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REVIEW ARTICLE OPEN

An urgent call to raise the bar in oncology
John-John B. Schnog 1,2✉, Michael J. Samson3, Rijk O. B. Gans4 and Ashley J. Duits 2,5,6

© The Author(s) 2021

Important breakthroughs in medical treatments have improved outcomes for patients suffering from several types of cancer.
However, many oncological treatments approved by regulatory agencies are of low value and do not contribute significantly to
cancer mortality reduction, but lead to unrealistic patient expectations and push even affluent societies to unsustainable health
care costs. Several factors that contribute to approvals of low-value oncology treatments are addressed, including issues with
clinical trials, bias in reporting, regulatory agency shortcomings and drug pricing. With the COVID-19 pandemic enforcing the
elimination of low-value interventions in all fields of medicine, efforts should urgently be made by all involved in cancer care to
select only high-value and sustainable interventions. Transformation of medical education, improvement in clinical trial design,
quality, conduct and reporting, strict adherence to scientific norms by regulatory agencies and use of value-based scales can all
contribute to raising the bar for oncology drug approvals and influence drug pricing and availability.

British Journal of Cancer; https://doi.org/10.1038/s41416-021-01495-7

BACKGROUND
Important breakthroughs have contributed to an increased life
expectancy for patients suffering from several cancers, such as
immunotherapy for melanoma [1], second-generation androgen
receptor antagonists for prostate cancer [2] and new drugs for
myeloma [3]. However, reduction in cancer mortality has been
mostly due to prevention, early detection and improved cancer
care organisation [4, 5]. In contrast, approval of anticancer drugs
by regulatory agencies gives the impression that new drugs are
drivers of cancer care improvement. In fact, they often offer
limited benefits to patients while the costs of many new cancer
treatments are skyrocketing [6, 7]. In the Netherlands, the
nationwide prospective cancer registry revealed a median
increment in the survival of patients with advanced solid cancers
of little more than 1 month over the past 10 years [8]. With value
in health care defined as the outcome of an intervention relative
to its related costs [9], many new oncological treatments are thus
of limited value [10].
The increasing array of new treatments in oncology can lead to

unrealistic patient expectations and, if not duly managed, pushes
society to unsustainable health care costs. With the current
COVID-19 pandemic-driven increased necessity to make value-
based choices in all medical fields, we should critically reassess the
value of available cancer care and allow only high-value
interventions based on properly designed and conducted trials
to reach our practice. In this narrative review, we focus on
different factors that likely contribute to the use of low-value
oncological treatments. Strategies for preventing the advent of
low-value oncological care are presented.

CRITICAL INTERPRETATION OF CLINICAL TRIALS
Relevant outcomes
The evidence upon which any treatment recommendation is based
should ideally come from adequately designed, executed and
reproduced phase 3 randomised controlled trials (RCTs). Any
treatment should result in clear benefits; improve the chances of a
cure or to live longer (increase overall survival [OS]) and better lives
(improve quality of life [QOL]) [11]. What absolute OS increase is
considered relevant is likely to differ between cultures, age groups
and countries. As a frame of reference, to be considered for
inclusion on the World Health Organization Model List of Essential
Medicines, a cancer drug should increase OS by at least 4–6 months
as compared to the standard of care [12, 13]. In contrast, in many
modern RCTs leading to drug approvals, median OS improvement
is mostly <3 months (Table 1) [14–19]. An example was the
approval of erlotinib in the treatment of advanced pancreatic
cancer that increased OS by 2 weeks when combined with
gemcitabine, as compared to gemcitabine alone [20].
Improving QOL (assessed in trials as patient-reported outcomes

[PROs]) should be the main goal of palliative treatment. Since
many trials evaluate surrogate primary endpoints (see below), PRO
assessments should be thoroughly and correctly conducted to
determine whether the studied intervention delivers meaningful
benefit [11]. The Consolidated Standards of Reporting Trials
(CONSORT) were extended with specific guidelines to increase the
consistency of PRO research and reporting [21]. Several studies
have shown that PROs are often not studied and, when addressed,
adherence to PRO reporting guidelines is often poor (Table 1)
[14, 17, 22–27].
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Table 1. Overview of major published studies addressing contemporary clinical oncology trials and regulatory drug approvals.

Overall survival: clinical trials leading to regulatory drug approvals with a limited OS benefit

YOP Timespan study Results

2014 2002–2014 Solid cancer drug approvals by FDA: 71 approvals with median OS of 2.1 months [16]

2016 2003–2013 62 new drugs approved by both FDA and EMA: 23 (43%) with OS improvement ≥3 months, 6 (11%) <3 months, 8 (15%)
unknowns, with no evidence of OS increment in remaining approvals. Mean OS gain of all approvals 3.43 (SD 0.63)
months relative to treatment available in 2003 [17]

2017 2009–2013 EMA approved 48 cancer drugs for 68 indications: at the time of market approval, median OS benefit was 2.7 months
(range 1.0–5.8) in 24/68 (35%) of indications [14]

2020 2000–2016 First time FDA approval of novel cancer drugs for any type of cancer; 92 novel drugs for 100 indications based on 127
trials: median OS 2.40 months (IQR 1.25–3.89) [15]

2021 2011–2020 pCODR-approved drugs: 78/104 submissions received positive recommendation; median OS gain in approved drugs 3.7
(IQR 2.7–6.5) months as opposed to median OS increase of 1.9 (IQR 1.4–4.5) months in rejected submissions [18]

2021 2010–2020 298 RCTs of systemic treatment in breast, colorectal and NSCLC published in high-impact journals: 86 (29%) had OS as
the primary endpoint; in trials with a positive outcome, median OS increase 3.5 (IQR 2.5–6.6) months [19]

Medical society value-based scales: drugs tested in oncology RCTs are assessed as meaningful in less than half of cases in most studies

YOP Timespan study Results

2014 2002–2014 Solid cancer drug approvals by FDA: 30/71 (42%) would have met ASCO-CRC threshold for a clinically meaningful
benefit to patients (2.5 months and ≥25–30% OS increase), 9/71 (13%) uncertain benefit [16]

2017 2011–2015 All RCTs on breast, pancreas, lung and colorectal cancer: 277 RCTs; 138 (50%) favour experimental group with 43/138
(31%) meeting ESMO-MCB benefit threshold (score 4 or 5 in a palliative setting, score A or B in curative setting) [31]

2017 2011–2015 All RCTs on breast, pancreas, lung and colorectal cancer with significant difference favouring experimental group: 277
RCTs; median ASCO-VF score 25 (range 2–77; score ≥45 considered substantial benefit) and 38% met the ESMO-MCB
benefit threshold [30]

2017 2009–2013 EMA approved 48 cancer drugs for 68 indications: 23 associated with OS benefit; 11/23 (48%) were scored as meaningful
with the ESMO-MCB scale [14]

2017 2000–2015 All new biologics and molecular entities that were FDA approved; 37/51 (72%) new drugs evaluated: 13/37 (35%) drugs
showed meaningful benefit by ESMO-MCB with median ASCO-VF 37 (IQR 20–52) [32]

2017 2006–2016 FDA-approved 63 drugs for 118 indications; 46 (43.8%) met the ESMO-MCB threshold of clinical benefit [33]

2017 2011–2016 EMA approved 38 solid cancer drugs based on 70 studies; 11 and 21% met approval thresholds of adapted and original
ESMO-MCB, respectively [34]

2020 2009–2017/19a New drugs for solid cancers approved by both FDA and EMA; 47 drugs for solid cancers; ESMO-MCB 13/47 (28%) met
the benefit threshold and 15/36 (42%) met substantial benefit threshold of the ASCO-VF (not applicable to 11
indications) [38].

2020 2012–2017 106 trials led to FDA approvals of 52 drugs for 96 indications: thresholds of clinical benefit were met in 43% of ASCO-VF,
34% of ESMO-MCB, 73% of ASCO-CRC (OS >2.5 months and PFS > 3 months) and 69% of NCCN Evidence Blocks (score 4
and 5 and combined 16 or higher for efficacy, safety, quality and consistency of evidence, affordability) [35]

2021 2011–2020 pCODR-approved drugs: 78/104 submissions received positive recommendation; 61% of accepted submissions
considered of benefit based on ESMO-MCBS as to 19.2% in rejected submissions [18]

2021 2006–2019 FDA approved 55 oncology drug indications scorable with ASCO-VF with subsequent publications relevant for
reassessing ASCO-VF scoring: at FDA approval 40.0% substantial benefit (score ≥45), 49.1% low (score ≤40) and 10.9%
intermediate. At 3 years post approval based on 9 follow-up publications, despite changes in individual scores, 40.0%
remained substantial, 50.9% low (score ≤40) and 9.1% intermediate [37]

2021 2006–2017 214 FDA and 170 EMA approvals with 40 and 58% of indications including QOL assessment in trials; using ASCO-VF and
ESMO-MCB scales, QOL bonus criteria were detected in 13 and 17% of FDA and 21 and 24% of EMA approvals [36]

Quality of life: studies show PROs are often not studied and that adherence to CONSORT-PRO guidelines in oncology drug research is not
optimal

YOP Timespan study Results

2015 2007–2011 325 phase 3 RCTs reviewed only 48% of trials reporting PROs. PRO reporting with mean PRO RQS 5 on an 11-point scale
[22]

2015 2004–2013 RCTs including PRO endpoint identified in 557 RCTs; <50% reported at least 4/6 CONSORT-PRO items [25]

2016 2003–2013 62 new drugs approved by FDA and EMA: 17 (32%) demonstrated improvement in QOL based on empirical evidence
[17]

2017 2009–2013 EMA approved 48 cancer drugs for 68 indications: 9/68 (13.2%) associated with an increase in QOL [14]

2019 2014–2017 Of 160 published RCTs based on NIHR registered protocols with PROs included in endpoints, 61 (38.1%) did not include
PROs in any publication. The remaining trials scored a mean of 3 (SD 3) of 14 CONSORT-PRO checklist items in published
PRO findings [26]

2019 2004–2019 649 RCTs with PRO reporting, 72 (11.1%) of trials analysed included patients ≥70 years; only 24 (33.3%) had high-quality
PRO reporting according to ISQOLR-PRO standards [23]

2020 2014–2019 71 RCTs reporting on PROs in haematological malignancies were identified with the quality of reporting in RCTs
employing CONSORT-PRO extension being higher than trials not citing this extension [24]
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Clinical benefit scales based on factors such as OS, QOL, toxicity
and symptom control have been developed to translate outcome
measures to value [28, 29]. Several studies have assessed whether
oncology drug approvals meet such society-defined thresholds of
clinical benefit. Most studies show <50% meeting these standards
(Table 1) [14, 16, 18, 30–38].

Surrogate endpoints
Surrogate endpoints, such as progression-free survival (PFS) or
response rate (RR), are increasingly used as primary endpoints in
phase 3 oncology RCTs (and in non-randomised studies) (Table 1)
[14, 18, 19, 39–47]. Their use may contribute to effective
treatments reaching patients faster (e.g. recent immunotherapy

Table 1 continued

2020 2011–2018 FDA approved 42 immunotherapy indications with PROs published in 21/44 (47.7%) of the trials. The mean score of a
24-point PRO Endpoint Analysis Score was 12.71 (range 5–27, SD 3.71) [27]

Surrogate endpoints: oncology trials use of surrogate endpoints.

YOP Timespan study Results

2011 1992–2010 FDA approved 35 oncology drugs for 47 indications via accelerated approval pathway: all studies based on surrogate
endpoints. Conversion to regular approval in 26/47 (55.3%) indications; 16/26 still based on a surrogate endpoint [44]

2014 2005–2012 FDA approved 188 novel agents for 206 indications based on 448 trials; 55/448 are cancer trials of which 83.6%
measured a surrogate endpoint [40]

2015 2009–2013 51 FDA approved oncology for 63 indications; 70% of approvals based on a surrogate endpoint [41]

2015 2008–2012 FDA approved 36/54 drugs based on a surrogate endpoint [47]

2017 2009–2013 EMA approved 48 cancer drugs for 68 indications: surrogate endpoint in 53 of 72 RCT’s (73%) [14]

2018 1992–2017 FDA granted AA for 64 drugs for 93 indications; all based on surrogate endpoints [42]

2019 2014–2016 EMA approved 32 new drugs based on 54 trials; 39/41 were published RCT’s with 29/39 (74%) evaluating surrogate
endpoints as a primary outcome measure [46]

2019 2006–2018 FDA approved 59 drugs for 85 indications based on RR [39]

2019 1992–2017 AA was granted for 93 cancer drug indications based on surrogate endpoints; confirmatory trials in 19 (20%) measured
the same surrogate endpoint, 20 (21%) a different surrogate endpoint, 19 (20%) reported OS improvement with the
remaining trials not reported at the time of publication [43]

2021 2011–2020 pCODR approved drugs: 78/104 submissions received positive recommendation; 67.9% surrogate endpoints in
approved indications, as opposed to 76.9% in rejected submissions [18]

2021 2016–2020 49 drug approvals by FDA based on 52 trials for haematological malignancies: 84% report surrogate endpoints [45]

2021 2010–2020 298 RCTs of systemic treatment in breast, colorectal and NSCLC published in high impact journals compared to RCTs
from 1995–2004 and 2005–2009: PFS as an endpoint: 0 (1995–2004), 18 (2005–2009) and 42% (2010–2020) [19]

Non-randomised and single-arm studies: drug approvals are increasingly based on single RCTs or non-randomised single-arm studies.

YOP Timespan study Results

2011 1992–2010 FDA approved 35 oncology drugs for 47 indications via accelerated approval pathway: 28/47 (59.6%) were based on
non-RCTs. Conversions to regular approval occurred in 26/47 (55.3%) indications; 24/26 (92%) based on RCTs [44]

2014 2005–2012 FDA approved 188 novel agents for 206 indications based on 448 trials; 55/448 are cancer trials; 52.7% not randomised
[40]

2016 1999–2014 76 pharmaceuticals (44/795 EMA, 60/774 FDA) approved without RCT; 34 haematological, 15 oncological indications [56]

2017 2009–2013 EMA approved 48 cancer drugs for 68 indications: 8 (12%) single-arm study [14]

2018 1992–2017 FDA granted AA for 64 drugs for 93 indications; 67 of 93 (72%) indications were based on single-arm trials [42]

2019 2006–2018 FDA approved 59 drugs for 85 indications based on RR: only 9% were RCTs [39]

2020 2000–2016 First time FDA approval of novel cancer drugs for any type of cancer; 92 novel drugs for 100 indications based on 127
trials: 95 (74.8%) nonrandomized [15]

2020 2011–2018 FDA approved 42 immunotherapy approvals; 21/44 (477%) were single-arm trials [27]

2020 2014–2019 187 trials led to 176 approvals by FDA for 75 anticancer drugs; 64 (34%) were single-arm trials [57]

2021 2016–2020 49 drug approvals by FDA based on 52 trials for haematological malignancies: 40% non-phase 3 trials [45]

2021 2011–2020 pCODR approved drugs: 78/104 submissions received positive recommendation; 92.3% phase 3 RCT in approved
indications, as opposed to 57.7% in rejected submissions [18]

YOP year of publication, OS overall survival, FDA Food and Drug Administration, EMA European Medicines Agency, SD standard deviation, IQR interquartile
range, pCODR pan-Canadian Oncology Drug Review, RCT randomised controlled trial, NSCLC non-small cell lung cancer, ASCO-CRC American Society of Clinical
Oncology Cancer Research Committee, ESMO-MCB European Society of Medical Oncology-Magnitude of Clinical Benefit scale, ASCO-VF American Society of
Clinical Oncology Value Framework, NCCN National Comprehensive Cancer Network, PRO patient-reported outcome, CONSORT consolidated standards of
reporting trials, RQS reporting quality score, NIHR National Institute for Health Research, ISQOLR International Society of Life Research, RR response rate, PFS
progression-free survival, AA accelerated approval.
PubMed was searched for all reviews and systematic reviews investigating oncology drugs, approvals, value scales, PRO assessment with publication dates
2000 until the present including search terms such as ‘drugs, approvals, cancer, value, PRO’, and per the study, the ‘similar articles’ link was also assessed.
Studies regarding a specific disease indication were not included. Studies were selected according to relevance to the topic of this review.
a2009–2017 for FDA and 2009–2019 for EMA approvals.
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and targeted therapy approvals for advanced lung cancer [48]).
However, a recent retrospective analysis showed a limited median
time gain of ~11 months when PFS is studied as opposed to OS
[49]. Surrogate endpoints are mostly poorly predictive of outcome
parameters such as OS [50] or QOL [51]. The use of surrogate
endpoints can therefore result in patient exposure to treatments
without proper evidence of an effect on a clinically relevant
outcome. Such was the case with bevacizumab in breast cancer,
receiving approval after one RCT revealed a positive effect on PFS
[52]. After repeat RCTs failed to confirm the magnitude of the
initial PFS benefit, showed no improvement in OS but demon-
strated increased bevacizumab-related toxicity [53, 54], the
approval was revoked. Notably, this treatment option is currently
still included in the National Comprehensive Cancer Network
(NCCN) breast cancer guideline [55]. Introducing new treatments
based on surrogate endpoints can lead to incorrect ‘new
standards of care’, to which future potential treatments are being
compared in costly clinical trials.

Approvals based on non-phase 3 trials
Even though a phase 3 RCT is considered the gold standard for
evidence generation, studies spanning more than a decade have
demonstrated that a considerable percentage of oncology drug
approvals are based on non-phase 3 RCTs
[14, 15, 18, 27, 39, 40, 42, 44, 45, 56, 57] (Table 1). Especially,
studies leading to expedited approvals often lack active compara-
tors (see ‘regulatory agencies’ below) [58]. For more than half of
FDA oncology drug approvals between 2014 and 2019 that were
based on single-arm studies, approved therapies already existed
to which these should have been compared [59]. Even though
subsequent confirmatory phase 3 RCTs are considered obligatory,
they are not always performed [42, 43, 47]. When confirmatory
trials do address OS as the primary outcome, these often do not
show benefit [47]. A recent example was the approval of
olaratumab for treatment of advanced sarcoma in combination
with doxorubicin based on a 14-month survival increase in a single
open-label phase 1b and phase 2 trial [60]. Resources were wasted
on a treatment, of which the results of the ensuing phase 3 RCT
failed to show OS improvement [61].

Single RCTs
A new treatment should ideally be approved after demonstrating
benefit in a repeated clinical trial. In general, a second positive RCT
is considered to confirm the effectiveness of the tested interven-
tion. This is of importance as even with detection of a statistically
significant difference between treatment arms in an RCT, there is
the possibility of the finding being false positive [62]. Single RCTs
are, however, increasingly considered sufficient to lead to drug
approvals. A recent study reported that, of 120 FDA approvals
(2014–2019), 117 were based on a single RCT [57].
An initially detected effect of an intervention in an RCT is often

smaller when the trial is repeated or reanalysed, and large
treatment effects in small RCTs are usually not reproducible [63–
65]. A recent study showed that post-approval updates of RCTs in
breast, lung and prostate cancer show a decrease in the initially
detected and reported effect upon which the approval was based
[66]. The ‘fragility index’, which is the minimum number of
changes from non-events to events causing an RCT to lose
statistical significance, could be calculated in 17 of 36 oncology
RCTs [67]. An outcome change of a mere two events would have
53% of these 17 RCTs lose statistical significance, casting doubt on
their robustness. The chance of a properly conducted RCT being
false negative is very small (based on the a priori probability of an
intervention being effective and the generally accepted threshold
of false negativity in RCTs of 20% (power of 80%)). Taking this all
together, drug approvals after a single RCT may be based on false
positive, exaggerated and/or ‘fragile’ findings.

Non-representative for everyday practice
In clinical trials, the selected population and the context of care
delivery are commonly not representative of the general patient
population or everyday practice. Fit and relatively young patients
are included and intensively monitored during treatment [11].
Even though carrying a higher cancer burden, minorities [68] and
older patients [23] are often underrepresented, limiting the broad
representability of trial findings. The benefit detected in a clinical
trial is usually less and toxicity greater in everyday practice,
especially in patients who do not fulfil the original inclusion/
exclusion criteria of the respective clinical trial. For example, in
‘real-life data’ in both colorectal cancer [69] and prostate cancer
[70], it was observed that treatment outcome was worse than
expected in patients not fulfilling the original trial inclusion
criteria. A recent study compared trial outcomes of 22 FDA-
approved oncology drugs for 29 indications to real-world data
obtained in older Medicare beneficiaries [71]. Survival was shorter
in Medicare beneficiaries in 28 of 29 indications (median
difference −6.3 months, range −28.7 to 2.7 months).

Other important issues in critical evaluation of clinical trials
Many other factors of importance should also be critically assessed
when interpreting clinical trials and are beyond the scope of this
review. These include the inappropriate use of subgroup analyses
[72, 73], the occurrence of inappropriate crossovers [57], the
occurrence of informative censoring [74] and the use of
inadequate comparator arms [57, 75].

BIAS IN DATA PUBLICATION
Selective or biased reporting in oncological RCTs occurs even in
high-impact journals [76, 77]. Spin bias, i.e., misrepresentation of
trial findings with the goal of luring readers into believing that the
claimed effect is greater than the available data shown, has been
reported in almost 60% of RCTs in breast cancer [78] and in 10% of
abstracts pertaining to lung cancer trials [79]. Spin bias in abstracts
has been shown to influence clinicians’ trial interpretation [80]. It is
also directly translated into lay press reporting [81], leading to
unfounded expectations of patients, policymakers and physicians
[80]. Publication bias, i.e., non-publication or delayed publication
of negative studies, needs to be considered whenever we are
addressing a potential new treatment (indication), especially since
results of non-published studies could be of relevance [82]. Even
though the global cancer burden is highest in low- and middle-
income countries (LMICs), publication bias by high-impact journals
against LMIC oncology RCTs occurs, even as these are more likely
to identify high-value therapies [83]. In systematic reviews of
cancer trials, publication bias assessments, such as the use of
funnel plots, remain underused, which may therefore exaggerate
the effects of the reviewed intervention [84]. Harm detected in
clinical trials is often underreported [85].

FINANCIAL CONFLICTS OF INTEREST
Identifying new strategies against disease drives academia and
pharma. Aside from academic acknowledgement, funding and
promotion of clinical researchers, new treatments, or drug
repurposing against both emerging and common diseases, lead
to revenue for pharmaceutical companies. However, without
industry sponsorship of clinical trials innovation may not reach our
patients [86]. Potential financial conflicts of interest (FCI) occur
among all stakeholders, investigators and journal editorialists, as
well as members of regulatory agencies [6, 87–91]. Studies have
shown an association between the likelihood of drug endorse-
ment in consensus guidelines and the FCI of the main author
[92, 93].
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REGULATORY AGENCIES
With the advent of expedited drug approval programmes,
regulatory approvals based on limited evidence (e.g. use of
surrogate endpoints and non-phase 3 trials) increasingly occur
when an intervention serves an ‘unmet clinical need’. This should
encompass cancers that have few treatment options with poor
disease outcomes [94]. Incorrect use of ‘unmet clinical need’ may,
in part, explain the high rate of expedited oncology drug
approvals. A recent study showed 95% of 58 FDA approvals from
2012 to 2017 entering an expedited programme [95]. In another
study analysing FDA applications for new cancer drugs/indications
from 2008 to 2016, 53 of 186 were granted expedited approval
[96]. Recently, margetuximab, a monoclonal HER2neu-directed
antibody, was granted expedited approval by the FDA for treating
advanced breast cancer patients after two prior treatment lines
with HER2neu-directed therapy [97]. The drug approval was dated
before the publication of the clinical trial [98] and was based on a
surrogate endpoint with a PFS benefit of 0.9 months. It is hard to
comprehend how, for a disease with many treatment options
(next to chemotherapy and hormonal therapy (if applicable) and
several FDA-approved HER2neu targeting agents [55]), this would
provide in an unmet clinical need warranting expedited approval.
Expedited drug approval pathways require post-approval

studies to address evidence gaps. These are often delayed, and
if performed, tend to have the same inappropriate characteristics
as the pre-approval trials [6, 43, 44, 99–101]. A recent overview of
25 years of accelerated approvals of oncology products (all based
on surrogate endpoints) showed 51 of 93 initial approvals to
confirm benefit in the ensuing years. Thirty-seven (61%) of
confirmation studies again used a surrogate endpoint [42]. In
another report, for 93 cancer drug indications granted accelerated
approval by the FDA, only 20% of confirmatory studies used OS as
an endpoint; 41% studied a surrogate with the remaining
confirmatory trials not yet reported [43]. Limitations in evidence
can therefore persist post approval [102].
Serious side effects may become clear after widespread use

after drug approval [85]. For example, real-world post-approval
data of ibrutinib, used to treat chronic lymphocytic leukaemia,
revealed higher than expected treatment-related cardiac deaths,
which may be dose-related [103]. To date, no lower ibrutinib dose
trial has been mandated. Another example is the increased risk of
myelodysplastic syndrome (MDS) and acute myeloid leukaemia
(AML) with the use of poly(ADP-ribose) polymerase (PARP)
inhibitors detected in a recent meta-analysis of 28 RCTs and in a
study of the WHO’s pharmacovigilance database [104]. This
analysis was performed after several cases were detected in the
longer follow-up of PARP inhibitor trials. As maintenance PARP
inhibitor use in even platinum-sensitive homologous-
recombination-proficient ovarian cancer patients has been
approved [105], many patients will be exposed to an increased
risk of MDS/AML, but with a limited evidence of PFS increase and
no proven OS benefit pertaining to their ovarian cancer [106].
Discrepancies between trial inclusion criteria and regulatory

agency-approved patient characteristics contribute to the expo-
sure of patients to drugs without supporting data. For example,
both enzalutamide [107] and apalutamide [108] were FDA
approved for the treatment of men with non-metastatic castra-
tion-resistant prostate cancer regardless of prostate-specific
antigen (PSA) doubling time, whereas the pivotal trials were
limited to men with PSA doubling times of 10 months or less
[109, 110]. This broadens prescribing indications to a larger group
of lower-risk patients who will be exposed longer to these
expensive drugs without proven benefit [111]. A recent study
identified 38 approvals (2010–2018) by the FDA, EMA and
Pharmaceuticals and Medical Devices Agency; 53% revealed
discrepancies between trial inclusion criteria and defined ther-
apeutic indications, and several allow broader prescribing indica-
tions [112].

DRUG PRICING
Conceding the fact that drug pricing, regulatory bodies and
financial thresholds for acceptable costs vary between countries,
the benefit of many new cancer treatments is in stark contrast to
their pricing [7, 113]. No positive association between clinical
benefit scales, efficacy or novelty and pricing has been detected
[30, 32, 41]. Revenue of approved drugs is such that the need for
high drug prices to cover research and development costs may
not always be a valid argument [114], especially since the
portfolios of pharmaceutical companies overlap, limiting risk and
costs of innovation [16, 115].
High drug prices not only lead to cancer treatments being

limited to high-income countries but may even delay drugs
reaching patients due to unavoidable time-consuming price
negotiations [116]. Financial constraint is one of the main
determinants of health care availability. With increasing drug
prices, even in affluent countries, financial limitations influence
cancer drug availability [13, 117].

RAISING THE BAR
Several recommendations can be made that could all contribute
to raising the bar in oncology (see Box 1). The first important step
is the recognition of the scope of the problems depicted above.
The explosive increase in publications on new treatments renders
oncologist’s dependent on rapid reading services, abstract reading
and expert opinion regarding evidence assessment. A recent
study showed that clinicians often overestimate the benefit and
underestimate the harm of medical interventions [118]. Unrealistic
patient expectations of ‘breakthrough treatments’ [11, 95] occur as
a result of direct-to-consumer marketing with a poor translation of
scientific data by lay press [81], cancer centres [119] and treating
physicians [120, 121]. Medical education needs to be transformed
so that we are better prepared for the broader responsibilities and
social aspects of modern-day medicine, data interpretation,
research and value-weighted treatment selection.
Educational focus on a ‘less is more’ principle for managing

patients with advanced cancer should contribute to raising the
bar. By adhering to QOL standards, the value of early palliative
care with timely refrainment from anticancer therapy should be an
integral part of oncology training. Patients suffering from
advanced cancer are willing to undergo toxic treatments with a
very small chance of benefit near the end of life [122]. However,
systemic anticancer treatments often provide limited or no benefit
to patients suffering from advanced cancer [123], lead to harm in

Box 1. Recommendations to raise the bar in the field of oncology

Recognition of the limitations of evidence generated in trials leading to oncology
drug approvals and subsequent medical education transformation.
Increased focus in medical education on a ‘less is more’ principle with special

attention for communication skills for accurate disclosure of prognostic information
and aiming for the timely institution of palliative care.
Insisting on improvement in clinical trial design, conduct and execution

employing valid meaningful endpoints, proper comparator arms and replication
of findings or lowering of p values.
Journals should avoid bias in publications with clear and palatable reporting

limiting abstract conclusions to the primary trial endpoint, clearly stating but
preferably avoiding author/editor FCI.
Strict limitation of regulatory agency use of expedited approval procedure to true

unmet clinical needs; rigorous pursuit of mandatory confirmatory high-quality trials
after expedited approvals; meticulous post-marketing monitoring for safety with
prompt intervention in case of concern.
Regulatory agency approval adherence to indications as studied in the pivotal

clinical trial.
Concerted effort to address oncology drug pricing aiming to balance pricing with

drug efficacy with fair health care distribution.
Concerted effort to study alternative, lower and less frequent dosing schedules

maintaining efficacy for oncology drugs.
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the last weeks of life, reduce QOL, limit timely hospice care and
increase risk of dying in the hospital with subsequently an
increased risk of pathological grievance of bereaved [124, 125].
Informing patients of treatment effects in daily practice by
quoting point estimates, such as median OS achieved in highly
selected patients from RCTs instead of using ‘real-life data’ (if
available), could contribute to unrealistic patient expectations
[126]. Accurately disclosing prognostic information does not
negatively impact patient–physician relationships but may skew
low-value life-prolonging care to comfort-oriented care [127].
Therefore, translating complex trial and real-life data to daily
clinical practice and adequately and understandably communicat-
ing this to patients should receive appropriate attention in
oncology training.
Both the medical scientific society and regulatory agencies

should aim at improving the quality of clinical trials. The use of
surrogate endpoints should be limited to those for which
evidence exists of their validity (e.g. metastasis-free survival in
localised prostate cancer [128]). Head-to-head comparisons of
new drugs and use of the standard of care in control arms should
be the norm instead of comparing many new ‘same class’ drugs to
inappropriate control arms. Lowering the arbitrary p ≤ 0.05 for
rejection of the null hypothesis in RCTs has been proposed as a
possible strategy to reduce the risk of false-positive results at the
cost of occasionally missing a true and clinically relevant
treatment effect [129, 130]. Either the p value for positivity should
be lowered or trial replication should, whenever possible, be
mandatory before regulatory approval and inclusion into
guidelines.
Regulatory agencies should mandate not only confirmatory

trials after rapid approvals but should also critically address post-
marketing safety concerns. Expedited approval processes should
be limited to indications for true unmet clinical needs. When
approving drugs, both regulatory agencies and medical societies
should adhere to indications as studied, thereby limiting
unwarranted prescribing. Retraction of drug approvals should be
followed by guideline retractions.
Bias in journal reporting should be eliminated and all data

should be available at the time of issuance of both regular
approvals and expedited approvals [131]. Data should be
presented in a more palatable manner for both physicians and
the lay press by employing measures such as absolute risk
reductions, number needed to treat and number needed to harm
[132]. When applicable, reporting the fragility index, as an
indication of trial data robustness, should be considered [67].
Concluding statements in abstracts should be simple and clear
and strictly relate to the primary endpoint. Stating FCI’s to readers
and audiences should be mandatory, but FCI’s should ideally be
avoided.
Our societal responsibility transcends oncological care. Imple-

mentation of costly low-value oncological treatments invariably
impacts health care accessibility in other medical fields. At least in
our country, for the price of one pembrolizumab dose adminis-
tration [133], four type 1 diabetes mellitus patients can use a flash
glucose monitoring system for almost a year to better manage
their disease [134], against which they face a lifelong battle. We
should, as health care advocates, scrutinise drug pricing and aim
for fair distribution of health care spending. Concerted efforts are
needed at all levels (physicians, clinical researchers, medical
societies, drug companies, regulatory agencies, payers and
politicians) for this to be effectively addressed. Integration of
value-based scales into regulatory agency policies should raise the
bar for drug approvals as well as influence drug pricing and
availability. As oncology drugs may often be dosed higher or more
frequently than needed, lower doses, alternate dosing schedules
and shorter treatment times should be studied [135]. Efforts have
been initiated to reduce the use of inappropriate tests, treatments,

procedures and costs in oncology, such as the ‘Choosing Wisely’
initiative [136].
The COVID-19 pandemic has impacted health care resources

urging the medical community to increasingly adhere to only
high-value health care interventions in all medical fields. Strictly
selecting high-value cancer care should carry momentum in the
oncology landscape far beyond this world disruptive event.
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