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Abstract

One key objective of the population health sciences is to understand why one social

group has different levels of health and well-being compared with another. Whereas sev-

eral methods have been developed in economics, sociology, demography, and epidemi-

ology to answer these types of questions, a recent method introduced by Jackson and

VanderWeele (2018) provided an update to decompositions by anchoring them within

causal inference theory. In this paper, we demonstrate how to implement the causal de-

composition using Monte Carlo integration and the parametric g-formula. Causal decom-

position can help to identify the sources of differences across populations and provide

researchers with a way to move beyond estimating inequalities to explaining them and

determining what can be done to reduce health disparities. Our implementation ap-

proach can easily and flexibly be applied for different types of outcome and explanatory

variables without having to derive decomposition equations. We describe the concepts

of the approach and the practical steps and considerations needed to implement it. We

then walk through a worked example in which we investigate the contribution of smok-

ing to sex differences in mortality in South Korea. For this example, we provide both

pseudocode and R code using our package, cfdecomp. Ultimately, we outline how to

implement a very general decomposition algorithm that is grounded in counterfactual

theory but still easy to apply to a wide range of situations.

Key words: Decomposition, causal inference, Monte Carlo, parametric g-formula, population models, health

disparities
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Introduction

A central aim of the population health sciences is to under-

stand why one social group has different levels of health

and well-being compared with another. Recent examples

of this question include understanding why Hispanics have

worse congenital heart disease outcomes compared with

non-Hispanics,1 why adult mortality is higher in urban

compared with rural Indonesia,2 and why poorer individu-

als in Finland have higher mortality compared with more

affluent individuals.3 By identifying the sources of differen-

ces across populations, these studies provide an important

first step in determining what can be done to reduce health

disparities.

Decomposition analyses are one of the key tools for un-

derstanding the sources of differences in an outcome be-

tween groups and can help to move researchers from

estimating to explaining health inequalities. At their core,

decomposition analyses seek to determine how much of an

observed difference in an outcome between two groups is

due to the differing distribution of specific causes of that

outcome between the groups. For example, in the example

above on Finland, researchers may ask: ‘How much of the

mortality difference between rich and poor individuals is

due to the higher prevalence of smoking among poorer

compared with richer individuals?’

Although such questions may sound like mediation

analysis,4–8 there is a key difference between mediation

and decomposition. In a causal mediation analysis, we

would first estimate the causal effect of poverty on mortal-

ity and then identify how much of this effect is driven

through the causal effect of poverty on smoking. In a de-

composition analysis, we are interested in how much

smoking contributes to observed differences in mortality

between poor and non-poor, and are agnostic to how

much of the difference in smoking between poor and non-

poor is due to the causal effect of smoking and how much

is due to confounding causes. This crucial difference

(depicted graphically using directed acyclic graphs in

Figure 1) has consequences for the analytical approach to

be taken and requires fewer confounding variables to be

accounted for. Importantly, in a decomposition analysis,

since we are not attempting to estimate the causal effect of

the group variable (the exposure in a mediation in analy-

sis), we do not have to contend with the open issue of

whether causal effects can be estimated for non-manipula-

ble characteristics such as race.9

Various methods have been developed across disciplines

for conducting decomposition analyses. Regression decom-

positions, such as the Oaxaca-Blinder decomposition10,11

and its non-linear extensions,12,13 use individual-level data

and are employed frequently in economics and sociology,14

whereas approaches using aggregate-level data are com-

mon in demography.15–18 Recent advances in epidemiol-

ogy provide a new perspective to decompositions, situating

them in causal inference and counterfactual theory.2,9,19,20

Among these, Jackson and VanderWeele’s (2018) provide

an important advance by framing decomposition analyses

around interventions to reduce disparities, where the

Figure 1 Directed acyclic graphs showing conceptual differences be-

tween mediation (A) and decomposition (B). Solid lines represent

causal effects, whereas two-way dotted lines represent associations.

Key Messages

• Causal or counterfactual-based decomposition methods are of growing importance in epidemiology and the

population health sciences.

• We develop and demonstrate a highly flexible implementation of the causal decomposition that is grounded in

counterfactual theory but still easy to apply to a wide range of questions without having to derive specialized

decomposition equations.

• We demonstrate how to use our decomposition algorithm to estimate the contribution of smoking to sex differences

in the age-adjusted 1-year risk of mortality in South Korea, finding that smoking explains 27% of the male mortality

disadvantage at ages �50 years.
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importance of specific characteristics to differences be-

tween populations is evaluated through hypothetical inter-

vention scenarios to equalize these characteristics between

groups.19

In this paper, we demonstrate a simple way to imple-

ment the counterfactual decomposition using parametric

models and Monte Carlo integration. We focus on a

worked example that asks ‘How much of the observed sex

difference in mortality in South Korea is due to the higher

prevalence of smoking among men compared with

women?’ and demonstrates how to decompose sex differ-

ences in the age-adjusted 1-year mortality risk ratio be-

tween men and women. Our approach is based on a

straightforward algorithm for estimating counterfactual

decompositions for different outcome distributions with-

out having to derive decomposition equations and can be

easily applied within common statistical packages or

implemented with our R package, cfdecomp.21

A counterfactual approach to decomposition

Concepts

We motivate and develop our approach through the ques-

tion: ‘What is the contribution of smoking to sex differen-

ces in mortality in South Korea?’ We adopt a coun

terfactual perspective and define ‘contribution’ by asking

‘How large would the difference in mortality be if men and

women counterfactually had an equal smoking

prevalence?’

Our first main step is to specify exactly what level of

smoking prevalence we are equalizing men and women to.

When the relationship between an outcome (such as mor-

tality) and a mediator (such as smoking) is non-linear, this

choice can affect the contribution estimate.18 Therefore,

the choice of the counterfactual mediator distribution

should be informed by substantive concerns (e.g. what

makes sense from a policy perspective?) and inferential

concerns (e.g. certain values may be outside the range ob-

served in the data and should therefore be avoided). We

choose to set men to have the smoking prevalence of

women, since this maps to a clear intervention that public

health policymakers may seek to achieve.

The second main step is to specify a summary popula-

tion measure. This is the measure that we will use to com-

pare the mortality of men and women in South Korea. For

our example, we consider the age-adjusted 1-year risk of

death. In theory, our approach can be extended to decom-

pose more complicated summary measures, such as disabil-

ity-adjusted life years lost or period life expectancy.

However, decomposing such measures requires additional,

often stronger, assumptions. For this reason, we do not

cover the application of our method to those summary

measures here and choose rather to focus on common sum-

mary measures with clear assumptions.

Third, we need to specify contrasts of these summary

measures between men and women (i.e. how are we going

to compare the summary measure?). We consider the risk

ratio for men relative to women (adjusted for age). Our

method also allows us to decompose other contrasts, such

as the risk difference—a point that we will return to when

describing the decomposition algorithm below.

Based on Steps 1–3, we can construct our estimate of

the ‘contribution’ of smoking by seeing how much the dif-

ference in the summary measure between men and women

reduces when we set men to have the same smoking preva-

lence as women. For example, we would compare the mor-

tality risk ratio between men and women in the observed

data to the mortality risk ratio between men and women in

a counterfactual world in which we set men to have the

same smoking levels as women. We could then estimate

the contribution of smoking as the percentage reduction in

the male–female mortality disparity. Note that this contri-

bution is not bounded between 0 and 1, and could result in

negative contributions or contributions of >100%. This is

not an issue, however; this situation occurs in both media-

tion and decomposition analyses when the indirect effect

(the association via the mediators) and the direct effect (the

association not via the mediators) are of opposite signs and

hence partially cancel each other out in the total effect.

Indeed, many recent papers using mediation and decompo-

sition analyses have found contribution estimates of >100

or <0.2,19,22 Contribution estimates of <0 or >1 could

also occur due to imprecision in the underlying estimates.

For this reason, it is important to present and interpret

such estimates with their accompanying standard error. In

Supplementary Appendix 3, available as Supplementary

data at IJE online, we provide a more general formal expo-

sition of the causal decomposition.

Parametric modelling and Monte Carlo-based

estimation

The core estimand in our decomposition is the counterfac-

tual summary measure of mortality for men if they were

set to have the same smoking distribution as women.

Estimating this counterfactual requires (i) a way to match

the smoking distribution between men and women, and (ii)

a way to re-estimate mortality as a function of the new

smoking distribution. Importantly, since we are interested

in the effect of changing the level of smoking on mortality,
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our approach to re-estimating mortality needs to adjust for

the confounders of the smoking–mortality relationship.

Our solution to these two issues is to use the parametric g-

formula and Monte Carlo integration.7,23–25 This entire

approach can be estimated by following a straightforward

algorithm.

Decomposition algorithm

Step 0: Specify starting decisions.

i. Decide on a summary measure.

ii. Decide on a contrast.

iii. Decide on the counterfactual mediator distribution.

Step 1: Estimate relationships in the data.

i. Fit regression model(s) for the mediator(s) of interest

with confounders of the mediator–outcome relation-

ship as covariates.

ii. Fit regression model(s) for the outcome with the media-

tor(s) of interest and the same confounders as the medi-

ator model.

Step 2: Form the natural-course pseudo-population.

i. Use the coefficients from the mediator model(s) with

the observed confounder values to simulate mediator

values for each individual in the data.

ii. Use the coefficients from the outcome model(s) to-

gether with the observed confounder values and the

new simulated mediator values to simulate the out-

come for each individual in the data. This is the natu-

ral-course pseudo-population.

iii. Within this natural-course pseudo-population, esti-

mate the summary measure for both groups and then

form the contrast of interest across groups.

Step 3: Form the counterfactual pseudo-population.

i. Use the coefficients from the mediator model(s) with

the observed confounder values to simulate mediator

values that follow the counterfactual mediator

distribution.

ii. Use the coefficients from the outcome model(s) to-

gether with the observed confounder values and simu-

lated mediator values to simulate the outcome for each

individual in the data. This is the counterfactual

pseudo-population.

iii. Within this counterfactual pseudo-population, esti-

mate the summary measure for both groups and then

form the contrast of interest across groups.

Step 4: Compare the contrast of interest in the natural-

course and counterfactual pseudo-populations. To

estimate standard errors and to produce stable estimates of

the contribution, we have to address two types of variabil-

ity. First, since we are drawing values of the mediators and

outcomes from probability distributions, the exact values

assigned to individuals can change across multiple draws.

This results in the estimate of the contribution also chang-

ing across draws (known as Monte Carlo error). To reduce

this error, we conduct Steps 2 and 3 multiple times, each

time drawing a new set of mediator and outcome values.

We then construct the contrasts for each draw and then av-

erage across all these draws to produce stable natural-

course and counterfactual estimates, before calculating the

contribution in Step 4.

Second, because our results are based on a sample, we

need to account for sampling variability. This is especially

important for the construction of confidence intervals

around the estimates. We use a bootstrap procedure to

capture this uncertainty, drawing with replacement a fresh

sample of size equal to the original data before Step 1, con-

ducting the entire analysis k times, and then estimating the

standard error of our decomposition estimates as the stan-

dard deviation of the estimates from the k bootstrap

samples.

Our algorithm above treats the variables involved as

time-fixed, which may not always be appropriate.5,8 The

algorithm can be easily expanded, however, to allow for

time-varying variables; we present a time-varying version

of the decomposition algorithm above in Supplementary

Appendix 2, available as Supplementary data at IJE on-

line, based on Westreich et al. (2012).26 A second impor-

tant note is that the natural course is often used in g-

formula analyses to validate the estimation models rather

than as part of the estimand. In our algorithm, however,

the natural course also forms part of the contribution es-

timate. We chose to use the natural-course estimate in-

stead of the observed data in our estimand so that both

the counterfactual and ‘as-is’ scenarios are based on the

same underlying model. However, if the natural-course

estimates do not approximate the data well, then that is

evidence of model misspecification, which needs to be in-

vestigated further.

Both the size of and contribution of specific mediators

to a health disparity are dependent on the scale that the

disparity is measured on. For example, a difference in

mortality between two populations and the contribution

of smoking to this difference may vary based on whether

the disparity is measured as a mortality risk ratio, a sur-

vival risk ratio or an absolute difference in mortality

rates. A major strength of our decomposition algorithm

is that the researcher is not limited to one scale and can

estimate and explain the disparity using multiple
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measures. This is because the decomposition algorithm

works by first generating pseudo-populations based

around model-predicted values rather than by compari-

sons of model coefficients.

Empirical example: the contribution of
smoking to sex differences in mortality in
South Korea

We now demonstrate the application of the approach that

we outlined in the previous section to real data from the

Korean Longitudinal Study of Aging. In the interest of pro-

viding a simple pedagogical example, we conduct a stylized

analysis and thus the results should be interpreted cau-

tiously. A more rigorous analysis that fully explores and

accounts for the different sources of confounding and mea-

surement error is outside the scope of this example. The

simplified example also raises conceptual issues that we

omit discussion of, such as whether some of the confound-

ers may instead mediate the relationship between ever

smoking and mortality. However, to lend some credence to

the analysis, we note that the results of our example are in

line with other literature on the contribution of smoking to

sex differences in mortality.27

Data: Korean Longitudinal Study of Aging

We use data from the 2006–2012 waves of the Korean

Longitudinal Study of Aging—a nationally representative

survey of South Korean individuals aged �45 years.28 We

use data on adults aged �50 years from the baseline 2006

waves, using the subsequent waves for mortality follow-

up. Our total sample consists of 7615 individuals with 42

405 person-years of follow-up. We convert our data from

a person to person-age format, with one observation for

every age lived in the survey, along with a dichotomous in-

dicator for whether an individual survived through or died

at that age. Individuals leave the survey through death,

censoring from loss to follow-up before 2012, or from cen-

soring at the end of the survey period in 2012.

Main variables: outcome, mediator, and confounders

Our outcome of interest is a dichotomous indicator for

whether an individual died or survived to the next age and

our primary mediator is a dichotomous indicator for

whether an individual reported ever regularly smoking cig-

arettes. We adjust for the following potential confounders

of the smoking–mortality relationship: age, how frequently

an individual reported drinking alcohol, schooling, urban-

icity, and marital status.

Step 0: Specify a summary measure, contrast, and

counterfactual distribution

Our main summary measure is the age-adjusted 1-year risk

of death (surviving to the next age). For this summary mea-

sure, our contrast of interest is the risk ratio of mortality

for men relative to women. We construct this contrast us-

ing the following Poisson regression on person-year obser-

vations (adjusting for age using indicator variables for 5-

year age groups):

log
�

E YjFemale;Age�
� �

¼ a0 þ
�
a1 � FemaleÞ þ

X
i

ðai � AgegriÞ

where a1 is our estimate of interest. We use a Poisson

regression here to just estimate the summary contrast

(the exponent of a1) but could have alternatively di-

rectly estimated an age-standardized risk ratio from the

data. Importantly, because we are interested in the ob-

served difference between men and women (adjusting

for just age), we do not add any confounders to this

model.19

For this analysis, we set the smoking levels among men

to be equal to those among women as our counterfactual

scenario.

Step 1: Estimate relationships in the data (using regression

models)

Mediator model. We model the probability of ever regu-

larly smoking for men and women using the following lo-

gistic-regression model:

logit
�

E SmkjFemale;Age;C�
� �

¼ b0 þ
�
b1 � FemaleÞ þ

�
b2

� AgeÞ þ ðb3 � Age � FemaleÞ þ
X

i
ðbci
� CiÞ

Here, Smk is a binary variable for whether an individual

self-reported ever regularly smoking, Sex is the indicator

variable for female, Age is a continuous measurement of

age and Ci are the confounders described previously. We

use this model to estimate the group ! causes association

pathway in Figure 1B. We include the confounders in this

model, not to adjust for confounding, but rather to allow

us to predict and match the sex-specific smoking preva-

lence within confounder strata.

Outcome model. We model mortality as a function of

smoking, sex and the confounders by fitting the following

logistic-regression model:
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Figure 2 Flowchart for simulating the natural-course and counterfactual smoking and mortality values for a single male in the data. The regression

estimates are based on the models described in the ‘Methods’ section.

International Journal of Epidemiology, 2021, Vol. 50, No. 6 2103

D
ow

nloaded from
 https://academ

ic.oup.com
/ije/article/50/6/2098/6290290 by U

niversity of G
roningen user on 21 January 2022



logit
�

E YjFemale; Smk;Age;C�
� �

¼ d0 þ
�
d1 � FemaleÞ

þ
�
d2 � SmkÞ þ

�
d3 � Female � smkÞ þ ðd4 � AgeÞ þ ðd5

� Age � FemaleÞ þ ðd6 � Age � SmkÞ þ
X

i
ðdci � CiÞ

We use this model to estimate the causes! outcome ef-

fect pathway in Figure 1B.

Steps 2 and 3: simulation to form the natural-course and

counterfactual pseudo-populations

Based on the results of the two models, we simulate the

natural-course and counterfactual pseudo-populations for

both men and women. In Figure 2, we provide a step-by-

step example of how to use the regression estimates to

form the simulated values for a single male individual in

the data. The pseudocode in Figure 3 and R code in the

Supplementary Material, available as Supplementary data

Figure 3 Example code for estimating the contribution of smoking to sex differences in mortality in South Korea. For this example, we have a bino-

mial mediator ‘smoke’ (ever-smoker), binomial outcome ‘died’ (death in a person-year), our summary measures and contrast is the age-adjusted

mortality risk ratio and, for the counterfactual scenario, we assign men the smoking distribution of women. In the models, C represents covariates

needed for exchangeability.
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at IJE online, demonstrate how to do this for all individu-

als in the data using common statistical software.

Step 4: Calculate and compare the contrasts of interest and

determine the percent contribution of smoking

Once pseudo-populations have been created, the final step

is to calculate the contrast of interest. We then estimate the

contribution of smoking to sex differences in mortality by

measuring how much the contrast changes between the

natural-course and counterfactual worlds. All steps needed

to estimate the decomposition are also shown as pseudo-

code in Figure 3. We also provide code for how to estimate

the example in R using our function cfdecomp in the

Supplementary Material, available as Supplementary data

at IJE online.

Results

Descriptive characteristics.. The mean age was 66.2 years

for men and 67.4 years for women (Table 1). A greater

share of men were currently married compared with

women (93% compared with 64%) due to a much higher

proportion of widowhood among women (33% compared

with 5%). There were important health and socio-eco-

nomic differences between men and women. Men were far

more likely to smoke (61% compared with 4%) and drink

regularly (proportion who reported drinking at least once

a week: 41% compared with 4%). Men were also substan-

tially more likely to have completed more than middle

school (46% compared with 17%).

Decomposition of the age-adjusted 1-year risk of mortal-

ity.. Men were 1.89 times [95% confidence interval (CI):

1.65, 2.14] more likely to die within 1 year of an interview

compared with women (after adjusting for age) (Table 2).

After setting men to have the same smoking distribution of

women, this risk ratio reduced to 1.65 (95% CI: 1.38,

1.92). The resulting change corresponds to a (1 – 0.65/

0.89) ¼ 28% (95% CI: 0.08, 0.47) contribution of smok-

ing to sex differences in the age-adjusted 1-year risk of

mortality.

Discussion

We introduce a general yet easily applied procedure for

implementing counterfactual decompositions using the

parametric g-formula and Monte Carlo integration.19 We

demonstrate this approach by estimating the contribution

of smoking to sex differences in mortality in South Korea

by decomposing the age-adjusted mortality risk ratio for

men relative to women. We find that the large smoking dif-

ference between men and women in South Korea explains

27% of the age-adjusted mortality risk ratio among adults

aged �50 years.

The age-adjusted mortality risk could also be decom-

posed using closed-form decomposition equations.12,13,19

The algorithm we outline does not replace closed-form de-

composition approaches, but rather provides an alternative

using simulations, which provides two main advantages.

First, we can decompose summary measures based on any

outcome distribution in the generalized linear model family

without having to derive or use separate decomposition

Table 1 Descriptive characteristics of the sample at baseline,

in adults aged �50 years, Korean Longitudinal Study of

Aging, 2006

Men Women

Mean SD Mean SD

Age (years) 66.2 9.0 67.4 9.9

% n % n

Marital status

Never married 0.01 105 0.00 100

Married/partnered 0.93 17 147 0.64 15 350

Separated/divorced 0.02 349 0.02 499

Widowed 0.05 893 0.33 7962

Completed schooling

None 0.09 1706 0.31 7299

Elementary or middle 0.45 8249 0.53 12 574

More than middle 0.46 8539 0.17 4038

Rural 0.27 4987 0.27 6534

Ever-smoker 0.61 11 276 0.04 1015

Alcohol consumption

None/less than once a

month

0.43 7868 0.87 20 808

One to several times a

month

0.16 3040 0.08 2000

One to several times a

week

0.28 5119 0.04 906

Most days of the week 0.05 935 0.00 113

Every day of the week 0.08 1532 0.00 84

Table 2 Estimates of the contribution of smoking to the age-adjusted 1-year mortality risk ratio using the counterfactual decom-

position method, Korean Longitudinal Study of Aging, 2006–2012

Natural-course RR (95% CI) Counterfactual RR (95% CI) Percent contribution (95% CI)

Mortality risk ratio for men

relative to women

1.89 (1.65, 2.14) 1.65 (1.38, 1.92) 28% (8%, 47%)

International Journal of Epidemiology, 2021, Vol. 50, No. 6 2105

D
ow

nloaded from
 https://academ

ic.oup.com
/ije/article/50/6/2098/6290290 by U

niversity of G
roningen user on 21 January 2022

https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyab090#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyab090#supplementary-data


equations depending on whether an outcome is binomially,

Poisson, or normally distributed. Moving between out-

come distributions simply requires changing the regression

type used to model the outcome in the decomposition

algorithm.

The second advantage of the simulation algorithm is

that we can easily switch between different contrasts,

since we effectively regenerated entire micropopulations

for the observed and counterfactual worlds. For example,

once natural-course and counterfactual pseudo-popula-

tions have been generated, we decomposed the risk ratio

by estimating Poisson regressions of mortality on sex

within both pseudo-populations and measuring how the

risk ratio changes between the natural-course and

counterfactual worlds. If we were instead interested in

decomposing the odds ratio, we would simply switch

from Poisson to logistic regressions and compare the

odds ratios.

Despite these advantages, our algorithm comes with im-

portant trade-offs compared with existing decomposition

implementations. Compared with the closed-form equa-

tions, our approach requires substantial computational

power and time. This is not a trivial consideration and

decompositions with large data sets may take hours to

even days to complete even when considerable computa-

tional power is available. Furthermore, as with any method

seeking to provide causal explanations, the causal validity

of the decomposition results hinges on assumptions of ex-

changeability (also known as no unmeasured confound-

ing), common support (positivity), and consistency. We

discuss these three issues in more detail in Supplementary

Appendix 1, available as Supplementary data at IJE online,

for interested readers.

Conclusions

Decomposing the sources of differences in health and

other outcomes is a key research endeavour in epidemiol-

ogy and other population health sciences. We describe an

implementation of the counterfactual decomposition that

builds on and generalizes the rich existing body of work

on decomposition methods in the health and social scien-

ces. The approach provides a highly flexible and easily

implemented way of estimating decompositions that are

grounded in potential outcomes and counterfactual the-

ory, and applicable to a wide range of population health

questions.
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