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Private Computation of Polynomials over Networks

Teimour Hossienalizadeha,, Fatih Turkmenb, Nima Monshizadeha

aEngineering and Technology Institute, University of Groningen, The Netherlands
bBernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen,The Netherlands

Abstract

This study concentrates on preserving privacy in a network of agents where each agent seeks to evaluate a general polynomial
function over the private values of her immediate neighbors. We provide an algorithm for the exact evaluation of such functions
while preserving privacy of the involved agents. The solution is based on a reformulation of polynomials and adoption of two
cryptographic primitives: Paillier as a Partially Homomorphic Encryption scheme and multiplicative-additive secret sharing. The
provided algorithm is fully distributed, lightweight in communication, robust to dropout of agents, and can accommodate a wide
class of functions. Moreover, system theoretic and secure multi-party conditions guaranteeing the privacy preservation of an agent’s
private values against a set of colluding agents are established. The theoretical developments are complemented by numerical
investigations illustrating the accuracy of the algorithm and the resulting computational cost.

Keywords: Privacy, cryptography, polynomials, networked systems, multiagent systems

1. Introduction

Emerging distributed systems such as smart grids, intelli-
gent transportation, and smart buildings provide better scala-
bility, fault tolerance, and resource sharing compared to tradi-
tional centralized systems. A distributed dynamical system rely
on peer-to-peer data exchange between individual agents. The
agents wish to protect their data from being revealed since the
data can contain sensitive information or can be leveraged for
disrupting the system(see the case for smart metering in [1]).
Therefore preserving privacy of agents in distributed dynami-
cal systems is of crucial concern.

To preserve privacy in dynamical systems, differential pri-
vacy is a popular approach that was introduced to control sys-
tem for private filtering through [2], applied to average con-
sensus [3, 4], distributed optimization [5], plug-and-play con-
trol [6] and studied for its relation to input observability [7].
In general, however, it introduces a trade-off between privacy
level and control performances, and also possible vulnerability
of data disclosure through the least significant bit of the per-
turbed data [8]. System theory also provides solutions for pre-
serving privacy in dynamical systems, see [9, 10, 11] in this
context. Even though these solutions do not generally degrade
the performance of controllers and are lightweight in computa-
tion, they are problem specific and their privacy guarantees are
weaker compared to differential privacy based methods.

As another class of privacy preserving techniques, cryptogra-
phy based methods have proven to be useful since they provide
stronger security guarantees while maintaining an acceptable
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level of performance during the computation. Among the cryp-
tographic schemes, Homomorphic Encryption (HE) schemes
offer a certain appeal for control systems since they are compu-
tationally less demanding compared to other alternatives such
as Garbled Circuits. HE refers to a special family of cryptosys-
tems that supports elementary mathematical operations (such as
additions or multiplications) to be executed on encrypted data.
In particular, a party can encrypt its private values and out-
source computations on those encrypted values to an untrusted
data processing entity without allowing access to associated pri-
vate values [12].

We can classify the literature of encrypted control systems,
into two main categories: The first one is the typical setup of
an isolated system and a cloud, where a designed policy is eval-
uated by the cloud using the encrypted data generated by the
system. In this group and among the first known studies of
encrypted control in system theory literature, we can refer to
implementation of static state feedback controllers. In [13], the
privacy of both controller parameters and system states are pre-
served by using RSA and ElGamal encryption schemes. The
proposed method; however, requires the system to be heav-
ily involved in the computation procedures. This problem is
resolved in [14] by employing Paillier’s scheme as a Partially
HE(PHE) where only the privacy of system states are preserved.
As for the nonlinear state feedback, in [15] a framework of two
non-colluding clouds and Paillier’s scheme are used to preserve
the privacy of system states and controller parameters. Deploy-
ment of a linear dynamic controller over a cloud is investigated
in [16] by employing Fully HE(FHE). Different from a static
controller, the essence of recursion in a dynamic controller
causes the finite-time life span problem, for which the necessity
of integer coefficients in [17], and refreshment of the controller
state in [18] are proposed as possible solutions. Outsourcing
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the calculation of computationally demanding controllers such
as the implicit model predictive controller to another party is
also investigated in [19], where the privacy problem is solved
mainly by Paillier’s scheme.

The second class, which this study also belongs to, is re-
lated to multiagent systems where the aim is to preserve pri-
vacy of the involved agents. Compared to the first class, the
communication topology and the presence of different agents
(parties) impose extra constraints on achieving this goal. In
this group, authors in [20] use Paillier and weight decomposi-
tion to preserve privacy in the first order consensus problems,
where the solution is extended to the second order problems in
[21]. Their proposed method is suitable when an agent’s ob-
jective is to evaluate an affine function of her immediate neigh-
bors and is restricted to consensus problems. In [22] a solution
is proposed for privacy preserving distributed averaging using
Paillier’s cryptosystem for a directed graph where nodes, after
receiving a public key from a trusted entity, continue computa-
tions till an agreed-upon time-step at which the private key is
revealed to all parties. In the context of distributed optimiza-
tion, authors in [23] use a symmetric FHE scheme (SingleMod
encryption) and a third party to preserve privacy of the involved
agents that are interested in evaluating polynomial functions of
private variables. The existence of a central non-colluding third
party poses this question that whether it is possible to solve the
problem in a centralized instead of a distributed way. In other
words, an FHE scheme and the third party allow the designer of
the optimization scheme to devise a centralized algorithm.

The problem of privacy in cooperative linear controllers in
a network system is considered in [24] and for solving it Pail-
lier’s scheme is incorporated. The proposed solution, however,
reveals information about rate of changes in private values of
each agent. This issue is resolved in [25] by combining additive
secret sharing with Paillier’s scheme. The problem is viewed
more generally as a private weighted sum aggregation and dis-
cussed further in [26]. We refer the interested readers to [27]
for an overview of the recent applications of cryptography in
dynamical systems.

In this work, we consider the problem of privacy in the net-
worked systems where each agent’s goal is to evaluate a gen-
eral polynomial of her neighboring agents’ private values. Our
solution is based on two cryptographic primitives: the Paillier
encryption technique and secret sharing. Paillier encryption is a
public key partially homomorphic encryption (PHE) [28] which
allows us to evaluate the sum of two values of plaintext using
their ciphertext and secret sharing enables us to distribute shares
of a secret among agents in the network. The main contribu-
tions of this study are as follows:1

(1) The current work extends the class of computed functions
from affine [26], which is customary in linear averaging proto-
cols to general polynomials, i.e. each agent’s target function is

1Preliminary results of this work are presented in [29]. Different from the
conference article, this document presents distributed secret sharing using pseu-
dorandom functions, considers all polynomial coefficients as private, investi-
gates robustness to agent dropouts, provides a formal proof for Theorem 1, an-
alyzes privacy from a system theoretic perspective (see section 5), and provides
a motivating example as well as a new case study.

a polynomial function of her neighbors’ state variable. This ex-
tension, particularly the products of the state variables, substan-
tially complicates the problem and requires a careful analysis to
ensure that no privacy-sensitive information is leaked through-
out the computation. (2) Our algorithm is fully distributed and
hence does not require an external party to evaluate the polyno-
mial functions [23]. As a consequence of (1) and (2), we can
accommodate fully distributed nonlinear, yet polynomial, cou-
pling dynamics in networked systems. (3) Our proposed solu-
tion is robust to dropout of an agent and lightweight in commu-
nication due to the adopted schemes from cryptography. (4) We
establish conditions for privacy preservation of an agent with
respect to a set of colluding agents for the proposed algorithm
using both cryptography and system theory paradigms.

The rest of the paper is organized as follows: In Section 2,
we present necessary cryptographic tools for the paper; Section
3 includes a motivating example for polynomials and formu-
lates the problem of preserving privacy for these functions, and
Section 4 provides a solution for the problem. Privacy analysis
of the proposed method is investigated in Section 5; numerical
results are provided in Section 6, and finally, the paper closes
with conclusions in Section 7.

2. Notations and preliminaries

The sets of positive integer, nonnegative integer, integer, ra-
tional and real numbers are denoted by N, N0, Z, Q, and R,
respectively. We denote the identity matrix of size n by In and
we write [n] := {0, 1, 2, . . . , n} for any n ∈ N. We assume a net-
work of V agents represented by an undirected graph G(V,E),
with node set V = {1, 2, . . . ,V} and edge set E given by a set
of unordered pairs {i, j} of distinct nodes i and j. We denote
the set of neighbors of node i by Ni := { j ∈ V : {i, j} ⊆ E},
and N i := Ni ∪ i. The cardinality of Ni denoted by di := |Ni|

is equal to the degree of node i. Without loss of generality we
consider the state variable of each agent i as a scalar xi ∈ R;
the extension to xi ∈ Rni , ni ≥ 2 is straightforward. We col-
lect the state variables of all agents as x := col(x1, x2, . . . , xV ) =

[x>1 , . . . , x
>
V ]>, the state variables of all agents except for agent

i as x−i := col(x1, . . . , xi−1, xi+1, . . . , xV ) and the state variables
of agent i’s neighbors as xNi := col(x j) j∈Ni .

2.1. Cryptography primitives

The Paillier encryption scheme consists of three steps (Gen,
Enc, Dec). 1) Gen: Given the bit-length (l), generates
(N, P,Q) where N = PQ and P and Q are randomly se-
lected l-bit primes, 2) Enc: Given public key pk = N and
a message m ∈ ZN , pick uniform r ← Z∗N and output c :=
[(1 + N)m.rN mod N2] as ciphertext, 3) Dec: Given the secret
key sk = φ(N) = (P − 1)(Q − 1) and the ciphertext c com-
putes m :=

[
[cφ(N) mod N2]−1

N .φ(N)−1 mod N
]
. Paillier encryption

scheme is chosen plaintext attack secure based on hardness of
decisional composite residuosity problem [30, p. 495-496]. It is
easy to see that for any plaintext m1 and m2 and their respective
encryptions c1 and c2, we have Dec(c1 · c2) = m1 + m2, i.e. the
Paillier scheme is an additively HE also known as a Partially
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Homomorphic Encryption(PHE). We denote the encryption of
a value m by agent i’s public key pki as JmKpki

.
In (t, n)-threshold secret sharing, a third party wants to share

a secret s among some set of n agents a1, a2, . . ., an by giving
each one a share in such a way that only t or more users can
reconstruct the secret. In other words, no coalition of fewer than
t agents should get any information about s from their collective
shares. When t = n and s is l bit length s ∈ {0, 1}l, the third
party chooses s1, . . . , sn−1 ∈ {0, 1}l uniformly and sets sn = s ⊕(
⊕n−1

i=1 si
)
, where ⊕ denotes bitwise exclusive [30, p. 501-502].

The share of agent ai is si.
Paillier scheme only accepts nonnegative integers N0 in its

domain while we are interested in computations over R. There-
fore, an encoding-decoding scheme satisfying homogeneity and
additivity conditions is incorporated. This scheme first dis-
cretizes a value v ∈ R to v̂ ∈ Q, then maps it to an integer
z ∈ Z by choosing an appropriate scale L ∈ N, then to a non-
negative integer using m = z mod Ω, where Ω is a sufficiently
large number. This process is invertible, i.e. given 0 ≤ m ≤ Ω

we can recover v̂ ∈ Q. To simplify the notation, we do not dis-
tinguish between the encoded value and the original real value
of a quantity in modular operations.

3. Motivating example and problem formulation

We begin with an example motivating privacy considerations
in computation of polynomials in networks. The problem for-
mulation will be stated afterwards.

3.1. Motivating example
Control of networked systems and optimization on networks

heavily rely on computation of functions over state variables
of neighboring agents. As mentioned earlier, the focus of this
work is on private computation of polynomial functions. As a
case in point, we provide an example in the context of game
theoretic algorithms.

Consider a group of V = |V| players (agents) that seek a
generalized Nash equilibrium (GNE) of a noncooperative game
with globally shared affine constraints [31]. Feasible decision
set of all players is X :=

∏V
i=1 Γi∩

{
x ∈ Rn :

∑V
i=1 Aixi ≥

∑V
i=1 bi

}
where xi takes values from a local admissible set Γi ⊆ Rni , and
Ai ∈ Rm×ni , bi ∈ Rm are local parameters of player i. In this
game, each player i aims at minimizing her local cost function
Ji(xi, x−i) subject to her feasible decision set Xi(x−i) :=

{
xi ∈

Γi : (xi, x−i) ∈ X
}
, i.e.,

min
xi∈Rni

Ji(xi, x−i) s.t. xi ∈ X(x−i). (1)

A distributed GNE seeking algorithm is proposed in [31] where
at step 1 of this algorithm, each player i ∈ V updates her deci-
sion at time index k as

xi(k + 1) = projΓi

[
xi(k)−τi

(
∇xi Ji(xi(k), x−i(k))−A>i λi(k)

)]
, (2)

where projΓi
(·) is the Euclidean projection operator onto the set

Γi, λi is the Lagrange multiplier, and τi is the step size of player
i.

The gradient of the cost function ∇xi Ji(xi, x−i) is generally
a nonlinear function of decision variables of other players x−i.
Therefore, player i in the game generally needs the value of
x j with j ∈ V for running (2). Putting it differently, player j
must share her decision variable x j with player i. Sharing the
decision variable x j over time can reveal information on the cost
function J j(x j, x− j) which includes privacy sensitive parameters
of player j.

In the case of quadratic cost functions, ∇xi Ji(xi, x−i) is affine
and hence the scheme developed in [26] can be used to evalu-
ate it privately. Moreover, in the context of aggregative games,
[32] and [33] have proposed noncryptographic based solutions
in order to preserve privacy of decision variables. The quadratic
costs and aggregative functions in the mentioned studies are
special cases of the polynomial functions that we consider here.
In this work, we propose a cryptography-based algorithm that
enables a private computation of polynomials over networks,
thereby preserve privacy for a broad range of nonlinear cost
functions appearing in network game-theoretic and optimiza-
tion problems. The choice of studying polynomial functions is
further motivated by the fact that any function continuous on a
closed bounded set can be approximated by a polynomial with a
desired accuracy (see the Stone-Weierstrass approximation the-
orem, e.g. [34, p. 123].)

3.2. Problem formulation
We consider a scenario where at each time index k ∈ [K]

agent i ∈ V in the network G is interested in evaluating a d ∈ N
degree polynomial Pi(xi, xNi ) : R × R|Ni | → R; namely,

Pi
(
xi(k), xNi (k)

)
:=

∑
(p1,p2,p3,...,pm)∈Xi

c(p1 p2 p3...pm)x
p1
1 (k)xp2

2 (k) . . . xpm
m (k)

(3)
where c(·) ∈ R and

Xi := {(p1, p2, p3, . . . , pm) ∈ Nm
0 : p1 + p2 + . . . + pm ≤ d,

j < N i ⇒ p j = 0}.

As we can see (3) depends not only on agent i’s state variable
xi but also on the state variable of her neighbors x j with j ∈ Ni.
We identify private and public values of the agents as: Private
value of agent i is Pvi := {xi, c(·)} that includes her state variable
xi and all the coefficients c(·) in (3), private value of agent j is
Pv j := {x j} with j ∈ Ni, and public values of agent i is the
exponent of state variables in (3), i.e., Xi. Notice that the agent
i shares the public values with agents Ni.

We now provide two privacy assumptions that clarify the
adopted setup in our problem formulation.

Assumption 1 (Honest-but-curious). Agents in a network G
are honest-but-curious, also known as semi-honest, meaning
that they follow the required protocol for interacting with other
agents but are also interested in determining the private values
in the network.

Assumption 2 (Passive Adversary). An adversary A is proba-
bilistic polynomial-time, passive, and communications among
agents are done in her presence. The adversary A can be an
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agent in the network or an external party observing the commu-
nication.

Our aim is to provide a privacy preserving protocol for the
exact evaluation of (3) for agent i. That is to say, only agent i
should be able to obtain the accurate value of Pi without reveal-
ing her own private value Pvi to any other agent j and without
gaining any privacy-sensitive information about Pv j other than
the target function Pi.

4. Proposed algorithm

The solution we provide is based on PHE and secret sharing
techniques. In particular, we use Paillier’s scheme to protect
the privacy of Pvi, and secret sharing for preserving the pri-
vacy of Pv j, with j ∈ Ni. For adopting these schemes in our
privacy preserving algorithm, we rewrite the polynomial (3) in
a new from by making a distinction between its bivariate and
multivariate terms. Namely, we write (3) as

Pi(xi(k), xNi (k)) =
( ∑

j∈Ni

Pi j(xi(k), x j(k))
)

+ Qi(xi(k), xNi (k))

(4)
where

Pi j(xi(k), x j(k)) =
∑
pi,p j

cpi p j x
pi
i (k)xp j

j (k),

with cpi p j ∈ R, and Qi(·, ·) contains the terms with at least two
state variables from xNi . Notice that Pi j is the summation of
bivariate terms in (3), with xi and x j, j ∈ Ni, being the corre-
sponding two variables.

As will be observed, our algorithm leverages additive and
multiplicative secret sharing to preserve the privacy of neigh-
bors of i in the evaluation of (4). The additive secrets will be
primarily used to evaluate the bivariate terms in (4) whereas the
multiplicative secret sharing is exploited to evaluate the mul-
tivariate terms, i.e Qi(·, ·). Motivated by this and to minimize
the required communication in the protocol, we write Qi as a
summation of multiplicative terms, namely:

Qi =

T∑
t=1

Qt
i, Qt

i(xi(k), xNi (k)) :=
∏
j∈N i

W t
j(x j(k)) (5)

with W t
j =

∑
q j

c(t)
q j xq j

j , Qt
i(·, ·) , 0, T ∈ N, and c(t)

q j ∈ R. Note
that W t

j is a univariate polynomial of x j.

Example 1. As an example assume that we have a network
with {{1, 2},{1, 3},{1, 4}} ⊆ E where agent 1 is interested in the
evaluation of the following polynomial:

P1(x1, x2, x3, x4) = 2x2
1x2 + 3x1x3 + 4x1x3

4 + x1x2
2x2

3x4 + 3x1x2
2x3x4.

(6)
Based on the representation (4), we can specify bivariate parts
as P12 = 2x2

1x2, P13 = 3x1x3, P14 = 4x1x3
4. To write the mul-

tivariate parts, after factoring out the term x1x2
2x4, we obtain

W1
1 = x1, W1

2 = x2
2, W1

3 = x2
3 + 3x3, and W1

4 = x4. ♦

Private and public values in (4) remain the same as in (3);
yet take the form Pvi := {xi, cpi p j , c

(t)
q j } and (p j, q j) for private

and public values of agent i, respectively, and Pv j := {x j} with
j ∈ Ni.

4.1. Distributed secret sharing

As mentioned before, we use secret sharing for preserv-
ing the privacy of x j, j ∈ Ni, throughout computation of Pi.
In particular, additive secret sharing is used in the bivariate
part (namely, Pi j) and multiplicative secret sharing over addi-
tively secret shared data is used in the multivariate terms in Pi

(namely, Qi).
To mask intermediate computations [35], we require that ev-

ery agent j ∈ N i have shares of addition sa
j (k) and multiplica-

tion sm
j (k) for all i ∈ V and for all k ∈ [K] such that∏

j∈N i

sm
j (k) ≡ 1 mod Ω (7a)

∑
j∈N i

sa
j (k) ≡ 0 mod Ω, (7b)

where Ω is a publicly known and sufficiently large prime num-
ber and sm

j (k) , 0. The shares sa
j (k) and sm

j (k) are selected
uniformly randomly from the following set:

ZΩ = {0, 1, . . . ,Ω − 1} . (8)

It should be noted that based on the Fermat’s little theorem ev-
ery nonzero element in (8) has a multiplicative inverse, meaning
(∀ω , 0 ∈ ZΩ)(∃ω−1 ∈ ZΩ) such that (ωω−1 ≡ 1 mod Ω),
therefore choosing sa

j (k), sm
j (k) in the required form (7) is fea-

sible [36, p. 63].
We note that although the “secrets” (0 and 1) are known to

the agents, the generation of the shares sa
j and sm

j is analogous
to sharing of a secret s explained in Subsection 2.1, and as
such, we occasionally refer to this scheme as secret sharing (see
also [26] where a similar terminology is used for additive secret
sharing).

Next, we generate the additive and multiplicative shares of
the agents in a fully distributed manner. To this end, every agent
j ∈ N i selects uniformly randomly sm

jh(k) and sa
jh(k) from (8)

such that ∏
h∈N i

sm
jh(k) ≡ 1 mod Ω (9a)

∑
h∈N i

sa
jh(k) ≡ 0 mod Ω, (9b)

for ∀k ∈ [K], where i ∈ V. Then agent j sends sm
jh(k) and sa

jh(k)

for h ∈ N i\ j to agent i through a secure communication chan-
nel, where agent i then sends each share to its corresponding
receiver, agent h. After this step, agent j obtains the addition
and multiplication shares as follows:

sm
j (k) :=

∏
h∈N i

sm
h j(k) mod Ω (10a)

4



sa
j (k) :=

∑
h∈N i

sa
h j(k) mod Ω. (10b)

Notice that the distributed shares sa
j (k) and sm

j (k) obtained in
(10a) and (10b) satisfy the relations (7a) and (7b), respectively.

4.2. Distributed secret sharing using pseudorandom functions

Exchanging |Ni| × |Ni| random numbers in (9a) and (9b) for
every time index k among the agents imposes extra communica-
tion loads in the network. This drawback can be circumvented
using the idea of Pseudorandom Functions(PRFs)[37, p. 79-
159]. A pseudorandom function F : {0, 1}l × {0, 1}l → {0, 1}l,
where {0, 1}l denotes an l-bit sequence, accepts two arguments
as its inputs: a key κ and a seed γ and returns a random number
ρ. PRFs cannot be differentiated from truly random functions
by any efficient procedure that can get the values of the func-
tions at arguments of its choice.

In order to generate addition sa
j (k) and multiplication sm

j (k)

shares for j ∈ N i using PRFs, every agent j ∈ N i randomly
selects κm

jh and κa
jh from (8) such that∏

h∈N i

F(κm
jh, γk) ≡ 1 mod Ω (11a)

∑
h∈N i

F(κa
jh, γk) ≡ 0 mod Ω, (11b)

for some γk ∈ ZΩ to be specified later. Then, agent j sends κa
jh

and κm
jh to h ∈ N i\ j through agent i.

After this step, agent j ∈ N i computes

F(κm
j ) :=

∏
h∈N i

F(κm
h j, γk) mod Ω (12a)

F(κa
j ) :=

∑
h∈N i

F(κa
h j, γk) mod Ω (12b)

to obtain the PRFs that are needed for generating her random
shares. Agent j ∈ N i then is able to get sa

j (k) and sm
j (k) by

evaluating F(κa
j , γk) and F(κm

j , γk) for a specific seed γk.
We remark that (11) and (12) only need to be executed once,

and the agents do not need to communicate with each other
after receiving the key κ. Moreover, we note that the (initial)
seed is a public value, is the same for all agents N i, and should
be distinct for every time index k ∈ [K]. To ensure this, before
the start of the protocol, the agents can agree on a public value,
namely γ0 = S ∈ ZΩ, and then use γk = F(., s(k)) as the seed
for all time.

4.3. The protocol

Now that the additive and multiplicative shares are generated,
we provide an algorithm that enables the private computation
of Pi in (4). To simplify the presentation and ease the notation,
we discuss the required steps for the case that T = 1 (see (5)).
We explain in Remark 1 how the proposed algorithm can be
extended to the case T > 1.

The formal steps of the algorithm is provided in the next page
(see Algorithm 1.) In the sequel, we drop t and the argument k
in xi(k) and x j(k) to simplify the notation. To differentiate be-
tween a generic variable xi (x j, respectively) and its particular
value at a given time index, we denote the latter by xi (x j). Re-
call that the structure of the involved polynomial functions of
(xi, x j) are known but the values xi (x j) are considered private.
Moreover, among the neighbors of agent i a specific agent de-
noted by Di ∈ Ni is distinguished and her role becomes clear
later (see Step 5 and Remark 2).

S1) At the start of the algorithm, agent i chooses indepen-
dently her public key pki and private key ski for the Paillier
scheme; then publishes her public key pki.

S2) Agent i uses her public key pki to encrypt her private
quantities that appear in Pi j(xi, x j) and W j(x j), and sends
the corresponding encrypted terms, namely Jcpi p j x

pi
i Kpki

to
agent j ∈ Ni and Jcq jKpki

to agent j ∈ (Ni \ Di) for all pi, p j

and q j where pi, p j and q j are the exponents of the respec-
tive polynomial for the corresponding agent. The reason
behind this encryption is elaborated in Remark 3. More-
over, she computes µi =

(
sm

i Wi(xi)
)

mod Ω and records
it for Step 4.

S3) Every agent j ∈ (Ni\Di) encrypts sa
j using pki and evalu-

ates the following expressions over the ciphertext

σ j =
∏
pi,p j

(
Jcpi p j x

pi
i Kpki

)x
p j
j Jsa

jKpki
mod N2 (13a)

Jµ jKpki
=

∏
q j

(
Jcq jKpki

)sm
j x

q j
j mod N2, (13b)

then sends σ j and Jµ jKpki
to agent i. By the end of this step,

all computations from the agents j ∈ (Ni \ Di) are carried
out2.

S4) Agent i decrypts Jµ jKpki
received in Step 3 using ski, com-

putes the value

Ψi =
∏

j∈(N i)\Di

µ j mod Ω, (14)

and sends the encrypted values Jcq jΨiKpki
with j = Di and

for all q j to agent j = Di

S5) Agent j = Di, using the values received in Step 4, com-
putes

Ψ j =
∏

q j

Jcq jΨiK
(sm

j x j
q j )

pki
mod N2 (15)

and (13a), and then sends (σ j)(Ψ j) mod N2 to agent i.
The reason behind this step will be made clear in Remark
2.

2In case coefficients cq j ’s are not privacy sensitive, then agent j computes
µ j =

(∑
q j

cq j x
q j
j
)
sm

j mod Ω in (13b).
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S6) Agent i decrypts the received values in (13a) and values in
Step 5 using her secret key ski to obtain

Pi j(xi, x j) + sa
j mod Ω, ∀ j ∈ (Ni\Di)

Pi j(xi, x j) + sa
j +

∏
j∈N i

sm
j W j(x j) mod Ω, j = Di.

S7) Agent i sums the received results in Step 6 and includes
her own share of addition sa

i to obtain∑
j∈Ni

Pi j(xi, x j) +
∏
j∈N i

W j(x j) mod Ω,

where we have used (7a) and (7b). After decoding, the
above expression reduces to Pi(·) in (4) as desired.

Algorithm 1: The protocol for private evaluation of
polynomial (4) at time index k and T = 1

Input:
{
{cpi p j , cq j } j∈Ni , {x j, sa

j , s
m
j } j∈N i

}
Output: Evaluation of Pi(xi, xNi ) given in (4)

1 Agent i generates pki and ski and sends pki to agent
j ∈ Ni

2 for j ∈ Ni do
agent i using pki sends Jcpi p j x

pi
i Kpki

to each agent
j ∈ Ni and sends Jcq jKpki

to each j ∈ Ni \ Di

3 for j ∈ (Ni\Di) do
agent j computes σ j and Jµ jKpki

given in (13a) and
(13b) and sends the result to agent i

4 Agent i computes Ψi given in (14), and sends Jcq jΨiKpki

to agent j = Di for all q j

5 Agent j = Di computes σ j and Ψ j given in (13a) and
(15), then sends (σ j)(Ψ j) mod N2 to agent i

6 Agent i decrypts the received messages from her
neighbors using ski

7 Agent i aggregates the results to obtain
Pi(xi, xNi ) mod Ω

8 Agent i decodes the results to obtain Pi(xi, xNi )

A few remarks are in order concerning the proposed algo-
rithm:

Remark 1 (Extension to T > 1). The proposed Algorithm 1 can
be easily extended to the case T > 1. This requires the agents
Di and i to repeat their tasks (Steps 4 and 5 of the algorithm)
for every multivariate term Qt

i =
∏

j∈N i
W t

j(x j); see (5). In this

case, every agent j ∈ N i also needs T multiplicative shares sm
j

which can be generated by (10b) or (12b). It is worth men-
tioning that when T = 0, i.e. Pi(·) has no multivariate term,
the proposed algorithm needs neither multiplicative shares sm

j
nor the presence of a distinguished neighbor. Working with (4),
rather than (3), allows us to capture this special case properly.

Remark 2 (The role of distinguished neighbor). We de-
signed Steps 4 and 5 of the algorithm such that the value of∑

j∈Ni
Pi j(xi, x j) and that of Qi =

∑T
t=1 Qt

i(xi(k), xNi (k)) in (4) re-
main hidden from both agent i and Di. In fact, agent i can only

evaluate the summation of these two terms, which amounts to
the interested query in (4). Putting it differently, we can remove
the distinguished neighbor from the algorithm at the expense of
revealing the values

∑
Pi j(xi, x j) and Qt

i individually. This may
not readily lead to a privacy breach for other agents, but it pro-
vides agent i with extra information (beyond the query itself)
that can compromise the privacy of her neighbors. Therefore,
the distinguished neighbor Di should be chosen with the con-
sensus of all neighbors of agent i, and without involvement of
agent i in this decision. We again emphasize that the current al-
gorithm is devised such that no information other than the query
Pi(·) will be made available to the agent i.

Remark 3 (Encryption). It should be noted again that coeffi-
cients cpi p j , cq j and the variables xi in Pi j =

∑
pi,p j

cpi p j x
pi
i xp j

j

and W j =
∑

q j
cq j x

q j

j are sensitive data and their encryption are
justified. For this reason, agent i in Step 2 of the proposed al-
gorithm sends encrypted quantities Jcpi p j x

pi
i Kpki

and Jcq jKpki
to

her neighbors. If Pi j has n terms involving x j then agent i has
to encrypt n values and sends them to agent j for each k ∈ [K],
resulting in n × K encrypted values. Clearly, both communi-
cation and computation costs are increased drastically with the
increase of n. A fully homomorphic encryption such as [38]
can be employed to reduce the communication since agent i
can encrypt cpi p j and xi(k) for all k ∈ [K] and allow agent j
to evaluate Pi j(xi, x j) over the ciphertext; leading to n + K + 1
encrypted values for the whole time interval. However, this
benefit comes at the expense of increased computational com-
plexity for agent j due to the high computational load of fully
homomorphic schemes.

Remark 4 (Beyond polynomial functions). We can privately
evaluate a wider class of functions represented by

Pi j(xi, x j) =
∑
pi,p j

cpi p j f (pi)
i (xi) f (p j)

j (x j), W j =
∑

q j

c(q j)g
(q j)
j (x j),

where f (·)
i : R → R, and g(·)

j : R → R. This can be achieved

by treating f (·)
i (xi) as xi, and f (·)

j (x j) and g(·)
j (x j) as x j in Algo-

rithm 1. This generalized class of functions essentially does not
introduce extra communication and computation costs since all
additional computations are performed over the plain text.

For a better illustration of the protocol, we provide a simple
example.

Example 1. (cont.) Consider again the polynomial in (1):

P1 = 2x2
1x2︸︷︷︸

P12

+ 3x1x3︸︷︷︸
P13

+ 4x1x3
4︸︷︷︸

P14

+ x1︸︷︷︸
W1

x2
2︸︷︷︸

W2

(x2
3 + 3x3)︸      ︷︷      ︸

W3

x4︸︷︷︸
W4

.

For the sake of simplicity, we assume x j ∈ Z≥0 for j ∈
{1, 2, 3, 4}, otherwise an encoding-decoding scheme is used. Let
node 4 be the distinguished neighbor. Based on Algorithm 1,
agents 1, 2, 3, and 4 generate multiplicative and additive shares
sm

j , sa
j for j ∈ {1, 2, 3, 4} either through (10) or (12). Agent 1

generates pk1 and sk1 and publishes pk1.
As for the bivariate parts, agent 1 sends J2x2

1Kpk1
to agent 2,

J3x1Kpk1
to agent 3, and J4x1Kpk1

to agent 4. Here, among the
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multiplicative terms, only W3 contains privacy sensitive coef-
ficients; hence, agent 1 sends the encrypted values J1Kpk1

and
J3Kpk1

to agent 3.
In the next step, agent 2 computes

σ2 =
(
J2x2

1Kpk1

)x2Jsa
2Kpk1 mod N2 and µ2 = sm

2 x2
2 mod Ω

and sends the results to agent 1. Meanwhile, agent 3 computes
the following quantities and sends them to agent 1:

σ3 =
(
J3x1Kpk1

)x3Jsa
3Kpk1

mod N2,

Jµ3Kpk1
=

(
J1Kpk1

)sm
3 x2

3
(
J3Kpk1

)sm
3 x3 mod N2.

Next, agent 1 computes Ψ1 =
(
sm

1 x1
)
µ2µ3 mod Ω and sends

JΨ1Kpk1
to agent 4.

The distinguished neighbor 4 computes
σ4 =

(
J4x1Kpk1

)x3
4Jsa

4Kpk1 and Ψ4 =
(
JΨ1Kpk1

)sm
4 x4 mod N2, and

sends back σ4Ψ4 mod N2 to agent 1.
Finally, agent 1 decrypts σ2, σ3, and σ4Ψ4 and aggregates

them with sa
1 to obtain P1. ♦

4.4. Robustness against agent dropouts

The proposed scheme is essentially robust to dropout of an
agent, say j, during the execution of the algorithm. This means
that agent i is able to evaluate a new polynomial P̃i(xi, x(Ni\ j))
that does not include x j. Note that P̃i can be obtained from Pi

by setting p j = 0 in (3).
To endow Algorithm 1 with this capability, agent i notifies

the neighboring agents Ni\ j that agent j is no longer a part of
the computation. By doing so, every agent h ∈ N i\ j should
merge (add or multiply) her own shares with the shares of the
dropped out agent. Namely,

sa
hh(k̃) ≡ sa

hh(k̃) + sa
h j(k̃) mod Ω, sm

hh(k̃) ≡ sm
hh(k̃)sm

h j(k̃) mod Ω,

where k̃ denotes the time index marking the dropout of agent
j. Every agent h ∈ N i\ j obtains sa

h(k̃) and sm
h (k̃) from (10) by

using the updated shares sa
hh and sm

hh, and discarding the shares
sa

jh(k̃) and sm
jh(k̃) which she previously generated for agent j.

Clearly, the newly obtained quantities sa
h(k̃) and sm

h (k̃) satisfy
(7), and can serve as the input of the algorithm from the time
index k = k̃ onward.

5. Privacy analysis

In this section, we focus on privacy preserving properties of
the proposed algorithm. To study such properties, we partition
V into a set of corrupt Vc and noncorrupt agents Vnc, where
the corrupt agents may collude with each other and the noncor-
rupt agents are simply honest-but-curious. We first discuss the
privacy guarantees of Algorithm 1 in the absence and presence
of colluding agents. Then, we shift our focus to a network-level
analysis with multiple queries.

5.1. Local privacy analysis
First, we formally prove the privacy of Algorithm 1 in the

case of no collusion. This shows that no privacy sensitive in-
formation is leaked throughout the communications dictated by
the algorithm.

Proposition 1. LetNi ∩Vc = ∅ and |Ni| > 1. Then Algorithm
1 computes Pi(·) accurately and preserve privacy of Pv j = {x j}

for j ∈ Ni against agent i. Moreover, Algorithm 1 preserves
privacy of Pvi = {xi, cpi p j , c

(t)
q j } against the set Ni.

Proof. The proof uses real and ideal world paradigm to show
the correctness and privacy of the algorithm. Correctness of
the algorithm follows from Assumption 1 and privacy follows
from the security of Paillier and secret sharing schemes. See
Appendix A for a formal proof.

Privacy of the neighbors of i is susceptible to the collusion
of agent i with other neighbors. The reason for the latter is
that, unlike agent i that uses encryption, other agents rely on a
secret sharing scheme. Hence, we formalize next the privacy
guarantees when collusion occurs with agent i.

Theorem 1. Let i ∈ Vc and assume that Di ∈ Vnc. Then
Algorithm 1 computes Pi(·) accurately and protect privacy of
Pv j for j ∈ Ni ∩Vnc, if

|Ni ∩Vnc| > 1.

Proof. The proof is built on Proposition 1 and uses real and
ideal world paradigm to show the correctness and privacy of
the algorithm. See Appendix A.

By Theorem 1, privacy of the neighbors of i is fully preserved
as long as agent i has at least two noncorrupt agents and the dis-
tinguished agent does not collude with agent i. We note again
that if the distinguished neighbor colludes with agent i, the sub-
queries

∑
j∈Ni

Pi j(xi, x j) and Qi in (4) can still be privately and
accurately computed (see also Remark 2).

Remark 5. In the context of (average) consensus the state of the
art definition for privacy is that an adversary cannot estimate
the value of x j with any accuracy (see for example the defini-
tion of privacy in [20]). At the first glance, it seems that privacy
guarantees in Theorem 1 is not stringent enough compared to
this definition. However, we argue that in the consensus type
problems, the proposed method guarantees the same level of
privacy that exists in the literature. The reason is that in the
case of consensus protocols, the function Pi(·) becomes affine,
i.e, W t

j(·) = 0 for all j ∈ V. Hence, as long as i has at least
one noncorrupt neighbor h , j, an attempt of agent i to infer x j

would at best lead to a linear equation of the form x j + xh = b.
It is then clear that agent i cannot estimate the value of x j with
any accuracy, i.e., x j can belong to (−∞,∞). On the contrary,
in the case of polynomial functions, the mere knowledge of the
target function Pi(·) may provide agent i an idea about x j; an
ellipsoid being a simple example. Finally, we recall that the
distinguished neighbors become redundant in the case of affine
functions as they only contribute to the computation of the mul-
tivariate polynomials in (4).
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5.2. Network privacy analysis
So far we have examined privacy concerns that may result

from the computation of Pi(·), for some i ∈ V, following Al-
gorithm 1. Recall that in an interconnected network each agent
aims to compute a function of her neighbors. Analogous to The-
orem 1, we can show that the execution of Algorithm 1 by ev-
ery agent i ∈ V protects privacy of Pv j for j ∈ Vnc. However,
depending on the class of functions to be computed, collud-
ing agents Vc may be able to infer privacy sensitive variables
of noncoluding agents by putting together the results of their
queries and carrying out a posterior analysis. Note that such
potential privacy breach is oblivious to the employed privacy-
preserving algorithm and descends directly from the problem
setup, namely that each agent is computing a function Pi(·).
The interest in studying such privacy considerations is to first
highlight the inevitable limits in the privacy guarantees, and
second to provide the designer of the control/optimization al-
gorithm with valuable privacy related insights.

The first observation is that if the number of noncolluding
agents is greater than the number of colluding ones, namely

|Vnc| > |Vc| ,

then the colluding agents cannot uniquely infer the vector
{x j} j∈Vnc . However, the above guarantee is weak in that it does
not ensure privacy of a specific noncorrupt agent. Next, we in-
vestigate more closely the conditions under which privacy of
a single agent is guaranteed against the collective information
obtained by colluding agents across the entire network.

Let |Vc| = n, |Vnc| = m. Observe that collusion of n corrupt
agents results in a set of polynomial equations:

Φ(xc, xnc) = b, (16)

where xnc = {xi}i∈Vnc , xc = {xi}i∈Vc , b ∈ Rn, and Φ : R(n+m) →

Rn. Here, xnc is the indeterminate set, whereas b, and xc, and the
polynomial functions in Φ are known to the colluding agents.

For technical reasons and in order to write the results more
explicitly, we assume that for each i ∈ Vc, at most one variable
from the set {x j : j ∈ Vnc \ i} contributes to the product of W t

j’s
in (4).

Moreover, without loss of generality assume that the first m
agents are noncorrupt. Consequently, (16) reduces to

a11 a12 · · · a1m

a21 a22 · · · a2m
...

...
. . .

...
an1 an2 · · · anm



P(x1)
P(x2)
...

P(xm)

 = b, (17)

where the nonlinear map P : R → Rr is given by P(α) :=[
α α2 · · · αr

]>
, ∀α ∈ R, and ai j ∈ R1×r. Here r is the

maximum degree of the polynomials in (16), in terms of the
indeterminate variables xnc.

It is illustrative to first look at the special case of affine func-
tions, where r = 1. Then, solutions of (17) are completely
characterized by

xnc = x∗nc + (Im − A+A)v, v ∈ Rm.

where A = [ai j], A+ denotes the Moore-Penrose inverse of A,
and x∗ is the vector containing the true values of {xi}i∈Vnc . Con-
sequently, the value of xi with i ∈ Vnc is uniquely identified if
and only if

e>i Π = 0, (18)

where Π := Im−A+A and ei is the ith unit vector of the standard
basis in Rm. Indeed if (18) holds, then xi = x∗i . Conversely, if
(18) does not hold, then xi has at least two distinct solutions x∗i
and x∗i +

∥∥∥eT
i Π

∥∥∥2
, where the latter is obtained by setting v = ei

and noting that Π2 = Π. The situation for r ≥ 1 becomes more
complex and gives rise to the following result:

Theorem 2. The private variables {xi}i∈Vnc are uniquely iden-
tified from (17) if and only if(

{P(x∗i )} + im(e>i ⊗ Ir)Π
)
∩ im P = {P(x∗i )}, (19)

where “⊗” denotes the Kronecker product and im P = {y ∈ Rr :
∃α, y = P(α)}.

Note that in case r = 1, we have im P = R and the conditions
reduces to im(e>i Π) being zero, which is equivalent to (18).

Proof of Theorem 2: Let yi = P(xi), and y = col(yi), i ∈ Vnc.
Then, we can equivalently rewrite (17) as

Ay = b, (20a)
yi ∈ im(P),∀i. (20b)

Clearly, any solution to (17) satisfies (20). Conversely, any so-
lution to (20) can be mapped back to a solution of (17). Now,
all solutions to (20a) are given by

y = y∗ + (Imr − A+A)v, v ∈ Rmr,

where y∗ = col(y∗i ) with y∗i := P(x∗i ). Looking at the ith block
row, we find that

yi = P(x∗i ) + (e>i ⊗ Ir)Πv, v ∈ Rmr,

where Π = Imr − A+A. Consequently, any solution to (20) satis-
fies

yi ∈
(
{P(x∗i )} + im(e>i ⊗ Ir)Π

)
∩ im P.

Moreover, any yi satisfying the above inclusion is a solution to
(20). We conclude that P(xi), and thus xi, is uniquely identifi-
able if and only if (19) holds.

6. Case study

We demonstrate privacy and performance of the proposed al-
gorithm in a networked system by considering a noncoopera-
tive game as described in subsection (3.1) with |V| = 30. Each
player aims to minimize a cost function given by

Ji(xi, x−i) = aix2
i + xi

( ∑
j∈Ni

ci j,01x j
)

+
∏
j∈N i

(
c j,1x j + c j,2x2

j
)
,

where xi takes value from a local admissible set Γi = [0, 2]. The
actions need to satisfy a global affine constraint

∑
j∈V x j ≥ 1.
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Moreover, we assume that the players adopt the scheme in [31]
for reaching GNE (see (2)) with τi = τ. The dynamics of player
i is then given by

xi(k+1) = projΓi

(
xi(k)−τ(2aixi(k)+

∑
j∈Ni

Pi j+
∏
j∈N i

W j−λi)
)
, (21)

where Pi j = ci j,01x j, Wi = ci,0 + 2ci,1xi and W j = c j,1x j + c j,2x2
j

are the terms specified in (4) and ai, ci j, and c j are player i’s
private cost function parameters, randomly picked from Γi for
the simulation purposes.

The aim here is to privately evaluate (21) using Algorithm 1.
To this end, we set τ = 0.01, and choose the length of Paillier’s
key N and Ω in (8) equal to 1024 and 200 bits, respectively.
We assume that player i has 3 neighbors, and thus her cost
function depends explicitly on decisions of those neighboring
players. The computations are performed3 using a 2.1 GHz In-
tel Core i5 processor drawing on modules from Python library
[39]. Moreover, we have evaluated player i’s decision trajectory
using plain signals, i.e. without any privacy concerns.

As it can be seen from Fig. 1 the trajectory of player i asymp-
totically converges to the origin using the proposed algorithm
similar to the case where a public algorithm is used. This im-
plies that the proposed algorithm introduces no systematic er-
ror in the computation, thereby certifying the correctness of the
scheme (see also Theorem 1). In order to investigate the com-
putation and communication load of the proposed protocol, we
change two parameters in the algorithm: 1) the length of the
Paillier’s key N and 2) number of neighbors of the player. The
length of N(in bits) plays an important role in the security of
the Paillier cryptosystem; generally the greater the length of
N is the more secure the Paillier scheme becomes. As for the
change in the number of neighbors, we execute the algorithm
for the case |Ni| = 9 and |Ni| = 27. The results of the afore-
mentioned changes on the computation time per time-step of
the algorithm are illustrated in Fig. 2.
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Player i decision trajectory
xi using the Algorithm 1
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Figure 1: Trajectory of player i decision variable using Algorithm 1 and plain
data

3https://github.com/teimour-halizadeh/

polynomial-evaluation
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Figure 2: Required computation time for the proposed algorithm with respect
to the key length of Paillier scheme and number of neighbors of an agent

As it is clear from this figure, the computation time increases
linearly with respect to the number of neighbors, O(|Ni|) and
cubically with respect to key length, O((key length)3). Com-
munication load is proportional to the size of the generated ci-
phertext which itself changes linearly in terms of both |Ni| and
bit length of N. It should be mentioned we have not employed
any techniques to optimize the computation time.

7. Conclusion

In this study, we have presented a fully distributed algorithm
for privacy preserving evaluation of a general polynomial over
a network of agents. The algorithm is based on a suitable rep-
resentation of polynomials for network systems, and adopts
PHE technique and multiplicative-additive secret sharing from
cryptographic tools. Furthermore, we have provided sufficient
privacy-preserving conditions both at the agent and the network
level. As observed, the proposed algorithm is robust against
dropout of agents, lightweight in communication and is extend-
able to a class of nonlinear schemes. The numerical investiga-
tions verifies that the algorithm can be used to protect privacy
in a network subject to additional communication and compu-
tation costs. Extension to more general nonlinear functions and
considering possible active adversaries are among directions for
future research.
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Appendix A.

To provide a formal proof, we present the definitions of view
and simulator in a protocol.

Definition 1 (View). [37, p. 283] Let f (x, y) =

( f1(x, y), f2(x, y)) be a function, and let π be a two party pro-
tocol(or algorithm) for computing f . The view of party i (i ∈
{1, 2}) during an execution of π on (x, y) and security parame-
ter n is denoted by Viewπ

i (x, y, n) and equals (w, ri; mi
1, . . . ,m

i
t)

where w ∈ {x, y}, ri is the random number used by party i, and
mi

j, represents the j-th message that she received.

Definition 2 (Simulator). [37, p. 278] Let f (x, y) =

( f1(x, y), f2(x, y)) be a function, and let π be a two party pro-
tocol for computing f . A simulator for party i (i ∈ {1, 2}) Simπ

i
is a probabilistic polynomial-time algorithm which given the
input and output of i , (w, fi(x, y)) where w ∈ {x, y} can result an
output whose distribution is exactly the same as Viewπ

i (x, y, n).

Proof of Proposition 1: To prove this proposition, we use
the simulation based paradigm also known as real/ideal world
[37, Chap. 6]. For the deterministic function (4), the se-
curity of the proposed algorithm can be shown by verifying
its 1) correctness and 2) privacy. The proposed algorithm
is correct since the agents are honest-but-curious and hence
the correct value of Pi(·) is obtained by following the Pro-
tocol 1. To prove privacy of Pv j for j ∈ Ni against agent
i, we need to establish the existence of a simulator Simπ

i for
i. The input of agent i, meaning the information set she
commits to the protocol is

{
{cpi p j , cq j } j∈Ni , xi, sa

i , s
m
i , pki, ski

}
:=

Ii and the input of all agents involved in Algorithm 1
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is
{
{cpi p j , cq j } j∈Ni , {x j, sa

j , s
m
j } j∈N i

, pki, ski
}

:= I. The View
of agent i participating in Algorithm 1 given the set I is
Viewπ

i (I) =
{
Ii, {σ j, µ j} j∈(Ni\Di), σDi + ΨDi

}
, where σ j, µ j and

σDi + ΨDi are values received by agent i in Steps 3 − 5 of
the proposed algorithm. Given Ii and the output of the algo-
rithm Pi(xi, xNi ) the simulator output is Simπ

i (Ii,Pi(xi, xNi )) ={
Ii, {σ̂ j, µ̂ j} j∈(Ni\Di), σ̂Di + Ψ̂Di

}
. We claim that Viewπ

i (I)
c
≡

Simπ
i (Ii,Pi(xi, xNi )), that is they are computationally indis-

tinguishable. This is true since Simπ
i can pick the values{

{σ̂ j, µ̂ j} j∈(Ni\Di), σ̂Di + Ψ̂Di

}
uniformly randomly from (8) with

the condition that they satisfy the output of the protocol,
Pi(xi, xNi ). The Simπ

i can do so since |Ni| ≥ 2 and hence there
exists at least two additive shares sa

j and sa
h (where h ∈ Ni\ j),

and two multiplicative shares sm
j and sm

h to enable it to calcu-
late µ̂ j and σ̂ j and σ̂Di +Ψ̂Di with the same distribution as µ j, σ j

and σDi + ΨDi . Therefore, the privacy of Pv j for j ∈ Ni is pre-
served by Algorithm 1. Moreover, agent j ∈ Ni only receives
as a private value mi

1 = Jcpi p j x
pi
i Kpki

, mi
2 = Jcq jKpki

( j , Di) and
mi

3 = Jcq jΨiKpki
( j = Di) from agent i(Step 2 and 4 of Algorithm

1) which are encrypted values by Paillier’s scheme. Since this
scheme is semantically secure and agent j does not have the se-
cret key ski, agent j’s view is computationally indistinguishable
from random numbers m̂i

1, m̂
i
2, m̂

i
3 ∈ Z

∗

N2 . Therefore, the privacy
of Pvi is preserved by Algorithm 1.

Proof of Theorem 1: Correctness of Algorithm 1 is simi-
larly proved as of Proposition 1. Given the agent i, we need
to prove the privacy of Pv j for j ∈

(
Ni ∩ Vnc

)
:= Vi

nc

against
(
N i ∩ Vc

)
:= Vi

c and for that we need to estab-
lish the existence of a simulator Simπ

Vi
c
. We consider the

worst case scenario, i.e. |Vi
nc| = 2, meaning there are only

2 noncorrupt agents among the neighbors of agent i. Sup-
pose that Vi

nc = {h,Di} where h , Di. The input of col-
luding agents Vi

c is
{
{cpi p j , cq j } j∈Ni , {x j, sa

j , s
m
j } j∈Vi

c
, pki, ski

}
:=

IVi
c

and the input of parties involved in Algorithm 1 is{
{cpi p j , cq j } j∈Ni , {x j, sa

j , s
m
j } j∈N i

, pki, ski
}

:= I. The View of
Vi

c participating in the proposed algorithm given the set
I is Viewπ

Vi
c
(I) =

{
IVi

c
, σh, µh, σDi + ΨDi

}
where σh, µh

and σDi + ΨDi are values received by the set Vi
c in Steps

3 − 5 of the proposed algorithm. The simulator output is
Simπ

Vi
c
(IVi

c
,Pi(xi, xNi )) = {IVi

c
, σ̂h, µ̂h, σ̂Di + Ψ̂Di }, given IVi

c

and the output of the algorithm. The claim is Viewπ
Vi

c
(I)

c
≡

Simπ
Vi

c
(IVi

c
,Pi(xi, xNi )), they are computationally indistin-

guishable. To see this, the simulator uses IVi
c

and Pi(xi, xNi )
to have the evaluation of Pi(xi, xh, xDi ) = Pih(xi, xh) +

PiDi (xi, xDi ) + ξWh(xh)WDi (xDi ), where ξ :=
∏

j∈Vi
c
W j(x j) is

also known to the simulator. Then, the Simπ
Vi

c
picks ŝa

h, ŝa
Di

, ŝm
h ,

and ŝm
Di

randomly from (8) such that (7a) and (7b) hold. Next, it
selects randomly x̂h and x̂Di from (8) such that Pi(xi, xh, xDi )
holds. Finally, the simulator outputs σ̂h = Pih(xi, x̂h) + ŝa

h and
µ̂h = ŝm

h Wh(x̂h) for agent h, and σ̂Di + Ψ̂Di = PiDi (xi, x̂Di ) +

ξ(µ̂h)(ŝm
Di

Wh(x̂Di )) + ŝa
Di

for agent Di. The set Vc cannot dif-
ferentiate between xh and x̂h for agent h, and xDi and x̂Di for
agent Di since σh, µh, σDi + ΨDi have the same distribution as
σ̂h, µ̂h, σ̂Di + Ψ̂Di . Therefore, the privacy of Pv j for j ∈ Vi

nc

againstVi
c is preserved.
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