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In the contact-geometric formulation of classical thermodynamics distinction is made 
between the energy and entropy representation. This distinction can be resolved by taking 
homogeneous coordinates for the intensive variables. It results in a geometric formulation 
on the cotangent bundle of the manifold of extensive variables, where all geometric objects 
are homogeneous in the cotangent variables. The resulting geometry based on the Liouville 
form is studied in depth. Additional homogeneity with respect to the extensive variables, 
corresponding to the classical Gibbs-Duhem relation, is treated within the same geometric 
framework.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Starting from Gibbs’ fundamental thermodynamic relation, contact geometry has been recognized as a natural framework 
for the geometric formulation of classical thermodynamics since the early 1970s [21]. This spurred a series of papers; 
see e.g. [29–34,4,19,11,13,16,8,26,6,17,35,23,39,10,12], and [7] for a recent introduction and survey. Other geometric work 
emphasizing the variational formulation of thermodynamics includes [28,15].

On the other hand, as discussed in [5], the contact-geometric formulation of thermodynamics makes a distinction be-
tween the energy and the entropy representation of the same thermodynamic system. By itself this need not be considered 
as a major flaw since the two representations are conformally equivalent. Nevertheless, as shown in [5], and later in 
[36,27,37], an attractive point of view that is merging the energy and entropy representation is offered by the extension 
of contact manifolds to symplectic manifolds. Compared with the odd-dimensional contact manifold this even-dimensional 
symplectic manifold has one more degree of freedom, called a gauge variable in [5]. From a thermodynamics perspective it 
amounts to replacing the intensive variables by their homogeneous coordinates. In fact, this symplectization of contact mani-
folds is rather well-known in differential geometry [2,25,3]; dating back to [20]. As argued in [37], the extension of contact 
manifolds to symplectic manifolds, apart from unifying the energy and entropy representations, offers additional advantages 
for the geometric formulation of thermodynamics as well. First, it yields a clear distinction between the extensive and in-
tensive variables of the thermodynamic system. Secondly, it enables the definition of port-thermodynamic systems, which are 
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thermodynamic systems that interact with their environment via either power or entropy flow ports. Finally, symplectization 
has computational benefits; as was already argued before by Arnold [3,4].

The present paper aims at providing an in-depth treatment of the resulting geometry of thermodynamic systems, con-
tinuing the earlier investigations in [36,37] and building upon [2,3,25]. Starting point are cotangent bundles without zero 
section, endowed with their natural one-form; called the Liouville form (sometimes also called the Poincaré-Liouville form). 
Instead of considering the symplectic geometry derived from the symplectic form ω = dα, where α is the Liouville form, 
geometric objects will be defined that are based solely on this Liouville form. The resulting geometry is called Liouville 
geometry. In particular, it will be shown how a particular class of Lagrangian submanifolds (called Liouville submanifolds) 
can be defined as maximal submanifolds on which the Liouville form is zero. Furthermore, a particular type of Hamiltonian 
vector fields is defined leaving the Liouville form invariant. All these geometric objects have the property that they are 
homogeneous in the cotangent variables. As a result they are in one-to-one correspondence with objects on the underlying 
contact manifold (of one dimension less). We will study in detail the generating functions of Liouville submanifolds and 
the homogeneous Hamiltonian functions of this special type of Hamiltonian vector fields, and relate them to their contact-
geometric counterparts. Continuing upon [37] it will be shown how this leads to the definition of a port-thermodynamic 
system, and its projection to the contact manifold. Finally we will focus on an additional homogeneity, which is present 
in some thermodynamic systems, corresponding to homogeneity in the extensive variables. This leads to a new geometric 
view on the classical Gibbs-Duhem relation, and a subsequent projection from the contact manifold to an even-dimensional 
space.

The rest of the paper is structured as follows. In Section 2 it is explained, using the example of a simple gas, how 
macroscopic thermodynamics leads to the study of cotangent bundles over the base space of extensive variables, with 
cotangent variables being the homogeneous coordinates for the intensive variables. The resulting Liouville geometry of 
a general cotangent bundle without zero section, and its projection to contact geometry, is studied in Section 3. Then 
Section 4 provides the definition of port-thermodynamic systems using Liouville geometry, and its projection to a contact-
geometric description. Section 5 discusses homogeneity with respect to the extensive variables, and the resulting geometric 
formalization of the Gibbs-Duhem relation. Finally, Section 6 contains the conclusions.

2. From thermodynamics to contact and Liouville geometry

In this section we will motivate how classical thermodynamics, starting from Gibbs’ thermodynamic relation, naturally 
leads to contact geometry, and how by considering homogeneous coordinates for the intensive variables this results in 
Liouville geometry.

2.1. From Gibbs’ fundamental thermodynamic relation to contact geometry

Consider a simple thermodynamic system such as a mono-phase, single constituent, gas in a confined compartment 
with volume V and pressure P at temperature T . It is well-known that the state properties of the gas are described by a 2-
dimensional submanifold of the ambient space R5 (the thermodynamic phase space) with coordinates E (energy), S (entropy), 
V , P , and T . Such a submanifold characterizes the properties of the gas (e.g., an ideal gas, or a Van der Waals gas), and all 
of them share the following property. Define the Gibbs one-form on the thermodynamic phase space R5 as

θ := dE − T dS + PdV (1)

Then θ is zero restricted to the submanifold characterizing the state properties. This is called Gibbs’ fundamental thermody-
namic relation. It implies that the extensive variables E, S, V and the intensive variables T , P are related in a specific way. 
Geometrically this is formalized by noting that the Gibbs one-form θ defines a contact form on R5, and that any submanifold 
L capturing the state properties of the thermodynamic system is a submanifold of maximal dimension restricted to which 
the contact form θ is zero. Such submanifolds are called Legendre submanifolds of the contact manifold (R5, θ).

By expressing the extensive variable E as a function E = E(S, V ) of the two remaining extensive variables S and V , 
Gibbs’ fundamental relation implies that the Legendre submanifold L specifying the state properties is given as

L = {(E, S, V , T , P ) | E = E(S, V ), T = ∂ E

∂ S
,−P = ∂ E

∂V
} (2)

Hence L is completely described by the energy function E(S, V ), whence the name energy representation for (2). On the 
other hand, there are other ways to represent L. If L is parametrizable by the variables T , V (instead of S, V as in (2)), then 
one defines the partial Legendre transform of E(S, V ) with respect to S as

A(T , V ) := E(S, V ) − T S, T = ∂ E

∂ S
(S, V ), (3)

where S is solved from T = ∂ E
∂ S (S, V ). Then L is also described as

L = {(E, S, V , T , P ) | E = A(T , V ) − T
∂ A

, S = −∂ A
,−P = ∂ A } (4)
∂T ∂T ∂V

2
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A is known as the Helmholtz free energy, and is one of the thermodynamic potentials derivable from the energy function 
E(S, V ); see e.g. [14]. Two other possible parametrizations of L (namely by S, P , respectively by T , P ) correspond to the 
thermodynamic potentials known as the enthalpy H(S, P ) and the Gibbs’ free energy G(T , P ), resulting in similar expres-
sions for L.

In general [2,25], a contact manifold (M, θ) is an odd-dimensional manifold equipped with a contact form θ . A one-form 
θ on a (2n + 1)-dimensional manifold M is a contact form if and only if around any point in M we can find coordinates 
(q0, q1, · · · , qn, γ1, · · · , γn) for M , called Darboux coordinates, such that

θ = dq0 −
n∑

j=1

γ jdq j (5)

Equivalently, θ is a contact form if θ ∧ (dθ)n is nowhere zero on M . A Legendre submanifold of a contact manifold (M, θ)

is a submanifold of maximal dimension restricted to which the contact form θ is zero. The dimension of any Legendre 
submanifold of a (2n + 1)-dimensional contact manifold is equal to n.

In fact, throughout this paper we will use the slightly generalized definition of a contact manifold as given in e.g. [2], 
where the contact form θ is only required to be defined locally. What counts is the contact distribution; the 2n-dimensional 
subspace of the tangent space at any point of M defined by the kernel of the contact form θ at this point. This turns out to 
be the appropriate concept for the thermodynamic phase space being a contact manifold.1

Apart from the above parametrizations of the Legendre submanifold L, corresponding to an energy function E(S, V ) and 
its Legendre transforms, there is still another way of describing L. This alternative, although very similar, option is directly 
motivated from a modeling point of view. Namely, often thermodynamic systems are formulated by listing the balance laws
for all the extensive variables apart from the entropy S , and then expressing S as a function S = S(E, V ). This leads to the 
entropy representation of the submanifold L ⊂R5, given as

L := {(E, S, V , T , P ) | S = S(E, V ),
1

T
= ∂ S

∂ E
,

P

T
= ∂ S

∂V
} (6)

Furthermore, analogously to the energy representation case, partial Legendre transform of S(E, V ) leads to other thermody-
namic potentials. Geometrically the entropy representation corresponds to the modified Gibbs one-form

θ̃ := dS − 1

T
dE − P

T
dV , (7)

which is obtained from the original Gibbs form θ in (1) by division by −T (called conformal equivalence). In this way the 
Gibbs fundamental relation is rewritten as θ̃ |L = 0, and the intensive variables, instead of −P , T , now become 1

T , P
T .

2.2. From contact to Liouville geometry

The contact-geometric view on thermodynamics, directly motivated by Gibbs’ fundamental thermodynamic relation, 
raises two issues:
(1) Switching from the energy representation E = E(S, V ) to the entropy representation S = S(E, V ) corresponds to replac-
ing the Gibbs form θ by the modified Gibbs form θ̃ in (7), and thus leads to a different, although conformally equivalent, 
contact-geometric description.
(2) The contact-geometric description does not make an intrinsic distinction between, on the one hand, the extensive 
variables E, S, V and, on the other hand, the intensive variables T , −P (energy representation), or 1

T , P
T (entropy repre-

sentation). In fact,2 given the contact form θ on R5 there are many choices of Darboux coordinates q0, q1, q2, γ1, γ2 such 
that θ = dq0 − γ1dq1 − γ2dq2, and q0, q1, q2 are not necessarily obtained by a transformation of the extensive variables 
E, S, V only.

The way to address these issues is to extend the contact manifold by one extra degree of freedom to a symplectic 
manifold, in fact a cotangent bundle, with an additional homogeneity structure. This construction is rather well-known in 
differential geometry; see [2,3,25] for beautiful accounts and further ramifications. Within a thermodynamics context this 
‘symplectization’ was advocated only in [5], and then followed up in [36,37]. For a simple thermodynamic system with 
extensive variables E, S, V and intensive variables T , −P , the construction amounts to replacing the intensive variables 
T , −P in energy representation by their homogeneous coordinates pE , pS , pV with pE �= 0, i.e.,

T = pS

−pE
, −P = pV

−pE
(8)

1 Contact manifolds for which the contact form θ is defined globally are sometimes called exact contact manifolds.
2 Note on the other hand that in the specific contact manifold description of R5 as the space of 1-jets of functions of S, V the special role of the extensive 

variables is retained.
3
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Equivalently, the intensive variables 1
T , P

T in the entropy representation are represented as

1

T
= pE

−pS
,

P

T
= pV

−pS
(9)

with pS �= 0. This means that the two contact forms θ = dE − T dS + PdV and θ̃ = dS − 1
T dE − P

T dV are replaced by the 
single symmetric expression

α := pEdE + pSdS + pV dV . (10)

The one-form α is nothing else than the canonical Liouville one-form on the cotangent bundle T ∗R3, with R3 the space of 
extensive variables E, S, V . As a result the thermodynamic phase space R5 has been replaced by T ∗R3. More precisely, by 
definition of homogeneous coordinates the vector (pE , pS , pV ) is different from the zero vector, and hence the space with 
coordinates E, S, V , pE , pS , pV is actually the cotangent bundle T ∗R3 minus its zero section; denoted as T ∗R3.

Any 2-dimensional Legendre submanifold L ⊂ R5 describing the state properties is now replaced by a 3-dimensional 
submanifold L ⊂ T ∗R3, given as

L = {(E, S, V , pE , pS , pV ) ∈ T ∗R3 | (E, S, V ,
pS

−pE
,

pV

−pE
) ∈ L} (11)

It turns out that L is a Lagrangian submanifold of T ∗R3 with symplectic form ω := dα; however with an additional ho-
mogeneity property. Namely, whenever (E, S, V , pE , pS , pV ) ∈ L, then also (E, S, V , λpE , λpS , λpV ) ∈ L, for any non-zero 
λ ∈R. Such Lagrangian submanifolds turn out to be fully characterized as maximal manifolds restricted to which the Liou-
ville one-form α = pEdE + pSdS + pV dV is zero, and will thus be called Liouville submanifolds of T ∗R3.

As we will see in the next section the extension of contact manifolds to cotangent bundles, replacing the intensive vari-
ables by their homogeneous coordinates, also leads to a natural homogeneous Hamiltonian dynamics on the extended space 
T ∗R3. This does not only facilitate the analysis, but has computational advantages as well [3,4]. In fact, all computations be-
come the standard operations on cotangent bundles and of Hamiltonian dynamics. In the words of Arnold [3] (p. 5): one is 
advised to calculate symplectically (but to think rather in contact geometry terms). Examples of computational benefits are 
the somewhat involved expressions of contact vector fields (39) and their Jacobi brackets, as compared to standard expres-
sions of Hamiltonian vector fields and Poisson brackets of Hamiltonians. Furthermore, the Jacobi bracket does not satisfy the 
Leibniz rule, cf. (43). These benefits are illustrated by the controllability and observability analysis of port-thermodynamic 
systems in [37,38].

All of the above is immediately extended from the thermodynamic phase space R5 to higher-dimensional thermody-
namic phase spaces. For instance, in the case of multiple chemical species the Gibbs form θ extends to dE − T dS + PdV −∑

k μkdNk , where Nk and μk are the mole numbers, respectively, chemical potentials, of the k-th species, k = 1, · · · , s. Cor-
respondingly, the thermodynamic phase R5 ×R2s is replaced by the cotangent bundle without zero-section T ∗R3+s , with 
extensive variables E, S, V , N1, · · · , Ns and Liouville form

pEdE + pSdS + pV dV + p1dN1 + · · · + psdNs, (12)

where μ1 = p1−pE
, · · · , μs = ps

−pE
.

3. Liouville geometry

This section is concerned with the general definition and analysis of geometric objects on the cotangent bundle, without 
zero section, that project to the underlying contact manifold. Since everything is based on the Liouville form this will be 
called Liouville geometry. In particular, we will deal with Liouville submanifolds and homogeneous Hamiltonian vector fields.

3.1. Cotangent bundles and the canonical contact manifold

In the previous section it was indicated how the thermodynamic phase space can be extended to a cotangent bundle, 
without its zero section, by the use of homogeneous coordinates for the intensive variables. Furthermore, it was shown how 
in this way the energy and entropy representation are unified, and how this provides a geometric definition of extensive 
and intensive variables. Conversely, in this subsection we will start with a general cotangent bundle without zero section, 
and then show how this leads to a natural contact manifold serving as canonical thermodynamic phase space.

Consider a thermodynamic system with its space of extensive variables, including energy E and entropy S , given by the 
manifold Q. Then consider the cotangent bundle without zero section denoted by T ∗Q. The Liouville one-form α on T ∗Q
is defined as follows. Let η ∈ T ∗Q, X ∈ TηT ∗Q. Then define

αη(X) := η(pr∗ X), (13)
4
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where pr : T ∗Q → Q is the bundle projection. Furthermore ω := dα, with d exterior derivative, is the canonical symplectic 
form on T ∗Q. Moreover, the Euler vector field Z is defined as the unique vector field satisfying

dα(Z , ·) = α (14)

This implies LZ α = α, with L denoting Lie derivative.
In coordinates α, ω and Z take the following simple form. Let dimQ = n + 1 and let q0, · · · , qn be local coordinates for 

Q. Furthermore, let p0, · · · , pn be the corresponding coordinates for the cotangent spaces T ∗
q Q. Then

α =
n∑

i=0

pidqi, ω =
n∑

i=0

dpi ∧ dqi, Z =
n∑

i=0

pi
∂

∂ pi
(15)

Based on T ∗Q we may define a contact manifold in the following way [2]. For each q ∈Q and cotangent space T ∗
qQ consider 

the projective space P (T ∗
qQ), given as the set of rays in T ∗

qQ, that is, all the non-zero multiples of a non-zero cotangent 
vector. Thus the projective space P (T ∗

qQ) has dimension n, and there is a canonical projection πq : T ∗
q Q →P (T ∗

qQ), where 
T ∗

q Q denotes the cotangent space without its zero vector. The fiber bundle of the projective spaces P (T ∗
q Q), q ∈ Q, over 

the base manifold Q will be denoted by P (T ∗Q). Furthermore, the bundle projection obtained by considering πq : T ∗
q Q →

P (T ∗
qQ) for every q ∈ Q is denoted by π : T ∗Q → P (T ∗Q). As detailed in [2,3,37], P (T ∗Q) defines a contact manifold 

of dimension 2n + 1 with locally defined contact form θ (while any other (2n + 1)-dimensional contact manifold is locally 
contactomorphic to P (T ∗Q) [2,25]). The contact manifold P (T ∗Q) will serve as the canonical thermodynamic phase space for 
the thermodynamic system with space of extensive variables Q.

Given natural coordinates q0, · · · , qn, p0, · · · , pn for T ∗Q, we may select different sets of local coordinates for P (T ∗Q)

and, correspondingly, different expressions for the projection π : T ∗Q →P (T ∗Q). In fact, whenever p0 �= 0 we may express 
the projection πq : T ∗

q Q →P (T ∗
qQ) by the map

(p0, p1, · · · , pn) �→ (γ1, · · · , γn) (16)

where

γ1 = p1

−p0
, · · · , γn = pn

−p0
(17)

This means that

α = p0dq0 + p1dq1 + · · · + pndqn = p0
(
dq0 − γ1dq1 · · · − γndqn

) =: p0θ, (18)

with θ a locally defined contact form on P (T ∗Q). In particular this implies that the kernel of α projects under π to the 
kernel of θ ; cf. [25] (Proposition 10.3) for a more general treatment.

The same can be done for any of the other coordinates pi , defining different contact forms. For example, if p1 �= 0 we 
may express πq : T ∗

q Q →P (T ∗
qQ) also by the map

(p0, p1, · · · , pn) �→ (γ̃0, γ̃2, · · · , γ̃n), (19)

where

γ̃0 = p0

−p1
, γ̃2 = p2

−p1
, · · · , γ̃n = pn

−p1
, (20)

so that

α = p1
(
dq1 − γ̃0dq0 − γ̃2dq2 · · · − γ̃ndqn

) =: p1θ̃ (21)

In the thermodynamics context of Section 2, with q0 = E, q1 = S , and thus p0 = pE , p1 = pS , the first option corresponds to 
the energy representation and the second to the entropy representation.

Importantly, there is a direct correspondence between all geometric objects (functions, Legendre submanifolds, vector 
fields) on the contact manifold P (T ∗Q) with the same objects on T ∗Q endowed with an additional homogeneity property 
in the p variables. A key element in this is Euler’s theorem on homogeneous functions; see e.g. [37].

Definition 3.1. Let r ∈Z. A function K : T ∗Q →R is called homogeneous3 of degree r in p if

K (q, λp) = λr K (q, p), for all λ �= 0 (22)

3 Note that in coordinate-free language K : T ∗Q → R is homogeneous of degree 0 in p if and only if LZ K = 0, and homogeneous of degree 1 in p if 
and only if LZ K = K , where Z is the Euler vector field and L denotes Lie derivation.
5
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Theorem 3.2 (Euler’s homogeneous function theorem). A differentiable function K : T ∗Q →R is homogeneous of degree r in p if and 
only if

n∑
i=0

pi
∂ K

∂ pi
(q, p) = rK (q, p), for all (q, p) ∈ T ∗Q (23)

Moreover, if K is homogeneous of degree r in p, then all its partial derivatives ∂ K
∂ pi

(q, p), i = 0, 1, · · · , n, are homogeneous of degree 
r − 1 in p.

Until Section 5 homogeneity will always refer to homogeneity in the p-variables; hence till then we often simply talk 
about ‘homogeneity’.

Obviously, the functions K : T ∗Q →R that are homogeneous of degree 0 in p are those functions which project under 
π to functions on P (T ∗Q), i.e., K = π∗ K̂ with K̂ : P (T ∗Q) → R. In the next two subsections we will consider two more 
geometric objects which project to P (T ∗Q).

3.2. Liouville submanifolds

Legendre submanifolds of the canonical thermodynamic phase space P (T ∗Q) are in one-to-one correspondence with 
Liouville submanifolds4 of T ∗Q, defined as follows.

Definition 3.3. A submanifold L ⊂ T ∗Q is called a Liouville submanifold if the Liouville form α restricted to L is zero and 
dimL = dimQ.

Recall that L is a Lagrangian submanifold of T ∗Q if ω = dα is zero on L and dimL = dimQ (or, equivalently, ω is 
zero on L and L is maximal with respect to this property.) The following proposition shows that Liouville submanifolds are 
actually Lagrangian submanifolds of T ∗Q with an additional homogeneity property.

Proposition 3.4. L ⊂ T ∗Q is a Liouville submanifold if and only if L is a Lagrangian submanifold of the symplectic manifold 
(T ∗Q, ω) with the property that

(q, p) ∈ L ⇒ (q, λp) ∈ L (24)

for every 0 �= λ ∈R.

Proof. First of all note that the homogeneity property (24) is equivalent to tangency of the Euler vector field Z to L.
(Only if) By Palais’ formula (see e.g. [1], Proposition 2.4.15)

dα(X1, X2) = LX1(α(X2)) −LX2(α(X1)) − α ([X1, X2]) (25)

for any two vector fields X1, X2. Hence, for any X1, X2 tangent to L we obtain dα(X1, X2) = 0, implying that L is a 
Lagrangian submanifold. Furthermore, by (14)

dα(Z , X) = α(X) = 0, (26)

for all vector fields X tangent to L. Because L is a Lagrangian submanifold this implies that Z is tangent to L (since a 
Lagrangian submanifold is a maximal submanifold restricted to which ω = dα is zero.)
(If). If L is Lagrangian and satisfies (24), then Z is tangent to L, and thus (26) holds for all vector fields X tangent to L, 
implying that α is zero restricted to L. �

Remark 3.5. It also follows that L ⊂ T ∗Q is a Liouville submanifold if and only if it is a maximal submanifold on which α
is zero.

Liouville submanifolds of T ∗Q are in one-to-one correspondence with Legendre submanifolds of the contact manifold 
P (T ∗Q). Recall that a submanifold of a (2n + 1)-dimensional contact manifold is a Legendre submanifold [2,25] if the 
(locally defined) contact form θ is zero restricted to it, and its dimension is equal to n (the maximal dimension of a 
submanifold on which θ is zero).

4 Previously [37] called homogeneous Lagrangian submanifolds.
6
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Proposition 3.6 ([25], Proposition 10.16, [37]). Consider the projection π : T ∗Q → P (T ∗Q). Then L̂ ⊂ P (T ∗Q) is a Legendre sub-
manifold if and only if L := π−1(L̂) ⊂ T ∗Q is a Liouville submanifold. Conversely, any Liouville submanifold L ⊂ T ∗Q is of the form 
π−1(L̂) for some Legendre submanifold L̂⊂P (T ∗Q).

This also implies a one-to-one correspondence between generating functions of Legendre submanifolds L̂ ⊂ P (T ∗Q) and 
generating functions of Liouville submanifolds L ⊂ T ∗Q with π−1(L̂) =L. Recall from [25,2] that any Legendre submanifold 
L̂⊂P (T ∗Q) with Darboux coordinates q0, q1, · · · , qn, γ1, · · · , γn can be represented as

L̂ = {(q0,q1, · · · ,qn, γ1, · · · , γn) | q0 = F̂ − γ J
∂ F̂

∂γ J
, q J = − ∂ F̂

∂γ J
, γI = ∂ F̂

∂qI
} (27)

for some disjoint partitioning {1, · · · , n} = I ∪ J and some function F̂ (qI , γ J ), called a generating function for L̂. Here γ J is 
the vector with elements γ
 = p
−p0

, 
 ∈ J , and γ J
∂ F̂
∂γ J

is shorthand notation for 
∑


∈ J γ

∂ F̂
∂γ


. Conversely any submanifold L̂
as given in (27), for any partitioning {1, · · · , n} = I ∪ J and function F̂ (qI , γ J ), is a Legendre submanifold. This implies that 
the corresponding Liouville submanifold L = π−1(L̂) is given as

L = {(q0, · · · ,qn, p0, · · · , pn) | q0 = − ∂ F

∂ p0
, q J = − ∂ F

∂ p J
, pI = ∂ F

∂qI
}, (28)

where

F (qI , p0, p J ) := −p0 F̂ (qI ,
p J

−p0
) (29)

This is immediately verified by exploiting the identities

− ∂ F
∂ p0

= F̂ (qI ,− p J
p0

) + p0
∂ F̂
∂γ J

(qI ,− p J
p0

)
p J

p2
0

= F̂ (qI , γ J ) − γ J
∂ F̂
∂γ J

∂ F
∂ p J

= −p0
∂ F̂
∂γ J

· 1
−p0

= ∂ F̂
∂γ J

, ∂ F
∂qI

= −p0
∂ F̂
∂qI

= −p0γI = pI

(30)

Thus F (qI , p0, p J ) in (29) is a generating function of L. Conversely, any Liouville submanifold as in (28) for some p0
(possibly after renumbering the index set {0, 1, · · · , n}) and generating function F as given in (29) for some F̂ (qI , γ J ), with 
I ∪ J = {1, · · · , n} and γ J = − p J

p0
defines a Liouville submanifold of T ∗Q.

Note that the generating function F (qI , p0, p J ) = −p0 F̂ (qI , 
p J

−p0
) as in (29) is homogeneous of degree 1 in p. The corre-

spondence (29) between the generating function F (qI , p0, p J ) of the Liouville submanifold L = π−1(L̂) and the generating 
function F̂ (qI , γ J ) of the Legendre submanifold L̂ is of a well-known type in the theory of homogeneous functions. Indeed, 
for any function K (q, p) that is homogeneous of degree 1 in p, we can define

K̂ (q, γ1, · · · , γn) := K (q,−1, γ1, · · · , γn), (31)

implying that

K (q, p0, p1, · · · , pn) = −p0 K̂ (q,
p1

−p0
, · · · ,

pn

−p0
) (32)

Finally note that the correspondence between the Liouville submanifold L and the Legendre submanifold L̂ and their 
generating functions can be obtained for any numbering of the set {0, 1, · · · , n}, and thus for any choice of p0. This provides 
other coordinatizations of the same Legendre submanifold L̂ ⊂ P (T ∗Q). The representation of L̂ either in energy or in 
entropy representation is an example of this.

3.3. Homogeneous Hamiltonian and contact vector fields

For any function K : T ∗Q →R the Hamiltonian vector field XK on T ∗Q is defined by the standard Hamiltonian equations

q̇i = ∂ K

∂ pi
(q, p), ṗi = − ∂ K

∂qi
(q, p), i = 0,1 · · · ,n, (33)

or equivalently, ω(XK , −) = −dK with ω = dα the symplectic form. Furthermore, any Hamiltonian vector field XK leaves ω
invariant; i.e., LXK ω = 0 with L denoting Lie derivative.

Since dα(Z , ·) = α, we have α(XK ) = dα(Z , XK ) = LZ K = K . Hence a Hamiltonian K is homogeneous of degree 1 in p
if and only if

α(XK ) = K (34)
7
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Proposition 3.7. If K : T ∗Q →R is homogeneous of degree 1 in p then its Hamiltonian vector field XK satisfies

LXK α = 0 (35)

Conversely, if the vector field X satisfies LXα = 0, then X = XK where the function K := α(X) is homogeneous of degree 1 in p.

Proof. By Cartan’s formula, with i denoting contraction,

LXα = i Xdα + di Xα = i X dα + d (α(X)) (36)

If K is homogeneous of degree 1 in p then by (34) i XK dα + d (α(XK )) = −dK + dK = 0, implying by (36) that LXK α = 0. 
Conversely, if LXα = 0, then (36) yields i X dα + d (α(X)), implying that X = XK with K = α(X), which by (34) is homoge-
neous of degree 1 in p. �

Thus the Hamiltonian vector fields with a Hamiltonian homogeneous of degree 1 in p are precisely the vector fields that 
leave the Liouville form α invariant. For simplicity of exposition the Hamiltonians K : T ∗Q → R that are homogeneous of 
degree 1 in p, and their corresponding Hamiltonian vector fields XK , will be simply called homogeneous in the sequel.

Since K is homogeneous of degree 1 in p by Euler’s theorem the expressions ∂ K
∂ pi

(q, p), i = 0, 1 · · · , n, are homogeneous 
of degree 0 in p. Hence the dynamics of the extensive variables q in the Hamiltonian dynamics (33) is invariant under 
scaling of the p-variables, and thus expressible as a function of q and the intensive variables γ . This implies that any 
homogeneous Hamiltonian vector field projects to a contact vector field on the thermodynamic phase space P (T ∗Q), and 
conversely that any contact vector field on P (T ∗Q) is the projection of a homogeneous Hamiltonian vector field on T ∗Q. 
This can be made explicit by the following computations. Consider a homogeneous Hamiltonian vector field XK . Since K is 
homogeneous of degree 1 in p we can write as in (32) K (q, p) = −p0 K̂ (q, p1−p0

, · · · , pn
−p0

), with K̂ (q, γ ) defined in (31). This 
means that the equations (33) of the Hamiltonian vector field XK take the form

q̇0 = −K̂ (q, γ ) − p0
∑n


=1
∂ K̂
∂γ


(q, γ ) · − p


p2
0

= −K̂ (q, γ ) + ∑n

=1 γ


∂ K̂
∂γ


(q, γ )

q̇ j = −p0
∂ K̂
∂γ j

(q, γ ) · 1
−p0

= ∂ K̂
∂γ j

(q, γ ), j = 1, · · · ,n

ṗi = p0
∂ K̂
∂qi

(q, γ ), i = 0, · · · ,n

(37)

where γ j = p j
−p0

, j = 1, · · · , n. Combining with

γ̇ j = 1

−p0
ṗ j + p j

p2
0

ṗ0, j = 1, · · · ,n, (38)

this yields the following projected dynamics on the contact manifold P (T ∗Q) with coordinates (q, γ )

q̇0 = ∑n

=1 γ


∂ K̂
∂γ


(q, γ ) − K̂ (q, γ )

q̇ j = ∂ K̂
∂γ j

(q, γ ), j = 1, · · · ,n

γ̇ j = − ∂ K̂
∂q j

(q, γ ) − γ j
∂ K̂
∂q0

(q, γ ), j = 1 · · · ,n

(39)

This is recognized as the contact vector field [25] with contact Hamiltonian K̂ . Indeed, given a contact form θ the contact 
vector field XK̂ with contact Hamiltonian K̂ is defined through the relations5

LXK̂
θ = ρK̂ θ, −K̂ = θ(XK̂ ) (40)

for some function ρK̂ (depending on K̂ ). The first equation in (40) expresses the condition that the contact vector field 
leaves the contact distribution (the kernel of the contact form θ ) invariant. Equations (40) for θ = dq0 − γ1dq1 · · · − γndqn
and K̂ (q, γ ) can be seen to yield the same equations as in (39); see [25,11] for details. Conversely, any contact vector field 
with contact Hamiltonian K̂ (q, γ ) defines a homogeneous Hamiltonian vector field on T ∗Q with homogeneous Hamiltonian 
−p0 K̂ (q, p1−p0

, · · · , pn−p0
). As before, the coordinate expression (39) of the contact vector field depends on the numbering of 

the homogeneous coordinates p0, p1, · · · , pn; i.e., the choice of p0. In the thermodynamics context this is again illustrated 
by the choice of either the energy or entropy representation (corresponding to choosing p0 = pE or p0 = pS ). Furthermore, 
as shown by (39) the dynamics of the extensive variables depends on the extensive variables and (part of) the intensive 
variables (either in energy or entropy representation).

The projectability of any homogeneous Hamiltonian vector field XK to a vector field on P (T ∗Q) also follows from the 
next proposition, together with the fact that the projection π : T ∗Q →P (T ∗Q) is along the Euler vector field Z .

5 Here the sign convention of [7] is followed.
8
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Proposition 3.8. Any homogeneous Hamiltonian vector field XK satisfies [XK , Z ] = 0.

Proof. By [1] (Table 2.4-1) and LXK α = 0

i[XK ,Z ]dα = LXK i Z dα − i ZLXK dα = LXK α − i Z dLXK α = 0 − 0 = 0 (41)

Because ω = dα is non-degenerate this implies [XK , Z ] = 0. �

Although homogeneous Hamiltonian vector fields are in one-to-one correspondence with contact vector fields, typically 
computations for homogeneous Hamiltonian vector fields are more easy than the corresponding computations for their 
contact vector field counterparts. First let us note the following properties proved in [37,36].

Proposition 3.9. Consider the Poisson bracket {K1, K2} of functions K1, K2 on T ∗Q defined with respect to the symplectic form 
ω = dα. Then

(a) If K1, K2 are both homogeneous of degree 1 in p, then also {K1, K2} is homogeneous of degree 1 in p.
(b) If K1 is homogeneous of degree 1 in p, and K2 is homogeneous of degree 0 in p, then {K1, K2} is homogeneous of degree 0 in p.
(c) If K1, K2 are both homogeneous of degree 0 in p, then {K1, K2} is zero.

Using property (a) we may define the following bracket

{K̂1, K̂2} J := ̂{K1, K2} (42)

where K̂ is the contact Hamiltonian corresponding to the homogeneous Hamiltonian K as in (40). The bracket {K̂1, ̂K2} J is 
equal to the Jacobi bracket of the contact Hamiltonians K̂1, ̂K2; see e.g. [25,7,2] for the somewhat complicated coordinate 
expression of the Jacobi bracket. The Jacobi bracket is obviously bilinear and skew-symmetric. Furthermore, since the Poisson 
bracket satisfies the Jacobi-identity, so does the Jacobi bracket. However, the Jacobi bracket does not satisfy the Leibniz rule; 
i.e., in general the following equality does not hold

{K̂1, K̂2 · K̂3} J = {K̂1, K̂2} J · K̂3 + K̂2 · {K̂1, K̂3} J (43)

See also [39] for additional information on the Jacobi bracket.

3.4. Hamilton-Jacobi theory of Liouville and Legendre submanifolds

Recall that any homogeneous Hamiltonian vector field XK on T ∗Q leaves invariant the Liouville form α, and that 
Liouville submanifolds are maximal submanifolds on which α is zero. Since LXK α = 0 it follows that for any Liouville 
submanifold L and any time t ∈R the evolution of L along the homogeneous Hamiltonian vector field XK given by

φt(L) := {φt(z) | z ∈ L}, (44)

where φt : T ∗Q → T ∗Q is the flow map of XK at time t ≥ 0, is again a Liouville submanifold. Thus the flow of a homo-
geneous Hamiltonian vector field transforms the Liouville submanifold to another Liouville submanifold at any time t ≥ 0. 
For example, the Liouville submanifold corresponding to an ideal gas may be continuously transformed into the Liouville 
submanifold of a Van der Waals gas. This point of view was explored in a contact-geometric setting in [29,30,32].

Furthermore, cf. (29), let F (qI , p0, p J ) := −p0 F̂ (qI , 
p J

−p0
), with I ∪ J = {1, · · · , n}, be the generating function of L, then it 

follows that for any t ≥ 0 the generating function G(qI , p0, p J , t) := −p0Ĝ(qI , 
p J

−p0
, t) of the transformed Liouville submani-

fold φt(L) satisfies the Hamilton-Jacobi equation

∂G
∂t + K (q0,qI ,− ∂G

∂ p J
, p0,

∂G
∂q J

, p J ) = 0

G(qI , p0, p J ,0) = F (qI , p0, p J )
(45)

In the case of the evolution of a general Lagrangian submanifold under the dynamics of a general Hamiltonian vector field, 
this is classical Hamilton-Jacobi theory (see e.g. [1,2]), which directly specializes to Liouville submanifolds and to homoge-
neous Hamiltonian vector fields. Moreover, the generating functions Ĝ(qI , γ J , t) of the corresponding Legendre submanifolds 
̂φt(L) satisfy the Hamilton-Jacobi equation (see also [8])

∂ Ĝ
∂t + K̂ (q0 = Ĝ − γ J

∂ Ĝ
∂γ J

, q J = − ∂ F̂
∂γ J

, γI = ∂ F̂
∂qI

) = 0

Ĝ(q , γ ,0) = F̂ (q , γ )

(46)

I J I J

9
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Note furthermore that ̂φt(L) = φ̂t(L̂), where φ̂t is the flow map at time t of the contact vector field XK̂ . This implies as well 
the following result concerning the invariance of Liouville and corresponding Legendre submanifolds, which will be one of 
the starting points for the definition of port-thermodynamic systems in the following section.

Proposition 3.10. [31,25,36] Let K : T ∗Q → R be homogeneous of degree 1 in p, and let K̂ : P (T ∗Q) → R be the corresponding 
contact Hamiltonian. Furthermore let L ⊂ T ∗Q be a Liouville submanifold, with L = π−1(L̂) and L̂ ⊂ P (T ∗Q) the corresponding 
Legendre submanifold. Then the following statements are equivalent:

1. The homogeneous Hamiltonian vector field XK leaves L invariant.
2. The contact vector field XK̂ leaves L̂ invariant.
3. K is zero on L.
4. K̂ is zero on L̂.

4. Port-thermodynamic systems

So far the geometric description of classical thermodynamics has been concerned with the state properties; starting from 
Gibbs’ fundamental relation. Since these state properties are intrinsic to any thermodynamic system, they should be re-
spected by any dynamics (thermodynamic processes). Hence any dynamics of an actual thermodynamic system should 
leave invariant the Liouville and Legendre submanifold characterizing the state properties [31,33,6,37]. Furthermore, desir-
ably this should be the case for all possible state properties of the thermodynamic system, i.e., for all Liouville and Legendre 
submanifolds. This suggests that the dynamics on the canonical thermodynamic phase space P (T ∗ Q ) should be a contact 
vector field XK̂ , and the corresponding dynamics on T ∗Q a homogeneous Hamiltonian vector field XK .

Because of its simplicity, we first focus on the homogeneous Hamiltonian description. Consider a thermodynamic sys-
tem with constitutive relations (state properties) specified by a Liouville submanifold L ⊂ T ∗Q. Respecting the geometric 
structure means that the dynamics is a Hamiltonian vector field XK on T ∗Q, with K homogeneous of degree 1 in the p-
variables. Furthermore, since the state properties captured by L are intrinsic to the system, the homogeneous Hamiltonian 
vector field XK should leave L invariant. By Proposition 3.10 this means that the homogeneous Hamiltonian K governing 
the dynamics should be zero on L. Furthermore, we will split K into two parts, i.e.,

K a + K cu, u ∈Rm, (47)

where K a : T ∗Z → R is the homogeneous Hamiltonian corresponding to the autonomous dynamics due to internal non-
equilibrium conditions, while K c = (K c

1, · · · , K c
m) is a row vector of homogeneous Hamiltonians (called control or interaction

Hamiltonians) corresponding to dynamics arising from interaction with the surroundings of the system. This second part of 
the dynamics will be supposed to be affinely parametrized by a vector u of control or input variables (see however [37] for 
an example of non-affine dependency). This means that all (m + 1) functions K a, K c

1, · · · , K c
m are homogeneous of degree 1

in p and zero on L.
By invoking Euler’s theorem (Theorem 3.2) homogeneity of degree 1 in p means

K a = p0
∂ K a

∂ p0
+ p1

∂ K a

∂ p1
+ · · · + pn

∂ K a

∂ pn

K c = p0
∂ K c

∂ p0
+ p1

∂ K c

∂ p1
+ · · · + pn

∂ K c

∂ pn
,

(48)

where the functions ∂ K a

∂ pi
, as well as the elements of the m-dimensional row vectors of partial derivatives ∂ K c

∂ pi
, i = 0, 1, · · · , n, 

are all homogeneous of degree 0 in the p-variables.
The class of allowable autonomous Hamiltonians K a is further restricted by the First and Second Law of thermodynamics. 

Since the energy and entropy variables E, S are among the extensive variables q0, q1, · · · , qn , let us denote q0 = E, q1 = S . 
With this convention, the evolution of E in the autonomous dynamics XK a arising from internal non-equilibrium conditions 
is given by Ė = ∂ K a

∂ p0
. Since by the First Law the energy of the system without interaction with the surroundings (i.e., for 

u = 0) should be conserved, this implies that necessarily ∂ K a

∂ p0
|L = 0. Similarly, Ṡ in the autonomous dynamics XK a is given 

by ∂ K a

∂ p1
. Hence by the Second Law necessarily ∂ K a

∂ p1
|L ≥ 0.

These two constraints need not hold for the control (interaction) Hamiltonians K c . In fact, the analogous terms in the 
control Hamiltonians may be utilized to define natural output variables. First option is to define the output vector as the 
m-dimensional row vector (p for power)

yp = ∂ K c

∂ p0
(49)

Then it follows that along the complete dynamics XK on L, with K = K a + K cu,

d
E = ypu (50)
dt

10
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Thus yp is the vector of power conjugate outputs corresponding to the input vector u. We call the pair (u, yp) the power 
port of the system. Similarly, by defining the output vector as the m-dimensional row vector (e for ‘entropy flow’)

ye = ∂ K c

∂ p1
, (51)

it follows that along the dynamics XK on L
d

dt
S ≥ yeu (52)

Hence ye is the output vector which is conjugate to u in terms of entropy flow. The pair (u, ye) is called the flow of entropy
port of the system.

The above discussion is summarized in the following definition of a port-thermodynamic system.

Definition 4.1 ([37]). Consider the manifold of extensive variables Q. A port-thermodynamic system on Q is defined by 
a pair (L, K ), where L ⊂ T ∗Q is a Liouville submanifold describing the state properties, and K = K a + K cu, u ∈ Rm , is a 
Hamiltonian on T ∗Q, homogeneous of degree 1 in p, and zero restricted to L. Furthermore, let q = (q0, q1, · · · , qn) with 
q0 = E (energy), and q1 = S (entropy). Then K a is required to satisfy ∂ K a

∂ p0
|L = 0 and ∂ K a

∂ p1
|L ≥ 0. The power conjugate output

vector of the port-thermodynamic system is defined as yp = ∂ K c

∂ p0
, and the entropy flow conjugate output vector as ye = ∂ K c

∂ p1
.

Note that any port-thermodynamic system on T ∗Q defines a corresponding system on the thermodynamic phase space
P (T ∗Q). Indeed, since L ⊂ T ∗Q is a Liouville submanifold it projects to a Legendre submanifold L̂ ⊂P (T ∗Q). Furthermore, 
since K is homogeneous of degree 1 in p it has the form K (q, p) = −p0 K̂ (q, γ ), γ j = p j

−p0
, j = 1, · · · , n, with K̂ (q, γ ) =

K̂ a(q, γ ) + K̂ c(q, γ )u the contact Hamiltonian of the energy representation. This contact Hamiltonian K̂ is zero on L̂, while the 
Hamiltonian dynamics XK projects to the contact vector field XK̂ which leaves invariant L̂. Similarly, we can write K (q, p) =
−p1

̂̃K (q, γ̃ ), γ̃ j = p j
−p1

, j = 0, 2 · · · , n, with ̂̃K (q, γ̃ ) the contact Hamiltonian of the entropy representation. Furthermore, by 
Euler’s theorem both the power conjugate output yp and the entropy flow conjugate output ye are homogeneous of degree 
0, and thus project to functions on P (T ∗Q). Moreover, in the energy representation we can rewrite the power conjugate 
output yp as

yp = ∂ K c

∂ p0
=

n∑

=1

γ


∂ K̂ c

∂γ


(q, γ ) − K̂ c(q, γ ) (53)

Similarly for the entropy flow conjugate output ye = ∂ K c

∂ p1
= ∑n


=0,2 γ̃

∂̂̃K c

∂γ̃

(q, γ̃ ) − ̂̃K c

(q, γ̃ ). Finally note that the constraints 
imposed on K a by the First and Second law can be written in contact-geometric terms as(∑n


=1 γ

∂ K̂ a

∂γ

(q, γ ) − K̂ a(q, γ )

)
|L̂ = 0(∑n


=0,2 γ̃

∂̂̃K a

∂γ̃

(q, γ ) − ̂̃K a

(q, γ̃ )

)
|L̂ ≥ 0

(54)

Example 4.2 (Gas-piston-damper system). Consider a gas in a thermally isolated compartment closed by a piston. The exten-
sive variables are given by energy E , entropy S , volume V , and momentum of the piston π . The state properties of the sys-

tem are described by the Liouville submanifold L with generating function (in energy representation) −pE

(
U (S, V ) + π2

2m

)
, 

where U (S, V ) is the energy of the gas, and π2

2m is the kinetic energy of the piston with mass m. This defines the state 
properties

L = {(E, S, V ,π, pE , pS , pV , pπ ) | E = U (S, V ) + π2

2m ,

pS = −pE
∂U
∂ S (S, V ), pV = −pE

∂U
∂V (S, V ), pπ = −pE

π
m }

(55)

Assume the damper is linear with damping constant d. The dynamics of the gas-piston-damper system, with piston actuated 
by a force u, is given by XK , where the homogeneous Hamiltonian K : T ∗R4 →R is given as

K = pV
π

m
+ pπ

(
− ∂U

∂V
− d

π

m

)
+ pS

d(π
m )2

∂U
∂ S

+
(

pπ + pE
π

m

)
u, (56)

which is zero on L. The power conjugate output yp = π
m is the velocity of the piston. In energy representation the descrip-

tion projects to the thermodynamic phase space P (T ∗R4) = {(E, S, V , π, T , −P , v)}, with γS = T (temperature), γV = −P
(pressure), and γπ = v (velocity of the piston) as follows. First note that L projects to the Legendre submanifold
11
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L̂ = {(E, S, V ,π, T ,−P , v) | E = U (S, V ) + π2

2m
, T = ∂U

∂ S
,−P = ∂U

∂V
, v = π

m
} (57)

Furthermore, K = −pE K̂ with

K̂ = −P
π

m
+ v

(
− ∂U

∂V
− d

π

m

)
+ T

d(π
m )2

∂U
∂ S

+ (v − π

m
)u (58)

This yields the following dynamics of the extensive variables

Ė = π
m u

Ṡ = d(π
m )2/ ∂U

∂ S (≥ 0)

V̇ = π
m

π̇ = − ∂U
∂V − d π

m + u,

(59)

while the intensive variables satisfy Ṫ = − ∂ K̂
∂ S , − Ṗ = − ∂ K̂

∂V , ̇v = − ∂ K̂
∂π . Similarly for the entropy representation.

In composite thermodynamic systems, there is typically no single energy or entropy. In this case the sum of the energies 
needs to be conserved by the autonomous dynamics, and likewise the sum of the entropies needs to be increasing. A simple 
example is the following; see [37] for further information.

Example 4.3 (Heat exchanger). Consider two heat compartments, exchanging a heat flow through a conducting wall according 
to Fourier’s law. Each heat compartment is described by an entropy Si and energy Ei , i = 1, 2, corresponding to the Liouville 
submanifolds

Li = {(Ei, Si, pEi , pSi ) | Ei = Ei(Si), pSi = −pEi E ′
i(Si)}, E ′

i(Si) ≥ 0 (60)

Taking ui as the incoming heat flow into the i-th compartment corresponds to

K c
i = pSi

1

E ′
i(Si)

+ pEi , (61)

while K a
i = 0. This defines for i = 1, 2 the flow of entropy conjugate output as yei = 1

E ′
i(Si)

(reciprocal temperature). The 
conducting wall is described by the interconnection equations (with λ Fourier’s conduction coefficient)

−u1 = u2 = λ(
1

ye1
− 1

ye2
), (62)

relating the incoming heat flows ui and reciprocal temperatures yi , i = 1, 2, at both sides of the conducting wall. This leads 
to (setting E(S1, S2) := E1(S1) + E2(S2), pE1 = pE2 =: pE , cf. [37]) the autonomous dynamics generated by the homogeneous 
Hamiltonian

K a := K c
1u1 + K c

2u2 = λ

(
pS1

1

E ′(S1)
+ pS2

1

E ′(S2)

)(
E ′(S2) − E ′(S1)

)
(63)

Hence the total entropy on the Liouville submanifold

L = {(E, S1, S2, pE , pS1 , pS2)|E = E1 + E2, pS1 = −pE E ′
1(S1), pS2 = −pE E ′

2(S2)} (64)

satisfies

d

dt
(S1 + S2) = λ(

1

E ′
1(S1)

− 1

E ′
2(S2)

)(E ′
2(S2) − E ′

1(S1)) ≥ 0 (65)

Interestingly, while the Hamiltonians in standard Hamiltonian systems (such as in mechanics) represent energy, the 
Hamiltonians K in the above examples are dimensionless (in the sense of dimensional analysis). This holds in general. 
Furthermore, it can be verified that the contact Hamiltonian of the projected dynamics (a contact vector field) has dimension 
of power in case of the energy representation, and has dimension of entropy flow in case of the entropy representation. 
Together with the fact that the dynamics of a thermodynamic system is captured by the dynamics restricted to its invariant 
Liouville submanifold, this underscores the fact that the interpretation of the Hamiltonian dynamics XK is rather different
from that of mechanical (or other physical) systems.

Finally, let us recall the well-known correspondence [25,2] between Poisson brackets of Hamiltonians K1, K2, and Lie 
brackets of their corresponding Hamiltonian vector fields, i.e.,

[XK1 , XK2 ] = X{K1,K2} (66)
12
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In particular, this property implies that if the homogeneous Hamiltonians K1, K2 are zero on the Liouville submanifold L, 
and thus by Proposition 3.10 the homogeneous Hamiltonian vector fields XK1 , XK2 are tangent to L, then also [XK1 , XK2 ] is 
tangent to L, and therefore the Poisson bracket {K1, K2} is also zero on L. Together with Proposition 3.9 this was crucially 
used in the controllability and observability analysis of port-thermodynamic systems in [37,38].

5. Homogeneity in the extensive variables and Gibbs-Duhem relation

In many thermodynamic systems, when taking into account all extensive variables, there is an additional form of homo-
geneity; but now with respect to the extensive variables q. To start with, consider a Liouville submanifold L with generating 
function −p0 F̂ (q1, · · · , qn), describing the state properties of a thermodynamic system. Recall that if q0 denotes the energy 
variable, then F̂ (q1, · · · , qn) equals the energy q0 expressed as a function of the other extensive variables q1, · · · , qn . As-
sume that the manifold of extensive variables Q is the linear space6 Q =Rn+1. Homogeneity with respect to the extensive 
variables now means that the function F̂ is homogeneous of degree 1 in q1, · · · , qn . This implies by Euler’s theorem (The-
orem 3.2) that F̂ = ∑n

j=1 q j
∂ F̂
∂q j

. Hence on the corresponding Legendre submanifold L̂ = π(L) we have F̂ = ∑n
j=1 γ jq j , and 

thus

dF̂ =
n∑

j=1

γ jdq j +
n∑

j=1

q jdγ j (67)

By Gibbs’ relation dF̂ − ∑n
j=1 γ jdq j = 0 on L̂, and hence on L̂

n∑
j=1

q jdγ j = 0 (68)

This is known as the Gibbs-Duhem relation; see e.g. [24,18]. The relation in particular implies that the intensive variables γ j

on L̂ are dependent.
More generally this can be formulated in the following geometric way.

Definition 5.1. Let Q =Rn+1 with linear coordinates q. A Liouville submanifold L ⊂ T ∗Rn+1 is homogeneous with respect to 
the extensive variables q if

(q0,q1, · · · ,qn, p0, · · · , pn) ∈ L ⇒ (μq0,μq1, · · · ,μqn, p0, · · · , pn) ∈ L (69)

for all 0 �= μ ∈R.

Using the same theory as exploited before for homogeneity with respect to the p-variables, cf. Proposition 3.4, homo-
geneity of L with respect to q is equivalent to the vector field W := ∑n

i=0 qi
∂

∂qi
being tangent to L. Hence, using the same 

argumentation as in Proposition 3.4, not only the Liouville form α = ∑n
i=0 pidqi is zero on L, but also the one-form

β :=
n∑

i=0

qidpi (70)

This could be called the generalized Gibbs-Duhem relation.

Proposition 5.2. The Liouville submanifold L is homogeneous with respect to the extensive variables q if and only if β = ∑n
i=0 qidpi

is zero on L. Let L have generating function −p0 F̂ (qI , γ J ) for some partitioning {1, · · · , n} = I ∪ J . Then L is homogeneous with 
respect to the extensive variables q if and only if I is non-empty and ̂F (qI , γ J ) is homogeneous of degree 1 in qI . Furthermore, if L is 
homogeneous with respect to the extensive variables q, then

n∑
i=0

qi pi = 0, for all (q, p) ∈ L (71)

Proof. As mentioned above, the first statement follows from the same reasoning as in Proposition 3.4, swapping the p
and q variables. Equivalence of homogeneity of L with respect to q to F̂ (qI , γ J ) being homogeneous of degree 1 in qI
directly follows from the expression of L in (27) in case I �= ∅, while clearly homogeneity of L fails if I = ∅. Finally, if both 
α = ∑n

i=0 pidqi and β = ∑n
i=0 qidpi are zero on L, then d(

∑n
i=0 qi pi) is zero on L. Hence 

∑n
i=0 qi pi is constant on L. Since 

Z = ∑n
i=0 pi

∂
∂ pi

is tangent to L this constant is necessarily zero. �

6 Homogeneity with respect to the extensive variables can be generalized to manifolds Q using the theory developed in [25].
13
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Remark 5.3. In a contact-geometric setting, an identity similar to (71) was noticed in [22]. A related scenario, explored in 
[9], is the case that L is a Lagrangian submanifold which is non-mixing: there exists a partitioning {0, 1, · · ·n} = I ∪ J such 
that q J = q J (qI ), pI = pI (p J ) for all (qI , q J , pI , p J ) ∈L. Then L being Lagrangian amounts to

∂q J

∂qI
= −

(
∂ pI

∂ p J

)�
(72)

Since the left-hand side only depends on qI and the right-hand side only on p J , this means that both sides are constant, 
implying that q J = AqI , pI = −A� p J for some matrix A. Hence L is obviously satisfying (71), and is actually the product of 
two orthogonal linear subspaces; one in Q =Rn+1 and the other in the dual space Q∗ =Rn+1.

Homogeneity of L with respect to the extensive variables q has the following classical implication. Start again with the 
case of a generating function F (q, p) = −p0 F̂ (q1, · · · , qn) for L, with q0 being the energy variable. Since F̂ is homogeneous 
of degree 1 we may define for q1 �= 0

F̄ (ε2, · · · , εn) := F̂ (1,
q2

q1
, · · · ,

qn

q1
) = 1

q1
F̂ (q1, · · · ,qn), ε j := q j

q1
, j = 0,2, · · · ,n (73)

Equivalently, F̂ (q1, · · · , qn) = q1 F̄ (ε2, · · · , εn), where the function F̄ is known in thermodynamics as the specific energy [24].
Geometrically this means the following. By homogeneity with respect to the p-variables the Liouville submanifold L ⊂

T ∗Rn+1 is projected to the Legendre submanifold L̂ ⊂ Rn+1 × P (Rn+1), where P (Rn+1) is the n-dimensional projective 
space. Subsequently, by homogeneity with respect to the q-variables L̂ ⊂ Rn+1 × P (Rn+1) is projected to a submanifold 
L̄⊂P (Rn+1) ×P (Rn+1). In coordinates the expression of L̄ is given as follows. Start from the expression of L̂ as given in 
(27). Using the identities

q0 = q1 F̄ (ε2, · · · , εn) ⇔ ε0 = F̄ (ε2, · · · , εn)

γ1 = ∂ F̂
∂q1

= F̄ (ε2, · · · , εn) − q1
∑n


=2
∂ F̄
∂ε


q


q2
1

= F̄ (ε2, · · · , εn) − ∑n

=2 ε


∂ F̄
∂ε


γ j = ∂ F̂
∂q j

= ∂(q1 F̄ )
∂q j

= ∂ F̄
∂ε j

, j = 2, · · · ,n

(74)

the description (27) amounts to

L̄ = {(ε0, ε2, · · · , εn, γ1, · · · , γn) | ε0 = F̄ (ε2, · · · , εn),

γ1 = F̄ (ε2, · · · , εn) − ∑n

=2 ε


∂ F̄
∂ε


, γ2 = ∂ F̄
∂ε2

, · · · , γn = ∂ F̄
∂εn

},
(75)

where

F (q, p) = −p0 F̂ (q) = −p0q1 F̄ (ε2, · · · , εn), ε j := q j

q1
, j = 0,2, · · · ,n (76)

Similar expressions hold in the general case where the generating function for L̂ is given by F̂ (qI , γ J ) for some partitioning 
{1, · · · , n} = I ∪ J .

Furthermore, if the state properties captured by L are homogeneous with respect to q, it is natural to require the 
dynamics to be homogeneous with respect to q as well. Thus one requires the Hamiltonian K (q, p) governing the dynamics 
to be homogeneous of degree 1, not only with respect to p, but also with respect to q, i.e.,

K (μq, p) = μK (q, p), for all 0 �= μ ∈R (77)

Equivalently (analogously to Proposition 3.7) one requires XK to satisfy

LXK β = 0 (78)

Similarly to Proposition 3.8, this implies

[XK , W ] = 0, W =
n∑

i=0

qi
∂

∂qi
(79)

Hence the flow of XK commutes both with the flow of the Euler vector field Z = ∑n
i=0 pi

∂
∂ pi

and with the vector field 
W = ∑n

i=0 qi
∂

∂qi
.

We have seen before that projection of XK along Z yields the contact vector field XK̂ , with K (q, p) = −p0 K̂ (q, γ ), γ j =
p j

−p0
, j = 1, · · · , n, where (q, γ ) ∈ Rn+1 × P (Rn+1). Subsequent projection along W to the reduced space P (Rn+1) ×

P (Rn+1) can be computed as follows. First write as above
14
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K̂ (q, γ ) = q1 K̄ (ε,γ ), ε j = q j

q1
, j = 0,2, · · · ,n (80)

Then compute, analogously to (30),

∂ K̂
∂q1

= K̄ − ∑n

=0,2 ε


∂ K̄
∂ε


∂ K̂
∂q j

= ∂ K̄
∂ε j

, j = 0,2 · · · ,n

∂ K̂
∂γ j

= q1
∂ K̄
∂γ j

, j = 1, · · · ,n

(81)

Combining, analogously to (38), with the expression

ε̇ j = q̇ j

q1
− q j

q2
1

q̇1, (82)

this yields the following 2n-dimensional dynamics on the reduced thermodynamic phase space P (Rn+1) ×P (Rn+1)

ε̇ j = ∂ K̄
∂γ j

− ε j

(∑n

=1 γ


∂ K̄
∂γ


− K̄
)

, j = 0,2, · · · ,n

γ̇ j = − ∂ K̄
∂ε j

+ γ j

(∑n

=0,2 ε


∂ K̄
∂ε


− K̄
)

, j = 1,2 · · · ,n,

(83)

where K̄ is determined by

K (q, p) = −p0q1 K̄ (ε,γ ), ε =
(

q0

q1
,

q2

q1
· · · ,

qn

q1

)
, γ =

(
p1

−p0
, · · · ,

pn

−p0

)
(84)

Obviously, if q0 represents entropy the same expressions hold with different interpretation of ε0, ε2, · · · , εn . Note that (83)
consists of standard Hamiltonian equations with respect to the Hamiltonian K̄ , together with extra terms. In view of (54), 
the first part of these extra terms resulting from K̄ a , i.e., 

∑n

=1 γ


∂ K̄ a

∂γ

− K̄ a , is zero on L.

The precise geometric interpretation of the 2n-dimensional dynamics (83) is an open question. It can be noted that 
while the above reduction from L and XK to L̄ and the dynamics (83) has been performed via L̂ and XK̂ (the contact-
geometric description on the thermodynamic phase space), the same outcome would have been obtained by instead first
projecting onto P (Rn+1) × Rn+1 along W , and then projecting onto P (Rn+1) × P (Rn+1) along Z . Said otherwise, this 
alternative route involves a different intermediate contact geometric description on the contact manifold P (Rn+1) ×Rn+1

with coordinates ε0, ε2, · · · , εn, p0, · · · , pn . This double fiber bundle structure could be instrumental in the investigation of 
the geometric structure of (83).

6. Conclusions

The geometric formulation of classical thermodynamics gives rise to a specific branch of symplectic geometry, coined 
as Liouville geometry, which is closely related to contact geometry [2,3,25]. A detailed treatment of Liouville submanifolds 
and their generating functions has been provided. The same has been done for homogeneous Hamiltonian vector fields, 
extending the treatment in e.g. [2,3,25]. We refer to [37] for the formulation of the Weinhold and Ruppeiner metrics in the 
Liouville geometry setting. The interpretation of the resulting Hamiltonian formulation of port-thermodynamic systems turns 
out to be rather different from Hamiltonian formulations of other parts of physics such as mechanics. In particular, the state 
properties of the thermodynamic system define a Liouville submanifold, which is left invariant by the Hamiltonian dynamics. 
Furthermore, the Hamiltonian is dimensionless, while its corresponding contact Hamiltonians have dimension of power (in 
the energy representation) or of entropy flow (in the entropy representation). An open modeling problem concerns the 
determination of the Hamiltonian governing the dynamics. A partial answer is provided in [37], where it is shown how the 
Hamiltonian of a thermodynamic system can be derived from the Hamiltonians of the constituent subsystems. In Section 5
another type of homogeneity has been considered; this time with respect to the extensive variables, corresponding to the 
classical Gibbs-Duhem relation. It has been shown how this gives rise to a projection on the product of the n-dimensional 
projective space with itself. The precise geometric interpretation and properties of the reduced dynamics (83) warrant 
further study.

Subject Classifications Journal of Geometry and Physics

Geometric approaches to thermodynamics, symplectic and contact geometry, Lagrangian submanifolds, geometric control 
theory, Hamiltonian dynamics.

Declaration of competing interest

None.
15



A. van der Schaft Journal of Geometry and Physics 170 (2021) 104365
Acknowledgements

I thank Bernhard Maschke, Université de Lyon-1, France, for ongoing collaborations that stimulated the writing of the 
present paper.

Funding: This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit 
sectors.

References

[1] R.A. Abraham, J.E. Marsden, Foundations of Mechanics, 2nd ed., Benjamin/Cummings, Reading, MA, 1978.
[2] V.I. Arnold, Mathematical Methods of Classical Mechanics, 2nd edition, Springer, 1989.
[3] V.I. Arnold, Contact Geometry and Wave Propagation, Lectures at the University of Oxford Under the Sponsorship of the International Mathematical 

Union, L’Enseignement Mathématique, 1989.
[4] V.I. Arnold, Contact geometry: the geometrical method of Gibbs’s thermodynamics, in: Gibbs Symposium, AMS, 1989.
[5] R. Balian, P. Valentin, Hamiltonian structure of thermodynamics with gauge, Eur. Phys. J. B 21 (2001) 269–282.
[6] A. Bravetti, Contact Hamiltonian dynamics: the concept and its use, Entropy 19 (12) (2017) 535.
[7] A. Bravetti, Contact geometry and thermodynamics, Int. J. Geom. Methods Mod. Phys. 16 (1) (2019) 1940003 (51 pages).
[8] A. Bravetti, C.S. Lopez-Monsalvo, F. Nettel, Contact symmetries and Hamiltonian thermodynamics, Ann. Phys. 361 (2017) 377–400.
[9] R.K. Brayton, Nonlinear reciprocal networks, in: H.S. Wilf, F. Harary (Eds.), Proc. Symp. in Applied Mathematics of AMS and SIAM, 1969, pp. 1–12.

[10] M. de Leon, M. Lainz Valcazar, Contact Hamiltonian systems, J. Math. Phys. 60 (10) (2019) 102902.
[11] D. Eberard, B.M. Maschke, A.J. van der Schaft, An extension of pseudo-Hamiltonian systems to the thermodynamic space: towards a geometry of 

non-equilibrium thermodynamics, Rep. Math. Phys. 60 (2) (2007) 175–198.
[12] S.C. Farantos, Hamiltonian classical thermodynamics and chemical kinetics, Phys. D: Nonlinear Phenom. 417 (2021) 132813.
[13] A. Favache, D. Dochain, B.M. Maschke, An entropy-based formulation of irreversible processes based on contact structures, Chem. Eng. Sci. 65 (2010) 

5204–5216.
[14] E. Fermi, Thermodynamics, Prentice-Hall, 1937 (Dover edition, 1956).
[15] F. Gay-Balmaz, H. Yoshimura, A Lagrangian variational formulation for nonequilibrium, thermodynamics. Part I: Discrete systems, J. Geom. Phys. 111 

(2017) 169–193.
[16] M. Grmela, Contact geometry of mesoscopic thermodynamics and dynamics, Entropy 16 (3) (2014) 1652.
[17] D. Gromov, F. Castanos, The geometric structure of interconnected thermo-mechanical systems, in: IFAC World Congress, Toulouse, France, IFAC-

PapersOnLine 50 (1) (2017) 582–587.
[18] D. Gromov, A. Toikka, Towards formal analysis of thermodynamic stability: Le Chatelier-Brown principle, Entropy 22 (2020) 1113, https://doi .org /10 .

3390 /e22101113.
[19] H.W. Haslach Jr., Geometric structure of the non-equilibrium thermodynamics of homogeneous systems, Rep. Math. Phys. 39 (1997) 147–162.
[20] G. Herglotz, Berührungstransformationen, in: Lectures at the University of Göttingen, Göttingen, 1930. English edition: The Herglotz Lectures on Contact 

Transformations and Hamiltonian Systems, by R.B. Guenther, H. Schwerdtfeger, G. Herglotz, C.M. Guenther, J.A. Gottsch, Julius Schauder Center for 
Nonlinear Studies, Nicholas Copernicus University, Torun, 1996.

[21] R. Hermann, Geometry, Physics and Systems, Marcel Dekker, New York, 1973.
[22] N.H. Hoang, T.K. Phung, T.T. Hong Phan, D. Dochain, On contact Hamiltonian functions in open irreversible thermodynamic systems, preprint, 2020.
[23] N. Hudon, M. Guay, D. Dochain, Control design for thermodynamic systems on contact manifolds, IFAC-PapersOnLine 50 (1) (2017) 588–593.
[24] D. Kondepudi, I. Prigogine, Modern Thermodynamics; from Heat Engines to Dissipative Structures, 2nd edition, Wiley, 2015.
[25] P. Libermann, C.-M. Marle, Symplectic Geometry and Analytical Mechanics, D. Reidel Publishing Company, Dordrecht, Holland, 1987.
[26] B. Maschke, About the lift of irreversible thermodynamic systems to the thermodynamic phase space, IFAC-PapersOnLine 49 (24) (2016) 40–45.
[27] B. Maschke, A. van der Schaft, Homogeneous Hamiltonian control systems, part II: applications to thermodynamic systems, IFAC-PapersOnLine 51 (3) 

(2018) 7–12.
[28] J. Merker, M. Krüger, On a variational principle in thermodynamics, Contin. Mech. Thermodyn. 25 (6) (2013) 779–793.
[29] R. Mrugała, Geometric formulation of equilibrium phenomenological thermodynamics, Rep. Math. Phys. 14 (3) (1978) 419–427.
[30] R. Mrugała, Submanifolds in the thermodynamic phase space, Rep. Math. Phys. 21 (2) (1985) 197–203.
[31] R. Mrugała, J.D. Nulton, J.C. Schön, P. Salamon, Contact structure in thermodynamic theory, Rep. Math. Phys. 29 (1) (1991) 109–121.
[32] R. Mrugała, Continuous contact transformations in thermodynamics, Rep. Math. Phys. 33 (1/2) (1993) 149–154.
[33] R. Mrugała, On a special family of thermodynamic processes and their invariants, Rep. Math. Phys. 46 (3) (2000) 461–468.
[34] R. Mrugała, On contact and metric structures on thermodynamic spaces, RIMS Kokyuroku 1142 (2000) 167–181.
[35] H. Ramirez, B. Maschke, D. Sbarbaro, Partial stabilization of input-output contact systems on a Legendre submanifold, IEEE Trans. Autom. Control 62 (3) 

(2017) 1431–1437.
[36] A. van der Schaft, B. Maschke, Homogeneous Hamiltonian control systems, part I: geometric formulation, IFAC-PapersOnLine 51 (3) (2018) 1–6.
[37] A. van der Schaft, B. Maschke, Geometry of thermodynamic processes, Entropy 20 (12) (2018) 925–947.
[38] A.J. van der Schaft, B. Maschke, About some system-theoretic properties of port-thermodynamic systems, in: F. Nielsen, F. Barbaresco (Eds.), Geometric 

Science of Information, 4th Int. Conf., Toulouse, 2019, in: Lect. Notes in Computer Science, Springer, 2019, pp. 228–238.
[39] A. Anahory Simoes, D. Martin de Diego, M. Lainz Valcazar, M. de Leon, The geometry of some thermodynamic systems, arXiv:2012 .07404, 2020.
16

http://refhub.elsevier.com/S0393-0440(21)00211-4/bib248706C023957DB08D14F39749879207s1
http://refhub.elsevier.com/S0393-0440(21)00211-4/bib49A30D03C669A09F2C01C3655032AF3Es1
http://refhub.elsevier.com/S0393-0440(21)00211-4/bib788B401207FE2C17F72FE7C92976E1CDs1
http://refhub.elsevier.com/S0393-0440(21)00211-4/bib788B401207FE2C17F72FE7C92976E1CDs1
http://refhub.elsevier.com/S0393-0440(21)00211-4/bibFAF725768139884BC17815273FE50F98s1
http://refhub.elsevier.com/S0393-0440(21)00211-4/bib9EF74EF34D05761119E9C65B5A6CA6B4s1
http://refhub.elsevier.com/S0393-0440(21)00211-4/bib7D07B46ABBC49448FE04BB0E48383345s1
http://refhub.elsevier.com/S0393-0440(21)00211-4/bib96237663192C68945013703471B4F4BAs1
http://refhub.elsevier.com/S0393-0440(21)00211-4/bib9499E9DB03F76A6845BD8D16428D8559s1
http://refhub.elsevier.com/S0393-0440(21)00211-4/bibAAB2A4E207478FD6E5AD2990C0D3BE9Bs1
http://refhub.elsevier.com/S0393-0440(21)00211-4/bib0B932C02D9EFF42208D7931559091C68s1
http://refhub.elsevier.com/S0393-0440(21)00211-4/bibF9C2EC037D7B563B42C8D7067A8840A4s1
http://refhub.elsevier.com/S0393-0440(21)00211-4/bibF9C2EC037D7B563B42C8D7067A8840A4s1
http://refhub.elsevier.com/S0393-0440(21)00211-4/bibF7A621D4C5C0A5C9E75173C2BFBB5B4Bs1
http://refhub.elsevier.com/S0393-0440(21)00211-4/bib32B43BFD50EC63650D3443BBC4A034BBs1
http://refhub.elsevier.com/S0393-0440(21)00211-4/bib32B43BFD50EC63650D3443BBC4A034BBs1
http://refhub.elsevier.com/S0393-0440(21)00211-4/bib8219B27D6306405DD9B3127A64EE3D5Ds1
http://refhub.elsevier.com/S0393-0440(21)00211-4/bib8624499984CDB59B3559CFC822AAB686s1
http://refhub.elsevier.com/S0393-0440(21)00211-4/bib8624499984CDB59B3559CFC822AAB686s1
http://refhub.elsevier.com/S0393-0440(21)00211-4/bib1C500F0A7A1933F96C7F88E4DC55E3D6s1
http://refhub.elsevier.com/S0393-0440(21)00211-4/bib2A4BAFF0F125A0E8A5011980BA0FE7FBs1
http://refhub.elsevier.com/S0393-0440(21)00211-4/bib2A4BAFF0F125A0E8A5011980BA0FE7FBs1
https://doi.org/10.3390/e22101113
https://doi.org/10.3390/e22101113
http://refhub.elsevier.com/S0393-0440(21)00211-4/bib23401BDE5FBA6234CD9F55281FDDE44Bs1
http://refhub.elsevier.com/S0393-0440(21)00211-4/bib0229C778795B6396888E642689A60437s1
http://refhub.elsevier.com/S0393-0440(21)00211-4/bib0229C778795B6396888E642689A60437s1
http://refhub.elsevier.com/S0393-0440(21)00211-4/bib0229C778795B6396888E642689A60437s1
http://refhub.elsevier.com/S0393-0440(21)00211-4/bibD7D9553F02EBCA0A5273BC430C054853s1
http://refhub.elsevier.com/S0393-0440(21)00211-4/bib409E35714B08C7B1BE3FCB2EC10DE9DEs1
http://refhub.elsevier.com/S0393-0440(21)00211-4/bib0D39D11D91B9F8D852EE7D66953E0ED0s1
http://refhub.elsevier.com/S0393-0440(21)00211-4/bib3CDDB76CEF37A2DFEAABB8104ED1DD46s1
http://refhub.elsevier.com/S0393-0440(21)00211-4/bib9EE3B3891D571EB19F299A4D182DFACDs1
http://refhub.elsevier.com/S0393-0440(21)00211-4/bib6E0A78DA04DF5CF2FE3DC8A3CFE00E85s1
http://refhub.elsevier.com/S0393-0440(21)00211-4/bib6E0A78DA04DF5CF2FE3DC8A3CFE00E85s1
http://refhub.elsevier.com/S0393-0440(21)00211-4/bib3D5308709ACF139A55219FE2C66F47E0s1
http://refhub.elsevier.com/S0393-0440(21)00211-4/bib26D107B15C55C9D7FEE033F033CBF96Fs1
http://refhub.elsevier.com/S0393-0440(21)00211-4/bib6F3250F07E9A452B212A29079FBFA9B2s1
http://refhub.elsevier.com/S0393-0440(21)00211-4/bib6760DC5AB557A08D4F2244784DA576A5s1
http://refhub.elsevier.com/S0393-0440(21)00211-4/bibED5F7CD48EEE1FA1957882B4F8A9CBC6s1
http://refhub.elsevier.com/S0393-0440(21)00211-4/bib63BEB39BABE51FAAEDB045B7346ADB7Cs1
http://refhub.elsevier.com/S0393-0440(21)00211-4/bibDB1F0B7CA652F926205B014637217D3As1
http://refhub.elsevier.com/S0393-0440(21)00211-4/bib9F5CBF232CD3B8667024266C6F895C8Cs1
http://refhub.elsevier.com/S0393-0440(21)00211-4/bib9F5CBF232CD3B8667024266C6F895C8Cs1
http://refhub.elsevier.com/S0393-0440(21)00211-4/bibAE2C1906A9575D50A2D8160ADD80AAC9s1
http://refhub.elsevier.com/S0393-0440(21)00211-4/bib37A184204B9448F00FB83003D8A6CC69s1
http://refhub.elsevier.com/S0393-0440(21)00211-4/bib43B3FA47F36AF1FF5F4200DB6500BDC0s1
http://refhub.elsevier.com/S0393-0440(21)00211-4/bib43B3FA47F36AF1FF5F4200DB6500BDC0s1
http://refhub.elsevier.com/S0393-0440(21)00211-4/bib69D96DEE348081B3063A00115D4103C1s1

	Liouville geometry of classical thermodynamics
	1 Introduction
	2 From thermodynamics to contact and Liouville geometry
	2.1 From Gibbs’ fundamental thermodynamic relation to contact geometry
	2.2 From contact to Liouville geometry

	3 Liouville geometry
	3.1 Cotangent bundles and the canonical contact manifold
	3.2 Liouville submanifolds
	3.3 Homogeneous Hamiltonian and contact vector fields
	3.4 Hamilton-Jacobi theory of Liouville and Legendre submanifolds

	4 Port-thermodynamic systems
	5 Homogeneity in the extensive variables and Gibbs-Duhem relation
	6 Conclusions
	Subject Classifications Journal of Geometry and Physics
	Declaration of competing interest
	Acknowledgements
	References


