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Abstract. In recent years, the speed and quality of data analysis have
been hindered by an increase in data size, an increase in data dimension-
ality, and the expensive task of data labeling. Much research has been
conducted in the field of Unsupervised Feature Selection (UFS) to coun-
teract this hindrance. Specifically, filter UFS methods are popular due
to their simplicity and efficiency in counteracting performance problems
in unlabeled data analysis. However, this popularity resulted in a great
variety of filter UFS methods, each with their own advantages and disad-
vantages, making it hard to choose an appropriate method for a particu-
lar problem. Unfortunately, an inappropriate method choice can lead to
a decrease in research or project quality, and it can render data analysis
unfeasible due to time constraints. Importantly, terminating a method’s
analysis before completion means in most cases that no partial results are
obtained either. Previous works on the evaluation of filter UFS methods
focused mainly on assessing clustering and classification performance.
Although very useful, choosing an appropriate method often requires
knowledge about the method’s runtime as well. In this paper, we study
the runtimes of six popular filter UFS methods using synthetic and real-
world datasets. Runtime prediction models were trained on 114 synthetic
datasets and tested on 29 real-world datasets. The models showed good
performance on four out of the six methods. Finally, we present general
runtime guidelines for each method. To the best of our knowledge, this
is the first paper that investigates methods’ runtimes in this fashion.

Keywords: Feature Selection, Unsupervised Feature Selection, Run-
time Prediction, Execution Time Prediction, Filter Methods.
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1 Introduction

Feature Selection, also known as Attribute or Variable Selection, concerns se-
lecting a subset of the most relevant features from a dataset. Selecting the most
relevant features can be useful to achieve three main goals: improve prediction
accuracy, faster predictions, and a better understanding of the phenomena that
the data represent [1]. The importance of Feature Selection increases as the data
grows in the number of objects and especially in the number of features, yielding
all sorts of problems relating to the “curse of dimensionality” [2]. A high num-
ber of features requires more computational resources; if many features need to
be analyzed, the speed of both the training and the predictions of a learning
algorithm decrease. Furthermore, an excess of features reduces generalization
capabilities and may negatively affect predicting performance [3]. Additionally,
it is harder to understand the underlying mechanisms that the data describes
when many irrelevant features clutter the relevant ones [1]. Feature Extraction
is another closely related dimensionality reduction strategy with similar advan-
tages to Feature Selection. However, Feature Extraction, which includes methods
such as principal component analysis, unclearly transforms the relevant features,
complicating the interpretation of the data [4, 5].

According to the availability of information in the data, datasets can be classified
as completely labeled, partially labeled, or completely unlabeled. Fully labeled
datasets require supervised methods, partially labeled require semi-supervised
methods, and unlabeled datasets require unsupervised feature selection meth-
ods. The labels of objects in a dataset can be categorical, ordinal, or continuous
[6]. These labels can, for example, describe what kind of animal the features rep-
resent, the place a bowler got in a bowling competition, or how happy a person
says she is. Such labels are often not available, especially where high-dimensional
data is present, such as in text mining, bioinformatics, and social media [3, 7].
Moreover, data labeling is expensive in both time and money because the labels
need to be accurate, requiring qualified human labor [8]. Therefore, for unlabeled
data, Unsupervised Feature Selection (UFS) methods are often used. Other im-
portant advantages of UFS methods include that these methods perform well
when prior knowledge is unavailable and that they are less prone to overfitting
[1]. UFS methods can be subdivided further into three categories: filter, wrap-
per, and hybrid methods [6, 9]. Filter methods are the fastest and most scalable
methods, and they work independently of the classifier. Wrapper methods use a
classifier or learning algorithm to evaluate a subset of features, which generally
makes it much more computationally expensive. Moreover, wrapper methods
need to be entirely retrained when a different classifier is used. Hybrid (em-
bedded) methods aim to be a mixture of filter and wrapper methods, trying to
balance the two approaches to get the benefits of both [9]. However, the integra-
tion of filter and wrapper approaches is generally insufficient, leading to lower
classification performance [7].

Because of the advantages of the filter approach, many methods have been
developed in this UFS category [6]. As a consequence, choosing an appropriate
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method for the task at hand can be time-consuming and difficult. A choice of
a UFS method is important because of two reasons. First, one wants to obtain
the best possible insight from the data, which entails optimal understanding,
optimal clustering and classification performance. Missed or uncertain insights
might result in less fruitful research. Second, there is limited time available for all
research. Depending on how limited the time is, a method must be selected that
operates within these time constraints. Problems arise especially if it is unknown
a priori how long these methods take to analyze a dataset. The runtime of a
method analyzing a certain dataset could take several days, and larger datasets
might take months or longer, even with fast hardware and software. The setup
of a research project must be adjusted to the runtime of a method, which can
mean sacrificing clustering and classification performance for runtime gains.

Solorio-Fernández et al. [7] saw the lack of and need for a comprehensive
empirical study to enable users to choose an appropriate filter UFS method.
The authors systematically analyzed the performance of 18 filter UFS meth-
ods, which were applied on 75 datasets. They also scored the methods based
on clustering and classification performance. Consistent with the literature, the
authors found that statistical-based methods generally had the worst cluster-
ing and classification performance, but they were the quickest methods. On
the other hand, multivariate spectral/sparse-learning-based methods had signif-
icantly higher scores for clustering and classification, but they were substantially
time-consuming. Furthermore, Solorio-Fernández et al. [7] reported the runtimes
for every method ran on a dataset, which illustrated that some methods ana-
lyze a dataset in fractions of a second and some take more than seven days. As
time constraints affect research quality, and Solorio-Fernández et al. [7] showed
that there is a high variation in runtimes between methods, further research on
method runtimes is needed to make a good a priori decision for a certain UFS
method. Additionally, the number of objects also affects the runtime, as meth-
ods need to analyze more data. Moreover, datasets with millions and trillions
of features already exist, for example, the MovieLens dataset (over 20 million
objects) and the Google Books Ngram dataset (over 10 billion objects) [10, 11].
Furthermore, the feature sizes are very likely to further increase according to
Bolón-Canedo et al. [12]. So, even if the runtimes shown by Solorio-Fernández
et al. [7] are not problematic with maximums of 12960 objects and 2283 features,
runtime problems are bound to arise with much bigger dataset sizes. Moreover,
terminating a running method before completion means that no partial results
can be obtained unless complicated changes to the methods are made.

To help users choose an appropriate method with respect to these runtimes
issues, we investigate six popular UFS methods by predicting their runtimes
based on the number of objects and features of a dataset. As a result, we con-
tribute to the runtime knowledge of filter UFS methods by providing prediction
models and general runtime guidelines. We examine the runtime performance
of the six filter UFS methods available in the scikit-feature package created by
Li et al. [3], which contains the implementation of some classical, relevant and
more cited methods in the literature. We now present a brief overview of these
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six methods. The runtime prediction of the six methods will be discussed in the
Methodology section.

The rest of the paper is organized as follows: Section 2 describes the filter UFS
methods analyzed in this study. Section 3 describes the evaluation methodology
used in our experiments. Section 4 reports the experimental results. Section 5
discusses the main insights and the general runtime observations derived from
our experiments. Finally, Section 6 concludes the paper and provides some di-
rections for future work.

2 Filter UFS Methods

According to Alelyani et al. [4] and Solorio-Fernández et al. [6, 7], filter UFS
methods can be categorized into univariate and multivariate methods. We de-
scribe the key characteristics and the corresponding methods of both categories
in Sections 2.1 and 2.2.

2.1 Univariate Methods

Univariate methods evaluate features separately and score a feature based on a
certain criterion. Consequently, these methods do not have to solve the compu-
tationally expensive combinatorial optimization problem of selecting a feature
subset [13]. Therefore, relevant features are found relatively quick. However, re-
dundant features (those highly similar to other features) cannot be filtered out
because features are not compared to other features, potentially leading to su-
perfluous features in the selected set of features.

Low Variance: This relatively simple method ranks the features based on their
variance [5, 14]. The underlying idea is that features that differ more in value are
more relevant to uncover the underlying mechanisms in a dataset and to help
differentiate instances between different classes [3]. Features with a low variance
often do not carry much relevant information and do not differentiate between
classes [7].

Laplacian Score: This method developed by He et al. [15] scores the impor-
tance of a feature by analyzing how well it preserves the locality. The Laplacian
matrix is derived from the distance between data points, so the method can
capture and analyze the local structure in the data space, which is often more
important than the global structure [15]. Each feature is individually scored, and
the top k features with the lowest Laplacian Score are selected [3].

SPEC: SPECtrum decomposition, created by Liu et al. [5], extends on the
Laplacian Score method and is also built on a similar idea: “a feature that is
consistent with the data manifold structure should assign similar values to in-
stances that are near each other” [3]. This method ranks the features based on
a consistency score calculated by three different criteria [5].
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2.2 Multivariate Methods

A multivariate approach entails that subsets of the feature set are evaluated and
scored together. Because of this, they are able to filter out both irrelevant and
redundant features. However, selecting a (sub)optimal subset of a set of features
is computationally expensive, as illustrated by the “subset sum” problem [16].
Even though the multivariate methods try to approach this problem efficiently,
multivariate methods are generally much slower than univariate methods [4, 6, 7].

MCFS: The Multi-Cluster Feature Selection method developed by Cai et al.
[13] selects features “that can cover the multi-cluster structure of the data where
spectral analysis is used to measure the correlation between different features”
[3]. As with previous methods, a Laplacian Matrix is constructed. The MCFS
method takes the first k eigenvectors of this Laplacian matrix and calculates the
importance of features by a regression model with l1 norm regularization [13].
After solving the regression problems, a coefficient is computed where a high
MCFS score means that the feature is important [3].

UDFS: Yang et al. [17] propose the Unsupervised Discriminative Feature Selec-
tion method, which uses both the discriminative information and feature correla-
tions to select features [3, 7]. UDFS efficiently optimizes the l2,1 norm regularized
minimization problem with orthogonal constraint Yang et al. [17]. The UDFS
method trains a linear classifier which obtains the highest local discriminative
score for all features [3]. As with MCFS, the higher the score, the more impor-
tant the feature is [17].

NDFS: The Nonnegative Discriminative Feature Selection method by Li et al.
[18] first uses spectral analysis with nonnegative and orthogonal constraints to
learn pseudo-class labels, and these labels are defined as nonnegative real values.
Afterwards, the authors introduce a novel iterative algorithm to efficiently solve
the l2,1 norm regularization problem NDFS creates. The top k features that most
relate to the pseudo-class labels are selected [18].

3 Methodology

The general protocol of our study is as follows: First, we measured the runtime
of the six UFS methods on 114 synthetic datasets. Then, we used four differ-
ent regression models to fit these runtimes based on the number of objects and
features of a dataset. Subsequently, we evaluated the performance of these re-
gression models using 10-fold cross-validation. Finally, we tested the best method
per model on 29 real-world datasets.

First, we discuss the synthetic and the real-world datasets. Second, we elabo-
rate on the four regression models and how we evaluate them. Lastly, we discuss
the software and hardware specifications used in this study, including the pa-
rameter settings for the methods, the way of measuring runtimes, and details on
the CPUs.
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3.1 Datasets

To construct good models, good training data is needed. In our case, good train-
ing data means a considerable number of datasets with spread-out dimensions.
Runtime patterns become more apparent for both humans and runtime predic-
tion models when they evenly cover a larger part of the space of the number of
objects and features. Therefore, to get training data that meets these conditions,
we generated synthetic datasets SD with stepwise differing dimensions in both
the number of objects and the number of features. These dimensions range from
500 objects and 500 features until, but not including, 10,000 objects and 10,000
features with a step size of 500. However, we constrained the maximum size per
dataset to 10,000,000 data points. The number of data points is estimated as
the product of the number of objects and the number of features. This means
that datasets were only generated when this product is lower than or equal to
the maximum size. Mathematically:

SD = {Dij |i = 500, 1000, 1500, . . . , 9500;

j = 500, 1000, 1500, . . . , 9500;

i× j ≤ 10, 000, 000}
(1)

whereDij represents a dataset composed of i objects and j features. For example,
a dataset of 8,000 objects and 4,000 features would not be generated, but a
dataset with 4,000 objects and 2,500 features would have been generated. This
resulted in 114 synthetic datasets in total.

The maximum size constraints for objects and features were chosen to keep
the runtimes within the time and resource limits of the study. Furthermore, the
datasets were generated with certain parameters, which are described in detail in
Table 1. Note that the hypercube size value indicates the multiplication factor
of the hypercube. This factor influences the spread of clusters/classes, which
might make it easier for methods to converge. The effect of the hypercube size
multiplication factor on the runtime is not part of our research. However, we
varied this factor to improve the generalization of our runtime prediction models.
Furthermore, the dataset generation parameter values were designed in a way
to mimic real-world datasets. As a last note, all the default settings4 were used
for the parameters not described in the Table 1.
In addition to the synthetic datasets, we tested the runtime prediction models
on real-world datasets to verify their performance. These were taken from the
ASU Feature Selection Repository [3]. These datasets are all different types of
data: text, face images, handwritten images, biological, amongst others. Further
details of these real-world datasets can be found in Table 2. Both the synthetic
and the real-world datasets were standardized to have a mean of 0 and a standard
deviation of 1, as recommended by [14].

4 Further general description and default settings of the parameters can be
found on https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make
classification.html.
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Table 1: Synthetic dataset details.

Index Objects Features
Informative
features

Redundant
features

Classes
Clusters
per class

Randomly
labeled

Hypercube
size

1.5330.018328432315005001
0.6150.43511917422150010002
2.4510.222127718950015003
2.3650.25633171850020004
2.0080.16721011614150025005
0.8720.22512714418950030006
1.2470.15412931850035007
0.9870.2582316311250040008
1.2340.262111511050045009
0.9170.4163188983500500010
1.6930.338210176165500550011
2.0320.137318221158500600012
1.4310.281127227183500650013
1.3190.189232375500700014
1.4700.465310181121500750015
1.1850.04923196179500800016
2.3690.47011378183500850017
1.0090.4973678122500900018
1.6330.28623238107500950019
1.3840.2783329158100050020
1.2130.371381403331000100021
2.1170.467216361981000150022
0.7440.437223128851000200023
1.5750.375184063571000250024
0.8860.323116462621000300025
0.9460.0201131884811000350026
0.7470.088183444781000400027
0.8080.3102231381000450028
1.2990.0653224663731000500029
0.7360.0401303341251000550030
0.6750.2323221963191000600031
0.6080.3481124723871000650032
2.3130.0973102944291000700033
0.7370.059118200691000750034
0.5460.0452161811951000800035
0.8370.013383531841000850036
2.4420.4202101133701000900037
1.7280.0593214853221000950038
1.9620.049124182541150050039
0.6870.0722186893981500100040
1.9930.117121382881500150041
2.1220.459285641901500200042
0.5680.4853203301841500250043
2.4110.2433122857031500300044
2.1560.3052175983121500350045
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Table 1 continued from previous page

Index Objects Features
Informative
features

Redundant
features

Number
of classes

Clusters
per class

Randomly
labeled

Hypercube
size

1.3100.2862111186541500400046
2.1090.267124314121500450047
1.1500.288394555811500500048
1.8240.223330732191500550049
1.3390.08336504511500600050
1.6530.313345866561500650051
0.5020.10819537546200050052
1.1810.3031253883792000100053
0.6200.0751107762172000150054
1.0160.4392257217262000200055
0.6690.451337118292000250056
1.9550.4773222584852000300057
2.1670.2481295067782000350058
1.7040.4673194954132000400059
1.8400.2001195262382000450060
1.2300.2342295142382000500061
1.4540.227320677606250050062
2.0850.037321102510562500100063
1.1570.4333899011162500150064
0.7440.29621612086232500200065
1.1780.379187575012500250066
0.8000.221354682572500300067
2.3770.49911084011912500350068
2.1270.470192813992500400069
2.4680.139319732826300050070
1.8960.4223162456543000100071
2.0580.339169676463000150072
2.2860.0112256317653000200073
1.7020.23611966810483000250074
2.3700.261316114010063000300075
2.3640.309310411445350050076
1.3010.1341171685263500100077
1.7290.2691174515743500150078
1.6450.0511828010473500200079
1.4410.1922214071623500250080
2.2440.24322910431445400050081
0.8480.063227572334000100082
1.0540.45331122214744000150083
2.1860.06712048817274000200084
1.1560.38938155513874000250085
2.4030.19826169373450050086
1.6400.364231074754500100087
0.5440.1251710676994500150088
1.7060.2573212098394500200089
0.7890.0582215881496500050090
0.6540.49934171721225000100091
0.9720.16424198023575000150092
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Table 1 continued from previous page

Index Objects Features
Informative
features

Redundant
features

Number
of classes

Clusters
per class

Randomly
labeled

Hypercube
size

2.2650.29521411433845000200093
1.4830.028331162875550050094
1.1240.217137725265500100095
1.6640.475223149314395500150096
1.4590.4972288792028600050097
1.1120.0683529449336000100098
1.2830.17923293522486000150099
1.3260.2552276364806500500100
1.4250.206229314245365001000101
1.6080.4021202502292065001500102
1.2940.068325103013177000500103
1.0660.0602225894570001000104
1.8150.03731834401877500500105
1.3350.334218323283575001000106
1.5730.4702216902668000500107
0.5740.4341142334260580001000108
1.4320.440325277426308500500109
0.7420.0371233706345185001000110
1.5240.33731822876619000500111
2.2060.2663193700215090001000112
1.7190.482314358247499500500113
1.9310.1272192531433095001000114

3.2 Runtime Prediction Models

For our experiments, we use four models, namely simple linear regression, multi-
ple linear regression, power regression, and exponential regression. We use these
relatively simple models for the three following reasons:

1. The number of objects and the number of features of a dataset are the only
two independent variables in our study. Therefore, models that sophistically
select or independently weight variables are excessive.

2. We assume that users generally want to know a good runtime approximation
of a method in terms of seconds, hours, days, months, or years. Therefore,
a runtime approximation would be sufficient to help users in choosing an
appropriate filter UFS method, which simpler models can give. How many
seconds or days exactly it will take will likely be less relevant.

3. Precise runtime prediction of UFS methods running in different environments
is out of the scope of this paper because it is expensive in both time and
hardware resources. Runtime predictions vary based on the environment in
which the methods are run due to different hardware arrangements and other
tasks being run in that environment. Simple models can more easily use and
adapt to their own environment.
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Table 2: Real-world datasets.

Number of objects Number of features Number of classesIndex Name

26617Isolet 15601
151024Yale 1652
401024OLR 4003
102400WarpAR10P 1304
22000Colon 625
102420WarpPIE10P 2016
53312Lung 2037
201024COIL20 14408
94026Lymphoma 969
44434GLIOMA 5010
27129ALLAML 7211
25966Prostate-GE 10212
45748TOX-171 17113
27070Leukemia 7214
99712Nci9 6015
119182Carcinom 17416
210000Arcene 20017
1010304Orlraws10P 10018
1010000Pixraw10P 10019
24322RELATHE 142720
23289PCMAC 194321
24862BASEHOCK 199322
311340CLL-SUB-111 11123
222283GLI-85 8524
219993SMK-CAN-187 18725
10256USPS 929826
2500Madelon 260027
7325Lung-small 7328
25000Gisette 700029

The three reasons above-mentioned lead us to use simple models that are easy
to understand. From the simpler models, we selected those which were expected
to perform well based on visual inspection of the runtimes. Additionally, we
selected models based on the time complexity of a method, which were only
available for the SPEC and MCFS methods. In the following subsections, we
describe the runtime prediction models used in our experiments. It is important
to mention that for simple and multiple linear regression models, the objective
functions were given, whereas we merely present the model’s predicted runtime
per sample for power regression and exponential linear regression. Moreover, for
all models, we do not estimate a y-intercept because we expect the runtime to
approach 0 when the number of objects and features approach 0. Using a y-
intercept might result in overfitting on the training data and worse values for
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the remaining parameters. Lastly, all the runtimes and the corresponding errors
are presented and calculated in seconds throughout the whole paper.

Simple linear regression Let yi and βxi (i = 1, ..., n, with n denoting the
number of samples) be the true and the fitted runtime, respectively. A sample
consists of a dataset and the corresponding true runtime of one method. The
criteria of fitting S is when the sum of squared residuals of the linear regression
model is minimal, i.e.:

S(β) =

nX

i=1

ε̂2i =

nX

i=1

(yi − βxi)
2 (2)

where the coefficient β is the slope of the linear regression line tuned to minimize
the residual sum of squares between the true and fitted runtimes, ε̂2i denotes the
squared fit error of sample i, and xi is defined as the product of the number of
objects and features of the dataset of sample i (the total number of data points
of a dataset).

Multiple linear regression Similar to Equation 2, the objective function S
of the multiple linear regression model is defined as:

S(β1,β2) =
nX

i=1

ε̂2i =

nX

i=1

(yi − β1xi1 − β2xi2)
2 (3)

where the coefficients β1 and β2 denote the corresponding slopes of the regression
lines of xi1 and xi2 which are fitted to minimize the residual sum of squares, yi
and ε̂2i are defined the same as in Equation 2, and xi1 denotes the number of
objects and xi2 represents the number of features of the sample dataset i.

Power regression The power regression model best models situations where
the runtime equals the independent predictor variables raised to a power. As
previously described, Equation 4 represents the fitted runtime of one sample.
Consequently, the power regression model is defined as:

ŷ = β1x
β2

1 xβ3

2 (4)

where ŷ denotes the fitted runtime, x1 and x2 denote the number of objects
and features of a dataset, respectively, and the parameters β1, β2 and β3 are
minimized with the Trust Region Reflective algorithm [19].

This function is inspired by both visual inspection of the method runtimes
and the time complexity of the SPEC and MCFS methods. It allows different
effects of both object and feature numbers through β2 and β3, but they still
influence each other because they are multiplied. In other words, the effect of
the number of objects on the runtime is partially determined by the number of
features and vice versa.

UFS Runtime Prediction
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Exponential regression This model combines exponential and linear regres-
sion. As with Equation 4, Equation 5 represents the fitted runtime. The Expo-
nential and Linear regression model is defined as:

ŷ = β1e
(β2x1)β3x2 (5)

where ŷ denotes the fitted runtime, x1 can either be the number of objects or
the number of features of a dataset and x2 is the remaining option, and β1, β2

and β3 are minimized with the Trust Region Reflective algorithm.
The design of this model is set up to let x1 have a strong exponential influence

on the runtime prediction and x2 to have a secondary linear role. These roles are
inspired by the plots presented in the results section and more detailed investiga-
tion of the effect on the runtime by only changing either objects or features sizes.
From now on, we refer to the exponential regression model with x1 denoting the
number of objects and x2 denoting the number of features as Expobjects. Simi-
larly, we refer to the exponential regression model with x1 denoting the number
of features and x2 denoting the number of objects as Expfeatures.

3.3 Model Evaluation Criteria

The performance of the runtime prediction models on the synthetic datasets
is evaluated by 10-fold cross-validation, as recommended in the literature [20–
22]. Additionally, we evaluate the performance of the best runtime prediction
models tested on the real-world datasets. Both the cross-validation folds and the
performance on the test set are scored with two error measures, namely Mean
Absolute Error (MAE) and the Root Mean Squared Error (RMSE).

Let yi and ŷi (i = 1, ..., n, with n denoting the number of samples) be the
true and the fitted runtime, respectively. The MAE and RMSE measures are
defined as follows:

MAE(y, ŷ) =
1

n

nX

i=1

|yi − ŷi| (6)

RMSE(y, ŷ) =

vuut 1

n

nX

i=1

(yi − ŷi)2 (7)

where y and ŷ denote all n true and fitted runtimes of one method, respectively.
MAE represents the average prediction error and is not prone to outliers. In
contrast, RMSE is sensitive to outliers because the error is squared initially [22,
23]. The combination of MAE and RMSE provides information on the origin
of the error values. If the MAE and the RMSE are relatively close together,
the prediction errors are relatively even in size across the test sets. If the error
measure values lie relatively far apart, it means that some runtime prediction
errors were much bigger than others.
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3.4 Software and Hardware Specifications

For our experiments, we use the six UFS methods available on the ASU Feature
Selection Repository [3], and we adapted5 them to make them suitable for the
newer versions of Python and the machine learning package scikit-learn [24].
As mentioned before, these methods belong to the most used and most cited
methods in the literature, and they are a good representation of the variety
among filter UFS methods (see the taxonomy in Solorio-Fernández et al. [6]).
We used the default parameter settings given in the ASU Feature Selection
Repository for the six methods [3]. Additionally, each method selects 100 features
from the given dataset, apart from the Low Variance method. The Low Variance
method selects the features with a variance higher than p(1− p), where p is the
variance threshold. We used the default setting of p = 0.1. The runtime of a
method on a dataset is determined by the time it took the methods to return
the selected features from the time the data was passed to the method. The
timing was done with the time function of the time module in Python.

The experiment was run on the Peregrine compute cluster of the University
of Groningen, which made it possible to run the methods on the quantity and
dimensions of the datasets as previously described. Moreover, a compute cluster
provides the additional advantage of more reliable runtimes because the system
is less cluttered by other tasks demanding a machine’s resources, such as software
updates and antivirus programs. To run something on a compute cluster, one
must create a job script to specify what needs to be done. The univariate methods
were used to analyze all datasets in one job, which in our case means that the
methods analyzed all the datasets consecutively on the same node and CPU.
For the slower multivariate methods, we submitted many individual jobs where
the methods analyzed one to three datasets at a time, depending on expected
and observed runtime. This division of datasets onto many jobs allowed us to
get the runtime data in a reasonable period of time.

All these jobs were run on Intel Xeon E5 2680v3 CPUs @ 2.5 GHz. Because
not all cores are in use all the time, the clock speed could be as high as 3.3
GHz. Furthermore, the jobs were run with 8 GB of reserved memory. The only
exceptions to this are the jobs for UDFS and NDFS, where they analyzed the
GLI-85 and the SMK-CAN-187 datasets for which they could use up to 64 GB
of memory. 8 GB memory resulted in memory shortage errors. The OS of the
Peregrine high-performance cluster when running the experiment was CentOS
Linux, release 7.8.2003. The versions of the Python packages are available in the
requirements text file on the GitHub page of this paper.

5 Further details on the specific requirements and adaptations can be found on the
GitHub repository of this paper https://github.com/FeatureSelection/UFS
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4 Experimental Results

In this section, we present the evaluation of the runtime prediction models. First,
we describe the figures and tables. Afterwards, the methods are discussed in the
same order as in Section 2, i.e., Low Variance, Laplacian Score, SPEC, MCFS,
UDFS, and NDFS. Each method is discussed based on the observed patterns
on Figures 1, 2 and 3, which helped in the design of the models. Afterwards,
we assessed the models by using the error criteria presented in Table 3. Finally,
we present the final runtime prediction model for each method based on this
analysis and test them on the real-world datasets visible in Figure 4 and Tables
4 and 5.

4.1 Description of Figures and Tables

The plots with the runtimes of each method applied on the synthetic datasets
are shown in Figures 1, 2 and 3. The position of the points on the vertical axis
represents the time a method took to analyze a dataset. Additionally, there
are legends encoded by color which represent the category of the points in the
figure. Figures 1, 2, and 3 differ in what the x-axis represents. Figure 1 has the
number of objects of the analyzed dataset on the x-axis. The number of features
of the same dataset is represented by the size of the point with the principle of
the bigger the point, the higher the number of features. In Figure 2, the x-axis
represents the number of features and the point size represents the number of
objects. Lastly, in Figure 3 the x-axis represents the number of data points of a
dataset (the product of objects and features).

For Figures 1 and 2 it is important to realize that as the x-axis increases in
value, the number of runtime points gradually decreases. This is the effect of
creating the synthetic datasets with a maximum of 10,000,000 data points per
dataset. As a result, in Figures 1 and 2 the runtime does not seem to increase
as quickly as it perhaps should. To combat this potentially misleading repre-
sentation, the third variable (the number of features or the number of objects)
is represented by the size of the data point, as described in the previous para-
graph. Figures 1, 2 and 3 also include the fitted runtimes of the best runtime
prediction model for each method. These fitted runtimes are only plotted in the
figure with the most runtime determining factor as value on the x-axis. The
best runtime prediction models will be discussed in Section 4.2. Figure 4 shows
the true runtimes of each method applied on the real-world datasets and the
predicted runtime by the best model(s). For Low Variance, UDFS and NDFS,
more information was needed to pick the best model, so the predictions of those
models are both plotted in Figure 4. Notice that the x-axis differs per plot; the
independent variable with the most impact on the runtime is presented on the
x-axis.

Table 3 shows the mean scores of the 10-fold cross-validation procedure for
each combination of method and prediction model for the synthetic datasets.
Notice that all but the UDFS and NDFS methods are rounded to three decimals.
UDFS and NDFS scores are integers because decimals are unnecessary with
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Fig. 1: Runtime results in seconds with objects as x-axis for each method. The
legend in one plot describes every plot in the figure. The model that best

predicts a method’s runtime is also shown. For more details, see Section 4.1.

pp. 138–150; rec. 2021-08-05; acc. 2021-10-01 64 Research in Computing Science 150(18), 2021



van der Weij, Soancatl-Aguilar and Solorio-Fernández

Fig. 2: Runtime results in seconds with features as x-axis for each method. The
legend in one plot describes every plot in the figure. The models that best

predict a method’s runtime are also shown. For more details, see Section 4.1.
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Fig. 3: Runtime results in seconds with objects as x-axis for each method. The
legend in one plot describes every plot in the figure. The models that best

predict a method’s runtime are also shown. For more details, see Section 4.1.
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Table 3: Synthetic data error scores for the prediction models in seconds.

Method
Mean

Measure Simple linear Multiple linear Power
Exponential

Runtime x1 =objects x1 =features

MAE 0.017 0.041 0.009 0.032 0.033
Low Variance 0.087

RMSE 0.021 0.049 0.011 0.038 0.039

Laplacian Score 4.424
1.4530.187 1.2951.5103.625MAE
1.7610.229 1.5591.9604.822RMSE

MAE 139.523 77.251 11.192 56.749 70.658
SPEC 163.221

RMSE 183.213 94.154 14.095 67.328 83.991

43.223MCFS
15.3723.940 8.58326.55842.632MAE
18.6964.834 12.78233.61459.515RMSE

MAE 10103 9439 1794 6092 2639
UDFS 7997

RMSE 15413 12960 2567 7800 4039

10244NDFS
18674508158555088556MAE
281454342169730212146RMSE

numbers over a thousand in our case. Furthermore, the nonlinear model has
two scores, one where x1 = number of objects (Expobjects) and one where x1 =
number of features (Expfeatures) as defined in Equation 5. Table 4 complements
Figure 4 by representing the performance of the runtime prediction models. The
table shows the true and predicted runtimes with a high number of objects or
features. This allows for a better and zoomed-in representation of the other
runtime predictions. Table 5 is similar to Table 3, but it describes the best
runtime prediction models applied on the real-world datasets instead of all the
runtime prediction models applied on the synthetic datasets.

Notice that these error scores have major flaws in capturing the performance
of the runtime prediction models on the real-world test data. This is mostly due
to the greatly varying dataset dimensions. There are many smaller datasets and
some bigger ones, as visible in Table 2. This distorts the means, and as a result,
the error measures do not accurately represent the performance of a model. A
better insight can be gained by scrutinizing the plots.

4.2 Runtime Analysis

In the following, we provide a brief description and analysis of the best runtime
prediction models for each UFS method applied to the datasets of Tables 1 and
2.

Low Variance For the Low Variance method, the influence of the number of
objects and features on the runtime is best represented by having the number
of data points on the x-axis, as shown in Figure 3. We see a mostly linear
relationship with some variation. The error scores in Table 3 partially confirm
this idea. The MAE and RMSE scores for the simple linear regression model are
0.017 and 0.021, respectively, but the power model has even lower error scores
with 0.009 and 0.011. Although the power model has better scores, a linear model
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might generalize better to datasets with differing dimensions, whereas the power
model can be overfitted on the training data. This is confirmed by testing both
models on the real-world data visible in Figure 4. Therefore, the model that best
predicts the runtimes of the Low Variance method in our experiment is:

ŷ = 1.833× 10−8x (8)

where ŷ is the predicted runtime and x is the number of data points of a dataset.
Figure 4 and the corresponding Table 4 show that the runtimes are predicted
well, with the connotation that the predictors are consistently slightly higher
than the true runtimes.

Laplacian Score The Laplacian Score plot in Figure 1 shows a nonlinear rela-
tion between the number of objects and the runtime. Additionally, it shows that
the number of features affects the runtime too, because bigger points have higher
runtimes (see Figures 1 and 2). Therefore, we suspect that the power model will
perform the best. Our error measures support this, since the error scores for the
power model are nearly seven times smaller than the nearest competitor (see
Table 3). Therefore, the model that best predicts the runtime of the Laplacian
Score method is:

ŷ = 3.335× 10−8x1.918
1 x0.418

2 (9)

where ŷ again denotes the predicted runtime, x1 denotes the number of objects,
and x2 the number of features of a dataset. Figure 4 and Table 4 show that the
power regression model accurately predicts the runtimes of the Laplacian Score
method.

SPEC The SPEC plot in Figure 1 shows a similar pattern as the Laplacian
Score plot. We see a nonlinear relation between the number of objects and run-
times, and we see that features have a clear influence on the runtime as well.
However, there seems to be more variation in runtimes, partially caused by a rel-
atively bigger influence of features on the runtime than with the Laplacian Score
method. We hypothesize that the power model will perform the best among the
models. This hypothesis is supported by the error measures for which the power
model has some five times lower scores than the nearest model, as shown in
Table 3. Therefore, the resulting prediction model for the SPEC method is:

ŷ = 3.507× 10−8x2.044
1 x0.776

2 (10)

with the same definitions as with the Laplacian Score method. Similar to the
Laplacian Score method, Figure 4 and Table 4 show that the power regression
model accurately predicts the method’s runtimes.

MCFS We see in Figure 1 that the MCFS method shows a strong nonlinear
relation between objects and runtimes, with a seemingly minimal role of feature
numbers (also see Figure 2). Therefore, we hypothesize that the power model
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suits the data best. Moreover, we see three outliers. We ran the experiment for
a second time, and the same three outliers remained. To improve generalization,
we removed these three outliers to fit the models and calculate the MAE and
RMSE scores.

As we can observe in Table 3 the error scores provide support for our hypoth-
esis. The scores for the power model are 3.940 and 4.834 for MAE and RMSE,
respectively, where the closest contender is the Expobjects model with MAE and
RMSE scores of 8.583 and 12.782. Thus, the final prediction model for the MCFS
method is:

ŷ = 1.183× 10−8x2.564
1 x0.087

2 (11)

again with ŷ denoting the predicted runtime, x1 denoting the number of objects,
and x2 denoting the number of features of a dataset. In Figure 4 we observe that
the runtimes of the MCFS are not predicted well for smaller object sizes, because
the model underestimates the effect of the number of features on the runtime.
However, the runtimes are predicted with more accuracy when the number of
objects increases (see especially Table 4).

UDFS In the UDFS plot in Figure 2 we see a nonlinear relationship between
feature numbers and runtimes. The number of objects seems to have a relatively
minor effect on the runtime. Lastly, there seems to be relatively much variation
as feature sizes increase. These observations lead us to suspect that the power
model performs best and that the Expfeatures will perform well too. This suspicion
is made more certain by the error measures in Table 3. The scores for the power
model are 1794 and 2567 for MAE and RMSE, and the scores for the Expfeatures
model are 2639 and 4039. These scores do fit the power model better, but, to
make a better substantiated choice, we plotted both models in Figure 4 and
show the extra information in Table 4.

In Figure 4 we see that for datasets with relatively low number of features, the
runtime predictions are quite accurate. However, when the number of features
increases, the prediction quality rapidly decreases. In Table 4 we see that for the
datasets with around 20,000 features, the runtime predictions are much larger
than the true runtimes. Predictions are especially inaccurate for the Expfeatures
model. Therefore, the runtime prediction model for the UDFS method is:

ŷ = 2.676× 10−11x0.000542
1 x3.902

2 (12)

where the same definitions apply as with the last three models. Notice that in
contrast to the last three runtime prediction models, β1 is much lower than β2,
indicating that the number of features determines the runtime much more than
the number of objects. This is in line with the plots we see in Figures 1, 2, 3 and
4.

NDFS Similar to the UDFS method, the NDFS plot in Figure 2 shows a rela-
tively strong nonlinear relationship between feature numbers and runtimes, with
a relatively small effect of the number of objects on the runtime. NDFS seems
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Table 4: Measured and predicted runtimes with a high number of objects or
features for the real-world datasets (Fig 4).

Objects FeaturesDatasetMethod
True

Model
Predicted

Methods
Predicted

Runtime RuntimeRuntime

0.422 Simple linear 0.642 Power 0.9145000Low Variance Gisette 7000
41.008 Power 27.808 - -5000Laplacian Score Gisette 7000
17.335 Power 13.839 - -256Laplacian Score USPS 9298
2092.370 Power 1882.422 - -5000SPEC Gisette 7000
414.148 Power 335.067 - -256SPEC USPS 9298
263.291 Power 179.319 - -5000MCFS Gisette 7000
332.579 Power 286.716 - -256MCFS USPS 9298
157422.626 Power 1,624,588 Exp19993UDFS SMK-CAN-187 187 features 20,309,840
484025.000 Power 2,479,277 Exp22283UDFS GLI-85 85 features 41,182,695
19170.060 Power 322,335 Exp19993NDFS SMK-CAN-187 187 features 4,223,331
19163.363 Power 358,746 Exp22283NDFS GLI-85 85 features 6,274,883

to have less variance than UDFS. Again, we hypothesize that the power model
performs best and that the Expfeatures model will perform well too.

Similar to MCFS, for NDFS, some outliers were produced. We did not con-
sider these outliers for fitting the models and calculating the error scores, as we
did with the outliers in MCFS. Notice that these outliers are not too problematic
because they finish much quicker than regular predicted runtimes. The number
of outliers is noteworthy, however, with 7 out of 114 runtimes classified as outlier.
Running the experiment for a second time resulted in the same outliers.

The error measures in Table 3 share the observation of the power model and
the Expfeatures model performing best. The scores for the power model are 1585
and 2169 for MAE and RMSE, and the scores for the Expfeatures model are 1867
and 2814. These scores do fit the power model better, but to further investigate,
we plotted both results of the runtime prediction models in Figure 4 and present
the extra information in Table 4.

Figure 4 and Table 4 show that both the power model and the Expfeatures
model do not predict the runtimes well. Table 4 shows that while the true run-
times for two high dimensional datasets are around 19,000 seconds, whereas
the power predicts around 322,000 and 358,000 seconds respectively, and the
Expfeatures model predicts around 4,000,000 and 6,000,000, respectively. There-
fore, the power model predicts the runtimes best for the NDFS method, with
the model being:

ŷ = 4.890× 10−6 × x0.196
1 x2.412

2 (13)

where the same definitions and remarks apply as with the UDFS method.
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Fig. 4: Runtime results in seconds with objects as x-axis for each method. The
top legend describes the top four plots, and the bottom legend the bottom two.
The models that best predict a method’s runtime are shown as well. For more

details, see Section 4.1.
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Table 5: The error scores for the best prediction models in seconds.

Method
Mean

ScoreErrorBest model
Contender

ScoresError
ModelRuntime

MAE 0.027 MAE 0.021
Low Variance 0.018 Simple linear

RMSE 0.009
Power

RMSE 0.002

PowerLaplacian Score 0.473
MAE 0.682

-
MAE -
RMSE -RMSE 6.480

MAE 16.360 MAE -
SPEC 9.656 Power

RMSE 2055.675
-

RMSE -

Power4.487MCFS
MAE 7.771

-
MAE -
RMSE -RMSE 340.712

MAE 137506 MAE 2118501.956
UDFS 10219 Power

RMSE 2.122× 1011
Expfeatures RMSE 7.155× 1013

Power3950NDFS
37653.890MAE

Expfeatures

349876.063MAE
RMSE 7.822× 109 RMSE 1.800× 1012

5 Discussion

In this section, we first discuss the performance of the runtime prediction models,
followed by the section on general runtime observations. Then, we address related
literature. Finally, we discuss some limitations of our research.

5.1 Performance of Runtime Prediction Models

The runtime prediction models performed better for the Low Variance, Laplacian
Score, SPEC, and MCFS methods than for the UDFS and NDFS methods. The
low error scores and near predictions presented in Tables 3, 4 and 5 and in Figures
1, 2, 3 and 4 illustrated the quality of prediction models for the four methods.
Especially relevant are Figure 4 and the associated Table 4, which indicate how
well the models trained on the synthetic datasets generalize to the real-world
datasets. Clearly, the runtime predictions are not perfectly accurate. However,
this was not the goal of this paper. More importantly, these predictions can give
users a priori runtime information of a method. Additionally, these predictions
expose the influence of the number of objects and features on the runtime, which
will be discussed in Section 5.2.

The performance of the runtime prediction models for the UDFS and NDFS
methods is worse than for the other four methods. Although the power model
predicts the runtimes of the synthetic datasets well, the prediction performance
on some real-world datasets decreases, particularly when the number of features
is high. In general, our four regression models fail to capture the influence of the
number of objects and features of a dataset on the runtime for both methods.
More specifically, we believe that the runtime prediction models for UDFS and
NDFS have low performance because of the following observation. When the
number of objects increases and the number of features is fixed, we see a reason-
ably clear nonlinear relationship between an increase in the number of objects
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and the increase in the runtime. It is likely that our models would be able to
capture this interaction. However, this interaction depends on the number of
features too. For example, the difference in runtime between dataset A (2000,
1000) and dataset B (2500, 1000) is different between the runtime differences
in dataset C (2000, 2000) and dataset D (2500, 2000). Although the increase of
object numbers between A & B are the same as between C & D, the runtime
will not increase with the same amount (even while ignoring runtime differences
caused by the environment itself). Of course, we see a similar phenomenon when
the roles of objects and features are switched. Our models likely failed to capture
these important and more complex interactions. This deficiency becomes evident
when the number of objects and the number of features of a dataset greatly differ
from the synthetic training set, which is the case for some real-world datasets.
The prediction errors we see in Table 4 are likely the result of this deficiency.

5.2 Runtime Observations

The runtime prediction results are generally in line with the theory on univariate
and multivariate methods, which would suggest that the number of features is
less important for univariate methods than for multivariate methods. Whereas
univariate methods analyze the features separately, multivariate methods aim
to find an optimal subset of features. This requires solving the ”subset sum”
problem that gets increasingly difficult as the whole set of features increases
in size. Indeed, we observed that the number of features affects the runtimes
most for the UDFS and NDFS methods, which is not the case for the univariate
methods. An exception to this is the multivariate MCFS method, where the
number of objects has a stronger influence on the runtime than the number of
features. Furthermore, we clearly see differences in the order of runtimes.

The Low Variance and the Laplacian Score methods are the quickest methods
and can be employed to analyze large datasets. The Laplacian Score method is
particularly quick in analyzing highly dimensional datasets where the number
of objects is relatively low and the number of features is much higher. On the
other hand, the SPEC and MCFS methods are clearly slower than the previous
two methods, but in our experiment, they operated in the order of seconds and
minutes for larger datasets. Consequently, they can typically execute within most
time constraints of research projects. The SPEC method is best applied when the
number of objects of a dataset is not too high, while the number of features can
be large. The same holds for the MCFS method, although the number of features
has a relatively higher effect on the runtimes than with the SPEC method.

Lastly, the UDFS and NDFS methods are the slowest methods. Although
our models have low performance in predicting their runtimes, the runtime data
is still useful to provide runtime guidelines. In our environment, both UDFS and
NDFS take a couple of days to complete when the number of features exceeds
10,000. We have seen that the number of features has a strong linear effect on
the runtime; thus, the runtimes of these methods might easily take weeks and
months when the number of features exceeds 10,000. Do notice that this is based
only on datasets with around 100 objects. It is unknown what runtimes to expect
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with different object sizes. Nonetheless, long runtimes should be considered when
these methods are applied on high-dimensional datasets.

5.3 Related Literature

As far as we know, this experiment is unique in the field of Unsupervised Fea-
ture Selection. However, method runtimes have been examined in other research
fields, especially in optimizing job scheduling in high-performance clusters [22,
25]. Random forest regression models often perform well in these fields because
they can take many independent variables into account. However, we focus on
two independent variables in our study. Moreover, random forest has difficulties
with extrapolating from training data, which in our case means that the runtime
predictions will not be accurate when datasets have considerably different dimen-
sions than the dimensions of synthetic training datasets [22]. Unfortunately, we
cannot train our models on all the potential dataset dimensions users might
have because of these two reasons; therefore, the random forest algorithm is not
suitable for this study.

On the other hand, we used a benchmarking approach in this paper, but
another possible approach was to focus even more on a mathematical analysis
of methods. The Big O notation is often used to represent the time and space
complexity of a method [26]. The Big O notation describes the general com-
putational operations that a method performs, but it ignores important factors
for runtime analysis, such as the machine, the programming language, and the
compiler the method runs in. Moreover, the time complexity is only available for
two out of the six methods, namely the SPEC and MCFS methods. Still, time
complexity analysis such as in Cai et al. [13] and Zhao & Liu [27] can be useful
to examine the interaction of object and feature numbers on the runtime. In this
study, we did use the time complexity of the SPEC and the MCFS method to
create runtime prediction models.

Finally, it is noteworthy that the runtime prediction for the UDFS and NDFS
methods can probably best be improved by analyzing the time complexity of the
methods by examining the original paper where the methods are presented (Yang
et al. [17] and Li et al. [18], respectively). However, the time complexity has not
been provided by the authors themselves and analyzing their time complexity
was out of the scope of this project.

5.4 Limitations

Our experiment is also subject to some limitations. Most notably, as we stated in
Section 3.2, generalizing the runtime findings from our experiment environment
to a user’s environment brings along complications. Although this was not part
of our research objective, it does interfere with the extrapolation of our findings
to the environment of a user. On the other hand, a missed insight that is relevant
to our research goal are the outliers of the MCFS and NDFS methods, visible in
Figures 1 and 2. It is unknown to us why exactly these outliers exist and the effect
it has on the clustering and classification performance. For the NDFS method,
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the outliers are less likely to be problematic, as the method analyzes much faster
than expected. The outliers for the MCFS methods can be problematic as the
runtime is multiple factors higher than expected.

Additionally, the models and their parameters do not necessarily represent
an optimal fit. It could be that other simple models, such as polynomial ones, fit
the runtime data better. As for the model parameters, Trust Region Reflective
algorithm, used to optimize the parameters in the nonlinear models, does not
converge to a global minimum [19]. Consequently, it could be the case that
with different initial parameter guesses, the models would have better-fitted
parameters. Furthermore, the effect of the hypercube size multiplication factor,
used in generating the synthetic datasets, on the runtime is unknown. It could
be that a higher factor speeds up some methods when, for example, pseudo-class
labels are learned with spectral analysis in the NDFS method.

Lastly, the effects of method parameters, such as the number of selected
features and the number of nearest neighbours, used in the MCFS method, for
example, are left unstudied.

6 Concluding Remarks and Future Work

In this study, we have presented runtime prediction models for six relevant and
classical filter UFS methods of the state-of-the-art. The runtime prediction mod-
els and the general guidelines for each of the six methods can be particularly
useful for professionals and practitioners in this research field. Moreover, our
results, in line with previous work on the evaluation of filter UFS methods [7],
could be useful to assist users in choosing an appropriate method for a particular
problem. From the results presented in the previous sections and the analysis
performed, we contribute to the runtime knowledge of filter UFS methods by
providing some insights and guidelines:

– The Low Variance, Laplacian Score, SPEC, and MCFS methods are much
faster than the UDFS and NDFS methods.

– The Low Variance method is the quickest method, which can be applied on
large datasets in most cases without runtime problems. The runtime is best
determined by the number of data points of a dataset.

– The Laplacian Score method can be applied on large datasets as well, and
is especially efficient in analyzing high-dimensional datasets.

– The SPEC method is considerably slower than the previous two methods,
but its runtimes will still often be manageable. The SPEC method is best
at analyzing high-dimensional datasets. However, a large number of objects
increase the runtime considerably.

– The MCFS method is the fastest multivariate method, even faster than the
univariate SPEC method. Surprisingly, the runtimes of the MCFS method
are most influenced by the number of objects, meaning that it handles high-
dimensional datasets well.
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– The UDFS method is substantially slower than the previous four methods.
UDFS should be used carefully with large datasets, especially when datasets
have many features (roughly > 10, 000).

– The NDFS method has similar runtimes and should be used with the same
care as the UDFS method.

Finally, future work of this research includes the following:

– Analyzing the time complexity of the UDFS and NDFS methods and build-
ing corresponding runtime prediction models to improve the current predic-
tions.

– Performing experiments on datasets with different shapes to generalize and
improve the general performance of the runtime prediction models.

– Investigating runtime prediction in other environments could improve the
usability of our research. Future research similar to, or in combination with,
a paper by Sidnev [28] might be fruitful.

– A similar study like ours can be used to examine the runtimes of other filter
methods, and it can be extended to wrapper and hybrid (embedded) UFS
methods as well.
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