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 This study investigates the downstream controls of alluvial sediment 

composition and river channel adjustment in the Llano River watershed, Central Texas, 

USA. The Llano River watershed is characterized by a highly variable, flood-prone 

flow regime and a complex lithology of Cretaceous carbonate rock, Paleozoic 

sedimentary rock, and Precambrian igneous and metamorphic rock. Sedimentary 

variables for this study include particle size, sorting, carbonate content, and magnetic 

susceptibility. Channel adjustment includes the planform dimension and cross-sectional 

dimensions of bankfull- and macro-channels. Nineteen sites along the Llano River and 

selected tributaries were visited to measure cross-sectional channel geometry and 

sample bed, bank, and overbank sediment. Laboratory analyses of sediment and 

hydraulic analyses of cross sections were accompanied by analyses of partial-duration 

flood frequency, flow resistance, hydrography, digital elevation models, and statistical 
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correlation. Findings include: (1) channel-bed material reduces in size with downstream 

distance, despite increasing valley confinement and bedrock exposure; (2) the 

downstream decrease in particle size is more evident for channel-bar deposits than for 

low-flow-channel (thalweg) deposits; (3) an abrupt gravel-to-sand transition occurs 

about 20 kilometers downstream of the Paleozoic-Precambrian contact; (4) an abrupt 

coarse- to fine-gravel transition occurs between 75 and 90 kilometers downstream the 

North Llano and South Llano Rivers; (5) channel-bank material increases downstream, 

contrasting with decreases in bed material; (6) carbonate content and magnetic 

susceptibility of alluvial sediment are inversely related, with carbonate content peaking 

near Junction; (7) four general categories to classify reaches of the North Llano, South 

Llano, and Llano Rivers are based on hydrology, planform morphology, lithology, and 

valley confinement; (8) mean depth increasingly compensates for bankfull discharge in 

a downstream direction; (9) mean depth compensates more than width for macro-

channels; and (10) the return periods for bankfull and macro-channels are about 1 to 2 

years and greater than 10 years, respectively. The results of this study will contribute to 

fluvial geomorphic theory of downstream trends in sediment composition and channel 

adjustment; as well as inform applied efforts related to aquatic biology, flood hazards, 

infrastructure design, and riparian and water-resource management in the region. 
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Chapter 1. Introduction 

 

River channel adjustment has long been a fundamental topic of fluvial 

geomorphology. Two primary dimensions of channel adjustment are pattern (planform 

geometry) and shape (cross-sectional geometry). Discharge and sediment commonly are 

referenced as the controls on alluvial channel adjustment for timescales ranging from 

decades to centuries. The most common index of discharge (cubic meters per second) is 

bankfull discharge, which is related to the scale of size of channel features. Indices of 

sediment commonly include bedload (tons per day), bed-material size (millimeters), or 

bank material (silt-clay percentage), all commonly related to the shape of a river 

channel (Schumm 1960, 1977; Knighton 1998). Much of our knowledge on the topic of 

channel adjustment derives from studies in humid settings. Recent studies, however, 

have shown that specific indices controlling channel morphology vary regionally, 

especially in settings dominated by highly variable flow regimes (e.g., Bourke and 

Pickup 1999; Gupta 1999; Heritage, Broadhurst, and Birkhead 2001; Kale and Hire 

2007). This is particularly important when considering spatial variability in channel 

adjustment along transition zones in hydrology and lithology, commonly observed in 

drainage systems in Central Texas. 

This study examines the downstream (headwaters to outlet) controls of alluvial 

sediment composition and mutual adjustment of channel pattern and shape in the Llano 

River watershed (11,568 square kilometers), which drains the Edwards Plateau and 



2 
 

Llano Uplift of Central Texas (Figure 1.1). The study area represents an opportunity to 

examine the controls of channel adjustment in a setting unique from the knowledge base 

on this topic (Baker 1977; Tinkler 2001), which mostly includes investigations in humid 

or snowmelt-dominated settings. The regional climate of the Llano River watershed is 

characterized by a transition from western semiarid to eastern subhumid conditions, and 

the hydrologic regime of the region is noted for low perennial flows punctuated by 

extreme flash floods. Channel reaches commonly alternate between bedrock-confined 

and alluvial, and a continuum of associated controls is evident throughout channels in 

the watershed. Additionally, river sediment abruptly varies as a result of three distinct 

lithologies, Cretaceous carbonate rocks associated with the Edwards Plateau, Paleozoic 

sedimentary rocks forming a transition zone, and Precambrian igneous and 

metamorphic rocks associated with the Llano Uplift. The flashy hydrologic regime has 

important implications to river channel adjustment in the region, particularly in 

examining the validity of bankfull discharge as a control on channel geometry. The 

ubiquitous presence of bedrock, especially that comprising the channel bed, exerts 

control on hydraulic and sediment transport processes, and thereby channel adjustment. 

Moreover, the sharply contrasting lithology provides an opportunity to observe how 

changes in sedimentary characteristics affect channel shape and pattern. 
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Figure 1.1.  Surface lithology (Barnes 1981), hydrography, and county boundaries in 
the Llano River watershed, Central Texas, USA. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



4 
 

1.1 Current Model of Channel Adjustment 
 

Channel geometry can be described in three modes of adjustment: (1) planform 

(pattern), (2) cross-section (shape), and (3) longitudinal (profile). Common indices used 

to describe channel pattern include radius of curvature (meters), channel width (meters), 

curvature (radius of curvature / width), meander wavelength (meters), sinuosity 

(channel length / valley-axis length), and various braiding measures. Channel shape is 

defined by the ratio of bankfull channel width (meters) to depth (meters), the presence 

of bars or islands, and the symmetry of these components. Channel profile is 

characterized by a bivariate plot of bed elevation (meters) and channel distance 

(kilometers) along a reach of interest. These three modes of channel adjustment 

typically are studied as distinct topics (e.g., Leopold and Maddock 1953; Leopold and 

Wolman 1957; Schumm 1963; Ferguson 1987; Rosgen 1994), precluding a 

comprehensive understanding of alluvial channel dynamics. Additionally, fluvial 

geomorphologists for decades have associated channel geometry either with energy or 

sediment characteristics, but neglected to integrate the two controls to understand 

mutual channel form adjustment. The classic work of Leopold and Maddock (1953) 

emphasized the importance of discharge on channel morphology through the concept of 

hydraulic geometry, and established that width, depth, and velocity (meters per second) 

are related to discharge by a power function. A hydraulic approach also was adapted to 

consideration of channel pattern by Leopold and Wolman (1957). Figure 1.2 shows the 
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relation proposed by Leopold and Wolman (1957), a threshold above which braiding 

occurs: 

� � 0.012��.��, where 

� is dimensionless channel slope and � is bankfull discharge in cubic meters per 

second. 

Most of the data used to generate the plot were derived from rivers in the humid 

eastern and mid-western United States and the northern Rocky Mountains. Few data 

points were from rivers with highly variable flow regimes. 

The hydraulic threshold approach used by Leopold and Wolman (1957) was 

effective at discriminating broad categories of channel pattern (e.g., meandering, 

braided, straight). Other researchers (e.g., Schumm 1977) have employed a sedimentary 

approach to predict channel pattern adjustment. Although the channel patterns are not as 

distinct within the study area, such an approach holds promise because of abrupt 

changes in lithology and sediment size between the Edwards Plateau and Llano Uplift 

regions. For example, van den Berg (1995) used the Leopold and Wolman (1957) 

hydraulic approach integrated with an index of sediment size to effectively distinguish 

between single- and multi-thread channels. 

Alternatively, Schumm (1960) has endorsed an approach to predict channel 

shape that primarily considers sediment. Schumm (1960) found that increased 

percentages of silt and clay in channel boundaries are associated with low width-depth 

ratios for rivers in the North American Great Plains (Figure 1.3) and that channel shape 
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is independent of discharge. However, the linear relation shown in Figure 1.3 violates 

the requirements of independence for regression-based analysis because the M factor is 

computed from width and depth, to which it is subsequently related in the plot. Schumm 

(1963) further advocates for sedimentary controls by showing a relation between silt-

clay percentage and sinuosity, and Schumm and Khan (1972) argue that fine sediment is 

required before meandering develops in laboratory flume channels. 
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Figure 1.2.  Leopold and Wolman (1957) transition between meandering and braided 
channels for a given channel slope and bankfull discharge (scanned from Knighton 
1998). 
 
 

 
Figure 1.3.  Relation between percentage silt-clay in channel boundaries and width-
depth ratio (from Schumm 1960; scanned from Knighton 1998). 
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Further lack of understanding of channel adjustment is attributed to the diversity 

and contrast among quantitative indices for both discharge and sediment. For example, 

bankfull discharge commonly has been considered to be the flow responsible for 

observed channel morphology and often is approximated by the flow that occurs every 

one to two years (Leopold and Wolman 1957; Wolman and Miller 1960). However, the 

link between channel geometry, sediment transport, and bankfull discharge occurring 

every one to two years is problematic. First, bankfull stage is not always readily defined 

in field situations. Further, no consistent methods have been developed to determine 

bankfull stage (Williams 1978a). Another problem associated with bankfull discharge is 

that it does not always have a common frequency of occurrence (Williams 1978a), even 

within the same watershed (Pickup and Warner 1976; Andrews 1980). Bankfull 

discharge has been reported to occur at a variety of return periods, including 1.5 years 

(Leopold, Wolman, and Miller 1964; Dury 1973), the mean annual flood (Richards 

1982), or 4 to 10 years (Pickup and Warner 1976). Further problems associated with 

bankfull discharge consider its lack of association to some aspects of channel form and 

sediment transport (Carlston 1965; Emmett and Wolman 2001). 

The general concept of bankfull discharge might be problematic in the Llano 

River watershed because channel geometry and sediment transport are associated with 

infrequent extreme floods. Wolman and Gerson (1978) argue that channels in more arid 

climatic settings are likely to adjust to higher flows than those in humid settings. 

Validation of this idea is provided by Baker (1977), who discusses the climatic and 
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physiographic setting of the Texas Hill Country and concludes that extreme flood 

events control channel morphology. Others have shown that low-frequency, high-

magnitude flows are responsible for observed channel morphology in arid to semi-arid 

regions (Huckleberry 1994; Heritage, Broadhurst, and Birkhead 2001; Tinkler 2001). 

However, the importance of flow variability has also been judged important in wetter 

climates. Gupta (1995), for example, found that rivers in the seasonal tropics of India 

display a channel-in-channel morphology, where a macro-channel has developed to 

accommodate large-magnitude floods and a low-water channel conveys moderate-

magnitude floods and baseflow for the majority of time. 

A number of scientists have used sedimentary indices to discriminate channel 

patterns, but there is no consensus as to which index is most appropriate. For example, 

Schumm (1960) advocates that silt-clay percentage in the channel banks controls cross-

sectional shape. Alternatively, others have utilized bed-material parameters to 

differentiate planform and cross-sectional morphology (Howard 1987; van den Berg 

1995; Xu 2004). Clearly, further research in unique settings is necessary to further 

elucidate the controls of river channel adjustment. Rivers that encounter abrupt 

downstream changes in lithology are good candidates to study the influence of 

sedimentary controls on channel morphology (Ferguson 1987). 
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1.2 Research Questions 
 

The unique characteristics of the study area differ substantially from the studies 

comprising the base of knowledge on downstream trends in alluvial sediment 

composition and channel adjustment, illuminating several research questions: 

1. What downstream trends emerge in the sediment composition (particle 

size, sorting, carbonate, and magnetic susceptibility) of instream and 

overbank deposits in watersheds with complex lithologic and flood-

prone hydrologic conditions? 

2. Because of problems associated with bankfull discharge, what discharge 

controls hydraulic geometry of rivers characterized by flashy, flood-

dominated hydrologic regimes? 

3. How does channel geometry adjust to the downstream continuum of 

bedrock exposures and alluvial surfaces? 

 

1.3 Hypotheses 
 

A summary of predicted controls and influences on mutual channel adjustment 

is presented in Table 1.1. The hypothesized controls and influences are based on 

previously published theories and qualitative observations. Further, a model of 

hypothesized downstream channel morphology is provided in Figure 1.4. 
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Table 1.1.  Author-based hypotheses of downstream sedimentary and morphologic 
trends in the Llano River watershed, Central Texas, USA. 
 

Control Hypothesized influence 

1. Flow regime • Highly variable flow regime results in channel-in-channel 
morphology 

• Extreme flood magnitudes result in bankfull stage with return 
periods greater than 1 to 2 years 

2. Lithology • Cretaceous carbonate and Paleozoic sedimentary zones associated 
with high percentage of silt and clay in banks and gravel-sized bed 
material; Precambrian igneous and metamorphic zone associated 
with higher percentages of sand in both bed and bank material 

• Cretaceous carbonate and Paleozoic sedimentary zone with 
relatively high carbonate content; Precambrian igneous and 
metamorphic zone with relatively low carbonate content 

• Cretaceous carbonate and Paleozoic sedimentary zone with 
relatively low magnetic susceptibility; Precambrian igneous and 
metamorphic zone with relatively high magnetic susceptibility 

• Relatively resistant rocks associated with greater degree of valley 
confinement 

3. Alluvial 
sediment 
composition 

• Gravel-sized bed material results in relatively wide and shallow 
channels; sand-sized bed material with relatively deep and narrow 
channels 

• High percentage of silt-clay in channel banks result in relatively 
narrow channels; high percentage of sand in channel banks result in 
relatively wide channels 

4. Locally steep 
channel slope 

• Higher stream power per unit area 
• Coarse bed-material 
• Relatively wide channel 
• Braided channel pattern 

5. Bedrock 
exposure 
(valley 
confinement) 

• Greater proportion of bedrock exposure increases channel width 
• Highly variable bank morphology 
• More bedrock exposures associated with complexity in channel 

planform 
• Resistance of bedrock inversely related to alluvial channel 

development (i.e., weak bedrock promotes wider and deeper 
floodplains to develop) and meandering patterns 

• Bedrock joints control valley and channel position 
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Figure 1.4.  Author-based hypothesized model of downstream channel adjustment of 
the Llano River, Central Texas, USA. 
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1.4 Implications 
 

The proposed study is expected to contribute to theoretical understanding in 

fluvial geomorphology by examining the controls of channel geometry for river systems 

that are underrepresented in the literature. The combination of the dynamic hydrologic 

regime, mixed alluvial and bedrock characteristics, and sharp lithologic transition 

between the carbonate and igneous rocks provides a unique setting to test concepts of 

dominant discharge and the influence of sediment type on channel adjustment. Further, 

this study will contribute to a broader understanding of equilibrium concepts pervasive 

in fluvial geomorphology. 

The findings will also be of applied value to an audience of stream ecologists, 

engineers, and hydrologists. Stream ecologists in government agencies and other 

organizations are concerned with geomorphic-unit composition and channel stability as 

related to aquatic habitat within the study area because most models of channel 

adjustment originate from humid or snowmelt-dominated regions of the eastern United 

States, Rocky Mountains, Pacific Northwest, or the United Kingdom. An increased 

understanding of the geomorphic role of high-magnitude flows in hydrologically-

variable rivers could enhance investigations of habitat availability and viability 

(Brierley and Fryirs 2005; Doyle et al. 2005). Additionally, state and county highway 

departments are concerned with the structural integrity of roads, bridges, low-water 

crossings, and culverts associated with rivers in Central Texas. High rates of channel 

adjustment or the episodic transport of gravel lobes can damage such infrastructure. 
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Further, river planning agencies (e.g., Lower Colorado River Authority) also have 

expressed concerns about channel adjustment, and are especially concerned with 

understanding sediment transport associated with reservoir sedimentation. Finally, the 

ability to predict changes in channel geometry for a given suite of hydraulic and 

sedimentary controls is important for riparian restoration efforts, which is a topic of 

increasing importance to Central Texas communities. 

 

1.5 Dissertation Scope 
 

This study utilizes field surveys and sediment samples, laboratory analyses of 

sediment, geographic-information-system (GIS) analyses, flood-frequency analyses, 

and statistical analyses to examine the combined roles of the hydrologic regime and 

channel bed and bank material characteristics in controlling mutual channel adjustment 

of the Llano River and selected tributaries in Central Texas. Between December 2004 

and February 2008, various field-survey trips were made to the study area to collect 

data (Table 1.2). Field, laboratory, and statistical methods include established 

techniques and equipment common to geomorphologists and hydrologists. Field 

methods include cross-sectional surveys of channel morphology; surveys of high-water-

mark elevations following high-magnitude flows in 2007; and sediment sampling of 

channel bed, bank, and floodplain material. Particle-size, carbonate-content, and 

magnetic susceptibility analyses of sediment were done at the Applied Geomorphology 

and Geoarchaeology Laboratory at the Department of Geography and the Environment, 
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The University of Texas at Austin. GIS analyses of 10-meter digital elevation models 

(DEMs), hydrography, and digital orthophoto quarter quadrangles (DOQQs) were done 

in ESRI ArcGIS 9. Statistics and flood frequency were analyzed using a combination of 

Microsoft Excel 2007 and R version 2.6.2 (R Development Core Team 2004). 
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Table 1.2.  Field-survey trips to the study area by the author. 
 

Approximate date of trips Purpose 

1. December 2004 Cross-sectional channel survey of North Llano River near Junction 
2. June to August 2006 Cross-sectional channel surveys and sediment sampling of sites 

near Junction 
3. November 2006 Cross-sectional channel surveys and sediment sampling of sites 

near Junction 
4. April 2007 High-water marks along Llano River 
5. May 2007 Cross-sectional channel surveys and sediment sampling of sites 

near Mason and Llano 
6. June 2007 Cross-sectional channel surveys and sediment sampling of sites 

near Llano 
7. July 2007 High-water-mark elevations established along Llano River 
8. February 2008 High-water-mark elevations surveyed for Llano River 
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1.6 Dissertation Outline 
 

The dissertation is organized into seven chapters, four of which have individual 

abstracts and conclusions and are meant to serve as stand-alone documents. Formatting, 

including citations, bibliography, and other details, of the document is based on the 

Annals of the Association of American Geographers. Some material is presented more 

than once in different chapters, but redundancy is kept to a minimum and used only 

when deemed necessary by the author. The chapters are described below: 

1. INTRODUCTION—The introduction is this chapter, which describes the 

background, research questions, hypotheses, implications, and scope of the 

dissertation project. 

2. LITERATURE REVIEW—The chapter reviews theory, techniques, and 

applications of at-a-station hydraulic geometry, downstream hydraulic 

geometry, and dominant and effective discharge. A primary objective of the 

literature review is to summarize contemporary trends and findings associated 

with the reviewed fluvial geomorphic concepts. 

3. PHYSICAL SETTING AND PALEOENVIRONMENTAL HISTORY OF THE 

EDWARDS PLATEAU—The chapter provides details on the present-day 

climate, geology, physiography, and biota of the Edwards Plateau in Central 

Texas, but the majority of content is a review of the literature documenting 

environmental change in the plateau since the Last Glacial Maximum (20,000 

years B.P.). The chronology of late-Quaternary environmental change serves as 
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important context for the present-day physical setting in the study area. A 

considerable portion of this chapter is devoted to changes in river-channel 

behavior and characteristics. 

4. RESEARCH DESIGN—The chapter summarizes the research approaches used 

to elucidate the controls of alluvial sedimentology and channel adjustment in the 

Llano River watershed. 

5. ALLUVIAL SEDIMENTOLOGY OF THE LLANO RIVER WATERSHED—

The chapter presents and discusses results associated with alluvial sediment 

deposits in the Llano River watershed, including downstream trends in particle 

size, carbonate content, and magnetic susceptibility of channel-bed and bank 

deposits. Techniques include field sampling, laboratory sediment analyses, and 

statistical analyses. Various methods and characteristics of the physical setting 

are embedded in the chapter. 

6. CHANNEL ADJUSTMENT IN THE LLANO RIVER WATERSHED—The 

chapter presents and discusses results associated with the downstream 

adjustment of channel pattern and shape related to hydrologic, lithologic, and 

sedimentary controls in the Llano River watershed. Techniques include GIS 

analyses, flood-frequency analyses, at-a-station hydraulic geometry, and 

downstream hydraulic geometry. Various methods and characteristics of the 

physical setting are embedded in the chapter. 
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7. SUMMARY AND CONCLUSIONS—The chapter summarizes the results of 

the dissertation, synthesizes the findings, narrows the findings down to a few 

conclusive statements, and poses further research questions to potentially guide 

future endeavors. 
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Chapter 2. A Review of Contemporary Applications that Use 
Hydraulic Geometry and Dominant or Effective 
Discharge: Implications for Environmental Assessments of 
Fluvial Systems 

 
 
 
2.1 Abstract 
 

Hydraulic geometry and fluvial geomorphic applications traditionally have 

relied on identification of a dominant or effective discharge. The increasing awareness 

that various flows are responsible for fluvial and ecological processes, operating within 

river channels and overbank, provides an alternative line of inquiry for these concepts to 

be utilized. Whereas many investigations have shown that channel geometry and 

cumulative sediment transport are associated with bankfull conditions and 1- to 2-year 

return periods, other studies in more dynamic systems have disassociated dominant or 

effective flows from those restrictions. In general, the traditional effective discharge 

concepts outlined by Wolman and Miller (1960) are most valid in humid or snowmelt-

driven fluvial systems, have mixed results in seasonally-driven systems, and become 

less predictive for small watersheds, incised channels, or in systems with highly 

variable flow regimes. At-a-station and downstream hydraulic geometry analyses used 

to assess the environmental condition of fluvial and riparian ecosystems should not 

solely rely on identification of one formative discharge, but would benefit from an 

assessment of: (1) the discharges and stages at which certain sediment-transport 

processes initiate (e.g., critical shear stress) or operate (e.g., effective discharge) and (2) 



21 
 

the discharges and stages at which particular physical features occur (e.g., channel bars, 

succinct breaks in bank slope, perched flood channels, etc.). Further, accurate 

interpretations of sediment-transport processes and channel formation are likely if flows 

are analyzed with respect to antecedent conditions, timing, and typical durations of 

flow. 

 

2.2 Introduction 
 

The tenets of steady-state equilibrium and uniformitarianism are responsible for 

a number of concepts pervasive in applied fluvial geomorphology today, including 

hydraulic geometry and dominant, or effective, discharge. In many publications, 

hydraulic geometry and dominant discharge have been investigated or applied 

separately, but both concepts largely infer that flow energy controls channel 

morphology. This chapter introduces the concepts of hydraulic geometry and dominant 

discharge, discusses their strengths and limitations, and reviews the relevant literature 

prior to the mid-1990s. The findings of this review are expected to provide context and 

comparative examples useful for inquiries of cross-sectional channel adjustment and the 

relation of channel geometry to discharge. 

2.2.1 Hydraulic Geometry 

Hydraulic geometry, a largely empirical technique introduced by Leopold and 

Maddock (1953), quantifies the cross-sectional morphology of stream channels in 

relation to their flow regime. The three factors of discharge (width, depth, and velocity) 
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are plotted in log space with discharge on the abscissa axis, such that three slope-

dependent exponents (b, f, and m) of the regression-fitted lines satisfy continuity by 

summing to the value “1” (Figure 2.1). The b, f, and m exponents represent the rate of 

change of width, depth, and velocity with discharge. The fundamental hydraulic 

geometry equations are: 

� � ���, 

� � ���, 

� � ���, where 

� is water-surface width, in meters; � is mean depth, in meters; � is mean velocity, in 

meters per second; � is discharge, in cubic meters per second; �, �, and � are 

empirically-derived coefficients; and �, �, and � are empirically-derived exponents. 

Hydraulic geometry can be applied to the range of flows at one cross section, 

termed “at-a-station,” or along a channel reach for a user-specified index of discharge at 

multiple cross sections, termed “downstream.” At-a-station hydraulic geometry 

commonly has three phases in most river channels: (1) low-flow conditions that are 

incapable of entraining bed and bank material, (2) moderate-flow or active conditions 

associated with entrainment and transport of bed (and possibly bank) material, and (3) 

high-flow or overbank conditions (Knighton 1998). Breaks in line slope or inflections in 

the log-linear relations of width, mean depth, and mean velocity to discharge are 

associated with transitions between the three phases. 
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Figure 2.1.  Example of at-a-station hydraulic geometry using discharge measurements 
at U.S. Geological Survey streamflow-gaging station 08151500 Llano River at Llano, 
Texas for hydrologic years 1997 to 2007. 
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For downstream hydraulic geometry, the choice of a discharge index is relegated 

to the practitioner. For downstream investigations specific to surface-water hydrology, 

mean annual discharge or another statistically-relevant flow is chosen, but 

investigations specific to channel geometry mostly use bankfull discharge (e.g., Xu 

2004; Wohl and Wilcox 2005). Leopold and Maddock (1953), using data from a limited 

collection of rivers, computed average values of the �, �, and � exponents for 

downstream hydraulic geometry, which are 0.5, 0.4, and 0.1, respectively. The values, 

closely confirmed by Knighton (1987), indicate that: (1) channel width, mean depth, 

and mean velocity all increase with downstream distance, and (2) channel width 

increases at a greater rate than mean depth and mean velocity. In contrast, it was shown 

that mean depth increases at a greater rate than water-surface width for at-a-station 

analyses. In the time since the introduction of hydraulic geometry, other factors have 

been similarly related to discharge and its factor components, including channel slope, 

flow resistance, and suspended sediment load (e.g., Leopold and Maddock 1953; 

Rhodes 1977; Knighton 1998), and interpretive downstream applications often require 

simultaneous relations to be developed between these variables and cross-sectional 

geometry (Ferguson 1986). 

Hydraulic geometry stems from equilibrium theory because it suggests that at-a-

station cross-sectional form and downstream adjustment to channel shape are 

maintained by a definable hydrologic regime. A hydrologic regime can be defined by 

the unique relations of flow magnitude and frequency, and essentially represents flow 



25 
 

variability. For example, the oft-mentioned flashy-flow regime displays relatively low 

baseflow for the vast majority of time, punctuated by extreme events with peak 

discharges that are magnitudes larger than the mean annual flow. Quantifiable measures 

of a hydrologic regime are computed through various statistics, such as flow-duration 

curves, ratios of peak discharge to mean annual discharge (Lewin 1989), flood-

frequency analyses (Stedinger, Vogel, and Foufoula-Georgiou 1993), and zero-flow 

days (Smakhtin 2001), among many others. In essence, a hydrologic regime is defined 

by flow statistics for the lumped period of record, and the definition, therefore, does not 

consider hydrologic change during that timeframe or the expected morphologic 

consequences (Knighton 1975; Knighton 1977). Only when hydraulic geometry is 

analyzed for subdivisions or “moving windows” of the period of record can variations 

in the flow regime be identified and subsequently used to investigate the tendency of a 

fluvial system to exhibit steady-state equilibrium. Hydraulic geometry applications are 

inseparable from equilibrium theory, and it is a circuitous argument to suggest that a 

stream channel exhibits steady-state equilibrium because of similarities in the hydraulic 

geometry relations to a known stable channel, especially when considering possibilities 

for multiple modes of adjustment (Phillips 1991).  

Further, at-a-station exponents have large variation (Park 1977), which suggests 

to some that cross-sectional geometry is inherently unstable (Phillips 1990; Fonstad and 

Marcus 2003). Even more problematic is application of downstream hydraulic geometry 

because: (1) the choice of a discharge index is highly subjective, chosen to suit the 
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needs of a particular investigation; and (2) morphologic indices, such as bankfull, can 

be difficult to determine (Williams 1978a). In general, both at-a-station and downstream 

hydraulic geometry techniques are not particularly insightful for infrequent flow events 

above bankfull stage along rivers with extensive floodplains, because substantial 

changes in width, mean depth, and mean velocity no longer compare with flows below 

bankfull. For geomorphic investigations of alluvial channels, practitioners now 

recognize that a range of flows and their sequential order are responsible for 

maintenance of channel geometry (Pickup and Rieger 1979; Yu and Wolman 1987; 

Knighton 1998; National Research Council of the National Academies 2005), not just 

one dominant discharge. 

Aside from complications that exist because of the dependence on equilibrium 

theory and variability, at-a-station hydraulic geometry can be a very useful technique to 

associate the hydrologic regime of a stream to its channel shape. If applied in 

conjunction with flood-frequency analysis, itself a problematic technique (Kidson and 

Richards 2005), much can be learned about the relation of various instream geomorphic 

surfaces to the magnitude and frequency of high-flow events (Gregory and Madew 

1982). For example, at-a-station hydraulic geometry could identify a threshold mean 

velocity that occurs at a particular frequency, which effectively limits the vertical extent 

of channel bars at that location. 

At-a-station hydraulic geometry analyses can be especially insightful for 

practitioners who operate streamflow-gaging stations, civil engineers who design 
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instream structures, and aquatic biologists who investigate habitat structure and 

function. Possibly more useful to fluvial geomorphologists, especially those operating at 

the watershed scale, is downstream hydraulic geometry, because channel morphology 

facilitates the choice of a morphologic-dependent index of discharge, usually the value 

at bankfull stage. In this manner, downstream trends in channel width and depth are 

identified, and inflections in the log-linear relations highlight the influence of other 

controls, possibly sedimentary, anthropogenic, or vegetation, among others. The 

variation in downstream hydraulic geometry data, as a proxy for the predictability of 

channel shape, could further indicate if other variables are influential (Wharton 1995), 

or that another discharge index would be more applicable. Finally, another widely 

utilized application of downstream hydraulic geometry is the development of regional 

at-a-station regression equations to predict channel shape (e.g., Betson 1979; Castro and 

Jackson 2001). 

Previous investigations that targeted or utilized hydraulic geometry have 

highlighted the opportunities and disadvantages of the technique. Langbein (1964) and 

Langbein and Leopold (1964), in developing their theoretical explanation for probable 

energy distribution and channel equilibrium, deduced that minimization of the sum of 

squares of the �, �, and � exponents, termed the theory of minimum variance, is an 

internal goal of a river channel, in addition to the basic physical requirements of 

continuity, flow resistance, and sediment transport. Williams (1978b) used data from a 

variety of rivers in the United States to generally support the theory, finding that 
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predictions of width exponents are most predictive and velocity exponents are least 

predictive. 

The theory of minimum variance has been refuted from a number of angles, 

including negligence of a physical explanation (Ferguson 1986), disregard for sediment 

transport (Knighton 1998), indeterminacy and equifinality (Thornes 1977), and reliance 

on log-linear relations of hydraulic geometry (Richards 1973), which should not be 

expected because of non-linear changes in roughness with discharge. Further, a number 

of researchers have noted that channel boundary composition (e.g., Parker 1979; 

Osterkamp and Hedman 1982; Knighton 1987; Huang and Warner 1995) and vegetation 

(e.g., Hey and Thorne 1986) substantially affect hydraulic geometry relations, 

especially where cohesive banks (Schumm 1960) and dense vegetation effectively 

reduce channel width, complicating the simple association with discharge. Other 

dimensions of stream channel geometry influence hydraulic geometry relations, 

including pool-riffle sequences (Figure 2.2) (Richards 1976) and channel pattern 

(Knighton 1974; Knighton 1982). Finally, others have either graphically reproduced 

hydraulic geometry relations, such as the triangular �, �, and � diagram (Figure 2.3) 

(Rhodes 1977; Rhodes 1987), or introduced new models of hydraulic geometry, 

including log-quadratic regression (Richards 1973), dimensionless relations (Parker 

1979), piecewise linear regression (Bates 1990), compositional data analysis (Ridenour 

and Giardino 1991), among others (Rhoads 1992). For further detail about the 

advantages, disadvantages, and alternative uses of hydraulic geometry, excellent 
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reviews are given in Richards (1977), Ferguson (1986), and Knighton (1998); and an 

appreciable set of equations are provided in Wharton (1995). 
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Figure 2.2.  Example of downstream hydraulic geometry of channel width separately 
considered for reaches associated with pools and riffles (from Richards 1976). 
 
 

 
 
Figure 2.3.  The �, �, and � diagram is used to distinguish ten different channel types 
based on observed relations of width, mean depth, and mean velocity (from Rhodes 
1977). 
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2.2.2 Dominant Discharge 

Hydraulic geometry and other techniques used to quantify channel morphology 

often are applied to stream channels with the assumption of a dominant, or channel-

forming, discharge (Table 2.1). The concept of dominant discharge was originally 

proposed by Inglis (1941), who states that a single flow exists that, if continuous and 

constant through time, would generate the same channel geometry as the natural flow 

regime. Wolman and Miller (1960) expanded and popularized this idea in the landmark 

paper on effective discharge (Table 2.1), in which they conclude that moderate floods 

are responsible for the majority of sediment transport through time (Figure 2.4). 

According to their moderate-flood theory, the effective discharge is large enough to 

generate the power necessary to mobilize and transport sediment, and occurs frequently 

enough to cumulatively transport the largest volume of sediment. Collectively, the more 

extreme floods simply do not occur frequently enough to exceed the moderate floods in 

terms of cumulative sediment transport through time. Essentially, the relatively frequent 

moderate floods are those that maintain the geomorphic equilibrium of natural stream 

channels. It is interesting to note that Wolman and Miller (1960) acknowledged that 

relatively highly variable flow regimes are more likely to experience the effective 

discharge on a more infrequent basis, but this documented caveat was overshadowed by 

the moderate-flood theory and, therefore, has generally been neglected in geomorphic 

assessments. 
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Table 2.1.  Definitions of dominant and effective discharge. 
 

Term Definition 

Bankfull discharge The discharge that fills the channel to the top of its banksa 

Dominant discharge 
The theoretical discharge that if maintained indefinitely would 
result in the same channel geometry as the existing channel subject 
to the natural range of flow eventsa 

Channel-forming discharge Equivalent to “dominant discharge”a 

Effective discharge 

The discharge responsible for the cumulative majority of sediment 
transport over time; the maximum product of the sediment 
transport rate and frequency of a given discharge for a range of 
flows at a channel cross section 

 

a Definition from Biedenharn et al. (2000). 
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Figure 2.4.  Conceptual diagram of effective discharge (modified from Wolman and 
Miller 1960), which is the maximum product of flow frequency and its associated 
sediment transport rate. 
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Using channel morphology as a guide, dominant discharge often is equated to 

bankfull discharge (e.g., Wolman and Leopold 1957; Leopold, Wolman, and Miller 

1964). Theoretically, the channel dimensions have adjusted over time to fully 

accommodate the flow that cumulatively transports the most sediment over time. Using 

various rivers in the United States, Wolman and Miller (1960) documented that the 

frequency of bankfull discharge occurs, on average, between one and two years. 

However, other studies have shown that the bankfull (Pickup and Warner 1976) and 

effective discharges (Baker 1977) can be less frequent, especially in river systems 

characterized by highly variable flow regimes. Further, it has been proposed that 

bankfull and effective discharges have different return periods for some rivers (Pickup 

1976; Pickup and Warner 1976) and for sites with different drainage areas in the same 

watershed (Wolman and Gerson 1978; Ashmore and Day 1988). 

In the time since the general acceptance of Wolman and Miller (1960), various 

studies have explored the application of dominant or effective discharge, and the 

association with bankfull conditions. Invariably, those studies either confirmed or 

undermined the general claim that bankfull discharge is dominant and has a return 

period of 1 to 2 years. Whereas cross-sectional shape possibly is most indicative of 

dominant discharge, some researchers have shown that planform geometry also can be 

explained by the dominant-discharge concept (Carlston 1965; Ackers and Charlton 

1970; Ackers 1982). 
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In an assessment of rivers in the USA from Barnes (1967), Dury (1973) 

computes that bankfull discharge has an average return period of 1.58 years, and further 

suggests that underfit rivers complicate the association of channel geometry with 

contemporary dominant discharge. Gupta and Fox (1974) document the reduction of 

channel width by small and moderate events following a series of large floods in the 

humid, eastern United States, but also acknowledge that more variable hydrologic 

regimes maintain relatively wide channels. Further support to Gupta and Fox (1974) is 

provided by Patton (1988b) and Pitlick and Thorne (1987), who document recovery of 

rivers following rare, extreme floods in the New England region and a mountain stream 

in Colorado, respectively. Combining measured suspended-sediment loads with bedload 

transport estimates in the Yampa River basin, Colorado and Wyoming, USA, Andrews 

(1980) finds that the effective discharge matches the bankfull discharge, confirmed by 

Leopold (1992), and has a return period between 1 and 1.5 years. 

Some case studies have retained a more neutral sentiment regarding the 1- to 2-

year bankfull association of dominant discharge. Only considering bedload transport, 

Pickup (1976) suggests return periods between 1.1 and 1.5 years for maximum 

cumulative bedload transport in selected streams of southeastern Australia, but also 

shows that bankfull discharge substantially exceeds the optimal discharge for bedload 

transport. To slightly modify previous conclusions and emphasize geomorphic form 

instead of sediment transport, Wolman and Gerson (1978) find that less frequent, high-

magnitude events become more effective as aridity increases and drainage area 
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decreases. Pickup and Rieger (1979) propose an alternative model that associates the 

sequential nature and variability of flows to observed channel characteristics, avoiding 

acceptance of a singular dominant discharge. Baker (1977) submits that catastrophic 

response of stream channels to high-magnitude events are expected in small watersheds 

in highly variable flow regimes, but does not claim that the largest events transport the 

most sediment over time, essentially segregating a flow that controls channel geometry 

from one that cumulatively transports the most sediment. Similarly, Church (1988) 

suggests that relatively frequent events control cumulative suspended-sediment loads of 

rivers in cold climates, but more powerful and less frequent flows might control gravel 

transport and channel morphology. 

Others have highlighted deviation of dominant discharge from the oft-cited 1- to 

2-year return period. Schick (1974), in one of the first refinements of Wolman and 

Miller (1960), shows that arid-channel geometry reflects the work done by large, 

infrequent floods, because the lack of vegetation limits boundary resistance and 

moderate events rarely occur to restore previous conditions. Dury (1980) summarizes 

various pieces of evidence indicating that catastrophic fluvial events have operated in 

the past, and suggests that sudden shifts in global or regional climate increase the 

likelihood of highly-effective, but low-frequency, events. Walling and Webb (1987), 

focusing on suspended sediment, find that some fluvial systems can only access sources 

during extreme, high-magnitude events, such that 50 percent of the total load was 

transported only 0.2 percent of the time in one stream in England. Focusing on bedload, 
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Komar (1988) suggests that large floods can transport tremendous quantities of bed 

material, and also points out that the largest clasts, which can greatly influence long-

term channel morphology (Harvey 1987), can only be transported by extreme velocities. 

Gupta (1988) explores the frequency and effectiveness of large floods in humid tropical 

environments, concluding that a suite of alluvial forms in the valley are maintained at 

stages above bankfull, and events with a return period greater than 10 years are 

responsible for more cumulative work than depicted in Wolman and Miller (1960). In a 

review of progress associated with the concept of dominant discharge, Kochel (1988) 

argues that some rivers displaying highly variable flow regimes, steep slopes, abundant 

bedload, erodible banks, or narrow bedrock cross sections only adjust during extreme 

events with return periods exceeding 50 years. Operating at larger spatial scales and 

temporal scales, Patton (1988a) suggests that drainage basin morphometry, including 

network extension, becomes increasingly controlled by high-magnitude, low-frequency 

events when recovery times are sufficiently long. 

As a result of these often conflicting studies, the most controversial topic in 

fluvial geomorphology surrounds the role of the high-magnitude event in controlling 

sediment transport and channel form (Baker 1988), a situation not unheard of since the 

debates on the Channeled Scablands of the Pacific Northwest, USA (Bretz 1923). Some 

have even suggested that magnitude-frequency analysis is not as appropriate as other 

techniques, including distribution of stream power during floods (Magilligan 1992), in 

assessing the influence of floods on morphology. 
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In summary, much of the research prior to contemporary environmental 

assessments (circa 1995) show that rivers in humid mid-latitude environments or those 

that experience annual snowmelt events are likely to experience a dominant and 

effective discharge at bankfull stage occurring, on average, every 1 to 2 years. Rivers 

that experience more variable flow regimes in semi-arid to arid climates (Schick, 

Lekach, and Hassan 1987; Graf 1988), rivers that require extreme erosive power to 

modify their boundaries (e.g., bedrock channels) (Kochel 1988), or streams with 

relatively small drainage areas (Baker 1977; Wolman and Gerson 1978) are likely to 

experience a dominant or effective discharge less frequently. Further, others have 

suggested that sediment transport and channel form are more reliant on the chronologic 

sequence of events (Pickup and Rieger 1979; Yu and Wolman 1987) than a particular 

return period. Because downstream hydraulic geometry, and some interpretations of at-

a-station hydraulic geometry, requires a geomorphically significant discharge to be 

established, it can be problematic if the practitioner does not adequately address the 

linkages between flow magnitude, frequency, duration, and observed channel geometry 

or rates of sediment transport. 

Currently, a variety of environmental applications at widely variable spatial 

scales rely on fundamental geomorphic assessments of fluvial systems. Ubiquitous to 

many of these applications is the identification of a dominant discharge and the use of 

hydraulic geometry to quantify channel geometry, patterns of downstream adjustment, 

connectivity to overbank riparian environments, and comparison to other stream 
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channels. The original downstream hydraulic geometry plots in Leopold and Maddock 

(1953) used the mean annual discharge as the index flow, but numerous geomorphic 

investigations since Wolman and Miller (1960) specifically use bankfull discharge. The 

close association between dominant discharge and the quantification of channel 

geometry has influenced and saturated fluvial geomorphic literature for decades. It is 

not surprising to note that most fluvial geomorphic applications employ these 

theoretically-motivated, empirically-tested techniques. While many geomorphologists 

now acknowledge that a variety of flows occurring at various return periods are 

responsible for observed channel geometry and floodplain construction processes (Day 

and Hudson 2001; Brierley and Fryirs 2005; National Research Council of the National 

Academies 2005; Poff et al. 2006), very influential papers, handbooks, and applications 

are being published that fail to adequately address the limitations of both hydraulic 

geometry and dominant discharge (Rosgen 1994; U.S. Department of Agriculture 

Natural Resources Conservation Service 2007). From the broad spatial perspectives of 

instream flow programs to focused rehabilitation efforts along channel reaches, a review 

of contemporary hydraulic geometry applications and the reliance on dominant 

discharge is provided below with the goal of distinguishing the appropriate use and 

limitations of these fundamental geomorphic concepts. 

 

 

 



40 
 

2.3 Contemporary Hydraulic Geometry Applications 
 

Hydraulic geometry remains a popular technique to quantify the association 

between channel form and the hydrologic regime, although its contemporary use 

deviates from more traditional applications. Some researchers have continued to focus 

on theoretical issues and mathematical derivation of hydraulic geometry techniques, and 

others have applied traditional techniques to innovative lines of questioning. The 

assortment of contemporary hydraulic geometry applications provided below represents 

research since the mid-1990s (Tables 2.2, 2.3). 

Continuing with the log-linear critique of Richards (1973), Hickin (1995) 

highlights discontinuities in at-a-station hydraulic geometry relations when thresholds 

of scour are exceeded in the sandy gravel-bed Fraser River in British Columbia, 

Canada, showing that log transformation of hydraulic geometry obscures these process-

driven discontinuities and suggests that data should not be transformed for 

investigations of instream geomorphic units and processes. Revisiting extremal 

hypotheses of optimal channel configuration for continuity, flow resistance, and 

sediment transport, Millar (2005) and Singh and Zhang (2008a, 2008b) derive 

theoretical solutions for hydraulic geometry. Assuming that maximum sediment 

transport efficiency defines the optimum state of channel geometry, Millar (2005) 

develops theoretical dimensionless equations for width, depth, slope, width-to-depth 

ratio, and the meandering-braiding transition of artificially-generated gravel-bed rivers. 

The equations require that: (1) a dominant (channel-forming) discharge is known 
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(assumed to be bankfull discharge), (2) a value for channel slope or sediment 

concentration is representative, and (3) a parameter that describes the comparative 

resistance of bed and bank material exists. Results show that exponents derived from 

the theoretical equations compare well with previously published empirical results. 

Singh and Zhang (2008a) emphasize temporal variation in stream power, channel form, 

and hydraulic variables with varying discharge; the distribution of stream power; and 

various extremal hypotheses (maximum entropy and minimum stream power) leading to 

a mathematical derivation of eleven at-a-station hydraulic geometry relations. The 

authors then calibrate and verify those equations using various data sets and a split 

sampling approach (Singh and Zhang 2008b), generally confirming their applicability. 

Yet another modification of traditional hydraulic geometry formulae is provided 

by Stewardson (2005), which recognizes that a reach-based form of hydraulic geometry 

could minimize cross-sectional variability along the length of a given stream channel. 

Stewardson (2005) assesses reach-scale hydraulic geometry of streams in Victoria, 

Australia, through repeated surveys of multiple cross sections and straightforward 

computation of reach parameters for mean width, hydraulic depth, and the coefficients 

of variation of width, hydraulic depth, and cross-sectional velocity. Stewardson (2005) 

concludes that five cross sections are appropriate for reach-mean width, but ten or more 

are necessary for hydraulic depth. Ultimately, variation is reduced when compared with 

at-a-station exponents, but it is unknown how the application will perform in larger 

rivers or for high flows, because the streams used in this study are not large (all mean 
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discharges are less than 25 cubic meters per second) and flows used were less than 

bankfull stage. 

Traditional forms of hydraulic geometry analysis have been used to discern 

channel pattern, infer historical adjustments of channel shape, quantify channels in 

diverse settings, and calibrate regional applications. In a traditional analysis of 

downstream hydraulic geometry using bankfull discharge for over 200 rivers, Xu (2004) 

quantitatively discriminates between combinations of meandering, braided, sand-bed, 

and gravel-bed rivers. Xu (2004) findings include: (1) sand-bed rivers are wider than 

gravel-bed rivers, (2) sand-bed rivers generally are deeper than gravel-bed rivers, (3) the 

difference in channel slope between sand- and gravel-bed rivers is greater than the 

difference in channel slope between meandering and braided rivers, and (4) the 

threshold between meandering and braided streams is better defined by comparing 

cross-sectional geometry as opposed to slope. Also focusing on channel pattern, Burge 

(2004) assesses at-a-station hydraulic geometry variables, including bankfull width and 

depth, to statistically distinguish differences between wandering, multi-thread channels 

and confined, single-thread channels in southeastern Canada, and shows little difference 

between the main channels for each pattern, but side channels in the multi-thread 

reaches are statistically different. Specifically focusing on at-a-station hydraulic 

geometry for large alluvial rivers, Latrubesse (2008) shows that the width exponent is 

generally low and the depth exponent is larger for sinuous single-thread channels than 

for low-sinuosity anabranching rivers. 
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Hydraulic geometry analyses of rivers in diverse settings are needed to 

adequately characterize the continuum of fluvial forms, and a number of researchers 

have recently responded to this gap in the literature. Deodhar and Kale (1999) 

technically investigate at-a-station hydraulic geometry at sites along monsoon-

dominated rivers in India, but compare exponents in an analysis of downstream trends. 

The authors find that width-depth ratios decrease during large floods to compensate for 

discharge, thereby providing evidence that morphology is controlled by high-magnitude 

events. Further support of this is provided by Gupta (1999), which shows that at-a-

station hydraulic geometry values of the annual peak discharge along the Narmada 

River of central India explain the box-shaped channel, associated with high-magnitude 

floods. Kale and Hire (2007) apply at-a-station hydraulic geometry on the monsoon-

dominated Tapi River in central India, showing that a box-shaped channel results from 

the seasonal flow regime. Merritt and Wohl (2003) assess downstream hydraulic 

geometry of Yuma Wash, an arid, ephemeral channel in Arizona, USA, for a flood that 

increased in magnitude downstream, finding that a substantial increase in width was 

made possible by non-cohesive boundary materials and decreasing valley confinement.  

Others have investigated the application of hydraulic geometry on non-fluvial 

channel systems. Based on a working hypothesis that trunk river stage and flow controls 

stage, flow direction, and sediment flux of small, tropical tributary mouths, Kennedy 

(1999) draws comparison between the at-a-station hydraulic geometry of those streams 

and mesotidal inlets along coastal shorelines. Only considering discharge of the 
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tributaries, Kennedy (1999) shows that no predictable relation exists between depth and 

flow and a negative relation exists between width and flow, enabling the comparison to 

tidal systems where peak flow occurs at mid-tide, rather than bankfull. Similarly, 

Williams, Orr, and Garrity (2002) use hydraulic geometry to predict cross-sectional 

characteristics of tidal channels from contributing marsh area and tidal prism along San 

Francisco Bay.  

Finally, a large number of investigations utilizing hydraulic geometry have 

focused on mountain rivers. For example, Merigliano (1997) uses at-a-station hydraulic 

geometry to investigate the role of historical floods, dam construction, and scour-and-

fill processes along the Snake River in Idaho, USA. Torizzo and Pitlick (2004), to 

accompany a study on effective bedload discharge, also examine downstream hydraulic 

geometry of mountain streams in Colorado, USA, and attribute the minimal increase in 

depth to inherited glacial coarse sediment. Wohl and Wilcox (2005), in another 

traditional downstream analysis, have well developed morphological relations to 

bankfull discharge, in spite of complexities introduced by colluvial inputs and 

discontinuous bedrock exposures. They conclude that relatively frequent hydraulic 

forces are sufficient to overcome the resisting framework of the channel boundary. In 

order to investigate the effects of inherited glacial morphology and lakes on stream 

geomorphology, Arp et al. (2007) apply at-a-station and downstream hydraulic 

geometry techniques to mountain rivers in Idaho. Their results show that weakly 

developed relations highlight the importance of sediment source and sink locations in 
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the region. Wohl (2004) clarifies the limitations of downstream hydraulic geometry by 

concluding that well-developed relations are associated with mountain rivers with a 

stream power (Ω) (W/m) to sediment size (d84) (mm) ratio greater than 10,000 

kilograms per cubic second, and poorly-developed relations are evident for mountain 

rivers less than 10,000 kilograms per cubic second. Finally, to develop more accurate 

regional hydraulic geometry models, Wilkerson (2008) concludes that the 2-year return 

period predicts bankfull geometry better than drainage area. 
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Table 2.2.  Summary of contemporary publications utilizing at-a-station hydraulic 
geometry. 
 

Publication Main findings Location or setting 
Hydraulic geometry 

exponents 

1. Hickin (1995) 

Discontinuities in at-a-station 
relations as bed-scour threshold is 
exceeded; obscured by log-
transformation of data 

Fraser River, British 
Columbia, Canada; snowmelt-
dominated 

width = 0.07; depth = 0.47; 
velocity = 0.46 

2. Merigliano 
(1997) 

At-a-station hydraulic geometry m/f 
ratios provide insight to scour-and-
fill processes and presence of pool-
riffle sequences; historical 
assessment of post-impoundment 
conditions 

Snake River, Idaho, USA; 
snowmelt-dominated 

1950 to 1956 width = 0.08; 
depth = 0.54; velocity = 0.38 
1957 to 1990 width = 0.08; 
depth = 0.55; velocity = 0.37 

3. Deodhar and 
Kale (1999) 

At-a-station hydraulic geometry 
shows decreasing width-depth ratios 
with increasing discharge; evidence 
for high-magnitude floods 
controlling geometry 

Allochthonous (decreasing 
inputs of discharge with 
downstream distance) rivers, 
western India; monsoon-
dominated 

Twenty-one at-a-station 
values provided in 
publication; variable 

4. Gupta (1999) 

High-magnitude floods in a 
monsoon-dominated river generates 
a box-shaped geometry; at-a-station 
analysis of annual peak discharge 

Narmada River, central India; 
monsoon-dominated system 

width = 0.04; depth = 0.46; 
velocity = 0.50 

5. Kennedy 
(1999) 

Finds similarities between at-a-
station geometry of small tributary 
mouths and mesotidal inlets 

Small tributary mouths at 
confluences of a larger river in 
monsoon-dominated Sri Lanka 

Relations graphically shown, 
but no exponents provided; no 
log-linear association between 
depth and discharge; negative 
association between width 
and tributary discharge 

6. Burge (2004) 

Statistical analysis of hydraulic 
geometry variables show that small 
side channels in multi-thread reaches 
are distinct, but main channels are 
similar to single-thread reaches 

Humid rivers in continental 
glaciated terrain in 
southeastern Canada 

Not included 

7. Millar (2005) Theoretical dimensionless regime 
equations developed Artificial gravel-bed rivers 

width = 0.5; depth= 0.37 
(both modified by additional 
particle-size parameter) 

8. Stewardson 
(2005) 

Develops reach-based hydraulic 
geometry relations to reduce at-a-
station variability 

Mostly gravel-bed streams in 
southeastern Australia 

width = 0.11; depth = 0.23; 
velocity = 0.52 (mean of all 
streams used) 

9. Kale and Hire 
(2007) 

At-a-station analyses show box-
shaped channel of monsoon-
dominated river 

Seasonal monsoon river in 
central India 

width = 0.21; depth = 0.46; 
velocity = 0.33 

10. Latrubesse 
(2008) 

At-a-station analyses for large rivers 
are characterized by low width 
exponents, and depth increases more 
for single-thread sinuous rivers than 
for anabranching rivers 

Large alluvial rivers in South 
America 

Various; width usually less 
than 0.1; depth and velocity 
relation associated with 
single-thread or anabranching 
channels 

11. Singh and 
Zhang    
(2008a, b) 

Derive eleven at-a-station hydraulic 
geometry equations, emphasizing 
temporal variation in stream power 
and extremal hypotheses 

Theoretical Various; compared to other 
data sets 

12. Wilkerson 
(2008) 

2-year return period predicts 
bankfull geometry better than 
drainage area for regional hydraulic 
geometry models 

Various systems in the United 
States 

Various; used numerous data 
sets 
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Table 2.3.  Summary of contemporary publications utilizing downstream hydraulic 
geometry. 
 

Publication Main findings Location or setting 
Hydraulic geometry 

exponents 

1. Williams, 
Orr, and 
Garrity 
(2002) 

Uses a form of downstream 
hydraulic geometry (using 
increasing marsh area or tidal prism 
instead of discharge) to predict 
equilibrium morphology of tidal 
channels 

Tidal channels along San 
Francisco Bay, California, 
USA 

Contributing marsh area 
width = 0.55; depth = 0.20 
Tidal prism width = 0.46; 
depth = 0.18 

2. Merritt and 
Wohl (2003) 

Downstream hydraulic geometry 
during a flood that increased in 
magnitude downstream; width 
increased as a result of non-
cohesive boundary materials and 
decreasing valley confinement 

Yuma Wash, Arizona, USA; 
arid, ephemeral channel 

width = 0.78; depth = 0.15; 
velocity = 0.14 

3. Torizzo and 
Pitlick 
(2004) 

Downstream hydraulic geometry 
displays minimal increase in depth; 
attributed to glacial sources of 
coarse sediment 

Steep, gravel-bed streams in 
Colorado, USA width = 0.56; depth = 0.26 

4. Wohl (2004) 

Well-developed downstream 
hydraulic geometry relations for 
stream power (Ω) to particle size 
(d84) ratio greater than 10,000 kg/s3; 
poorly-developed relations less 
than 10,000 kg/s3 

Mountain rivers in USA, 
Panama, Nepal, and New 
Zealand 

Various; used numerous 
data sets 

5. Xu (2004) 

Downstream hydraulic geometry 
used to discriminate between 
meandering/braiding and sand-
bed/gravel-bed rivers worldwide 

Various settings worldwide 
width = 0.52; depth = 0.40 
for braided-meandering 
transition 

6. Wohl and 
Wilcox 
(2005) 

Downstream hydraulic geometry 
shows well-developed relations at 
bankfull discharge for rivers with 
substantial colluvial inputs and 
bedrock outcrops 

Steep, step-pool, gravel-bed 
rivers in New Zealand 

Eastern stream: width = 
0.50; depth = 0.33; velocity 
= 0.17 
Western stream: width = 
0.52; depth = 0.43; velocity 
= 0.07 

7. Arp et al. 
(2007) 

Weak downstream hydraulic 
geometry relations highlight 
importance of sediment sources and 
sinks, including lakes 

Mountain rivers in formerly 
glaciated terrain in Idaho, 
USA 

Downstream Warm 
Springs Creek: width = -
0.47; depth = 0.45; velocity 
= 0.83 
Sawtooth Mountain Lake 
District: width = 0.56; 
depth = 0.11; velocity = 
0.24 
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2.4 Contemporary Dominant or Effective Discharge Applications 
 

There are two distinct terms used to describe the flow driving the majority of 

fluvial work and the observed channel geometry. Biedenharn et al. (2000) distinguish 

the dominant discharge as the flow that is associated with channel geometry, and the 

effective discharge is associated with transport of bed-material load, but could be 

considered sediment transport in general (Table 2.1). Contemporary research and 

applications have thoroughly explored the concepts of dominant or effective discharge, 

indicating that debates surrounding magnitude and frequency are both applicable and 

lively (Tables 2.4, 2.5, and 2.6). A few researchers have investigated theory of 

dominant or effective discharge, but most have applied the theory in diverse settings 

either to confirm or refute the general concept of Wolman and Miller (1960). Discussed 

below are publications that have focused on the concepts and applications of dominant 

or effective discharge since the mid-1990s. 

2.4.1 Contemporary Theoretical Applications 

Assuming log-normal distributed discharge frequency and sediment transport as 

a power function of discharge to predict the frequency of effective discharge, Nash 

(1994) finds poor agreement between observed and predicted effective discharges of 55 

streams in the United States. Nash (1994) also mathematically solves for the effective 

discharge as: 
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�� � ������, where 

�� is the effective discharge, in cubic meters per second; � approximately is 2.718; � is 

an empirically derived exponent of the relation between the sediment transport rate and 

discharge; and � and � are the mean and standard deviation of the logarithm of 

discharge, respectively. Additionally, Nash (1994) finds that the frequency of effective 

discharge greatly varies from place to place, underscoring the difficulty of predicting 

effective discharge using a universally applicable flow frequency or bankfull discharge. 

In a review provided in Biedenharn et al. (2000), there are three approaches to 

establish the dominant discharge: (1) bankfull discharge, (2) flow of a given return 

period, and (3) effective discharge; it is recommended that all three are employed to 

ensure consistency and reduce uncertainty. Doyle et al. (2007), however, only supports 

the use of effective discharge for channel restoration applications. The methodology to 

determine effective discharge used by Biedenharn et al. (2000) uses a flow-duration 

curve and a sediment-discharge rating curve, both requiring considerable data collection 

through time. Recognizing that total load transported constitutes a complete analysis of 

effective discharge, Vogel, Stedinger, and Hooper (2003) propose a more valid half-

load discharge index, which is defined as the flow at which half the total cumulative 

load is transported, and is identical to that of Nash (1994), although it was derived 

through alternative mathematics. Using the half-load discharge index, the authors find 

that flows responsible for most cumulative sediment transport are larger and less 
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frequent than previously shown by traditional effective discharge techniques. The return 

periods for half-load discharge often on the order of decades to centuries. 

2.4.2 Contemporary Applications Supporting Frequent Dominant Discharge 
Events 

 
Aside from deterministic evaluations of dominant discharge, a number of 

contemporary case studies support the original findings of Wolman and Miller (1960). 

Batalla and Sala (1995) claim that bedload transport in a humid Mediterranean, sandy 

gravel-bed river is dominated by frequent events of moderate magnitude that fill the 

channel to bankfull stage. However, empirical plots show considerable variation in the 

relation between bedload transport rates and discharge. Hudson and Mossa (1997) focus 

on the duration of effective flows responsible for suspended sediment transport in three 

large, impounded rivers in the USA Gulf Coastal Plain, and conclude that the majority 

of cumulative transport occurs during moderate events. Biedenharn, Little, and Thorne 

(1999) perform a magnitude-frequency analysis of sediment transport at three long-term 

streamflow-gaging stations along the lower Mississippi River, finding that the effective 

discharge has a return period slightly more frequent than one year and closely 

corresponds to bankfull geometry. Further, an extreme event was specifically addressed 

and the authors conclude that its geomorphic effects and long return period are offset by 

more frequently occurring moderate floods. Additionally, a few investigations of very 

large rivers show that effective discharge occurs at “bar-full” stages instead of bankfull 

stages (Thorne, Russell, and Alam 1993; Biedenharn and Thorne 1994; Latrubesse 

2008), which occurs on a relatively frequent basis. 
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Notably, many investigations of dominant discharge are for mountain rivers or 

systems with floods contingent on annual snowmelt. For gravel-bed rivers in the Rocky 

Mountains of the United States, Andrews and Nankervis (1995) generally reinforce 

earlier findings from Andrews (1980) that effective discharge closely approximates 

bankfull discharge and occurs, on average, about 16 days per year. Whiting et al. 

(1999), working in snowmelt-dominated streams of Idaho, USA, find that the effective 

discharge of bedload has about a 1.4-year return period, and is about 80 percent of the 

bankfull discharge. Also working in the Pacific Northwest of the United States, Castro 

and Jackson (2001) show only minor differences in bankfull discharge between 

relatively humid (1.2-year return period) and dry areas (1.4- to 1.5-year return period). 

Torizzo and Pitlick (2004) investigate the relations between bedload transport, 

hydraulic geometry, and effective discharge in mountain streams in Colorado, USA. 

Those authors conclude that the effective flows occur about 4 days per year. Further, the 

effective discharge closely matches the bankfull discharge, and its flow duration does 

not tend to increase with drainage area. 

2.4.3 Contemporary Applications Neutral on Frequent Dominant Discharge 
Events 

 
A variety of investigations tend to have a neutral sentiment on Wolman and 

Miller (1960), either because magnitude-frequency is considered less important than 

flow duration or other hydraulic considerations, or because variation from the original 

model is not sufficient to refute the concept. Costa and O’Connor (1995), in an analysis 

of short-duration floods resulting from two dam failures, support show that flow 
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duration is more important for geomorphic effectiveness than magnitude, as evidenced 

by minimal adjustments to the downstream channels and floodplains. The authors also 

suggest that stream-power graphs have more explanatory power for geomorphic 

consequences of individual floods than simple magnitude-frequency analysis. Fuller 

(2007), constraining his analysis to one flood with a return period of about 150 years, 

contrasts the geomorphic responses of three streams in New Zealand and finds that 

some reaches exhibited catastrophic change whereas others were not greatly affected. In 

general agreement with Magilligan (1992), Fuller (2007) argues that altered reaches 

were more sensitive to extreme flows because of their local channel and valley floor 

configuration, especially at channel bends, where channel width was confined, or where 

bounding terraces limited flood extent. 

Hey (1998), in commentary on management and restoration of gravel-bed rivers, 

advocates for the use of bankfull discharge as a design flow for rivers displaying steady-

state equilibrium, but warns practitioners about the association of between dominant or 

effective and bankfull discharge. Further, Simon and Darby (1999) state that dominant 

and bankfull discharge should not be associated for recently incised river channels, 

because cross-sectional area has increased and allows greater flows without 

approaching bankfull conditions. 

Linking concepts of effective discharge to ecological functions, Pitlick and Van 

Steeter (1998) investigate alluvial reaches of the Colorado River near Grand Junction, 

Colorado, and conclude that flows slightly below bankfull stage carry the majority of 
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cumulative sediment load. Further, the authors show that the dominant (channel-

forming) discharge produces a shear stress about 1.5 times greater than that required for 

initial bed-material entrainment. Emmett and Wolman (2001) compute the effective 

discharges of five streams in the northern Rocky Mountains, USA, finding that 

armoring effects and a steep relation between bedload and discharge result in higher 

return periods for effective flows that occur at stages greater than bankfull. 

Applying the concept of effective discharge, Heritage and Milan (2004) 

investigate the role of excess stream power in the maintenance of riffle-pool sequences 

in a small, gravel-bed stream in northern England. In their investigation, the sediment 

transport rate in the popular conceptual plot of Wolman and Miller (1960) is substituted 

with excess energy to distinguish the discharge at which a transfer of excess energy 

from riffles to pools occurs with increasing discharge. The results show a reversal in 

excess energy between about 20 and 50 percent of bankfull discharge, but challenge the 

idea that a reversal is required to maintain quasi-equilibrium of the riffle-pool sequence. 

 Using historical discharge and suspended-sediment data at over 2,900 sites 

across the United States to infer effective flows, Simon, Dickerson, and Heins (2004) 

argue that flows of a given recurrence interval (the 1.5-year return period in their study) 

are more appropriate to define the effective discharge than flows at bankfull stage. 

Further, the authors are able to produce regional curves for the 1.5-year flow and show 

that disturbed sites generally yield an order of magnitude more suspended-sediment 

than stable sites. 
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A variety of studies along seasonally-active fluvial systems have highlighted 

discrepancies associated with the assumption of a 1- to 2-year dominant discharge. 

Focusing on ephemeral channels with highly variable flow regimes in southeastern 

Spain, García (1995) defines three classes of effective flows and one ineffective flow. 

The first class of extreme events modifies the overall system, including the floodplain, 

and generally has return periods between 2 and 6 years. The second class controls 

channel geometry at bankfull stages, commonly occurring more than once per year to 

every 1.5 years. Finally, more frequently occurring flows are capable of bedload 

transport. García (1995) empirically shows that most sediment is transported by the 

extreme events, but offers that the streams still display equilibrium-like conditions. 

Gupta (1999) explores the role of high-magnitude events in alternating bedrock-

confined and alluvial reaches of the Narmada River in central India, and concludes that 

very extreme floods sculpt a macro-channel and transport vast quantities of sediment, 

whereas the inner channel is associated with moderate floods developed during the 

seasonal monsoon wet period. Kale and Hire (2007) point out that it is unknown if the 

cumulative effects of low-frequency extreme floods are more important than seasonal 

monsoon events. Further, the fact that an inner channel is maintained by seasonal 

monsoon flows indicates the effectiveness of the 1- to 2-year flow event. In seasonally-

dominated highland South Africa, van Niekerk et al. (1999) investigate the morphology 

of the Sabie River, a bedrock anastomosing system (Figure 2.5). Results show that a 

large macro-channel is inundated on a very infrequent basis, without any flow 
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breaching its boundaries in approximately 50 years. However, individual low-flow 

channels easily transport the available sediment. Kemp (2004), in an investigation of a 

flood-prone river system in southeastern Australia, shows that floodplain morphology, 

including swirl pits and zones of stripping, is dominated by high-magnitude events with 

return periods greater than 1 to 2 years, but probably less than 10 years. However, the 

river channel within the floodplain is modified more frequently. 
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Figure 2.5.  A bedrock-anastomosing river system is characterized by a series of 
bedrock core bars that are frequently inundated and a higher floodplain that is not 
frequently inundated (from van Niekerk et al. 1999; scanned from Brierley and Fryirs 
2005). 
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In an application that might be the first of its kind, Doyle et al. (2005) make the 

step from effective discharge in geomorphology to flows that drive ecological processes 

in river systems, including organic matter transport, algal growth, nutrient retention, 

macroinvertebrate disturbance, and habitat availability. Using the effective discharge 

equation produced in Nash (1994) and Vogel, Stedinger, and Hooper (2003), Doyle et 

al. (2005) show that flow variability is most important for various processes. For 

example, nitrate loads in a Maryland stream and pool and riffle availability in an 

Arkansas stream are dominated by base flows, and cumulative organic matter loads are 

transported by moderate floods in a New Hampshire stream. 

2.4.4 Contemporary Applications Refuting Frequent Dominant Discharge Events 
 

Finally, a number of studies refute the general concept of Wolman and Miller 

(1960), mostly for rivers in dynamic environments or when associating the concept with 

processes other than sediment transport or channel-forming hydraulics. Similar to the 

investigations with a neutral sentiment on Wolman and Miller (1960) discussed above, 

seasonally-active fluvial systems offer an alternative model of dominant discharge not 

observed along humid or snowmelt-driven rivers. Gupta (1995) finds that river systems 

in seasonal tropical environments commonly have a channel-in-channel morphology 

(Figure 2.6), where the macro-channel conveys high-magnitude flows with return 

periods of ten or more years and the inset channel defined by seasonally high flows. 

Deodhar and Kale (1999) confirm that channel geometry of monsoon-dominated rivers 

in India is controlled by large, infrequent floods. Grams and Schmidt (1999), working 
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on the regulated Green River in the canyon country of Dinosaur National Monument in 

northwestern Colorado and northeastern Utah, USA, show that pre-regulation channel 

morphology was maintained by the 25-year discharge. Heritage, Broadhurst, and 

Birkhead (2001) specifically examine the role of discharge on different alluvial surfaces 

and features along the Sabie River, finding three distinct suites of discharge that affect 

channel adjustment at successively higher stages: (1) active channels, bars, and levees 

controlled by the 1- to 1.5-year discharge, (2) secondary channels and associated bars 

and levees controlled by the 2- to 10-year discharge, and (3) ephemeral channels and 

associated features controlled by extreme events greater than the 10-year return period. 

Focusing on ephemeral “ramblas” in the Mediterranean region of Spain, López-

Bermúdez, Conesa-García, and Alonso-Sarría (2002) associate three types of events, 

including flash floods, single peak floods, and multiple peak floods, with morphologic 

impacts such as bank erosion, floodplain sedimentation, channel widening, among 

others. Bankfull discharge of Spanish ephemeral streams is estimated to have return 

periods ranging between 2 and 6 years. 
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Figure 2.6.  Sequence of flows that contribute to the formation of a channel-in-channel 
morphology (from Gupta 1999). 
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It is well established that arid rivers adjust during infrequent flash floods, and 

numerous contemporary studies are confirmatory. Huckleberry (1994) claims that large, 

infrequent floods greatly modify channels in arid environments but flood duration is of 

greater importance than magnitude, a finding supported by Costa and O’Connor (1995). 

Bourke and Pickup (1999), examining fluvial forms in arid central Australia, claim that 

large-scale geomorphic forms, including sand sheets, overflow channels, levee deposits, 

and avulsions, result from extreme floods that are estimated to occur about once in 

every 1,000 years. Smaller-scale forms and processes are engaged during moderate 

floods with more frequent return periods. Still, the 10-year return period is the lowest 

flow considered responsible for some localized instream erosion and deposition. 

Scheepers and Rust (1999) confirm that arid rivers are controlled by infrequent, high-

magnitude floods, in their investigation of the Uniab River of Namibia, and highlight 

the role of dunefield barrier dams in releasing short-duration floods. 

Additionally, fluvial processes and channel morphology of bedrock-confined 

rivers typically are associated with low-frequency, high-magnitude floods. Baker and 

Kale (1998) show examples of bedrock river channels that are sculpted by rare, extreme 

flood events, often finding that inner channels or gorges are inset within wide, shallow 

surfaces. Wende (1999) examines the role of rare, high-magnitude floods in the erosion 

of instream jointed-bedrock slabs and deposition of boulder clusters, which greatly 

contribute to the overall geometry of some river channels. Continuing with the focus on 

bedrock-dominated rivers with highly variable flow regimes, Erskine and Livingstone 
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(1999) associate depositional in-channel benches with diverse return periods. Although 

the lowest depositional bench is associated with flows occurring at the oft-cited 1.5- to 

2-year return period, adjustment of higher benches required higher, less-frequent flows 

with return periods between about 4 and 10 years. 
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Table 2.4.  Summary of contemporary dominant or effective discharge publications that 
generally agree with the concepts outlined in Wolman and Miller (1960). 
 

Publication Main findings Location or setting Basis for support 

1. Batalla and Sala 
(1995) 

Effective discharge of bedload 
transport is a frequent, bankfull 
event 

Humid Mediterranean 
stream in northeast Spain 

Effective discharge occurs 
relatively frequently at 
bankfull stage 

2. Andrews and 
Nankervis 
(1995) 

Effective discharge of gravel-bed 
rivers approximates bankfull 
discharge and occurs about 15.6 
days per year 

Gravel-bed rivers in 
mountainous western 
United States 

Relatively frequent events 
transport the majority of 
sediment at bankfull 
stages 

3. Hudson and 
Mossa (1997) 

Moderate events cumulatively 
transport the majority of 
suspended sediment 

Large, impounded rivers 
of the Gulf of Mexico 
Coastal Plain 

Relatively frequent events 
of moderate magnitude 
constitute the effective 
discharge of suspended 
sediment transport 

4. Biedenharn, 
Little, and 
Thorne (1999) 

Effective discharge occurs, on 
average, about every year and 
closely corresponds to bankfull 
channel geometry 

Lower Mississippi River, 
United States 

Effective discharge 
associated with relatively 
frequent, moderate flow 
events and closely 
approximates bankfull 
conditions 

5. Whiting et al. 
(1999) 

Effective discharge of bedload 
transport has an approximate 
return period of 1.4 years, and is 
80 percent of bankfull discharge 

Snowmelt-dominated 
headwater streams in 
Idaho, USA 

Effective flows have a 
1.4-year return period and 
are only slightly less than 
bankfull 

6. Castro and 
Jackson (2001) 

Evaluate return periods of bankfull 
discharge for humid (1.2-year) and 
relatively dry (1.4- to 1.5-year) 
rivers in the Pacific Northwest 

Humid and snowmelt-
driven rivers in the 
Pacific Northwest, USA 

Bankfull discharge 
between 1- and 1.5-year 
return period 

7. Torizzo and 
Pitlick (2004) 

Effective bedload discharge occurs 
during moderate flows for about 4 
days/year and closely 
approximates bankfull; duration of 
effective discharge does not 
increase with drainage area 

Gravel-bed mountain 
streams in Colorado, 
USA 

Effective discharge occurs 
at bankfull conditions for 
about 4 days per year 

8. Latrubesse 
(2008) 

Effective discharge of large 
alluvial rivers often occurs at ‘bar-
full’ conditions, a more frequent 
event than bankfull conditions 

Mostly large rivers in 
South America; also 
Brahmaputra and lower 
Mississippi Rivers 

Effective discharge occurs 
at stages less than bankfull 
and controls channel 
geometry 
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Table 2.5.  Summary of contemporary dominant or effective discharge publications that 
generally are neutral about the concepts outlined in Wolman and Miller (1960). 
 

Publication Main findings Location or setting Basis for support 

1. Costa and 
O’Connor 
(1995) 

Flow duration more important 
than magnitude for channel 
adjustment 

Humid Pacific 
Northwest United States 

High-magnitude events not 
effective if short-lived; flow 
duration more important than 
magnitude 

2. García 
(1995) 

Defines three classes of 
effective flows; most extreme 
flows exert overall control on 
fluvial system 

Semi-arid, ephemeral 
streams in southeast 
Spain 

Return periods of effective flows 
are not much greater than 1 to 2 
years; emphasize range of flows 

3. Hey (1998) 

Advocates for the use of 
bankfull discharge in design 
flows for rivers displaying 
steady-state equilibrium, but 
warns of the association 
between dominant and bankfull 
discharge 

Gravel-bed rivers 

Supports bankfull discharge as 
dominant or effective flow only for 
systems displaying steady-state 
equilibrium 

4. Pitlick and 
Van Steeter 
(1998) 

Effective discharge occurs 
slightly below bankfull stage; 
dominant discharge has a shear 
stress ~1.5 times greater than 
initial bed-material entrainment 

Gravel-bed Colorado 
River in mountainous 
western United States 

Effective discharge shown to have a 
return period  ~1.5 years, but 
bankfull discharge has a return 
period between 4 and 6 years 

5. Gupta 
(1999) 

Large macro-channel and 
tremendous sediment transport 
loads associated with extreme 
floods; inner channel associated 
with seasonal monsoon 

Narmada River, central 
India; seasonal, 
monsoon-dominated 
tropics 

Macro-channel formed by low-
frequency extreme events; inner 
channel maintained by seasonal 
monsoon development 

6. Simon and 
Darby 
(1999) 

Dominant discharge and 
bankfull discharge not an 
appropriate association for 
incised river channels 

Incised river channels 
Dominant discharge will not be 
bankfull discharge for non-
equilibrium streams 

7. van Niekerk 
et al. (1999) 

Large macro-channel of 
bedrock anastomosing rive 
system rarely overtopped; low-
flow channels easily transport 
sediment supply 

Annually and seasonally 
variable flow regime of 
bedrock river in South 
Africa 

Macro-channel formed by extreme, 
low-frequency events, but sediment 
transport easily transported through 
system by lower flows 

8. Biedenharn 
et al. (2000) 

Develop a practical technique to 
compute effective discharge 
using flow-duration curves and 
sediment-discharge rating curve 

Theoretical; example 
applications in humid 
settings 

Technique that is developed relies 
on fundamental principles, but 
authors acknowledge limitations 

9. Emmett and 
Wolman 
(2001) 

Effective discharge is slightly 
greater than bankfull conditions 

Armored, gravel-bed 
rivers in snowmelt-
dominated streams of the 
northern Rocky 
Mountains, USA 

Effective discharge for bedload 
transport is only slightly greater 
than bankfull conditions; average 
return periods around 3 years 

10. Heritage and 
Milan 
(2004) 

Substitute excess energy for 
sediment transport rate in 
effective discharge analysis of 
pool-riffle sequences 

Small, gravel-bed stream 
in humid, northern 
England 

Authors apply effective discharge 
concept to investigate riffle-pool 
sequence, not full channel geometry 

11. Kemp 
(2004) 

Low-energy channel contrasts 
with floodplain morphology, 
including areas of stripping and 
swirl pits, that is controlled by 
extreme flows 

Meandering river in 
southeastern Australia 
with highly variable flow 
regime 

Although bankfull channel 
morphology is controlled by 
frequently occurring flows, 
floodplain morphology is 
dominated by less frequent extreme 
flows 
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Table 2.5 (continued).  Summary of contemporary dominant or effective discharge 
publications that generally are neutral about the concepts outlined in Wolman and 
Miller (1960). 
 

Publication Main findings Location or setting Basis for support 

12. Simon, 
Dickerson, 
and Heins 
(2004) 

Effective discharge of 
suspended sediment should be 
based on flows of a given return 
period, not at bankfull 
conditions 

Arid to humid systems 
across the United States 

The 1.5-year return period is 
used to assess regional effective 
discharge, but authors disagree 
that bankfull conditions 
approximate effective discharge 

13. Doyle et al. 
(2005) 

Associate the effective 
discharge concept with 
ecological processes in streams 

Mostly humid streams in 
North America 

Various flows responsible for 
different ecological processes 

14. Doyle et al. 
(2007) 

Claim that effective discharge is 
the only index that should be 
associated with channel-
forming discharge 

Numerous rivers in 
diverse settings 

Agreement of effective and 
bankfull discharge is best for 
snowmelt-driven, non-incised, 
gravel-bed rivers; agreement is 
poor for highly variable flow 
regimes 

15. Fuller 
(2007) 

Contrasts the geomorphic 
responses of streams to an 
extreme event; most 
geomorphic work accomplished 
along reaches characterized by 
meander bends, terrace 
confinement, or low channel 
width 

Humid, alluvial rivers in 
New Zealand 

Effectiveness of events 
controlled by reach-scale spatial 
configuration and event 
magnitude 

16. Kale and 
Hire (2007) 

Although substantial work is 
accomplished by extreme 
events; uncertainty remains 
about cumulative effects when 
compared with seasonal 
monsoon-generated events 

Seasonal monsoon river in 
central India 

Admitted uncertainty regarding 
cumulative effects of extreme 
and frequent floods 
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Table 2.6.  Summary of contemporary dominant or effective discharge publications that 
generally disagree with the concepts outlined in Wolman and Miller (1960). 
 

Publication Main findings Location or setting Basis for support 

1. Huckleberry 
(1994) 

Flow duration of high-magnitude events 
important to modify channels in arid 
settings 

Arid river in 
southwestern United 
States 

High-magnitude floods control 
channel geometry, provided 
their duration is sufficient 

2. Nash (1994) 
Mathematically solves for effective 
discharge; recurrence interval of 
effective flow highly variable 

Humid to arid streams in 
the United States 

Failure of power function of 
discharge to predict sediment 
transport rate at high flows; 
highly variable return periods 
for effective flows 

3. Gupta (1995) 
Rivers in seasonal tropics dependent on 
high-magnitude, low-frequency floods to 
maintain a channel-in-channel geometry 

Seasonal tropical rivers High-magnitude, low-
frequency floods important 

4. Baker and 
Kale (1998) 

Bedrock rivers in highly variable flow 
regimes only altered by rare, extreme 
floods; display inner channels or gorges 
within a broad, shallow surface 

Bedrock channels with 
highly variable flow 
regimes 

Only the rare, high-magnitude 
floods contribute to overall 
channel geometry 

5. Bourke and 
Pickup (1999) 

Large-scale alluvial features engaged 
about once in every 1,000 years; 10-year 
return period the minimal flow 
considered for minor instream erosion 
and deposition 

Arid, central Australia 
Arid river sediment transport 
and morphology controlled by 
very rare, extreme events 

6. Erskine and 
Livingstone 
(1999) 

Adjustment of lowest in-channel 
depositional bench requires flows with a 
1.5- to 2-year return period; higher in-
channel benches require flows with 4- to 
10-year return periods or greater 

Bedrock-confined rivers 
with highly variable flow 
regimes in southeastern 
Australia 

Adjustment of in-channel 
depositional benches mostly 
requires flows with return 
periods greater than 2 years 

7. Grams and 
Schmidt 
(1999) 

Pre-regulation channel morphology was 
maintained by flows with a 25-year 
return period 

Green River, canyon 
country; western USA; 
flow regulated by 
upstream reservoir 

Pre-regulation dominant 
discharge with a return period 
of ~25 years 

8. Scheepers and 
Rust (1999) 

Hyper-arid channel morphology 
controlled by infrequent, high-magnitude 
floods; describe role of dunefield 
barriers acting as dams to floods 

Uniab River, extreme 
arid conditions of 
Skeleton Coast, Namibia, 
Africa 

Arid river systems dominated 
by infrequent, high-magnitude 
events 

9. Wende (1999) 

Instream jointed-bedrock slabs eroded 
and deposited as imbricated boulder 
clusters by rare, high-magnitude events; 
form considerable part of channel 
geometry 

Bedrock channels in 
rivers with highly 
variable flow regimes in 
northwestern Australia 

Considerable proportion of 
geomorphic work and channel 
geometry produced during 
rare, high-magnitude floods 

10. Heritage, 
Broadhurst, 
and Birkhead 
(2001) 

Three suites of dominant flows for 
features at successively higher stages: 
(1) active channel (1- to 1.5-year return 
period); (2) seasonal channel (2- to 10-
year return period; (3) ephemeral 
channel (>10-year return period) 

River with highly 
variable flow regime in 
South Africa 

Range of flows important to 
successively higher in-channel 
geomorphic surfaces, some of 
which require extreme flows 
with return periods greater than 
10 years 

11. López-
Bermúdez, 
Conesa-
García, and 
Alonso-Sarría 
(2002) 

Three events in ephemeral channels: (1) 
flash floods, (2) single peak floods, and 
(3) multiple peak floods. Morphologic 
impacts include bank erosion, floodplain 
sedimentation, and channel widening. 

Ephemeral “ramblas” 
(channels) in 
Mediterranean Spain 

Bankfull discharge occurs 
between 2 and 6 years, the 
upper limit being associated 
with highly variable flow 
regimes 

12. Vogel, 
Stedinger, and 
Hooper 
(2003) 

Develop rationale for half-load index as 
the effective discharge 

Theoretical; one 
application on 
Susquehanna River in 
humid United States 

High-magnitude, low-
frequency flows responsible 
for most cumulative sediment 
transport 
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2.5 Implications 
 

The number of environmental applications focused on river channels and 

riparian zones are increasing in both rural and urban settings, including rehabilitation 

projects, instream flow studies, and various engineering and ecological endeavors. 

Many practitioners, who generally are specialized in various disciplines, have finally 

come to rely on fundamental concepts introduced by geomorphologists, including 

hydraulic geometry and dominant or effective discharge. The utility of these concepts 

can provide further insight into the controls of channel shape and other physical 

features. However, a failure to realize conceptual limitations, especially the frequency 

of dominant, effective, or bankfull discharge, can mislead well-intended investigations.  

 Contemporary applications involving fluvial geomorphology are gradually 

acknowledging that a range of flows are required to maintain physical elements of 

stream channels on which structures are engineered and ecological processes are 

contingent. The acknowledgment of a “working flow regime” offers an opportunity to 

expand the applications of hydraulic geometry, both at-a-station and downstream, and 

dominant or effective discharge. Modern practitioners are no longer compelled or 

constrained by the literature to emphasize bankfull discharge or the flow occurring 

every 1 to 2 years to characterize fluvial or ecological processes that operate in diverse 

hydrologic and sedimentary settings, and at various spatial and temporal scales. In 

general, the concepts outlined by Wolman and Miller (1960) are most valid in humid or 

snowmelt-driven fluvial systems (Doyle et al. 2007), have mixed results in seasonally-
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driven systems, and become less predictive for small watersheds, incised channels, or in 

systems with highly variable flow regimes. 

 Hydraulic geometry and other applications contingent on a dominant or effective 

discharge, as witnessed by contemporary research activity, provide merit to 

environmental management applications in rivers and riparian corridors. Accurate 

interpretations of hydraulic geometry require acknowledgment that: (1) a range of flows 

contributes to the maintenance of various fluvial processes and forms in most natural 

channels, (2) sediment transport processes can occur at stages above or below bankfull, 

and (3) observed channel characteristics and geomorphic units might not be associated 

with one dominant discharge, especially in fluvial systems with highly variable flow 

regimes. 

In more specific terms, hydraulic geometry analyses, both at-a-station and 

downstream, would benefit from an assessment of cross-sectional data, in order to 

identify: (1) the discharges and stages at which certain sediment transport processes 

initiate (e.g., critical shear stress) or operate (e.g., effective discharge) and (2) the 

discharges and stages at which particular physical features occur (e.g., channel bars, 

succinct breaks in bank slope, perched flood channels, etc.). Further, accurate 

interpretations of sediment-transport processes and channel formation are likely if flows 

are analyzed with respect to antecedent conditions, timing, and typical durations of 

flow. 
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Chapter 3. Physical and Paleoenvironmental Setting of the Edwards 
Plateau, Central Texas, USA, since the Last Glacial 
Maximum 

 
 
 
3.1 Abstract 
 

The paleoenvironmental record of the Edwards Plateau, Texas, for the last 

20,000 years has been established through evidence from fluvial deposits, pollen 

records, faunal remains, and isotopic dating techniques. Six distinct episodes based on a 

pre-existing scheme are used to conceptualize prevailing environmental conditions: (1) 

full glacial (about 20,000 to 14,000 years B.P.), (2) late glacial (about 14,000 to 10,500 

years B.P.), (3) early to middle Holocene (about 10,500 to 5,000 years B.P.), (4) late 

Holocene I (about 5,000 to 2,500 years B.P.), (5) late Holocene II (about 2,500 to 1,000 

years B.P.), and (6) modern (about 1,000 years B.P. to present). 

The full-glacial episode is characterized by the coolest, wettest climatic regime 

in the past 20,000 years. Average summer temperatures may have been 5°C cooler than 

present, indicating reduced seasonality. The presence of boreal genera and megafauna 

highlight biotic descriptions of the Last Glacial Maximum. A gradual increase in 

temperature and decrease in precipitation occurred during the late-glacial episode, as 

evidenced by channel incision, the disappearance of spruce and fir trees, increase in C4 

plant species, replacement of mesic microfauna with xeric forms, and reduced rates of 

speleothem growth. Megafauna become extinct during the late glacial episode. 

Expression of the Younger Dryas cooling episode (about 10,750 years B.P.) is absent in 
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the region, and minor fluctuations in overall climatic trends are related to glacial 

meltwater pulses into the Gulf of Mexico. Desiccation and warming continued through 

the early to middle Holocene, culminating with the Altithermal at about 5,500 years 

B.P. Fluvial systems slowly aggraded during this time, but later incised deeply after 

5,000 years B.P. Grasslands steadily replaced woodlands, C4 abundance increased, and 

xeric species dominated the faunal assemblage. By about 5,000 to 2,500 years B.P., the 

landscape consisted mostly of short grasses and desert scrub. A relatively wet cycle 

occurred between about 2,500 to 1,000 years B.P.; fluvial systems aggraded to levels 

above former terraces; and hickory trees and mesic faunal species increased in 

abundance. Finally, increasing warmth and aridity during the last 1,000 years have 

resulted in stream incision, open oak woodlands, and domination of xeric species. 

 

3.2 Introduction 
 

An increasing level of concern about patterns of extreme weather, climatic 

change, and associated spatial and temporal adjustments of the biosphere has generated 

much interest within the natural scientific community (Intergovernmental Panel on 

Climate Change 1990; Neilson and Marks 1994; Elsner, Liu, and Kocher 2000). The 

complexity of these problems is aggravated by the rapid rate at which humans are 

influencing atmospheric circulation processes and the hydrologic cycle. Further, direct 

human impact on the landscape through land-cover change has dramatically altered 

distributions and densities of life on Earth. As a context to discern natural and 
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anthropogenic controls, and the relative impact of present-day and previous conditions 

on the landscape, numerous efforts to describe environmental change over time have 

been published. 

Investigations of environmental change during the Quaternary period provide 

Earth scientists with a history of natural adjustments to various conditions. Especially 

pertinent toward our understanding of current conditions and predictions of future 

adjustments are reviews of environmental change during the Late Pleistocene and 

Holocene, a period of time marked by frequent changes in climate (Butzer 1974; Knox 

1995; Williams et al. 1998), and one which humankind rapidly developed and began to 

impact natural systems. Quaternary research uses different lines of evidence to 

reconstruct previous environmental conditions. Evidence derived from deep-sea 

sediment cores; ice cores; fluvial, lacustrine, glacial, and aeolian sediments; fossil 

pollen; fossils; anthropogenic artifacts; and isotopic dating techniques all contribute to 

understanding Quaternary environments, changes in climate, and the distribution of life 

on Earth. 

 Three goals seem to emerge from the extensive body of Quaternary research: (1) 

reconstructing environments of localities or regions, including biotic, geomorphic, and 

climatic characteristics; accompanied by inferences of the processes responsible for 

those conditions; (2) modeling of global atmospheric and oceanic circulation patterns; 

and (3) tracing the origins and dispersal of humans and determining their impact on the 

environment. Paleoenvironmental reconstructions of regions are commonly used to 
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make conclusions about global dynamics and, in turn, provide information about 

regional climatic regimes. Interrelationships are often developed between oceanic and 

atmospheric circulation dynamics, including El Niño-Southern Oscillation (ENSO), 

global dynamics and regional climatic characteristics, and among regions themselves. 

 This chapter explores the body of evidence used to reconstruct environments of 

the Edwards Plateau, Texas, USA, since the Last Glacial Maximum. A rather 

substantial volume of literature provides evidence for environmental conditions and 

change across the Edwards Plateau during the Late Pleistocene and Holocene. Evidence 

is derived from cave sediments, fluvial deposits, pollen, fossils, and isotopic signatures. 

These lines of evidence are organized to populate a definitive timeline of conditions 

since the Last Glacial Maximum. Additionally, it is useful to examine relations and 

discrepancies between the different lines of evidence. 

 Specifically, this review of paleoenvironmental conditions in the Edwards 

Plateau could serve as a platform for interpretation of alluvial deposits and 

contemporary channel morphology in the region. Sediment sampling strategies and the 

ability to distinguish inactive terrace deposits from late Holocene banks and floodplains 

should benefit from an understanding of landscape and channel evolution in the 

Edwards Plateau through time. Further, it is vitally important to correctly identify 

contemporary deposits if associating with the present-day hydrologic regime. 
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3.3 The Edwards Plateau 
 

The Edwards Plateau of Central Texas, USA is located at the southern edge of 

the Great Plains physiographic province of North America (Osterkamp et al. 1987) and 

covers about 75,000 square kilometers (Figure 3.1). At the eastern edge, it is separated 

from the Texas Blackland Prairies of the Gulf Coastal Plain by the abrupt Balcones 

Escarpment, which also forms the southern border with the South Texas Brush Country. 

For most of the western edge, the Pecos River separates the Edwards Plateau from the 

arid Chihuahuan Desert ecoregion, more specifically the Stockton Plateau. The Edwards 

Plateau grades into the Southern High Plains in the northwest and the Rolling Plains to 

the north, although locally sharp demarcations occur, including low-relief escarpments. 

Although considered a separate natural subregion based on different surface geology, 

soils, and vegetation types (Lyndon B. Johnson School of Public Affairs 1978), the 

Llano Uplift will be included in the discussion based on its proximal location and 

similar responses to environmental change. 
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Figure 3.1.  The Edwards Plateau in Central Texas, USA. The region is about 75,000 
square kilometers, and occurs at a transition between semi-arid climatic conditions in 
the west to dry subtropical conditions in the east. 
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The Edwards Plateau is classified as dry subtropical in the east to semiarid in the 

west. Average annual precipitation decreases from east to west across the plateau, 

ranging from 35 to 85 centimeters per year, the western decrease attributed to the 

relaxation of available moisture from the Gulf of Mexico (Bomar 1983). Rainfall, 

however, is not uniform over space and time, and it is common for years of severe 

drought to rapidly transition into relatively wet conditions within a few months (Bomar 

1983). Hydrologically, the region is noted for tremendous flash flooding (Beard 1975; 

Bomar 1983; Burnett 2008). A number of historic floods in the Edwards Plateau have 

peak flows exceeding 10,000 cubic meters per second (Burnett 2008). 

 Geologically, the Edwards Plateau is a tableland uplifted during the Cenozoic 

era (65.5 million years ago to present). Expressed at the surface, the northern and 

western sides of the Balcones Escarpment approximately range from 100 to 320 meters 

higher than the downthrown side. Lithologically, it is dominated by lower-Cretaceous 

limestones and dolomites deposited by a shallow, inland sea. Over time, rivers and 

streams have incised valleys into the Edwards Plateau, creating a well-dissected 

landscape. Additionally, dissolution of carbonate rock is responsible for the formation 

of cave systems, conduit-dominated aquifer systems, and numerous springs throughout 

the plateau.  

Tertiary tectonic activity associated with the Llano Uplift was centered in the 

present-day eastern Llano River watershed. The uplift forced overlying Cretaceous 

strata upward, resulting in increased rates of erosion that exposed the underlying 
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Paleozoic sedimentary and Precambrian igneous and metamorphic formations. 

Expressed at the ground surface today, the exhumed “island” of older lithologic units is 

surrounded by an elevated Cretaceous rim. 

 The Edwards Plateau is divided into four subregions based on topography, 

surface geology and soils, and vegetation types (Lyndon B. Johnson School of Public 

Affairs 1978; Frye, Brown, and McMahan 1984): (1) the Balcones Canyonlands; (2) the 

central Plateau; (3) the Lampasas Cut Plain; and (4) the Llano Uplift. The Balcones 

Canyonlands are characterized by the deeply dissected southern and eastern margins of 

the plateau, creating a rugged landscape with numerous springs and streams. Scrub 

forests of Ashe juniper (Juniperus ashei), stunted live oak (Quercus fusiformis), Texas 

oak (Quercus texana), black cherry (Prunus serotina), Texas ash (Fraxinus texensis), 

and some endemic plants dominate on the shallow soils near the escarpment (Amos and 

Rowell 1988; Riskind and Diamond 1988). The central Plateau is characterized by 

rolling plains located on broad divides between river valleys. These uplands have 

slightly deeper soils covered by grassland and groves of oak, juniper, and honey 

mesquite (Prosopis glandulosa). The Lampasas Cut Plain, not included in the 

boundaries of the Edwards Plateau by Griffith et al. (2004) (Figure 3.1), is characterized 

by mature, broad river valleys and less relief than the Balcones Canyonlands. 

Grasslands occur in the alluvial valleys and woodlands of oak, juniper, and mesquite 

exist throughout the plain. Finally, the Llano Uplift displays rolling topography 

surrounded by an elevated rim of Cretaceous carbonate rocks. This region contains oak, 
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hickory (Carya texana), and mesquite trees within grassland, often described as a 

savanna. Ashe juniper is notably absent in the Llano Uplift, because of the lack of 

limestone-derived soils. 

 Biotically, the Edwards Plateau covers an area noted for its transition from 

mesic- to xeric-tolerant species and from temperate to subtropical species (Blair 1950; 

Riskind and Diamond 1988). A highly generalized vegetation description (Riskind and 

Diamond 1988) is that of deciduous forests or woodlands on floodplains and moist 

slopes, evergreen woods and grasslands on drier slopes and uplands, and evergreen and 

deciduous shrublands mixed with shortgrasses further west. Blair (1950) categorizes the 

Edwards Plateau as the Balconian biotic province, and concludes that out that of fifty-

seven known species of mammals in the region, none are restricted to the province. All 

also are found in at least one of the bordering biotic provinces, which testifies to the 

transitional nature of the Edwards Plateau. 

 

3.4 Environmental Conditions and Change since the Last Glacial 
Maximum 

 
The Edwards Plateau, and the Great Plains in general, is noted for dramatic 

environmental responses to shifts in climate during the Late Quaternary (Osterkamp et 

al. 1987). Responses to shifts in climate across the plateau are associated with episodes 

of soil erosion, hydrologic change and associated fluvial activity, and fluctuation in the 

range limits and density of plant and animal species. A number of studies in the plateau 
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have used macrofossils, fossil pollen, cave sediments, fluvial deposits, and isotopic 

signatures and dating techniques to reconstruct environments for the last 20,000 years. 

 A comprehensive chronological framework since the Last Glacial Maximum for 

the Edwards Plateau has been developed by Toomey, Blum, and Valastro (1993), and is 

based on fossil vertebrates, cave fill sediments, and previously published Quaternary 

research. Their interpretations suggests six unique environmental conditions: (1) full 

glacial (about 20,000 to 14,000 years B.P.); (2) late glacial (about 14,000 to 10,500 

years B.P.); (3) early to middle Holocene (about 10,500 to 5,000 years B.P.); (4) late 

Holocene I (about 5,000 to 2,500 years B.P.); (5) late Holocene II (about 2,500 to 1,000 

years B.P.); and (6) modern (about 1,000 years B.P. to present). These timeframes will 

be used in this chapter to organize evidence for environmental conditions and climatic 

changes since the Last Glacial Maximum. Some evidence for environmental change in 

surrounding regions will also be included to provide a regional context. 

3.4.1 Full-Glacial Environmental Conditions (about 20,000 to 14,000 years B.P.) 
 

Fluvial geomorphic evidence of paleohydrological conditions in the Edwards 

Plateau during the Last Glacial Maximum are derived from Pleistocene river terrace 

deposits (Figure 3.2). Blum, Toomey, and Valastro (1994) conducted a detailed study of 

Quaternary terrace and fill deposits of the Pedernales River, which is a major tributary 

of the Colorado River (Figure 3.3). Radiocarbon ages of organic-rich sediments and 

soils and stratigraphic position of diagnostic archaeological artifacts were used to 

determine the chronology of the alluvial sequences. Of two identified Late Pleistocene 



78 
 

terraces, the younger was determined to have been deposited during the Last Glacial 

Maximum. This extensive terrace is composed of horizontally and cross-stratified 

gravel and sand overlain by interbedded sand and mud, which suggests a channel-

related origin. These stratigraphic facies indicate a period of channel aggradation, 

lateral migration, and sediment storage. Such characteristics are indicative of a less 

flashy, more consistent flood regime and a large supply of sediment from tributary 

networks. Soils of the full-glacial terrace near the junction of the Colorado and Concho 

Rivers at the northern extent of the Edwards Plateau are similar to those of the 

Pedernales River with respect to morphologic structure and display extensive soil 

development during this time (Blum and Valastro 1992). Mature, argillic, calcic, silty 

soils are found in full-glacial terraces of the Sabinal River valley at the southern extent 

of the plateau, and some terraces have calcrete horizons in the upper 3 to 4 meters of the 

soil (Mear 1995). The thickness of full-glacial terraces in the Edwards Plateau ranges 

from 4.3 to 12.2 meters (Mear 1995). 

Late Wisconsin terraces of the lower Colorado River just downstream of the 

Balcones Escarpment, called the Eagle Lake Alloformation, indicate that coarse sand 

and gravel aggradation was followed by the deposition of finer sediment by an enlarged, 

high sinuosity channel (Baker and Penteado-Orellana 1977). The terraces are composed 

of point bar and abandoned channel facies, suggesting floods were mostly contained in 

the channel banks (Blum and Valastro 1994). Waters and Nordt (1995) also describe 

thick cross-bedded gravel and sand deposits in full-glacial terraces along the Brazos 
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River in east-central Texas, presumably deposited as point bars of a laterally migrating 

river. Nordt et al. (1994) report the same stratigraphic unit in the Lampasas Cut Plain. In 

summary, full-glacial terraces indicate a less flashy, higher frequency flood regime 

associated with more humid conditions. 

 In addition to fluvial deposits, the presence of pluvial lakes in West Texas 

testifies to the relatively moist regional climate during the Last Glacial Maximum. 

Reeves (1973), in a study of a small playa lake, estimated a 34-percent runoff-to-

precipitation rate in West Texas during the full-glacial episode, which is consistent with 

relatively wet conditions. Allen and Anderson (1993), however, determined that glacial 

advances in North America corresponded with high stands of pluvial lakes in the 

southwestern United States, which were maintained by high stream discharges that 

occurred only for a few decades. This is different from the model of persistent humid 

conditions throughout the full-glacial episode. An overall rise in the regional water table 

contributed to the emergence and continuous existence of pluvial lakes on the High 

Plains of West Texas (Holliday 1997) and Rolling Plains in northern Texas (Caran and 

Baumgardner 1990). It appears that areas west of the Edwards Plateau experienced 

moist conditions during the Last Glacial Maximum, but pulses of moisture were 

temporally erratic. Perennial lakes were sustained by gradual inputs of ground water. 

 Pollen records from Central Texas describe a mixed deciduous forest with some 

conifer species supported by cool, mesic conditions (Bryant and Holloway 1985).  

Potzger and Tharp (1947) and Potzger and Tharp (1954) first discovered boreal pollen 
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in Patschke Bog in Lee County, Gause Bog in Milam County, and Franklin Bog in 

Robertson County. All sites are located east of the Balcones Escarpment.  Bog profiles, 

although not isotopically dated, reveal that spruce (Picea), fir (Abies), birch (Betula), 

and pine (Pinus) were present in the region, probably during the Last Glacial 

Maximum. Bryant (1977) also detects spruce, birch, and other northern species in 

nearby Boriack Bog in Lee County. The presence of these species indicates that summer 

temperatures were probably 5°C lower than present (Toomey, Blum, and Valastro 

1993). Analysis of pollen from Boriack Bog reveals high percentages of shrubby alder 

(Alnus), a current northern genus, surrounding bogs in Central Texas during the full-

glacial episode (Bryant and Holloway 1985). Bousman (1998) describes an open 

grassland environment for most of the Last Glacial Maximum, interrupted by the 

increase of boreal tree species around 16,000 years B.P. Further, Hall and Valastro 

(1995) describe the Edwards Plateau as grassland with small clusters of pinyon pine and 

deciduous trees in riparian corridors and canyons. Holliday (1987) and Hall and 

Valastro (1995) criticize the support for a boreal forest located in the plateau and 

Southern High Plains based on problems of pollen preservation in regional soils. Based 

on δ13C signatures extracted from alluvial deposits in central Texas, Nordt et al. (1994) 

determined that C4 plants comprised only 45 to 50 percent of vegetative biomass during 

the full-glacial episode, implying the climate was cool and wet (Figure 3.4). Reduction 

in C4 productivity around 15,000 years B.P. is associated with a pulse in glacial 
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meltwater from the Mississippi River and associated cooling of the Gulf of Mexico and 

the surrounding land areas (Nordt et al. 2002). 

 The fauna of the full-glacial episode also confirm the existence of a cooler and 

moister climate. Most assemblages of animal fossils are derived from caves scattered 

throughout the Edwards Plateau. The two distinguishing characteristics of fauna in the 

full-glacial episode are the presence of large mammals and other animals normally 

associated with cooler and moister climates living sympatrically with animals currently 

occupying the plateau (Lundelius 1967; Toomey, Blum, and Valastro 1993). Fossils of 

horses, camels, mammoths, peccaries, American mastodon, bison, and tapirs indicate 

species adapted to grassland and woodland environments in the plateau (Graham 1987). 

The remains of prairie dogs, pocket gophers, and moles found in red clay sediments in 

Hall’s Cave in the central Edwards Plateau suggest the presence of deep upland soils 

during the Late Pleistocene (Toomey, Blum, and Valastro 1993) (Figure 3.5). 

Numerous faunal species identified by Lundelius (1967) in the Edwards Plateau are 

currently limited to northern and eastern ranges, and their coexistence with species 

currently found in the plateau may represent reduced seasonality, defined by cooler, 

moister summers and winters of the same magnitude as today (Toomey, Blum, and 

Valastro 1993). 

 Finally, chemical and isotopic evidence has been utilized to reconstruct full-

glacial environments in the Edwards Plateau. Measurements of atmospheric noble gases 

in ground water of the Carrizo aquifer in south-central Texas show that the annual mean 
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temperature of the region during the Last Glacial Maximum was about 5°C cooler than 

today (Stute et al. 1992). Isotopic dating of stalagmites from three caves in the Edwards 

Plateau identifies a period of rapid growth between 24,000 and 12,000 years B.P., 

which is consistent with a wetter climate (Musgrove et al. 2001) (Figure 3.6). Strontium 

isotope ratios of fossil hackberry seed coatings and tooth enamel of pocket gophers and 

voles in Hall’s Cave identify steady, continuous soil erosion in the Edwards Plateau 

beginning during full-glacial conditions (Cooke et al. 2003). These strontium ratios are 

dependent the amount of carbonate in soils, where thicker soils contain less carbonate 

based on the greater depth to limestone bedrock. 

3.4.2 Late-Glacial Environmental Conditions (about 14,000 to 10,500 years B.P.) 
 
 Fluvial systems in the Edwards Plateau deeply incised their bedrock valleys 

during the glacial decline at the end of the Pleistocene, leaving behind a noticeable 

unconformity (Blum, Toomey, and Valastro 1994; Mear 1995) (Figure 3.2). The 

Colorado and Concho Rivers incised more than 5 meters into Permian bedrock (Blum 

and Valastro 1992). Incision by the Colorado River in the Gulf Coastal Plain also is 

reported during this time (Baker and Penteado-Orellana 1977; Blum and Valastro 

1994). Excavation of valleys is attributed to the near-complete removal of sediment 

from tributaries accompanied by upland slope stability that resulted in a decrease in 

available sediment. An initial decrease followed by an increase in effective moisture as 

well as a gradual rise in summer temperatures (greater seasonality) is postulated to be 

the cause for incision (Blum, Toomey, and Valastro 1994). Pluvial lakes in northern and 
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West Texas were still persistent during the late-glacial episode (Caran and 

Baumgardner 1990). Finally, carbon-isotope data of plants derived from lunette dunes 

on the Southern High Plains of Texas and New Mexico show considerable variation, 

suggesting alternating cool-warm cycles (Holliday 1997). 

 Palynological evidence accounts for the decline of deciduous woodlands and 

replacement by grasslands and oak savannas (Bryant and Holloway 1985), which 

implies a shift to warmer and drier conditions. Potzger and Tharp (1947) and Potzger 

and Tharp (1954) detected an increase in oak and grass pollen following the presence of 

boreal species. Other bog studies (Bryant 1977; Bryant and Holloway 1985) in the 

region have shown a gradual decrease of boreal trees during late-glacial times, and the 

complete loss of spruce pollen. Grassland dominance around 12,500 years B.P. in 

Central Texas is reported by Bousman (1998), which is consistent with the findings of 

Hall and Valastro (1995) who support the existence of prairie vegetation in the Southern 

High Plains. The percentage of C4 plants in Central Texas increased to 50 to 60 percent 

during the late-glacial episode, alluding to the transition from moist to dry conditions 

(Nordt et al. 1994) (Figure 3.4). C4 plant productivity was relatively low from 13,000 to 

11,000 years B.P., however, and correlates with increased glacial meltwater into the 

Gulf of Mexico, whereas high C4 productivity from 11,000 to 10,000 years B.P. 

suggests that the Younger Dryas cooling episode (about 10,750 years B.P.) did not 

impact the region around the Gulf of Mexico (Nordt et al. 2002). 
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 Faunal assemblages from Hall’s Cave in the Edwards Plateau indicate a rapid 

increase in summer temperatures from 15,000 to 13,000 years B.P. (Toomey, Blum, and 

Valastro 1993) (Figure 3.5). The masked shrew, a heat-intolerant species, disappeared 

from the region whereas the heat-tolerant cotton rat appeared. A decrease in available 

moisture forced the disappearance of the bog lemming, and the desert shrew replaced 

the least shrew. Pocket gophers in the western plateau required short-grasses, and 

prairie dog remains in the central plateau suggest mixed grasses. Burrowing animals at 

this time required sufficient soil thickness, however the absence of pocket gophers and 

the rarity of moles at 12,000 years B.P. indicate diminished soil. The end of the late-

glacial episode witnessed the mass extinction of large mammals, arguably from a 

combination of climate change, especially increased seasonality (Lundelius 1967), and 

predation by humans (Graham 1987). 

 Calcium carbonate lacustrine and calcic soil profiles in north-central Texas were 

sampled by Humphrey and Ferring (1994) for stable carbon and oxygen isotopes in 

order to detect changes in meteoric waters derived from the Gulf of Mexico during the 

Late Pleistocene and Holocene. Their data suggest that the Younger Dryas is not 

recognizable or is masked by complex meltwater rates to the Gulf of Mexico and that 

pond sediments suggest a cool and dry climate. Musgrove et al. (2001) detect a 

warming and drying trend at the end of the Pleistocene, as evidenced by rapid decrease 

in growth rates of stalagmites (Figure 3.6). 
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3.4.3 Early- to Middle-Holocene Environmental Conditions (about 10,500 to 
5,000 years B.P.) 

 
Incision into bedrock valleys ended around 11,000 years B.P. and was followed 

by an episode of valley widening and slow aggradation, creating a thick fill deposit 

(Blum, Toomey, and Valastro 1994; Blum and Valastro 1994; Mear 1995) (Figure 3.2). 

Early-Holocene valley fill deposits of the Pedernales River valley consist of interbedded 

sand and mud, which indicates upland soil erosion and entrainment of clasts from the 

exposed Hensell Sands, and deposition in low-relief channel margins. In contrast, gravel 

deposits reworked from older alluvium dominate the early-Holocene valley fill of the 

Colorado River. Baker and Penteado-Orellana (1977) report aggradation of coarse 

sediment followed by finer sediment accumulation in the lower Colorado River valley 

during the early Holocene. These fluvial deposits reflect a continued warming and 

drying trend, strongly monsoonal circulation, and intense, localized convectional storms 

during the summer (Blum, Toomey, and Valastro 1994). Strong localized storms 

contributed to the loss of the upland soil mantle, but did not produce frequent flood 

events in the larger rivers.  These floodplains were abandoned around 5,000 years B.P. 

and soil formation began on their upper surface. Waters and Nordt (1995) infer a shift in 

the hydrologic regime of the Brazos River around 8,500 years B.P., such that the river 

became an underfit meandering stream in a floodplain formed by vertical accretion of 

sediments during floods. Streams north of the Edwards Plateau began to downcut 

because of a flashy, erosive hydrologic regime (Caran and Baumgardner 1990). 



86 
 

Additionally, coarse slack-water-flood deposits of the Pecos River indicate some flood 

activity west of the Edwards Plateau (Patton and Dibble 1982). 

Perennial lakes were mostly eliminated from northern and West Texas, 

accentuated by the resultant lowering of ground-water levels (Caran and Baumgardner 

1990; Holliday 2000). Some aeolian sand units were deposited by westerly winds in the 

floodplain of the Colorado River and the Rolling Plains during the early Holocene 

(Caran and Baumgardner 1990; Blum and Valastro 1992). Aeolian deflation of the 

Southern High Plains occurred between 8,000 to 5,000 years B.P. (Holliday 1997), 

indicating persistent drought. Aeolian sedimentation in Texas may be related to 

strengthened zonal flow and enhanced drought conditions caused by a global climatic 

event around 8,200 years B.P. (Hu et al. 1999). The episodic, but steady, shift led to the 

warm, dry Altithermal beginning about 7,000 years B.P. and peaking about 5,500 years 

B.P., when the most widespread aeolian sedimentation occurred (Holliday 1989). 

The vegetation record of Central Texas reinforces the gradual warming and 

drying conditions during the early Holocene. Low pollen counts for trees and grasses 

occur at 9,000 years B.P. in Boriack Bog in Lee County, which suggests an open 

community (Bousman 1998). Woodlands again emerged between 9,000 and 8,000 years 

B.P., followed by a rapid change back to grassland associated with the Altithermal. The 

driest conditions occurred around 5,000 years B.P., when open plant communities and 

limited canopy cover were dominant (Bousman 1998). Only oak and hickory trees were 

able to maintain a steady arboreal population in the uplands, and combined with 
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grasses, created a stable vegetative landscape adapted to xeric conditions (Bryant 1977; 

Bryant and Holloway 1985). Overall, the vegetation of the early to middle Holocene is 

reminiscent of modern conditions, although it was probably more open. Nordt et al. 

(1994) show that slight increases in C4 plant abundance from the period 11,000 to 8,000 

years B.P. and dominance of C4 plants between 6,000 and 5,000 years B.P. (Figure 3.4). 

A decrease in C4 abundance between 8,000 and 7,000 years B.P., however, may explain 

a widespread cold period (Hu et al. 1999; Nordt et al. 2002). 

A switch to relatively xeric conditions in the early to middle Holocene also 

affected faunal distributions in central Texas. Bison were absent from the region 

between 7,500 and 4,500 years B.P., as dry conditions did not support enough grass for 

feeding (Graham 1987). Mesic species, including the mole and short-tailed shrew, left 

the area whereas arid-tolerant species, such as the desert shrew, increased in abundance 

(Toomey, Blum, and Valastro 1993). 

As aridity increased, soil erosion of the uplands continued throughout the early 

Holocene and probably ended around 5,000 years B.P. (Cooke et al. 2003), depleting 

most of the mantle in many locations throughout the Edwards Plateau. The stable-

carbon isotopic record in north-central Texas identifies a moist period during the early 

Holocene followed by an arid period representing the middle Holocene (Humphrey and 

Ferring 1994).  Relatively low growth rates of stalagmites in caves remain consistent 

throughout the early to middle Holocene (Musgrove et al. 2001) (Figure 3.6). 
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3.4.4 Late-Holocene I Environmental Conditions (about 5,000 to 2,500 years 
B.P.) 

 
Abandonment of the early- to middle-Holocene floodplain and terrace formation 

occurred around 5,000 years B.P. in fluvial systems of the Edwards Plateau (Figure 

3.2). The supply of coarse bed material exceeded the hydraulic capabilities of the rivers, 

and laterally migrating channels deposited gravel and sand (Blum, Toomey, and 

Valastro 1994). Waters and Nordt (1995) attribute this large supply of sediment to 

reduced vegetation and stabilization of hillslopes. Floodplain abandonment along the 

Pedernales and Colorado Rivers resulted from decreased flood magnitudes during a 

shift to very dry conditions. Waters and Nordt (1995) interpret humid conditions 

beginning around 4,000 B.P. based on soil development along Brazos River terraces, 

but do not consider abandonment as a possible reason for these edaphic processes. 

 Pollen records indicate the driest conditions present on the plateau occurred 

between 5,500 and 4,500 years B.P. (Bousman 1998) and are attributed to the 

Altithermal. An increase in mesquite and cactus accompanied by a decrease in pine is 

reported by Patton and Dibble (1982), and the central Edwards Plateau appeared to be 

dominated by short grasses or semi-desert scrub (Toomey, Blum, and Valastro 1993) 

(Figure 3.5). Following this arid phase, an increase in tree pollen and grasslands were 

associated with a transition from drought-resistant oaks to oak-hickory woodlands. 

Some discrepancy among proxy records is evident during this episode. For example, the 

abundance of C4 biomass decreased between 4,000 and 3,000 years B.P. (Nordt et al. 

1994) (Figure 3.4), and this was attributed to cooler conditions (Nordt et al. 2002). 
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Additionally, Bousman (1998) detected an increase in tree cover between 5,000 and 

3,000 years B.P. One possible explanation for the disagreement among records is a 

strong east to west climatic gradient during this time (Toomey, Blum, and Valastro 

1993). 

 Some aspects of the faunal record in Central Texas between 5,000 and 2,500 

years B.P. reinforce the discrepancies from other records. The presence of bison herds 

between 4,500 and 1,500 years B.P. suggests that relatively humid conditions fostered 

the development of lush grasslands (Graham 1987). This might be a mistaken 

interpretation, however, because healthy grasslands can persist during relatively dry 

conditions. More compelling is the disappearance of taxa with moisture requirements, 

including the eastern pipistrelle bat and woodland vole (Toomey, Blum, and Valastro 

1993). The replacement of the least shrew by the desert shrew continued through this 

episode, as well as the importance of the desert cottontail relative to the eastern 

cottontail (Toomey, Blum, and Valastro 1993). 

3.4.5 Late-Holocene II Environmental Conditions (about 2,500 to 1,000 years 
B.P.) 

 
A return to wetter conditions in the Edwards Plateau occurred around 2,500 

years B.P. Rivers deposited thick vertical accretion facies, filled chute channels along 

the floodplain, and buried soils resting on top of early- to middle-Holocene terraces 

(Blum, Toomey, and Valastro 1994) (Figure 3.2). This type of fluvial activity suggests 

frequent moderate- to high-magnitude flood events and a sufficient supply of fine 

sediment derived from very thin upland soils. The continued supply of coarse bed 
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material resulted in streams being unable to fully transport the load, and deposition of 

widespread, thick fill deposits occurred in the valleys creating a cumulic, organic-rich 

soil (Hall 1990). This accumulation of material created moderately sinuous channels 

with broad and shallow cross-sections (Blum and Valastro 1989). 

 The return to mesic conditions between 2,500 and 1,000 years B.P. appear to 

have increased woodland density in Central Texas. Holloway, Raab, and Stuckenrath 

(1987), in analyses of pollen from Weakly Bog in Leon County, suggest a relatively 

dense oak-hickory forest that switched to more open oak woodlands toward the end of 

this episode. Bryant (1977), however, does not detect any post-Altithermal shift to 

mesic conditions, essentially stating that present vegetation has not undergone 

appreciable change for the latter half of the Holocene. Bousman (1998) argues that oak 

woodlands were replaced by oak-hickory woodlands, suggesting more humid conditions 

at this time. Hall (1982), in two pollen records from northeastern Oklahoma, shows that 

a relatively wet climate between 2,000 and 1,000 years B.P. fostered an increase in the 

abundance in hickory and grasses with water requirements. 

 The humid climatic regime between 2,500 and 1,000 years B.P. allowed for the 

return of the woodland vole and eastern pipistrelle bat to the Edwards Plateau, and 

increased the proportion of least shrews to desert shrews (Toomey, Blum, and Valastro 

1993). The presence of the prairie vole in North Texas and northeastern Oklahoma may 

also testify to mesic conditions in the area (Hall 1982; Graham 1987). Additionally, the 
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abundance of moist-habitat snails in Oklahoma indicates a pattern of increased 

precipitation in the region (Hall 1982). 

3.4.6 Modern Environmental Conditions (about 1,000 years B.P. to present) 
 

Finally, modern environmental conditions of the last millennium shifted back to 

drier conditions. Fluvial adjustments to this climatic regime include channel incision 

and floodplain abandonment, lateral accretion in small point and side bars at bends, and 

vertical accretion deposits of finer material along straight reaches (Blum and Valastro 

1989) (Figure 3.2). Hall (1990) shows a period of channel incision occurring throughout 

the region around 1,000 years B.P., in both large and small systems, which indicates a 

common climatic mechanism. The current dominance of fine-grained sediment in 

floodplains of the Edwards Plateau is a caveat to the rule-of-thumb associating coarse 

sediment with relatively arid regimes (Blum and Valastro 1989). Most importantly, 

streams are underfit with respect to their larger channels (Blum and Valastro 1989). 

Extreme flood events of historic time have overtopped older terraces, but have not left 

appreciable deposits (Blum, Toomey, and Valastro 1994). The Brazos River has been 

confined to narrow meander belts with thick natural levees during modern conditions, 

and instability toward a lower position on the floodplain has resulted in two avulsions 

during the last 1,000 years (Waters and Nordt 1995). 

 A decrease in pollen influx rates and arboreal cover, interpreted from Weakly 

Bog in Leon County, supports the interpretation of drier conditions in the last 1,000 

years (Holloway, Raab, and Stuckenrath 1987). Bousman (1998) detected a spike in 
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grass pollen around 400 to 500 years B.P., which is assumed to correspond with a dry 

episode. A shift from oak woodlands to the current oak savanna around 1,500 years B.P. 

also is evidence for more xeric modern conditions (Bryant and Holloway 1985). 

Increased aridity over the last 1,000 years resulted in the dominance of the 

desert shrew over the least shrew in the Edwards Plateau (Toomey, Blum, and Valastro 

1993) and the decline of mesic land snails in Oklahoma (Hall 1982). Graham (1987) 

suggests that the northern range expansions of nine-banded armadillo and collared 

peccary may have been related to increasing warmth and aridity. Additionally, a 

dramatic increase of bison in central Texas around 1,000 years B.P. has been attributed 

to the opening of grassland, thereby accommodating larger herds (Huebner 1991). 
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Figure 3.2.  Channel, floodplain, and fluvial terrace evolution in the Edwards Plateau, 
Central Texas, since the Last Glacial Maximum (from Blum, Toomey, and Valastro 
1994). 
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Figure 3.3.  Cross-section of depositional units in the Pedernales River valley, Texas, 
with relative position of radiocarbon ages (from Blum and Valastro 1989). 
 
 
 

 
 

Figure 3.4.   Abundance of C4 plants based on δ13C signatures extracted from alluvial 
deposits in the Medina River valley, Texas, and correspondence with δ18O of 
foraminifera in the Gulf of Mexico (from Nordt et al. 2002). 
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Figure 3.5.  Climatic and environmental changes of the Edwards Plateau, Central 
Texas, since the Last Glacial Maximum based on pollen and faunal records, many of 
which came from Hall’s Cave in the central plateau (from Toomey, Blum, and Valastro 
1993). For the types of storms, “W, F, W, and Sp” represent summer, fall, winter, and 
spring, respectively. 
 
 

 
 
Figure 3.6.  Comparison of stalagmite growth rates in Central Texas with 
independently derived results from Toomey, Blum, and Valastro (1993) (from 
Musgrove et al. 2001). 
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3.5 Discussion 
 

The coolest and wettest conditions over the last 20,000 years in the Edwards 

Plateau occurred during the Last Glacial Maximum (about 20,000 to 14,000 years B.P.) 

(Table 3.1). River flood regimes were moderate and more frequent, as evidenced by 

lateral migration of channels, sediment storage in floodplains, and extensive soil 

development. The persistence of perennial lakes in northern and western Texas was 

dependent on higher water tables and more abundant precipitation. An open grassland, 

without a modern analog, was prevalent and accompanied by some boreal tree species. 

Large mammals grazed on the grasslands and fauna associated with cool, mesic 

conditions lived sympatrically with species found on the plateau today. Recent chemical 

and isotopic methods confirm cool, moist full-glacial conditions about 5°C cooler than 

today, and highlight the initiation of soil erosion. It is likely that the southern extension 

of ice sheets in North America strongly affected the routing of mid-latitude low-

pressure systems. The major zone of atmospheric divergence associated with stable 

conditions, currently at about 30° latitude, was probably forced to lower latitudes. This 

would have permitted more frequent rain-producing low-pressure systems to penetrate 

Central Texas, especially during the summer. Additionally, cooler summer temperatures 

limited evapotranspiration rates, which also increased available moisture. 

 A warming and drying trend characterizes the terminus of the Pleistocene (Table 

3.1). Fluvial systems remained energetic enough to incise into bedrock, as sediment was 

totally removed from tributary valleys and upland slopes exhibited relative stability. 
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Lacustrine environments were still persistent in northern and West Texas. Warmer 

temperatures and increased seasonality led to the dominance of grasses, increase in C4 

plants, and disappearance of all boreal vegetation. These conditions also forced the 

removal of certain heat-intolerant and mesic faunal species, and mammalian megafauna 

became extinct at the end of the late-glacial episode. Isotopic evidence also points 

toward a warmer and drier climate, and glacial meltwater pulses into the Gulf of 

Mexico correlate with the coolest, driest conditions. The Younger Dryas cooling 

episode is not recognized by proxy evidence in the region, and the gradual retreat of 

continental ice sheets allowed the global belt of relatively high atmospheric pressure to 

move back towards 30° latitude, providing more stable atmospheric conditions and 

effectively reducing precipitation. 

 The early- to middle-Holocene in Central Texas is characterized by a continued 

warming and drying trend (Table 3.1), interrupted by a possible moist period between 

about 9,000 and 8,500 years B.P. A cool, dry spell around 8,200 years B.P. is detected 

in increased aeolian activity and a decrease in C4 plant percentage. Fluvial systems went 

through a period of gradual floodplain construction. Pluvial lakes were eliminated or 

diminished in West Texas. A shift to open grassland communities with scattered oak 

and hickory trees occurred in the uplands, creating an environment similar to today. The 

progression toward the Altithermal is evidenced in the Edwards Plateau by a marked 

dominance of grasses in the pollen record. Mesic faunal species were forced to migrate 

north and east, while xeric species increased in abundance. Upland soil mantles were 
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reduced to the minimal thicknesses observed today. Increasing aridity in the mid-

latitudes has been associated with strong zonal atmospheric circulation (Knox 2000), 

which limits the collision of cool, dry air masses with warm, moist air masses from the 

Gulf of Mexico and Pacific Ocean. Such a pattern would lead to relatively arid 

conditions in the Southern Plains and the Edwards Plateau. 

 The initial phase of the late Holocene (about 5,000 to 2,500 years B.P.) 

witnessed the warmest, driest conditions during the last 20,000 years and corresponds 

with the Altithermal (Table 3.1). Floodplain abandonment associated with a decrease in 

flood magnitudes occurred throughout river systems in the plateau, and loss of 

vegetative cover allowed substantial delivery of sediment to the valleys. Although some 

disagreement appears in reconstructions of vegetative cover, this episode was probably 

dominated by short grasses and scrub, followed by a gradual shift toward oak 

woodlands. The strongest records for arid conditions are derived from the faunal 

assemblage, which indicates the displacement of mesic mammals with arid-tolerant 

species. Zonal atmospheric circulation probably was the dominant influence for arid 

conditions associated with the Altithermal in the Edwards Plateau. 

 The period between 2,500 and 1,000 years B.P. is characterized by increasingly 

humid conditions (Table 3.1). River systems frequently witnessed moderate- to high-

magnitude floods, which led to the development of thick, vertically accreted deposits. 

Relatively dense oak-hickory woodlands and lush grasses are detected in pollen records 

at this time. The return of mesic voles, shrews, and snails to previously xeric habitats 
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also testifies to greater frequencies and rates of precipitation. The mixing of contrasting 

air masses and resultant increase in the frequency of precipitation events often is linked 

to meridional atmospheric circulation patterns (Knox 2000). 

Finally, the modern episode of the Holocene has shifted toward warmer, drier 

conditions across the Edwards Plateau (Table 3.1). Rivers and streams have incised into 

previous floodplains because bedload supply is limited, thereby creating underfit 

channels with respect to the former floodplain. A decrease in overall pollen 

accompanied by the conversion of oak-hickory woodlands to oak-dominated savanna 

reinforces the interpretation of modern xeric conditions. Current faunal assemblages are 

dominated by drought-tolerant species, and many mesic species formerly inhabiting the 

Edwards Plateau are no longer present. A relative decrease in tropical activity during 

the summer and increased zonal flow may be attributed to the modern arid conditions 

across the Edwards Plateau. 
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Table 3.1.  Summary of paleoenvironmental change in the Edwards Plateau, Central 
Texas, USA, during the last 20,000 years, organized by an existing scheme (Toomey, 
Blum, and Valastro 1993). 
 

Episode 
Relative 

conditions 
Geomorphic and 

hydrologic evidence 
Pollen 

evidence 
Fauna 

evidence 
Isotopic 
evidence 

Full glacial 
(about 20,000 
to 14,000 years 
B.P.) 

Coolest and 
wettest 

Lateral migration of rivers; 
sediment storage; soil 
development; pluvial lakes 

Mixed deciduous 
forest with some 
boreal trees and 
grassland 

Large mammals; 
soil-burrowing 
mammals 

Ground-water 
atmospheric 
noble gases; 
rapid stalagmite 
growth 

Late glacial 
(about 14,000 
to 10,500 years 
B.P.) 

Gradual 
warming and 
drying trend, 
but still cool 
and wet 

Deep channel incision; 
continued presence of 
pluvial lakes; upland soil 
erosion 

Decline of 
deciduous trees; 
replacement with 
oak savannas; 
increase in C4 
plants 

Extinction of 
some large 
mammals; Small, 
mesic and 
burrowing 
mammals 
gradually decline 

Rapid decrease 
in stalagmite 
growth; soils 
indicate no 
Younger Dryas 
expression and 
complex 
meltwater fluxes 

Early to middle 
Holocene 
(about 10,500 
to 5,000 years 
B.P.) 

Rapid 
warming and 
drying trend 

Valley widening and slow 
aggradation; decline of 
pluvial lakes; aeolian 
sedimentation; extensive 
upland soil erosion 

Less pollen; 
open woodlands 
and grassland; 
increase in C4 
plants 

Periodic decline of 
bison; abundance 
of small, xeric 
mammals 

Low stalagmite 
growth rates; 
soils show 
possible brief 
moist period 
around 8,500 
years B.P. 

Late Holocene 
I (about 5,000 
to 2,500 years 
B.P.) 

Warmest and 
driest 

Floodplain abandonment 
coupled with excessive 
delivery of coarse gravel 
to channels 

5,000 years B.P. 
with short 
grasses and 
scrub; abundance 
of C4 plants; 
gradual increase 
of drought-
resistant trees 

Disappearance of 
all mesic 
mammals; gradual 
increase of bison; 
xeric mammals 

Not available 

Late Holocene 
II (about 2,500 
to 1,000 years 
B.P.) 

Slightly cool 
and wet 

Vertical accretion and fill 
processes; 

Possibly denser 
woodland; 
increase in trees 
and grasses with 
water 
requirements 

Return of some 
small, mesic 
species 

Not available 

Modern (about 
1,000 years 
B.P. to present) 

Warm and dry 

Channel incision; underfit 
channels; fine-grained 
inset deposits; floodplain 
abandonment 

Decreased pollen 
flux; transition 
from woodland 
to open savanna 

Dominance of 
small, xeric 
mammals; 
increase in bison 
about 1,000 years 
B.P. associated 
with more open 
grassland 

Not available 
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3.6 Summary 
 

Insights into changing environmental conditions of the Edwards Plateau provide 

a long-term context for descriptions and models of regional climate, hydrology, 

geomorphology, and biogeography. Perhaps most striking are the relatively brief time 

intervals and large magnitudes of response among geomorphic and biologic systems to 

changes in climatic regimes. These time intervals could have been on the order of 

hundreds of years and perhaps decades. With increasing human-related effects on 

atmospheric composition, water quantity and quality, and land-cover patterns; it is 

informative to consider the effects of climate change or cycles on spatial and temporal 

environmental conditions. 

The Edwards Plateau presents itself as a complex transition area between 

temperate, tropical, humid, and arid regimes. Regional impacts of climate change may 

be difficult to predict, but it can be expected that global warming could lead to 

increased aridity, such as that experienced during the Altithermal. An increase in sea-

surface temperatures could increase tropical system activity during the summer and 

coupled with reduced vegetative cover, may subject river valleys to incision. The 

assertion of dominance by drought-tolerant species in the region challenges the 

practicality of conservation efforts for mesic species. Expected natural consequences 

are further complicated by human-related phenomena, including land-use patterns, 

introduction of exotic species, and modification of the fire regime. 
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Further, investigations of alluvial sediment composition and channel adjustment 

in the Edwards Plateau initially require a conceptual framework of environmental 

change through time. Sediment sampling strategies and associations with the present-

day hydrologic regime must be considered with respect to the complex suite of 

sedimentary units and their relative positions shown in Figures 3.2 and 3.3. The channel 

incision and floodplain abandonment during the last 1,000 years should result in a series 

of inset floodplains associated with the present-day hydrologic regime, bounded by 

higher surfaces representative of previous environmental conditions. Additionally, 

terrace deposits older than the modern alluvium could comprise the bank material where 

the present-day channels are actively migrating. 
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Chapter 4. Research Design for Investigation of Downstream Trends 
in Alluvial Sediment Composition and Channel 
Adjustment in the Llano River Watershed, Central Texas, 
USA 

 
 
 

The research design to investigate downstream trends in alluvial sediment 

composition and mutual channel adjustment in the Llano River watershed is split into 

three general categories: (1) field assessments, (2) laboratory sediment analyses, and (3) 

data analyses. Project objectives associated with these three categories are briefly 

described below, and specific methodological details are embedded within result-

oriented chapters that follow (Chapters 5 and 6). 

 

4.1 Field Assessment 
 

Field assessments of sediment composition and channel shape were made at 

nineteen sites along the North Llano, South Llano, and Llano Rivers and selected major 

tributaries (Figure 4.1). Cross-sections of channel shape were provided by the Lower 

Colorado River Authority (LCRA) for nine additional sites along tributaries (Figure 

4.1). Field sites were chosen to adequately characterize observed downstream changes 

of channel morphology. For the nineteen sites visited, channel shape was measured and 

sediment samples were obtained along multiple cross-section transects to ensure that 

local variability (Phillips 1991; Fonstad and Marcus 2003) was minor relative to general 

downstream trends (Figure 4.2). 
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 Cross-sectional surveys of channel and floodplain dimensions included 

subaqueous- and subaerial-instream surfaces (Figure 4.3), banks, floodplain surfaces, 

fluvial terraces, colluvial wedges, and valley walls. Cross-sectional topographic surveys 

constitute the majority of morphologic data for this project. For further details on cross-

sectional topographic surveys, readers are referred to Section 6.5.1 in Chapter 6. 

 Sediment samples were obtained for these various geomorphic surfaces along 

transects identical to the topographic surveys, and field notes coupled with topographic 

surveys were relied upon later to determine the geomorphic surface that was sampled. 

Particle size of cobble- to gravel-sized bed-material was sampled at the surface using a 

modified Wolman pebble count (Wolman 1954) (Figure 4.4), and sand-sized or finer 

material was scooped and bagged for further laboratory analysis. Sediment samples 

were obtained to quantify downstream trends in alluvial composition and infer 

sedimentary controls of channel adjustment. For further details on sediment sampling 

strategies, readers are referred to Section 5.5 in Chapter 5. 
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Figure 4.1.  Study sites, hydrography, and lithology (Barnes 1981) of the Llano River 
watershed in Central Texas, USA. Site names preceded with an 8-digit identification 
number are located at active U.S. Geological Survey streamflow-gaging stations. Site 
names preceded with “LCRA” are located at active Lower Colorado River Authority 
streamflow-gaging stations. Sites without a prefix are ungaged. 
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Figure 4.2.  Two cross-section transects (yellow lines) and flow path (blue line) of the 
James River near Mason, Texas. For scale, yellow lines approximately are 250 meters. 
Flow direction is toward the north-northeast (upper part of the image). Natural-color 
imagery from Google Earth, accessed in February 2008. 
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Figure 4.3.  Total-station survey unit and view downstream at the Llano River near 
Mason, Texas. 
 
 
 
 

 
 

Figure 4.4.  Equipment used for modified Wolman pebble count procedure on cobble- 
to gravel-sized bed material. 
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4.2 Laboratory Sediment Analysis 
 

Sand-sized or finer sediment samples required analysis of particle size, relative 

carbonate content, and magnetic susceptibility. Particle size analyses are used to 

determine d16, d50, and d84, descriptors that represent diameters, in millimeters, at which 

16, 50, and 84 percent, respectively, of the sample is finer than. Techniques associated 

with hydrometer and sieve analysis, as outlined in Gee and Bauder (1986), were used 

for particle-size analyses. Relative carbonate content (Goh, St. Arnaud, and Mermut 

1993) and magnetic susceptibility analyses were done to infer the general mineralogy 

and provenance of alluvial sediment. Samples with relatively high carbonate content 

and low magnetic susceptibility contain particles likely derived from Cretaceous or 

Paleozoic carbonate source areas. Relatively low carbonate content and high magnetic 

susceptibility likely indicates particles from Precambrian igneous or metamorphic 

source areas, based on lack of calcite and dolomite and presence of metallic elements. 

For further details on laboratory sediment analyses, readers are referred to Section 5.5 

in Chapter 5. 

 
 
4.3 Data Analysis 
 

Data analyses generally are separated into GIS, hydrologic, and statistical 

analyses, all done using computer software. GIS analyses of channel planform 

morphology and alluvial valley width were done using recently acquired orthoimagery. 

GIS analyses of 10-meter digital elevation models (DEMs) (U.S. Geological Survey 
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2008a) and the National Hydrography Dataset (U.S. Geological Survey 2008b) were 

used to delineate watersheds and graph longitudinal profiles. Surface lithology was 

determined using a digitized version of Barnes (1981) in GIS. A host of other 

supporting cartographic products also were done using GIS. For further details on 

laboratory sediment analyses, readers are referred to Section 6.5.3 in Chapter 6. 

Hydrologic analyses of U.S. Geological Survey (USGS) and LCRA streamflow 

data were done using spreadsheets and statistical software. Routine hydrologic analyses, 

including flow-duration curves of daily mean discharge and summary statistics, were 

done to characterize the flow regime of the Llano River watershed. Flow resistance and 

partial-duration flood-frequency analyses were done using spreadsheets and the R 

environment for statistical computation (R Development Core Team 2004), and the 

results were used to compute discharge at ungaged locations and associate discharge 

with average return periods (e.g., 10-year flood). For further details on hydrologic 

analyses, readers are referred to Sections 6.5.5 and 6.5.6 in Chapter 6. 

 Finally, other statistics, including correlation coefficients and regression 

analyses, among others, were computed in R to quantify relations among various 

sedimentary, hydrologic, and morphologic parameters. For further details on statistical 

analyses, readers are referred to Section 5.5 in Chapter 5 and Section 6.5.4 in Chapter 6. 
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Chapter 5. Downstream Trends in Sediment Size and Composition of 
Channel Bed, Bar, and Bank Deposits Related to 
Hydrologic and Lithologic Controls in the Llano River 
Watershed, Central Texas, USA 

  
(accepted pending revisions to Geomorphology in March 
2009) 

 
 
5.1 Abstract 

 
The downstream fining of fluvial sediments is considered a fundamental tenet of 

drainage systems and for decades has been the subject of considerable research within 

fluvial geomorphology. This topic has been dominated by a legacy of research that has 

primarily considered downstream variability in channel-bed sediments, which are then 

considered with respect to several distinctive processes such as abrasion, selective 

entrainment, and addition or extraction mechanisms. Other sedimentological 

components of the fluvial system such as bars, bank material, and overbank deposits, 

however, represent distinctively different processes occurring at various flow 

magnitudes and durations, and thus provide an opportunity to examine a more 

comprehensive set of controls on the larger fluvial system. This is particularly important 

to consider in fluvial systems segmented into sharply different geologic zones, and for 

systems that exhibit a highly variable flow regime, such as the Llano River watershed 

(11,568 square kilometers) in Central Texas, USA. The Llano watershed represented an 

excellent setting to examine topics related to the downstream variability in fluvial 
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deposits and to shed light on the roles of different processes that control spatial patterns 

in sediment composition at the watershed scale. 

The study design included field, laboratory, and statistical analysis to 

characterize fluvial deposits and to compute standard sedimentary indices (d16, d50, d84, 

sorting). Channel bed, bar, bank, and overbank deposits were characterized for nineteen 

stations along the main-stem channel and at key tributaries, spanning the entire drainage 

system. Analysis of sedimentological indices revealed contrasting trends in the 

downstream spatial pattern of fluvial deposits, particularly between bed and bank 

deposits. In contrast to channel-bar deposits, low-flow-channel (thalweg) deposits are 

not characterized by a downstream reduction in particle size, a discrepancy attributed to 

uniformity and continuity of hydraulic sorting mechanisms during both low and high 

flows. Further, channel-bar deposits reveal an abrupt downstream reduction in gravel 

size in the upper watershed, attributed to an increase in drainage area, as well as an 

abrupt gravel-to-sand transition immediately downstream of the Paleozoic-Precambrian 

contact. The decrease in channel-bar particle size occurs despite an increasingly 

constricted alluvial valley, commonly associated with greater unit stream power. The 

gravel-to-sand transition is attributed to an adjustment of sediment source lithology. 

Weathering mechanisms in the upper Cretaceous carbonate zone of the watershed result 

in relatively fine-grained (silt, clay, and some fine sand) channel banks along the North, 

South, and upper Llano Rivers. Weathering mechanisms of Precambrian rocks are 

weathered to grus in-situ, and considerable quantities of sand-sized material are 
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delivered to the drainage network. Channel banks of the Llano River are increasingly 

composed of the sand-sized fraction and less carbonate material. The consideration of 

distinctive sedimentological components of a dynamic fluvial system represents a more 

comprehensive and nuanced study of the topic of downstream sediment trends than 

prior studies, which is important to understanding a range of applied issues in 

engineering, biology, and planning. 

 

5.2 Introduction 
 

The sedimentary composition of alluvial deposits, including the channel bed, 

bars, and banks, is one of the most important controls of river morphology (Schumm 

1960; Schumm 1977; Ferguson 1987; van den Berg 1995) and determines prevalent 

mechanisms of sediment transport. As such, downstream analyses of particle size 

provide information necessary to inform appropriate infrastructure design (e.g., 

Heitmuller and Asquith 2008), assess aquatic habitat suitability and vulnerability (The 

Instream Flow Council 2004), rehabilitate degraded channel reaches and riparian 

corridors, and effectively manage water resources such as reservoirs. Downstream 

analyses of alluvial sediment characteristics have primarily focused on reductions in 

bed material size (Bluck 1987; Kodama 1994; Frings 2008), but investigations that 

include channel bank or floodplain material are notably few (Knighton 1998). The 

inequality of downstream analyses of bed and bank material possibly results from 

emphases on bedload-transport processes (e.g, Parker, Klingeman, and McLean 1982; 
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Andrews and Smith 1992; Kleinhans and van Rijn 2002), the hyporheic zone (e.g., 

Brunke and Gonser 1997), and fish-spawning and benthic habitat analyses (e.g., Milner 

et al. 1981; Montgomery et al. 1996). Further, few investigations have compared 

downstream trends in sedimentary characteristics of various geomorphic surfaces, 

including channel bars, the thalweg, or bank deposits at given heights above the channel 

bed; especially for fluvial systems with highly variable flow regimes. The lack of 

downstream comparisons among different types of alluvial deposits might be attributed 

to the difficulties associated with access to multiple sampling sites at strategic locations 

along rivers. Finally, few studies have associated fluvial deposits with lithology to 

investigate the relative influence of upstream sources, possibly because pragmatic 

efforts have been directed at quantifying sediment yields and budgets (e.g., Trimble 

1983; Phillips, Slattery, and Musselman 2004). 

The purpose of this chapter is to compare and interpret downstream 

characteristics of channel bed, bar, and bank deposits in the rural, unregulated, flood-

dominated Llano River watershed in Central Texas, USA (Figure 4.1). Deposits are 

analyzed for particle size, relative carbonate content, and magnetic susceptibility to 

determine sediment type and provenance. Controlling for the hydrologic regime, 

channel slope, and land use, which are similar throughout the watershed, sedimentary 

characteristics are related to lithology, which is distinctly segregated into Cretaceous 

carbonate rocks (upper watershed), Paleozoic sedimentary rocks (transition), and 

Precambrian igneous and metamorphic rocks (lower watershed). Other controls of 
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downstream sedimentary characteristics, including valley confinement, localized 

hydraulics, and drainage area, are discussed with respect to observed trends. 

 
 
5.3 Background 
 

Assessments of sediment transport processes and distribution at the watershed 

scale are complicated by variations in climate, geologic structure, geologic composition, 

and land cover. Combinations of these controls determine the hydrologic and 

sedimentary regimes of stream channels and, therefore, the spatial and temporal 

potential for erosion, sediment transport, and deposition. In particular, it has been 

debated that arid, semi-arid, and seasonal fluvial systems with highly variable flow 

regimes are likely to experience more cumulative sediment transport over time during 

infrequent, high-magnitude floods than similarly-sized humid systems (Schick 1974; 

Gupta 1988; Bourke and Pickup 1999). In systems that exhibit a greater dependence on 

high-magnitude floods, it is likely that sediment transport and depositional mechanisms 

are not as uniformly distributed through space and time as would be expected in less 

variable humid environments (Wolman and Gerson 1978). Large, powerful floods 

commonly are associated with complex overbank patterns of erosion and deposition 

(Nanson 1986), and can greatly modify the arrangement of instream and overbank 

landforms conducive to particular sedimentary processes. Further, floods in arid and 

semi-arid systems usually are not uniformly distributed through time, such that one year 

might have two or more large floods and the next few years do not have any substantial 
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flood flows. The timing of infrequent, high-magnitude floods causes irregular pulsing of 

sediment delivery and transport, in both space and time (Nash 1994; Bourke and Pickup 

1999; Heitmuller and Asquith 2008). 

 The structure and composition of surface geology also exert considerable 

influence on the spatial arrangement of sedimentary processes in fluvial systems. 

Geologic structure of a watershed determines the overall valley slope and associated 

hydraulic forces that promote erosion, sediment transport, and deposition. Abrupt 

changes in valley slope, at a fault or escarpment for example, can cause shifts in 

predominant fluvial processes, such as transport-dominated to locally depositional 

(Schumm 2005). The lithology of the watershed surface, by its mineralogical properties 

and associated resistance to weathering and erosion, affects the sediment transport 

regime of a fluvial system in two ways: (1) confinement of the valley and 

accommodation space for sedimentary processes and (2) type of sediment delivered to 

stream channels. Relatively resistant rock units reduce valley width and, thereby, 

confine hydraulic energy, especially during high-magnitude floods (Baker and Costa 

1987; Magilligan 1992). Where time-averaged transport processes outpace depositional 

processes in confined fluvial settings, alluvial deposits are, at best, temporary (e.g., 

Nanson 1986). Surface lithology also influences the type of sediment found in fluvial 

systems, most notably characterized by particle size. Differential rates and styles of 

weathering not only dictate the initial size of detached particles, but also the rate at 

which size is reduced with downstream distance (Kodama 1994; Morris and Williams 
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1999; Moussavi-Harami Mahboubi, and Khanehbad 2004) and, therefore, indirectly 

influences the spatial distribution of sediment in the fluvial system. 

 The well-documented decrease in bed-material particle size with downstream 

distance has been attributed to three mechanisms: (1) abrasion (e.g., Kodama 1994), (2) 

selective transport (e.g., Church and Hassan 1992), and (3) addition and extraction (e.g., 

Knighton 1980; Bluck 1987; Frings 2008). Abrasion is the process by which sediment 

particles are reduced in size by instream physical and chemical processes, such as 

chipping, grinding, and dissolution. Selective transport refers to the preferential 

entrainment of small particles relative to larger particles. Finally, addition and 

extraction of particles can occur by tributary inputs, entrainment at local bedrock 

outcrops, overbank deposition, and distributary bifurcations. In general, the rate of 

change in bed-material size decreases with downstream distance, especially in sand-bed 

channels where selective transport processes are weaker (Frings 2008). At gravel-to-

sand transitions, however, strong sorting processes exist because of size patchiness and 

the transition from a clast-supported to a matrix-supported bed (Wilcock 1998). Abrupt 

gravel-to-sand transitions have mostly been attributed to sharp breaks in channel slope 

(Howard 1980; Sambrook Smith and Ferguson 1995) or a self-reinforcing non-linear 

decrease in shear stress (Ferguson 2003) that disproportionally favors sand transport 

over gravel (Wilcock 1998). Less importance has been placed on lateral inputs of sand 

(Knighton 1998). 



117 
 

 Channel-bank material is representative of floodplain development through 

time, and consists of both instream and overbank deposits. Basal material of steep, 

erosional banks commonly reflects channel-lag deposits from hundreds to thousands of 

years ago, unless mass failure processes have resulted in bank-top material at the base, 

as would be the case for a rotational slump. Because channel migration and hydraulic 

sorting mechanisms typically result in coarser basal strata, an anomalous decrease in 

particle size could either indicate contemporary mass failure processes or buried fine-

grained fill deposits. For more gradually-sloping banks, basal deposits might be 

comparatively recent and comprised of material from the channel bed, as might be 

expected for high-energy settings where temporary scour-and-fill processes dominate. 

The uppermost material of most alluvial banks, whether steep or gradual, is expected to 

reflect contemporary overbank deposition. However, some cases exist in partly-

confined systems where alluvial banks seamlessly merge with colluvial or terrace 

deposits along the valley margin, which could be indicated by an abrupt change in 

particle size. Few studies have focused on downstream trends in channel bank and 

overbank material, but it usually is assumed that progressive fining trends (Kolb 1962) 

are interrupted by additions of material from tributaries or localized outcrops of 

relatively coarse material (Hudson and Heitmuller 2003). 

In summary, research into the downstream fining of fluvial sediment is 

dominated by a focus on channel-bed material (Knighton 1987), which represents only 

one component of the overall fluvial system. Other aspects of fluvial systems that are 
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appropriate to consider for downstream trends include channel bars, banks, and 

overbank deposits. These geomorphic units are important to consider because they are 

controlled by processes distinctively different from those at the channel bed, 

particularly the thalweg. Elucidating the interrelations of channel bed, bar, and bank 

deposits will provide a more comprehensive assessment of downstream trends in fluvial 

sediments than which is represented in the literature. Additionally, most studies of 

downstream trends in bed-material size have not included rivers with highly variable 

flow regimes, where trends might differ from less variable, humid fluvial systems. 

Further, examples are few that relate abrupt changes in lithology and associated 

weathering processes to downstream transitions in fluvial sediment composition. Thus, 

this study addresses a major gap in the knowledge base concerning the subject of 

alluvial sedimentology. 

 

5.4 The Llano River Watershed 
 

The Llano River watershed (11,568 square kilometers) (Figure 4.1) is a 

geologically variable, unregulated, flood prone, rural fluvial system in the Edwards 

Plateau of Central Texas. The surface geology of the watershed is complex considering 

its drainage area, and reflects Tertiary tectonic activity of the Llano Uplift. The ground-

surface extent of the uplift occurs in a relatively isolated area of Central Texas, centered 

in the eastern part of the watershed. Expressed at the ground surface, an exhumed 

outcrop of Precambrian igneous and metamorphic rock is surrounded by an elevated 
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Cretaceous carbonate rim, with a transitional zone of Paleozoic sedimentary rock 

occurring between. 

The western, upper side of the Llano River watershed occurs in the central 

Edwards Plateau, an elevated, dissected lower-Cretaceous carbonate tableland with high 

elevations above 700-meters NAVD88 (North American Vertical Datum of 1988). 

Formations of the plateau are mostly comprised of horizontally-bedded, fossiliferous 

limestone and dolomite sequences, with varying amounts of chert. Sand and 

conglomerate formations, notably the Hensell Sand, are exposed in the valley in the 

west-central part of the watershed. In total, lower Cretaceous formations comprise 66 

percent (7,629 square kilometers) of the total watershed area. Transitioning into the 

Llano Uplift, Paleozoic sedimentary rocks comprise almost 12 percent (1,369 square 

kilometers) of the total watershed area. Paleozoic sedimentary units consist of various 

lithologic types, mostly Ordovician limestone and dolomite and Cambrian sandstone. In 

the lower, eastern side of the watershed, Precambrian intrusive igneous and 

metamorphic rocks dominate and comprise 19 percent (2,180 square kilometers) of the 

total watershed area. Precambrian rocks include granite, gneiss, and schist, and 

collectively form irregular topography, including large exfoliation domes. The 

remaining 3 percent (390 square kilometers) are mostly comprised of Quaternary 

alluvial deposits. 

Differential rates and patterns of weathering in the Llano River watershed 

strongly influence valley confinement, alluvial development, and sedimentary 
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composition. Relatively high rates of physical and chemical weathering of Cretaceous 

carbonate rock have widened the Llano River valley to its greatest extent in the vicinity 

of Junction (Figure 5.1). Fluvial processes and forms associated with unconfined valley 

settings, including meander cutoffs, alluvial terraces (e.g., Blum, Toomey, and Valastro 

1994), and well-defined floodplains, occur in this area. Channel networks of the western 

and central watershed are dominated by carbonate cobble-, pebble-, and gravel-sized 

bed material (Figure 5.2). The transition to Paleozoic sedimentary strata is reflected by 

a marked decrease in valley width, a less sinuous channel, and greater bedrock 

exposures along the Llano River, indicating a more resistant lithology. Alluvial 

development is limited to small hydraulically-favorable zones of deposition, including 

discontinuous floodplains and mid-channel bars. Precambrian granite, gneiss, and schist 

in the eastern part of the watershed are the most resistant rocks to weathering, 

containing varying amounts of quartz, microcline, plagioclase feldspar, biotite, and 

hornblende. Although, by definition, more resistant than carbonates, Precambrian rocks 

deliver mostly sand-sized sediment to channel networks, implying that most weathering 

is accomplished in-situ. The Llano River valley also is confined in its lower reaches, 

and supports limited depositional features. 

The plateau-based setting, variable geologic structure of the watershed, and 

incision history of local rivers has resulted in a remarkably straight longitudinal profile 

of the Llano River (Figure 5.3). Combining the South Llano River and Llano River, the 

channel descends from approximately 700- to 250-meters NAVD88 over a distance of 
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about 300 kilometers, giving an overall dimensionless channel slope of 0.0015. The 

consistency of the Llano River profile nullifies explanations of downstream sediment 

variability imposed by abrupt or gradual hydraulic changes related to slope. Therefore, 

cross-sectional and planform geometry, drainage network characteristics, boundary 

composition and adjustment, and discharge characteristics are the remaining factors that 

could explain variation in sediment transport and distribution in the watershed. 
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Figure 5.1.  Valley cross sections of selected study sites in the Llano River watershed, 
Central Texas, derived in GIS from a 10-meter digital elevation model. Higher-
resolution surveys of channel cross sections are not included. Alluvial bankfull stages, 
however, are determined from cross-sectional surveys of channel geometry. The alluvial 
valley in the upper and middle parts of the watershed transitions to a bedrock-controlled 
valley in the lower watershed. 
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Figure 5.2.  Channel bar, low-flow-channel, and left bank (height approximately 5 
meters) of the South Llano River at South Llano River State Park near Junction, Texas. 
The dimensions of the sampling grid on the channel bar are 50 centimeters by 50 
centimeters. 
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Figure 5.3.  Longitudinal profile of the South Llano River and Llano River in Central 
Texas. Aside from a slight concavity in the uppermost 15 kilometers and subtle 
downstream irregularities, the rivers have a remarkably linear profile. 
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The precipitation regime of the Llano River watershed ranges from semi-arid in 

the west (approximately 580 millimeters of rainfall per year) to sub-humid in the east 

(approximately 760 millimeters of rainfall per year). Rainfall in Central Texas, 

however, is highly variable through time, such that episodic periods of drought can 

transition to repeated flooding conditions within months (Bomar 1983). As a result of 

locally steep slopes and very thin soils (Cooke et al. 2003), tremendous runoff rates to 

streams and rivers cause this area to experience extreme flash floods (Beard 1975; 

Tinkler 2001; Burnett 2008), capable of transporting substantial quantities of fluvial 

sediment (Heitmuller and Asquith 2008) and greatly modifying channel geometry 

(Baker 1977). 

The hydrology of the Llano River and its tributaries reflects the climatic 

mechanisms prevalent in Central Texas (Table 5.1, Figure 5.4). Most tributaries to the 

Llano River exhibit relatively low baseflow conditions for the majority of time, with the 

lowest flows usually occurring in mid- to late-summer. The South Llano River, 

however, is fed by karstic springs upstream (south) of Junction, and provides the 

majority of baseflow to the main-stem Llano River downstream of Junction. 

Interrupting normal baseflow conditions are extreme floods caused by rainfall 

associated with stalled low-pressure systems or tropical cyclones (Figure 5.5). Floods 

along the Llano River at Llano have exceeded 3,000 cubic meters per second ten times 

since the 1940 hydrologic year, not including the estimated peak instantaneous 

discharge of 10,760 cubic meters per second in 1935. Suspended-sediment transport 



126 
 

events are dependent on episodic floods (Figure 5.6), and bedload transport in the upper 

reaches near Junction also has been shown to occur episodically (Heitmuller and 

Asquith 2008). There are no reservoirs that regulate discharge in the Llano River 

watershed, although two low-flow-control structures in Junction and Llano allow 

ponded water to be used for municipal supply. 
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Table 5.1.  Hydrologic data for U.S. Geological Survey streamflow-gaging stations in 
the Llano River watershed in Central Texas. 
 
[DA, drainage area; km2, square kilometers; Qmn, mean daily mean discharge; Qmd, median daily mean 
discharge; m3/s, cubic meters per second; Qmnmx, mean annual maximum discharge; Qmdmx, median annual 
maximum discharge; Qmax, maximum instantaneous discharge; Qmnmn, mean annual minimum discharge; 
Qmdmn, median annual minimum discharge] 
 

USGS 
station ID 

Station 
name 

DA 
(km2) 

Period of 
record used 

Qmn 
and 
Qmd 

(m3/s; 
m3/s) 

Qmnmx 
and 

Qmdmx 
(m3/s; 
m3/s) 

Qmax 
(m3/s) 

and date 

Qmnmn 
and 

Qmdmn 
(m3/s; 
m3/s)a 

08148500 

North 
Llano 
River near 
Junction, 
Texas 

2,335 

October 1, 1915 
to October 26, 
1977; June 13, 
2001 to April 5, 
2008 

1.94; 
0.57 595b; 173b 

2,888; 
September 
16, 1936 

0.149; 
0.050 

08150000 

Llano 
River near 
Junction, 
Texas 

4,815 

October 1, 1915 
to May 10, 
1993; October 
1, 1997 to April 
5, 2008 

5.65; 
2.89 982c; 374c 

9,033; 
June 14, 
1935 

1.69; 
1.44 

08150700 

Llano 
River near 
Mason, 
Texas 

8,418 

March 7, 1968 
to May 9, 1993; 
October 1, 1997 
to April 5, 2008 

9.24; 
4.81 

1,374d; 
714d 

7,447; 
June 22, 
1997 

2.59; 
2.24 

08150800 

Beaver 
Creek near 
Mason, 
Texas 

558 
August 1, 1963 
to September 
30, 2007 

0.55; 
0.10 278e; 213e 

1,894; 
August 3, 
1978 

0.0092; 
0.0011 

08151500 

Llano 
River at 
Llano, 
Texas 

10,885 
September 17, 
1939 to April 5, 
2008 

10.9; 
4.45 

1,458f; 
796f 

10,760; 
June 14, 
1935g 

1.29; 
0.934 

 
a From Asquith et al. (2007) using daily mean discharge values from the beginning of the period of record for each gaging 

station to December 31, 2003. 
b Period of record used for annual maximum series from October 1, 1915 to September 30, 1978; June 13, 2001 to 

September 30, 2006. 
c Period of record used for annual maximum series from October 1, 1915 to September 30, 2007. 
d Period of record used for annual maximum series from March 7, 1968 to September 30, 2007. 
e Period of record used for annual maximum series from October 1, 1963 to September 30, 2007. 
f Period of record used for annual maximum series from October 1, 1939 to September 30, 2007. 
g Maximum instantaneous discharge value determined from nearby streamflow-gaging station (08151000 Llano River at 

Castell, Texas) and indirect estimation methods. 
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Figure 5.4.  Flow-duration curves of daily mean discharge for selected USGS 
streamflow-gaging stations in the Llano River watershed in Central Texas. The highly 
variable flow regime is evident from the distribution tails at either end of the 
exceedance frequency. Zero-flow days are responsible for curves that do not reach 100-
percent exceedance frequency. 
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Figure 5.5.  Annual maximum instantaneous discharge for selected U.S. Geological 
Survey streamflow-gaging stations in the Llano River watershed in Central Texas. A 
peak discharge of 10,760 cubic meters per second in 1935 at 08151500 Llano River at 
Llano, Texas is not shown. 
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Figure 5.6.  Monthly suspended-sediment loads at 08151500 Llano River at Llano, 
Texas, from August 1942 to September 1982 (data from Stout, Bentz, and Ingram 1961; 
Adey and Cook 1964; Cook 1967, 1970; Mirabal 1974; Quincy 1988). Suspended 
sediment transport is episodic with three months of over 1,000,000 metric tons and 
eighty-five months of less than 100 metric tons. 
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5.5 Data and Methods 
 

Channel bed (125 samples) and bank (113 samples) sediments were sampled 

along multiple cross-section transects at nineteen different locations along the Llano 

River and selected tributaries (Figure 4.1). Sites were selected to represent the 

progressive increase in drainage area, tributary inputs, and lithologic variability of the 

watershed (Table 5.2). Multiple bed and bank samples were obtained along each cross-

section transect, and were spatially distributed to account for various geomorphic 

surfaces, including the thalweg, channel bars, banks, and floodplains. Although 

additional samples of terrace deposits and alluvial-colluvial transitions were obtained, 

they were not used in analyses for this chapter. Sample locations were geographically 

referenced using a combination of cross-section survey data, GPS coordinates, and a 

measuring tape. 
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Table 5.2.  Downstream distance and lithology for study sites in the Llano River 
watershed in Central Texas. The percentage of area by lithology not accounted for 
consists of Quaternary deposits. 
 
[km, kilometers; K, Cretaceous; P, Paleozoic; pC, Precambrian; DA, drainage area; km2, square kilometers; --, not applicable] 
 

Site Downstream 
distance (km) 

Upstream 
distance to K-
P contact (km) 

Upstream 
distance to P-

pC contact (km) 

DA 
(km2) 

% K 
area 

% P 
area 

% 
pC 

area 

North Llano Draw near 
Sonora 0.9 -- -- 7.8 98.3 0.0 0.0 

North Llano River near 
Roosevelt 56.4 -- -- 1,145 94.1 0.0 0.0 

North Llano River near 
Junction 89.2 -- -- 2,335 95.2 0.0 0.0 

South Llano River at 
Baker Ranch 29.5 -- -- 417 96.8 0.0 0.0 

South Llano River at 
U.S. Highway 377 64.5 -- -- 1,134 95.8 0.0 0.0 

South Llano River at 700 
Springs Ranch 76.3 -- -- 1,352 96.2 0.0 0.0 

South Llano River State 
Park 105.2 -- -- 2,258 96.9 0.0 0.0 

South Llano River at 
Texas Tech University—
Junction 

110.1 -- -- 2,271 96.7 0.0 0.0 

Llano River near 
Junction 121.4 -- -- 4,815 95.7 0.0 0.0 

Johnson Fork at 
Lowlands Crossing 57.5 -- -- 778 97.9 0.0 0.0 

Llano River near Ivy 
Chapel 140.2 -- -- 5,939 95.7 0.0 0.0 

James River near Mason 65.6 32.1 -- 877 84.2 13.9 0.0 
Llano River at James 
River Crossing 192.7 40.7 -- 8,032 89.2 6.5 0.4 

Llano River near Mason 209.5 57.5 6.0 8,418 85.6 8.8 1.9 
Beaver Creek near 
Mason 57.2 31.2 5.7 558 62.0 28.7 3.9 

Llano River at Castell 229.7 77.7 26.2 9,429 80.1 10.3 5.9 
Llano River at Llano 261.2 109.2 57.7 10,885 70.1 11.3 15.3 
Llano River near 
Kingsland 292.2 140.2 88.7 11,406 66.9 11.4 18.4 

Honey Creek at KDK 
Ranch 11.7 -- -- 28.6 0.0 98.2 0.0 
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Cobble-, pebble-, and gravel-bed material was sampled using a modified 

Wolman pebble count procedure (Wolman 1954; Elliott 2002; Heitmuller and Asquith 

2008). Pebble counts were facilitated by using a sampling grid and particle-size 

analyzer. The sampling grid measures 50 by 50 centimeters and contains intersections 

spaced every 10 centimeters, thereby having a total of 25 intersections. The particle 

directly beneath each intersection was selected and its b-axis, or the short axis along the 

same dimensional plane as the longest axis, was passed through the smallest possible 

opening of the particle-size analyzer. The diameter of the analyzer opening was noted 

for each particle, and cumulative particle-size distribution curves were developed. 

Subaqueous bed-material samples were obtained using the same modified Wolman 

method while wading. Additionally, random particles comprising very coarse-grained 

lenses of bank material were sampled with the size analyzer, but not the sampling grid. 

Sand-sized or finer channel-bed and bank sediments were sampled with a scoop 

and bagged for further analyses. Laboratory analyses of bagged sediment samples 

included particle size, relative carbonate content, and magnetic susceptibility. Prior to 

all analyses, samples were dried, pre-weighed, and disaggregated with a pestle and 

mortar. Pre-treatment for particle-size analyses included further physical disaggregation 

with a milkshake mixer and chemical disaggregation of the colloidal fraction with a 5-

percent concentration of sodium hexametaphosphate ((NaPO3)6). Particle-size was 

analyzed by the hydrometer and wet-sieve method (Gee and Bauder 1986; Hudson and 
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Heitmuller 2003). The analysis data were entered into a pre-formatted spreadsheet and 

cumulative particle-size distribution curves were developed. 

 Relative carbonate content (percent) was determined using a modified 

gravimetric procedure (Goh, St. Arnaud, and Mermut 1993), which involves dissolving 

a known mass of sediment in a known mass of hydrochloric acid (HCl) (4 mol/liter) -

ferrous chloride (FeCl2·4H2O) reagent solution. Two grams of dry, physically 

disaggregated sediment were gradually added to a pre-weighed beaker containing 

approximately 20 milliliters of the HCl-ferrous chloride solution. The beakers were 

weighed after approximately 4 hours, which is a sufficient timespan for the reaction to 

occur, and the difference in total mass of the combined sediment, solution, and beaker 

constitutes the mass of dissolved carbonate sediment. Magnetic susceptibility (Χ) (10-8 

cubic meters per kilogram) was measured using a Bartington MS-2 instrument. Twenty 

grams of dry, physically disaggregated sediment were placed in a snap-cap vial and 

three readings were taken, with the instrument zeroed between each reading. Values 

were divided by two, as required by the operators’ manual, because the instrument is 

calibrated for 10-gram samples. The average of the three readings was used in the 

analyses below. 

Simple statistical analyses, including particle-size descriptors (e.g., d50, sorting 

coefficient), were computed in spreadsheets. The sorting coefficient is expressed as 

(d84/d16)1/2 for the analyses discussed here and below. More advanced statistical 

analyses, including correlation coefficients, linear regressions, and LOWESS (LOcally 
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WEighted Scatterplot Smoothing) trend lines, were done in R (R Development Core 

Team 2004) (Table 5.3). Linear regression trend lines with very weak statistical 

relations are only meant to show the general trajectory of the relation, and LOWESS 

trend lines should be relied upon to explain variability. 
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Table 5.3.  Correlation coefficients for sedimentological relations of composite low-
flow-channel, channel-bar, channel-bank, and floodplain deposits in the Llano River 
watershed in Central Texas. Pearson’s r, Spearman’s ρ, and Kendall’s τ are provided 
because normality is problematic to determine for the small sample sizes. 
 
[r, Pearson’s coefficient; ρ, Spearman’s coefficient; τ, Kendall’s coefficient; R-squared, R-squared for 
linear regression; d16, d50, and d84, descriptors that represent diameters at which 16, 50, and 84 percent, 
respectively, of the sample is finer than; CO3, carbonate; --, not applicable] 
 

Explanatory variable (x) Predicted variable (y) r ρ τ 
R-

squared 

Downstream distance 

Low-flow-channel d16 -0.124 0.032 0.000 0.015 
Low-flow-channel d50 -0.096 -0.145 -0.091 0.009 
Low-flow-channel d84 -0.040 -0.218 -0.164 0.002 
Channel-bar d16 -0.790** -0.787** -0.581** 0.624** 
Channel-bar d50 -0.846** -0.835** -0.641** 0.716** 
Channel-bar d84 -0.834** -0.802** -0.590** 0.696** 
Basal bank d50 0.657* 0.661* 0.556* 0.432* 
Mid bank d50 0.810** 0.806** 0.689** 0.656** 
Bank top d50 0.823** 0.825** 0.667** 0.677** 
Floodplain d50 0.660 0.571 0.500 0.435 
All bank and floodplain 
d50 

0.790** 0.720** 0.564** 0.624** 

Relative CO3 content 
(sand) 

Magnetic susceptibility 
(sand) -0.422** -0.362** -0.291** 0.178** 

Relative CO3 content (silt 
and clay) 

Magnetic susceptibility 
(silt and clay) -0.547** -0.496** -0.366** 0.300** 

 
* Statistically significant at the 95-percent confidence level. 
** Statistically significant at the 99-percent confidence level. 
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5.6 Results 

Downstream trends in channel-bed and bank material particle size and sorting 

are presented for sites along the North Llano River, South Llano River, and Llano River 

only in order to avoid hydraulic variations and associated sedimentary processes 

imposed by more steeply-sloping tributary channels. Results of relative carbonate 

content and magnetic susceptibility analyses, however, are presented for all sites, 

including tributaries, because sediment composition can be comparatively discussed for 

all sites in relation to watershed lithology. 

5.6.1 Channel-Bed Material 
 

The bed of the Llano River and its tributaries commonly is distinguished by a 

low-flow channel (thalweg) meandering between various exposed channel bars or 

bedrock outcrops during normal flow conditions (Figure 5.7). The low-flow channel is 

usually submerged, except during abnormally protracted dry periods. Longitudinal-bar 

deposits are usually attached to one of the banks, especially at gradual bends, but also 

occur as mid-channel bars bounded by two or more low-flow channels at various 

locations. The results presented for bed material, therefore, are separated into low-flow 

channels and channel-bars, because constant hydraulic sorting processes in low-flow 

channels contrast with episodic sorting of bar deposits during high-flow conditions. 
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Figure 5.7.  2006 digital orthophoto (2-meter resolution) of the South Llano River at 
South Llano River State Park near Junction, Texas. Flow direction is from west to east. 
Note the meandering low-flow-channel and bar deposits set within the larger bankfull 
channel. 
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5.6.1.1 Low-Flow Channel (Thalweg) 
 

All low-flow-channel (thalweg) bed material samples are grouped by site, and 

particle-size descriptors (d16, d50, d84, and sorting coefficient) are computed from the 

composite distribution. Low-flow-channel (thalweg) deposits of the North Llano, South 

Llano, and Llano Rivers are characterized by cobbles, pebbles, and gravels (Table 5.4, 

Figure 5.8), with ranges in median particle size from 25.3 to 60.0 millimeters. 

Correlation coefficients do not indicate a statistically significant relation between 

particle size and downstream distance (Table 5.3). Further, a very weak relation (R-

squared of 0.01 for d50) of declining particle size with downstream distance is depicted 

in Figure 5.8. A LOWESS trend line for d50 is influenced by relatively small particle 

sizes (25 to 30 millimeters) between 80 and 150 kilometers downstream, but generally 

does not support an overall declining or increasing trend in particle size. Sorting 

coefficients range from 1.39 to 2.50, indicating relatively well-sorted material. One 

outlier site, Llano River at Castell, was not included in the statistical analyses because it 

displayed only sand-sized material. Furthermore, the site did not have a distinct low-

flow channel (thalweg), but instead was characterized by shallow threads of flow, 

bedrock outcrops, and limited bar deposits. A low-height road crossing located 

immediately upstream of this site possibly promotes deposition of coarse bed material 

upstream of the structure, resulting in minimal cobble-, pebble-, and gravel-sized 

material downstream. 
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Table 5.4.  Particle-size data for composite samples of low-flow-channel (thalweg) 
deposits along the North Llano, South Llano, and Llano Rivers in Central Texas. 
 
[km, kilometers; d16, d50, and d84, descriptors that represent diameters at which 16, 50, and 84 percent, 
respectively, of the sample is finer than; mm, millimeters; Sort, sorting coefficient] 
 

Site 
Downstream 
distance (km) 

Number of 
samplesa 

d16 
(mm) 

d50 
(mm) 

d84 
(mm) 

Sort 

North Llano River near 
Junction 89.2 10 13.4 25.6 46.5 1.86 

South Llano River at Baker 
Ranch 29.5 2 20.0 39.2 74.4 1.93 

South Llano River at 700 
Springs Ranch 76.3 1 46.6 60.0 90.0 1.39 

South Llano River State 
Park 105.2 8 17.5 34.0 63.5 1.90 

South Llano River at Texas 
Tech University—Junction 110.1 7 10.1 25.9 55.7 2.34 

Llano River near Junction 121.4 3 11.0 27.0 68.7 2.50 
Llano River near Ivy 
Chapel 140.2 2 11.0 25.3 41.1 1.93 

Llano River at James River 
Crossing 192.7 6 22.6 35.3 63.9 1.68 

Llano River near Mason 209.5 5 25.4 52.8 112.4 2.10 
Llano River at Llano 261.2 2 20.7 32.0 61.9 1.73 
Llano River near 
Kingsland 292.2 2 14.1 30.8 52.1 1.92 

 

a Number of samples for cobble- and gravel-sized material is equated to an individual placement of the sampling grid (or 
approximately 25 individual clasts). 
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Figure 5.8.  Linear regression and LOWESS trend line (smoothing factor of 0.6) of 
particle size (d16, d50, and d84) with downstream distance for low-flow-channel bed 
material of the South Llano, North Llano, and Llano Rivers in Central Texas. One 
outlier at Llano River at Castell is not included in the statistical analyses. 
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5.6.1.2 Channel Bars 
 

All channel-bar samples are grouped by site and particle-size descriptors are 

computed from the composite distribution. Channel-bar deposits are characterized by 

cobble-, pebble-, and gravel-sized material upstream of an abrupt gravel-to-sand 

transition zone between Mason and Castell, which is 6 to 26 kilometers downstream of 

the Paleozoic-Precambrian contact (Table 5.5, Figure 5.9). Correlation coefficients 

indicate a statistically significant (99-percent confidence level) negative relation 

between particle size and downstream distance (Table 5.3). Further, a similarly 

significant trend (R-squared of 0.72 for d50) of declining particle size with downstream 

distance is depicted in Figure 4.10. A LOWESS trend line for d50 closely follows the 

linear regression, but is influenced by an abrupt transition from medium-sized pebbles 

(d50 greater than 35 millimeters) in the uppermost reaches of the North and South Llano 

Rivers to smaller pebbles and gravels near Junction (d50 approximately 15 to 25 

millimeters). Sorting coefficients range from 1.53 to 2.40, indicating relatively well-

sorted material. One outlier site, South Llano River at Baker Ranch near Rocksprings, 

was not included in the statistical analyses. Unlike all other locations sampled, the 

channel at Baker Ranch was filled with fine-grained (d50 of 0.039 millimeters) 

sediment, which could be interpreted as a filling phase of a cyclical cut-and-fill type of 

channel near the top of the Edwards Plateau. 
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Table 5.5.  Particle-size data for composite samples of channel-bar deposits along the 
North Llano, South Llano, and Llano Rivers in Central Texas. 
 
[km, kilometers; d16, d50, and d84, descriptors that represent diameters at which 16, 50, and 84 percent, 
respectively, of the sample is finer than; mm, millimeters; Sort, sorting coefficient] 
 

Site 
Downstream 
distance (km) 

Number of 
samplesa 

d16 
(mm) 

d50 
(mm) 

d84 
(mm) 

Sort 

North Llano River near 
Roosevelt 56.4 8 21.2 36.6 60.5 1.69 

North Llano River near 
Junction 89.2 6 7.4 18.0 42.4 2.40 

South Llano River at Baker 
Ranch 29.5 2 0.0 0.0 1.8 53.2 

South Llano River at U.S. 
Highway 377 64.5 1 27.3 42.2 64.0 1.53 

South Llano River at 700 
Springs Ranch 76.3 7 24.2 44.9 75.7 1.77 

South Llano River State 
Park 105.2 11 10.1 25.5 52.4 2.27 

South Llano River at Texas 
Tech University—Junction 110.1 5 10.6 21.8 47.7 2.12 

Llano River near Junction 121.4 11 7.8 16.3 39.4 2.25 
Llano River near Ivy Chapel 140.2 6 11.5 23.7 53.4 2.16 
Llano River at James River 
Crossing 192.7 6 14.6 28.0 60.2 2.03 

Llano River near Mason 209.5 5 7.4 14.2 41.5 2.37 
Llano River at Castell 229.7 2 0.9 2.1 3.4 1.93 
Llano River at Llano 261.2 3 0.2 0.5 0.8 2.04 
Llano River near Kingsland 292.2 4 0.3 0.6 1.7 2.27 

 

a Number of samples for cobble- and gravel-sized material is equated to an individual placement of the sampling grid (or 
approximately 25 individual clasts). 
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Figure 5.9.  Linear regression and LOWESS trend lines (smoothing factor of 0.6) of 
particle size (d16, d50, and d84) with downstream distance for channel-bar bed material of 
the South Llano, North Llano, and Llano Rivers in Central Texas. One outlier at South 
Llano River at Baker Ranch near Rocksprings is not included in the statistical analyses. 
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5.6.2 Channel-Bank and Floodplain Material 
 

A variety of channel-bank morphologies exist in the Llano River watershed, 

including erosional and depositional forms. Active floodplain deposits mostly are 

limited to wider alluvial valleys near Junction, and become progressively limited as 

valley confinement increases downstream. 

For downstream analyses, efforts were made to include only samples that 

represent fluvial depositional processes, not colluvial or mass wasting processes, and 

field notes by the author are heavily relied upon for guidance. Further, terrace deposits 

associated with previous hydrologic and sedimentary regimes, which are identified by 

their height above the channel and degree of calcite cementation, are not included in 

downstream analyses. Additionally, localized cobble- to gravel-sized lenses embedded 

within fine-grained banks (Figure 5.10) are not accounted for in the analyses below, 

although such bank deposits can account for a considerable proportion of bank material 

at localities near Junction. 
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Figure 5.10.  Right bank (height approximately 3 meters) of South Llano River at 
Texas Tech University—Junction, Texas. Note the gravel-lag deposits occurring within 
a fine-grained matrix at the base. 
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5.6.2.1 Particle Size 
 

For particle-size analyses, all channel-bank and floodplain samples are grouped 

by site, and descriptors are computed from the composite distribution. Figure 5.11 

shows linear relations of particle size (d50) and downstream distance separately for basal 

bank, mid-bank, bank-top, and floodplain material. For all types of material, particle 

size (d50) ranges from about 0.025 to 0.20 millimeters. Correlation coefficients show 

statistically significant relations (95-percent and 99-percent confidence intervals) of 

increasing particle size for the three categories of bank deposits, but not for floodplain 

deposits as a result of a smaller sample size (Table 5.3). Floodplain deposits, however, 

follow a similarly increasing trend with downstream distance. Although bank-top 

material generally is slightly finer than lower bank material, the proximity of the linear 

relations indicates that basal bank, mid-bank, bank-top, and floodplain material could be 

effectively grouped to investigate downstream trends in particle size. Paired-t tests 

(assuming normality) and the matched-pairs Wilcoxon signed rank test (distribution 

free) were used to compare the difference of means among basal bank, mid-bank, bank-

top, and floodplain material, and no statistically significant relations were computed. 

For this reason, composite samples of aggregated bank and floodplain material by site 

are analyzed for downstream trends below. 
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Figure 5.11.  Linear regression of median particle size (d50) with downstream distance 
for basal bank, mid-bank, bank-top, and floodplain deposits of the South Llano, North 
Llano, and Llano Rivers in Central Texas. 
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For aggregated bank and floodplain material, particle size (d50) ranges from 

about 0.03 to 0.20 millimeters (Table 5.6). Correlation coefficients indicate a 

statistically significant (99-percent confidence level) positive relation between particle-

size (d50) of aggregated bank and floodplain material and downstream distance (Table 

5.3). A similarly significant trend (R-squared of 0.62 for d50) of increasing particle size 

with downstream distance is depicted in Figure 5.12. A LOWESS trend line for d50 

closely follows the linear regression, but is influenced by variability at sites along the 

North Llano, South Llano, and Llano Rivers near Junction. Sorting coefficients range 

from 3.62 to 12.67, indicating a wide range of well- to poorly-sorted fine-grained 

material. The most poorly sorted material generally occurs along reaches near Junction, 

and sorting coefficients are notably high along the Llano River downstream of Junction 

and upstream of the Paleozoic-Precambrian contact. 
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Table 5.6.  Particle-size, carbonate content, and magnetic susceptibility data for 
composite samples of channel-bank and floodplain deposits along the North Llano, 
South Llano, and Llano Rivers in Central Texas. 
 
[km, kilometers; d50, descriptor that represents diameter at which 50 percent of the sample is finer than; 
mm, millimeters; Sort, sorting coefficient; CO3, relative carbonate content; %, percent; Χ, magnetic 
susceptibility (10-8 cubic meters/kilogram)] 
 

Site 
Downstream 
distance (km) 

Number of 
samples 

d50 
(mm) 

Sort 
CO3 
(%) 

Χ 

North Llano River near 
Roosevelt 56.4 10 0.044 5.15 39.1 46 

North Llano River near 
Junction 89.2 8 0.110 8.87 53.7 17 

South Llano River at Baker 
Ranch 29.5 5 0.033 4.90 25.2 60 

South Llano River at 700 
Springs Ranch 76.3 7 0.076 4.84 39.8 44 

South Llano River State 
Park 105.2 18 0.039 9.18 50.9 33 

South Llano River at Texas 
Tech University—Junction 110.1 16 0.127 10.07 54.8 20 

Llano River near Junction 121.4 7 0.066 11.40 48.0 22 
Llano River near Ivy 
Chapel 140.2 9 0.062 12.67 48.5 20 

Llano River at James River 
Crossing 192.7 7 0.104 12.16 38.1 19 

Llano River near Mason 209.5 7 0.160 3.81 34.3 29 
Llano River at Castell 229.7 9 0.090 6.83 30.1 55 
Llano River at Llano 261.2 7 0.146 3.62 27.9 54 
Llano River near 
Kingsland 292.2 3 0.198 3.74 23.8 80 
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Figure 5.12.  Linear regression and LOWESS trend line (smoothing factor of 0.6) of 
median particle size (d50) with downstream distance for aggregated bank and floodplain 
material of the South Llano, North Llano, and Llano Rivers in Central Texas. 
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5.6.2.2 Carbonate Content and Magnetic Susceptibility 
 

For downstream analyses, carbonate (mostly CaCO3) and magnetic 

susceptibility (Χ) samples are grouped by site and mean values are computed from the 

composite distribution. Relative carbonate content ranges from 23.8 to 54.8 percent 

(Table 5.6), with highest percentages along reaches near Junction. A LOWESS trend 

line shows an increasing relation of carbonate with downstream distance along reaches 

in the Cretaceous zone of the watershed, but an initial decrease downstream of Junction 

is followed by a more pronounced decrease downstream of the Cretaceous-Paleozoic 

contact (Figure 5.13). A LOWESS trend line of magnetic susceptibility (Χ) with 

downstream distance shows a trend opposite of carbonate (Figure 5.14), where values 

decrease along reaches in the Cretaceous zone of the watershed and increase 

downstream of the Paleozoic-Precambrian contact. It should be noted that magnetic 

susceptibility does not initially decrease downstream of Junction or the Cretaceous-

Paleozoic contact, which is out-of-phase with the inverse trend of carbonate content. 
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Figure 5.13.  LOWESS trend line (smoothing factor of 0.6) of relative carbonate 
content (percent) with downstream distance for aggregated bank and floodplain material 
of the South Llano, North Llano, and Llano Rivers in Central Texas. 
 
 

 
 

Figure 5.14.  LOWESS trend line (smoothing factor of 0.6) of magnetic susceptibility 
(Χ) with downstream distance for aggregated bank and floodplain material of the South 
Llano, North Llano, and Llano Rivers in Central Texas. 



154 
 

Additionally, carbonate content and magnetic susceptibility (Χ) samples are 

analyzed individually, as opposed to composite samples by site. Correlation coefficients 

indicate a statistically significant (99-percent significance level) negative association 

between carbonate content and magnetic susceptibility (Table 5.3). Further, similarly 

significant linear trend lines for sand- (R-squared of 0.18) and silt-clay-sized (R-squared 

of 0.30) sediment show that magnetic susceptibility generally decreases with increasing 

carbonate content (Figure 5.15). For a given carbonate content, magnetic susceptibility 

generally is higher for silt-clay-sized sediment than sand. LOWESS trend lines for 

sand- and silt-clay-sized sediment show a convergence of the trends between a 

carbonate content range of 35 percent to 40 percent. Additionally, Figure 5.15 shows 

that samples obtained in the Precambrian zone of the watershed are characterized by the 

lowest carbonate content and greatest range of magnetic susceptibility. One outlier 

sample (Χ = 306) was identified using diagnostic statistics, including Cook’s distance 

(< 1) and a probability plot, and was not included in the statistical analyses. 
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Figure 5.15.  Linear regression and LOWESS trend line (smoothing factor of 0.6) of 
magnetic susceptibility (Χ) and carbonate content (percent) for individual samples of 
bank and floodplain material (d50 < 2 millimeters) in the Llano River watershed in 
Central Texas. 
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5.7 Discussion 

The size and composition of channel-bed, bar, and bank deposits in the Llano 

River watershed are generally determined by abrupt lithologic transitions. 

Superimposed on those lithologic controls, however, are influential hydrologic and 

localized hydraulic controls that explain variations in observed downstream trends in 

particle size. Further, downstream trends of different geomorphic units are unique, and 

the discussion below is directed at interpreting causes for contrasting observations. A 

supportive graphical summary of downstream changes in alluvial composition is 

provided in Figure 5.16. 

5.7.1 Channel-Bed Material Particle Size 
 

The Llano River valley becomes increasingly confined by bedrock with distance 

downstream of the Cretaceous-Paleozoic contact (Figure 5.1). Although it is often 

assumed that ubiquitous exposures of bedrock to the river channel should result in 

relatively coarse bed material (Tinkler and Wohl 1998), channel-bar material of the 

Llano River decreases in size with distance downstream (Table 5.5, Figure 5.9), 

especially downstream of the Paleozoic-Precambrian contact. This trend is attributed to 

the different in-situ weathering mechanisms of carbonate and igneous lithologies. A 

considerable proportion of Cretaceous and Paleozoic carbonate rocks in the upper and 

middle watershed are removed in large slabs or clasts (Wende 1999) from steep slopes 

of contributing drainages or valley walls, whereas in-situ weathering of Precambrian 

granitic material into grus in the lower watershed results in considerable quantities of 
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sand-sized material that is delivered to contributing drainages. Furthermore, the supply 

of sand-sized material in the lower watershed is sufficient enough to form channel 

deposits despite increased flood stream power resulting from valley confinement 

(Magilligan 1992), which would normally be associated with selective entrainment and 

relatively coarse material.  

Downstream trends of declining bed-material size are much more evident for 

channel-bar deposits than low-flow-channel (thalweg) deposits (Table 5.4, Figure 5.8) 

in the Llano River watershed, indicating that stronger hydraulic sorting mechanisms 

occur along channel bars. Hydraulic forces in the thalweg alternate from uniform during 

low-flow conditions to highly turbulent during high-flow conditions, and hydraulic 

irregularity is further promoted by localized configuration of the channel, including 

meander bends (Clayton and Pitlick 2007). In commenting on observed downstream 

decreases in particle size of channel bars, Bluck (1987) claims that turbulent conditions 

selectively entrain particles and promote downstream fining, lending support to 

observations along the Llano River. 

5.7.1.1 Gravel-to-Sand Transition 
 

A gravel-to-sand transition between Mason and Castell is only evident when 

examining channel-bar deposits (Table 5.5, Figure 5.9). The transition is evident 

because sand is the final particle size to be deposited on the receding limb of a flow 

event and, therefore, is represented in surface samples of bed material. It also is possible 

that perennial flow in the low-flow-channel entrains and transports sand-sized material 
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to preferential locations, such as relatively deep and slow pools. Sambrook Smith and 

Ferguson (1995) discuss irregularity in downstream gravel-to-sand transitions related to 

pool-riffle morphology, but do not specifically distinguish between bars and thalweg 

deposits. Irrespective of the hydraulic mechanisms responsible for the observed trends, 

an argument can be made that channel-bar deposits are more representative than 

thalweg deposits for observing downstream trends in bed-material particle size of 

perennial rivers with highly variable flow regimes. It is unknown if similar 

discrepancies in downstream particle-size trends are applicable to intermittent or 

ephemeral rivers. 

The abrupt gravel-to-sand transition between Mason and Castell is explained by 

two independent factors: (1) distance from upstream sources of gravel-sized material 

and (2) additions of sand by tributaries draining Precambrian igneous and metamorphic 

lithologies. First, tributaries that supply gravel to the Llano River are markedly less 

common downstream of the Cretaceous-Paleozoic contact. A considerable amount of 

gravel comes from the James River, but its influence rapidly diminishes downstream of 

the Llano River near Mason. Second, inputs of sand-sized sediment become 

immediately influential downstream of the Paleozoic-Precambrian contact. The sand-

dominated site at Castell occurs only 26.2 kilometers downstream of the contact and the 

Precambrian part of its drainage area is approximately 680 square kilometers, or 5.9 

percent of total watershed area. Sambrook Smith and Ferguson (1995) list lateral inputs 

of sand as a mechanism for gravel-to-sand transitions, but argue that slope-dependent 
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hydraulic processes are more common. For the Llano River, however, the straight 

longitudinal profile nullifies channel slope as an explanation for the gravel-to-sand 

transition. 

5.7.1.2 Coarse-to-Fine Gravel-Bed Transition 
 

Abrupt gravel-to-sand transitions of bed material are observed in many river 

systems (Sambrook Smith and Ferguson 1995), but few studies have identified abrupt 

particle-size decreases in gravel-bed channels. Channel-bar deposits of the North and 

South Llano Rivers abruptly transition from medium-sized pebbles to small pebbles and 

gravels near Junction (Table 5.5, Figure 5.9). The transition reaches occur between 75 

to 90 kilometers downstream of the uppermost draws with a drainage area increase from 

about 1,350 to 2,250 square kilometers. The decrease in particle size is not explained by 

an increase in sediment volume (Bluck 1987), because additional sediment from the 

smaller, steeper adjoining watersheds is presumably coarser. The abrupt particle-size 

decrease, therefore, is probably explained by increased magnitudes and frequencies of 

high-flow events capable of transporting and abrading cobble- to gravel-sized material. 

More frequent opportunities for high flows are expected because of the combined 

possibilities for both localized rainfall events from various tributaries and widespread 

regional floods. These findings contrast with many investigations that document a 

localized increase in bed material size associated with tributary inputs (Knighton 1980; 

Ichim and Radoane 1990; Rice and Church 1998). This contrast suggests that 

downstream trends in particle size of gravel-bed rivers with highly variable flow 
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regimes could be more dependent on the frequency of entrainment and transport rather 

than distance-dependent abrasion and sorting processes. 

 

5.7.2 Channel-Bed and Bank Particle-Size Comparison 
 

Contrasting downstream trends of simultaneously decreasing bed- and 

increasing bank-material particle size (Table 5.6; Figures 5.11, 5.12) characterize fluvial 

deposits of the North Llano, South Llano, and Llano Rivers. Reaches in the upper 

Cretaceous zone of the watershed have channel beds comprised of cobble- to gravel-

sized material and banks comprised of silt, clay, and limited amounts of fine sand. In 

upland areas, Cretaceous carbonate weathers to a dark, silt- and clay-rich soil, and it is 

from this material that fine-grained banks and floodplains are derived. Relatively 

poorly-sorted bank and floodplain material along river reaches near Junction indicate 

that appreciable quantities of sand are included in the silt-clay matrix. Much of the sand 

likely is derived from incision into the lowermost Cretaceous unit of the Hensell Sand. 

Abrasion processes of channel-bed material also contribute to the sand-sized fraction. 

Relatively coarse bed material in the upper reaches of the watershed originates as 

plucked (Hancock, Anderson, and Whipple 1998; Wende 1999) or gravity-supplied 

material from steep slopes and tributaries. As gravel-sized material becomes less 

available downstream of the James River, the increasing influence of Precambrian-

derived sand is detected by the convergence of particle size in both channel-bar and 

channel-bank deposits. 
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5.7.3 Carbonate Content and Magnetic Susceptibility 
 

Downstream trends of relative carbonate content (percent) and magnetic 

susceptibility (Χ) are inversely related in channel bank and floodplain deposits (Table 

5.6; Figures 5.13, 5.14). In the uppermost reaches of the North and South Llano Rivers, 

the Cretaceous-aged Edwards Limestone contains substantial quantities of siliceous 

chert, which keeps carbonate content of fluvial deposits below 40 percent. As the river 

channels incise into the more pure limestone and dolomite of the Glen Rose Formation, 

carbonate content increases to over 50 percent near Junction. Continuing downstream, 

inputs from various Paleozoic sedimentary rocks and finally Precambrian igneous and 

metamorphic rocks reduce carbonate content below 25 percent near watershed outlet. 

The inverse trend of magnetic susceptibility indicates its association with carbonate 

content, although it does not display any sensitivity to Paleozoic sedimentary rocks. 

Further, magnetic susceptibility is largely dependent on particle size (Figure 5.15), such 

that relatively coarse material will have a higher value than finer material for a given 

mineralogy. It is therefore noteworthy to mention that magnetic susceptibility peaks 

near Kingsland (292.2 kilometers downstream), where the particle-size of channel-bank 

and floodplain material is the coarsest in the watershed. This indicates that Precambrian 

mineralogy exerts a strong influence on magnetic susceptibility and also illustrates the 

increasingly dominant supply of Precambrian sands to alluvial deposits in the lower 

watershed. 
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Figure 5.16.  A summary of downstream changes in alluvial sediment composition 
along the North Llano, South Llano, and Llano Rivers in Central Texas. As drainage 
area and valley confinement generally increase with distance downstream, channel-bed 
particle size decreases and bank-material particle size increases. Relative carbonate 
content and magnetic susceptibility are inversely related and are controlled by lithology. 
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5.8 Conclusions 

The Llano River watershed of Central Texas, USA, is characterized by a highly 

variable flow regime, episodic sediment transport, and abrupt geologic transitions. As a 

result, downstream characteristics of alluvial deposits in the Llano River watershed 

differ from fluvial systems in humid environments or with homogeneous lithologies. 

Hydraulic variations that occur along a continuum ranging from low-flow conditions to 

severe floods are responsible for abrupt downstream reductions in gravel-bed particle 

size, and detectable trends of particle-size reduction for channel bars but not for the 

low-flow-channel (thalweg). Although floods greatly influence fluvial processes and 

channel geometry in the watershed, surface geology and associated sedimentary 

composition effectively explain downstream fluvial diversity. Weathering mechanisms 

in the upper Cretaceous carbonate zone of the watershed result in relatively fine-grained 

(silt, clay, and some fine sand) channel banks and cobble- to gravel-sized channel beds 

along the North, South, and upper Llano Rivers. The alluvial valley becomes 

constricted by resistant bedrock as the river transitions downstream to Paleozoic 

sedimentary and Precambrian igneous and metamorphic zones. Precambrian rocks are 

weathered to grus in-situ, and considerable quantities of sand-sized material are 

delivered to the drainage network. Channel banks of the Llano River are increasingly 

composed of the sand-sized fraction and less carbonate material in the downstream 

direction. Further, an abrupt gravel-to-sand transition of the channel bed, not associated 
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with hydraulic mechanisms, occurs just downstream of the Paleozoic-Precambrian 

contact and is attributed to a limited gravel supply and increasing supply of sand. 

 Results of this study are expected to improve the understanding of downstream 

trends in the composition of alluvial deposits along rivers with highly variable flow 

regimes. Further, the Llano River watershed provides an example where pronounced 

geologic and sedimentary controls complement flood hydraulics to explain downstream 

trends in alluvial composition. Scientists, engineers, and practitioners involved with 

floodplain and watershed management, aquatic biology, infrastructure development, 

and riparian restoration efforts along river systems similar to the Llano River should 

benefit from this investigation. 
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Chapter 6. Mutual Adjustment of Pattern and Shape of Bankfull- and 
Macro-Channels in the Llano River Watershed, Central 
Texas, USA: The Combined Roles of Intense Flooding and 
Abrupt Transitions in Lithology 

 
 
  
6.1 Abstract 
 

Downstream adjustment of river channel geometry is a hallmark of 

geographically-driven research in fluvial geomorphology. Although numerous 

investigations focus on adjustment of either pattern (planform), shape (cross section), or 

profile (slope), few have been designed to address downstream mutual adjustment of 

those dimensions. Further, systematic investigations are needed along fluvial systems 

with highly variable flow regimes to clarify the conceptual understanding of dominant 

(channel-forming) discharge. Other complexities, including abrupt discontinuities in 

lithology and sedimentology, introduce variability into current models of channel 

development. The Llano River watershed (11,568 square kilometers) in Central Texas, 

USA, is a complex fluvial system as a result of its highly variable, flood-prone flow 

regime and abrupt transitions in surface lithology. The unregulated, rural watershed 

represents an opportunity to examine downstream channel adjustment of pattern, shape, 

and profile, in a unique setting. 

 The study design included field, laboratory, GIS, and statistical analysis to 

characterize watershed parameters (surface lithology, drainage area), channel geometry, 

flood hydraulics and hydrology, and sedimentology along the Llano River and key 
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tributaries. Twenty-one sites, extending across the entire drainage system, were used to 

quantify these measures, and seven additional sites were added specifically for flow-

resistance analyses. Analysis of hydrology, planform morphology, lithology, and 

alluvial development reveals four general categories of channel classification, listed in 

order from upstream to downstream: (1) uppermost ephemeral reaches, commonly 

referred to as “draws” in the study area, (2) Cretaceous straight or sinuous gravel-bed 

channels, (3) Paleozoic straight or sinuous gravel-bed or bedrock channels, and (4) 

Precambrian straight, braided, or bedrock-braided sand-bed channels. Based on 

hydraulic geometry techniques, bankfull channels in the Cretaceous zone compensate 

for discharge by increasing width at a greater rate than mean depth. Proceeding 

downstream, mean depth outpaces width in compensating for flows up to bankfull stage 

despite observed decreases in silt-clay content and lack of cohesion in the channel 

banks. The increasingly important role of mean depth is attributed to downstream 

confinement of the alluvial valley, and the reduced potential for channel enlargement by 

increases in width. Macro-channels, above bankfull stage, form downstream of the 

confluence of the North Llano and South Llano Rivers. Macro-channels always 

compensate for discharge by increasing mean depth at a greater rate than width, and the 

downstream convergence of width-depth relations for bankfull- and macro-channels 

indicates that the general slope of sub-bankfull, bank-attached deposits in the 

Precambrian zone closely follows that of higher alluvial deposits and the surrounding 

bedrock. Finally, bankfull conditions typically have return periods between 1 and 2 
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years, and macro-channels are maintained by flows with return periods ranging from 

about 10 to 40 years. Greater macro-channel return periods are associated with sites 

furthest downstream. Going downstream, the gradual masking of morphologic 

indicators associated with bankfull stage parallels the reduced frequency of formative 

flows for macro-channels, indicating that high-magnitude floods play an increasingly 

important role in channel adjustment. 

 

6.2 Introduction 
 

River channel adjustment to hydraulic and sedimentary controls is a topic that 

has received considerable attention by fluvial geomorphologists (e.g., Leopold and 

Wolman 1957; Schumm 1960; Schumm 1985; Ferguson 1987) and is of practical 

importance to engineers, aquatic biologists, water resource managers, and other riparian 

specialists. River morphology is expressed in three-dimensional space, including the 

planform (pattern), cross-sectional (shape), and longitudinal (profile) perspectives. The 

most relied upon hydraulic index of channel adjustment is bankfull discharge (cubic 

meters per second) (e.g., Dunne and Leopold 1978; Rosgen 1994; Castro and Jackson 

2001), which commonly is related to the scale of size of instream features. Sedimentary 

indices of channel morphology include bed-material composition (e.g., Osterkamp and 

Hedman 1982; Howard 1987; van den Berg 1995), bedload transport (e.g., Parker 1979; 

Bettess and White 1983; Ferguson 1987), and channel-bank composition (e.g., Schumm 

1960; Schumm 1963; Simpson and Smith 2001). Much of our knowledge relating these 
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various indices to channel adjustment are derived from humid settings or for rivers with 

predictable flow regimes (Doyle et al. 2007). Less is known about the adjustment of 

rivers with highly variable flow and sediment transport regimes, although evidence 

indicates that complex arrangements of channel pattern, shape, and profile occur in arid 

(e.g., Huckleberry 1994; Bourke and Pickup 1999), semi-arid (e.g., García 1995; 

Heritage, van Niekerk, and Moon 1999), or seasonally active (e.g., Gupta 1995; Kale 

and Hire 2007) fluvial systems. Additionally, substantial differences in fluvial forms 

and processes are evident for bedrock-dominated (e.g., Baker and Kale 1998; Erskine 

and Livingstone 1999) or geologically-complex (Schumm 2005) fluvial systems. 

Furthermore, few investigations have focused on mutual downstream adjustment of 

channel pattern and shape imposed by abrupt changes in hydraulic and sedimentary 

controls. 

 This chapter investigates the roles of hydrology, lithology, and sedimentary 

characteristics on mutual downstream adjustment of channel pattern and shape in the 

Llano River watershed (11,568 square kilometers), Texas, USA (Figure 4.1). The rural, 

unregulated watershed occurs at a transition between semi-arid conditions in the west 

and sub-humid conditions in the east and is subject to extreme floods (Beard 1975; 

Burnett 2008). Further, a lithologic transition from carbonates in the upper watershed to 

igneous and metamorphic rocks in the lower watershed complicates an assessment of 

channel adjustment based on hydrology alone. A variety of methods are used to 

quantify the controls and indices associated with mutual downstream adjustment of 
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channel pattern and shape in the Llano River watershed, including field surveys of 

channel geometry and sediment composition, laboratory particle-size analyses, 

hydraulic and hydrologic analyses, GIS, and statistical analyses. 

The research design, methods, and results presented in this chapter constitute an 

effort dissimilar from other investigations of channel adjustment. First, the distribution 

of sites along the North Llano, South Llano, and Llano Rivers and selected tributaries 

adequately characterizes watershed-scale variability, but also encompasses the 

distribution of hydrologic variables from headwater streams to the main-stem channel. 

Second, the aforementioned characteristics of the Llano River watershed uniquely 

qualify it for discerning the relative influence of a highly-variable flow regime and 

abrupt lithologic transitions on channel morphology. Third, application of refined 

hydrologic methods, including partial-duration flood frequency analyses, provides more 

accuracy to interpretations of channel morphology and its relation to the hydrologic 

regime. Finally, channel-bed and bank particle-size analyses for most sites controls for 

the influence of alluvial sediment on channel morphology. 

 

6.3 Background 
 

The association of channel geometry to hydraulic and sedimentary controls has 

been and remains one of the primary emphases of fluvial geomorphology. A discussion 

of some of the models associated with planform geometry, hydraulic geometry, and 

dominant discharge is provided below to provide context for this chapter. 
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6.3.1 Planform Geometry 
 

A variety of efforts have been made to link hydraulic and sedimentary controls 

to channel pattern. Relying on a purely hydraulic approach, Leopold and Wolman 

(1957) proposed the following empirical relation of slope and discharge, above which 

channels are braided and below which channels are meandering (Figure 1.2): 

� � 0.012��.��, where 

� is dimensionless channel slope and � is bankfull discharge, in cubic meters per 

second. 

The relation indicates that meandering channels transition to braided channels if 

hydraulic energy increases, but it does not imply that sediment load contributes to 

channel pattern. Most of the data used to derive this relation were from rivers in the 

humid eastern and mid-western United States and the northern Rocky Mountains. Few 

data points were from semi-arid rivers with highly variable flow regimes or rivers in 

otherwise complex physiographic regions. Further, Ferguson (1987) argues that valley 

slope, rather than channel slope, better explains transitions between channel patterns. 

Another hydraulic-based approach by Parker (1976) associates indices of hydraulic 

energy (slope-to-Froude number ratio) with channel shape (depth-to-width ratio) to 

explain channel pattern transitions and the intensity of braiding. 

Others have advocated for theories that consider sedimentary composition of the 

channel boundary as an important control of channel pattern. The underlying premise 

supporting this claim is that relatively fine-grained loads result in a cohesive channel 
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boundary that promotes meandering and coarse-grained loads result in channel-bar 

formation and loosely consolidated channel banks. Schumm (1963) shows a relation 

between silt-clay percentage and sinuosity, and Schumm and Khan (1972) argue that 

fine sediment is required before meandering develops in laboratory flume experiments. 

In a variant of the Leopold and Wolman (1957) threshold approach, van den Berg 

(1995) integrates unit stream power (watts per square meter) with median bed-material 

size (millimeters) to effectively distinguish between single- and multi-thread channels. 

The lack of a consensus among researchers in the geomorphic community to 

universally predict channel pattern from a particular hydraulic or sedimentary index is 

not surprising, or even warranted, given the diversity of hydrologic, geologic, and 

sedimentary regimes on Earth’s surface. Ferguson (1987) ultimately resolves that 

unique combinations of hydraulic and sedimentary controls result in a continuum of 

channel patterns, a concept summarized in Figure 6.1, which shows a transition from 

various meandering to braided patterns as sediment supply, particle size, slope, and 

stream power increase. 
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Figure 6.1.  The continuum of channel patterns transitions from meandering and 
anastomosing channels to wandering and braided channels as sediment supply, particle 
size, and hydraulic energy increase [from Brierley and Fryirs (2005); modified from 
Church (1992) and Schumm (1977)]. 
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Although it is generally recognized that a continuum of channel patterns results 

from various combinations of hydraulic and sedimentary controls, it can nonetheless be 

challenging to categorize patterns within the scheme shown in Figure 6.1, especially for 

rivers occurring in unique settings. For example, Kale, Baker, and Mishra (1996) and 

Heritage, van Niekerk, and Moon (1999) identify multi-channel rivers, including 

anastomosing forms, in bedrock-dominated settings. Others have identified 

anabranching systems in both high-energy (e.g., Nanson and Knighton 1996) and low-

energy settings (e.g., Makaske 2001). Additional variants include discontinuous forms, 

such as cut-and-fill channels (e.g., Brierley and Fryirs 2005) and arroyos (e.g., Schumm 

and Hadley 1957). Advances in our understanding of channel pattern are likely to come 

from rivers where abrupt transitions in either hydraulic or sedimentary controls occur 

(e.g., Simpson and Smith 2001). 

6.3.2 Hydraulic Geometry 
 

Methods to analyze cross-sectional channel adjustment along the Llano River 

and selected tributaries are founded in the classic work of Leopold and Maddock 

(1953), which emphasizes the importance of discharge (cubic meters per second) 

through the concept of hydraulic geometry, or simple power relations associating width 

(meters), depth (meters), and velocity (meters per second) to discharge (Figure 2.1). The 

three factors are plotted in log space with discharge on the abscissa axis, such that three 

slope-dependent exponents (b, f, and m) of the regression-fitted lines satisfy continuity 

by summing to the value “1”. The b, f, and m exponents represent the rate of change of 
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width, depth, and velocity, respectively, and the fundamental hydraulic geometry 

equations are: 

� � ���, 

� � ���, 

 � ���, where 

� is water-surface width, in meters; � is mean depth, in meters;   is mean velocity, in 

meters per second; � is discharge, in cubic meters per second; �, �, and � are 

empirically-derived coefficients; and �, �, and � are empirically-derived exponents. 

 Hydraulic geometry is a convenient technique when adequate discharge and 

cross-sectional geometry data are available, and results are easily interchangeable with 

common hydrologic analyses, including flood frequency. Hydraulic geometry can be 

applied to the range of flows at one cross section, termed “at-a-station,” or along a 

channel reach for a user-specified index of discharge at multiple cross sections, termed 

“downstream.” At-a-station hydraulic geometry commonly experiences three phases in 

most river channels: (1) low-flow conditions that are incapable of entraining bed and 

bank material, (2) active conditions associated with entrainment and transport of bed 

(and possibly bank) material, and (3) overbank conditions (Knighton 1998). The 

diversity of hydraulic processes occurring along a continuum of low- to high-flow 

conditions complicates geomorphic assessments solely based on at-a-station analyses, 

and Park (1977) shows that �, �, and � exponents have large variability. Aside from its 

complications, at-a-station hydraulic geometry can be a very useful technique to 
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associate the hydrologic regime of a stream to its shape. If applied in conjunction with 

flood frequency analysis, itself a problematic technique (Kidson and Richards 2005), 

much can be learned about the relation of various instream geomorphic units to the 

magnitude and frequency of different flows (Gregory and Madew 1982). 

Downstream hydraulic geometry is used to investigate channel adjustment at 

multiple locations along a river, and requires selection of a common discharge index, 

such as bankfull, mean annual, or another flow of a given exceedance frequency (e.g., 

1.5-year return period). The theory of downstream hydraulic geometry has been 

criticized in several areas: (1) adherence to log-linear relations and neglect of flow 

resistance (Richards 1973), (2) interpretive limitations for rivers with relatively low 

ratios of stream power to particle size (Wohl 2004), (3) interpretive limitations for 

rivers with diverse sedimentary (e.g., Parker 1979; Knighton 1987; Huang and Warner 

1995) and vegetative (e.g., Hey and Thorne 1986) controls, and (4) inherent instability 

of cross-sectional shape (Phillips 1990; Fonstad and Marcus 2003). Additionally, 

difficulties in determining bankfull stage (Williams 1978a) complicate many 

downstream hydraulic geometry assessments. Further, an assumption of progressively 

increasing discharge with downstream distance is made, although some rivers are not 

characterized by this trend. Downstream hydraulic geometry, however, has been 

successfully applied to derive regional regression equations to predict channel 

morphology (e.g., Betson 1979; Castro and Jackson 2001), infer morphologic changes 

resulting from a single flood (e.g., Merritt and Wohl 2003), discriminate channel 
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patterns (e.g., Xu 2004), and determine the relative effects of channel boundary 

characteristics and hydraulic controls on channel morphology (e.g., Torizzo and Pitlick 

2004; Wohl and Wilcox 2005; Arp et al. 2007). 

6.3.3 Dominant Discharge 
 

Downstream hydraulic geometry techniques used to assess channel adjustment 

are applied with the assumption of a dominant, or channel-forming, discharge. Wolman 

and Miller (1960) concluded that frequent, moderate floods are responsible for the 

cumulative majority of sediment transport in various alluvial rivers in the United States, 

occurring with an average return period of 1 to 2 years (Figure 2.4). Others (e.g., 

Wolman and Leopold 1957; Leopold, Wolman, and Miller 1964) have associated 

channel geometry with bankfull conditions, and observations over time have concluded 

that bankfull return periods of many alluvial rivers are between 1 and 2 years (e.g., 

Dury 1973; Gupta and Fox 1974; Andrews 1980; Biedenharn, Little, and Thorne 1999). 

Others have shown, however, that channel-forming discharge of rivers with highly 

variable flow regimes is likely to occur less frequently (e.g., Schick 1974; Pickup and 

Warner 1976; Baker 1977; López-Bermúdez, Conesa-García, and Alonso-Sarría 2002; 

Doyle et al. 2007). Further, complex arrangements of alluvial features at various heights 

above the channel bed along rivers dominated by high-magnitude floods, including 

seasonal or monsoonal rivers (e.g., Gupta 1995; van Niekerk et al. 1999; Heritage, 

Broadhurst, and Birkhead 2001), challenge prevailing assumptions of dominant 

discharge in alluvial systems. 
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This chapter offers a comprehensive evaluation of dominant discharge from 

headwater streams to the main-stem channel in a fluvial system characterized by severe 

flash floods and abrupt discontinuities in lithology and sediment composition. Although 

a number of investigations have explored these concepts at particular sites or localities, 

this study was designed to emphasize downstream trends in channel morphology and 

associated values of dominant discharge. The results should clarify the roles of 

moderate and severe floods on bankfull and macro-channel development along flood-

prone rivers. 

 

6.4 The Llano River Watershed 
 

The Llano River watershed, by nature of its flashy hydrology and diverse 

lithologic characteristics, is well-situated for at-a-station and downstream assessments 

of the hydraulic and sedimentary controls that control mutual adjustment of channel 

planform and shape. 

6.4.1 Geology and Lithology 
 

The Llano River watershed (Figure 4.1) is located in the Edwards Plateau of 

Central Texas, and is part of the larger Colorado River basin. The lithology is complex 

for its drainage area, and reflects Tertiary tectonic activity associated with the Llano 

Uplift. Expressed at the surface, the uplift is a basin of exhumed Precambrian intrusive 

igneous and metamorphic rock, centered in the eastern part of the watershed, 

surrounded by an elevated Cretaceous carbonate rim. A transitional zone of Paleozoic 
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sedimentary rock occurs between the Cretaceous rim and the Precambrian basement 

rock. 

 The western headwaters of the Llano River watershed have elevations exceeding 

700-meters NAVD88. Downstream, the rivers dissect a lower-Cretaceous carbonate 

tableland comprised of horizontally-bedded, fossiliferous limestone and dolomite 

sequences, with varying amounts of chert. In total, lower Cretaceous formations 

comprise 66 percent (7,629 square kilometers) of the total watershed area. Transitioning 

into the Llano Uplift, Paleozoic sedimentary units consist of a variety of lithologic 

types, mostly Ordovician limestone and dolomite and Cambrian sandstone, and 

comprise almost 12 percent (1,369 square kilometers) of the total watershed area. In the 

lower, eastern side of the watershed, Precambrian granite, gneiss, and schist dominate, 

and comprise 19 percent (2,180 square kilometers) of the total watershed area. 

Precambrian rocks in the watershed form irregular topography, including large 

exfoliation domes. The remaining 3 percent (390 square kilometers) are mostly 

comprised of Quaternary alluvial deposits. 

 Differential rates and patterns of bedrock weathering in the Llano River 

watershed strongly influence valley confinement, alluvial development, and sediment 

composition. Cretaceous limestone and dolomite in the upper watershed are associated 

with high rates of physical and chemical weathering, resulting in a relatively wide 

alluvial valley in the vicinity of Junction (Figure 5.1). Fluvial processes and forms 

associated with unconfined valley settings, including meander cutoffs, alluvial terraces, 
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and well-defined floodplains, occur in this area. Despite the susceptibility of carbonate 

lithology to weathering, channel networks in the upper watershed are characterized by 

cobble-, pebble-, and gravel-sized bed material. The transition to Paleozoic sedimentary 

rock is associated with a decrease in valley width and more frequent bedrock exposures 

along the Llano River, indicating a more resistant lithology. Alluvial development is 

limited to localized, hydraulically-favorable zones of deposition, including 

discontinuous floodplains and mid-channel bars. Precambrian granite, gneiss, and schist 

in the lower watershed are relatively resistant to weathering, and mostly consist of 

quartz, microcline, plagioclase feldspar, biotite, and hornblende. Although more 

resistant than carbonates, Precambrian rocks deliver mostly sand-sized sediment to 

channel networks, implying that most weathering is accomplished in-situ. The Llano 

River valley is confined in its lower reaches, and supports limited depositional features 

that thinly overlie bedrock. These deposits, however, provide evidence of bankfull and 

macro-channel hydraulic conditions based on their vertical extent. 

The plateau-based setting, variable geologic structure, and incision history has 

resulted in remarkably straight longitudinal profiles of the North Llano, South Llano, 

and Llano Rivers (Figure 6.2). Combining the South Llano and Llano Rivers, the 

channel descends from approximately 700- to 250-meters NAVD88 over a distance of 

about 300 kilometers, giving an overall dimensionless channel slope of 0.0015. The 

North Llano River is slightly steeper (dimensionless channel slope of 0.022) because it 

descends from roughly a similar elevation to Junction over a shorter channel distance. 
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Aside from a limited concavity at the uppermost reach and subtle deviations from a 

generally continuous slope thereafter, the straight profiles of the North Llano, South 

Llano, and Llano Rivers nullify explanations of downstream channel geometric 

adjustments based on abrupt discontinuities in hydraulic power related to channel slope. 
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Figure 6.2.  Longitudinal profiles of the combined South Llano and Llano Rivers, the 
North Llano River, Johnson Fork, and the combined Little Devils and James Rivers in 
Central Texas were rendered from GIS analysis of 10-meter digital elevation models 
(DEMs). The main-stem South Llano and Llano Rivers, as well as the North Llano 
River, have a remarkably straight profile, although the overall slope is greater for the 
North Llano River. Major tributaries of the Llano River show a subtle slope concavity, 
and are much steeper than main-stem channels. 
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6.4.2 Precipitation and Hydrology 
 

The precipitation regime of the watershed ranges from semi-arid in the west 

(approximately 580 millimeters of rainfall per year) to sub-humid in the east 

(approximately 760 millimeters of rainfall per year). Rainfall in Central Texas, 

however, is highly variable through time, and droughts can rapidly transition to floods 

within months (Bomar 1983). As a result of locally steep slopes and very thin soils 

(Cooke et al. 2003), rapid runoff rates to channel networks cause this area to experience 

extreme flash floods (Beard 1975; Tinkler 2001; Burnett 2008), capable of transporting 

substantial quantities of sediment (Heitmuller and Asquith 2008) and greatly modifying 

channel geometry (Baker 1977). 

The hydrology of the Llano River and its tributaries (Table 5.1, Figure 5.4) 

reflects climatic mechanisms in Central Texas. Tributaries to the Llano River exhibit 

relatively low baseflow conditions for the majority of time with lowest flows usually 

occurring in mid- to late-summer. The South Llano River, however, is supplied by 

karstic springs upstream of Junction and provides the majority of baseflow to the main-

stem Llano River. Normal baseflow conditions are interrupted by extreme floods 

(Figure 5.5) caused by rainfall associated with stalled low-pressure systems or tropical 

cyclones. Floods along the Llano River at Llano have exceeded 3,000 cubic meters per 

second ten times since the 1940 hydrologic year, not including the estimated peak 

instantaneous discharge of 10,760 meters per second in 1935. There are no reservoirs 
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that regulate discharge in the Llano River watershed, although two low-water control 

structures in Junction and Llano allow ponded water to be used for municipal supply. 

 

6.5 Data and Methods 
 

The investigation of mutual channel adjustment and the relation to hydraulic, 

lithologic, and sedimentary controls along the Llano River and selected tributaries 

required various data sources and methods, including field surveys of channel 

topography and alluvial sediment, laboratory sediment analyses, flow-resistance 

analyses, flood-frequency analyses using discharge data, GIS, and statistical analyses. 

Field surveys of cross-sectional geometry were used to quantify channel shape 

and sediment samples of channel-bed and bank material were obtained. Particle size of 

gravel-sized material was measured in the field. Laboratory analyses were done to 

quantify particle-size for alluvial deposits composed of sand-sized and finer material. 

Analyses using present-day (2009) expanded stage-discharge rating tables of U.S. 

Geological Survey (USGS) and Lower Colorado River Authority (LCRA) streamflow-

gaging stations were done to evaluate appropriate flow-resistance coefficients used to 

compute flow velocity and discharge at gaged and ungaged study sites. Flood-frequency 

analyses were done to estimate the return periods associated with dominant discharge 

(channel-forming discharge) at various sites in the watershed. GIS was used to: (1) 

estimate channel slope at sites without sufficient field-survey data, (2) quantify various 

planform metrics (e.g., valley width, sinuosity), and (3) classify channel reaches by 
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morphologic type. Statistical analyses, notably hydraulic geometry, were used to infer 

site-specific and downstream trends in channel morphology. 

6.5.1 Field-Data Collection and Analyses 
 

Multiple surveys of cross-sectional channel topography were made at nineteen 

sites along the Llano River and selected tributaries (Figure 4.1) using a total-station 

surveying instrument. Additionally, nine cross-sectional surveys of tributaries in the 

watershed were provided by the LCRA, two of which (Johnson Fork and James River) 

did not include any bridge structures. Sites were chosen to represent changes in 

drainage area, tributary inputs, and lithologic variability of the watershed (Table 6.1). 

Five sites are located at USGS streamflow-gaging stations and surveyed elevations were 

associated with the established stage datum at those stations. The remaining sites were 

assigned an arbitrary elevation datum. GPS coordinates were obtained at total-station 

setup locations, as well as other surveyed locations at each site. After digitization of 

survey data in a spreadsheet format, the GPS coordinates were used to overlay survey 

points on a georeferenced orthophoto in GIS. Lines were digitized to represent flow 

direction for hydrologic conditions that would span the entire channel width, and angles 

were measured between the surveyed cross section and the flow direction. Finally, a 

cosine correction factor was applied to the cross-sectional data to produce a cross-

section that is perpendicular to the primary high-flow direction. The correction ensures 

that cross-sectional dimensions are appropriately scaled to high-flow conditions. Simple 

hydraulic properties, including hydraulic radius, cross-sectional area, and Froude 
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number, among others, were computed at 0.25-meter stage increments using 

WinXSPRO (U.S. Department of Agriculture Forest Service 2008). Channel slopes 

were mostly derived from site-specific total-station surveys of water-surface elevations, 

but GIS-based longitudinal profile data were used as needed for sites where measured 

distances between water-surface elevation points were not sufficient to obtain an 

accurate measure. 
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Table 6.1.  Selected morphometric and sedimentary characteristics of study sites in the 
Llano River watershed in Central Texas. Various LCRA sites are not included if cross-
sectional geometry measurements contain bridge structures. Particle-size values 
represent averages of multiple samples collected at each site. 
 
[ED, ephemeral draw; KG, Cretaceous gravel-bed; P, Paleozoic bedrock or gravel-bed; pC, Precambrian straight, braided, or 
bedrock-braided; DA, drainage area; km2, square kilometers; DD, downstream distance; km, kilometers; VW, alluvial valley width; 
m, meters; �, dimensionless channel slope; �50, median particle size; mm, millimeters; --, not available] 
 

Site Category DA 
(km2) 

DD 
(km) 

VW (m) Alluvial 
sinuositya ! 

Channel 
bar "50 
(mm) 

Bank 
"50 

(mm)b 

North Llano Draw near Sonora ED 7.79 0.90 --c 1.00 0.0054d -- 0.0042
e 

North Llano River near Roosevelt KG 1,145 56.4 250-375 1.13 0.0021f 36.6 0.044 
North Llano River near Junction KG 2,335 89.2 750-1,000 1.13 0.0029g 18.0 0.110 
South Llano River at Baker Ranch 
near Rocksprings ED 417 29.5 400-415 1.19 0.0015g 0.039 0.033 

South Llano River at U.S. Highway 
377 near Rocksprings ED 1,134 64.5 100-250 1.06 0.0036d 42.2 -- 

South Llano River at 700 Springs 
Ranch near Telegraph KG 1,352 76.3 225-350 1.01 0.0030d 44.9 0.076 

South Llano River at South Llano 
River State Park KG 2,256 105 1,000-1,150 1.31 0.0012d 25.5 0.039 

South Llano River at Texas Tech 
University—Junction KG 2,271 110 1,250-1,600 1.31 0.0014d 21.8 0.127 

Llano River near Junction KG 4,815 121 700-1,000h 1.38 0.0071f 16.3 0.066 
LCRA Johnson Fork near Junction KG 758 52.7 650-850 1.33 0.0026d -- -- 
Johnson Fork at Lowlands 
Crossing near Junction KG 778 57.5 850-950 1.33 0.0053f 23.8 0.353 

Llano River near Ivy Chapel KG 5,939 140 300-650 1.24 0.0015d 23.7 0.062 
LCRA James River near Mason P 845 53.7 --c 1.00 0.0034d -- -- 
James River near Mason P 877 65.6 --c 1.00 0.0059f 46.0 0.228 
Llano River at James River 
Crossing near Mason P 8,032 193 400-500 1.08 0.0025f 28.0 0.104 

Llano River near Mason pC 8,418 210 --c 1.00 0.0025f 14.2 0.160 
Beaver Creek near Mason pC 558 57.2 --c 1.00 0.0031d 0.884i 0.264 
Llano River at Castell pC 9,429 230 --c 1.00 0.0013d 2.09 0.090 
Llano River at Llano pC 10,885 261 --c 1.00 0.0014f 0.457 0.146 
Llano River near Kingsland pC 11,406 292 --c 1.00 0.0027f 0.629 0.198 
Honey Creek at KDK Ranch near 
Kingsland P 28.6 11.7 --c 1.00 0.022f 39.6 0.464 

a Alluvial sinuosity was measured by dividing the channel length by the valley-axis length. In some cases, alluvial sinousity is 
approximately 1.0 because of confined valley settings, even though the valley meanders across the land surface. 
b Composite of channel bank and floodplain surface deposits. 
c Valley confined by bedrock. Alluvial deposits thinly overlie bedrock, but alluvial floodplains are absent. 
d Channel slope derived from GIS analysis of 10-m DEMs. 
e Particle-size for material collected from the base of the draw, which adequately represents all nearby deposits. 
f Channel slope derived from total-station survey of water-surface elevations at low-flow conditions. 
g Channel slope derived from total-station survey of thalweg elevations, which were at similar depths below the water surface at the 
upper and lower ends of the reach. 
h Valley width is associated with abandoned valley segment, not with present-day channel avulsion through bedrock exposure. 
i Median particle size only for sand-sized fraction, although material is bimodal with some proportion of gravel-sized material. 



187 
 

Channel bed and bank sediments were sampled along the same cross sections 

that were used for the topographical surveys. Multiple bed and bank samples were 

obtained along each cross-section transect, and were spatially distributed to account for 

various geomorphic surfaces, including the low-flow channel, channel bars, banks, and 

inset floodplains. Sample locations were referenced using a combination of cross-

section survey data, GPS coordinates, and a measuring tape. Cobble-, pebble-, and 

gravel-bed material was sampled using a modified Wolman (1954) pebble count 

procedure (e.g., Heitmuller and Asquith 2008). Pebble counts were facilitated by using 

a sampling grid and particle-size analyzer. The sampling grid measures 50-by-50 

centimeters and contains intersections spaced every 10 centimeters for a total of 25 

intersections. The particle directly beneath each intersection was selected and the b-

axis, or the short axis along the same dimensional plane as the longest axis, was passed 

through the smallest possible opening in the particle-size analyzer. The diameter of the 

opening was noted for each particle, and cumulative particle-size distribution curves 

were developed. Subaqueous bed-material samples were obtained by wading using the 

same method. Sand-sized or finer channel-bed and bank sediments were sampled with a 

scoop and bagged for further analyses. 

6.5.2 Laboratory Sediment Analyses 
 

Bagged sediment samples were analyzed for particle size in the Applied 

Geomorphology and Geo-Archaeology Laboratory in the Department of Geography and 

the Environment at The University of Texas at Austin. Samples were dried and 
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weighed, and pre-treatment included further physical disaggregation with a milkshake 

mixer and chemical disaggregation of the colloidal fraction with a 5-percent 

concentration of sodium hexametaphosphate [(NaPO3)6]. Particle-size was analyzed by 

the hydrometer and wet-sieve method described in Gee and Bauder (1986) (e.g., 

Hudson and Heitmuller 2003). The analysis data were entered into a pre-formatted 

spreadsheet and cumulative particle-size distribution curves were developed. 

6.5.3 GIS Analyses 
 

A variety of morphologic evaluations and products were made using GIS, 

including longitudinal profiles, valley cross sections, a channel classification scheme, 

and various planform statistics. GIS analyses of 10-meter digital elevation models 

(DEMs) and the high-resolution National Hydrography Dataset (NHD) (U.S. 

Geological Survey 2008a, 2008b) were done to generate longitudinal profiles and valley 

cross sections. Further, channel slopes for sites with insufficient or indeterminate total-

station survey data were computed using 10-meter DEMs and NHD data in GIS by 

including a reach sufficiently long enough to capture DEM irregularities. The North 

Llano, South Llano, and Llano Rivers were classified through a combination of field 

observations and GIS analyses of digital orthophotography (2-meter horizontal 

resolution) and a geodatabase of surface geology based on Barnes (1981). 

Orthophotography and surface geology also were used to quantify alluvial sinuosity and 

valley width at study sites in the watershed. 
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6.5.4 Statistical Analyses 
 

Simple statistical analyses, including particle-size descriptors (e.g., d50) and 

various hydraulic values (e.g., stream power), were computed in spreadsheets. 

Statistical analyses, including hydraulic geometry, trend lines, and flood-frequency, 

were done in R (R Development Core Team 2004). 

6.5.5 Flow Resistance Analyses 
 

Analyses of at-a-station and downstream hydraulic geometry for ungaged sites 

in the Llano River watershed require an appropriate flow-resistance coefficient to 

compute mean flow velocity and discharge. Flow-resistance coefficients increase as 

flow uniformity becomes more disrupted, either by grain, form, or boundary roughness. 

Coefficients are often selected in the field through observations of bed-material particle 

size, the presence of bedforms, and vegetation along the banks and floodplains. Two 

commonly used flow-resistance coefficients are Manning’s � and Darcy-Weisbach �. 

Manning’s � is the most commonly utilized flow-resistance coefficient for open-

channel flow and is associated with mean flow velocity ( ) by the following empirical 

relation known as Manning’s equation: 

 �
#�/%&'/�

(
, 

where   is mean flow velocity, in meters per second; ) is the hydraulic radius, in 

meters (often equated to mean flow depth); and � is the energy grade line, which is 

assumed to be equal with dimensionless channel slope. 
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Alternatively, the dimensionless Darcy-Weisbach � friction factor, also used for 

evaluation of flow velocity in open channels, is derived from a more theoretical basis 

(Robert 2003), and is computed from the following equation: 

� �
*+,&

-�
, 

where . is the acceleration of gravity (9.81 meters per square second) and � is mean 

flow depth, in meters. 

Solving for flow velocity, discharge (�) (cubic meters per second) can be 

computed from the following: 

� � / , 

where / is the cross-sectional area of the flow, in square meters. 

 Manning’s � and Darcy-Weisbach � flow-resistance coefficients were 

quantitatively solved using surveyed cross-sections and expanded stage-discharge rating 

curve tables at USGS and LCRA streamflow-gaging stations (Table 6.2, Figure 6.3). 

Expanded stage-discharge rating curve tables give incremental stage and discharge 

relations for every 0.003 meters (0.01 feet) of stage. Cross-sectional data, including area 

and hydraulic radius, were computed at 0.01-meter stage-increments using WinXSPRO 

(U.S. Department of Agriculture Forest Service 2008). Mean flow velocity was solved 

for at 0.3048-meter (1-foot) increments by dividing the discharge by the cross-sectional 

area, and flow-resistance coefficients were solved. The hydraulic values and flow-

resistance coefficients reported in Table 6.2 correspond with the stage at observed 

breaks in slope along alluvial banks or bridge-apron tops of the cross section at the gage 
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location.  Values either correspond with bankfull or macro-channel conditions, 

depending on the channel morphology at the study site. It is the author’s judgment that 

appropriate comparisons of flow hydraulics are drawn by the choice of bankfull or 

macro-channel conditions shown in Table 6.2. Flow-resistance computations were not 

made for at 08150000 Llano River near Junction because a surveyed cross section was 

not made at the station. 
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Table 6.2.  Manning’s � and Darcy-Weisbach � flow-resistance coefficients. The 
coefficients were solved for using surveyed cross-sections and expanded stage-
discharge rating curve tables at selected USGS and LCRA gaging stations in the study 
area. Values at or near bankfull or macro-channel stage are shown below. 
 
[m, meters; �, discharge; m3/s, cubic meters per second; �, dimensionless channel slope; /, cross-sectional area; m2, square meters; 
�, water-surface width; ), hydraulic radius; �, mean depth;  , mean flow velocity; m/s, meters per second; �, Manning’s � flow-
resistance coefficient; �, Darcy-Weisbach friction factor; 01, Froude number] 
 

Site 
Bed-

material 
Stage 
(m) 

2 
(m3/s) 

! 
3 

(m2) 
4 

(m) 
5 

(m) 
" 

(m) 
6 

(m/s) 
7 8 9: 

08148500 North 
Llano River near 
Junction 

Cobbles, 
gravel 5.49a 462 0.0029 232 88.6 2.59 2.62 1.99 0.051 0.149 0.39 

LCRA Johnson 
Fork near 
Junction 

Cobbles, 
gravel 6.10a 501 0.0026b 267 92.1 2.85 2.90 1.87 0.055 0.165 0.35 

LCRA James 
River near 
Mason 

Cobbles, 
gravel 5.49c 1,250 0.0034b 318 117 2.71 2.73 3.94 0.029 0.047 0.76 

LCRA 
Comanche Creek 
near Mason 

Sand 3.96a 207 0.0048b 105 66.8 1.56 1.58 1.97 0.047 0.152 0.50 

08150700 Llano 
River near 
Mason 

Cobbles, 
gravel 6.71c 2,470 0.0025 736 124 5.74 5.92 3.36 0.048 0.099 0.44 

LCRA Willow 
Creek near 
Masond 

Sand 4.57a 456 0.0030b 190 80.7 2.32 2.35 2.40 0.040 0.095 0.50 

LCRA Hickory 
Creek near 
Castelld 

Sand, 
bedrock 5.79a 708 0.0051b 318 90.4 3.45 3.52 2.23 0.073 0.279 0.38 

LCRA San 
Fernanado Creek 
near Llanod 

Sand, 
bedrock 5.49a 651 0.0025b 283 94.7 2.94 2.99 2.30 0.045 0.109 0.42 

LCRA Johnson 
Creek near 
Llanod 

Sand 4.88a 510 0.0029b 142 57.6 2.41 2.46 3.60 0.027 0.042 0.73 

08151500 Llano 
River at Llano 

Sand, 
bedrock 7.62c 3,060 0.0014 1,080 198 5.48 5.55 2.82 0.041 0.076 0.38 

LCRA Honey 
Creek near 
Kingslandd 

Cobbles, 
gravel 5.49a 756 0.0067b 169 58.6 2.83 2.89 4.47 0.037 0.074 0.84 

a Stage and hydraulic values for bankfull conditions. 
b Dimensionless channel slope values computed by using 10-meter DEMs and high-resolution NHD in GIS. 
c Stage and hydraulic values for macro-channel conditions. 
d Values given for top of concrete bridge apron and not for morphologic bankfull stage. The top of the apron, however, is used to 
approximate bankfull stage. 
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Figure 6.3.  Computational process to determine an appropriate flow-resistance 
coefficient for use in analyses of flow velocity and discharge at study sites in the Llano 
River watershed in Central Texas. 
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Manning’s � values at or near bankfull stage range from 0.027 to 0.073, and 

Darcy-Weisbach � friction factors range from 0.042 to 0.279. Although much 

variability is evident, similarities of mean flow-resistance coefficients for various bed-

material conditions emerge. For channels with cobble- to gravel-sized bed material, 

mean � is 0.044 and mean � is 0.107. For channels with sand-sized bed material, mean 

� is 0.046 and mean � is 0.126. For channels with bedrock outcrops, mean � is 0.053 

and mean � is 0.155. Although sand-bed channels are usually associated with lower 

flow-resistance coefficients than gravel-bed channels, the ubiquitous presence of 

irregular bedrock outcrops in sand-bed channels in the Llano River watershed result in 

comparable values. For hydraulic geometry computations at ungaged sites, an � value 

of 0.045 and an � value of 0.115 are used at bankfull stage unless otherwise noted, 

slightly higher than the � value of 0.035 used for bed-material entrainment 

computations in Heitmuller and Asquith (2008), but within the range suggested by 

Conyers and Fonstad (2005). 

For all study sites in the Llano River watershed, flow velocity was computed 

using the � value of 0.115 instead of the � value of 0.045 because the Darcy-Weisbach 

friction factor (�) is derived from a more theoretical basis (Robert 2003) and a narrower 

range of flow velocity is computed from low to high stages for each cross section 

(Table 6.3). The discharge values associated with the flood-frequency analyses 

discussed below ultimately are derived from the � value of 0.115 for all study sites. 
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Table 6.3.  Comparison of flow velocity computed from a Manning’s � value of 0.045 
and a Darcy-Weisbach � value of 0.115 at minimum low and maximum high stages of 
surveyed cross sections at selected sites without a cross section at the gage location in 
the Llano River watershed in Central Texas. 
 
[ , mean flow velocity; �, Manning’s � flow-resistance coefficient; m/s, meters per second; �, Darcy-Weisbach friction factor] 
 

Site Cross-section 
Minimum 6  

from  

7 (m/s) 

Maximum 6  
from  

7    (m/s) 

Minimum 6 
from  

8    (m/s) 

Maximum 6 
from  

8    (m/s) 

North Llano River near 
Roosevelt 

1 0.23 3.73 0.41 3.21 
2 0.27 3.50 0.46 3.08 
3 0.19 3.87 0.34 3.33 

South Llano River at Baker 
Ranch near Rocksprings 

1 0.23 0.47 0.38 0.64 
2 0.12 0.74 0.23 0.90 
3 0.08 0.83 0.18 0.98 
P 0.24 0.88 0.39 1.03 

South Llano River at U.S. 
Highway 377 near Rocksprings 

1 0.39 3.00 0.63 2.91 
2 0.56 3.38 0.81 3.20 

South Llano River at 700 
Springs Ranch near Telegraph 

1 0.30 4.42 0.50 3.79 
2 0.42 4.78 0.64 4.04 
3 0.33 4.13 0.55 3.63 

South Llano River at South 
Llano River State Park 

1 0.24 1.50 0.37 1.51 
2 0.09 1.36 0.20 1.39 
3 0.25 1.63 0.39 1.62 

South Llano River at Texas 
Tech University—Junction 

1 0.18 1.94 0.32 1.86 
2 0.10 1.99 0.20 1.89 
3 0.28 1.52 0.44 1.55 
4 0.25 1.66 0.39 1.65 

Llano River near Junction 

1 0.25 5.01 0.66 4.73 
2 0.32 4.81 0.62 4.53 
3 0.64 4.81 0.98 4.54 
4 0.46 3.16 0.79 3.30 

Llano River near Ivy Chapel 
1 0.16 2.60 0.29 2.36 
2 0.08 2.68 0.18 2.39 
3 0.22 2.72 0.38 2.42 

Llano River at James River 
Crossing near Mason 

1 0.22 3.44 0.39 3.06 
2 0.29 3.90 0.47 3.38 
3 0.26 3.33 0.43 3.02 

Llano River at Castell 
1 0.04 2.87 0.09 2.46 
2 0.08 2.70 0.16 2.35 
3 0.22 2.35 0.35 2.12 

Llano River near Kingsland 
1 0.42 2.48 0.64 2.41 
2 0.05 3.08 0.14 2.84 
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6.5.6 Flood Frequency Analyses 
 

Flood-frequency analyses include various statistical methods designed to 

compute site-specific discharges associated with given return periods (e.g., 100-year 

flood), and are necessary to determine the frequency at which bankfull or macro-

channel flow events occur. Two different flood-frequency methods were used in this 

investigation: (1) partial-duration analyses at sites with USGS stations and (2) a 

regionally-tuned regression analysis at ungaged sites (Figure 6.4). 

 Partial-duration analysis uses period-of-record discharges of measured flood 

peaks above a designated threshold that is referred to as the base discharge. The partial-

duration series is preferred over the annual-maximum series to estimate the frequency 

of relatively small or moderate events (1- to 10-year return period) or for stations with a 

short period of record (Soong et al. 2004). This is advantageous for investigations of 

bankfull discharge, which commonly is associated with the 1- to 2-year return period 

for the majority of rivers (e.g., Dury 1973; Andrews 1980). Further, the episodic flood 

regime in the study area commonly has 1 year with numerous peaks above the base 

discharge and numerous years with no peaks above base discharge, a problem 

circumvented through use of the partial-duration series. 
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Figure 6.4.  Computational process of flood frequency at gaged and ungaged study sites 
in the Llano River watershed in Central Texas. 
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 Base discharges and peaks above base for USGS stations in the Llano River 

watershed are published in annual water-data reports (e.g., U.S. Geological Survey 

2007). A few published base discharges have either increased or decreased over time, 

and some early peaks above base are missing for stations with a recent shift to a lower 

base discharge. Further, USGS water-data reports for Texas since 2001 only have the 

annual peak discharge, and USGS instantaneous data were used to fill the recent gap. 

Peaks above base discharge were digitized and return periods were computed 

using the following equation: 

< � =� > 1?/�, where 

< is the return period, in years; � is the period of record, in years; and � is the rank of 

the discharge, in order from largest to smallest. 

The peaks above base discharge and associated return periods were read into the 

lmomco package (Asquith 2009) of R (R Development Core Team 2004) and the four-

parameter kappa distribution curve fit the L-moments (Hosking and Wallis 1997) of 

observed data (Figures 6.5). Because partial-duration series include a greater number of 

peaks than years in the period of record, the lambda technique described on page 18.38 

of Stedinger, Vogel, and Foufoula-Georgiou (1993) was used to transform average 

arrival rates into annual exceedance probabilities, and flood magnitudes for various 

return periods were calculated from the kappa distribution (Table 6.4, Figure 6.5). For 

gaged locations, flood magnitudes reported in Table 6.4 do not exactly match 

discharges of bankfull and macro-channel conditions reported in Table 6.2 because the 
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mean � value of 0.115 was applied to compute discharge and a mean discharge value of 

multiple cross sections at each site was used to associate with flood-frequency analyses. 
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library(lmomco) 
Tp <- c(1,1.5,2,3,4,5,10,25,50,100) 
myfile <- file.choose() 
Q <- read.table(file=myfile, header=TRUE, sep=”\t”, 
fill=TRUE) 
names(Q) 
attach(Q) 
lmr <- lmoms(Qcms) 
Qsort <- sort(Qcms) 
PP <- pp(Qsort) 
plot(PP, log10(Qsort)) 
lmrdia <- lmrdia() 
plotlmrdia(lmrdia, xlim=c(-0.1, 0.6), ylim=c(-0.1, 0.6)) 
points(lmr$ratios[3], lmr$ratios[4]) 
ls() 
length(Qsort) 
para <- parkap(lmr) 
plot(PP, log10(Qsort)) 
lines(PP, log10(quakap(PP, para)), lwd=2) 
lambda <- length(Qsort)/52.5 
qe <- 1/(Tp*lambda) 
G <- 1-qe 
SOLUTION <- quakap(G,para) 
detach(Q) 
H <- list(event=SOLUTION,Tp=Tp,G=G,file=myfile) 
points(H$G,log10(H$event),pch=16,col=2,cex=3) 
return(H) 
 
event Tp G 
6025.81224708294  1 0.514018691588785 
12536.0335299932  1.5 0.67601246105919 
18331.9111174108  2 0.757009345794392 
27550.0714136785  3 0.838006230529595 
34571.9980314332  4 0.878504672897196 
40194.9175827853  5 0.902803738317757 
58182.7790138734  10 0.951401869158878 
82244.0527803254  25 0.980560747663551 
100209.861194574  50 0.990280373831776 
117807.815453841  100 0.995140186915888 
 
Figure 6.5.  Example of R-code and output for partial-duration flood-frequency 
analyses of USGS streamflow-gaging stations in the Llano River watershed in Central 
Texas. 
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 For ungaged sites and two LCRA sites with very short periods of record, a 

regionally-tuned regression analysis specific to undeveloped Texas watersheds was 

used. Six equations given in Asquith and Thompson (2008) to estimate the 2-, 5-, 10-, 

25-, 50-, and 100-year flood magnitudes based on a power transformation of drainage 

area and three predictors (drainage area, channel slope, and mean annual precipitation) 

were applied to all study sites. Channel slope for these computations was selected for 

each site based on longitudinal profile data, not local survey data, because regression 

equations are designed to capture watershed-scale influences on peak discharge 

(Asquith and Slade 1997). The channel slope values selected for regression-based 

analysis at USGS streamflow-gaging stations closely correspond with values in Asquith 

and Slade (1997) (Table 6.5). Discharge values were compared to corresponding flow 

magnitudes computed by partial-duration analyses at gaged locations, and the 

regression-based results were less than the partial-duration analyses (Figure 6.6). Based 

on a log10-transformation of the partial-duration and regression-derived discharge 

values, the average residual standard error (log10) for each return period was computed 

(0.3706, 0.3444, 0.3221, 0.2974, 0.2782, and 0.2595 for the 2-, 5-, 10-, 25-, 50-, and 

100-year return periods, respectively) and these scale factors were applied to regression-

based results (Asquith and Thompson 2008) at ungaged sites in the Llano River 

watershed (Table 6.4). 
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Table 6.4.  Flood magnitudes at various return periods for gaged and ungaged sites in 
the Llano River watershed, Central Texas, based on partial-duration and regionally-
tuned regression analyses. 
 
[m3/s, cubic meters per second; --, not available] 
 

Site 

Return period 

1-
year 

(m3/s) 

1.5-
year 

(m3/s) 

2-
year 

(m3/s) 

3-
year 

(m3/s) 

4-
year 

(m3/s) 

5-
year 

(m3/s) 

10-
year 

(m3/s) 

25-
year 

(m3/s) 

50-
year 

(m3/s) 

100-
year 

(m3/s) 

North Llano Draw near 
Sonoraa -- -- 14 -- -- 30 45 66 84 103 

North Llano River near 
Roosevelta -- -- 283 -- -- 638 970 1,484 1,929 2,426 

North Llano River near 
Junctionb 171 355 519 780 979 1,138 1,648 2,329 2,838 3,336 

South Llano River at Baker 
Ranch near Rockspringsa -- -- 134 -- -- 290 433 651 838 1,045 

South Llano River at U.S. 
Highway 377 near 
Rockspringsa 

-- -- 272 -- -- 589 879 1,321 1,698 2,115 

South Llano River at 700 
Springs Ranch near 
Telegrapha 

-- -- 305 -- -- 660 984 1,478 1,900 2,367 

South Llano River at South 
Llano River State Parka -- -- 424 -- -- 915 1,363 2,042 2,623 3,265 

South Llano River at Texas 
Tech University—Junctiona -- -- 426 -- -- 919 1,369 2,051 2,634 3,278 

Llano River near Junctionb 242 488 710 1,076 1,369 1,613 2,459 3,772 4,914 6,193 
LCRA Johnson Fork near 
Junctiona -- -- 251 -- -- 563 854 1,302 1,689 2,120 

Johnson Fork at Lowlands 
Crossing near Junctiona -- -- 255 -- -- 572 867 1,322 1,715 2,153 

Llano River near Ivy 
Chapela -- -- 734 -- -- 1,481 2,137 3,105 3,914 4,796 

LCRA James River near 
Masona -- -- 312 -- -- 717 1,099 1,694 2,212 2,793 

James River near Masona -- -- 320 -- -- 736 1,127 1,738 2,269 2,865 
Llano River at James River 
Crossing near Masona -- -- 1,047 -- -- 2,160 3,145 4,613 5,850 7,204 

Llano River near Masonb 428 793 1,111 1,635 2,057 2,412 3,675 5,738 7,638 9,879 
Beaver Creek near Masonb 107 173 227 314 383 440 645 984 1,302 1,686 
Llano River at Castella -- -- 1,221 -- -- 2,492 3,609 5,264 6,654 8,171 
Llano River at Llanob 503 928 1,302 1,895 2,345 2,707 3,871 5,456 6,664 7,871 
Llano River near Kingslanda -- -- 1,450 -- -- 2,925 4,211 6,106 7,693 9,418 
Honey Creek at KDK Ranch 
near Kingslanda -- -- 75 -- -- 194 315 514 694 902 

a Flood magnitudes computed by regionally-tuned regression analysis. 
b Flood magnitudes computed by partial-duration analysis. 
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Table 6.5.  Values used in regression-based flood-frequency equations (Asquith and 
Thompson 2008) based on a power transformation of drainage area and three predictors 
(drainage area, channel slope, and mean annual precipitation). Channel slope values are 
compared to published values in Asquith and Slade (1997) to ensure correct application. 
 
[km2, square kilometers; mm, millimeters] 
 

Site 
Drainage 

area (km2) 
Mean annual 

precipitation (mm) 
 

Channel 
slope 

Asquith and Slade 
(1997) channel slope 

08148500 North 
Llano River near 
Junction, Texas 

2,335 635  0.0021 0.0022 

08150000 Llano 
River near 
Junction, Texas 

4,815 635  0.0011 0.0019 

08150700 Llano 
River near Mason, 
Texas 

8,418 711  0.0015 0.0017 

08150800 Beaver 
Creek near Mason, 
Texas 

558 711  0.0034 0.0049 

08151500 Llano 
River at Llano, 
Texas 

10,885 737  0.0015 0.0016 

 

a Number of samples for cobble- and gravel-sized material is equated to an individual placement of the sampling grid (or 
approximately 25 individual clasts). 
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Figure 6.6.  Comparison of discharge values computed by partial-duration flood-
frequency and Asquith and Thompson (2008) regression-based flood-frequency 
analyses for selected USGS streamflow-gaging stations in the Llano River watershed in 
Central Texas. 
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6.6 Results 
 

Observations and quantification of channel geometry, boundary composition, 

and hydraulic variables at sites in the Llano River watershed are provided as follows in 

general order from upstream to downstream. Using GIS and field observations, 

channels are classified into four general categories based on hydrology, planform 

morphology, lithology, and alluvial development: (1) uppermost ephemeral reaches, 

commonly referred to as “draws” in the study area, (2) Cretaceous straight or sinuous 

gravel-bed channels, (3) Paleozoic straight or sinuous gravel-bed or bedrock channels, 

and (4) Precambrian straight, braided, or bedrock-braided sand-bed channels (Table 6.6, 

Figure 6.7). Various morphometric and sedimentary characteristics for individual study 

sites are provided in Table 6.1. Values of selected hydraulic parameters and at-a-station 

hydraulic geometry exponents are provided in Tables 6.7 and 6.8. 
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Table 6.6.  Percentage of channel length classified into various geomorphic categories, 
based on hydrology, planform morphology, lithology, and alluvial development. 
 
[km, kilometers; %, percent] 
 

River 
Channel 

length (km) 
Classification and percentage of length 

Sum of channel segment 
lengths (km) 

North 
Llano 
River 

95.6 

29.6% ephemeral aggraded 28.3 
14.4% ephemeral bedrock incised 13.8 
44.0% partly-confined Cretaceous sinuous 42.0 
12.0% partly-confined Cretaceous straight 11.5 

South 
Llano 
River 

115 

45.6% ephemeral aggraded 52.4 
14.6% ephemeral bedrock incised 16.8 
25.7% partly-confined Cretaceous sinuous 29.6 
14.1% partly-confined Cretaceous straight 16.2 

Llano 
River 187 

2.1% confined Cretaceous 3.9 
18.3% partly-confined Cretaceous sinuous 34.2 
12.7% confined Paleozoic bedrock 23.8 
4.4% partly-confined Paleozoic sinuous 8.2 
10.1% confined Paleozoic straight 18.9 
10.9% Precambrian braided 20.4 
13.3% Precambrian bedrock-braided 24.9 
24.6% Precambrian straight 46.0 
3.6% Lake LBJ 6.7 
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Figure 6.7.  The Llano River in Central Texas is classified into four general 
geomorphic categories: (1) uppermost ephemeral reaches, commonly referred to as 
“draws” in the study area, (2) Cretaceous straight or sinuous gravel-bed channels, (3) 
Paleozoic straight or sinuous gravel-bed or bedrock channels, and (4) Precambrian 
straight, braided, or bedrock-braided sand-bed channels. Straight or sinuous channels 
are determined by an alluvial sinuosity threshold of 1.1 irrespective of bends in the 
valley. 
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Table 6.7.  Selected hydraulic characteristics for bankfull stage at study sites in the 
Llano River watershed in Central Texas. Various LCRA sites are not included if cross-
sectional geometry measurements contain bridge-construction features, including 
concrete aprons and artificial embankments. Values represent averages of multiple cross 
sections. 
 
[BF �, bankfull discharge; m3/s, cubic meters per second; BF @, bankfull stream power; W/m, watts per meter; BF A, bankfull unit 
stream power; W/m2, watts per square meter; BF �, bankfull width; m, meters; BF �, bankfull mean depth; BF  , bankfull mean 
velocity; m/s, meters per second; �, at-a-station hydraulic geometry exponent for bankfull width; �, at-a-station hydraulic geometry 
exponent for bankfull mean depth; �, at-a-station hydraulic geometry exponent for bankfull mean velocity; --, not available] 
 

Site BF 2 
(m3/s) 

BF B 
(W/m) 

BF C 
(W/m2) 

BF 4 
(m) 

BF " 
(m) 

BF 6 
(m/s) D 8 E 

North Llano Draw near Sonoraa -- --  -- -- -- -- -- -- 
North Llano River near 
Rooseveltb 494 10,200 142 71.8 3.05 2.06 0.42 0.39 0.19 

North Llano River near 
Junctionb 536 15,200 142 107 2.44 2.19 0.47 0.36 0.18 

South Llano River at Baker 
Ranch near Rockspringsb 37.1 545 6.47 84.2 0.62 0.78 0.48 0.34 0.18 

South Llano River at U.S. 
Highway 377 near Rockspringsb 157 5,520 175 31.6 2.01 2.20 0.22 0.52 0.26 

South Llano River at 700 
Springs Ranch near Telegraphb 556 16,300 139 117 2.21 2.12 0.34 0.44 0.22 

South Llano River at South 
Llano River State Parkb 382 4,490 25.7 175 1.99 1.25 0.47 0.35 0.21 

South Llano River at Texas 
Tech University—Junctionb 351 4,820 31.5 153 1.79 1.31 0.38 0.41 0.21 

LCRA Johnson Fork near 
Junctionb 606 15,400 167 92.1 2.90 2.27 0.34 0.44 0.22 

Johnson Fork at Lowlands 
Crossing near Junctionb 350 18,200 180 101 1.49 2.32 0.46 0.36 0.18 

LCRA James River near Masonb 371 12,300 119 103 1.78 2.03 0.30 0.47 0.23 
Llano River at James River 
Crossing near Masonb 1,180 28,900 191 151 3.22 2.33 0.32 0.45 0.23 

Llano River near Masonb 594 14,600 127 115 2.50 2.05 0.27 0.48 0.24 
Beaver Creek near Masonb 193 5,850 89.6 65.3 1.57 1.82 0.38 0.41 0.21 
Llano River at Castellb 906 11,500 82.1 140 3.57 1.78 0.20 0.53 0.27 
Llano River at Llanob 970 13,300 80.6 165 3.31 1.78 0.36 0.43 0.21 
Llano River near Kingslandb 778 20,600 89.6 230 1.83 1.84 0.46 0.36 0.18 
Honey Creek at KDK Ranch 
near Kingslandc 25.3 5,530 205 27.0 0.73 1.30 0.27 0.49 0.24 

a No data provided for North Llano Draw near Sonora because a definable channel is not present. 
b Bankfull discharge, stream power, mean velocity, and hydraulic geometry exponents computed from hydraulic analyses using a 
Darcy-Weisbach � factor of 0.115. 
c Bankfull discharge, stream power, mean velocity, and hydraulic geometry exponents computed from hydraulic analyses using a 
Darcy-Weisbach � factor of 0.750. 
 
 
 
 
 



209 
 

Table 6.8.  Selected hydraulic characteristics for macro-channels at study sites in the 
Llano River watershed in Central Texas. Values represent averages of multiple cross 
sections, if more than one cross section was available for the macro-channel. Values are 
not comparable with one another because they represent individual heights above 
bankfull stage, and do not necessarily extend to the top of the macro-channel. 
 
[BF, bankfull stage; m, meters; �, discharge; m3/s, cubic meters per second; @, stream power; W/m, watts per meter; A, bankfull 
unit stream power; W/m2, watts per square meter; �, width; �, mean depth;  , mean velocity; m/s, meters per second; �, at-a-station 
hydraulic geometry exponent for width above bankfull stage; �, at-a-station hydraulic geometry exponent for mean depth above 
bankfull stage; �, at-a-station hydraulic geometry exponent for mean velocity above bankfull stage; --, no morphologic indicators 
of bankfull stage] 
 

Site Height above 
BF (m) 

2 
(m3/s) 

B 
(W/m) 

C 
(W/m2) 

4 
(m) 

" 
(m) 

6 
(m/s) D 8 E 

Llano River near Junctiona --b 2,400 167,000 1,800 93.0 5.33 5.07 0.23 0.51 0.26 
Llano River near Ivy 
Chapela --b 2,360 34,700 208 167 5.75 2.43 0.35 0.43 0.22 

LCRA James River near 
Masona 2.7b 1,520 50,600 386 131 3.88 3.00 0.16 0.56 0.28 

James River near Masona --b 5,410 313,000 1,750 179 6.04 4.92 0.18 0.55 0.27 
Llano River at James 
River Crossing near 
Masona 

3.9b 4,130 101,000 409 247 5.48 3.06 0.24 0.50 0.25 

Llano River near Masona 7.1b 4,570 112,000 463 242 5.91 3.17 0.40 0.40 0.20 
Beaver Creek near Masona 3.4c 947 28,700 293 97.9 3.54 2.74 0.26 0.49 0.25 
Llano River at Castella 5.0c 3,720 47,300 190 249 6.31 2.37 0.43 0.38 0.19 
Llano River at Llanoa 4.9b 6,040 82,900 287 289 7.70 2.71 0.32 0.45 0.23 
Llano River near 
Kingslanda 3.6c 3,690 97,600 330 296 4.39 2.84 0.20 0.53 0.27 

Honey Creek at KDK 
Ranch near Kingslandd 2.5b 286 62,500 1,280 48.9 2.47 2.40 0.21 0.53 0.26 

a Discharge, stream power, mean velocity, and hydraulic geometry exponents computed from hydraulic analyses using a Darcy-
Weisbach � factor of 0.115. 
b Top of macro-channel. 
c Below top of macro-channel. 
d Discharge, stream power, mean velocity, and hydraulic geometry exponents computed from hydraulic analyses using a Darcy-
Weisbach � factor of 0.750. 
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6.6.1 Ephemeral Draws 
 

The uppermost ephemeral draws of the North and South Llano Rivers occur near 

the top of the Edwards Plateau. Three study sites are considered representative of this 

category: (1) North Llano Draw near Sonora, (2) South Llano River at Baker Ranch 

near Rocksprings, and (3) South Llano River at U.S. Highway 377 near Rocksprings. 

Although all three are characterized by flow occurring only during storm-driven runoff 

events, considerable morphologic differences between them can be attributed to 

increasing hydraulic energy associated with drainage area. Therefore, two sub-

categories of ephemeral draws are defined by the author: (1) ephemeral aggraded and 

(2) ephemeral bedrock incised (Table 6.6, Figure 6.7). 

Ephemeral aggraded channels are characterized by fine-grained (silt and clay) 

bed and bank deposits that have subtle topographic transitions to surrounding valley fill 

deposits. Discontinuous pools, often containing ponded water and varying proportions 

of angular cobbles in the bed, interrupt dry channel reaches and are readily 

distinguished from the surrounding valley fill. After approximately 20 kilometers of 

downstream distance, the North and South Llano Rivers develop alluvial valleys 

ranging from about 250 to 750 meters wide, and a sinuous channel ranges from 

approximately 75 to 100 meters wide. Fine-grained valley fill deposits along ephemeral 

aggraded reaches are attributed to extensive upland soil erosion during the early and 

middle Holocene (Cooke et al. 2003) that filled valleys incised at the terminus of the 

Pleistocene epoch (Blum, Toomey, and Valastro 1994; Mear 1995). As drainage area 
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and downstream distance increase, the ephemeral draws have enough stream power 

during runoff events to remove fine-grained sediment and incise the carbonate plateau, 

and bedrock exposures are numerous. 

Ephemeral bedrock incised draws have relatively narrow valleys, ranging 

between 50 and 250 meters, and narrow straight channels, ranging from about 25 to 75 

meters wide. They are characterized by step-like bedrock banks that descend to a 

bedrock bed with limited cobble- and gravel-sized deposits, and form a transition from 

channels along the top of the plateau to those with incised valleys. 

EXAMPLE LOCALITY: The South Llano River at Baker Ranch near 

Rocksprings is a good example of an ephemeral aggraded channel in the Llano River 

watershed (Figure 6.8). The site occurs 29.5 kilometers downstream of the uppermost 

South Llano River headcut, and has a drainage area of 417 square kilometers. A 

sinuous, fine-grained channel with discontinuous pools and isolated deposits of angular 

cobbles occurs in a valley ranging between 400 and 415 meters wide. The bankfull 

stage of the channel is identified by a gentle break in slope and an abrupt transition to 

open woodland. Based on hydraulic analyses of four cross sections at the site, including 

one with a pool, bankfull discharge is 37.1 cubic meters per second. According to 

regionally-tuned regression analyses, bankfull discharge has a return period much less 

than 2 years (Tables 6.4, 6.7). At-a-station hydraulic geometry analyses for bankfull 

stage indicate that channel width (� = 0.48) compensates for increasing discharge at a 

greater rate than mean channel depth (� = 0.34) because � is greater than �. 
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Figure 6.8.  The South Llano River at Baker Ranch near Rocksprings, Texas, is 
representative of ephemeral aggraded channels in the uppermost Llano River watershed. 
The fine-grained (silt and clay), sinuous channel gently transitions into surrounding 
valley-fill deposits. The top-left picture is looking upstream from cross-section 2. At-a-
station hydraulic geometry analyses at bankfull stage indicate that the rate of change of 
channel width (b = 0.48) is greater than that of mean depth (f = 0.34). Based on 
hydraulic analyses of all cross sections, bankfull discharge is 37.1 cubic meters per 
second and has a return period less than 2 years. 
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6.6.2 Cretaceous Gravel-Bed Channels 
 

Incised bedrock ephemeral draws transition to perennial, partly-confined straight 

or sinuous channels at karstic springs along the North Llano and South Llano Rivers. 

Near the confluence of the North Llano and Dry Llano Rivers, springs contribute 

perennial flow and drainage area increases, which forms a wider alluvial valley. 

Upstream of the confluence of Paint Creek and the South Llano River, springs 

contribute perennial flow and drainage area increases, and the alluvial valley continues 

to widen. In addition to Paint Creek, Bear Creek and Johnson Fork are considered major 

tributaries in this zone of the watershed. Bankfull channel widths range from about 75 

to 175 meters with channel widths generally increasing downstream. Eight study sites 

are considered representative of this category: (1) North Llano River near Roosevelt, (2) 

North Llano River near Junction, (3) South Llano River at 700 Springs Ranch near 

Telegraph, (4) South Llano River at South Llano River State Park, (5) South Llano 

River at Texas Tech University—Junction, (6) Llano River near Junction, (7) Johnson 

Fork at Lowlands Crossing near Junction, and (8) Llano River near Ivy Chapel. 

Although the eight sites are characterized by mostly perennial flow and cobble- to 

gravel-sized bed material, morphologic differences between them can be attributed to 

alluvial sinuosity and relative confinement by bedrock valley walls. Therefore, three 

sub-categories of Cretaceous gravel-bed channels are defined by the author: (1) partly-

confined straight, (2) partly-confined sinuous, and (3) confined (Table 6.6, Figure 6.7). 
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Partly-confined straight channels are characterized by an alluvial sinuosity less 

than 1.1 and have beds comprised of cobble- to gravel-sized bed material or bedrock. 

Banks are either gradually sloping where coarse channel-lag deposits are dominant or 

steep where overbank fine-grained material is dominant. At some sites, steep bedrock 

valley walls occur along one side of the channel. Alluvial valleys of straight channels 

are relatively narrow (200 to 400 meters) and are comprised of cobble- to gravel-sized 

lag deposits capped with fine-grained overbank sediment. As the North and South Llano 

Rivers approach Junction, drainage area exceeds 2,000 square kilometers and the 

alluvial valley widens at some locations to greater than 1.5 kilometers. Sinuous cobble- 

to gravel-bed channels occur within a Holocene floodplain surrounded by earlier terrace 

deposits, and frequently occurring longitudinal channel bars occur alongside the low-

flow (thalweg) channel. 

Partly-confined sinuous channels are characterized by an alluvial sinuosity 

greater than 1.1 and banks are comprised of various combinations of coarse channel lag 

deposits, fine-grained overbank deposits, or sand contributed from exposures of the 

Hensell Sands. Channel banks gently slope on the convex side of gradual meander 

bends or where the sand percentage is high, or steeply slope on the concave side of 

gradual meander bends or where the sand percentage is low. Downstream of Junction, 

the Llano River exhibits enlarged meander bends, similar to those documented in a 

neighboring watershed by Blum and Valastro (1989). These bends are attributed to 

relatively humid conditions between 4,500 and 1,000 years B.P. 
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Confined cobble- to gravel-bed channels in the Cretaceous zone of the 

watershed occur along two reaches of the Llano River and correspond with the study 

sites near Junction and Ivy Chapel. The alluvial valley narrows at these two locations to 

less than 500 meters and bedrock valley walls are comprised of the Hensell Sand unit. 

At the site near Junction, avulsion through the bedrock exposure results in a completely 

confined channel less than 100 meters wide. Bedrock also is exposed along the channel 

bed and banks, and alluvial banks are associated with narrow inset floodplains. 

EXAMPLE LOCALITY: The North Llano River near Junction is an example of 

a partly-confined sinuous channel (Figure 6.9) and is located at a USGS streamflow-

gaging station. The site occurs 89.2 kilometers downstream of the uppermost North 

Llano River headcut, and has a drainage area of 2,335 square kilometers. A sinuous, 

cobble- to gravel-bed channel can be separated into a low-flow channel (thalweg) and 

longitudinal bars. The channel banks are comprised of fine-grained sandy alluvium, 

which thinly separates the channel from older terrace deposits and the Hensell Sand. 

Including the older fluvial terrace deposit, the valley ranges between 750 and 1,000 

meters wide. The bankfull stage of the channel is identified by a break in slope and 

conspicuous inset floodplains along the right bank at cross-sections 1, 2, and 3, and 

fine-grained deposits on top of a mid-channel island at cross-section 0. Based on 

hydraulic analyses of four cross sections at the site, bankfull discharge is 536 cubic 

meters per second. According to partial-duration flood-frequency analyses, bankfull 

discharge has a return period of about 2 years (Tables 6.4, 6.7). At-a-station hydraulic 
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geometry analyses for bankfull stage indicate that channel width (� = 0.47) 

compensates for increasing discharge at a greater rate than mean channel depth (� = 

0.36). 
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Figure 6.9.  The North Llano River near Junction, Texas, is representative of partly-
confined sinuous channels in the Cretaceous zone of the Llano River watershed. The 
cobble- to gravel-bed channel has fine-grained sandy banks that thinly separate it from 
older terrace deposits and bedrock. The top-left picture is looking from the right bank 
toward the left bank at cross-section 3. At-a-station hydraulic geometry analyses at 
bankfull stage indicate that the rate of change of channel width (b = 0.47) is greater than 
that of mean depth (f = 0.36). Based on hydraulic analyses of all cross sections, bankfull 
discharge is 536 cubic meters per second and has a return period of about 2 years. 
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EXAMPLE LOCALITY: The South Llano River at Texas Tech University—

Junction is another example of a partly-confined sinuous channel (Figure 6.10), but 

occurs in a wider alluvial valley than the North Llano River near Junction. The site 

occurs 110 kilometers downstream of the uppermost South Llano River headcut, and 

has a drainage area of 2,271 square kilometers. A sinuous, cobble- to gravel-bed 

channel can be separated into a low-flow channel (thalweg) and longitudinal bars. The 

channel banks are mostly comprised of fine-grained sandy alluvium, and channel-lag 

deposits of cobble- to gravel-sized material are prominent near the base. Including 

fluvial terrace deposits, the valley ranges from 1.3 to 1.6 kilometers wide. The bankfull 

stage of the channel is identified by breaks in slope on both banks, which separate the 

channel from horizontally-level, fine-grained floodplains. Hydraulic analyses of four 

cross sections at the site indicate that bankfull discharge is 351 cubic meters per second. 

According to regionally-tuned regression analyses, bankfull discharge has a return 

period less than 2 years (Tables 6.4, 6.7). At-a-station hydraulic geometry analyses for 

bankfull stage indicate that mean channel depth (� = 0.41) compensates for increasing 

discharge at a slightly greater rate than channel width (� = 0.38). 
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Figure 6.10.  The South Llano River at Texas Tech University—Junction, Texas, is 
representative of partly-confined sinuous channels in the Cretaceous zone of the Llano 
River watershed. The cobble- to gravel-bed channel has fine-grained sandy banks with 
cobble- to gravel-sized channel lag deposits at the base. The top-left picture is looking 
toward the left bank at cross-section 4. At-a-station hydraulic geometry analyses at 
bankfull stage indicate that the rate of change of mean depth (f = 0.41) is slightly greater 
than that of channel width (b = 0.38). Based on hydraulic analyses of all cross sections, 
bankfull discharge is 351 cubic meters per second and has a return period of less than 2 
years. 
 
 
 
 
 
 
 
 



220 
 

EXAMPLE LOCALITY: The Llano River near Ivy Chapel is an example of a 

confined channel in the Cretaceous zone of the watershed (Figure 6.11). The site occurs 

25 kilometers downstream of the confluence of the North Llano and South Llano 

Rivers, and has a drainage area of 5,939 square kilometers. The cobble- to gravel-bed 

and bedrock channel is confined to an alluvial valley less than 500 meters wide for a 

distance of about 1.5 kilometers, but the channel is sinuous just upstream and 

downstream of this constriction. The channel can be separated into a low-flow channel 

(thalweg) and longitudinal bars, and the right bedrock bank juxtaposes with a left bank 

comprised of mostly silt- and sand-sized material. The distinct break in slope at the top 

of the left bank is about 10 meters above the channel bed, which is approximately twice 

the height of alluvial banks along the North and South Llano Rivers. At this stage, 

discharge is 2,360 cubic meters per second based on hydraulic analyses of three cross 

sections. According to regionally-tuned regression analyses, this discharge has a return 

period of about 12 years (Tables 6.4, 6.8). The Llano River near Ivy Chapel is 

considered an example of a macro-channel, and little to no evidence indicates that 

channel shape adjusts to flows with return periods less than 5 years. Other hydraulic 

computations, however, indicate that the channel bed adjusts during more frequent 

flows with return periods between 1 and 2 years (Heitmuller and Asquith 2008). At-a-

station hydraulic geometry analyses for macro-channel stage indicate that mean channel 

depth (� = 0.43) compensates for increasing discharge at a greater rate than channel 

width (� = 0.35). 



221 
 

 

Figure 6.11.  The Llano River near Ivy Chapel, Texas, is representative of confined 
channels in the Cretaceous zone of the Llano River watershed. The cobble- to gravel-
bed channel has a fine-grained left bank comprised mostly of silt and sand and a right 
bank comprised of bedrock. The top-left picture is looking downstream from the left 
bank at cross-section 3. At-a-station hydraulic geometry analyses at macro-channel 
stage indicate that the rate of change of mean depth (f = 0.43) is greater than that of 
channel width (b = 0.35). Based on hydraulic analyses of all cross sections, macro-
channel discharge is 2,360 cubic meters per second and has a return period of about 12 
years. 
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6.6.3 Paleozoic Channels (Bedrock and Gravel-Bed) 
 

As the Llano River enters the Paleozoic sedimentary zone the valley becomes 

more confined, and following a brief sinuous phase the channel becomes remarkably 

straight. The alluvial sinuosity effectively is reduced to 1.00 because the channel 

boundary consists entirely of bedrock. Observed bends in the channel pattern are 

attributed to preferentially weathered joints or fractures in the bedrock. Cobble- to 

gravel-sized bar deposits are less frequent and occur in hydraulically favorable areas, 

including the convex side of very gradual bends or at tributary confluences. Bankfull 

width is about 150 meters, and macro-channel width is about 250 meters along the 

main-stem Llano River. The James River is a major tributary in the Paleozoic 

sedimentary zone of the watershed. Three study sites are considered representative of 

this category: (1) James River near Mason, (2) Llano River at James River Crossing 

near Mason, and (3) Honey Creek at KDK Ranch near Kingsland. Although most 

channel reaches are characterized by confined bedrock valleys and varying amounts of 

cobble- to gravel-sized bed material in this zone of the watershed, morphologic 

differences can be attributed to alluvial sinuosity and abundance of observed alluvial 

deposits. Therefore, three sub-categories of Paleozoic channels are defined by the 

author: (1) partly-confined sinuous, (2) confined bedrock, and (3) confined straight 

(Table 6.6, Figure 6.7). 

Partly-confined sinuous reaches are characterized by an alluvial sinuosity 

greater than 1.1, and are associated with about 8 kilometers of the Llano River 
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downstream of the Cretaceous-Paleozoic contact. The valley width gradually reduces 

along this reach, and Pennsylvanian limestone and shale units are exposed at the 

surface. The sinuous reaches in this sub-category mark the downstream extent of 

enlarged meander bends (Blum and Valastro 1989) observed along the Llano River in 

the Cretaceous zone. 

Confined bedrock reaches in the Paleozoic zone are remarkably straight and 

channel boundaries are comprised of Ordovician-aged carbonate sequences. A few 

limited inset floodplains and channel-bar deposits are observed along bedrock reaches, 

but overall the channel is hydraulically efficient and transports sediment to downstream 

reaches. 

Confined straight reaches begin at the location where the Llano River exits the 

Ordovician-aged bedrock and enters a zone of Cambrian siltstone, carbonate, and 

sandstone. Downstream of this contact, the alluvial valley widens to about 300 to 500 

meters. Cobble- to gravel-sized channel-bar deposits and fine-grained inset floodplains 

become more numerous, and alluvial sinuosity slightly increases but remains less than 

1.1. 

EXAMPLE LOCALITY: The Llano River at James River Crossing near Mason 

is an example of a confined straight channel in the Paleozoic zone of the watershed 

(Figure 6.12). The site occurs 78 kilometers downstream of the confluence of the North 

Llano and South Llano Rivers, and has a drainage area of 8,032 square kilometers. The 

cobble- to gravel-bed and bedrock channel is confined to an alluvial valley less than 500 
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meters wide, and valley walls are comprised of Cambrian sandstone. The channel can 

be separated into two low-flow channels (thalwegs) around a large mid-channel bar 

comprised of cobble- to gravel-sized material with considerable quantities of sand. The 

large channel bar, about 500 meters long, 250 meters wide, and 5 meters above the 

thalweg, nearly constitutes an island by virtue of its vertical extent and is associated 

with considerable quantities of sediment delivered by the James River. Permanent 

vegetation, however, is not established on the bar surface and, therefore, should not be 

considered an island. At the top of the mid-channel bar, discharge is 1,180 cubic meters 

per second based on hydraulic analyses of three cross sections. According to regionally-

tuned regression analyses, this discharge has a return period of about 2.5 years (Tables 

6.4, 6.7) and is considered synonymous with bankfull conditions along the sinuous 

reaches in the Cretaceous zone of the watershed. 

To confirm hydraulic and flood-frequency regression analyses at this site, high-

water marks associated with a March 2007 flow were simultaneously surveyed with 

cross-section topography. The computed discharge of 325 cubic meters per second for 

this event has an estimated return period much less than 2 years (Table 6.4), and is 

comparable to the peak discharge (396 cubic meters per second) and return period of 

about 1 year computed by partial-duration analyses of USGS streamflow data for the 

same event downstream at the Llano River near Mason. For the stage associated with 

the top of the mid-channel bar, at-a-station hydraulic geometry analyses indicate that 
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mean channel depth (� = 0.45) compensates for increasing discharge at a greater rate 

than channel width (� = 0.32). 

Well-defined inset floodplains along the left and right sides of the Llano River at 

James River Crossing near Mason are readily distinguished from the channel by breaks 

in slope along the sandy banks and are about 10 meters above the channel bed (Figure 

6.12). At the 10-meter stage, discharge is 4,130 cubic meters per second based on 

hydraulic analyses of three cross sections. According to regionally-tuned regression 

analyses, this discharge has a return period of about 20 years (Tables 6.4, 6.8), therefore 

the height of the inset floodplain demarcates the extent of a macro-channel. At-a-station 

hydraulic geometry analyses between bankfull and macro-channel stages indicate that 

mean channel depth (� = 0.50) compensates for increasing discharge at a greater rate 

than channel width (� = 0.24). 
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Figure 6.12.  The Llano River at James River Crossing near Mason, Texas, is 
representative of straight channels in the Paleozoic zone of the Llano River watershed. 
The cobble- to gravel-bed and bedrock channel has a mid-channel bar comprised of 
cobble- to gravel-sized and sandy material, and the top of the bar is synonymous with 
bankfull conditions along sinuous reaches in the Cretaceous zone of the watershed. At-
a-station hydraulic geometry analyses at bankfull stage indicate that the rate of change 
of mean depth (f = 0.45) is greater than that of channel width (b = 0.32). Based on 
hydraulic analyses of all cross sections, bankfull discharge is 1,180 cubic meters per 
second and has a return period of about 2.5 years. Fine-grained inset floodplains 
demarcate the extent of a macro-channel. At-a-station hydraulic geometry analyses at 
macro-channel stage indicate that the rate of change of mean depth (f = 0.50) is greater 
than that of channel width (b = 0.24). Based on hydraulic analyses of all cross sections, 
macro-channel discharge is 4,130 cubic meters per second and has a return period of 
about 20 years. The top-left picture is looking upstream from the left bank at cross-
section 2. 
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6.6.4 Precambrian Channels (Bedrock or Sand-Bed) 
 

Planform morphology of the Llano River becomes more complex upon entering 

the Precambrian igneous and metamorphic zone of the watershed. Similar to reaches in 

the Paleozoic sedimentary zone, the valley is largely confined and alluvial sinuosity is 

1.00 at most locations. Relatively weak joints or mineralogical seams in the surface 

bedrock are responsible for observed bends in the river. Increasing additions of sand to 

the channel result in braided reaches, and numerous irregular outcrops along the bed 

result in bedrock-braided reaches. Bankfull width ranges from 125 to 250 meters, and 

macro-channel width ranges from 250 to 450 meters along the main-stem Llano River. 

Beaver, Hickory, and San Fernando Creeks are major tributaries. Five study sites are 

considered representative of this category: (1) Llano River near Mason, (2) Beaver 

Creek near Mason, (3) Llano River at Castell, (4) Llano River at Llano, and (5) Llano 

River near Kingsland. Although most channel reaches are characterized by confined 

bedrock valleys and very low alluvial sinuosity in this zone of the watershed, 

morphologic differences can be attributed to channel-bed composition and the presence 

or absence of multi-thread low-flow channels. Therefore, three sub-categories of 

Precambrian channels are defined by the author: (1) braided, (2) bedrock-braided, and 

(3) straight (Table 6.6, Figure 6.7). A fourth sub-category, which is not discussed, is 

associated with the Llano arm of Lake LBJ, which is a reservoir along the Colorado 

River and coincides with the terminus of the Llano River. 
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Braided reaches are characterized by a sand-bed, multi-thread low-flow channel 

absent of Precambrian bedrock exposures along the channel bed. In total, braided 

reaches constitute 20.4 kilometers of the Llano River, and mostly occur downstream of 

Llano because of relatively voluminous amounts of sand in the channel. 

Bedrock-braided reaches are characterized by a multi-thread low-flow channel 

with exposed, irregular outcrops of Precambrian bedrock along the channel bed. In 

total, bedrock-braided reaches constitute 24.9 kilometers of the Llano River, and are 

uniformly distributed along the channel in the Precambrian zone of the watershed. 

Straight reaches are characterized by a sand-bed, single-thread channel with 

limited exposures of Precambrian bedrock along the channel bed. In total, straight 

reaches constitute 46.0 kilometers of the Llano River in the Precambrian zone of the 

watershed, and mostly occur upstream of Llano because the quantity of sand is 

insufficient to form exposed channel-bar deposits. All three types of reaches have 

limited inset floodplains comprised of sand, and channel banks commonly are exposed 

bedrock. 

EXAMPLE LOCALITY: The Llano River at Llano is an example of a braided 

channel (Figure 6.13) and occurs at a USGS streamflow-gaging station (08151500). The 

site occurs 146 kilometers downstream of the confluence of the North Llano and South 

Llano Rivers and has a drainage area of 10,885 square kilometers. A low-flow control 

structure just upstream of the site creates a small water-supply reservoir for Llano, but 

does not regulate flow or sand transport during high-flow conditions. The structure, 
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however, might interrupt the continuous supply of sand-sized sediment to the reaches 

immediately downstream. The sand-bed channel has limited bedrock exposures along 

the bed, and valley walls are comprised of Precambrian Packsaddle Schist. Relatively 

subtle breaks in slope along the sandy left bank of cross-section 3 and right bank of 

cross-section 2 identify the conditions considered synonymous with bankfull stage 

observed at other sites along the river. At this stage, discharge is 970 cubic meters per 

second based on hydraulic analyses of three cross sections. According to partial-

duration flood-frequency analyses, this discharge has a return period of about 1.5 years 

(Tables 6.4, 6.7). For the stage associated with bankfull conditions, at-a-station 

hydraulic geometry analyses indicate that mean channel depth (� = 0.43) compensates 

for increasing discharge at a greater rate than channel width (� = 0.36). Well-defined 

breaks in slope at the top of sandy inset floodplains along the left and right sides of the 

channel are about 12 meters above the bed. At this stage, discharge is 6,040 cubic 

meters per second based on hydraulic analyses of three cross sections. According to 

partial-duration flood-frequency analyses, this discharge has a return period of about 40 

years (Table 6.4, 6.8). Based on these computations, the height of the inset floodplain 

demarcates the extent of a macro-channel. At-a-station hydraulic geometry analyses 

between bankfull and macro-channel stages indicate that mean channel depth (� = 0.45) 

compensates for increasing discharge at a greater rate than channel width (� = 0.32). 
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Figure 6.13.  The Llano River at Llano, Texas, is representative of braided channels in 
the Precambrian zone of the Llano River watershed. The sand-bed channel has limited 
bedrock exposures along the bed, and a subtle break in slope along the channel bank is 
synonymous with bankfull conditions observed at other sites along the river. At-a-
station hydraulic geometry analyses at bankfull stage indicate that the rate of change of 
mean depth (f = 0.43) is greater than that of channel width (b = 0.36). Based on 
hydraulic analyses of all cross sections, bankfull discharge is 970 cubic meters per 
second and has a return period of about 1.5 years. Distinct breaks in slope at the top of 
sandy inset floodplains demarcate the extent of a macro-channel. At-a-station hydraulic 
geometry analyses at macro-channel stage indicate that the rate of change of mean 
depth (f = 0.45) is greater than that of channel width (b = 0.32). Based on hydraulic 
analyses of all cross sections, macro-channel discharge is 6,040 meters per second and 
has a return period of about 40 years. The top-left picture is looking downstream from 
the right bank at cross-section 2. 
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EXAMPLE LOCALITY: The Llano River near Kingsland occurs at a transition 

from bedrock-braided to braided conditions (Figure 6.14). The site occurs 177 

kilometers downstream of the confluence of the North Llano and South Llano Rivers 

and has a drainage area of 11,406 square kilometers. The sand-bed and bedrock channel 

occurs just upstream of Lake LBJ, and valley walls are comprised of Precambrian Town 

Mountain Granite. Breaks in slope along the sandy left bank of cross-section 2 and right 

bank of cross-section 1 identify the conditions considered synonymous with bankfull 

stage of 3.4 meters observed at other sites along the river. At the 3.4-meter stage, 

discharge is 778 cubic meters per second based on hydraulic analyses of two cross 

sections. According to regionally-tuned regression analyses, this discharge has a return 

period much less than 2 years (Tables 6.4, 6.7). 

To confirm hydraulic and flood-frequency regression analyses for bankfull stage 

at this site, high-water marks associated with a March 2007 flow were simultaneously 

surveyed with cross-section topography. The computed discharge of 502 cubic meters 

per second has an estimated return period much less than 2 years (Table 6.4) and is 

comparable to the peak discharge (365 cubic meters per second) and return period (less 

than 1 year) computed by partial-duration analyses of USGS streamflow data for the 

same event upstream at the Llano River at Llano. For the stage associated with bankfull 

conditions, at-a-station hydraulic geometry analyses indicate that channel width (� = 

0.46) compensates for increasing discharge at a greater rate than mean channel depth (� 

= 0.36). Although the measured survey did not reach the top of the macro-channel, 
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vertical extent of the survey at cross-section 2 is about 6 meters above the bed. At the 6-

meter stage, discharge is 3,690 cubic meters per second based on hydraulic analyses of 

cross-section 2. According to regionally-tuned regression analyses, this discharge has a 

return period of about 8 years (Tables 6.4, 6.8). 

To confirm hydraulic and flood-frequency regression analyses for the macro-

channel at this site, high-water marks associated with a June 2007 flow were 

simultaneously surveyed with cross-section topography. The computed discharge of 

3,350 cubic meters per second has an estimated return period of about 6 years (Table 

6.4), and is substantially greater than the peak discharge (2,060 cubic meters per 

second) and return period (about 3.5 years) computed by partial-duration analyses of 

USGS streamflow data for the same event upstream at the Llano River at Llano 

(08151500). For the June 2007 high-flow event, however, much of the stormflow was 

derived from the drainage area downstream from Llano. For example, the LCRA 

streamflow-gaging station along Honey Creek near Kingsland, Texas, recorded a peak 

discharge of 504 cubic meters per second, associated with a return period of about 20 

years based on partial-duration flood-frequency analyses. It, therefore, is plausible to 

assume the Llano River near Kingsland had a considerably larger peak discharge than 

upstream at Llano. At-a-station hydraulic geometry analyses between bankfull and the 

surveyed macro-channel stage at cross-section 2 indicate that mean channel depth (� = 

0.53) compensates for increasing discharge at a greater rate than channel width (� = 

0.20). 
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Figure 6.14.  The Llano River near Kingsland, Texas, occurs at a transition between 
bedrock-braided and braided conditions in the Precambrian zone of the Llano River 
watershed. The sand-bed and bedrock channel can be separated into a low-flow channel 
(thalweg) and a mid-channel bar, and a break in slope along the channel bank is 
synonymous with bankfull conditions observed at other sites along the river. At-a-
station hydraulic geometry analyses at bankfull stage indicate that the rate of change of 
channel width (b = 0.46) is greater than that of mean depth (f = 0.36). Based on 
hydraulic analyses of two cross sections, bankfull discharge is 778 cubic meters per 
second and has a return period much less than 2 years. The vertical extent of channel 
surveys went beyond bankfull stage, but did not reach the top of a macro-channel. 
Nonetheless, at-a-station hydraulic geometry analyses of the macro-channel above 
bankfull stage at cross-section 2 indicate that the rate of change of mean depth (f = 0.53) 
is greater than that of channel width (b = 0.20). Based on hydraulic analyses of cross-
section 2, macro-channel discharge is 3,690 cubic meters per second and has a return 
period of about 8 years. The top-left picture is looking toward the right bank at cross-
section 1. 
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6.7 Discussion 
 

Main-stem river channels in the Llano River watershed, including the North 

Llano, South Llano, and Llano Rivers, undergo a downstream sequence of channel 

adjustments in association with changes in hydrology, lithology, and sedimentary 

composition of alluvial deposits. The following adjustments are discussed in further 

detail below: (1) channel pattern related to abrupt transitions in lithology and associated 

composition of alluvial deposits, (2) bankfull channel to macro-channel morphology 

related to a downstream increase in flood power, and (3) divergence in width-depth 

relations of bankfull and macro-channel shape associated with abrupt transitions in 

lithology and associated composition of alluvial deposits. A supportive graphical 

summary of downstream adjustments of channel morphology is provided in Figure 

6.15. 

6.7.1 Channel Pattern 
 

Downstream adjustments of channel pattern in the Llano River watershed are 

strongly associated with lithologic transitions and associated sedimentary composition 

of alluvial deposits. The initial headwater draws of the North Llano and South Llano 

Rivers take a sinuous path across the higher elevations of the Edwards Plateau before 

incising into the Cretaceous carbonate bedrock. The incision results in confined 

channels with low sinuosity. As drainage area and alluvial valley width gradually 

increase, the cobble- to gravel-bed channels become laterally active (see Figure 6.10) 

within fine-grained banks comprised mostly of silt and sand, and alluvial sinuosity 
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peaks for the watershed. Along most reaches, a low-flow channel (thalweg) can be 

distinguished from longitudinal channel-bar deposits. Downstream of the confluence of 

the North Llano and South Llano Rivers, the Llano River is characterized by enlarged 

meander bends, which are likely associated with wetter conditions during the period 

between 4,500 and 1,000 years B.P. (Blum and Valastro 1989). Relatively wide alluvial 

valleys become confined along two short reaches (3.9 kilometers total) of the Llano 

River in the Cretaceous zone of the watershed. 

 Although a short reach of the Llano River (8.2 kilometers) retains a sinuous 

course in the uppermost Paleozoic zone, the channel immediately straightens in a 

confined valley comprised of Ordovician carbonate rock. Observed bends in the channel 

are not associated with present-day lateral migration processes, but probably are 

attributed to preferential paths of weathering along joints or fractures in the bedrock. A 

narrow alluvial valley forms downstream of the Ordovician-Cambrian contact, but 

confinement between the siltstone, carbonate, and sandstone valley walls maintains an 

alluvial sinuosity less than 1.1. Cobble- and gravel-sized channel bars are more frequent 

and contribute to slight variations in the straight channel, such as the large mid-channel 

bar at the Llano River at James River Crossing near Mason. 

 Channel pattern is complex in the Precambrian zone of the watershed, but all 

reaches are confined within the exhumed igneous and metamorphic bedrock. Similar to 

the Paleozoic sedimentary zone, observed bends in the channel are associated with 

preferential paths of weathering along mineralogical seams, joints, or fractures in the 
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bedrock. Straight channel reaches mostly devoid of exposed mid-channel bars and 

bedrock outcrops characterize most of the Llano River upstream of Llano. As 

introductions of sand-sized sediment increase downstream, straight channels transition 

to braided channels downstream of Llano. Along some reaches both upstream and 

downstream of Llano, irregular outcrops of granite, schist, and gneiss force a bedrock-

braided channel pattern characterized by a network of multi-thread, low-flow channels. 

These bedrock-braided reaches are similar to, but less extensive than, bedrock-

anastomosing reaches described in Heritage, van Niekerk, and Moon (1999) and van 

Niekerk et al. (1999) along the Sabie River in South Africa. The term bedrock-braided 

is used for the Llano River because individual channels are usually separated by less 

than 25 meters of cross-section distance and usually rejoin after 10 to 100 meters of 

downstream length. 

6.7.2 Bankfull and Macro-Channel Shape 
 

Reaches along the North Llano and South Llano Rivers generally have a distinct 

break in slope that identifies bankfull conditions. As an example of an ephemeral draw, 

the South Llano River at Baker Ranch compensates for increasing discharge by 

increasing its width (� = 0.48) at a greater rate than mean depth (� = 0.34) (Table 6.9). 

Proceeding downstream and contrasting with aggraded draws, the South Llano River at 

U.S. Highway 377 near Rocksprings compensates for increasing discharge by 

increasing mean depth (� = 0.52) at a greater rate than width (� = 0.22). This is 

characteristic of channels associated with bedrock incision. Partly-confined, gravel-bed 
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channels in the Cretaceous zone of the watershed have variable relations of bankfull 

width to depth, but mean at-a-station hydraulic geometry exponents show that channel 

width (� = 0.42) slightly outpaces mean depth (� = 0.39) to compensate for increasing 

discharge. As an example of a major tributary in the Cretaceous zone, at-a-station 

bankfull width and mean depth exponents along Johnson Fork are equal (0.40) and 

similar to main-stem channels. Bankfull flows along ephemeral draws have return 

periods less than 2 years, but occur less frequently (approximately 4-year return 

periods) for partly-confined channels just downstream of bedrock incised reaches (e.g., 

North Llano River near Roosevelt, South Llano River at 700 Springs Ranch near 

Telegraph) (Tables 6.4, 6.7). The abrupt increase in bankfull capacity along these 

uppermost partly-confined reaches possibly is related to a combination of relatively 

steep channel slope and accommodation space for channel enlargement. Proceeding 

downstream, bankfull conditions of sinuous gravel-bed channels near Junction have 

return periods of about 2 years, and Johnson Fork has bankfull conditions every 3 to 5 

years, on average (Tables 6.4, 6.7). 

 Downstream of the confluence of the North Llano and South Llano Rivers, the 

Llano River exhibits macro-channel geometry along confined reaches, which 

demonstrates the sensitivity of channel form to valley confinement (Magilligan 1992; 

Fuller 2007). The macro-channel extent is identified by distinct breaks in slope along 

the channel banks, whether comprised of bedrock or alluvium. Evidence of a lower 

bankfull stage along these reaches is absent. The formation of macro-channel geometry 



238 
 

likely is attributed to infrequent high-magnitude flows greater than 2,000 cubic meters 

per second (Figure 6.16), total stream power exceeding about 30,000 watts per meter 

(Figure 6.17), and unit stream power exceeding 200 watts per square meter (Table 6.8). 

Macro-channel unit stream power for the Llano River in the Cretaceous zone of the 

watershed is comparable to values reported for the Auranga River (a smaller seasonal 

fluvial system in eastern India), but is considerably less than reported for the larger 

Narmada River in western India (Gupta 1995). Finally, confined macro-channels in the 

Cretaceous zone of the watershed compensate for increasing discharge by increasing 

mean depth (� = 0.47) at a greater rate than width (� = 0.29) (Table 6.9), a notable shift 

from bankfull reaches located upstream. Macro-channel flows along confined reaches in 

the Cretaceous zone have return periods between 10 and 12 years (Tables 6.4, 6.8), 

alluding to the importance of high-magnitude flows in shaping channel morphology 

along the Llano River. 

 Downstream of the Ordovician bedrock-lined reaches of the Llano River, the 

channel emerges to a narrow alluvial valley with distinctive inset floodplains abutting 

against Cambrian sedimentary strata. Although distinct breaks in slope along banks 

identify macro-channel conditions, subtle forms of morphologic evidence can be used to 

infer the aforementioned “bankfull” conditions associated with reaches along the North 

and South Llano Rivers. For the Llano River at James River Crossing, bankfull 

conditions are associated with the top of a large mid-channel bar and macro-channel 

conditions are associated with the height of inset floodplains at the top of the bank. For 
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bankfull conditions, the Llano River at James River Crossing compensates for 

increasing discharge by increasing its mean depth (� = 0.45) at a greater rate than width 

(� = 0.32) (Table 6.9). For macro-channel conditions above bankfull stage, mean depth 

(� = 0.50) increases at an even faster rate than width (� = 0.24) in compensating for 

flow. Three sites along the James River and Honey Creek, tributaries in the Paleozoic 

zone, also are characterized by increasing mean depth (� = 0.48) at a greater rate than 

width (� = 0.28) up to the bankfull stage. Similar to the main-stem Llano River, mean 

depth (� = 0.55) increases at an even faster rate than width (� = 0.18) in compensating 

for macro-channel flows above bankfull stage. In comparison to upstream reaches along 

the North Llano and South Llano Rivers, the more prominent increase of mean depth 

for both bankfull and macro-channel conditions along Paleozoic reaches is explained by 

increasingly confined valleys and associated limitations for lateral channel adjustment. 

Bankfull flows at the Llano River at James River Crossing have a return period of about 

2.5 years (Tables 6.4, 6.7) and macro-channel conditions occur with a return period of 

about 20 years (Tables 6.4, 6.8), introducing a dichotomy of relatively frequent flows 

that maintain alluvial deposits near the channel bed and less frequent flows that 

maintain overall channel geometry. 

 Further downstream, the variously classified channel reaches in the Precambrian 

zone of the watershed are confined by relatively resistant granite, gneiss, and schist. 

Similar to reaches in the Paleozoic zone, bankfull conditions are identified by subtle 

breaks in the slope along sandy alluvial banks, occurring no higher than about 5 meters 
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above the thalweg. At bankfull conditions, sand-bed and bedrock channels of the Llano 

River in the Precambrian zone compensate for discharge by increasing mean depth (� = 

0.45) at a greater rate than width (� = 0.32) (Table 6.9). For macro-channel conditions 

above bankfull stage, mean depth (� = 0.44) also increases at a greater rate than width 

(� = 0.34). The minimal difference between at-a-station exponents of bankfull channels 

and macro-channels in the Precambrian zone of the watershed indicates that macro-

channel adjustment is different than observed for Cretaceous and Paleozoic reaches. 

The highly resistant lithology of the igneous and metamorphic rock in this zone limits 

lateral development of inset floodplains. The bank-attached alluvial deposits observed 

at study sites along Precambrian reaches do not have any sharp demarcation identifying 

an inset floodplain surface, possibly resulting from little cohesion associated with sand-

sized material. Therefore, the general slope of sub-bankfull bank-attached deposits 

closely follows that of higher alluvial deposits and the surrounding bedrock. Bankfull 

flows along Precambrian reaches have a return period between 1 and 1.5 years (Tables 

6.4, 6.7) and macro-channel conditions have return periods between about 20 and 40 

years (Tables 6.4, 6.8), reinforcing the dichotomy of relatively frequent flows that 

maintain alluvial deposits near the channel bed and less frequent flows that maintain 

overall channel geometry. 

 A graphical depiction of downstream variability and trends in at-a-station 

hydraulic geometry exponents for bankfull and macro-channel conditions is shown in 

Figure 6.18. For bankfull conditions, a gradual increase in f and decrease in b indicates 
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that mean depth increasingly compensates for discharge as opposed to width. For 

macro-channel conditions, mean depth compensates for discharge more than width and 

width-depth relations are similar from the upper to lower watershed. The similarity of 

bankfull width-depth and macro-channel width-depth relations in the Precambrian zone 

of the watershed reiterates that breaks in slope at the bankfull stage are subtle. 

Downstream hydraulic geometry plots (Figure 6.19) of bankfull and macro-

channel conditions do not provide a complete explanation for downstream patterns of 

channel adjustment because bankfull discharge did not necessarily increase in a 

downstream direction. Aside from this caveat, bankfull channel geometry of the North 

Llano, South Llano, and Llano Rivers compensates for discharge by increasing mean 

depth (� = 0.44) at a greater rate than width (� = 0.31). Macro-channel geometry, 

however, compensates for discharge by increasing width (� = 0.58) at a greater rate than 

mean depth (� = 0.26). To summarize, channel dimensions that convey flows with 

return periods typically less than 2 years in the Llano River watershed become 

relatively narrow and deep in a downstream direction. Macro-channel dimensions above 

the bankfull stage, however, adjust downstream largely through increases in width. 
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Table 6.9.  Mean values of at-a-station hydraulic geometry for sites representative of 
the four categories of channel classification along the North Llano, South Llano, and 
Llano Rivers in Central Texas. Mean values of tributaries also are provided for 
comparison. 
 
[�, at-a-station hydraulic geometry exponent for width; �, at-a-station hydraulic geometry exponent for 
mean depth; �, at-a-station hydraulic geometry exponent for mean velocity] 
 

Channel classification category D 8 E 

Main-stem channels 
Ephemeral aggraded (bankfull)a 0.48 0.34 0.18 
Ephemeral bedrock incised (bankfull)b 0.22 0.52 0.26 
Cretaceous gravel-bed (bankfull) 0.42 0.39 0.20 
Cretaceous gravel-bed (macro-channel) 0.29 0.47 0.24 
Paleozoic bedrock or gravel-bed (bankfull) 0.32 0.45 0.23 
Paleozoic bedrock or gravel-bed (macro-channel) 0.24 0.50 0.25 
Precambrian straight, braided, or bedrock-braided 
(bankfull) 0.32 0.45 0.23 

Precambrian straight, braided, or bedrock-braided (macro-
channel) 0.34 0.44 0.22 

Tributaries 
Cretaceous gravel-bed tributary (bankfull) 0.40 0.40 0.20 
Paleozoic bedrock or gravel-bed tributary (bankfull) 0.28 0.48 0.24 
Paleozoic bedrock or gravel-bed tributary (macro-channel) 0.18 0.55 0.27 
Precambrian straight, braided, or bedrock-braided tributary 
(bankfull) 0.38 0.41 0.21 

Precambrian straight, braided, or bedrock-braided tributary 
(macro-channel) 0.26 0.49 0.25 

a Values only for South Llano River at Baker Ranch near Rocksprings. A bankfull channel condition 
could not be established at North Llano Draw near Sonora. 
b The South Llano River at U.S. Highway 377 near Rocksprings is considered separately from ephemeral 
aggraded channels because of the disparity of bankfull hydraulic geometry exponents. 
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Figure 6.15.  A summary of downstream adjustments of channel pattern and shape 
along the North Llano, South Llano, and Llano Rivers in Central Texas. As drainage 
area and valley confinement generally increase with distance downstream, channel 
pattern transitions from sinuous to straight to various braided forms. The morphologic 
evidence of bankfull stage gradually is obscured by macro-channel development. 
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Figure 6.16.  Bankfull and macro-channel discharge with downstream distance along 
the North Llano, South Llano, and Llano Rivers in Central Texas. Bankfull and macro-
channel discharge increase downstream. For macro-channel discharge, sites were 
excluded if the topographic survey did not reach the top of the macro-channel. 
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Figure 6.17.  Bankfull and macro-channel stream power with downstream distance 
along the North Llano, South Llano, and Llano Rivers in Central Texas. Bankfull 
stream power generally increases downstream and is less than 30,000 watts per meter. 
Macro-channel stream power is highly variable, but ranges from about 35,000 to 
165,000 watts per meter. Considerable variability is attributed to local differences in 
channel slope, which is an influential variable in computation of stream power. For 
macro-channel stream power, sites were excluded if the topographic survey did not 
reach the top of the macro-channel. 
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Figure 6.18.  Downstream trends and variability in at-a-station hydraulic geometry 
exponents for bankfull and macro-channel conditions of the North Llano, South Llano, 
and Llano Rivers in Central Texas. 
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Figure 6.19.  Downstream hydraulic geometry for bankfull and macro-channel 
conditions along the North Llano, South Llano, and Llano Rivers in Central Texas. One 
outlier, Llano River near Junction, was not included in macro-channel analyses because 
the locally steep slope associated with a cascade at the site resulted in an anonymously 
high mean velocity. Further, it should not be assumed that the left-to-right progression 
of points represents sites in order from upstream to downstream because bankfull and 
macro-channel discharge did not always increase in a downstream direction. 
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6.8 Conclusions 
 

Downstream adjustments of channel pattern and shape in the Llano River 

watershed are complex as a result of abrupt lithologic transitions, the degree of valley 

confinement, and a highly variable and powerful flow regime. Specifically, four 

different categories of channels are classified based on hydrology, planform 

morphology, lithology, and alluvial development: (1) uppermost ephemeral reaches, 

commonly referred to as “draws” in the study area, (2) Cretaceous straight or sinuous 

gravel-bed channels, (3) Paleozoic straight or sinuous gravel-bed or bedrock channels, 

and (4) Precambrian straight, braided, or bedrock-braided sand-bed channels. Sub-

categories of these four general channel types can be distinguished based on degree of 

valley confinement, planform characteristics, and boundary composition. 

 Bankfull conditions of ephemeral draws and partly-confined, sinuous, gravel-

bed reaches in the Cretaceous zone of the watershed are achieved by increasing width at 

a greater rate than mean depth, although mean depth becomes increasingly important in 

a downstream direction. The ability of the Cretaceous reaches to adjust in large measure 

by width is counter-intuitive to the assumption that more silt and clay in the channel 

boundary results in relatively narrow and deep channels. Channel banks along the North 

Llano, South Llano, and Llano Rivers are characterized by a decrease in silt-clay 

content with distance downstream. The characteristic that best explains the increasingly 

important role of mean depth in downstream adjustments of channel shape is valley 

confinement. Relatively wide alluvial valleys in the Cretaceous zone of the watershed 
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allow lateral channel processes, including bank erosion and migration, to enlarge the 

channel width. In the Paleozoic and Precambrian zones of the watershed, bankfull 

conditions of bedrock-, gravel-, or sand-bed channels are achieved by increasing mean 

depth at a greater rate than width. Increasingly confined valley settings in the Paleozoic 

and Precambrian zones, combined with greater bankfull discharges and stream power, 

result in channel incision, often into bedrock, and morphologic-bankfull indicators well 

above the channel bed. 

 Macro-channel conditions emerge downstream of the confluence of the North 

Llano and South Llano Rivers, and are associated with relatively high inset floodplains 

or definitive breaks in slope to the upland landscape. At-a-station hydraulic geometry of 

macro-channels show that mean depth compensates for discharge at a greater rate than 

width. A comparison with channel adjustments at the lower bankfull stage shows a 

downstream convergence of width-depth hydraulic geometry relations, which indicate 

that the general slope of bank-attached deposits below bankfull stage, especially in the 

Precambrian zone, closely follows that of higher alluvial deposits and the surrounding 

bedrock. Again, valley confinement is important because inset floodplain development 

is limited in the Precambrian zone, and combined with minimal cohesion of sand-sized 

material, breaks in slope at the bankfull stage are subtle in the lowermost watershed. 

 The degree of valley confinement in being a primary control of cross-sectional 

bankfull and macro-channel morphology in the Llano River watershed is likely 

applicable to other mixed bedrock-alluvial river systems. Investigations of downstream 
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variations in channel morphology would benefit from a consideration of lithology and 

its role in constraining or focusing hydraulic energy and the associated flux of alluvial 

sediment. 

 Finally, alluvial features and morphologic indicators of bankfull stage, including 

channel bars and many banks, are associated with relatively frequent flows in the Llano 

River watershed, mostly with return periods between 1 and 2 years. Macro-channel 

dimensions, however, are maintained by less frequent, high-magnitude flows. Return 

periods of macro-channel flows generally increase going downstream the Llano River, 

from about 10 to 40 years. Proceeding downstream, the gradual masking of 

morphologic indicators associated with bankfull stage, as indicated by at-a-station 

hydraulic geometry, parallels less-frequent formative flows for macro-channels, 

indicating that high-magnitude floods play an increasingly important role in channel 

adjustment. Independent observations made along the river, including the height of inset 

floodplains and distinct breaks in slope along banks, also suggest that macro-channel 

dimensions best describe the overall shape of the Llano River. However, various 

practitioners, including aquatic biologists and managers interested in sediment-transport 

dynamics, are likely to have considerable interest in the more frequent bankfull flow 

events. 

 The dichotomy of bankfull channels and macro-channels in the Llano River 

watershed underscores the difficulties in associating channel geometry with one 

dominant discharge, especially in fluvial systems with highly variable flow regimes. 
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Although the oft-cited 1- to 2-year return period is supported for bankfull channels, 

many representative reaches are best described as macro-channels with less frequent 

formative flows. For much of the Llano River, the work accomplished by severe flash 

floods in association with valley confinement obscures the cumulative imprint of 

frequent, moderate floods on observed channel morphology. Moderate floods, however, 

are important to re-distribute sediment from low-lying alluvial benches, channel bars, 

and the channel bed. 
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Chapter 7. Summary and Conclusions 
 
 
 

Fluvial geomorphic forms and processes along the Llano River and its 

tributaries in Central Texas, USA, are complex as a result of the highly variable flow 

regime and abrupt transitions in surface lithology in the watershed. Although classified 

as semi-arid and sub-humid at the western and eastern ends of the watershed, 

respectively, rainfall events are not uniformly distributed through time. Storm events of 

severe intensity deliver tremendous quantities of runoff to the stream-channel network 

in relatively short timespans, which results in high-magnitude flash floods that mobilize 

sediment and modify channel geometry. Unlike neighboring systems in the Cretaceous 

carbonate Edwards Plateau, the Llano River watershed includes a large Paleozoic 

sedimentary rock zone and Precambrian igneous and metamorphic rock zone. The 

distinctive lithology of the watershed imposes strong controls on sedimentology and 

valley confinement, which, in turn, affects downstream channel adjustment along the 

Llano River and its tributaries. 

 

7.1 Summary 
 
 A summary of findings associated with this investigation are separated below 

into background information, alluvial sedimentology, and channel adjustment. Further, 

some suggestions for future research are outlined at the end of the chapter. 
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7.1.1 Background Information 
 
1. As a tool to infer at-a-station and downstream adjustments of channel shape, 

hydraulic geometry has been criticized in the literature for various reasons, 

including variability of �, �, and � exponents, adherence to log-linear relations, 

neglect of flow resistance, and inherent instability of cross-sectional shape, 

among others. Aside from its complications, at-a-station and downstream 

hydraulic geometry can be a very useful technique to associate the hydrologic 

regime of a stream to its shape. If applied in conjunction with flood-frequency 

analysis, much can be learned about the relation of various instream geomorphic 

units to the magnitude and frequency of different flows. 

 

2. The concept of dominant (channel-forming) discharge exerts a considerable 

influence in investigations of channel adjustment. Dominant discharge usually is 

associated with bankfull conditions and is further assumed to have a return 

period of 1 to 2 years. Out of 36 publications reviewed since 1994 that 

specifically deal with dominant or effective discharge, 8 support and 12 refute 

the 1- to 2-year association. The other 16 are mostly neutral. The bankfull-stage, 

1- to 2-year association is most valid in humid or snowmelt-driven fluvial 

systems, has mixed results in seasonally-driven systems, and becomes less 

predictive for small watersheds, incised channels, or in systems with highly 

variable flow regimes. A variety of recent publications contend that a range of 
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flows contribute to the maintenance of various fluvial processes and forms in 

most natural channels. 

 

3. A literature review was done to synthesize the paleoenvironmental record of the 

Edwards Plateau, Texas for the last 20,000 years. Based on an existing scheme, 

six distinct episodes can be constructed to conceptualize prevailing 

environmental conditions: (1) full glacial (about 20,000 to 14,000 years B.P.), 

(2) late glacial (about 14,000 to 10,500 years B.P.), (3) early to middle Holocene 

(about 10,500 to 5,000 years B.P.), (4) late Holocene I (about 5,000 to 2,500 

years B.P.), (5) late Holocene II (about 2,500 to 1,000 years B.P.), and (6) 

modern (about 1,000 years B.P. to present). The full-glacial episode is 

characterized by the coolest, most humid climatic regime for the past 20,000 

years. A gradual increase in temperature and decrease in precipitation occurred 

during the late-glacial episode, as evidenced by channel incision, the 

disappearance of spruce and fir trees, increase in C4 plant species, replacement 

of mesic microfauna with xeric forms, and reduced rates of speleothem growth. 

Evidence for the Younger Dryas cooling episode (about 10,750 years B.P.) is 

absent in the region. Desiccation and warming continued through the early to 

middle Holocene, culminating with the Altithermal (about 5,500 years B.P.). 

Fluvial systems slowly aggraded during the early to middle Holocene, but later 

incised deeply after 5,000 years B.P. Grasslands steadily replaced woodlands, C4 
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abundance increased, and xeric species dominated the faunal assemblage. By 

about 5,000 to 2,500 years B.P., the landscape consisted mostly of short grasses 

and desert scrub. A relatively wet cycle occurred between roughly 2,500 to 

1,000 years B.P. as fluvial systems again aggraded to levels above former 

terraces, and hickory trees and mesic faunal species increased in abundance. 

Finally, increasing warmth and aridity during the last 1,000 years have resulted 

in stream incision, open oak woodlands, and domination of xeric species. 

Superimposed, however, on increasingly dry conditions are extreme floods 

responsible for many characteristics of present-day channel morphology. 

7.1.2 Alluvial Sedimentology 
 

4. The Llano River valley becomes increasingly confined by bedrock with distance 

downstream of the Cretaceous-Paleozoic contact. Although it often is assumed 

that ubiquitous exposures of bedrock to the river channel results in relatively 

coarse bed material, channel-bar material of the Llano River decreases in size 

with distance downstream, especially downstream of the Paleozoic-Precambrian 

contact. This trend is attributed to the different in-situ weathering mechanisms 

of carbonate and igneous lithologies. A considerable proportion of Cretaceous 

and Paleozoic carbonate rocks in the upper and middle watershed are removed 

in large slabs or clasts from steep slopes of contributing drainages or valley 

walls, whereas in-situ weathering of Precambrian granitic material into grus in 

the lower watershed results in considerable quantities of sand-sized material that 
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is delivered to contributing drainages. Furthermore, the supply of sand-sized 

material in the lower watershed exceeds the influence of increased flood stream 

power as the result of valley confinement, which would normally be associated 

with selective entrainment and relatively coarse material. 

 

5. Downstream trends of declining bed-material size are much more evident for 

channel-bar deposits than low-flow-channel (thalweg) deposits in the Llano 

River watershed, which indicates that stronger hydraulic sorting mechanisms 

occur along channel bars during high-flow events. Hydraulic forces in the 

thalweg alternate from uniform during low-flow conditions to highly turbulent 

during high-flow conditions, and hydraulic irregularity is further promoted by 

localized configuration of the channel inclusive of meander bends. 

 

6. The abrupt gravel-to-sand transition between Mason and Castell is explained by 

two independent factors: (1) distance from upstream sources of gravel-sized 

material and (2) additions of sand by tributaries draining Precambrian igneous 

and metamorphic lithologies. First, tributaries that supply gravel to the Llano 

River are less numerous downstream of the Cretaceous-Paleozoic contact. 

Second, inputs of sand-sized sediment become immediately influential 

downstream of the Paleozoic-Precambrian contact. The straight longitudinal 
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profile nullifies channel slope in the Llano River watershed as an explanation for 

the gravel-to-sand transition. 

 

7. Channel-bar deposits of the North Llano and South Llano Rivers abruptly 

transition from medium-sized pebbles to small pebbles and gravels near 

Junction. The transition reaches occur between 75 to 90 kilometers downstream, 

but drainage areas increase from about 1,350 to 2,250 square kilometers because 

of tributary inputs to those reaches. The decrease in particle size is not explained 

by an increase in sediment volume because additional sediment from the 

smaller, steeper adjoining watersheds is presumably coarser. The abrupt 

particle-size decrease, therefore, is probably explained by increased magnitudes 

and frequencies of high-flow events capable of transporting and abrading 

cobble- to gravel-sized material. These findings contrast with many 

investigations that document a localized increase in bed material size associated 

with tributary inputs, which suggests that downstream trends in particle size of 

gravel-bed rivers with highly variable flow regimes could be more dependent on 

the frequency of entrainment and transport rather than distance-dependent 

abrasion and sorting processes. 

 

8. Contrasting downstream trends of simultaneously decreasing bed- and 

increasing bank-material particle size characterize fluvial deposits of the North 
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Llano, South Llano, and Llano Rivers. Reaches in the upper Cretaceous zone of 

the watershed have channel beds comprised of cobble- to gravel-sized material 

and banks comprised of silt, clay, and limited amounts of fine sand. In upland 

areas, Cretaceous carbonate weathers to a dark, silt- and clay-rich soil, and it is 

from this material that fine-grained banks and floodplains are derived. 

Relatively poorly-sorted bank and floodplain material along river reaches near 

Junction indicate that appreciable quantities of sand are included in the silt-clay 

matrix. Much of the sand likely is derived from incision into the Hensell Sand. 

Abrasion processes of channel-bed material also contribute to the sand-sized 

fraction. Relatively coarse bed material in the upper reaches of the watershed 

originates as plucked or gravity-supplied material from steep slopes and 

tributaries. As gravel-sized material becomes less available downstream of the 

James River, the increasing influence of Precambrian-derived sand is detected 

by the convergence of particle size in both channel-bar and channel-bank 

deposits. 

 

9. Downstream trends of relative carbonate content (percent) and magnetic 

susceptibility (Χ) are inversely related in channel bank and floodplain deposits. 

In the uppermost reaches of the North and South Llano Rivers, the Cretaceous-

aged Edwards Limestone contains substantial quantities of siliceous chert, which 

keeps carbonate content of fluvial deposits below 40 percent. As the river 
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channels incise into the more pure limestone and dolomite of the Glen Rose 

Formation, carbonate content increases to over 50 percent near Junction. 

Continuing downstream, inputs from various Paleozoic sedimentary rocks and 

finally Precambrian igneous and metamorphic rocks reduce carbonate content 

below 25 percent near watershed outlet. The inverse trend of magnetic 

susceptibility indicates its association with carbonate content, although it does 

not display measurable sensitivity to Paleozoic sedimentary rocks. Further, 

magnetic susceptibility is largely dependent on particle size, such that relatively 

coarse material will have a higher value than finer material for a given 

mineralogy. Notably, magnetic susceptibility peaks near Kingsland, where 

channel-bank and floodplain particle size are the coarsest in the watershed. The 

peak indicates that Precambrian mineralogy exerts a strong influence on 

magnetic susceptibility and also illustrates the increasingly dominant supply of 

Precambrian sands to alluvial deposits in the lower watershed. 

7.1.3 Channel Adjustment 
 

10. Four different categories of channels along the North Llano, South Llano, and 

Llano Rivers are classified based on hydrology, planform morphology, 

lithology, and alluvial development: (1) uppermost ephemeral reaches, 

commonly referred to as “draws” in the study area, (2) Cretaceous straight or 

sinuous gravel-bed channels, (3) Paleozoic straight or sinuous gravel-bed or 

bedrock channels, and (4) Precambrian straight, braided, or bedrock-braided 
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sand-bed channels. Various sub-categories of these four general channel types 

can be distinguished based on degree of valley confinement, planform 

characteristics, and boundary composition. 

 

11. Bankfull conditions of ephemeral draws and partly-confined, sinuous, gravel-

bed reaches in the Cretaceous zone of the watershed are characterized by 

increasing width at a greater rate than mean depth, although mean depth 

becomes increasingly important in a downstream direction. In the Paleozoic and 

Precambrian zones of the watershed, bankfull conditions of bedrock-, gravel-, or 

sand-bed channels are characterized by increasing mean depth at a greater rate 

than width. The ability of the Cretaceous reaches to adjust in large measure by 

width is counter-intuitive to the assumption that more silt and clay in the 

channel boundary results in relatively narrow and deep channels. Channel banks 

along the North Llano, South Llano, and Llano Rivers are characterized by a 

decrease in silt-clay content with distance downstream. The characteristic that 

best explains the increasingly important role of mean depth in downstream 

adjustments of channel shape is valley confinement. Relatively wide alluvial 

valleys in the Cretaceous zone of the watershed allow lateral channel processes, 

including bank erosion and migration, to enlarge the channel width. Increasingly 

confined valley settings in the Paleozoic and Precambrian zones, combined with 

greater bankfull discharges and stream power, result in deeper channel incision, 
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often into bedrock and the stranding of morphologic-bankfull indicators well 

above the channel bed. 

 

12. Macro-channel conditions emerge downstream of the confluence of the North 

Llano and South Llano Rivers and are associated with relatively high inset 

floodplains or definitive breaks in slope to the upland landscape. At-a-station 

hydraulic geometry of macro-channels shows that mean depth compensates for 

discharge at a greater rate than width. A comparison with channel adjustments at 

the lower bankfull stage shows a downstream convergence of width-depth 

hydraulic geometry relations, indicating that the general slope of bank-attached 

deposits below bankfull stage, especially in the Precambrian zone, closely 

follows that of higher alluvial deposits and the surrounding bedrock. Valley 

confinement is important because inset floodplain development is limited in the 

Precambrian zone, and combined with minimal cohesion of sand-sized material, 

breaks in slope at the bankfull stage are subtle in the lowermost watershed. 

 

13. Alluvial features and morphologic indicators of bankfull stage, including 

channel bars and many banks, are associated with relatively frequent flows in 

the Llano River watershed, mostly with return periods between 1 and 2 years. 

Macro-channel dimensions, however, are maintained by less frequent, high-

magnitude flows. Return periods of macro-channel flows generally increase 
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going downstream the Llano River, from about 10 to 40 years. Proceeding 

downstream, the gradual masking of morphologic indicators associated with 

bankfull stage, as indicated by at-a-station hydraulic geometry, parallels less-

frequent formative flows for macro-channels, which indicates that high-

magnitude floods play an increasingly important role in channel adjustment. 

 

7.2 Synthesis 
 

The incipient channels of the North Llano and South Llano Rivers near the top 

of the Edwards Plateau alternate from fine-grained infilled reaches to bedrock-incised, 

with the bedrock-type becoming dominant as drainage area and, therefore, flood energy 

increase. The presence of infilled reaches near the top of the plateau leads to questions 

about the sequence of upland soil erosion and subsequent cut-and-fill activity associated 

with late Pleistocene and Holocene climatic and environmental change. The fine-

grained alluvial deposits along these reaches present a future opportunity to reconstruct 

chronologies of upland soil erosion and its relation to periods of intense storm activity 

coupled with prevalent vegetation assemblages. 

The wide alluvial valleys near Junction result from weathering and erosion of 

relatively weak Cretaceous carbonate rocks and the Hensell Sands over geologic 

timescales. Active floodplains and inactive fluvial terrace deposits accommodate 

sinuous, gravel-bed reaches of the North Llano, South Llano, and Llano Rivers. As a 

result of a steeper overall channel slope, the North Llano River does not exhibit full-
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scale meandering tendencies (sinuosity < 1.3), which characterizes the lower South 

Llano and upper Llano Rivers. Conspicuous breaks in slope along well-defined banks 

delimit bankfull stage, which encapsulates frequently occurring moderate flow events. 

Upstream of the North Llano and South Llano confluence, stream power during 

floods does not exceed a threshold necessary to generate macro-channel morphology. 

Downstream of the confluence, however, macro-channel morphology develops that 

contains high-magnitude floods with return periods greater than 10 years. Macro-

channel morphology is better developed along reaches that have a greater degree of 

valley confinement. The original hypothesized model presented in Table 1.1 and shown 

in Figure 1.4 predicted that return periods of bankfull flows would exceed 2 years, 

which is not consistent for rivers in the Cretaceous zone, and did not recognize the role 

of valley confinement in macro-channel development. 

The downstream transition to the Paleozoic sedimentary zone is characterized by 

an abrupt confinement of the valley and the river channel exhibits a straight planform 

morphology, similar to that shown in Figure 1.4, with bends in its course related to 

preferential weathering and erosion of bedrock joints over geologic timescales. The 

relatively resistant Paleozoic lithology might constitute an effective “base level” for 

lowering of the valley upstream, such that the expected, but not observed, concavity of 

the longitudinal profile of slope upstream of the Cretaceous-Paleozoic contact is partly 

filled with alluvium and the gently-sloping (dimensionless slope approximately equal to 

or less than 0.0015) river meanders to effectively distribute flow energy. 
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At the Ordovician-Cambrian contact, a narrow alluvial valley forms with well-

defined inset-floodplain surfaces delimiting macro-channel dimensions, with return 

periods approaching 20 years, generally confiming the hypothesis presented in Table 

1.1. Set within the macro-channel are various alluvial features, including mid-channel 

bars and low-lying bank-attached units that define what practitioners refer to as the 

“bankfull” condition, occurring with a return period between 1 and 2 years. Although 

the channel-in-channel morphology was originally hypothesized (Table 1.1), the 

consistency of the 1- to 2-year bankfull return period for the inner channel was not 

originally anticipated by the author. The alluvial deposits along the Paleozoic reaches 

consist of greater amounts of sand-sized material when compared to those near 

Junction, likely resulting from downstream transport of material from the Cretaceous 

Hensell Sand as well as locally-derived material from Cambrian sandstones. 

Finally, the Llano River enters the Precambrian igneous and metamorphic zone, 

and is characterized by various straight, braided, and bedrock-braided channel patterns 

occurring within a resistant, confined valley, similar to that shown in Figure 1.4. An 

abrupt gravel-to-sand transition in bed material occurs, resulting from in-situ 

weathering processes of granite and metamorphic rocks and the associated delivery of 

sand-sized material by tributaries. Instream and bank-attached sandy alluvial deposits 

thinly overlie bedrock, and “bankfull” conditions become increasingly difficult to 

identify because of subtle breaks in slope. The similarity of at-a-station hydraulic 

geometry width and depth exponents for bankfull and macro-channel dimensions 
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indicates that overall channel morphology is adjusted to high-magnitude floods with 

return periods greater than 10 years, but approaching 40 years at some localities. 

A notable implication of this study concerns the role of bankfull discharge. The 

oft-cited bankfull return period of 1 to 2 years still applies to processes associated with 

bed-material mobility and adjustment of low-lying alluvial features in river systems 

with highly variable flow regimes. These short-term adjustments can be very important 

to practitioners concerned with instream structures (e.g., bridge piers, low-water 

crossings), reservoir sedimentation, and habitat-suitability indices for aquatic organisms 

(e.g., macroinvertebrates, fish). Overall channel dimensions, however, are better 

described by less frequent, high-magnitude floods, especially within confined valley 

settings. These relatively long-term adjustments probably are more applicable when 

investigating channel adjustment, flood hazards (e.g., bridge design, floodplain 

delineation), and disturbance regimes of aquatic organisms. 

The research design and methodological approach used for this investigation were 

successful in indentifying downstream trends in alluvial sediment composition and 

channel adjustment in the Llano River watershed. The empirical evidence collected to 

test fluvial geomorphic theories proved invaluable in developing conceptual models that 

are likely applicable to other fluvial systems with highly variable flow regimes and 

abrupt discontinuities in lithology. Further, a number of surprising findings were made 

possible by evaluation of empirical data. Accurate results would not have been possible 

without other techniques, including flow-resistance tests, partial-duration flood-
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frequency analyses, GIS analyses of hydrography and digital elevation models, and 

statistical analyses. One drawback of the research design is the limited ability to 

interpolate between sites and definitively associate observations and analyses along all 

channel reaches. Further, no attempt was made to evaluate the duration of floods, which 

has been shown to be very important in controlling channel morphology and sediment 

transport. 

 

7.3 Conclusions 
 

The highly variable, flood-prone flow regime and abrupt lithologic transitions in 

the Llano River watershed are exhibited in the alluvial sediment composition and 

channel morphology of the North Llano, South Llano, and Llano Rivers. Major 

conclusions include: 

• Channel-bed and bank sediment are characterized by contrasting 

downstream trends in particle size. The size decrease of channel-bed 

material and size increase of bank material are foremost controlled by 

watershed lithology, notably by inputs of sand in the Precambrian zone of 

the watershed. Although relatively subtle in their influence of declining bed-

material size, instream abrasion and selective entrainment during high flows 

are responsible for an abrupt coarse-to-fine-gravel transition in the upper 

watershed. Generally, however, the highly variable flow regime and 
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increasing valley confinement do not effectively explain downstream trends 

in particle size of alluvial deposits. 

• Planform morphology of the North Llano, South Llano, and Llano Rivers is 

primarily controlled by lithology, with associated secondary controls being 

valley confinement and alluvial sediment composition. Sinuous to 

meandering gravel-bed reaches in the Cretaceous zone of the watershed 

occur as a result of relatively fine-grained, erodible banks occurring in a 

wide alluvial valley. As valley confinement increases downstream, the 

channel becomes straight and bends result from joints or relatively weak 

seams in the bedrock. Alternating braided and bedrock-braided conditions 

along the lower Llano River are associated with sand- and bedrock-

dominated reaches, respectively. 

• For the Llano River downstream of the confluence of the North Llano and 

South Llano Rivers, “bankfull” channel characteristics become less 

distinguished and “macro-channel” dimensions become dominant. This 

observed dichotomy of channel shape is congruent with downstream 

increases in stream power during high-magnitude flows and valley 

confinement. “Bankfull” return periods correspond with the oft-cited 1- to 2-

year return period, but “macro-channel” conditions are associated with 

return periods greater than 10 years. 
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• A number of findings associated with this dissertation research project were 

unexpected, including: (1) the contrast of low-flow-channel (thalweg) and 

channel-bar particle size, where the latter better defines downstream trends 

in alluvial sediment composition; (2) coarse- to fine-gravel transitions 

upstream of Junction and their relation to an abrupt increase in drainage 

area; (3) the rapid transition from gravel to sand downstream of the 

Paleozoic-Precambrian contact; (4) the downstream increase of particle size 

in channel bank deposits and its contrast with bed material; (5) poorly-sorted 

bank material near Junction and its relation to contributions from the Hensell 

Sand; (6) the relatively low carbonate content and high magnetic 

susceptibility of alluvial deposits in the uppermost reaches of the North 

Llano and South Llano Rivers, explained by greater amounts of chert; (7) 

comparable flow-resistance coefficients for upper cobble- to gravel-bed 

reaches and lower bedrock and sand-bed reaches; (8) the close association of 

channel planform characteristics and surface lithology; (9) the validity of the 

oft-cited 1- to 2-year return period flow in maintaining bankfull channel 

morphology; (10) the dichotomy of bankfull channels and macro-channels 

with the latter having return periods of flows exceeding 10 years; and (11) 

the considerable influence of valley confinement on hydraulic geometry of 

bankfull and macro-channels. 
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• Finally, the research completed for this dissertation project indicates that 

relatively abrupt downstream changes in alluvial sedimentology and channel 

morphology complement abrupt changes in watershed hydrology and 

lithology. For fluvial systems with highly-variable flow regimes, there is 

relatively little downstream translation of observed sedimentary and 

morphologic characteristics once a hydrologic (e.g., drainage area) or 

lithologic boundary is crossed.  

 

7.4 Recommendations for Future Research 
 
 The list of conclusions and synthesis presented above are based on a watershed-

scale approach to understanding downstream variability in alluvial sedimentology and 

channel morphology. The scope, therefore, is limited, and provides limited insight about 

fluvial processes operating at smaller spatial and temporal scales. Further, observed 

trends from this study are not fully elaborated because the data required to fully address 

them are insufficient. Listed below are some research questions posed as a result of 

shortcomings associated with this investigation. 

 

1. What is (are) the hydraulic mechanism(s) responsible for contrasting 

downstream trends in particle size for low-flow channels and channel bars? This 

study concludes that hydraulic conditions during high flows are more uniform 

over longitudinal channel bars than at the low-flow channel (thalweg), implying 
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that greater turbulence in the deeper part of the channel results in a more 

heterogeneous mixture of particle sizes and a decreased possibility for sand 

deposition in downstream reaches. 

 

2. What is the explanatory control for the coarse- to fine-gravel transition along the 

North Llano and South Llano Rivers upstream of Junction? This study 

concludes that an abrupt increase in drainage area is associated with an 

increased probability for moderate- to high-magnitude flows that abrade and 

entrain gravel-sized bed material, resulting in the rapid decrease in particle size. 

A key, missing piece of evidence is a sampling of particle size along tributaries 

adjacent to and upstream of the particle-size transition. 

 

3. What explains the relatively low carbonate content and high magnetic 

susceptibility of alluvial sediment along the uppermost reaches of the North 

Llano and South Llano Rivers? This study concludes that considerable quantities 

of siliceous chert embedded in the Cretaceous Edwards Limestone decreases 

carbonate content and increases magnetic susceptibility. 

 

4. Do abrupt additions of sand-sized bed material contribute to abrasion processes 

of gravel-sized bed material? This study locates an abrupt gravel-to-sand 

transition along the Llano River between Mason and Castell. Further, tributaries 
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of the Llano River, notably Beaver Creek, have bimodal distributions of 

Cretaceous- or Paleozoic-derived gravel and Paleozoic or Precambrian-derived 

sand. Basically, does “sandblasting” of gravel-sized material occur downstream 

of the sand introductions? 

 

5. What are the watershed-scale characteristics that contribute to remarkably 

straight longitudinal profiles of slope? This study finds that main-stem channels 

of the Llano River have straight profiles, but only proposes a few possible 

reasons for this. Does relatively resistant downstream lithology (Paleozoic and 

Precambrian) act as a “base-level” control of channel incision? If it does, does 

this explain the wider, more developed alluvial valley in the upstream, 

Cretaceous zone of the watershed, basically acting as a “fill” within the expected 

concavity? 

 

6. Is there a threshold-value of stream power associated with the development of 

macro-channels? Macro-channels are observed along both small and large 

channels in the Llano River watershed, similar to observations from other 

regions of the world. This study provides values for discharge and stream power 

associated with macro-channels, but the sample size is not enough to reliably 

determine a threshold hydraulic value. 
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7. How do bed-material entrainment frequency and the effective discharge of 

bedload transport relate to flow magnitudes and return periods computed for 

bankfull and macro-channel morphology? This study quantifies dominant 

discharge of river channels, but does not relate channel geometry to sediment 

transport processes, which are important controls of channel morphology. 

 

8. Is flow duration an important control of channel morphology along rivers with 

highly variable flow regimes? This study specifically addresses flow magnitude 

and frequency, but does not associate flow duration with channel adjustment 

processes, which has been shown to be an influential control of channel 

morphology. 
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