closed-loop virtual system exhibits a
number of structural properties by imposing sufficient
conditions on the contraction metric Π(·) and φ(·).
By exploiting the systems’ structure, the proposed de-
sign procedure is simplified in comparison to the other
methods in the literature that require an intermediate
change of coordinates to do same.
We have applied the design procedure to construct a
novel controller for a 2-DoF planar robot. It results in a
PD + feedforward-like type of controller that includes
feedback and feedforward actions, and an extra inner
control loop that acts as a nonlinear contractive filter.
The experimental results validate the design method.
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A Proofs

A.1 Proof of Proposition 1

For the first step, let us consider the position dynamics in
(15) with yq̃v = qv−qd(t) as output and pv as an artificial
“input”. Define the control-like input as pv = σv + pr,
where σv is a new state and pr as in (18). Substituting
this in the qv-dynamics of (15) results in{

q̇v = M−1(qd)pd − φ(qv − qd) +M−1(q)σv,

yq̃v = qv − qd(t),
(A.1)

whose prolonged system, in coordinates (17), is given by

Σ̃δσv
:



˙̃qv = −φ(q̃v) +M−1(q)σv

δ ˙̃qv = − ∂φ
∂q̃v

(q̃v)δq̃v +M−1(q)δσv

yq̃v = q̃v,

δyq̃v = δq̃v.

(A.2)

Now, let the function

Wq̃v (q̃v, δq̃v, t) =
1

2
δq̃>v Πq̃v (q̃v, t)δq̃v. (A.3)

be a candidate differential Lyapunov function. Then, the
time derivative of (A.3) along solutions of Σ̃δσ is

Ẇq̃v =
1

2
δq̃>v

[
Π̇q̃v −Πq̃v

∂φ

∂q̃v
− ∂φ>

∂q̃v
Πq̃v

]
δq̃v + δy>q̃vδσv.

(A.4)

where δy>q̃v = δq̃>v Πq̃vM
−1(q). By (19), it follows that

Ẇq̃v ≤ −2βqv (q̃v, t)Wq̃v + δy>q̃vδσv. (A.5)

Hence, system (A.1) is strictly differentially passive with
differential input-output pair (δσv, δyq̃v ) and differential
storage function (A.3). This implies contraction when
δσv = 0n and it implies convergence to q̃v = 0n if σ = 0n.
For the second step, similar as before, let us consider
now the whole system (15) and take yσv = pv − pr as
its output. In the error coordinate (17), yσv = σv and
system (15) are expressed as a system that is composed
of the q̃v system in (A.2) and

σ̇v = − ∂P
∂qv
− [E +D]M−1(σv + pr) + u− ṗr, (A.6)

where u is given by (20). Direct substitution of the con-
trol action uffv (xv, x, t) in (28) yields

σ̇v = − [E(x) +D(x)]M−1(q)σv + ufbv . (A.7)

Notice that with last substitution, σv = 0n is imposed as
a particular solution of (A.7) when ufbv = 0n, as desired.
Thus, the prolonged system of (15), in error coordinate
(17), is a system that is composed of (A.2) and

Σ̃δ
ufb
v

:


σ̇v = − [E +D]M−1σv + ufbv,

δσ̇v = − [E +D]M−1δσv + δufbv,

yσv
= σv,

δyσv
= δσv.

(A.8)

Let us consider (22) as a candidate differential Lyapunov

function for the complete prolonged system Σ̃δσv
-Σ̃δufbv

and substitute the control action ufbv in (28). The deriva-

tive of (22) along prolonged system Σ̃δσv
-Σ̃δ
ufb
v

satisfies

Ẇ ≤ −2 min{βqv , λmin{D +Kd}λmin{M−1}}W
+ δy>σv

δω.
(A.9)

The derivative (A.9) implies that system (15) in closed-
loop with (20), given by the equation (21), is contractive
with dL function (22). Therefore, the closed-loop system
is contractive and x̃v exponentially converges to 0n with

β = min{βqv , λmin{D +Kd}λmin{M−1(q)}}. (A.10)

A.2 Proof of Corollary 1

The dynamics in (21) is a virtual system associated to
the resulting closed-loop system in Corollary 1, with
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state (q̃, σ) = (q − qd, p − pr(q̃, t)) in error coordinates
(17). That is, (q̃v, σv) = (q̃, σ) is a solution of (21).
Clearly, (q̃v, σv) = (0n, 0n) = 02n is another solution of
(21). Then, the conclusion follows by Proposition 1

A.3 Proof of Corollary 2

Consider system in (21) and take Πq̃v (q̃v, t) = ∂φ
∂q̃v

(q̃v).

Using matrices Jv(x) and Rv(x), and the Hamiltonian-
like function (27), the system (21) can be written as
in (25). To prove passivity, consider the modified input
(28), and take (27) as the storage function.

A.4 Proof of Corollary 3

Compute the variational system of (21). Under the hy-
potheses of the corollary, the claim follows immediately.
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Übertragungstechnik 49.

Venkatraman, A., Ortega, R., Sarras, I. & van der Schaft,
A. (2010), ‘Speed observation and position feedback
stabilization of partially linearizable mechanical sys-
tems’, IEEE Transactions on Automatic Control .

Wang, W. & Slotine, J.-J. E. (2005), ‘On partial con-
traction analysis for coupled nonlinear oscillators’, Bi-
ological cybernetics 92(1).

Yaghmaei, A. & Yazdanpanah, M. J. (2017), ‘Trajectory
tracking for a class of contractive port-Hamiltonian
systems’, Automatica 83, 331 – 336.

Zamani, M. & Tabuada, P. (2011), ‘Backstepping design
for incremental stability’, IEEE Transactions on Au-
tomatic Control 56(9), 2184–2189.

8


