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Abstract
A novel residual a posteriori error estimator for the Oseen equations achieves
efficiency and reliability by including multilevel contributions in its construction.
Originates from the Multiscale Hybrid Mixed (MHM) method, the estimator com-
bines residuals from the skeleton of the first-level partition of the domain, along with
the contributions from element-wise approximations. The second-level estimator is
local and infers the accuracy of multiscale basis computations as part of the MHM
framework. Also, the face-degrees of freedom of the MHM method shape the estima-
tor and induce a new face-adaptive procedure on the mesh’s skeleton only. As a result,
the approach avoids re-meshing the first-level partition, which makes the adaptive
process affordable and straightforward on complex geometries. Several numerical
tests assess theoretical results.
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1 Introduction

Fluid flow simulations rely on efficient numerical schemes shaped to account for
large- and small-scale structures of the velocity and pressure fields. Typical problems
are fluid flows in porous media and turbulent flows, for instance (for more details see
[25, 32, 33, 50]). For those problems, the computational cost involving in numerical
schemes that cope with small scales of the approximate solution is costly, especially
when one considers time-dependent problems in three-dimensional geometries. For
this reason, multiscale numerical methods have been attracted attention in the last
decades by their “embarrassingly” parallel nature, which turn out to be an excellent
option to leverage the new generation of massive high-performance computers.

The Multiscale Hybrid-Mixed (MHM) method is a member of the family of mul-
tiscale finite element methods. Multiscale methods have its origin in [13] for the
one-dimensional Poisson problem, and they were further extended to higher dimen-
sional cases in [42, 43]. Overall, the multiscale methods rely on incorporating fine
scales of the solutions through basis functions, with an impact on the accuracy of
coarse-scale solutions, which can be computed on a coarse partition with precision.
Other members of this family are the Heterogeneous Multiscale method (HMM) [27],
the Variational Multiscale method (VMS) [3], the Generalized Multiscale finite ele-
ment method [28], the Localized Orthogonal Decomposition method (LOD) [40], the
Petrov-Galerkin Enriched method (PGEM) [7, 16, 36], the Residual Local Projec-
tion method (RELP) [5, 17, 34], to mention a few. A posteriori error estimator for
some of these schemes can be reviewed in [1, 10, 14, 21, 41, 44, 47, 49, 53], and the
references therein.

Regarding the MHM method, it relies on the characterisation of the exact solution
as a byproduct of the hybridisation of the continuous problem on a coarse mesh (first-
level mesh). As a result, the exact fields decompose as the solutions of a series of
local problems coupled through a global problem defined on the skeleton of the first-
level partition. In such an infinite-dimensional setting, the local problems are entirely
independent of one another and account for the multiscale nature of the problem.
Discretisation uncouples global and local problems, and the latter responds for the
multiscale basis computation. Thereby, the expensive part of the algorithm can be
naturally solved in parallel computers. The MHM method was initially introduced
for the Darcy equation in [38] and analysed in [8, 48], and extended to models based
on the Stokes operator in [9] and [7].

In this work, we present a new MHM method for the Oseen equations, and pro-
pose and analyse a novel multiscale residual, a posteriori error estimator. The method
combines the features of the MHM methods proposed in [39] and [11]. As for the
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estimator, it relies strongly on the MHM’s structure, and as a result, the estimator
splits into two levels: First η1 accounts for the jump of the discrete velocity on the
skeleton of the first-level mesh, and then, a second-level estimator η2 estimates the
error associated to the approximation of the local problems (multiscale basis, mostly).
We prove local efficiency and reliability for the multiscale estimator following the
ideas of [8, 11, 37] for η1 and [11] for η2. Besides, when we put the present work in
the perspective of previous ones, it contributes to:

– propose the first MHM method for advective dominate flows with local mass
preserving velocity field;

– present the first a posteriori error analysis for the MHM method applied to a non-
symmetric operator. Note that [39] only provides a formal a posteriori error esti-
mator for the one-level MHM method applied to the advective-reactive-diffusive
equation;

– introduce a second-level a posteriori estimator η2 which is also original. Indeed,
only a priori error estimates have been proposed for the stabilised method [15]
in the literature;

– extent the adaptive strategy on the mesh’s skeleton proposed in [39]. Here, the
strategy accounts for the interplay between the singular perturbed character of
the model and its mixed form. As a result, the algorithm of adaption avoids re-
meshing the first-level partition, which makes the adaptive process affordable to
approximate boundary layered fluid flow problems on complex geometries.

Other numerical schemes share similarities with the MHM method but are also essen-
tially different in their constructions and properties. For instance, we mention the
Multiscale Mortar Method [12], the DEM [31], and the HDG method [24], for the
Oseen equations [20], among others. For a small list of a posteriori error estimators
for two-level method, see, for example, [18, 30, 45, 52, 54, 55] and the references
therein.

The paper outlines as follows. In Section 2, we introduce the model problem,
notations, and some preliminary results. Section 3 revisits the main aspects of the
MHM methodology to propose new first- and second-level MHM methods for the
Oseen equations. The main results of this work are in Section 4, wherein one proposes
and analyses a new and multilevel a posteriori error estimator based on the MHM
method. Numerical validations asses theoretical results in Section 5, and conclusions
and perspectives lie in Section 6.

2 Model problem and preliminaries

2.1 Themodel

Let � ⊂ R
d , d ∈ {2, 3}, be a bounded open set with polygonal boundary ∂�. Given

f ∈ L2(�)d and g ∈ H 1/2(∂�)d with
∫
∂�

g · n ds = 0, where n represents the
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outer normal vector to ∂�, the Oseen problem consists of finding a velocity field u

and scalar pressure p, such that:

−ν �u + (∇u)α + γ u + ∇p = f in �,

∇ · u = 0 in �,

u = g on ∂�,

(1)

where the diffusion coefficient ν is a positive constant, α ∈ W 1,∞(�)d is a convec-
tive velocity field and γ a given scalar function. We assume in this work that γ is a
positive constant and that there exists a positive constant γm such that, for all x ∈ �,
it holds:

γ0 := γ − 1

2
∇ · α(x) ≥ γm. (2)

Remark 1 Observe that model (1) may represent a step in the time discretisation of
the unsteady Navier–Stokes equations, where γ = 1/�t , with �t the time interval
length, and α the velocity field evaluated in the previous time step (see, for example,
[46]).

The standard variational mixed formulation associated to (1) reads: Find u ∈
H 1(�)d , with u = g on ∂�, and p ∈ L2

0(�), such that:

a(u, v) + b(v, p) = (f , v)� for all v ∈ H 1
0 (�)d,

b(u, q) = 0 for all q ∈ L2
0(�).

(3)

The bilinear forms a(·, ·) and b(·, ·) are defined by:

a(w, v) := ν (∇w, ∇v)� + ((∇w)α, v)� + (γ w, v)�,

for all w ∈ H 1(�)d , v ∈ H 1
0 (�)d and:

b(v, q) := −(∇ · v, q)�,

for all v ∈ H 1(�)d and q ∈ L2
0(�), where the spaces have their usual meaning.

Using that:

((∇u)α, v)� = −(u, (∇v)α)� − ((∇ · α)u, v)� + ((α · n)u, v)∂�, (4)

for all u, v ∈ H 1(�)d , follows that the bilinear form a(·, ·) can be rewritten in a
skew-symmetry form as:

a(u, v) := ν (∇u, ∇v)� + 1

2
((∇u)α, v)� − 1

2
(u, (∇v)α)� + (γ0 u, v)� ,

for all u ∈ H 1(�)d and v ∈ H 1
0 (�)d .

Remark 2 Assumption (2) implies the coercivity of a(·, ·) in H 1
0 (�)d , which com-

bined with the classical inf–sup condition in b(·, ·), leads to the existence and unique
solution for (3).
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2.2 Hybridisation

Now we head to the definition of an equivalent hybrid form of (3). To this end,
we introduce a regular family {TH }H>0 of triangulations, in the sense of Ciar-
let [22], of �, composed of simplexes K , with diameter HK , and we set H :=
max {HK : K ∈ TH }. Hereafter, we shall use the terminology usually employed for
three-dimensional domains, with the restriction to two-dimensional problems being
straightforward. We denote by EH the set of all faces (edges) F of elements K ∈ TH

and by E0 the set of inner faces. To each face F of EH , we associate a normal n

taking care to ensure this is directed outward on ∂�. For each K ∈ TH , we further
denote by nK the outward normal on ∂K , and let nK

F := nK |F for each F ⊂ ∂K .
We denote by T

H̃
(F ) a partition of F ∈ EH , by H

F̃
the size of F̃ ∈ T

H̃
(F ) and

H̃ = max
{
H

F̃
: F̃ ∈ T

H̃
(F )

}
.

The following spaces will be used in the sequel:

V := H 1(TH )d := {v ∈ L2(�)d : v |K ∈ H 1(K)d for all K ∈ TH },
H(div; �) := {τ ∈ L2(�)d×d : divτ ∈ L2(�)d },

� :=
{
σ nK |∂K ∈ H−1/2(∂K)d for all K ∈ TH : σ ∈ H(div; �)

}
,

Q := L2(�).

We define an inner product on V by:

(u, v)V := 1

d2
�

(u, v)� +
∑

K∈TH

(∇u, ∇v)K for all u, v ∈ V,

where d� is the diameter of �, (·, ·)D the L2 inner product in L2(D), D ⊂ �. We
equip the spaces H(div; �) and V with the following norms:

‖σ‖div :=
{∑

K∈TH

[‖σ‖2
0,K + d2

� ‖∇· σ‖2
0,K

]}1/2
and ‖v‖V := (v, v)V

1/2,

respectively. For the space �, we use the quotient norm, i.e.:

‖μ‖� := inf
σ∈H(div;�)

σnK=μ on ∂K,K∈TH

‖σ‖div. (5)

We denote by (·, ·)TH
and (·, ·)∂TH

the following:

(w, v)TH
:=

∑

K∈TH

(w, v)K and (μ, v)∂TH
:=

∑

K∈TH

〈μ, v〉∂K,

where w, v ∈ V and μ ∈ �, and 〈·, ·〉∂K is the duality pair between H−1/2(∂K)d

and H 1/2(∂K)d .
We recall from Lemma 8.3 in [8] that the norm (5) is equivalent to a dual norm,

namely: √
2

2
‖μ‖� ≤ sup

v∈V
(μ, v)∂TH

‖v‖V ≤ ‖μ‖� for all μ ∈ �. (6)

15Adv Comput Math (2021)47: 15
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Above and hereafter, we lighten the notation and understand the supremum to be
taken over sets excluding the zero function, even though this is not specifically
indicated.

We introduce the norm ‖(·, ·)‖V×Q for the product space V × Q, by:

‖(v, q)‖V×Q :=
{
‖v‖2

V + ‖q‖2
Q

}1/2
,

with ‖q‖Q := ‖q‖0,�. Finally, for each K ∈ TH , we define the local spaces
V(K) := H 1(K)d and Q(K) := L2(K), with the follows norms:

‖v‖V(K) :=
{
d−2
� ‖v‖2

0,K + ‖∇v‖2
0,K

}1/2
,

‖q‖Q(K) := ‖q‖0,K,

‖(v, q)‖V(K)×Q(K) :=
{
‖v‖2

V(K) + ‖q‖2
Q(K)

}1/2
,

for all v ∈ V(K) and q ∈ Q(K).
Now, we consider the definition for the jump through a face F = ∂Kn∩∂Km ∈ E0

of a function v ∈ V as follows:

�v� :=
⎧
⎨

⎩

(v|Kn)|F − (v|Km)|F if n > m

(v|Km)|F − (v|Kn)|F if n < m.

We update the notation a(·, ·) and b(·, ·) by extending them to the space V as follows:

a(w, v) :=
∑

K∈TH

aK(w, v),

with:

aK(w, v) := ν (∇u, ∇v)K + 1

2
((∇u)α, v)K − 1

2
(u, (∇v)α)K + (γ0u, v)K , (7)

and
b(v, q) :=

∑

K∈TH

bK(v, q) with bK(v, q) := −(∇ · v, q)K,

for all w, v ∈ V, q ∈ Q.
We consider the following hybrid formulation of problem (3): Find (u, p, λ, ρ) ∈

V × Q × � × R such that:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a(u, v) + b(v, p) + (λ, v)∂TH
= (f , v)TH

for all v ∈ V,

b(u, q) + (ρ, q)� = 0 for all q ∈ Q,

(μ, u)∂TH
= 〈μ, g〉∂� for all μ ∈ �,

(ξ, p)� = 0 for all ξ ∈ R.

(8)

In formulation (8), the velocity and pressure belong a priori to a larger space than
the solutions of the original problem (3). Note that the third equation in (8) imposes
H 1(�)–conformity on the velocity, and the fourth the mean value of the pressure
equal zero. Concerning the solvability of problem (8), we have the following result

15 (2021)47: 15Adv Comput Math
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Theorem 1 The pair (u, p) ∈ H 1(�)d × L2
0(�), with u = g on ∂�, is the unique

solution of (3) if and only if (u, p, λ, ρ) ∈ V × Q × � × R is the unique solution of
(8). Moreover, it holds ρ = 0 and:

λ =
(

(−ν∇u + p I)nK + 1

2
(u ⊗ α)nK

)∣∣
∣
∣
∂K

for all K ∈ TH , (9)

where I is the d × d identity tensor.

Proof Let (u, p) be the solution of (3), and define the functional F : V −→ R by:

F (v) := (f , v)TH
−ν(∇u,∇v)TH

− 1

2
((∇u)α, v)TH

+ 1

2
(u, (∇v)α)TH

−(γ0u, v)TH
+(∇ ·v, p)TH

,

for all v ∈ V. It is clear that F is continuous and vanishes on H 1
0 (�)d . From Lemma

1 in [51], there exists a unique λ ∈ � such that F (v) = (λ, v)∂TH
for all v ∈ V;

thus, the first equation in (8) holds. Now integrating by parts we get:

∑

K∈TH

(λ, v)∂K =
∑

K∈TH

[

(f , v)K − ν (∇u, ∇v)K − 1

2
((∇u)α, v)K + 1

2
(u, (∇v)α)K − (γ0u, v)K + (∇ · v, p)K

]

=
∑

K∈TH

((−ν∇u + pI)nK + 1

2
(u ⊗ α)nK, v)∂K ,

for all v ∈ V, and then (9) holds.
On the other hand, since that (∇ · u, q)TH

= (∇ · u, q)� = 0 for all q ∈ L2
0(�),

Lemma 5 in [9] guarantees that there exists a unique ρ ∈ R such that (∇ · u, q)TH
=

(ρ, q)� for all q ∈ Q and so the second equation of (8) holds. Now, using Gauss’s
Theorem, we get:

‖ρ‖2
0,� =

∑

K∈TH

(u · nK, ρ)∂K = (u · n, ρ)∂� = (g · n, ρ)∂�.

By the compatibility condition, we have that (g · n, ρ)∂� = 0 and then ρ = 0. Next,
take q ∈ H(div; �), and define μ = qnK on ∂K for all K ∈ TH . Using integration
by parts, we have:

(μ, u)∂TH
=

∑

K∈TH

〈qnK, u〉∂K =
∑

K∈TH

((∇ · q, u)K + (q, ∇u)K)

= (∇ · q, u)� + (q, ∇u)� = 〈qn, u〉∂� = (μ, g)∂�,

this prove the third equation of (8). The fourth equation is true since p ∈ L2
0(�) and

ξ ∈ R. This way we conclude that (u, p, λ, ρ) ∈ V × Q × � × R satisfies (8) with
ρ = 0, and:

λ =
[

(−ν∇u + p I)nK + 1

2
(u ⊗ α)nK

] ∣∣
∣
∣
∂K

for all K ∈ TH .

Reciprocally, let (u, p, λ, 0) ∈ V × Q × � × R the unique solution of (8). From
the fourth equation of (8), we have that p ∈ L2

0(�). Let ug ∈ H 1(�)d such that
ug = g on ∂�. Then, u − ug ∈ V and using the third equation of (8), we have that

15Adv Comput Math (2021)47: 15
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(μ, u − ug)∂TH
= 0 for all μ ∈ �. This way, from Lemma 1 in [51], u − ug ∈

H 1
0 (�)d and then u ∈ H 1(�)d with u = g on ∂�. From the second equation of (8)

and considering q ∈ L2
0(�), we get b(u, q) = 0. Finally, using Lemma 1 of [51] and

the first equation of (8), we have that:

a(u, v) + b(v, q) = (f , v)TH
,

for all v ∈ H 1
0 (�)d , where we used (λ, v)∂TH

= 0. Therefore, (u, p) solves (3).
Uniqueness of (8) follows from the uniqueness of (3).

2.3 Standard results at local level

For the discrete analysis, we select two local finite dimensional spaces Vh(K) ⊂
V(K) and Qh(K) ⊂ Q(K), whose functions are defined over a shape–regular par-
tition of K , denoted by

{
T K

h

}
h>0, where h is the characteristic length of T K

h .
Particularly, hereafter we adopt the following polynomial spaces:

Vh(K) :=
{
vh ∈ V(K) : vh |τ ∈ Pk(τ )d for all τ ∈ T K

h

}
, (10)

and

Qh(K) :=
{
qh ∈ Q(K) ∩ C0(K) : qh |τ ∈ Pn(τ ) for all τ ∈ T K

h

}
, (11)

where Ps(τ ) is the space of polynomial functions in τ ∈ T K
h , with total degree less

than or equal to s, s ≥ 1. Thus, we define the global finite dimensional spaces as:

Vh :=
⊕

K∈TH

Vh(K) and Qh :=
⊕

K∈TH

Qh(K).

The set of faces ζ of T K
h is denoted by:

E K
h := E K

0 ∪ E K
b ,

where E K
0 is the set of internal faces and E K

b = E K
h \ E K

0 , i.e. E K
b are the faces of

τ ∈ T K
h which belong to ∂K . Also, for each τ ∈ T K

h and ζ ∈ E K
h , we denote by

N (τ ) the set of nodes of τ , N (ζ ) the set of nodes of ζ , E (τ ) the set of edges of τ

and then we define:

ωζ :=
⋃

ζ∈E (τ ′)
τ ′, ω̃τ :=

⋃

N (τ )∩N (τ ′)�=φ

τ ′, ω̃ζ :=
⋃

N (ζ )∩N (τ ′) �=φ

τ ′.

In the rest of this work, we will use the following notation:

a � b ⇐⇒ a ≤ C b,

a � b ⇐⇒ a ≥ C b,

a � b ⇐⇒ a � b and a � b,

where the positive constant C may dependent on the physical constants, the shape–
regularity constant of the mesh and the polynomial degree, but is independent of any
mesh size.

15 (2021)47: 15Adv Comput Math
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Also, we will use standard bubble functions and some of the results associated
with them. We consider the case with d = 3, but the same kind of results are valid
with d = 2.

For all τ ∈ T K
h , we define the element bubble function bK

τ by:

bK
τ := (d + 1)d+1

∏

x∈N (τ )

λx,

where λx corresponds to the barycentric coordinates associated to node x. Let τ̂ be
the standard reference element with vertices ñ1 = (1, 0, 0), ñ2 = (0, 1, 0), ñ3 =
(0, 0, 1), and ñ4 = (0, 0, 0) and define the edge bubble function by:

bK̂

ζ̂
= ddλ̂1λ̂2λ̂4,

where ζ̂ := {
(x̂, ŷ, 0) ∈ R

d : 0 ≤ x̂ + ŷ ≤ 1, x̂ ∈ [0, 1]}. For ζ ∈ EH , assume that
ωζ = τ1∪τ2 and Gζ,i be the (orientation preserving) affine transformation defined in
Fig. 1 such that Gζ,i(τ̂ ) = τi and Gζ,i(ζ̂ ) = ζ , with i = 1, 2. We define the bubble
function associated with ζ by:

bK
ζ :=

{
bK̂

ζ̂
◦ G−1

ζ,i , on τi, i = 1, 2,

0 on � \ ωζ .

Let �̂ := {(x, y, 0) : (x, y) ∈ R
2} and let Q̂ : R

d → �̂ be the orthogonal
projection from R

d to �̂. We introduce the lifting operator P̂
ζ̂

: Pk(ζ̂ ) → Pk(τ̂ )

given by:
ŝ �−→ P̂

ζ̂
(ŝ) = ŝ ◦ Q̂.

Let τi ⊆ ωζ . We define the lifting operator Pζ,τi
: Pk(ζ ) → Pk(τi) by:

Pζ,τi
(s) = P̂

ζ̂
(s ◦ Gζ,i) ◦ G−1

ζ,i .

Using these notations, we can define a lifting operator Pζ : Pk(ζ ) → Pk(ωζ ) by:

s ∈ Pk(ζ ) �−→ Pζ (s) :=
{

Pζ,τ1(s) in τ1 ,

Pζ,τ2(s) in τ2 ,

for s = (s1, s2, s3) ∈ Pk(ζ )d , we define P K
ζ (s) by:

P K
ζ (s) = (Pζ (s1), Pζ (s2), Pζ (s3)) .

The next result can be prove using scaling argument.

Theorem 2 Let K ∈ TH and bK
τ and bK

ζ be the bubbles functions corresponding to

τ ∈ T K
h and ζ ∈ E K

h , respectively . Then:

‖vh‖2
0,τ � (bK

τ vh, vh)τ � ‖vh‖2
0,τ ,

‖vh‖2
0,τ � ‖bK

τ vh‖0,τ + hτ |bK
τ vh|1,τ � ‖vh‖0,τ ,

‖vh‖2
0,ζ � (bK

ζ vh, vh)ζ � ‖vh‖2
0,ζ ,

h−1/2
τ ‖bK

ζ vh‖0,τ + h1/2
τ |bK

ζ vh|1,τ � ‖vh‖0,ζ ,
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Fig. 1 Affine transformation Gζ,i , i = 1, 2 with d = 3

for all vh ∈ Pn(T
K

h ), n ≥ 0.

Proof See Theorem 2.2 and Theorem 2.4 in [4].

Lemma 1 We have that:

‖v‖2
0,F � HF

{
H−2

K ‖v‖2
0,K + |v|21,K

}
,

for all K ∈ TH , F ⊂ ∂K and v ∈ V(K).

Proof See Theorem 3.10 in [2] or (10.3.8) in [19].

Theorem 3 For all q ∈ Q(K), we have that:

sup
v∈V(K)

bK(v, q)

‖v‖V(K)

� ‖q‖Q(K).

Proof See Theorem 2.1 in [11].
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For each K ∈ TH , we denote by C K
h : V(K) → VK

1 , the Clément interpolation
operator, where:

VK
1 :=

{
vh ∈ C(K)d : vh ∈ P1(τ )d , ∀ τ ∈ T K

h

}
.

For all τ ∈ T K
h and all ζ ∈ E K

h , this operator satisfies the following estimates (see
[23], [29]):

‖C K
h (v)‖0,τ � ‖v‖0,ω̃τ

,

‖v − C K
h (v)‖0,τ � hτ |v|1,ω̃τ

,

‖v − C K
h (v)‖0,ζ � h

1/2
ζ |v|1,ω̃ζ

,

(12)

for all v ∈ V(K).

3 TheMHMmethod

In this section, we present the MHM method as a consequence of a characterisation
of the exact solution in terms of a local–global system equivalent to (8).

3.1 Characterizing the exact solution

The goal of the Multiscale Hybrid-Mixed approach is to take advantage of the local
nature of problem (8), by decomposing it into independent local problems coupled
with a face-based global problem. Using these ideas, the hybrid formulation (8) is
equivalently to: Find (u, p, λ, ρ) ∈ V × Q × � × R such that:

{
(μ, u)∂TH

= 〈μ, g〉∂� for all μ ∈ �,

(ξ, p)� = 0 for all ξ ∈ R,
(13)

{
a(u, v) + b(v, p) + (λ, v)∂TH

= (f , v)TH
for all v ∈ V,

b(u, q) + (ρ, q)� = 0 for all q ∈ Q .
(14)

Note that, due to the element-wise definition of V, system (14) can be localised in
each K ∈ TH by testing (13)–(14) with (v, q, μ, ξ) = (v |K, q |K, 0, 0). This gives
us:

{
aK(u, v) + bK(v, p) = −〈λ, v〉∂K + (f , v)K for all v ∈ V(K),

bK(u, q) = −(ρ, q)K for all q ∈ Q(K).
(15)

Also from (15), (u, p) can be computed in terms of λ and ρ . Specifically, owing to
the linearity of problem (15), the exact solution decomposes as follows:

u = T uλ + T̂ uf + T̄ uρ and p = T pλ + T̂ pf + T̄ pρ, (16)

where the functions used in (16) are given by:

• (T uμ, T pμ) ∈ V × Q such that T uμ |K and T pμ |K satisfy:
{

aK(T uμ, w) + bK(w, T pμ) = −〈μ, w〉∂K for all w ∈ V(K),

bK(T uμ, q) = 0 for all q ∈ Q(K); (17)
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• (T̂ ur, T̂ pr) ∈ V × Q such that T̂ ur |K and T̂ pr |K satisfy:
{

aK(T̂ ur, w) + bK(w, T̂ pr) = (f , w)K for all w ∈ V(K),

bK(T̂ ur, q) = 0 for all q ∈ Q(K); (18)

• (T̄ uξ, T̄ pξ) ∈ V × Q such that T̄ uξ |K and T̄ pξ |K satisfy:
{

aK(T̄ uξ, w) + bK(w, T̄ pξ) = 0 for all w ∈ V(K),

bK(T̄ uξ, q) = −(ξ, q)K for all q ∈ Q(K).
(19)

Next, testing (13) with (v, q, μ, ξ) = (0, 0, μ, ξ) and using (16), we obtain the
following global problem: Find (λ, ρ) ∈ � × R such that:

{
(μ, T uλ + T̄ uρ)∂TH

= (μ, g)∂� − (μ, T̂ uf )∂TH
, ∀μ ∈ �

(ξ, T pλ + T̄ pρ)� = −(ξ, T̂ pf )�, ∀ξ ∈ R,
(20)

for all μ ∈ � and ξ ∈ R.

Remark 3 Following [9], it is possible to prove that ρ = 0, and therefore (16) reduces
to:

u = T uλ + T̂ uf and p = T pλ + T̂ pf . (21)

We define a local bilinear form BK given by:

BK((w, r), (v, q)) := aK(w, v) + bK(v, r) − bK(w, q), (22)

with (w, r), (v, q) ∈ V(K) × Q(K), and naturally we denote:

B((w, r), (v, q)) :=
∑

K∈TH

BK((w, r), (v, q)).

Theorem 4 We have that local problems (17)–(19) are well–posed, and it holds:

‖(w, r)‖V(K)×Q(K) � sup
(v,q)∈V(K)×Q(K)

BK((w, r), (v, q))

‖(v, q)‖V(K)×Q(K)

.

Proof Thanks to Theorem 3 we have an inf–sup condition for bK(·, ·), and using the
ellipticity of aK(·, ·), give in (7), the result follows.

Remark 4 From (7) the coercivity of aK(·, ·) over V(K) holds. Then, using Theorem
3, and the inf–sup condition, the well-posedness of (17)–(20) follows. Next, using
Theorem 4 and the Riesz Representation Theorem, the bilinear form B satisfies a
global inf–sup condition with a constant independent of H and h, and only depending
on d�, and d , respectively.

3.2 Themethod

The characterisation of the exact solution (u, p) in terms of the global–local system
(17)–(20) yield the MHM method. Consider a finite dimensional space �H of � such
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that:
�0 ⊆ �H ⊂ � ∩ L2(EH )d,

with:

�0 :=
{
σ nK |F ∈ P0(F )d for all F ⊂ ∂K, K ∈ TH : σ ∈ H(div; �)

}
,

where P0(F ) is the space of constant polynomials defined on F . In this work, we
search for approximating Lagrange multipliers in the space spanned by piecewise
polynomial functions, i.e.:

�H = �l :=
{
μ ∈ � : μ|

F̃
∈ Pl(F̃ )d , F̃ ∈ T

H̃
(F ), for all F ⊂ ∂K, K ∈ TH

}
,

where Pl (F ) is the space of piecewise polynomial functions on F of degree less than
or equal l ≥ 0.

Unlike the usual interpolation choice [51], the functions in �H may be discontin-
uous on faces F ∈ EH . Such a choice preserves the conformity of the MHM method
and turns out to be central to maintaining the quality of the approximation when
coefficients jump across faces. This will be explored in the numerical section.

Specifically, the solution of (20) is approximated by (λH , ρH ) ∈ �H × R, which
is the solution to the one-level MHM method:

{
(μH , T uλH + T̄ uρH )∂TH

= (μH , g)∂� − (μH , T̂ uf )∂TH
,

(ξH , T pλH + T̄ pρH )� = −(ξH , T̂ pf )�,
(23)

for all μH ∈ �H and ξH ∈ R, where T uλH , T̂ uf , T̄ uρH and pressures
T pλH , T̂ pf , T̄ pρH solve (17)–(19). Thus, the one-level solution (ūH , p̄H ) is given
through the expressions:

ūH := T uλH + T̂ uf + T̄ uρH and p̄H := T pλH + T̂ pf + T̄ pρH .

Note that to make the one-level MHM method effective, we need to solve local prob-
lems (17)–(19), exactly, which is, en general, not possible. To overcome this, we
introduce the two-level MHM method which consists of: Find (λH,h, ρH ) ∈ �H ×R

such that:
{

(μH , T u
h λH,h + T̄ u

h ρH )∂TH
= (μH , g)∂� − (μH , T̂ u

h f )∂TH
,

(ξH , T
p
h λH,h + T̄

p
h ρH )� = −(ξH , T̂

p
h f )�,

(24)

for all (μH , ξH ) ∈ �H ×R. In this work, we adopt a stabilised finite element method
[15] to approximate the solution of the local problems (17)–(19) computing the
approximated velocities T u

h λH,h, T̂ u
h f , T̄ u

h ρH and pressures T
p
h λH,h, T̂

p
h f , T̄

p
h ρH .

As such, the two-level discrete solution (uH,h, pH,h) is given through the expres-
sions:

uH,h := T u
h λH,h + T̂ u

h f + T̄ u
h ρH and pH,h := T

p
h λH,h + T̂

p
h f + T̄

p
h ρH .

Such a choice makes the appealing option of using equal-order nodal pairs of
interpolation spaces for the velocity and the pressure variables (i.e. k = n in (10) and
(11)) as the second-level solver. For completeness, we recall (see [15] for details) that
this scheme consists of: Find (u, p) ∈ Vh(K) × Qh(K) such that:

Bs
K((u, p), (v, q)) = F s

K(v, q) for all (v, q) ∈ Vh(K) × Qh(K), (25)
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where:

Bs
K((u, p), (v, q)) := BK((u, p), (v, q)) + ∑

τ∈T K
h

κτ (∇ · u, ∇ · v)τ

− ∑

τ∈T K
h

δτ (−ν�u + (∇u)α + γ u + ∇p, −ν�v − (∇v)α + γ v − ∇q)τ ,

and

F s
K(v, q) := FK(v, q) −

∑

τ∈T K
h

δτ (f , −ν�v − (∇v)α + γ v − ∇q)τ .

The stabilisation parameters are given by:

κτ := ‖α‖∞,τ hτ min{1, P eA
τ }, and δτ := h2

τ

γ h2
τ max

{
1, P eR

τ

}+ 4 ν
mτ

max
{
1, P eA

τ

} ,

(26)

where the local Péclet numbers are defined by:

PeR
τ := 4 ν

γ h2
τ mτ

and PeA
τ := mτ‖α‖∞,τ hτ

4ν
.

and mτ := min
{

1
3 , Ck

}
with:

Ck h2
τ ‖�v‖2

0,τ ≤ ‖∇v‖2
0,τ for all v ∈ Vh(K). (27)

Here Ck is a constant that depends only on d and the polynomial degree chosen for
the velocity (see [35]).

Owing to definitions (25)–(27), the local solutions in (17)–(19) are approximated,
in each K ∈ TH , by the solutions of the following discrete problems:

– Find (T u
h λH,h, T

p
h λH,h) ∈ Vh(K) × Qh(K) such that:

Bs
K((T u

h λH,h, T
p
h λH,h), (v, q)) = −〈λH,h, v〉∂K for all (v, q) ∈ Vh(K) × Qh(K); (28)

– Find (T̂ u
h f , T̂

p
h f ) ∈ Vh(K) × Qh(K) such that:

Bs
K((T̂ u

h f , T̂
p
h f ), (v, q)) = F s

K(v, q) for all (v, q) ∈ Vh(K) × Qh(K); (29)

– Find (T̄ u
h ρH , T̄

p
h ρH ) ∈ Vh(K) × Qh(K) such that:

Bs
K((T̄ u

h ρH , T̄
p
h ρH ), (v, q)) = (ρH , q)K for all (v, q) ∈ Vh(K) × Qh(K).

(30)

Remark 5 As in the continuous case, in the discrete case, we can prove that ρH =
0, following the same ideas from [9] and hence the solutions of the one-level and
two-level MHM methods, can be characterised as follows:

ūH := T uλH + T̂ uf and p̄H := T pλH + T̂ pf , (31)

uH,h := T u
h λH,h + T̂ u

h f and pH,h := T
p
h λH,h + T̂

p
h f . (32)
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4 Amultiscale a posteriori error estimator

In this section, we define a two-level residual error estimator. Let η1 be the first-level
a posteriori error estimator, given by:

η1 :=
⎧
⎨

⎩

∑

K∈TH

∑

F⊂∂K

η2
1,F

⎫
⎬

⎭

1/2

,

where:

η1,F := ‖RF ‖0,F

H
1/2
F

,

with:

RF :=
⎧
⎨

⎩

− 1
2 �uH,h� , F ∈ E0,

g − uH,h, F ∈ EH \ E0.

Recalling that,
{
T K

h

}
h>0 is a regular family of triangulations of K ∈ TH , we define

residuals over each τ ∈ T K
h and ζ ∈ E K

h , respectively, as follows:

RK
τ := (

ν�uH,h − (∇uH,h)α − γuH,h − ∇pH,h + f
)|τ ,

and

RK
ζ :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�

−ν
∂uH,h

∂nτ
ζ

+ pH,hn
τ
ζ + 1

2
(uH,h ⊗ α)nτ

ζ

�

on ζ ∈ E K
0 ,

−λH,h − ν
∂uH,h

∂nτ
ζ

+ pH,hn
τ
ζ + 1

2
(uH,h ⊗ α)nτ

ζ on ζ ∈ E K
b .

Its global version reads:

η2,K :=

⎧
⎪⎨

⎪⎩

∑

τ∈T K
h

(
h2

τ‖RK
τ ‖2

0,τ + ‖∇ · uH,h‖2
0,τ

)
+

∑

ζ∈E K
h

hζ ‖RK
ζ ‖2

0,ζ

⎫
⎪⎬

⎪⎭

1/2

, (33)

and, thus, the global second-level estimator is defined by:

η2 := 1

22l

[ ∑

K∈TH

η2
2,K

]1/2

,

where l is the polynomial degree on faces. Summing up first- and second-level
contributions, the global a posteriori error estimator η reads:

η := η1 + η2. (34)

Remark 6 Note that the definition of η1 is inspired by the a posteriori error estimator
proposed in [11] for the Stokes and Brinkman equation and in [39] for the reaction–
diffusion–advection problem in the first-level mesh. The second-level error estimator
η2 was introduced in [6] for the Stokes equations (also see the estimator in the second-
level mesh in [11]).
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4.1 Technical results

In this subsection, we introduce some technical results that will be useful to establish
our main results. First, we present a residual functional which can be characterised
in terms of local residuals on each τ ∈ T K

h and ζ ∈ E K
h .

Lemma 2 Let (uH,h, pH,h) be the solution of two-level MHM method given by (32).
Define the local residual functional RK

h : V(K) → R, by:

RK
h (v) := (f , v)K − 〈λH,h, v〉∂K − aK(uH,h, v) − bK(pH,h, v),

for all v ∈ V(K). Then:

RK
h (v) =

∑

τ∈T K
h

(RK
τ , v)τ +

∑

ζ∈E K
h

(RK
ζ , v)ζ ,

for all v ∈ V(K).

Proof Using the identity (4) on each τ ∈ T K
h , equations (17) and (18), and

integrating by parts, we have that:

RK
h (v) = −〈λH,h, v〉∂K + (f , v)K − ν (∇uH,h, v)K − 1

2
((∇uH,h)α, v)K

+1

2
(uH,h, (∇v)α)K − (γ0uH,h, v)K + (∇ · v, pH,h)K

= −〈λH,h, v〉∂K +
∑

τ∈T K
h

[

(f , v)τ − ν (∇uH,h, v)τ − 1

2
((∇uH,h)α, v)τ

+1

2
(uH,h, (∇v)α)τ − (γ0uH,h, v) + (∇ · v, pH,h)τ

]

= −〈λH,h, v〉∂K +
∑

τ∈T K
h

[

(f , v)τ + ν (�uH,h, v)τ

−
(

∂uH,h

∂nτ
, v

)

∂τ

− ((∇uH,h)α, v)τ − 1

2
((∇ · α)uH,h, v)τ + 1

2
((α · nτ )uH,h, v)∂τ

−
((

γ − 1

2
(∇ · α)

)

uH,h, v

)

τ

− (∇pH,h, v)τ + (pH,hnτ , v)∂τ

]

=
∑

ζ∈E K
0

(�
−ν

∂uH,h

∂nτ
ζ

+ pH,hnτ
ζ + 1

2
(α · nτ

ζ )uH,h

�
, v

)

+
∑

ζ∈E K
b

(

− λH,h − ν
∂uH,h

∂nτ
ζ

+ pH,hnτ
ζ + 1

2
(α · nτ

ζ )uH,h, v

)

+
∑

τ∈T K
h

(RK
τ , v)τ

=
∑

τ∈T K
h

(RK
τ , v)τ +

∑

ζ∈E K
h

(RK
ζ , v)ζ ,

which conclude the proof.
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In the sequel, we will need the following notation:

uH := T uλH,h + T̂ uf and pH := T pλH,h + T̂ pf , (35)

and the next intermediate result.

Lemma 3 The following estimate holds:

‖(uH − uH,h, pH − pH,h)‖V(K)×Q(K) � η2,K,

for all K ∈ TH .

Proof Let us define (eu, ep) := (uH −uH,h, pH −pH,h). From (17), (18), (22), and
Lemma 2, we have:

BK((eu, ep), (v, q)) = BK((uH , pH ), (v, q)) − BK((uH,h, pH,h), (v, q))

= −〈λH,h, v〉∂K + (f , v)K − BK((uH,h, pH,h), (v, q))

= RK
h (v) + bK(uH,h, q)

=
∑

τ∈T K
h

[

(RK
τ , v)τ + (∇ · uH,h, q)τ

]

+
∑

ζ∈E K
h

(RK
ζ , v)ζ , (36)

for all v ∈ V(K) and q ∈ Q(K). For K ∈ TH , let vh := C K
h (v) with v ∈ V(K).

Then, replacing v by v − vh in (36) and using Cauchy–Schwarz inequality, we get:

BK((eu, ep), (v − vh, q))

≤
∑

τ∈T K
h

[

‖RK
τ ‖0,τ‖v − vh‖0,τ + ‖∇ · uH,h‖0,τ‖q‖0,τ

]

+
∑

ζ∈E K
h

‖RK
ζ ‖0,ζ ‖v − vh‖0,ζ . (37)

On other hand, using (22), (28), and (29), and taking (v, q) = (vh, 0), we get:

BK ((eu, ep), (vh, 0))

= aK(uH − uH,h, vh) + bK(vh, pH − pH,h)

= aK(uH , vh) + bK(vh, pH ) − [
aK(uH,h, vh) + bK(vh, pH,h)

]

= −〈λH,h, vh〉∂K + (f , vh)K − [
aK(T u

h λH,h, vh) + bK(vh, T
p
h λH,h)

+aK(T̂ u
h f , vh) + bK(vh, T̂

p
h f )

]

=
∑

τ∈T K
h

δτ (ν�uH,h − (∇uH,h)α − γuH,h − ∇pH,h + f , −ν�vh − (∇vh)α + γ vh)τ

+
∑

τ∈T K
h

κτ (∇ · uH,h, ∇ · vh)τ

=
∑

τ∈T K
h

[

δτ (R
K
τ , −ν�vh − (∇vh)α + γ vh)τ + κτ (∇ · uH,h, ∇ · vh)τ

]

. (38)
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From the definition of δτ in (26), it is possible to show that δτ ≤ min

{
h2

τ

12ν
,

hτ

‖α‖∞

}

,

thus using (27), we get:

δτ‖ − ν�vh − (∇vh)α + γ vh‖0,τ

≤ νC−1
k δτ h

−1
τ ‖∇vh‖0,τ + δτ‖α‖∞‖∇vh‖0,τ + δτ γ ‖vh‖0,τ

≤ C−1
k hτ‖∇vh‖0,τ + hτ‖∇vh‖0,τ + γ

‖α‖∞
hτ‖vh‖0,τ

� hτ‖vh‖1,τ . (39)

Now, using the fact that κτ ≤ ‖α‖∞hτ , and an inverse inequality, we get:

κτ (∇ · uH,h, ∇ · vh)0,τ ≤ κτ ‖∇ · uH,h‖0,τ ‖∇ · vh‖0,τ ≤ √
d ‖α‖∞,τ hτ ‖∇ · uH,h‖0,τ ‖∇vh‖0,τ

� ‖∇ · uH,h‖0,τ ‖vh‖0,τ . (40)

Finally, using (37)–(40), the properties (12), Cauchy-Schwarz inequality, and mesh
regularity, we arrive at:

BK ((eu, ep), (v, q))

= BK((eu, ep), (v − vh, q)) + BK((eu, ep), (vh, 0))

�
∑

τ∈T K
h

[

‖RK
τ ‖0,τ ‖v − vh‖0,τ + ‖∇ · uH,h‖0,τ ‖q‖0,τ

]

+
∑

ζ∈E K
h

‖RK
ζ ‖0,ζ ‖v − vh‖0,ζ

+
∑

τ∈T K
h

‖∇ · uH,h‖0,τ ‖vh‖0,τ +
∑

τ∈T K
h

hτ ‖RK
τ ‖0,τ ‖vh‖1,τ

�
∑

τ∈T K
h

[

hτ ‖RK
τ ‖0,τ |v|1,ω̃τ

+ ‖∇ · uH,h‖0,τ ‖q‖0,τ

]

+
∑

ζ∈E K
h

h
1/2
ζ ‖RK

ζ ‖0,ζ |v|1,ω̃ζ

+
∑

τ∈T K
h

‖∇ · uH,h‖0,τ ‖vh‖0,τ +
∑

τ∈T K
h

hτ ‖RK
τ ‖0,τ ‖vh‖1,τ

�

⎧
⎪⎨

⎪⎩

∑

τ∈T K
h

[

h2
τ ‖RK

τ ‖2
0,τ + ‖∇ · uH,h‖2

0,τ +
∑

ζ∈E K
h

hζ ‖RK
ζ ‖2

0,ζ

]
⎫
⎪⎬

⎪⎭

1/2

×

⎧
⎪⎨

⎪⎩

∑

τ∈T K
h

[

|v|21,ω̃τ
+ ‖q‖2

0,τ + ‖v‖2
1,τ

]

+
∑

ζ∈E K
h

|v|21,ω̃τ

⎫
⎪⎬

⎪⎭

1/2

� η2,K ‖(v, q)‖V(K)×Q(K).
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Finally, applying Theorem 4, we get the desired result.

Remark 7 Note that testing (28) with (v, q) = (0, 1|K), we get:
∫

K

∇ · T u
h λH,h = 0,

and using the analogous equation for the one-level MHM method, we can prove that:
∫

K

∇ · T uλH = 0.

Lemma 4 Let λ ∈ � and λH ∈ λH,h be the solutions of problems (20) and (24)
respectively. Then, we have:

‖T p(λ − λH,h)‖Q � ‖T u(λ − λH,h)‖V + η2.

Proof Let w := 1

d
x ∈ H 1(�)d , then ∇ · w = 1 and ∇w = 1

d
I. Then, using the first

equation from (17), (28), and the Remark 7, we have:

∫

K

T pλH,h dx = aK (T uλH,h ,w) + 〈λH,h,w〉∂K

= ν(∇T uλH,h ,∇w)K + 1

2
((∇T uλH,h )α,w)K − 1

2
(T uλH,h , (∇w)α)K + (γ0 T uλH,h ,w)K + 〈λH,h,w〉∂K

= ν

d

∫

K

∇ · T uλH,h dx + 1

2
((∇T uλH,h )α,w)K − 1

2
(T uλH,h , (∇w)α)K + (γ0 T uλH,h ,w)K + 〈λH,h,w〉∂K

= ν

d

∫

K

∇ · T u
h λH,hdx + 1

2
((∇T uλH,h )α,w)K − 1

2
(T uλH,h , (∇w)α)K + (γ0 T uλH,h ,w)K + 〈λH,h,w〉∂K

= ν(∇T u
h λH,h,∇w)K + 1

2
((∇T uλH,h )α,w)K − 1

2
(T uλH,h , (∇w)α)K + (γ0 T uλH,h ,w)K + 〈λH,h,w〉∂K

= − 1

2
((∇T u

h λH,h)α,w)K + 1

2
(T u

h λH,h, (∇w)α)K − (γ0 T u
h λH,h,w)K + (∇ · w, T

p
h λH,h)K

+
∑

τ∈T K
h

δτ (−ν�T u
h λH,h + (∇T u

h λH,h)α + γ T u
h λH,h + ∇T

p
h λH,h,−(∇w)α + γw)τ

−
∑

τ∈T K
h

κτ (∇ · T u
h λH,h,∇ · w)τ + 1

2
((∇T uλH )α,w)K − 1

2
(T uλH , (∇w)α)K + (γ0 T uλH ,w)K

=
∫

K

T
p
h λH,hdx + 1

2

(∇(T uλH − T u
h λH,h)α,w

)
K

− 1

2
(T uλH − T u

h λH,h, (∇w)α)K + (γ0 (T uλH − T u
h λH,h),w)K

+
∑

τ∈T K
h

δτ (−ν�T u
h λH,h + (∇T u

h λH,h)α + γ T u
h λH,h + ∇T

p
h λH,h,−(∇w)α + γw)τ

−
∑

τ∈T K
h

κτ (∇ · T u
h λH,h,∇ · w)τ . (41)

Moreover, using similar arguments as above, we can prove that:

∫

K

T̂ pf dx =
∫

K

T̂
p
h f dx + 1

2

(∇(T̂ uf − T̂ u
h f )α, w

)
K

− 1

2
(T̂ uf − T̂ u

h f , (∇w)α)K + (γ0 (T̂ uf − T̂ u
h f ),w)K

+
∑

τ∈T K
h

δτ (−ν�T̂ u
h f + (∇T̂ u

h f )α + γ T̂ u
h f + ∇T̂

p
h f − f ,−(∇w)α + γw)τ −

∑

τ∈T K
h

κτ (∇ · T̂ u
h f , ∇ · w)τ . (42)
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Note th at from the definition of w we have that ‖w‖1,� is a constant depending only
on the domain � and the dimension d . Now, from the second equation of (20), (41),
(42), and Lemma 3, we get:

∫

�

T p(λ − λH,h)dx =
∑

K∈TH

(∫

K

T pλdx −
∫

K

T pλH,h dx

)

=
∑

K∈TH

(

−
∫

K

T̂ pf dx −
∫

K

T pλH,h dx

)

=
∑

K∈TH

(

−
∫

K

T̂
p
h f dx − 1

2

(∇(T̂ uf − T̂ u
h f )α,w

)
K

+ 1

2
(T̂ uf − T̂ u

h f , (∇w)α)K − (γ0 (T̂ uf − T̂ u
h f ),w)K

−
∑

τ∈T K
h

δτ (−ν�T̂ u
h f + (∇T̂ u

h f )α + γ T̂ u
h f + ∇T̂

p
h f − f ,−(∇w)α + γw)τ +

∑

τ∈T K
h

κτ (∇ · T̂ u
h f , ∇ · w)τ

−
∫

K

T
p
h λH,hdx − 1

2

(∇(T uλH − T u
h λH,h)α,w

)
K

+ 1

2
(T uλH − T u

h λH,h, (∇w)α)K − (γ0 (T uλH − T u
h λH,h),w)K

−
∑

τ∈T K
h

δτ (−ν�T u
h λH,h + (∇T u

h λH,h)α + γ T u
h λH,h + ∇T

p
h λH,h, −(∇w)α + γw)τ +

∑

τ∈T K
h

κτ (∇ · T u
h λH,h,∇ · w)τ

⎞

⎟
⎠

=
∑

K∈TH

(

− 1

2
∇(uH − uH,h)α,w)K + 1

2
(uH − uH,h, (∇w)α)K − (γ0(uH − uH,h),w)K

+
∑

τ∈T K
h

δτ (ν�uH,h − (∇uH,h)α − γuH,h − ∇pH,h − f ,−(∇w)α + γw)τ +
∑

τ∈T K
h

κτ (∇ · uH,h, ∇ · w)τ

⎞

⎟
⎠

�
∑

K∈TH

(

|uH − uH,h |1,K ‖α‖∞,K ‖w‖0,K + ‖uH − uH,h‖0,K |w|1,K ‖α‖∞,K + ‖γ0‖∞,K ‖uH − uH,h‖0,K ‖w‖0,K

+‖α‖∞,K

∑

τ∈T K
h

δτ ‖RK
τ ‖0,τ |w|1,τ + γ

∑

τ∈T K
h

δτ ‖RK
τ ‖0,τ ‖w‖1,τ +

∑

τ∈T K
h

κτ ‖∇ · uH,h‖0,τ |w|1,τ

⎞

⎟
⎠

�
∑

K∈TH

(

|uH − uH,h |1,K ‖α‖∞,K ‖w‖1,K + ‖uH − uH,h‖0,K |w|1,K ‖α‖∞,K

+‖γ0‖∞,K ‖uH − uH,h‖0,K ‖w‖1,K + ‖α‖∞,K

( ∑

τ∈T K
h

δτ ‖RK
τ ‖2

0,τ

)1/2 ( ∑

τ∈T K
h

δτ |w|21,τ

)1/2

+γ

( ∑

τ∈T K
h

δτ ‖RK
τ ‖2

0,τ

)1/2 ( ∑

τ∈T K
h

δτ ‖w‖2
0,τ

)1/2

+
( ∑

τ∈T K
h

κτ ‖∇ · uH,h‖2
0,τ

)1/2( ∑

τ∈T K
h

κτ ‖w‖2
1,τ

)1/2

⎞

⎟
⎠

�
∑

K∈TH

(

|uH − uH,h |1,K ‖α‖∞,K ‖w‖1,K + ‖uH − uH,h‖0,K |w|1,K ‖α‖∞,K + ‖γ0‖∞,K ‖uH − uH,h‖0,K ‖w‖1,K

+
( ∑

τ∈T K
h

δτ ‖RK
τ ‖2

0,τ

)1/2

|w|1,K +
( ∑

τ∈T K
h

δτ ‖RK
τ ‖2

0,τ

)1/2

‖w‖1,K +
( ∑

τ∈T K
h

κτ ‖∇ · uH,h‖2
0,τ

)1/2

‖w‖1,K

⎞

⎟
⎠

� η2. (43)

Now, define μ := λ − λH,h and T pμ := T pλ − T pλH,h . Using the orthogonal

decomposition T pμ = p̃ + p0, where p̃ ∈ L2
0(�) and p0 := 1

|�|
∫

�

T pμ, there

exists w̃ ∈ H 1
0 (�)d (see [26]) with ∇ · w̃ = p̃ in � and |w̃|1,� ≤ C‖p̃‖0,�, where

C > 0 is independent of H and h. From (17), it holds:

a(T uμ, w̃) + b(w̃, T pμ) = −(μ, w̃)TH
= 0. (44)
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Hence, using (43) and (44), we have that:

‖T pμ‖2
Q = (T pμ, T pμ)� = (T pμ, p̃)� + (T pμ, p0)� = (T pμ, ∇ · w̃)� + (T pμ, p0)�

= −b(w̃, T pμ) + (T pμ, p0)� = a(T uμ, w̃) + (T pμ, p0)�

= ν(∇T uμ, ∇w̃)� + 1

2
((∇T uμ)α, w̃)� − 1

2
(T uμ, (∇w̃)α)� + (γ0T

uμ, w̃)� + (T pμ, p0)�

� |T uμ|1,�|w̃|1,� + |T uμ|1,�‖α‖∞,�‖w̃‖0,� + ‖T uμ‖0,�‖α‖∞,�|w̃|1,� + ‖γ0‖∞,�‖T uμ‖1,�‖w̃‖1,�

+‖T pμ‖0,�‖p0‖0,�

� (‖T uμ‖V + ‖p0‖0,�)‖T pμ‖Q

� (‖T uμ‖V + η2)‖T pμ‖Q,

we conclude that:
‖T pμ‖Q � ‖T uμ‖V + η2,

and the result follows.

Lemma 5 Let λ and λH,h be the solutions of (20) and (24), respectively. Then we
have:

‖T u(λ − λH,h)‖V � η.

Proof Let μ := λ − λH,h. We notice from (17) and (22) that:

− (μ, T uμ)∂TH
=

∑

K∈TH

BK((T uμ, T pμ), (T uμ, T pμ))

=
∑

K∈TH

ν(∇T uμ, ∇T uμ)K + γ0(T
uμ, T uμ)K

≥ C1‖T uμ‖2
V. (45)

Now, combining (6) and (17), we find that:

√
2

2
‖μ‖� ≤ sup

v∈V

−
∑

K∈TH

BK((T uμ, T pμ), (v, 0))

‖v‖V

= sup
v∈V

−
∑

K∈TH

[
aK(T uμ, v) + bK(v, T pμ)

]

‖v‖V
� (‖T uμ‖V + ‖T pμ‖Q),

and using Lemma 4, we get:

‖μ‖� � ‖T uμ‖V + η2. (46)

According to Lemma 4.2 in [11], there exists χ ∈ V satisfying:

(μ, χ)∂TH
= 〈μ, g〉∂� − (μ, uH,h)∂TH

for all μ ∈ �,

and
‖χ‖V � η1.
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Then, using this result, (8), (32), (45), (46), and Lemma 3, we obtain:

C1‖T uμ‖2
V ≤ −(μ, T uμ)∂TH

= −(μ, T uλ − T uλH,h )∂TH

= −(μ, T uλ + T̂ uf − (T uλH,h + T̂ uf ))∂TH

= −〈μ,g〉∂� + (μ, T uλH,h + T̂ uf )∂TH

= −〈μ,g〉∂� + (μ,uH,h)∂TH
+ (μ,uH − uH,h)∂TH

= −(μ,χ)∂TH
+ (μ,uH − uH,h)∂TH

≤ ‖μ‖�(‖χ‖V + ‖uH − uH,h‖V)

≤ C2 ‖μ‖�(η1 + η2)

≤ C2 (‖T uμ‖V + η2)(η1 + η2)

≤ C2 η‖T uμ‖V + C2 η2.

Now, using the inequality (45) and the inequality ab ≤ δ

2
a2 + 1

2δ
b2 with δ >

C2

2C1
,

we arrive at:
‖T uμ‖V � η, (47)

and we conclude the result.

Theorem 5 Let (u, p) and (uH , pH ) be the solutions of (21) and (35), respectively.
Then we have:

‖(u − uH , p − pH )‖V×Q � η. (48)

Proof Using Lemmas 4 and 5, the result follows.

4.2 Local efficiency and reliability analysis

Before we state the main result of this work, we need first an auxiliary result.

Theorem 6 Let K ∈ TH . For each τ ∈ T K
h , there holds:

hτ‖RK
τ ‖0,τ �

[

hτ‖u − uH,h‖0,τ + (1 + hτ )|u − uH,h|1,τ + ‖p − pH,h‖0,τ

]

, (49)

and
‖∇ · uH,h‖0,τ � |u − uH,h|1,τ .

Furthermore, for each ζ ∈ E K
0 , we have:

h
1/2
ζ ‖RK

ζ ‖0,ζ �
∑

τ∈ωζ

[

|u − uH,h|1,τ + ‖u − uH,h‖0,τ + ‖p − pH,h‖0,τ

]

,

and for all ζ ∈ E K
b , there holds:

h
1/2
ζ ‖RK

ζ ‖0,ζ �
∑

τ∈ωζ

[

|u−uH,h|1,τ+‖u−uH,h‖0,τ+‖p−pH,h‖0,τ

]

+‖λ−λH ‖− 1
2 ,∂K

.

(50)
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Proof We define bK
τ := bK

τ RK
τ and bK

ζ := bK
ζ P K

ζ (RK
ζ ). Using integration by parts

and Theorem 2, we arrive at:

(RK
τ , bK

τ )τ =
(
ν�uH,h − (∇uH,h)α − γuH,h − ∇pH,h + f , bK

τ

)

τ

=
(
ν�(uH,h − u) − (∇(uH,h − u))α − γ (uH,h − u) − ∇(pH,h − p), bK

τ

)

τ

≤ ν|u − uH,h|1,τ |bK
τ |1,τ + |u − uH,h|1,τ ‖α‖∞‖bK

τ ‖0,τ + γ ‖u − uH,h‖0,τ ‖bK
τ ‖0,τ

+√
d‖p − pH,h‖0,τ |bK

τ |1,τ

�
(

(1 + h−1
τ )|u − uH,h|1,τ + ‖u − uH,h‖0,τ + h−1

τ ‖p − pH,h‖0,τ

)

‖RK
τ ‖0,τ ,

and then:

hτ‖RK
τ ‖0,τ �

[

hτ‖u − uH,h‖0,τ + (1 + hτ )|u − uH,h|1,τ + ‖p − pH,h‖0,τ

]

.

Again, by Theorem 2, we obtain that:

‖∇ · uH,h‖2
0,τ � (∇ · uH,h, b

K
τ ∇ · uH,h)τ

� (∇ · uH,h, b
K
τ ∇ · uH,h)�

� (∇ · (uH,h − u), bK
τ ∇ · uH,h)�

� |uH,h − u|1,τ‖∇ · uH,h‖0,τ ,

and therefore:
‖∇ · uH,h‖0,τ � |uH,h − u|1,τ .

Let ζ ∈ E K
0 . From Lemma 2 and Theorem 2, we find that:

(RK
ζ , bK

ζ )ζ = RK
h (bK

ζ ) −
∑

τ∈ωζ

(RK
τ , bK

ζ )τ

�
∑

τ∈ωζ

[

|u − uH,h|1,τ |bK
ζ |1,τ + ‖u − uH,h‖0,τ ‖bK

ζ ‖0,τ + |u − uH,h|1,τ ‖bK
ζ ‖0,τ +

‖p − pH,h‖0,τ |bK
ζ |1,τ + ‖RK

τ ‖0,τ ‖bK
ζ ‖0,τ

]

�
∑

τ∈ωζ

[

h−1/2
τ |u − uH,h|1,τ + h1/2

τ ‖u − uH,h‖0,τ + h1/2
τ |u − uH,h|1,τ +

h−1/2
τ ‖p − pH,h‖0,τ + h1/2

τ ‖RK
τ ‖0,τ

]

‖RK
ζ ‖0,ζ ,

thus using Theorem 2, (49) and the regularity of the second-level meshes, we get:

h
1/2
ζ ‖RK

ζ ‖0,ζ �
∑

τ∈ωζ

[

(1 + hτ )|u − uH,h|1,τ + (1 + hτ )‖u − uH,h‖0,τ + ‖p − pH,h‖0,τ

]

�
∑

τ∈ωζ

[

|u − uH,h|1,τ + ‖u − uH,h‖0,τ + ‖p − pH,h‖0,τ

]

.
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Next, let ζ ∈ E K
b . Using Theorem 2 and the regularity of the partition T K

h , we arrive
at:

‖bK
ζ ‖1,τ �

√
hτ + h−1

τ ‖RK
ζ ‖0,ζ � h

−1/2
ζ ‖RK

ζ ‖0,ζ .

Now consider:

aK(u, v) + bK(v, p) =
∑

τ∈T K
h

(

aτ (u, v) + bτ (v, p)

)

,

where aτ (·, ·) = aK(·, ·)
∣
∣
∣
∣
τ

and bτ (·, ·) = bK(·, ·)
∣
∣
∣
∣
τ

. Using again Lemma 2, Theorem

2, (49), (15), and the regularity of the meshes of the second level, it holds:

(RK
ζ , bK

ζ )ζ = RK
h (bK

ζ ) −
∑

τ∈ωζ

(RK
τ , bK

ζ )τ

= aK(u − uH,h, bK
ζ ) + bK (bK

ζ , p − pH,h) + 〈λ − λH , bK
ζ 〉∂K −

∑

τ∈ωζ

(RK
τ , bK

ζ )τ

=
∑

τ∈ωζ

(

aτ (u − uH,h, bK
ζ ) + bτ (bK

ζ , p − pH,h) − (RK
τ , bK

ζ )τ

)

+ 〈λ − λH , bK
ζ 〉∂K

�
∑

τ∈ωζ

(

|u − uH,h|1,τ + ‖u − uH,h‖0,τ + ‖p − pH,h‖0,τ

)

h
−1/2
ζ ‖RK

ζ ‖0,ζ + ‖λ − λH ‖− 1
2 ,∂K

‖bK
ζ ‖ 1

2 ,∂K

�
∑

τ∈ωζ

(

|u − uH,h|1,τ + ‖u − uH,h‖0,τ + ‖p − pH,h‖0,τ

)

h
−1/2
ζ ‖RK

ζ ‖0,ζ + ‖λ − λH ‖− 1
2 ,∂K

h
−1/2
ζ ‖RK

ζ ‖0,ζ ,

thus, we get (50).

To present the main result, we need to define the following discrete norm for the
velocity:

‖v‖V,ωF
:=

⎧
⎨

⎩

∑

K∈ωF

[
H−2

K ‖v‖2
0,K + |v|21,K

]
⎫
⎬

⎭

1/2

,

for all F ∈ EH .
We are now in position to establish the results that show the efficiency and

reliatibity of the error estimator η.

Theorem 7 (Main Result) Let (u, p) ∈ V × Q the continuous solution of MHM
method and (uH,h, ph,h) ∈ Vh ×Qh the discrete solution of two-level MHM method,
given in (21) and (32), and with λ and λH,h solutions of (20) and (24) respectively.
Then:

‖u − uH,h‖V + ‖p − pH,h‖Q + ‖λ − λH,h‖� � η.

Moreover, given F ∈ EH , we have:

η1,F � ‖u − uH,h‖V,ωF
,

and
η2,K � ‖u − uH,h‖V(K) + ‖p − pH,h‖Q(K) + ‖λ − λH,h‖− 1

2 ,∂K
, (51)

for all K ∈ TH .
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Proof Applying Lemma 3, (48) and the triangular inequality, we get:

‖(u − uH,h, p − pH,h)‖V×Q ≤ ‖(u − uH , p − pH )‖V×Q + ‖(uH − uH,h, pH − pH,h)‖V×Q � η.

Now, using (46) and (47) we get:

‖λ − λH,h‖� � η.

On the other hand, since RF ∈ L2(F )d , then:

‖RF ‖2
0,F = 1

2
(RF , �u − uH,h�)F ≤ 1

2
‖RF ‖0,F ‖ �u − uH,h� ‖0,F ,

and by Lemma 1, we arrive to:

‖RF ‖0,F � H
1/2
F

∑

K∈ωF

(

H−2
K ‖u − uH,h‖2

0,K + |u − uH,h|21,K

)1/2

� H
1/2
F ‖u − uH,h‖V,ωF

.

Finally, using the definition (33) of η2,K and Theorem 6, we arrive at:

η2,K �
∑

τ∈T K
h

[
hτ‖RK

τ ‖0,τ + ‖∇ · uH,h‖0,τ

]
+

∑

ζ∈E K
h

h
1/2
ζ ‖RK

ζ ‖0,ζ

�
[

‖u − uH,h‖0,K + |u − uH,h|1,K + ‖p − pH,h‖0,K

]

+ ‖λ − λH ‖− 1
2 ,∂K

� ‖(u − uH,h, p − pH,h)‖V(K)×Q(K) + ‖λ − λH ‖− 1
2 ,∂K

,

which finishes the proof.

Remark 8 If we assume that λ ∈ L2(∂TH ), then it is easy to prove that we can
modify (51) as follows:

η2,K � ‖(u − uH,h, p − pH,h)‖V(K)×Q(K) + h
1/2
K ‖λ − λH ‖0,∂K,

and then the right-hand side is fully computable if the exact solution is available.

5 Numerical experiments

This section presents numerical experiments, using three different examples, to
demonstrate the reliability and efficiency of our a posteriori error estimator. We vali-
date an adaptive refinement algorithm procedure based on refining faces, which keeps
the topology of the first-level mesh untouched.

For all F ∈ EH , we define:

ηF :=

⎧
⎪⎨

⎪⎩

∑

F̃∈T
H̃

(F )

η2
1,F̃

⎫
⎪⎬

⎪⎭

1/2

+
∑

K∈ωF

η2,K, with η1,F̃
:= ‖RF ‖0,F̃

H
1/2
F

. (52)

Thus, the adaptive algorithm that uses (52) is the following:
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Algorithm 1 Adaptivity by faces procedure.

Require: θ ∈ (0, 1) and a coarse first-level mesh TH .
1: Solve the discrete problems (24) and (28)–(29) on the current mesh.
2: For each F ∈ EH , compute the local error indicator ηF in (52).
3: Given F ∈ EH such that ηF ≥ θ max

F∈EH

ηF , refine F̃ ∈ T
H̃

(F ) such that η1,F̃
=

max
T

H̃
(F )

η1,F̃
, and if η1,F <

∑

K∈ωF

η2,K also refine the second-level meshes T K
h for

K ∈ ωF .
4: If the stop criterion is not satisfied, repeat the algorithm.

Using the procedure given in the Algorithm 1, the first-level mesh does not change,
and only the local problem associated with elements “touched” by the estimator needs
to be revisited. Thereby, only a few extra entries must be computed and assembled
into the global system in each adaption step. This algorithm is particularly attractive
for use in real three-dimensional problems since it dramatically decreases the compu-
tational cost involved in the adaptive procedure and avoids three-dimensional global
re-meshing.

5.1 A smooth solution

The domain is � := (0, 1) × (0, 1), ν := 1, γ := 1, α :=
(

1√
2
, 1√

2

)
, f and the

boundary conditions are chosen such that the exact solution is given by:

u1(x, y) := −256x2(x − 1)2y(y − 1)(2y − 1), u2(x, y) := −u1(y, x), p(x, y) := (x − y)6 − 1

28
.

Using a uniform refinement in the first-level mesh, with one element at the second-
level mesh, and polynomial degrees, on the faces, �l , l = 0, 1, 2, Table 1 shows
the convergence of the a posteriori error estimators η1, η2 and the effectivity index,
E defined by:

E := η

‖(u − uH,h, p − pH,h)‖V×Q

,

where η is given in (34). First, we set viscosity ν = 1 and observe that the effec-
tivity index stays close to 1 in all scenarios. From the perspective of the impact of
the one- and second-level estimators in the effectivity index, we see that both are rel-
evant when the mesh is coarse, and l is low. Otherwise, the second-level estimator
η2 becomes one order of magnitude higher compared with its one-level counterpart
η1. This corresponds to an expected behaviour as one adopted one-element sub-
meshes in those numerical simulations. Indeed, if one uses refined sub-meshes, their
importance switch (see [11, Section 5]).

Figures 2, 3, and 4 illustrate the convergence aspects for the MHM method. We
observe the expected convergence orders O(H l+1), l = 0, 1, 2, in the ‖ · ‖V×Q norm
for the exact error, as well as for the error estimator η.
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Table 1 Exact error, a posteriori error estimators, and effectivity index for ν = 1, uH,h ∈ P
2
3, pH,h ∈ P3,

and λH,h ∈ �l , l = 0, 1, 2

l H ‖(u − uH,h, p − pH,h)‖V×Q η1 η2 E

0.25 0.8472405 × 10−1 0.6778663 × 10−2 0.9707391 × 10−1 1.225775

0.125 0.9915863 × 10−2 0.9197585 × 10−3 0.1084051 × 10−1 1.186005

2 0.0625 0.1208512 × 10−2 0.1213830 × 10−3 0.1300599 × 10−2 1.176639

0.03125 0.1497330 × 10−3 0.1572163 × 10−4 0.1604838 × 10−3 1.176798

0.015625 0.1865182 × 10−4 0.2006059 × 10−5 0.1997001 × 10−4 1.178227

0.25 0.3228006 0.8209395 × 10−1 0.3214077 1.250003

0.125 0.7916980 × 10−1 0.2200528 × 10−1 0.8110115 × 10−1 1.302346

1 0.0625 0.1960050 × 10−1 0.5795234 × 10−2 0.1957939 × 10−2 1.294591

0.03125 0.4904711 × 10−2 0.1499087 × 10−2 0.4759787 × 10−2 1.276094

0.015625 0.1228986 × 10−2 0.3820426 × 10−3 0.1169730 × 10−2 1.262644

0.25 0.2585779 × 10 0.1103852 × 10 0.1311145 × 10 0.9339536

0.125 0.1314891 × 10 0.6038400 0.6121682 × 10 0.9247977

0 0.0625 0.6590541 0.3207728 0.3056109 0.9504282

0.03125 0.3296247 0.1652682 0.1529013 0.9652478

0.015625 0.1648197 0.8381923 × 10−1 0.7646742 × 10−1 0.9724971

Next, we diminish viscosity values to ν = 10−2 and ν = 10−4, and observe that
the effectivity index changes as the ν decreases. The results are shown in Tables 2 and
3. Such a behaviour indicates that the constants are not robust concerning the physical
parameters in the advective dominate regime as usual. Regarding how the one- and
second-level estimators impact the effectivity index, we see a different scenario to
the case ν = 1. Indeed, we observed a prevalence of the first level estimator η1 over
the second-level contribution η2 for all l and mesh refinement cases.

In the context of ν = 10−2, we revisite the convergence aspects for the MHM
method in Figs. 5, 6, and 7. Again, we observe the expected convergence orders
O(H l+1), l = 0, 1, 2, in the ‖ · ‖V×Q norm for the exact error and for the error
estimator η.

Fig. 2 Estimated and exact error
curves for ν = 1, uH,h ∈ P

2
3,

pH,h ∈ P3, and λH,h ∈ �0
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Fig. 3 Estimated and exact error
curves for ν = 1, uH,h ∈ P

2
3,

pH,h ∈ P3, and λH,h ∈ �1

Fig. 4 Estimated and exact error
curves for ν = 1, uH,h ∈ P

2
3,

pH,h ∈ P3, and λH,h ∈ �2

Table 2 Exact error, a posteriori error estimators, and effectivity index for ν = 10−2, uH,h ∈ P
2
3, pH,h ∈

P3, and λH,h ∈ �l , l = 0, 1, 2

l H ‖(u − uH,h, p − pH,h)‖V×Q η1 η2 E

0.25 0.9219341 × 10−1 0.1381117 × 10−1 0.2259165 × 10−2 0.1743111

0.125 0.1351087 × 10−1 0.2282492 × 10−2 0.2642712 × 10−3 0.1884973

2 0.0625 0.1807365 × 10−2 0.3241413 × 10−3 0.3199841 × 10−4 0.1970491

0.03125 0.2319275 × 10−3 0.4286884 × 10−4 0.3955605 × 10−5 0.2018926

0.015625 0.2924521 × 10−4 0.5481446 × 10−5 0.4930700 × 10−6 0.2042904

0.25 0.1318692 × 101 0.3744764 0.5586192 × 10−1 0.3263372

0.125 0.4516195 0.1371993 0.1269113 × 10−1 0.3318953

1 0.0625 0.1292889 0.4146891 × 10−1 0.2813878 × 10−2 0.3425105

0.03125 0.3409020 × 10−1 0.1125197 × 10−1 0.6678104 × 10−3 0.3496542

0.015625 0.8695222 × 10−2 0.2902015 × 10−2 0.1644081 × 10−3 0.3526561

0.25 0.6843741 × 101 0.2697528 × 101 0.9616601 0.5346766

0.125 0.5138595 × 101 0.2314727 × 101 0.3164794 0.5120479

0 0.0625 0.3192640 × 101 0.1603597 × 101 0.8086800 × 10−1 0.5276087

0.03125 0.1764631 × 101 0.9419820 0.2496842 × 10−1 0.5479618

0.015625 0.9141707 0.5011848 0.1050770 × 10−1 0.5597341
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Table 3 Exact error, a posteriori error estimators, and effectivity index for ν = 10−4, uH,h ∈ P
2
3, pH,h ∈

P3, and λH,h ∈ �l , l = 0, 1, 2

l H ‖(u − uH,h, p − pH,h)‖V×Q η1 η2 E

0.25 0.4022419 0.3631610 × 10−1 0.1716682 × 10−2 0.0945520

0.125 0.1144633 0.1169604 × 10−1 0.2116221 × 10−3 0.1040304

2 0.0625 0.2087342 × 10−1 0.2525211 × 10−2 0.4145032 × 10−4 0.1229632

0.03125 0.3664576 × 10−2 0.5554220 × 10−3 0.1542330 × 10−4 0.1557739

0.015625 0.6568818 × 10−3 0.1138560 × 10−3 0.5285791 × 10−5 0.1813747

0.25 7.862317 1.791742 0.1146125 0.2424673

0.125 4.777998 1.126343 0.3938183 × 10−1 0.2439777

1 0.0625 2.208454 0.538928 0.1392532 × 10−1 0.2503351

0.03125 0.8120287 0.2109413 0.7782620 × 10−2 0.2693549

0.015625 0.2793878 0.7671757 × 10−1 0.4562518 × 10−2 0.2909221

0.25 0.3147448 × 102 6.048800 1.327762 0.2343664

0.125 0.3264509 × 102 6.472617 0.7475223 0.2211708

0 0.0625 0.2511912 × 102 5.629570 0.5023346 0.2441131

0.03125 0.1703080 × 102 4.456101 0.7500895 0.3056927

0.015625 0.1302838 × 102 3.966013 1.082794 0.3875238

5.2 Boundary layer solution

We consider the domain � := (0, 1) × (0, 1), ν := 10−2, γ = 1, α :=
(

1√
2
, 1√

2

)
, f

and the boundary conditions are chosen such that the exact solution is given by:

u1(x, y) := y − 1 − ey/ν

1 − e1/ν
, u2(x, y) := x − 1 − ex/ν

1 − e1/ν
, p(x, y) := (x −y)8 − 1

45
.

The solutions u1 and u2 exhibit boundary layers at y = 1 and x = 1, respectively.
A structured mesh of 64 elements in the first level is used. In all the calculations
uH,h ∈ P

2
3, pH,h ∈ P3, and λH,h ∈ �1. Figure 8 shows the adaptivity procedure

by faces (Algorithm 1) and isovalues of vertical component of velocity. The red dots

Fig. 5 Estimated and exact error
curves for ν = 10−2, uH,h ∈ P

2
3,

pH,h ∈ P3, and λH,h ∈ �0
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Fig. 6 Estimated and exact error
curves for ν = 10−2, uH,h ∈ P

2
3,

pH,h ∈ P3, and λH,h ∈ �1

in the mesh of the first level represent faces where more basis functions have been
added to improve the approximation of �1. In the second level, a structured mesh,
which coincides with T

H̃
(F ), F ∈ ∂K , K ∈ TH , is used.

The adaptive algorithm associated with the multiscale estimator may induce an
anisotropic adaptation on second-level mesh due to the sharp boundary layers. Also
observe that the solution is improved without changing the topology of the coarse
first-level mesh.

5.3 Solution with an inner layer

Let � := (0, 1)2, ν := 10−3, γ := 0 and α := (1, 0). We consider φ(x, y) :=
x2(1 − x)2y2(1 − y)2 (1 − tanh(75 − 150x)), f and the boundary conditions are
chosen such that the exact solution is:

u := curl φ =
(

∂φ

∂y
, −∂φ

∂x

)

, p := (x − y)6 − 1

28
.

This solution presents an inner layer around x = 1/2. For this case, we choose a
first-level mesh which is not aligned to advection. In Fig. 9, we present the adaptive
procedure by faces for this test case. The red dots near the inner layer indicate the
faces where basis functions were added to the subspace �1. In the second-level a
structured mesh, which coincides with T

H̃
(F ), F ∈ ∂K , K ∈ TH , is used.

Fig. 7 Estimated and exact error
curves for ν = 10−2, uH,h ∈ P

2
3,

pH,h ∈ P3, and λH,h ∈ �2
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Fig. 8 Adaptivity procedure by faces (left) and isovalues of vertical component (right). Here uH,h ∈ P
2
3,

pH,h ∈ P3, and λH,h ∈ �1
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Fig. 9 Adaptivity procedure by faces at iterations 0, 5, 10, 20, 30, and 50 (from top-right to bottom-left)

Figure 10 shows the isolines of the absolute value of the velocity at iterations 0,
5, 10, 20, 30, and 50 of the adaptive procedure. Here we set uH,h ∈ P

2
3, pH,h ∈ P3

and λH,h ∈ �1. Observe the great improvements in the solution by just adding a few
extra dof at the right location induced by the multiscale estimator.

The improvements to the computed solution in the final adapted mesh can be seen
in Fig. 11, where we show the profile of the components of the velocity near the inner
layer in horizontal cuts. We notice that the adapted scheme captures the inner layer
correctly by comparing it with the exact solution.

6 Conclusions

This work proposed a novel MHM method to the Oseen equations based on previous
works for the Stokes model [9] and for the advection-diffusion equation [39]. Owing
to the MHM’s structure, we also introduced and analysed a new residual a posteriori
error estimator for which we showed that local efficiency and reliability hold with
respect to natural norms. The estimator is multilevel, and then it is able to account
for different scales, and then handle the solutions of singularly perturbed problems
as the ones in the Oseen equations under advective or reactive regimes. From theo-
retical view-point, the dependence of constants (in the equivalence estimates) with
respect to the physical parameters as well as to the degree of polynomial interpo-
lation on faces deserves further investigation. Numerical verifications performed in
this work pointed towards a mild dependence of those constants in terms of polyno-
mial degree. However, a stronger dependency appeared with respect to the physical
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Fig. 10 Isolines of the absolute value of the velocity field at iterations 0, 5, 10, 20, 30, and 50. Here
uH,h ∈ P

2
3, pH,h ∈ P3, and λH,h ∈ �1

parameters as it is usually the case in advective-dominate problems. The precise
characterisation of those dependencies stays an open problem. The natural extension
of the proposed methodology to the non-linear Navier-Stokes equations is currently
under investigation.

Fig. 11 Tangential velocity profiles at y = 0.25 (left) and normal velocity profiles at y = 0.5 in iteration
final of the adaptive process. Here uH,h ∈ P

2
3 and λH,h ∈ �1
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