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Abstract

Age at first sexual intercourse (AFS) and age at first birth (AFB) have implications for health and 

evolutionary fitness. In this genome-wide association study (AFS, N=387,338; AFB, N=542,901), 

we identify 371 SNPs, 11 sex-specific, with a 5-6% polygenic score (PGS) prediction. Heritability 

of AFB shifted from 9% [CI=4-14] for women born in 1940 to 22% [CI=19-25] in 1965. Signals 

are driven by the genetics of reproductive biology and externalising behaviour, with key genes 

related to follicle stimulating hormone (FSHB), implantation (ESR1), infertility, and spermatid 

differentiation. Our findings suggest that Polycystic Ovarian Syndrome may lead to later AFB, 

linking with infertility. Late AFB is associated with parental longevity, and reduced incidence 

of Type 2 Diabetes (T2D) and Cardiovascular disease (CAD). Higher childhood socioeconomic 

circumstances and those in the highest PGS decile (90%+) experience markedly later reproductive 

onset. Results are relevant for improving teenage and late-life health, for understanding longevity, 

and guiding experimentation into mechanisms of infertility.
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Subject terms
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The timing of onset of human reproductive behaviour – age at first sexual intercourse 

(AFS) and age at first birth (AFB) – has implications for reproductive health, adolescent 

development and evolutionary fitness. Age at first sexual intercourse has occurred 

increasingly earlier, by the age of 16 for one-third of contemporary UK teenagers.1 

Early reproductive onset is associated with teenage pregnancy2 but also adverse health 

outcomes such as cervical cancer, depression, sexually transmitted diseases2 and substance 

use disorders.3,4 In contrast to earlier sexual debut, we have witnessed progressively later 

ages at first birth for women, now reaching an average of 30 years in many modern societies, 

even later for men (Supplementary Figure 3).5 Late reproductive behaviour is associated 

with lower fecundity and subfertility6 and infertility traits such as endometriosis and early 

menopause,7,8 with over 20% of women born after 1970 in many modern countries now 

remaining childless.9 Earlier ages of sexual debut and later ages at first birth has marked 

the decoupling of reproduction from sexual behaviour in many contemporary societies, with 

implications for sexual, reproductive and later-life health (Supplementary Figure 2).

Since reproductive behaviour is shaped by biology and environment, a multidisciplinary 

approach is required to understand the common genetic aetiology and how it relates to 

health, reproductive biology, environment and externalising behaviour.10 Since the onset 

of reproductive behaviour generally occurs in adolescence to early adulthood, it is often 

linked to externalising behaviour such as self-control and psychiatric (e.g., ADHD) and 

substance use disorders (e.g., smoking, alcohol use), often moderated by the environment 

(e.g., childhood socioeconomic conditions).10 Furthermore, it may be that individuals 

inherit a common genetic liability for a spectrum of interlinked complex traits related to 

reproduction, health and longevity. There has been limited attention to understanding how 

these genetic effects are stratified by sex or across different socioeconomic and historical 

contexts.

In a previous GWAS of AFS (n=125,667)11 and AFB (n=343,072),8 we identified 38 and 

10 novel independently-associated single-nucleotide polymorphisms (SNPs), respectively. 

The current study comprises a markedly expanded sample size for AFS (N=387,338) and 

AFB (N=542,901), uncovering 371 autosomal or X chromosomal SNPs, some of which are 

sex-specific, with 99 candidate genes expressed at the protein level in the brain, glands and 

reproductive organs. The multiple methods applied in this study (Supplementary Figure 1) 

reveal underlying genetic drivers, common genetic liabilities, heterogeneity by childhood 

socioeconomic status and historical period and further evidence of the relationship of later 

reproductive onset with fewer later-life metabolic life diseases and increased longevity.
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Results

Changes in reproductive behaviour and heritability over time

We first examine phenotypic changes in human reproductive behaviour and heritability over 

time. Descriptive analyses using the UK Biobank illustrate shifts in the mean AFS and AFB, 

changes in the shape of the distribution by birth cohort, and a bi-modal distribution of AFS 

in earlier cohorts (Figure 1A, Supplementary Figure 3). Whereas AFB was often in the early 

20s for older birth cohorts, this distribution has spread and shifted to older ages over time, 

with a marked drop in Pearson’s correlation between AFS and AFB from those born <1941 

(0.60) to those born >1960 (0.31) (Supplementary Figure 2). Using GREML,12,13 we found 

a steady increase in SNP-heritability by birth cohort for AFB for women from 9% [CI = 

4-14] for those born in 1940, climbing to around 22% [19-25] for the latest cohorts born 

in 1965. For AFS, heritability ranges between 12 [7-18] for women born around 1940 and 

23 [17-28] % for men born around 1940 with a trend for women similar to AFB and a 

suggestive U-shaped trend for men (Figure 1B for women, Supplementary Figure 1B for 

men).

Meta-analysis GWAS Human Reproductive Behaviour

We conducted a meta-analysis of GWAS results from 36 cohorts for AFS and AFB in 

individuals of European ancestry (defined by genetic principal components). We imputed 

to the 1000 Genomes Project reference panel in a pooled sample and then stratified the 

analysis by sex (Supplementary Tables 1-8). In total, we discovered 371 associated SNPs. 

The GWAS of AFS identified 282 (272 pooled of which 4 on the X chromosome; 2 

women; 8 men) SNPs at genome-wide significance (p<5 x 10-8, Supplementary Figure 

5A-C; Supplementary Table 10). The GWAS of AFB identified 89 (84 pooled of which 

4 on the X chromosome; 1 women) independent SNPs at genome-wide significance (p<5 

x 10-8, Supplementary Figure 6A-C; Supplementary Table 9). The distribution of genome-

wide test statistics for AFS and AFB showed significant inflation (λGC = 1.84 and 1.47, 

respectively), however LD score regression showed that this could be attributed almost 

entirely to polygenicity rather than to population substructure (LD intercept AFS 1.07 (SE = 

0.01); AFB 1.03 (SE = 0.01, Supplementary Information Section 6). The LD Score intercept 

test confirmed that only a very small percentage (5.5%) of the observed inflation in the 

mean χ2 statistic was due to population stratification or other confounders, rather than to a 

polygenic signal.

Polygenic score prediction

We then calculated polygenic scores (PGSs) using three different specifications (Figure 

2, Supplementary Information Section 5). To validate the performance of the PGSs, we 

performed out-of-sample prediction in Add Health (a survey of adolescence to young 

adulthood in the US) and UKHLS (a representative survey of adults in the UK) cohorts 

using ordinary least-squares (OLS) regression models and report the R2 as a measure of 

goodness-of-fit of the model (Figure 2). PGSs including all SNPs explain up to 5.8% 

of the variance for AFS and 4.8% for AFB. The difference between the out of sample 

prediction in the UKHLS and Add Health is related to heterogeneity between the initial 

GWAS sample, including a large UK older population from the UK Biobank, which is more 
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comparable with the UKHLS population. Add Health participants also have higher levels 

of right-censoring (i.e., not yet experienced a birth). Previous research has demonstrated 

that meta-analyses of complex behavioural traits using populations from diverse national 

contexts and birth cohorts can be influenced by this hidden heritability.13 A 1 standard 

deviation (SD) change in the AFS/AFB PGS is associated with a 7.3 and 6.3 month delay 

in AFS and AFB, respectively. We then ran survival models to account for right-censoring, 

which occurs when an individual does not experience the event of first sex or birth by 

the time of the interview.14 Using Add Health data, we estimated nonparametric hazard 

functions and then compared individuals at the top and bottom 5% of the PGS (see Figure 

1C AFS, Figure 1D AFB for women, Supplementary Figure 8-9 for men). Those in the 

top 5% PGS for AFS (i.e., genetic association with later AFS) are less likely to have their 

sexual debut before age 19. AFS PGSs appear more relevant in explaining women’s AFS in 

comparison to men. Those in the top 5% PGS for AFB (i.e., genetic association with later 

AFB) postpone AFB across all ages until approximately age 27, with similar curves for both 

sexes.

We next examined whether these genetic effects were environmentally moderated by 

childhood socioeconomic status. Disadvantaged socioeconomic status is highly related to 

early sexual behaviour and teenage pregnancy.15 To explore the impact of environmentally 

moderated parental genetic effects on our PGSs, we examined PGS prediction across low 

(0-10%), medium (50-60%) and high (90-100%) PGS percentiles by parents’ education 

(college versus no college) as a proxy for childhood socioeconomic status. Indeed, those 

in the highest decile of the PGS (90-100%) for later AFB have a higher AFB, particularly 

past age 27, which is accentuated for those with highly educated parents (Supplementary 

Figure 10A). Being in the highest PGS decile for AFS is associated with later sexual 

intercourse (difference between highest and lowest decile is 2.08 years), especially for those 

from highest socioeconomic childhood households (2.39 years difference among high SES, 

compared to 1.62 years for low SES families) (Supplementary Figure 10B).

Genetic correlations

To test the relationships of AFS and AFB with related phenotypes, we calculated 

genetic correlations using LD score regression16 (Figure 3, Supplementary Figure 11, 

13, Supplementary Table 11). Given previous evidence,8 we examined 25 traits by sex 

from six relevant categories including: reproductive (e.g., age at menarche, number of 

sexual partners), infertility (e.g., endometriosis and severe endometriosis), behavioural (e.g., 

years of education, risk tolerance), psychiatric disorders (e.g., ADHD, schizophrenia), 

substance use (e.g., age of initiation of smoking, cannabis use), personality (e.g., openness 

to experience) and anthropometric (e.g., BMI, height). Logically, the strongest genetic 

correlations were observed for reproductive traits, particularly for number of children 

ever born. We remain cautious regarding the estimates of endometriosis considering the 

smaller sample size and larger confidence intervals (CIs) of our estimates. In our Mendelian 

Randomization analysis, discussed shortly, we explore the relationship with infertility in 

more detail. Behavioural traits also show strong genetic correlations, particularly with 

AFB and educational attainment in women (0.74, ±0.01), compared to AFS (0.53, ±0.01). 

There was also a negative genetic correlation between adult risk tolerance and AFS/AFB 
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(AFS ~−0.40; AFB ~−0.25); i.e., those with a low genetic association with risk tolerance 

corresponds to a genetic association with later reproductive behaviour. Amongst psychiatric 

traits, often related to externalising behaviour, the strongest correlation was with ADHD 

(AFS females −0.58, ±0.03, males −0.61, ±0.03; AFB females −0.63, ±0.03; males −0.68, 

±0.09) and Major Depressive Disorder (MDD) (AFS females −0.37, ±0.03, males −0.32, 

±0.03; AFB females, −0.42, ±0.03; AFB males, −0.33, ±0.08). We also observed strong 

genetic correlations with age at onset of smoking (AFS ~ 0.68, ±0.03; AFB ~0.74, ±0.03), 

a trait that provides a unique window into adolescent substance use and externalising 

behaviour around the same time of early reproductive behaviour. Genetic factors associated 

with early smoking, early sexual debut and teenage pregnancy are thus – to some extent – 

shared. As shown in Figure 3, there are few sex differences in these correlations, with the 

exception of small variations in number of children, anorexia and openness to experience.

Aetiology and causality

To explore aetiology and causality we employed GenomicSEM, Exploratory Factor 

Analysis and Bi-Directional Mendelian Randomization. To understand the relationships 

underlying these genetic correlations, we first used GenomicSEM.17 GenomicSEM uses 

structural equation modelling to decompose the genetic covariance matrix, calculated using 

multivariate LD score regression, of a set of traits. Parameters are estimated by minimising 

the difference between the observed genetic covariance matrix and the covariance matrix 

derived from the model (Supplementary Information Section 8). We fit a series of genetic 

regression models in which AFB (or AFS) was regressed on both years of education and 

one other possible mediating trait, such as openness, cognitive performance, ADHD and age 

of initiation of smoking (Supplementary Figures 12A-B; Supplementary Tables 12A-L). In 

other words, we wanted to test whether the strong genetic correlation of AFS/AFB with 

education was the result of another mediating trait such as personality, ADHD or substance 

use. We found that the genetic correlation of years of education with AFB and AFS was 

independent of factors like risk tolerance, substance use, and psychiatric disorders. This 

suggests that the genetic correlation between years of education and AFB is largely a 

product of a strong bidirectional relationship between these traits, rather than being both 

downstream of a common identified cause. The exception was age at initiation of smoking 

– as noted previously, a window into risky adolescent behaviour – which partially mediated 

the relationship of AFB and AFS with years of education.

Exploratory factor analysis (EFA) was then used to examine whether the genetic signal 

of the onset of reproductive behaviour originated from two genetically distinguishable 

subclusters of reproductive biology versus externalising behaviour. Using a two-factor EFA 

model to fit the genetic covariance matrix AFS and AFB with these two additional traits, 

we found that the entire model accounted for 47% of the overall variance, with 22% 

attributed to risk tolerance and 4% to age at menarche. In a more robust analysis we fit a 

Genomic SEM for AFB in women and regressed several genetic measures of reproductive 

biology (age at menarche, age at menopause) and a latent factor representing a common 

genetic tendency for externalising behaviour (age at initiation of smoking, age first used oral 

contraception, ADHD) (Supplementary Figure 14). These genetic factors predicted 88% of 

the variance, with the majority of variance significantly predicted by externalising factors 
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(0.90,±0.02), followed by age at menopause (0.20, ±0.04) and age at menarche (0.16,±0.03). 

We note that selection bias, induced by the fact that AFB can only be measured among 

individuals with at least one live birth, may have potentially inflated this estimate.

Given the strong genetic correlations between the phenotypes discussed above, we used 

Mendelian Randomization (MR)-based analyses18 to explore causality and assess the 

direction of effect between AFB, AFS and years of education19 as well as risk taking 

(measured in adulthood)4 and age at smoking initiation20 (Supplementary Table 13A; 

Section 9). For the majority of pairs of phenotypes we found strong evidence of bi-

directionality, which was also seen after applying Steiger fitting. The relationship between 

AFB and years in education appeared to be the explanatory factor that linked AFB to the two 

risk taking phenotypes. This was not the case, however, for AFS where the analysis suggests 

that age at initiation of smoking (and the environment and processes that lead to this) are 

upstream of the start of AFS. In that case, the relationship was significant when assessed 

as age at smoking to AFS but not the other way round. Of note, associations were much 

stronger for age at smoking initiation than for risk-taking behaviour assessed in adulthood, 

suggesting that the timing of this behaviour is key.

A second set of MR analyses examined whether AFS and AFB PGSs have effects 

on type 2 diabetes (T2D)21 and coronary artery disease (CAD).22 Acknowledging the 

substantial overlap between the most significant signals for AFB, AFS and education 

related phenotypes, we used adjusted models to estimate effects independent of years of 

education (Figure 4, Supplementary Table 13B, Supplementary Figure 16). Given the extent 

of the overlap, we were also interested to investigate if AFB or AFS might attenuate any 

association particularly with education. T2D and CAD were chosen since they are two 

common major diseases, with broadly defined behavioural risk factors. Findings show that 

the association with years of education and later life diseases are substantially attenuated by 

the effects of AFB. We also found a strong association of the BMI weights with the AFS 

SNPs but note that even when BMI is included the model, the level of attenuation of the 

educational attainment results by AFB remains striking. This concurs with a large body of 

research that has established a biological association with the timing of AFB and metabolic 

diseases including early AFB linked to high blood pressure,23 obesity24 and diabetes.25 

Reproductive timing thus appears to capture a latent variable that detects these metabolic 

effects and is a marker of a broader social trajectory that serves as a more powerful predictor 

of later life disease than years of education alone. This also suggests that many of the 

associations with diseases that have been previously ascribed to years of education, may 

result from this more broadly defined socio-behavioural trajectory captured by AFB.

Finally, since we were also interested in infertility-related phenotypes, bidirectional MR was 

performed with AFS and AFB with PCOS (polycystic ovarian syndrome) and given the 

nature of the disease, on women only.26 Our findings (Supplementary Table 13C) suggest 

that PCOS leads to later AFB. We find no effect of PCOS on AFS or of either AFS or AFB 

to PCOS, suggesting that the causal link is infertility-related with PCOS contributing to later 

AFB.
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Cox models of a polygenic score for AFB on longevity

The disposable soma theory of aging hypothesises an evolutionary-trade off between 

investments in somatic maintenance – such as remaining in education – that in turn 

reduces resources available for reproduction. To test trade-offs between reproductive 

behaviour and senescence as argued in the ageing and longevity literature,27 we conducted 

Cox proportional hazard models analyses to test whether our AFB PGS was associated 

with (parental) longevity (Supplementary Table 14). We first estimated a baseline Cox 

proportional hazard model of our AFB PGS on parental longevity and then included the PGS 

for educational attainment and risk covariates followed by a final model including number of 

siblings as a proxy for parental fertility. We found that a genetically predicted 1 SD increase 

in the PGS for AFB is associated with a 2-4% reduction in parental mortality at any age, 

suggesting that there is likely a trade-off between the timing of reproduction and longevity.

Gene prioritization

To understand the biology represented by the variants associated with AFS and/or AFB, 

we performed a gene prioritization analysis that connected variants to genes and prioritized 

candidate genes based on likely involvement in reproductive biology or psychiatric traits. 

To this end, we used predicted gene function,28 single-cell RNA sequencing data in 

mice,29,30 literature mining,31 in silico sequencing,32 and Summary-data based Mendelian 

Randomization(SMR)33 using eQTL data from brain and blood.34 Integrating results across 

all approaches resulted in the prioritization of 386 unique genes; 314 genes in 159 loci for 

AFS and 106 genes in 42 loci for AFB (Supplementary Tables 15A-19C). Of these, 99 were 

expressed at the protein level in cell types of brain, glands, and/or (fe)male reproductive 

organs (Figure 5).35 Gene prioritization in sex-specific loci resulted in the prioritization 

of 11 genes for AFB in women, one gene for AFS in women and 23 genes for AFS in 

men. Of these, 12 genes at three loci were expressed at the protein level in relevant tissues 

(Supplementary Figure 17).

Genes that play a role in follicle stimulating hormone (CGA 36), oocyte development 

(KLF17 37), and implantation and placental growth (ESR1, SUMO1 38, ARNT,39 CAV1,40 

E2F1 41) were prioritized for AFS in data from men and women combined, while FSHB 
42 and ESR1 were (also) prioritized for AFB. Other genes prioritized in loci identified 

in the pooled meta-analyses were expressed at the protein level in (developing) sperm 

– highlighting a role for spermatid differentiation (KLF17 43) for AFS – as well as for 

sperm morphogenesis and binding between acrosome-reacted sperm and the zona pellucida 

(ZPBP44) for AFB. The meta-analysis in data from only women yielded genes related 

to endometriosis (CCR1)45 and spontaneous abortion (CXCR6) for AFB (Supplementary 

Figure 19).46 Taken together, these results suggest that intrinsic biological processes related 

to fertility are also related to the onset of sexual behaviour in men and women. Interestingly, 

NUP210L – prioritized for AFS and highly expressed in developing and mature sperm35 

– is normally testis-specific, but was recently shown to be expressed in prefrontal cortex 

neurons of G allele carriers in rs114697636 (MAF 3%, D’ 0.90 with AFS lead SNP 

rs113142203), attributed to allele-specific activation through improved binding affinity for 

testis receptor 2.47 Methylation of, and variants near NUP210L have been associated with 

psychologic development disorders, intelligence, and mathematical ability,48 illustrating 
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how a testis-specific gene could be linked to brain function in some individuals. We note, 

however, that the fact that some prioritized proteins are expressed in some relevant tissues 

does not provide clear evidence supporting a causal role for the prioritized genes.

Several genes prioritized in AFS-associated loci in data from men and women combined 

have previously been implicated in risk seeking behaviour, sociability and anxiety (GTF2I,49 

TOP2B,50 E2F1,51 NCAM1,52 NFASC,53 MEF2C54). In the sex-specific meta-analysis 

for AFS, a role for externalising behaviour was supported through ERBB4 in women; 

and through SLC44A1 and NR1H3 in men. ERBB4 has previously been linked to fear, 

anxiety,55 schizophrenia,56 and polycystic ovary syndrome (PCOS);57 SLC44AI encodes 

a choline transporter that plays a key role in cerebral inhibition related to substance use 

and depressive disorders58; and NR1H3 has been implicated in major depressive disorder 

(MDD).59 These genes provide concrete examples of how genetic variants associated with 

externalising behaviour may also associate with the initiation of reproductive behaviour.

The gene prioritization results partly mirror and compliment the rigorous post-GWAS in 
silico association analyses we performed for loci identified for AFS and AFB. However, 

experimental validation is required before firm conclusions can be drawn about the 

involvement of, and mechanisms through which prioritized candidate genes influence AFS 

and AFB. See more information on protein-protein interaction hubs (Supplementary Figure 

17), as well as on genes highlighted by literature mining (Supplementary Information 

Section 11).31

Discussion

In this study, we presented the results of a GWAS of the onset of human reproductive 

behaviour of age at first sex (AFS) (N=387,338) and age at first birth (AFB) (N=542,901). 

We identified 371 signals harbouring at least 386 prioritized candidate genes, using 1000G 

imputed genotype data and an X-Chromosome analysis, which allowed us to detect 

considerably more signals than ever before (Figure 6). In comparison, a recent GWAS 

for type 2 diabetes,60 for instance, detected 243 loci. Similar to previous work, we showed 

that the total SNP heritability accounted for 10-22% of phenotypic variance and varied 

by birth cohort.13,61 The incremental R2 of our PGSs based on significantly associated 

SNPs is around 5-6%, similar to direct effect relationships observed for commonly used 

demographic and social variables (e.g., years of education, age at marriage), classically used 

to explain the timing of human reproductive behaviour by social scientists. Comparatively, 

a PGS of 5-6% is in the range observed for other complex traits, like BMI (5.8%)62 

and schizophrenia (8.4%).63 The number of signals also opened up opportunities for 

functional follow-up analyses which suggested a role for spermatid differentiation and 

oocyte development. The analyses of the correlation and underlying aetiology of these traits 

revealed a common genetic basis of both AFS and AFB with externalising behaviour and 

substance use and links to infertility.

Finally, we showed that AFB is an important predictor for late age at onset of disease and 

longevity, and that it substantially attenuates the effect of years in education. We note that 

there are some situations where we have a significant Eggers intercept in the MR analysis, 
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including some for the bidirectional data. Here there is some heterogeneity in the data (AFB 

to education, and AFS to risk), where there are likely important pleotropic effects. However, 

this does not impinge on our central finding that there is widespread bi-directionality. Since 

we also find a significant intercept for AFB to CAD, and since in the adjusted model there 

are not significant effects, we are confident that we are not at risk of a false positive.

Although we opened many new avenues for research, the present GWAS still faces certain 

limitations. First, the sample sizes for men were appreciably smaller than for women 

since reproductive and fertility data is routinely collected less often from men. Yet to 

understand the correlates and causes of infertility in men this information needs to be 

taken into consideration in future data collection. The paucity of sex differences in the 

genetic correlations we observe between AFB, AFS, and a variety of related traits, including 

sex-specific traits such as age at menarche, suggests that the relevant processes overlap 

between the sexes. Initial within-family analyses showed that our discovery GWAS may 

actually overestimate causal effects; genotypes associated with later onset of reproductive 

behaviour genotypes are also associated with parental reproductive genotypes, likely leading 

to a social environment that affects reproductive and other behaviours. Collection and 

analysis of family data is clearly a future area of research for reproductive and related 

complex behaviour. The lack of accessibility of publically available summary statistics from 

some published research, meant that we were unable to examine the relationship with other 

traits, particularly with infertility related traits (e.g., larger studies of endometriosis). Future 

data collection could benefit from focussing on externalising and behavioural disinhibition 

markers that appear to be highly related to self-control, which has implications for disease 

prevention and behavioural interventions into lifestyle factors related to obesity, Type 2 

diabetes or substance use disorders. A final glaring limitation is our focus on European-

ancestry individuals in Western countries. Whilst common in this area of research,64 

extension to other ancestries and geographical contexts is required in the future. This is 

particularly relevant in the context of parental gene-environment interactions, which may be 

specific to the social and environmental makeup of the sample.

Our detailed correlation, GenomicSEM and MR analyses also provided a deeper 

understanding of the underlying aetiology of related traits and pleiotropy and the 

associations between human reproductive behaviour and disease risk. We anticipate that our 

results will address important interventions in infertility, teenage sexual and mental health, 

as well as for functional follow-up experiments that will likely yield targets that can be 

translated in efficient medication to improve fertility (e.g., in IVF) but also for interventions 

on reproductive health related to earlier sexual debut and teenage pregnancy.

Methods

This article has Supplementary Information with details about data and methods and 

additional detailed analyses.

Samples

For Age at First Sexual intercourse (AFS), we included 397,338 pooled individuals 

(n=182,791 males; n=214,547 females) from the UK Biobank. For Age at First Birth (AFB), 
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we included 542,901 individuals (n=124,088 males; n=418,758 females) from 36 studies. 

We performed a GWAS separately restricted to European ancestry individuals that passed 

quality control. European ancestry was chosen in this discovery study due to the availability 

of samples64 and for no biological or substantive reason. We acknowledge that social science 

research has found large differences in the earlier initiation of AFS and AFB by lower 

socioeconomic status, which often coincides with societal inequality65,66 and the socially 

(not biologically) constructed categories of race and ethnicity. Socioeconomic differences 

are examined in this article, but results are only applicable to European Ancestry groups, 

with a need for further cross-ancestry discovery research.

The Human Reproductive Behaviour Consortium. This consortium is a collaboration 

studying the GWAS of human reproductive behaviour including age at first sex and birth, 

number of children ever born, childlessness and related traits. In some cases we used 

summary statistics from our first GWAS of AFB and NEB8 on discovery cohorts (see Supp 

Note Tables S1-S3b).

Phenotypes, genotyping, imputation and meta-analysis

AFS is treated as a continuous measure with individuals considered as eligible if they had 

given a valid answer and ages lower than 12 excluded (see Supp Note 1.2). Since AFS 

has a non-normal distribution, a within-sex inverse rank normal transformation is required. 

AFB is also treated as a continuous measure, assessed for those who have ever given birth 

to a child. Details about participating cohorts, sample inclusion criteria, genotyping and 

imputation, models used to test for association, X chromosome analysis, quality control 

filters and diagnostics, and meta-analysis are in the Supp Note. A sample-size weighted 

meta-analysis of quality-controlled cohort-level results was performed using the METAL 

software.67 We performed conditional and joint multiple SNP analyses (COJO) to identify 

further independent SNPs and sex-specific analyses.

Sex-specific genetic effects

We used LD score bivariate regression68 to estimate the genetic correlation between men 

and women based on the sex-specific summary statistics from the meta-analysis results. 

There was a large genetic overlap among the sexes for AFB (0.95) and a somewhat lower 

overlap for AFS (0.79), suggesting sex-specific effects would be important to examine. In 

order to determine if there was evidence for sex-specific effects, we compared the allelic 

effects for these SNPs between men and women and derived a p-value for heterogeneity.69 

A multiple testing correction was applied (0.05/242=2 x 10-4) to identify sex-specific 

associations. We then selected a region of ±1Mb around these lead SNPs to identify the 

genes that may be represented by these lead SNPs, followed by gene prioritization as we did 

for the main AFB and AFS analyses.

X chromosome analysis

For AFS, the UK Biobank provided results for between 977,536 and 990,735 variants on 

the X chromosome after QC (see Table S8). For AFB, 13 cohorts provided information 

on the X chromosome. Overall, we received 23 files, 13 for women, 8 for men and 2 

for the pooled analysis in case there were individuals who were relatives in the data. On 
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average, 275,023 variants survived QC with a minimum of 99,794 in women from WLS 

to 998,304 for the women in the UK Biobank sample (see TableS7 for full descriptives). 

Association analyses on the X chromosome were performed using software suggested in the 

analysis plan (XWAS, SNPtest or BOLT-LMM) using BOLT-LMM for AFS as this was only 

assessed in the UK Biobank data, for AFB, METAL was used as described above (see sup. 

note 3.5)

Phenotypic and genotypic historical changes

Descriptive analyses and correlations were undertaken using the UK Biobank data to 

illustrate phenotypic shifts in the age of AFS and AFB by birth cohort, in addition to 

changes in the spread of the distribution. Pearson’s correlation coefficients were calculated 

and correlation graphs illustrate the changing relationship between the two phenotypes 

over time. Genotypic changes and SNP-heritability by birth cohort were quantified in UK 

Biobank data using GREML12 as described earlier.13

MTAG: Multi-trait analysis of GWAS

MTAG results70 were calculated using GWA meta-analysis results of the following related 

phenotypes: AFS, AFB, number of children ever born, childlessness. Using summary 

statistics from the pooled GWAS of each of the traits, MTAG uses bivariate LD score 

regression to account for unobserved sample overlap.

Polygenic score prediction

We performed out-of-sample prediction in two cohorts, the National Longitudinal Study 

of Adolescence to Adult Health (Add Health),71 based in the US and the UK Household 

Longitudinal Study - Understanding Society (UKHLS).72 We calculated three sets of 

polygenic risk scores (PGS) with weights based on meta-analysis results excluding the 

specific cohort from the calculation. First, pruning and thresholding of all SNPs was 

performed (250kb window; r2=.1) using PRSice73. Second, LDpred PGSs74 with the LD 

reference were calculated from the same genotyped files, using prior distributions for the 

causal fraction of SNPs equal to 1 and LDpred weights calculated under the infinitesimal 

model. Third, MTAG + LDpred PGSs were calculated using the same methodology as in 

the second PGSs, but this time based on MTAG results70. For both traits, we ran ordinary 

least-squares (OLS) regression models and report the incremental R2 as a measure of 

goodness-of-fit of the model. Confidence intervals are based on 1,000 bootstrapped samples.

Population stratification, environment moderated effects

To test whether population stratification biased our results or lead to false positives, we used 

the LD Score intercept method.75 For each phenotype, we used the “eur_w_ld_chr” files of 

LD Scores.16 These LD Scores were computed with genotypes from the European-ancestry 

samples in the 1000 Genomes Project using only HapMap3 SNPs with MAF > 0.01. We 

then ran survival models to account for right-censoring, which occurs when an individual 

does not experience the event of first sex or birth by the time of the interview.14 Using Add 

Health data, we estimated nonparametric hazard functions based on Nelson-Aalen estimates 

and then compared individuals at the top and bottom 5% of the PGS and plotted the 
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estimated hazards. To further explore the relationship of environmentally moderated parental 

genetic effects on our PGSs, we examined PGS prediction across low (0-10%), medium 

(50-60%) and high (90-100%) PGS percentiles by parent’s education status (college versus 

no college), which serves as a proxy for childhood socioeconomic status.

Genetic correlations

Genetic correlation (rg) values were computed to estimate the genetic correlation between 

the two traits using all polygenic effects captured by the SNPs and LD-score regression.76 

We used summary statistics and the 1000 Genomes reference set, and restricted the analysis 

to European populations. We also followed the common convention of restricting our 

analyses to SNPs with MAF >0.01, thus ensuring that all analyses were performed using 

a set of SNPs that were imputed with reasonable accuracy across all cohorts. The standard 

errors (SEs) were produced by the LDSC python software package that uses a block 

jackknife over the SNPs. We estimated the genetic correlation between 28 different traits, 

pooled by both sexes and then divided by sex. Traits were divided into the six categories 

of: reproductive, behavioural, psychiatric disorders, substance use disorders, personality and 

anthropometric.

Genomic SEM and Exploratory Factor Analysis

In an attempt to understand the aetiology of the correlations, we used the R package 

GenomicSEM to fit genetic multivariable regression models. GenomicSEM17 uses 

structural equation modelling to decompose the genetic covariance matrix, calculated 

using multivariate LD score regression, of a set of traits. Formally, structural equation 

models subsume many statistical methods and are quite flexible. We fit a series of 

genetic multivariable regression models, in which AFB was regressed on EA (educational 

attainment) and a trait X, in which we modelled various relevant traits such as openness, 

cognitive performance and AI (age initiation smoking). We also fit an analogous series of 

models in which AFS was regressed on EA.

Exploratory factor analysis (EFA) and Genomic SEM by reproductive biology and 

externalising behaviour. EFA was used to examine whether the genetic signal of the onset 

of reproductive behaviour originated from two genetically distinguishable sub-clusters of 

a biological component and an externalising behaviour component. This would suggest 

distinct causal mechanisms and subtypes of individuals. We tested this by fitting a two factor 

EFA model to the genetic covariance matrix of AFB, AFS, NEB, and the proxies age at 

menarche (biological component) and risk tolerance (externalising behaviour). To test this 

further, we estimated a more robust and additional measures of reproductive biology and 

externalising behaviour and a sex-specific analysis of AFB for women. We fit a genomic 

structural equation model (Genomic SEM) where AFB in women is regressed on age at 

menopause, age at menarche, and a latent factor representing the common genetic tendency 

to externalising behaviour. The factor is measured by AFS in women, age at initiation 

of smoking, age first used oral contraception, and ADHD, with the model scaled to unit 

variance for the latent factor.
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Bi-directional Mendelian Randomization

We then tested whether causal pathways linking these phenotypes are potentially 

bidirectional and whether our phenotypes might offer distinct contributions. We identified 

1000 Genomes proxies for our SNPs and used these in multivariate Mendelian 

Randomisation (MR) models. All data was assumed to be on the forward strand, and 

as many of these data sets included UK biobank, allele identifier were matched to 

this study as a reference. First, we modelled the interplay between AFB, AFS and EA 

(educational attainment)77 as well as risk taking (measured in adulthood)4 and age at 

smoking initiation (AI).20 In each case IVW78 and MR-EGGER79 methods were performed, 

with an additional round of IVW performed once a Steiger filter80 had been applied to 

remove SNPs that appears to show a primary association with the outcome rather than the 

exposure. Multivariate MR was use to try to dissect causal pathways.81 A second set of MR 

analyses focused on links to late life diseases, namely type 2 diabetes (T2D)82 and coronary 

artery disease (CAD)22, using the same methods. Acknowledging the substantial overlap 

between the most significant signals for AFB, AFS and education related phenotypes, we 

use multivariate methods to test whether AFS or AFB had independent effects once the 

well-established links to length of educational attainment, and BMI were controlled for. 

Finally, as there was a particular interest in infertility related phenotypes, bidirectional MR 

was performed with AFS and AFB and PCOS (polycystic ovarian syndrome). In this case, 

given the sex-specific nature of the disease, a specific analysis was also performed on 

women only.

Cox models of AFB polygenic score on longevity

To test trade-offs between reproductive behaviour and senescence, we conducted additional 

analyses to test whether our PGS for AFB was predictive of (parental) longevity. We 

restricted our models to mortality after age 60 to limit the possibility that early mortality 

affects parental fertility (i.e., collider bias).83 We calculated PGSs for AFB, Educational 

attainment (EA)84 and risky behaviour4 from the UK Biobank adopting the following 

procedure. We first split the sample in 10 random groups. We then iteratively estimated 

genome-wide association results for 9/10th of the sample and used these association results 

as weights for the calculation of polygenic scores in the remaining 1/10th of the sample. 

Polygenic scores were calculated using PRSice on a set of independent genotyped SNPs. 

We then estimated three sets of Cox Proportional hazard models to estimate the effect of 

the PGS of AFB on maternal and paternal age at death. All models control for the first 10 

Genetic Principal Components, sex and year of birth, and are stratified by Local Authority 

District at birth calculated using the geo-coordinates provided in the UK Biobank due to 

differences in mortality related to material deprivation.85 We first estimated a baseline model 

and then included PGSs for EA and risk as covariates, followed by a final model including 

number of sibling (proxy for parental fertility).

Gene prioritization

We prioritized candidate genes in pooled and sex-specific GWAS-identified loci using 

predicted gene functions,86 single-cell RNA sequencing data in mice,29,87,88 literature 
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mining,31 in silico sequencing,32 and synthetic Mendelian Randomization89 using eQTL 

data from brain and blood.90,91

DEPICT and CELLECT for tissue, cell type and gene prioritization were used. First, 

DEPICT was used to perform pathway analyses, identify enrichment for cell types and 

tissues, and prioritize candidate genes.86 DEPICT is agnostic to the outcomes analyzed in 

the GWAS and employs predicted gene functions. For both AFS and AFB, all SNPs with 

p<1x10-5 in the pooled GWAS meta-analysis were used as input. Based on the results of 

the tissue enrichment analysis, we used CELLECT88 to identify nervous system cell types 

that are enriched for expression of genes in loci reaching p<1x10-5 in the GWAS, using 

RNAseq data from mouse brain.29 A similar approach using tabula muris RNAseq data87 

helped prioritize additional central nervous system and pancreatic cell types for AFS. For 

enriched cell types from mouse brain and tabula muris, the top-10 contributing genes were 

selected as candidate genes resulting in the prioritization of 296 genes for AFS and 95 for 

AFB based on mouse brain; and 97 genes for AFS based on tabula muris data.

Phenolyzer to integrate prior knowledge and phenotype information. We used Phenolyzer 

(v1.1) to prioritize candidate genes by integrating prior knowledge and phenotype 

information.92 Here we used the regions defined by DEPICT v1.1, reflecting loci reaching 

P<1x10-5 in first instance. Phenolyzer takes free text input and interprets these as disease 

names by using a word cloud to identify synonyms. It then queries precompiled databases 

for the disease names to find and score relevant seed genes. The seed genes are subsequently 

expanded to include related (predicted) genes based on several types of relationships, e.g., 

protein-protein interactions, transcriptional regulation and biological pathways. Phenolyzer 

uses machine-learning techniques on seed genes and predicted gene rankings to produce 

an integrated score for each gene. We used search terms capturing three broad areas, i.e., 

(in)fertility, congenital neurological disorders and psychological traits, based on results from 

pathway, tissue and cell type enrichment analyses.

In silico sequencing. We used in silico sequencing to identify non-synonymous variants with 

an R2 for LD>0.7 with the lead SNPs in AFS and AFB-associated loci,32 which yielded 

genes that may drive the GWAS associations through direct effects on protein function.

Summary data-based Mendelian Randomization (SMR) and Heterogeneity in Dependent 

Instruments (HEIDI).89 We conducted this using eQTL data from brain93 and whole 

blood.91 This approach provided a list of genes that showed Bonferroni corrected significant 

evidence (thresholds for blood <3.2x10-6 brain <6.7x10-6) of mediating the association 

between our phenotypes and GWAS-identified loci based on results from brain and blood.

Integration of findings across all functional approaches. We integrated findings across all 

approaches and retained genes in loci that reached genome-wide significance, and that were 

located within 1M bp of a GWAS lead SNP. We next used data from the Human Protein 

Atlas35 to identify genes amongst 387 genes that are expressed at a low, medium or high 

protein level in brain, glands, and/or reproductive organs at a ‘supported’ or ‘enhanced’ 

degree of reliability. For the 97 genes that fulfilled these criteria, we mapped the brain, 

glandular and reproductive cell types in which they are highly expressed at the protein 

Mills et al. Page 21

Nat Hum Behav. Author manuscript; available in PMC 2021 December 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



level;94 used a text-mining approach to extract functions from entries in Entrez, GeneCards 

and Uniprot; and identified phenotypes in mutant mice from the Mouse Genome Informatics 

(MGI) database95.
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Figure 1. Change in age at first sex (AFS) and age at first birth (AFB) over time, heritability by 
birth cohort and polygenic score (PGS) prediction.
(A) AFB (A) and AFS (B) by birth cohort, UK biobank shows a shift in the ages over 

time. (B) Increased SNP heritability for women over time by birth cohort, UK Biobank. (C) 

Nelson-Aalen hazard estimates of AFS by age for women comparing the upper and lower 

5% of the PGS for AFS. (D) Nelson-Aalen hazard estimates of AFB by age for women 

comparing the upper and lower 5% of the PGS for AFB.
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Figure 2. Variance explained from polygenic scores for age at first birth (AFB) and age at first 
sex (AFS) using different methods in out-of-sample cohorts
Shows the out-of-sample prediction scores for AFB and AFS performed in two cohorts: 

The National Longitudinal Study of Adolescence to Adult Health (Add Health) and the UK 

Household Longitudinal Study (UKLS). The bars represent the delta (Δ) R2, also indicating 

confidence intervals. R2 measures of the proportion of variance of the phenotype that is 

explained by the model and Δ R2 shows the change in R2 values when comparing a model 

without the PGS to one that includes the PGS. The different methods of PRSice, LDPred 

and MTAG+LDPred are described in the Supplementary Information, Section 5.
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Figure 3. Genetic correlations of age at first birth (A) and age at first sex (B) with a selection of 
related traits.
The horizontal bars represent 95% confidence intervals. If the trait was initially assessed 

separately for males and females, this is indicated on the left in brackets with F referring to 

females and M to males. The black circles represent the Bonferonni significant correlations, 

but the magnitude of the effect (rg, the genetic correlation) is the most informative. 

Definitions and sources of all traits can be found in the Supplementary Information, Section 

7.1 with full results shown in Supplementary Table S11.
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Figure 4. Mendelian randomisation of years of education on type 2 diabetes (T2D) and coronary 
artery disease (CAD) adjusted for age at first birth (AFB) and age at first sex (AFS).
Shows the coefficients and confidence intervals (CIs) of Mendelian Randomisation analyses 

to examine the effects of SNPs associated with years of education on Type 2 Diabetes 

(T2D) and Coronary Artery Disease (CAD), after adjustment by AFB and AFS and other 

covariates. The association with years of education and T2D and CAD are substantially 

attenuated by the effects of AFB. Even when BMI is included in the model, the level of 

attenuation of educational attainment by AFB remains striking.
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Figure 5. Gene prioritization of age at first sex (AFS) and age at first birth (AFB).
Information for 99 genes prioritized in loci identified by GWAS for age at first sex and/or 

age at first birth that are located within 1 million bp of lead SNPs and are expressed at the 

protein level in brain, glands and/or reproductive organs. Transitions in colour from blue 

to orange highlight whether the gene in the next row is still within the same locus or not. 

Numbers before the genes show the chr. Panels are separated by vertical grey lines. The 

first panel (left) indicates if the locus was identified as being associated at genome-wide 

significance with age at first sex (AFS) and/or age at first birth (AFB). The second panel 

shows which bioinformatic approaches highlighted the gene as a candidate. The third panel 

shows – from left to right - the cell types in brain, glands, female reproductive organs, and 

male reproductive organs in which the genes are expressed at a low, moderate or high level 

(small, medium and large circles), based on data from the Human Protein Atlas. The fourth 
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panel shows gene functions as extracted from Entrez, Uniprot and GeneCards. The fifth 

panel indicates which phenotypes were observed in mutant mice, as reported by the Mouse 

Genome Informatics (MGI) database.
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Figure 6. Summary genome-wide association study of timing of onset of reproductive behaviour: 
age at first sex (AFS) and age at first birth (AFB).
Provides a summary of the GWAS meta-analysis results and highlights that the timing of 

onset of reproductive behaviour is shaped by the combined effects of reproductive biology 

and externalizing behaviour but also exogenous environmental factors. Sex-specific genetic 

correlations are higher for AFB than AFS, with gene prioritization revealing some genes 

prioritized for men and women as well as sex-specific findings. Of the prioritized genes, 99 

were expressed at the protein level in cell types of brain, glands and/or (fe)male reproductive 

organs. The fact that some prioritised proteins are expressed in some relevant tissues does 

not provide clear evidence supporting a causal role. Figure created by authors.
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