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One of the great challenges to increasing the use of wind generation is

the need to ensure generation adequacy. In this dissertation, we address that

need by investigating and assessing the planning and operational generation

adequacy of power systems with significant wind generation.

At the onset of this dissertation, key metrics are presented for determin-

ing a power system’s generation adequacy assessment based on loss-of-load an-

alytical methods. With these key metrics understood, a detailed methodology

is put forward on how to integrate wind plants in the assessment’s framework.

Then, through the examination of a case study, we demonstrate that wind gen-

eration does contribute capacity to the system generation adequacy. Indeed,

results indicates that at wind penetration levels of less than 5%, a wind plant’s

reliability impact is comparable to an energy equivalent conventional unit. We
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then show how to quantify a wind plant’s capacity contribution by using the

effective load carrying capability metric (ELCC), providing a detailed descrip-

tion of how to implement this metric in the context of wind generation. How-

ever, as certain computational setbacks are inherent to the metric, a novel non-

iterative approximation is proposed and applied to various case studies. The

accuracy of the proposed approximation is evaluated in a comparative study

by contrasting the resulting estimates to conventionally-computed ELCC val-

ues and the wind plant’s capacity factor. The non-iterative method is shown

to yield accurate ELCC estimates with relative errors averaging around 2%.

Case study findings also suggest the importance of period-specific ELCC cal-

culations to better evaluate the variable capacity contribution of wind plants.

Even when considering a well-planned system in which wind generation

has been appropriately integrated in the adequacy assessment, wind plants do

create significant challenges in maintaining generation adequacy on an oper-

ational level. To address these challenges, a novel operational reliability as-

sessment tool is proposed to quantitatively evaluate the system’s operational

generation adequacy given potential generator forced outages, load and wind

power forecasts, and forecasting deviations.
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Chapter 1

Introduction

Wind power represents the worldwide fastest growing component of

electric generation portfolios. In the U.S. alone, the total wind generation ca-

pacity has expanded by 45% in a single calendar year going from 11,603-MW in

2006 to 16,818-MW in 2007 [1]. Wind capacity in the U.S. and in Europe has

seen growth rates of 20% to 30% over the past decade [2]. Based on this trend,

wind power should continue along this growth pattern and become an even

more significant portion of future generation portfolios. Major growth drivers

include advances in wind energy conversion technologies, the need to lessen

our dependence on fossil fuel, climate change, environmental sustainability,

and various federal and state policies to promote the use and development of

renewable energy sources. A recent report by the U.S. Department of Energy

has investigated scenarios where wind energy could provide 20% of the U.S.

Electricity needs by 2030 [3]. As of 2007, 25 U.S states and the District of

Columbia have adopted Renewable Portfolio Standards1 ranging from 2% to

40% of the electricity supply which are expected to be reached in the next two

1“A renewable portfolio standard (RPS) is a state policy that requires electricity retailers
to provide a minimum percentage or quantity of their electricity supplies from renewable
energy sources [4].”
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decades [4]. Since wind power possesses unique characteristics and attributes

which differentiate it from conventional fossil-based electric power, an increase

in wind penetration level commands attention. From a plant terminal point

of view, new wind plants are behaving more and more like conventional gen-

eration by providing low-voltage ride-through, voltage support and dynamic

reactive capabilities [5]. However, unlike fossil-based power where the rate of

energy throughput is controllable, wind power is variable, uncertain and there-

fore non-dispatchable. Indeed, wind generation could vary according to diurnal

heating and cooling pattern or suddenly increase with a storm front. With-

out any form of storage, the wind energy being converted into electric power

has to be consumed immediately. When wind generation was an insignificant

portion of generation portfolios, existing system capabilities and operations

processes were enough to handle its variable and uncertain nature. However,

as wind penetration is increasing, it is creating new challenges for both system

planners and operators. Among these challenges has been the need to ensure

capacity adequacy from both a system planning and operations perspective.

From a system planning perspective, generation adequacy assessment

studies must be performed to determine the adequate planning reserve mar-

gins which will ensure desired levels of reliability. Initially, wind plants were

considered as providing no capacity to the generation adequacy of power sys-

tems. Although studies from the late 1970s and early 1980s [6–8] suggested

that wind plants could have some reliability contribution, it is only in the

2



new millennium that utilities started recognizing the capacity contribution2 of

wind plants [9]. Methods of quantifying the wind plant capacity contribution

has evolved over the years and the electric community has still to reach a firm

consensus on the most adequate computing method [10–13]. Appropriately

integrating wind plants into planning adequacy assessment is essential to de-

termine the right amount of planning reserve margins and meet projected load

demands.

Assuming wind plants are appropriately integrated in planning genera-

tion adequacy studies and resultant power systems are well-planned, the vari-

able and uncertain nature of wind generation is still creating challenges from

an system operations perspective. System operators are responsible for main-

taining adequate system reliability, while constantly monitoring and matching

the system generation to the load demand. Ancillary services are procured to

maintain security and reliability during system disturbances and to account for

load forecasting deviations. Several wind integration studies have investigated

the prospective impact of increasing wind penetration on ancillary services

requirements [14–19]. Currently, adequate monthly or annual ancillary ser-

vice requirements are usually determined based on engineering judgment and

a system’s historical performance. Since these requirements may or may not

capture wind generation’s uncertainty in operational time frames, being able

to assess the operational system reliability status would be very beneficial for

system operators. Utilities seem to be progressively incorporating wind power

2Capacity contribution may also be known as capacity credit or value.
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forecasting tools in their system operations. Developing an operational reli-

ability assessment tool which would incorporate wind forecast and potential

forecasting deviations would be an important step in ensuring operational gen-

eration adequacy for systems with significant wind generation. Based on the

aforementioned reasons, the objective of this dissertation focuses on investigat-

ing and assessing the generation adequacy of power systems with significant

wind generation, both from a system planning and operations perspective,

while offering the following incremental and key contributions.

From a system planning perspective:

• Provide a detailed methodology for appropriately integrating wind plants

in planning generation adequacy assessment based on analytical loss-of-

load methods. (Chapter 2 and 3)

• Recognize the wind plant’s reliability contribution through the reduction

in system loss-of-load expectation and compare it to contribution of ca-

pacity and energy equivalent conventional units. These findings were

published in [20]. (Chapter 3)

• Provide a detailed and clear methodology for quantifying the capacity con-

tribution of wind plants using the ELCC concepts. Our insights and ob-

servations on the classical ELCC computing methodologies were shared

in a collaborative work on the capacity contribution of wind plants [21].

(Chapter 4)
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• Propose a novel non-iterative method of approximating the capacity con-

tribution of a wind plant. As a key contribution, the proposed method

was published in [22, 23] and cited in [21]. By using a simple esti-

mating function, the non-iterative approximation is shown to give ac-

curate ELCC estimates (with an averaged errors of 2%) while being a

less computationally-intensive method that requires minimal reliability

modeling. (Chapter 4)

From a system operations perspective:

• Propose a novel operational reliability assessment tool to ensure adequate

operational risk levels. The proposed concept was presented in [24] and

represent a key contribution. The operational tool computes hourly op-

erational loss-of-load probabilities for both day-ahead and hour-ahead

time horizons, while considers possible generator forced outages, wind

plant power output and load forecasts, and corresponding forecasting

deviations. Given an acceptable hourly risk criterion, high risk periods

can be identified and appropriate measures can be taken to reduce the

hourly risk, such as considering demand response or scheduling addi-

tional fast start units. (Chapter 5)

Again, parts of this dissertation have been published in IEEE journal and

conference papers [20, 22–24].

The work presented in this dissertation is organized as follows. Chapter

2 will present the key concepts of planning generation adequacy assessment us-
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ing loss-of-load analytical methods. Chapter 3 will provide a detailed method-

ology on how wind plants can be integrated in the adequacy assessment and

how they can contribute to the system planning generation adequacy. In Chap-

ter 4, a wind plant’s capacity contribution will be quantified using the concept

of effective load carrying capability while also proposing a novel non-iterative

ELCC approximation. Then, from an operational perspective, Chapter 5 will

propose a novel operational reliability assessment tool. Finally, a conclusion

chapter will summarize the work and the key contributions.
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Chapter 2

Generation Adequacy Assessment in System

Planning using Loss-of-Load Analysis: An

overview of key concepts

Obviously, when it comes to maintaining power system reliability, the

goal must be to avoid falling short of generating capacity. Power system plan-

ning groups perform generation adequacy assessment studies to ensure that

enough capacity is available in the system to meet projected load demands.

This static capacity evaluation relates to long-term overall system require-

ments in planning reserve margins and has been tested using such various

methods1 as:

1. Fixed criteria determined by loss of the largest unit reserve or percentage

reserve;

2. Analysis of the system using loss-of-load calculations, expected energy

not supplied or other assessment formulas; and

3. Simulation methods such as Monte Carlo simulations.

1Methods are summarized in [25]
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Choosing the appropriate method depends on the system under investiga-

tion and data availability. Although times are changing with the increase of

computational power, analytical methods are usually preferred for assessing

generation adequacy; simulations methods generally require lengthy computa-

tional times while fixed criteria can be inconsistent. Analytical methods, on

the other hand, can provide system planners with reasonably accurate results

with which to make objective decisions in fairly short computational times

[25].

Chapter 2 reviews the key metrics determining a power system’s gen-

eration adequacy assessment based on loss-of-load analytical methods. The

concepts of loss-of-load probability (LOLP), loss-of-load expectation (LOLE),

and the capacity outage probability table (COPT), along with generating units

reliability modeling are presented to obtain a basic understanding of how gen-

eration adequacy is assessed [25–27]. With these key metrics understood, the

next chapter will describe how to integrate wind plants in terms of these assess-

ments methods, which will allow us to show through an examination of some

case studies, that wind generation can indeed contribute to the generation

adequacy of power systems.

2.1 Loss-of-Load Probabilistic Metrics

The metrics obtained from loss-of-load probability (LOLP) and loss-of-

load expectation (LOLE) calculations are the most widely used probabilistic

benchmarks for evaluating the generation adequacy of power systems [25].
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Both of these calculations rely on a generation model and a load model to

ultimately obtain a risk metric. Transmission system reliability or constraints

are not usually factored into these methods 2. The generation model used in

loss-of-load calculations is the capacity outage probability table (COPT).

2.1.1 Capacity Outage Probability Table

The COPT represents the cumulative probability P (X ≥ x) of having

a system capacity outage X greater than or equal to x. The discrete random

variable X represents the possible capacity outage states of the system. The

COPT is built using a recursive algorithm in which units are added sequen-

tially to produce a table representing all the possible capacity outage states of

the system, with their corresponding cumulative probability. Each generating

unit can be incorporated in the COPT as either a two-state or a more general

multi-state unit. In the two-state model, units are represented as being either

fully on or fully off, while the multi-state model also includes one or more

partial capacity outage states. The latter can be used for units with possible

derated states. The probability that a unit be on forced outage and there-

fore unavailable can be obtained using Markov process theory and long-term

unavailability statistics. Once modeled, each unit is added sequentially using

basic probability to create the final model of the system. The unavailabili-

ties of the units are considered random events and are therefore independent

2Since wind plants are usually located remotely from demand centers, they are more
likely to be subject to possible transmission constraints. Further analysis to include these
constraints in the generation adequacy assessment is part of future work.
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of each other. The recursive algorithm is mathematically represented by the

following equations.

The cumulative probability P (X ≥ x) of having a system capacity

outage greater than or equal to x after adding a two-state unit of generating

capacity C and unavailability probability pdown can be calculated as follows:

P (XAfter ≥ x) = (1 − pdown)P (XBefore ≥ x) + (pdown)P (XBefore ≥ x − C)

(2.1)

where XBefore and XAfter are discrete random variables representing the pos-

sible capacity outage states of the system before and after the addition of the

new two-state unit.

Equation (2.1) thus gives us the sum of two components corresponding

to the two possible states of the new unit. In the first component, the unit is

available with probability (1 − pdown); therefore, for a system capacity outage

XAfter of x or greater to occur, it needs to happen in the previous system,

hence P (XBefore ≥ x). In the second component, the unit is assumed to be

unavailable; therefore, to have a system capacity outage XAfter of x or greater,

only a system capacity outage of x−C or greater needs to occur in the previous

system, hence P (XBefore ≥ x − C). Similarly, a generalized equation can be

extended to include multi-state units. A multi-state unit which can exist in k

partial capacity outage states Cj of individual probability pj can be added to

the power system reliability model using the following equation:

P (XAfter ≥ x) =
k∑

j=1

pj × P (XBefore ≥ x− Cj) (2.2)
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Equations (2.1) and (2.2) are initialized by setting P (XBefore ≥ x) equal to 1

when x or x − C are smaller or equal to zero.

The following example 3 will illustrate how the recursive algorithm is

applied to build the COPT of a simple power system. The generating units’

capacity and unavailability probabilities are presented in Table 2.1. The simple

system consists of two 25-MW units, represented with a two-state model, and

one 50-MW unit represented with a multi-state model (since it can exist in

one partial capacity outage state).

Table 2.1 Example: Simple power system

Two-state units

Capacity C [MW] Unavailability prob. pdown

25 0.02

25 0.02

Multi-state unit

Capacity outage states Cj [MW] Individual prob. pj

0 0.960

20 0.033

50 0.007

The recursive algorithm in (2.2) is applied to the simple system by sequentially

adding one unit at a time. The order in which the units are added is of no

consequence to the final COPT; however, adding multi-state units last may

3This example was taken from [25].

11



speed up computational times. Step 1. add the first 25-MW unit:

P (XAf ≥ 0) = (0.98)P (XBf ≥ 0) + (0.02)P (XBf ≥ −25)

P(XAf ≥ 0) =(0.98)(1.0) + (0.02)(1.0) = 1.0

P (XAf ≥ 25) = (0.98)P (XBf ≥ 25) + (0.02)P (XBf ≥ 0)

P(XAf ≥ 25) =(0.98)(0) + (0.02)(1.0) = 0.02

Step 2. add the second 25-MW unit:

P (XAf ≥ 0) = (0.98)P (XBf ≥ 0) + (0.02)P (XBf ≥ −25)

P(XAf ≥ 0) =(0.98)(1.0) + (0.02)(1.0) = 1.0

P (XAf ≥ 25) = (0.98)P (XBf ≥ 25) + (0.02)P (XBf ≥ 0)

P(XAf ≥ 25) =(0.98)(0.02) + (0.02)(1.0) = 0.00396

P (XAf ≥ 50) = (0.98)P (XBf ≥ 50) + (0.02)P (XBf ≥ 25)

P(XAf ≥ 50) =(0.98)(0) + (0.02)(0.02) = 0.0004
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Step 3. add the third 50-MW multi-state unit:

P (XAf ≥ 0) = (0.96)P (XBf ≥ 0) + (0.033)P (XBf ≥ −20) + (0.007)P (XBf ≥ −50)

P(XAf ≥ 0) =(0.96)(1.0) + (0.033)(1.0) + (0.007)(1.0) = 1.0

P (XAf ≥ 20) = (0.96)P (XBf ≥ 20) + (0.033)P (XBf ≥ 0) + (0.007)P (XBf ≥ −30)

P(XAf ≥ 20) =(0.96)(0.00396) + (0.033)(1.0) + (0.007)(1.0) = 0.078016

P (XAf ≥ 25) = (0.96)P (XBf ≥ 25) + (0.033)P (XBf ≥ 5) + (0.007)P (XBf ≥ −25)

P(XAf ≥ 25) =(0.96)(0.00396) + (0.033)(0.00396) + (0.007)(1.0) = 0.0463228

P (XAf ≥ 45) = (0.96)P (XBf ≥ 45) + (0.033)P (XBf ≥ 25) + (0.007)P (XBf ≥ −5)

P(XAf ≥ 45) =(0.96)(0.0004) + (0.033)(0.00396) + (0.007)(1.0) = 0.0086908

P (XAf ≥ 50) = (0.96)P (XBf ≥ 50) + (0.033)P (XBf ≥ 30) + (0.007)P (XBf ≥ 0)

P(XAf ≥ 50) =(0.96)(0.0004) + (0.033)(0.0004) + (0.007)(1.0) = 0.0073972

P (XAf ≥ 70) = (0.96)P (XBf ≥ 70) + (0.033)P (XBf ≥ 50) + (0.007)P (XBf ≥ 20)

P(XAf ≥ 70) =(0.96)(0) + (0.033)(0.0004) + (0.007)(0.00396) = 0.0002904

P (XAf ≥ 75) = (0.96)P (XBf ≥ 75) + (0.033)P (XBf ≥ 55) + (0.007)P (XBf ≥ 25)

P(XAf ≥ 75) =(0.96)(0) + (0.033)(0) + (0.007)(0.00396) = 0.0002772

P (XAf ≥ 100) = (0.96)P (XBf ≥ 100) + (0.033)P (XBf ≥ 80) + (0.007)P (XBf ≥ 50)

P(XAf ≥ 100) =(0.96)(0) + (0.033)(0) + (0.007)(0.0004) = 0.0000028

As seen in the above example, a capacity outage state of x−Cj might

not have been a possible state XBf in the previous system. Indeed, the value

of x − Cj might fall between two states. Since we are concerned with the
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cumulative probability, the highest capacity outage state and its correspond-

ing cumulative probability must be chosen. For example, in the third step,

P (XBf ≥ 30) will correspond to P (XBf ≥ 50) and a probability of 0.0004,

since only the capacity outages of 0, 25 and 50-MW exist. Furthermore, when

x−Cj is less then zero, P (XBf ≥ 0) is used. On the other hand, when x−Cj

is greater than the last possible capacity outage state XBf , then a probability

of zero is assigned. The final COPT of the example system is represented in

Table 2.2.

Table 2.2 Example: Simple system COPT

Capacity outage states x [MW] Cumulative prob. P (X ≥ x)

0 1.0

20 0.078016

25 0.0463228

45 0.0086908

50 0.0073972

70 0.0002904

75 0.0002772

100 0.0000028

Our next step is to use the COPT of the power system with a deter-

mined load model to compute the LOLP and LOLE reliability metrics.

2.1.2 Loss-of-Load Probability

The loss-of-load probability (LOLP) represents the probability of not

having enough capacity available to meet a given load demand. The LOLP is
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usually represented by the following equation:

LOLP = P (X > Cs − L) (2.3)

where L is a given load demand, Cs is the system capacity available and

P (X > Cs − L) is the probability of having a capacity outage greater than

the margin Cs − L, which represents the parameter determining when a loss

of load would occur in the system. The cumulative probability P (X > x)

can be obtained from the systems COPT 4. The uncertainty in a load demand

can be included in the LOLP calculation by using conditional probability and

the law of total probability. It is worth mentioning that there are no units

attached to the LOLP. Indeed, the LOLP is simply a probability that measures

the likelihood of a loss-of-load event, or describes the risk of not meeting the

load for a particular combination of load and system conditions. On the other

hand, the calculation of the loss-of-load expectation (LOLE) can provide the

compounded risk or the number of loss-of-load events that can be expected

during a chosen evaluation period.

2.1.3 Loss-of-Load Expectation

The loss-of-load expectation is a risk metric that has been used in

planning generation adequacy studies to determine acceptable level of planning

reserves. Planning reserves are important to ensure that enough total system

4Notice that the loss of load is defined when the capacity outage is greater than the
margin while the COPT represents cumulative probabilities for capacity outage greater
than or equal to a particular value.
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capacity is available to reliably meet expected load demands. The LOLE is

usually described as the expected number of days or hours during a certain

period when a loss-of-load would occur [25]. This metric is usually represented

by one of the following equations:

LOLE =

365∑

i=1

Pi(X > Cs,i − Li) ×
days

year
(2.4)

LOLE =
8760∑

i=1

Pi(X > Cs,i − Li) ×
hours

year
(2.5)

Although the LOLE is a standard metric and these equations are commonly

used and referenced, their mathematical derivation may not be commonly

understood. Let us consider an evaluation period represented by n equal time

durations where i represents the ith time duration. For example, if the time

duration is a day and the chosen evaluation period is a year, then n will be

equal to 365. During a particular time duration, the load conditions Li and

available system capacity Cs,i are considered constant. The available capacity

of the system Cs,i and its COPT can vary from one time duration to the

next, depending on the maintenance schedules of the units 5. For the ith time

duration and the corresponding load and system conditions, a discrete random

variable Ii can be defined to indicate the system’s loss-of-load state:

Ii =

{
1, if a loss of load occurs (Event);

0, otherwise (No event);

5Reference [25] presents various methods to consider the units’ maintenance schedule
in the COPT. The case studies included in this dissertation will not consider maintenance
schedules.
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Using the basic definition of the expectation of a random variable, the expec-

tation of the indicator Ii can be shown as

E(Ii) = 1 × P (Ii = 1) + 0 × P (Ii = 0)

E(Ii) = P (Ii = 1) (2.6)

The probability of a loss of load occuring during the ith time duration, or

P (Ii = 1), is equivalent to the probability there won’t be enough generation

available to meet the load. This probability is simply the LOLP defined in

(2.3); the probability of a capacity outage greater than the margin between

the available capacity Cs,i and the load Li.

E(Ii) = P (Ii = 1) = Pi(X > Cs,i − Li) (2.7)

The total number of time durations when a loss of load would occur during the

chosen evaluation period can be defined as the sum Y of the random indicator

variables Ii.

Y = I1 + I2 + . . . In (2.8)

Therefore, the expected number of time durations when a loss of load would

occur during an evaluation period of interest is defined as

E(Y ) = E(I1 + I2 + . . . In). (2.9)
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Using the rule on the expectation of a sum of random variables and replacing

the E(Ii)s by (2.7), (2.9) becomes

E(Y ) = E(I1) + E(I2) + . . .E(In)

E(Y ) =
n∑

i=1

Pi(X > Cs,i − Li) (2.10)

where E(Y ) encompasses units of time durations over the entire period and

consequently represents the concept of loss-of-load expectation found in (2.4)

and (2.5). The generalized LOLE equation for any time duration and evalua-

tion period would be

LOLE =
n∑

i=1

Pi(X > Cs,i − Li) ×
time durations or (events)

evaluation period
. (2.11)

It can be seen from the derivation that the chosen time duration, whether

it is a day or an hour, will result in two LOLEs which are not equivalent

by unit conversion. Indeed, calculating the yearly LOLE of a system using

365 daily peak loads versus 8760 hourly loads would result in two different

LOLEs and planning reserve margins. The only way (2.5) and (2.4) could be

equated by unit conversion is if the following unrealistic condition was met: for

each day, all 24 hourly loads were equal and available capacities were equal.

Consequently, the LOLE calculating method should always be clearly stated

to avoid any confusion.

In generation adequacy planning studies, the industry standard of “1

day in 10 years” has been widely used to determine adequate planning reserve

margins that qualify a well-planned and reliable system. This standard dates
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back to literature from the late 1940s and 1950s, when 365 daily peak loads and

total installed capacity were used in LOLE calculations [28–32]. However, “the

question of what degree of service reliability must be provided in a particular

situation depends entirely on local conditions and personal judgment” [29].

This standard was proposed while keeping in mind that “an acceptable risk

level is best determined by reviewing past designs that were judged to be

acceptable systems” [33]. Consequently, the “1 day in 10 years” criterion was

proposed as a guideline rather than an absolute criterion. A system specific

criterion should be based on what has historically been an acceptable risk level.

Ideally, consumers expectation and economic factors would also be considered

in determining the acceptable risk criterion.

The industry still references the “1 day in 10 years” criterion, although

the analytical computing methods of the LOLE are moving from the daily

peak approach to the hourly approach. As mentioned earlier, “1 day in 10

years” using the daily peak load approach is not equivalent to 24 hours in 10

years using the hourly load approach. If computing methods are changing,

standards should also be revised. The following section presents a case study

in which the LOLE of a system is calculated by using both the daily peak load

and hourly load approach to highlight the difference in the resulting planning

reserve margins.
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2.1.4 Case Study: Daily Peak LOLE versus Hourly LOLE

In this case study, it will be shown that the planning reserve margin

determined with the “1 day in 10 years” criterion is not the same as the

“24 hours in 10 years” criterion. Only one year of load data will be used.

Therefore, assuming that all ten years are equivalent, the criterion for the

year will be 0.1 days per year or 2.4 hours per year. The test system used

in this case study is the IEEE-RTS system [34]. This system consists of 32

generating units amounting to 3405-MW of capacity. All generating units

were modeled as two-state units and the system COPT was built following

the approach in Section 2.1.1. The load model described in [34] was used in

the LOLE calculations. In [34], the system’s original annual peak load Lpk

was set to 2850-MW. However, since this annual peak load results in a daily

peak LOLE of 1.368 days/year, it was reduced to 2484-MW to obtain a daily

peak LOLE of 0.1 days per year. The load demand was then adjusted again to

obtain an hourly LOLE of 2.4 hours per year. Both LOLE calculation methods

were applied for each load demand. The planning reserve margin results are

presented in Table 2.3.

Table 2.3 Example: Daily peak LOLE versus hourly LOLE

LOLE Lpk=2484-MW Lpk=2653-MW

Calculation method Margin 921-MW Margin 752-MW

Daily peak loads (2.4) 0.100 days/year 0.363 days/year

Hourly loads (2.5) 0.642 hrs/year 2.40 hrs/year
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If the daily peak load calculation method was used to meet the 0.1 days

per year criterion, the power system would only be able to reliably serve a load

demand of 2484-MW annual peak load with a planning reserve margin of 921-

MW. On the other hand, if the hourly calculation method was used to meet

a 2.4 hrs per year criterion, the power system would be able to reliably serve

an additional 173-MW, reducing the planning reserve to 752-MW. By shifting

criteria from the daily peak calculations to the hourly calculation without

redefining the acceptable LOLE levels, system planners may create unreliable

systems.

2.2 Generating Unit Unavailability

As mentioned previously, each generating unit can be incorporated in

the COPT as either a two-state unit or a more general multi-state unit. In

this work, conventional generating units will be represented with a two-state

model, bracketing possible derated states. The next section will describe how

to create the two-state reliability model using Markov process theory and a

generating unit’s long-term unavailability statistics. The generating units of

a combined-cycle plant can be modeled as separate two-state units or with a

more refined model as proposed in [35]. The general outline of our proposed

combined-cycle reliability modeling is given in Appendix A.
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2.2.1 Unavailability of Conventional Generating Units

The unavailability probability or unplanned outage risk of a conven-

tional unit can be calculated using Markov process theory and the unit’s long

term unavailability statistics. Given the two-state reliability representation,

units with short operating cycles are modeled using a four-state Markov pro-

cess, while units with long operating cycles are modeled with the simplified

two-state Markov process. There is often some confusion between the two-state

reliability model and the two-state Markov process. A unit can be represented

with pup and pdown, i.e. within the two-state reliability model, while using

either a two-state Markov process or a four-state Markov process [36]. The

four-state Markov process will consider the time when short-cycle units are on

reserve shutdown and compute the probability of being unavailable only when

the unit is needed. Using a two-state Markov process for peaking or cycling

units would return abnormally high unplanned outage risks. Long term statis-

tics are used to establish a probability for the unavailability of conventional

units. If unit specific statistics are unavailable, the NERC GADS database

can provide the necessary information to compute a probability for the units

unavailability given its type and size [37].

The essential equations for the two different Markov models will be

presented in the next subsections using the NERC GADS variable names. The

presented equations will allow the reader to easily compute a two-state unit’s

unavailability pdown. Reference [36] includes the details of the mathematical

derivations.
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2.2.1.1 Two-State Markov Model: Units with long operating cycles

Units with long operating cycles can be represented with the two-state

Markov model presented in Figure 2.1.

U nit
U P

U nit
D O W N

1/r

1 /m s

U nit
U P

U nit
D O W N

1/r

1 /m s

Figure 2.1 Two-state Markov model

The steady state unavailability probability pdown of a unit using the

two-state Markov model can be calculated with the following formula:

pdown =
r

ms + r
(2.12)

where r is the mean forced outage time per forced outage and ms is the mean

service time per forced outage. These two quantities can be estimated using the

following NERC GADS long term statistics: unplanned (forced) outage hours

(FOH), service hours (SH) and number of occurences of a forced outage (N)).

r ≈ FOH

N

ms ≈
SH

N
(2.13)

The unavailability probability can then be estimated as

pdown =
FOH

SH + FOH
(2.14)
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The unavailability probability estimated by using the two-state Markov model

is known as the forced outage rate (FOR).

2.2.1.2 Four-State Markov Model: Units with short operating cy-
cles

Peaking and cycling units require a more detailed model to account

for the reserve shutdown hours. In 1970, the IEEE Application of Probability

Subcommittee developed a four-state Markov model which could accurately

represent units with short operating cycles [36]. Figure 2.2 illustrates the
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Figure 2.2 Four-state Markov model
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IEEE model. In this case, the unavailability probability of a peaking or cycling

unit should be the probability that the unit will be unavailable when it is

actually needed to serve some demand. Therefore, pdown is computed by

pdown =
P3

P2 + P3
(2.15)

where P3 is the unit’s steady-state probability of being in state “3” or “unit

down when needed” and P2 is the steady-state probability of its being in

state “2” or “in service”. When the Markov problem is solved, pdown can be

estimated as

pdown =

(
1
r

+ 1
T

)(
D
m

+ Ps

)

1
r

[
D

(
1
r

+ 1
T

)
+ 1

]
+ D

m

(
1
r

+ 1
T

)
+ Ps

T

(2.16)

where T is the average shutdown time between periods of need (excluding

maintenance or other planned down time), D is its average in service time when

needed, m is the average in-service time between forced outages (excluding

forced outages due to failure to start), r is the average repair time per forced

outages and Ps is the probability of a starting failure such that it is not able to

serve the load during all or part of the demand period. As with the two-state

Markov model, NERC GADS long term statistics can be used to estimate
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these quantities.

r ≈ FOH

N

m ≈ SH

N

D ≈ SH

NS
where NS is the number of actual starts

D + T ≈ SH + RSH

NS
where RSH are the reserve shutdown hours

Ps ≈
NAS −NS

NAS
where NAS is the number of attempted starts (2.17)

Table 2.4 compares the unavailability probability of various units estimated

by each Markov model. The commonly known forced outage rate or FOR

is only an accurate method for baseload units, since it can overestimate the

unavailability pdown of peaking and cycling units.

Table 2.4 Example of the unavailability probability of generating
units using the two-state (TS) and four-state (FS) Markov models

Generation type in NERC GADS FS pdown [%] TS FOR [%]

GAS TURBINE 50 Plus MW 8.64 26.02

FOSSIL Coal Primary 600-799 MW 4.93 4.66

NUCLEAR PWR 1000 Plus MW 2.33 2.29

2.3 Concluding Remarks

In this chapter, we reviewed key concepts such as the loss-of-load proba-

bility (LOLP), loss-of-load expectation (LOLE) and the capacity outage prob-

ability table (COPT) in order to provide a basic understanding of planning
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generation adequacy assessment. Methods of determining a generating unit’s

unavailability for conventional generation were also presented. The follow-

ing chapters will investigate how wind generation can be integrated within

this assessment framework, with an emphasis on how it can contribute to the

generation adequacy of power systems.
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Chapter 3

Wind Plants and Generation Adequacy

Assessment in System Planning

In 2003, PJM Interconnection became one of the first system operators

to adopt a rule that would recognize wind plant contributions to the generation

adequacy of power systems [9]. As other system operators followed suit, wind

plants quickly achieved universal recognition for contributing some capacity to

generation adequacy [11]. This recent achievement stands at the end of a long,

fraught history, in which system operators showed themselves to be reluctant

to recognize any reliability contribution deriving from wind sources due to the

perception that wind plants’ power output was too variable, a perception that

was abetted by the lack of studies on the subject. The first serious evaluations

of the potential contribution that could be made by wind plants appeared in

the late seventies and early eighties, partly as a result of the era’s oil price

shocks, which had elevated energy generation to a national priority [6–8]. At

that time, large-scale wind plants had yet to be built, and probabilistic tech-

niques such as the Weibull distribution and Markov methods were being used

to model projections for wind generation variability of proposed sites. Method-

ologies using the loss-of-load concepts were then introduced to better assess

the impending generation reliability impacts. Building on this initial research,
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several studies using actual wind plants’ power output data have been per-

formed [11, 14, 16, 20, 38]. In assessing generation adequacy using loss-of-load

calculations, wind plants have been modeled by means of two main approaches:

negative load adjustment and multi-state representation [11, 39]. The objec-

tive of this chapter is to provide a detailed description of these approaches,

along with their possible limitations. The multi-state representation approach

is then applied to a case study highlighting the reliability contribution of wind

plants in contrast to the contribution of conventional units equivalents [20].

3.1 Integrating Wind Plants in Loss-of-Load Calcula-

tions

3.1.1 Multi-State Approach

In this approach, a wind plant is represented with a multi-state model

that is similar to calculations that incorporate conventional units with possi-

ble derated states. The wind plant is modeled with partial capacity outage

states Cj and corresponding individual probabilities pj. Given a certain res-

olution and using a database covering multiple years of hourly power output

from the desired evaluation period, the wind plant’s multi-state model can

be created using the simple concept of relative frequency. For example, given

a resolution of 2-MW, a wind plant with a nameplate rating Cw of 20-MW

would be modeled by 11 partial capacity outage states: C1=0-MW, C2=2-

MW, C3=4-MW...C10=18-MW, C11=Cw=20-MW. The individual probabili-

ties pj associated with the capacity outage states are computed by counting
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the total number of occurrences of each partial capacity outage derived from

the power output data. Since a capacity outage of Cj is equivalent to a power

output of Cw − Cj, the individual probability pj is calculated as:

pj =

[
# of occurrences when power output is Cw − Cj

Total # of power output data points

]
. (3.1)

The power output data should be rounded to the determined resolution

prior to calculating the relative frequencies. When the resolution of the multi-

state representation is small in comparison to the nameplate capacity of the

wind plant, this rounding approximation has an insignificant impact on the

final model. Table 3.1 presents an example of the multi-state representation

of a 20-MW wind plant given a 2-MW resolution. As this example shows, the

probability of a wind plant total outage (Cj=20-MW) is 2%, while a 8-MW

capacity outage (Cj=8-MW) is the more likely, having a probability of 23%.

Using the recursive algorithm in (2.2), the wind plant’s multi-state

representation is convolved with all other units’ reliability models to form the

power system’s COPT. Thus, in this integration approach, wind plants are

treated no differently than any other generator. LOLP and LOLE calculations

are performed on an hourly basis by directly applying (2.3) and (2.11) without

any modifications.

3.1.2 Negative Load Adjustment Approach

Alternatively, wind generation can be integrated into the LOLP cal-

culations by using the negative load adjustment approach. In this approach,
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Table 3.1 Example: Multi-state model of a 20-MW wind plant given
a 2-MW resolution

Capacity outage state Individual probability

Cj [MW] pj

0 0.02

2 0.05

4 0.12

6 0.15

8 0.23

10 0.14

12 0.11

14 0.06

16 0.05

18 0.05

20 0.02

a wind plant’s power output is modeled as a negative load. The wind plant

power output time-series is subtracted from the load time-series to create a net

load time-series, which is then included in the LOLP and LOLE calculations.

Wind generation is therefore not considered when building the COPT of the

power system. The hourly LOLP is computed using the following equation:

LOLP = P (X > Cs − (L − W )) (3.2)

where L is a given load demand, W is the wind plant’s power output and

Cs is the system capacity available. The term P (X > Cs − (L − W )) is the

probability of having a capacity outage greater than the margin Cs − (L −

W ), the threshold defining when a loss of load would occur in the system.
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The cumulative probability P (X > x) is obtained from the system’s COPT.

Conversely, the modified LOLE calculation becomes

LOLE =
n∑

i=1

Pi(X > Cs,i − (Li − Wi)) ×
time durations

evaluation period
. (3.3)

When the system includes multiple wind plants, aggregated hourly

power output data is used in the calculations:

Wa,i =
k∑

j=1

Wk,i (3.4)

where Wa,i is the aggregated power output of k wind plants’ power output

Wk,i at time duration i. The load adjustment LOLE describing the aggregate

wind generation is then calculated as

LOLE =
n∑

i=1

Pi(X > Cs,i − (Li − Wa,i)) ×
time durations

evaluation period
. (3.5)

3.1.3 Concerns about Wind Integration in Loss-of-Load Calcula-
tions

Two main concerns arise when implementing the wind integration meth-

ods in loss-of-load calculations: 1) the possible wind/load correlation, and 2)

the statistically-dependent unavailabilities of wind plants.

3.1.3.1 Wind/Load Correlation

Depending on its geographical location, a wind plant’s power output

might display some level of correlation to the power system’s load demand.

A wind plant would contribute more to the reliability of a power system if
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it provided high output levels during peak load periods, while conversely, it

would make a lesser contribution to generation reliability if its output was con-

sistently low during high peak periods. A cross-correlation statistical analysis

between the time-series of the wind plant’s power output and the system load

might reveal periods that are significantly cross-correlated. In this case, it

would be important to demarcate time-related information in the loss-of-load

calculations, whether the cross-correlation is positive or negative. In the multi-

state approach, period-specific LOLE could be performed using wind and load

data corresponding to the identified periods of significant and non-significant

correlation. For example, the yearly LOLE for a system which displays cross-

correlation during the months of June-July-August could be calculated with

the following four steps:

1. Two separate multi-state representations are created for the wind plant:

one for the months of June-July-August hourly wind power output data,

while the other for the hourly data from the rest of the year.

2. Given these two multi-state representations, two COPTs can be created

for each period: one for the summer, COPTsummer, and one for the rest

of the year, COPT .

3. Divide the yearly typical load demand data (8760 hourly load) into two

periods of interest: a 2208 hourly load data point set corresponding to

the summer hours and a 6552 hourly load data point set for the rest of

the year.
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4. The yearly LOLE calculation is then computed as follows:

LOLE =

[ 2208∑

i=1

PSummer,i(X > Cs,i − Li)

+

6552∑

i=1

Pi(X > Cs,i − Li)

]
× hours

year
. (3.6)

Using a similar approach as described in the steps above, any significant cor-

relation relating the load demand to the wind diurnal effect could also be

included in LOLE calculations.

In the negative load adjustment approach, the wind/load correlation

can be captured in the subtraction required by the method. Because this

inherent property makes the load adjustment approach simple to implement,

it is often preferred over the multi-state representation. However, several years

of actual time-synchronized load and wind time-series are required to make

this approach statistically representative. More research is currently being

conducted by the wind community to determine exactly how many years of net

load data are required to make sure the negative load approach is statistically

representative [21, 40].

3.1.3.2 Statistical Dependence of Wind Plants

The COPT concept presented in Section 2.1.1 assumes that the forced

outages of the generating units are random events, meaning that they are

independent from each other. Although this assumption can be valid for con-

ventional generators, it may not be valid for wind plants. Indeed, wind plants
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in geographical proximity which are fed by the same wind regime would display

statistically-dependent unavailabilities. Ultimately, all wind plants’ unavail-

abilities are statistically-dependent as they all have one variable in common,

the sun. Since winds are caused by differential heating of the earth’s sur-

face by the sun, the sun is therefore, analytically, a common variable to all

wind plants’ power output. Thus, the question becomes: “Can we reason-

ably assume statistical independence between wind plant’s unavailabilities?”.

Similar to the wind/load correlation, a cross-correlation analysis between the

wind plants’ power output time-series could indicate significant levels of lin-

ear dependence. One could therefore reasonably conclude that a significant

linear dependence between two wind plants would render the statistical inde-

pendence assumption invalid. In the multi-state representation approach, if

a significant cross-correlation is present, the correlated wind plants should be

aggregated and represented as one multi-state unit. On the other hand, the

load adjustment approach inherently bypasses this concern, as it aggregates

all wind generation as negative load. In this dissertation, the multi-state rep-

resentation is used over the negative load approach as time-synchronized wind

power output and load time-series are still not readily available. In summary,

while using the multi-state representation, the key points associated with this

wind integration method are the following five:

1. Wind generation is treated as what it is: generation. In this case, wind

plants are mathematically integrated in the same manner as any other

generator.
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2. The system load is not altered.

3. Unavailability state convolutions between wind plants and other gener-

ators are taken into account.

4. Wind/load correlation, if present and significant, can be addressed.

5. Statistical dependence of wind plants can be addressed by aggregating

correlated wind plants as one multi-state unit.

Using the multi-state representation, the next section shows how a wind

plant can contribute to the generation adequacy of a power system. Further-

more, the impact of increasing wind plant penetration is evaluated and com-

pared to the impact of capacity and energy equivalent conventional units. The

study presented in this section refers to [20].

3.2 Case Study: Wind Plant Contribution to Planning

Generation Adequacy

In this case study, the impact of wind plants on generation adequacy is

studied through the loss-of-load expectation. Using the multi-state represen-

tation, wind plants of increasing penetration are integrated in the loss-of-load

calculations. As expected with the addition of any other units of generation,

the addition of wind generation increases the reliability of a power system.

However, the extent to which the reliability increases varies as a function of

the wind plant’s penetration level. It is shown that at low wind plant penetra-

tion levels less than 5%, the reliability impact of the wind plant is comparable
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to the impact of an energy equivalent conventional unit. However, for wind

plant penetration levels greater than 5%, the wind plant is less efficient in

reducing the LOLE than its energy equivalent unit.

We apply the LOLE under the assumptions that wind plants are in-

tegrated with the multi-state representation approach described in Section

3.1.1and that wind/load correlation is insignificant, allowing us to use one

multi-state representation for the whole year. Given this simplifying assump-

tion, numerical results are only qualitative but the resulting trends relating the

LOLE reduction to the generating unit penetration levels are representative

regardless of it.

3.2.1 Generation System Reliability Model

Inspired by a realistic power system, a base case scenario involving a

2,728-MW total nameplate capacity system was created, from which we derive

our subsequent analysis. This system is composed of 16 generating units rang-

ing from 20-MW to 555-MW in nameplate capacity. All units are represented

with a two-state model, which entails neglecting possible derated states. Al-

though peaking and cycling unit unavailabilities are better represented by the

four-state Markov model presented in Section 2.2.1.2, for the scope of this

analysis, the two-state Markov model or forced outage rate (FOR) is used to

represents all unit unavailabilities. The NERC Generating Availability Data

System [37] provides relevant FOR values by generation type and size. Table

3.2 presents the units composing the base case system with their respective
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FOR1.

Table 3.2 Generating units for the 2,728-MW base case power system

Size [MW] # of units Description in GADS FOR

22 1 Gas Primary; 001-099MW 0.0778

50 2 Gas Primary; 001-099MW 0.0778

102 6 Gas Primary; 100-199MW 0.0657

135 1 Gas Primary; 100-199MW 0.0657

171 1 Coal Primary; 100-199MW 0.0437

188 1 Coal Primary; 100-199MW 0.0437

195 2 Gas Primary; 100-199MW 0.0657

555 2 Coal Primary; 400-599MW 0.0522

Using (2.1), the cumulative probability of all possible capacity outages

states are computed to form the COPT of the base case power system. The

complete COPT consists of 1,721 possible capacity outage states.

3.2.2 Wind Plant Multi-State Representation

Three consecutive years of 1 minute resolution power output data from

an actual 113-MW wind plant were used in this analysis. In order to evaluate

the reliability impact of a wind plant with increasing penetration, the data

was scaled by using this simple equation:

pc(t) =
p113(t) ×Cw

113
(3.7)

1From GADS 1998-2002.
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where Cw is the desired nameplate capacity in megawatts of the scaled wind

plant. The variables p113(t) and pc(t) are the power time-series in megawatts at

time t in minutes for the original 113-MW wind plant and the scaled wind plant

respectively. In this study, the wind plant’s penetration is defined as a capacity

penetration,2 or in other words, it is expressed as a percentage of the power

system’s total nameplate capacity. Therefore, if the wind plant is 10-MW and

the power system capacity is 100-MW, then the wind plant penetration level

will be 10/100×100% or 10%. The wind plant penetration levels in this study

are kept under 20% to obtain more realistic scenarios. A wind plant with a

20% penetration level could in reality represent an aggregate of smaller wind

plants subject to the same wind regime in geographical proximity one with

the other.

3.2.3 Load Model

In this study, time-series of hourly load data over a year is used in

the LOLE calculations. If periods of wind/load correlation were present and

significant, corresponding wind plant multi-state representation and load data

should be used in the LOLE calculation. However, we are leaving out the

wind/load correlation in this study. Nevertheless, some load chronological

2Since only one wind plant is under study at a time, the wind plant penetration is used
and defined as the wind plant’s nameplate capacity over the total capacity of the system.
On the other hand, the concept of wind generation penetration can be defined in two ways:
the capacity penetration and the energy penetration. The wind capacity penetration is the
total wind generation nameplate capacity over the total capacity of the system. The wind
energy penetration is usually defined as the yearly wind energy produced over the yearly
energy demand. In this dissertation, penetration is always defined as a capacity penetration.
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information is kept by computing monthly LOLE results indicating riskier

periods. The load data used in this case study represents a summer peaking

system.

3.2.4 Analytical Approach

The yearly LOLE of the power system will be computed using a variant

of (2.5) so as to also compute monthly LOLE values:

LOLE =

[ 744∑

Jan,i=1

Pi(X > Cs,i − Li) + · · ·
744∑

Dec,i=1

Pi(X > Cs,i − Li)

]
× hours

year

(3.8)

where only one COPT is used, leaving out of consideration any unit mainte-

nance or variation in the wind plant multi-state representation. First, in order

to evaluate the impact of a wind plant on the LOLE of a power system, a base

case scenario is created by using the conventional units presented in Table 3.2.

Secondly, scenarios for wind plant penetration of 2%, 5%, 10%, 15% and 20%

are represented. A multi-state representation is therefore created using the

scaled data from Section 3.2.2 and (3.1), resulting in corresponding wind plants

with nameplate capacities of 55-MW, 135-MW, 270-MW, 410-MW, 545-MW.

Each wind plant is added separately to the base case scenario and the LOLE is

computed with (3.8). The wind plants are then replaced by conventional units

using two approaches. The first approach replaces the wind plant with a con-

ventional unit of equal capacity. The second approach replaces the wind plant

with a conventional unit that would deliver the same total amount of energy

during the year. The capacity of this energy equivalent unit can be determined

40



by finding the total wind energy supplied during the year in MW×min/year

or MW×hrs/year divided by 525,600 min/year or 8,760 hrs/year. Since three

years of wind data was used in our study, an average value was used to find

the energy equivalent conventional unit. The resultant capacities of the en-

ergy equivalent units for each wind plant penetration level can be found in the

following table.

Table 3.3 Wind plants’ energy equivalent conventional units

Wind plant Energy equivalent

Nameplate cap. [MW] Conventional unit cap. [MW]

55 18

135 45

270 90

410 137

545 182

The conventional units in Table 3.3 were modeled as two-state coal gen-

erating units with corresponding FOR from NERC GADS [37]. Four scenarios

were thus studied, as follows:

1. Base case scenario: Compute the LOLE of the 2,728-MW power system

2. Second scenario: Compute the LOLE of the 2,728-MW power system

with the addition of a wind plant at the specified penetration levels: 55-

MW (2%), 135-MW (5%), 210-MW (10%), 410-MW (15%) and 545-MW

(20%).
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3. Third scenario: Compute the LOLE of the 2,728-MW power system with

the capacity equivalent conventional units: 55-MW, 135-MW, 270-MW,

410-MW and 545-MW.

4. Fourth scenario: Compute the LOLE of the 2,728-MW power system

with the energy equivalent conventional units: 18-MW, 45-MW, 90-MW,

137-MW and 182-MW.

All LOLE calculations are performed with the same load model. The results

from these scenarios are presented and discussed in the following section.

3.2.5 Case Study Results and Discussion

3.2.5.1 Base Case Scenario Results

Monthly and yearly LOLE values were computed for the 2,728-MW

power system. The monthly LOLE values shown in Figure 3.1 amounted to

an yearly LOLE of 2.40 hours per year3. This base case scenario includes no

wind generation. Figure 3.1 demonstrates that loss-of-load events are more

likely to occur during the summer months when demand peaks. The results

of this base case scenario will be used as a basis for comparison in evaluating

the wind plants’ reliability impact.

3The load demand data was adjusted to achieve this yearly LOLE.
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Figure 3.1 Monthly LOLE: Base case scenario

3.2.5.2 Comparing LOLE Results

Figures 3.2, 3.3 and 3.4 illustrate the monthly LOLE results obtained

from these case studies, showing how the added generation reduces the monthly

LOLE of the base case scenario. In all cases, the added generation contributed

to significantly reduce the summer months’ LOLE while slightly improving

the values during the rest of the year. As their higher availability would lead

one to expect, the conventional units reduce the LOLE to a greater extent.

Figure 3.3 gives a quantitative view of how wind generation is compared here

to conventional generation on a capacity basis. Figure 3.4 suggests a better

way of comparing wind generation to conventional generation by using an

energy comparative basis.

The yearly LOLE values of each case study are presented in figure
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Figure 3.2 Monthly LOLE: Wind plants of various penetration levels
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Figure 3.3 Monthly LOLE: Capacity equivalent conventional units

3.5. As previously mentioned, the results from the equivalent capacity units

only give a quantitative view of how wind plants compare to conventional

generating units of the same capacity, while a better metric of comparison,
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Figure 3.4 Monthly LOLE: Energy equivalent conventional units

energy equivalence, shows how the wind plants should be treated in relation

to conventional generating units. In fact, the energy comparative basis is

analogous to comparing the LOLE impact of a “natural” wind plant to the

impact of a “steadied” wind plant producing the same amount of yearly energy.

At wind penetration levels of less than 5%, the reliability impact of the

wind plants is comparable to an energy equivalent conventional unit. However,

for penetration level greater than 5%, the wind plant is less efficient at reducing

the LOLE, with the deficit ranging from 8% for the 10% penetration level

to 28% for the 20% penetration level. Figure 3.5 appears to indicate that

the percent difference will progressively increase with increasing wind plant

penetration level higher than 20%. This figure also indicates that the LOLE

eventually levels off so that at some point a bigger unit or more generation
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Figure 3.5 Yearly LOLE of wind plants, equivalent energy conven-
tional units and equivalent capacity conventional units

wouldn’t have much effect on reducing the LOLE further. It is important to

notice that this effect is present for both wind plant and conventional units

and is essentially due to the nature of the highly non-linear LOLE calculations.

This point will be important when quantifying the capacity contribution of

wind plant in the following chapter.

3.3 Concluding Remarks

In this chapter, we have provided a detailed description of how to inte-

grate wind plants in loss-of-load calculations. The multi-state representation

was applied to a case study to highlight the reliability contribution of wind
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plants in comparison to conventional units equivalents. Methods of quantifying

this reliability contributions will be presented in the following chapter.
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Chapter 4

Effective Load Carrying Capability of a Wind

Plant

As investigated in Chapter 3, wind plants can contribute to a power

system’s reliability by providing additional installed capacity and reducing the

loss-of-load expectation metric. Efforts to quantify the capacity contribution

of wind plants have been made through the application of various risk-based

and time-period-based methods [10–12]. Several studies have promoted the

effective load carrying capability (ELCC) as the most dependable metric for

quantifying the reliability contribution of a wind plant [10–14, 16, 21, 38, 41].

While ELCC is certainly a thorough method based on standard probabilis-

tic criteria, it also requires substantial reliability modeling and an iterative

process that can be computationally intensive. Consequently, simpler approx-

imations have been proposed to estimate a wind plant’s ELCC using capacity

factor and Garver’s approximation [11, 12]. These simpler methods can be es-

pecially useful when performing a preliminary investigation of wind generation

expansion in system planning studies.

A description of the ELCC concept will be presented at the outset of

this chapter, followed by the illustration of the various ways it can be imple-
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mented in evaluating a wind plant’s capacity contribution. To counter the

concept’s inherent computational setbacks, a novel non-iterative approxima-

tion will be proposed and applied to various case studies [22, 23]. To evaluate

the accuracy of the proposed approximation, we will contrast these estimates

to both conventionally computed ELCC values and to the wind plant’s capac-

ity factor.

4.1 ELCC Concept Overview

From a generation expansion perspective, when a new generating unit

is to be added to an existing power system, the effective load carrying capa-

bility (ELCC) of this unit is equivalent to the amount of extra load that can

be served by the system while maintaining the designated level of reliability.

This designated level is usually characterized by the loss-of-load expectation

(LOLE) of the system before the addition of the new generating unit. We

make the preliminary assumption that the existing system is already well-

planned and exhibits an acceptable LOLE relative to the system’s typical load

demand. Therefore, in equating the LOLEs of the existing (E) and potential

(P) systems, the concept of ELCC is classically represented by the following

expressions:

LOLEE = LOLEP

n∑

i=1

Pi

(
XE > CE − Li

)
=

n∑

i=1

Pi

(
XP > (CE + CA) − (Li + ∆L)

)
(4.1)
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where ∆L1 is the extra load that can be served by the potential system, Li

is the load condition for the time duration i, n is the total number of time

durations in the evaluation period, CE is the total possible capacity of the ex-

isting system and CA is the maximum possible capacity of the additional unit.

Pi

(
XE > CE − Li

)
and Pi

(
XP > (CE + CA)− (Li + ∆L)

)
are the loss-of-load

probabilities (LOLP) of the existing and potential systems. As described in

Chapter 2, these LOLPs represent the probabilities of having a capacity outage

greater than CE −Li and (CE +CA)− (Li +∆L) respectively. The cumulative

probabilities Pi(XE > x) and Pi(XP > x) are obtained from each system’s

capacity outage probability table (COPT) and the i subscript is used in case

maintenance schedules are considered and generation varies from one time du-

ration to the next. The potential system’s COPT includes the additional unit.

The LOLE calculations of the potential system are performed by iteratively

adding a load increment to all load data points of the typical load time-series

until the LOLE meets the existing system’s LOLE. Once (4.1) is iteratively

solved for ∆L, the ELCC of the additional generator can be expressed as the

percentage of the extra load over the added generator’s maximum possible

capacity:

ELCC =
∆L

CA
× 100% . (4.2)

When applying the ELCC concept to conventional generation, the gen-

1In the classical ELCC concept, this extra load is constant throughout the year and
therefore, the same amount is added to all hourly loads. In future work, we will consider
representing load growth patterns in ELCC calculations [42].
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erating unit is modeled by a two-state or multi-state representation and is

then integrated in the COPT as additional generation. In regards to adding a

wind unit, the ELCC concept can be implemented differently depending on the

method chosen for integrating the wind plant in the loss-of-load calculations:

the multi-state representation of Section 3.1.1 or the negative load adjustment

of Section 3.1.2. As we have shown, wind generation can either be handled

as generation similarly to conventional generating units or, using a different

approach, be handled as negative load. The following section will present the

various ELCC implementations for wind generation.

4.2 Classical Computing Method using Multi-State Rep-

resentation

The first way of implementing ELCC in the context of wind generation

is directly in line with the original concept. The wind plants are integrated

similarly to conventional generating units by being considered normal genera-

tion and being convolved in the COPT of the power system. In this classical

computing method, the wind plant under study is modeled with a multi-state

representation and integrated in the COPT of the potential power system as

described in Section 3.1.1.

n∑

i=1

Pi

(
XE > CE − Li

)
=

n∑

i=1

Pi

(
XP > (CE + CW ) − (Li + ∆L)

)
(4.3)

Because of the discrete nature of the COPTs, (4.3) is solved iteratively. Conse-

quently, multiple LOLE calculations are performed with a series of ∆L incre-

ments until the potential system’s LOLE reaches the existing system’s target
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LOLE. Naturally, this iterative process can turn out to be computationally-

intensive. Essentially, when a wind plant of maximum capacity CW is in-

tegrated as generation, the ELCC calculations are performed following this

sequence of steps:

1. Build the existing system’s COPT as described in Section 2.1.1, exclud-

ing the wind plant under study.

2. Compute the existing system’s LOLE (or target LOLE) using the typical

hourly load time-series for the chosen evaluation period.

LOLEE = LOLEtarget =
n∑

i=1

P
(
XE > CE − Li

)

3. Build the wind plant’s multi-state representation as described in Section

3.1.1, using hourly wind data of the chosen evaluation period.

4. Build the potential system’s COPT by including the wind plant’s relia-

bility model, as described in Section 2.1.1 .

5. Repeat LOLE calculations by iteratively increasing the typical hourly

load time-series by adding an incremental constant ∆L to all load data

points until the target LOLE is reached.

LOLEP =
n∑

i=1

P
(
XP > (CE + CW ) − (Li + ∆L)

)
= LOLEtarget

6. Express the ELCC as a percentage.

ELCC =
∆L

CW
× 100% (4.4)
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4.3 Classical Computing Method using Negative Load

Adjustment

When using the negative load adjustment approach to integrate a wind

plant in LOLE calculations, the ELCC concept is no longer standardly imple-

mented by adding the unit as positive generation; instead the additional unit

is integrated as negative load. In this case, ELCC calculations are performed

using a different approach summarized in these six steps:

1. Build the existing system’s COPT as described in Section 2.1.1, exclud-

ing the wind plant under study.

2. Compute the existing system’s LOLE (or target LOLE) using the typical

hourly load time-series for the chosen evaluation period.

LOLEE = LOLEtarget =
n∑

i=1

P
(
XE > CE − Li

)

3. Subtract the wind plant’s hourly power output time-series from the typ-

ical hourly load time-series, obtaining the net load time-series.

4. Compute LOLE with the existing system’s COPT and the reduced load

time-series.

LOLEwind =
n∑

i=1

P
(
XE > CE − (Li − Wi)

)

5. Repeat LOLE calculations using the typical load time-series and the

potential system’s COPT (including a benchmark unit of incremental

53



capacity CB) until the LOLEbenchmark is reduced to LOLEwind.

LOLEbenchmark =
n∑

i=1

P
(
XE > (CE + CB) − Li

)
= LOLEwind

6. Express the wind plant’s ELCC as

ELCC =
CB

CW
× 100% .

Variants of these steps are also possible. For example, instead of adding a

benchmark unit, an existing unit of increasing capacity could be removed

from the COPT until the LOLE, computed with the reduced load time-series,

meets the target LOLE. Another alternate approach would be to increase the

net load time-series with a constant load increment until the LOLE meets the

target LOLE. In this case, the ELCC would be expressed as the resulting load

increment over the wind plant’s nameplate capacity. In the first two negative

load approaches, some subjectivity takes part in the calculations, whether it’s

by choosing the existing unit to remove or by defining the benchmark unit to

add. Again, as explained in Chapter 3 for LOLE calculations, several years of

time-synchronized load and wind power output time-series are necessary for

applying this method.

4.4 Discussion on Computing Methods

Since time-synchronized wind power output and load demand time-

series are not readily available, the multi-state representation will be used in

this dissertation for integrating wind plants in ELCC calculations. When used
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in the context of ELCC, the multi-state representation implements the metric

directly in line with the original concept and treats the wind generation in

the same manner as conventional generation. A wind plant is therefore inte-

grated in terms of what it is: generation. When actual time-synchronized load

and wind power output time-series become more readily available, it would

be interesting to compare ELCC results obtained from all wind integration

approaches.

Regardless of the integration method applied, period-specific ELCC val-

ues should be computed to capture the interannual and/or diurnal variability

of a wind plant’s output and also consider the possible wind/load correlation.

Furthermore, when a new wind plant is added in proximity to other wind

plants, their statistical dependence can be addressed. This consideration is

inherently handled in the negative load adjustment approach, however in the

case of the multi-state representation, as it was also described for LOLE cal-

culations, all wind plants which display a significant cross-correlation must be

aggregated into one multi-state unit. The ELCC merely has to be recalculated

for the new aggregated multi-state unit, which makes the resulting value repre-

sentative of the multiple wind plants. In this case, the calculations described in

Section 4.2 are adjusted to account for the statistically-dependent wind plants.

For example, if wind plant B is the new unit under study but it is located in

close proximity to an already existing wind plant A, then a new ELCC must

be calculated for the aggregated wind plant A+B. Since wind plant A must be

removed from the existing system, the typical load time-series used in the first
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LOLE calculation must also be recalibrated to ensure that the target LOLE

is met.

Unfortunately, conventional ELCC calculations demand substantial re-

liability modeling and require a computationally-intensive iterative process.

Hence, different methods have been proposed to estimate a wind plant’s ELCC

or capacity contribution [10–14]. A novel non-iterative ELCC approximation

was introduced in [22] and is presented in the following section.

4.5 Non-Iterative ELCC Approximation

Various risk-based and time-period-based approximations have been

proposed to estimate a wind plant’s ELCC or capacity value [10–14]. Among

the risk-based methods is Garver’s approximation, a graphical method of es-

timating the ELCC of conventional generating units [43]. This approximation

was mathematically derived using a two-state representation to model the ad-

ditional unit. Although modeling a generating unit as being either fully on

or fully off is appropriate for conventional generation, it is not well suited

for variable-output generation. Therefore, the novel method presented in this

section is adapted from Garver’s approximation, but models the additional

unit with a multi-state representation [22]. As for Garver’s approximation,

the proposed method uses a graphically-determined parameter and is based

on the probabilistic metrics presented in Chapter 2, such as capacity outage

probability table (COPT), loss-of-load probability (LOLP), and loss-of load

expectation (LOLE).
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4.5.1 Basis

Garver’s approach proposes a way of simplifying ELCC calculations for

conventional generation [43]. Indeed, the ELCC of an additional conventional

unit was approximated using graphical aids and a graphically-determined pa-

rameter. This parameter characterized the existing system’s loss-of-load ex-

pectation2 as a function of its reserve; used along with an estimating function,

it significantly reduced the amount of reliability modeling and LOLE calcu-

lations required. Although the approximation focused on the graphical aids,

the most interesting aspect about Garver’s method was the mathematically-

derived function used to create these graphs: from a simple equation one could

obtain an accurate ELCC estimate. The derivation of the estimating function

was based on well-known probability concepts. Unfortunately, the function

modeled the additional unit with a two-state representation, which, as we

noted above, may be appropriate for conventional generation, but fails to ad-

equately represent wind generation. Therefore, an ELCC estimating function

was developed for variable-output generation using a more appropriate multi-

state representation. The derived function, like Garver’s expression, is based

on well-known probability concepts and uses the additional unit’s reliability

characteristics as well as a graphically-determined parameter. This parameter

characterizes the existing system’s loss-of-load probability as a function of load

demand. Consequently, the first step to the proposed approximation consists

2L. L. Garver interchanges the terms LOLE and LOLP in his publication but LOLE is
the actual calculation performed.
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of determining the graphical parameter.

4.5.2 Graphical Parameter of the Existing Power System

The graphical parameter is obtained from a plot that illustrates how the

existing system’s LOLE changes in response to an increase or decrease in load

demand 3. Given a chosen evaluation period, different load data time-series

are created as variants of the system’s typical load demand by positively or

negatively shifting the typical load data time-series. Consequently, each new

curve has the same overall variability as the typical load data time-series (e.g.

given an evaluation period of a year, each load data time-series will display

the summer and winter peaks). The shift is chosen as a percentage of the

typical peak load. Each load data time-series is computed using the following

expression:

Lc = Lt ± c × Ltpk
(4.5)

where Lc is a new load data time-series, Lt is the typical load data time-series

with peak load Ltpk
and c is a percentage. The existing system’s LOLE is

then computed for each new load demand. Subsequently, the resulting LOLE

values are plotted as a function of both the typical and the new load data

time-series. In this graph, all load data time-series are represented by their

peak load, although the actual LOLE calculations are performed using the

whole curves. Once these results are plotted, the data points are curve-fitted

3Load growth patterns are not yet considered in these calculation but will be part of our
future research [?].
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with an exponential relationship.4 The relationship is characterized by the

following equation:

LOLELpk
= B × em×Lpk (4.6)

where Lpk is the peak load of the load time-series B is the pre-exponential co-

efficient and m is the system’s graphical parameter with units of MW−1. The

value of the m parameter is determined by using the exponential curve-fitting

method. As the subsequent mathematical derivation will show, the B param-

eter becomes inconsequential in the analysis. Along with the basic probability

concepts of generation adequacy presented in Chapter 2, the exponential rela-

tionship will be used to mathematically derive an ELCC estimating function

for variable-output generation. The steps of this derivation are presented in

the next section.

4.5.3 Mathematical Derivation of the Estimating Function

Just as we saw in (2.2) presented in Chapter 2, when an additional

variable-output generator is modeled as a multi-state unit, the cumulative

probabilities of the potential system after the addition of the unit P (XP > x)

can be computed by:

P (XP > x) =
k∑

j=1

pj × P
(
XE > x − Cj

)
(4.7)

4Garver suggested that an exponential relationship could accurately approximate how a
power system’s LOLE responds to a shift in load demand [43].
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where P (XE > x−Cj) represents the existing system’s cumulative probability

of having a capacity outage greater than (x−Cj). This cumulative probability

can be obtained from the COPT of the existing system. Given a chosen eval-

uation period and corresponding load data time-series identified by its peak

load Lpk, the LOLE of the potential system can be expressed as

LOLEP, Lpk
=

n∑

i=1

P (XP > CP − Li) (4.8)

where P (XP > CP − Li)
5 is the LOLP for the load condition Li of time

duration i and n is the number of time durations in the chosen evaluation

period. Since, the term P (XP > CP − Li) in (4.8) is equivalent to the term

P (XP > x) in (4.7) when x equals to CP − Li, it can be replaced by

P (XP > CP − Li) =
k∑

j=1

pj × P
(
XE > CP − Li −Cj

)
. (4.9)

This substitution enables the LOLE of the potential system to be expressed

as a function of the existent system’s COPT rather than having to be calcu-

lated in terms of its own COPT. Expanding the summation term in (4.9) and

substituting in (4.8), LOLEP,Lpk
becomes

LOLEP,Lpk
=

n∑

i=1

[
p1 × P (XE > CP − Li − C1)

+ p2 × P (XE > CP − Li − C2) + · · ·

+ pk × P (XE > CP − Li −Ck)

]
. (4.10)

5The subscript i is omitted in Pi(X > x) to make equations easier to read.

60



The total capacity of the potential system CP is equivalent to the total capacity

of the existing system CE plus the maximum possible capacity of the added

unit CA. Consequently, (4.10) can be rewritten as

LOLEP,Lpk
=

n∑

i=1

[
p1 × P (XE > CE + CA − Li − C1)

+p2 × P (XE > CE + CA − Li − C2) + · · ·

+pk × P (XE > CE + CA − Li −Ck)

]
. (4.11)

By rearranging and distributing the summation, (4.11) becomes

LOLEP,Lpk
= p1 ×

n∑

i=1

[
P (XE > CE − (Li + C1 − CA))

]

+p2 ×
n∑

i=1

[
P (XE > CE − (Li + C2 − CA))

]
+ · · ·

+pk ×
n∑

i=1

[
P (XE > CE − (Li + Ck − CA))

]
. (4.12)

Each one of the k summation terms in (4.12) is equivalent to the existing

system’s LOLE computed for a load data time-series with a peak load value

of Lpk + Cj − CA. In turn, each of these k load data time-series is equivalent

to a load time-series of peak load Lpk, which is shifted by adding a constant

Cj −CA. Note that this constant is added to each hourly load data Li. From

this observation, (4.12) is rewritten as

LOLEP,Lpk
= p1 × LOLEE,Lpk+C1−CA

+p2 × LOLEE,Lpk+C2−CA
+

· · ·+pk × LOLEE,Lpk+Ck−CA
. (4.13)
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Because of the shifted change in the load data time-series, each LOLELpk+Cj−CA

term in (4.13) can be replaced by its respective exponential approximation us-

ing (4.6) and the equation becomes

LOLEP,Lpk
= p1 × B × em×(Lpk+C1−CA) + p2 × B × em×(Lpk+C2−CA)+

· · · + pk × B × em×(Lpk+Ck−CA) . (4.14)

Using exponential identities, B × e m×Lpk is isolated and replaced by (4.6) so

that (4.14) can be rewritten as

LOLEP,Lpk
= LOLEE,Lpk

×
[
p1 × em×(C1−CA) + p2 × em×(C2−CA)+

· · · + pk × em×(Ck−CA)
]

. (4.15)

The concept of ELCC described previously now comes into play. Recall that

the ELCC of an additional generator represents the extra load that can be

served while keeping the designated level of reliability, usually the LOLE of

the existing system calculated with its typical load data time-series. Therefore,

the ELCC concept can be expressed as

LOLEP,Ltpk
+∆L = LOLEE,Ltpk

(4.16)

where Ltpk
+ ∆L is the typical load data time-series to which is added a con-

stant extra load ∆L to each hourly load data. This can be seen as the typical

load data time-series that has simply been positively shifted by ∆L. Contract-

ing the pj × em×(Cj−CA) terms and replacing the general load data time-series

Lpk by the specific load data time-series Ltpk
+ ∆L, (4.15) is rewritten as

LOLEP,Ltpk
+∆L = LOLEE,Ltpk

+∆L ×
k∑

j=1

pj × em×(Cj−CA) . (4.17)
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Using (4.6), (4.17) becomes

LOLEP,Ltpk
+∆L = B × em×(Ltpk

+∆L) ×
k∑

j=1

pj × em×(Cj−CA) . (4.18)

Once again, using exponential identities, (4.18) is rearranged as

LOLEP,Ltpk
+∆L = B × em×Ltpk × em×∆L ×

k∑

j=1

pj × em×(Cj−CA) , (4.19)

which finally reduces to

LOLEP,Ltpk
+∆L = LOLEE,Ltpk

× em×∆L ×
k∑

j=1

pj × em×(Cj−CA) . (4.20)

Applying the ELCC concept given by (4.16), (4.20) becomes:

1 = em×∆L ×
k∑

j=1

pj × em×(Cj−CA) . (4.21)

Finally, taking the natural logarithm on both sides of the equation to isolate

∆L, we obtain the ∆L estimating function.

∆L =
1

m
×

[
− ln

[ k∑

j=1

pj × em×(Cj−CA)
]]

(4.22)

Using (4.2)and (4.22), the ELCC of an additional multi-state unit of maxi-

mum possible capacity CA, modeled by k possible capacity outage states Cj

having corresponding individual probability pj , can now be estimated using

the existing power system’s m parameter as follows:

ELCC =

[
− ln

[ k∑

j=1

pj × em×(Cj−CA)
]]

× 100%

m × CA
. (4.23)
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Note that (4.23) can also be used for two-state units. Indeed, for a two-state

unit of capacity CA there exist two possible capacity outage states Cj: fully

on or fully off. If the unit’s unavailability is represented by its forced outage

rate (FOR) then we can replace C1 by 0, p1 by (1 − FOR), C2 by CA and p2

by FOR. Equation (4.23) is therefore reduced to

ELCC =

[
− ln

[
(1 − FOR) × e−m×CA + FOR

]]
× 100%

m × CA
. (4.24)

This expression is equivalent to Garver’s approximation although the m pa-

rameter and risk basis are slightly different. One could verify that if a unit

is always available and hence has an FOR of 0, the resulting ELCC obtained

with(4.24) will be 100%.

The non-iterative approximation developed in this section will be ap-

plied to several case studies. The resulting estimates will be compared to

ELCC values obtained from the preferred classical computing method. Be-

fore performing this comparative analysis, the essential steps of the proposed

non-iterative approximation are reviewed in the next section.

4.5.4 Essential Steps of the Non-iterative Approximation

1. Choose the evaluation period (e.g. a year, peak load hours, summer

months).

2. Given the chosen evaluation period, gather hourly load data, existing

power system generation data and hourly wind power output data. If

possible, use multiple years of relevant data.
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3. Build the existing system reliability model or COPT as described in

Section 2.1.1.

4. Build the wind plant multi-state representation, Cj and pj values as

explained in Section 3.1.1.

5. Determine the existing system graphical parameter, m as described in

Section 4.5.2.

6. Use the estimating function in (4.23) with the values of m, Cj and pj to

obtain the wind plant’s ELCC estimate.

4.6 Case Studies and Discussion

In this section, the non-iterative approximation is applied in a step-

by-step fashion to estimate the capacity contribution of various wind plants.

The resultant ELCC estimates are compared with the values obtained from

both the prefered classical computing method and the capacity factor approx-

imation. In each case study, an existing power system is considering wind

generation expansion and the capacity value of the added wind plant is under

study.

In the first case study, the existing power system (System 1) consists

of 16 generating units with a 2,728-MW total capacity. Wind plants of the

following penetration levels are added separately to the power system: 2%,

5%, 10%, 15% and 20%. Each wind plant is characterized by the same wind

65



pattern, which allows us to examine the effect of increasing wind plant pene-

tration on the ELCC. Two sources of power output data are used in this case

study.

In the second case study, the existing power system (System 2) is rep-

resented by the IEEE-RTS system6 [34]. System 2 is larger than System 1,

both in total generating capacity (3,405-MW) and in number of generators

(32 units). In this study, the capacity contribution of a 150-MW wind plant

is calculated for three different evaluation periods.

Finally, the IEEE-RTS system and a 234-MW wind plant comprise

the last existing power system (System 3) for the third case study. While

including some already existing wind generation, this system is considering an

additional 114-MW wind plant. Again, period-specific ELCCs are computed

for three different evaluation periods. Case Study II and III will be presented

and discussed together as they followed the same period-specific approach.

The analysis presented in Case Study I was published in [22] while Case

Study II and III were presented in [23]. All LOLE calculations were performed

on an hourly basis using (2.5).

4.6.1 Case Study I: ELCC and Wind Plant Penetration

The existing system used in this case study is found in Table 4.1, where

it is seen to consist of 16 conventional generating units ranging from 22-MW

6Only the generators of the IEEE-RTS system are used, the load model used in the case
study is not the IEEE-RTS load model.
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to 555-MW, having a total capacity of 2,728-MW. Each generator is mod-

eled with a two-state representation and its unavailability is expressed with

the forced outage rate (FOR). The North American Electric Reliability Coun-

cil “Generating Availability Data System” provided relevant FOR values by

generator type and size [37].

Table 4.1 Case Study I: Generating units data of System 1

Size [MW] # of units Description in GADS Unavailability; FOR

22 1 Gas Primary; 001-099MW 0.0778

50 2 Gas Primary; 001-099MW 0.0778

102 6 Gas Primary; 100-199MW 0.0657

135 1 Gas Primary; 100-199MW 0.0657

171 1 Coal Primary; 100-199MW 0.0437

188 1 Coal Primary; 100-199MW 0.0437

195 2 Gas Primary; 100-199MW 0.0657

555 2 Coal Primary; 400-599MW 0.0522

The capacity contribution of five different wind plants is evaluated with

our proposed non-iterative approximation. The resultant ELCC estimates

are compared to the conventionally calculated ELCC values as well as the

capacity factor estimates. Given wind plants with the same wind pattern, plant

penetration levels of 2%, 5%, 10%, 15% and 20% are considered. In accordance

with the steps summarized in Section 4.5.4, the analysis is performed as follows.
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4.6.1.1 Choosing the Evaluation Period

A typical load data time-series consisting of a full year of hourly load

data points was used in the analysis. This load demand displays the usual

summer and winter peaks, with an annual peak load of 1,963-MW. Using this

load demand, a LOLE of 2.4 hours per year7 is computed for the existing power

system. The wind/load correlation is not considered in this case study since

the focus here is on the effect of the wind plant penetration level on ELCC.

4.6.1.2 Building the Wind Plant’s Reliability Model

The additional wind plant is modeled with the multi-state representa-

tion as described in Section 3.1.1. For optimum results, multiple years of power

output data from the relevant evaluation period, if available, should be used

to build the multi-state representation of the studied wind plant. However, in

this case study, only a full year of power output data from two different wind

plants was available: WP-1 of 113-MW and WP-2 of 230-MW. In this case

study, we want to demonstrate how the ELCC of a wind plant varies as its

penetration level increases. To this end, various wind plant penetration levels

were obtained by simply scaling the actual power output data. The following

equation was used

pCw (t) =
pCo(t) × Cw

Co
(4.25)

7The load demand was adjusted to obtain this LOLE.
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where Cw is the desired total capacity in MW of the scaled wind plant (i.e.

the eventual additional wind plant), pCo(t) is the power output in MW at

time t of the original wind plant (WP-1 or WP-2) of capacity Co (113-MW

or 230-MW), and pCw(t) is the power output in MW at time t of the scaled

wind plant. In this study, the wind plant penetration level is defined as the

wind plant’s capacity over the existing power system’s total capacity in terms

of percentage. Therefore, if the added wind plant is 10-MW and the existing

power system’s total capacity is 100-MW, the wind plant penetration level

will be [10 ÷ 100] × 100% or 10%. The levels studied are 2% (55-MW), 5%

(135-MW), 10% (270-MW), 15% (410-MW) and 20% (545-MW). These levels

were created using both wind data sets. This resulted in two 55-MW wind

plants, two 135-MW wind plants, two 270-MW wind plant and so on. In other

words, in each pair, one is created from the WP-1 data and the other is created

from the WP-2 data. A multi-state representation is built for each of these

10 wind plants as described in Section 3.1.1 with a resolution of 1-MW. For

example, Table 4.2 presents part of the multi-state representation for a 55-

MW wind plant using the power output data of WP-1. For this wind plant, a

capacity outage state C3 of 3-MW has a probability p3 of 0.00011416, while the

probability of having all capacity on outage Cw=C55=55-MW is p55= 0.125.

As explained in Section 3.1.3.1, although the evaluation period is chosen

to be a full year in this case study, the interannual and/or diurnal variability

of wind generation along with the possible wind/load correlation could be

captured by adjusting the multi-state representation in the calculations. For

69



Table 4.2 Case Study I: Multi-state representation of a 55-MW wind
plant using WP-1 power output data and a resolution of 1-MW

Capacity outage state Individual probability

Cj [MW] pj

0 0

1 0

2 0

3 0.00011416

4 0.0054795

5 0.010388

6 0.013128

· · · · · ·
50 0.02911

51 0.030023

52 0.028881

53 0.032763

54 0.040868

55 0.125

example, a monthly or peak load representation could be constructed with

the relevant power output data. Then, using the corresponding load data,

monthly or peak load ELCC or ELCC estimates could be obtained. Such

period-specific ELCCs will be investigated in the next case studies.

4.6.1.3 Building the COPT of System 1

After having established the data of the generators from Table 4.1,

we use it as our base for building our existing system’s COPT by means
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of the recursive algorithm presented in Section 2.1.1. The resulting COPT

consists of 1,721 possible capacity outage states. When classically computing

a wind plant’s ELCC, the multi-state representation presented in Table 4.2

would be convolved with the existing system’s COPT using (2.2) to create the

potential system’s COPT. Table 4.3 represents part of the potential system’s

COPT when a 55-MW wind plant is added to System 1. The COPT of the

potential system would be built on similar lines for the other nine wind plants

under study. However, when using the non-iterative approximation, one must

determine the m parameter instead of trying to compute the potential system’s

COPT. The same m parameter is used to evaluate all 10 wind plants under

study.

4.6.1.4 Determining the m parameter of System 1

The existing power system’s m parameter is determined graphically

as described in Section 4.5.2. Using (4.5), various new load data time-series

are created with shifting percentages of -20%, -17.5%, -15%, ...0%, +2.5%,

...+20%. The existent power system’s LOLE is computed for the typical curve

and then for the 16 new load data time-series. Table 4.4 presents the resultant

LOLE values with their associated load data time-series.

Although the peak load LCpk
is used to represent the load data time-

series Lc, the LOLE calculations are performed using all the relevant hourly

load data points, not just the peak load. Again, the relevant load data is

determined by the chosen an evaluation period; in this case study, it is a

71



full year. The results from Table 4.4 are graphed to obtain a relationship

approximating the LOLE as a function of a shifted increase or decrease in

the typical load demand. Figure 4.1 illustrates this relationship between the

existing system’s LOLE and each curve’s annual peak load.

Using an exponential curve fitting tool on Fig. 4.1, a relationship is

established which attributes a value of 7.30788 × 10−03 MW−1 to the m pa-

rameter:

LOLELpk
= B × e7.30788×10−03×Lpk . (4.26)

Table 4.3 Case Study I: COPT for a 2,783-MW power system in-
cluding a 55-MW wind plant using WP-1 power output data

Capacity outage state Cumulative probability

x [MW] P (XP > x)

0 1

1 1

2 1

3 1

4 0.99996

5 0.99804

· · · · · ·
201 0.34358

202 0.34159

· · · · · ·
2781 1.1101 × 10−20

2782 9.2703 × 10−21

2783 6.9862 × 10−21
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Table 4.4 Case Study I: System 1’s LOLE for various load data time-
series

Load data time-series Annual peak load LOLE

Lc = Lt ± c × Ltpk
[MW] LCpk

[MW] [hrs per year]

Lt − 20% × Ltpk
1570 0.1169

Lt − 17.5% × Ltpk
1619 0.1839

Lt − 15% × Ltpk
1668 0.2785

Lt − 12.5% × Ltpk
1718 0.4226

Lt − 10% × Ltpk
1767 0.6086

Lt − 7.5% × Ltpk
1816 0.8546

Lt − 5% × Ltpk
1865 1.2072

Lt − 2.5% × Ltpk
1914 1.6996

Lt, Typical Load Data 1963 2.4000

Lt + 2.5% × Ltpk
2012 3.4413

Lt + 5% × Ltpk
2061 5.0314

Lt + 7.5% × Ltpk
2110 7.2852

Lt + 10% × Ltpk
2159 10.4796

Lt + 12.5% × Ltpk
2208 14.7912

Lt + 15% × Ltpk
2257 20.7699

Lt + 17.5% × Ltpk
2306 28.0748

Lt + 20% × Ltpk
2356 37.1675

Once the existing system’s m parameter is determined, (4.23) can be applied

to estimate the ELCC of the 10 different wind plants, in accordance with their

respective multi-state representation (Cj and pj values).
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Figure 4.1 Case Study I: Exponential relationship between the exist-
ing system’s LOLE and a shifted increase or decrease in the typical
load demand.

4.6.1.5 Results

The resulting ELCC estimates are then compared to the classically

calculated ELCC values. As explained in Section 3.1.1, the classical ELCC

computing method is applied by building a COPT for each of the 10 potential

power systems, using (2.2). Next, by an iterative process, (4.3) is solved for

∆L using the typical load demand for all LOLE calculations. When the ∆L

value of each wind plant is found, (4.4) is used to compute the actual ELCC

value. All the ELCC results are illustrated in Figure 4.2, where the wind

plant’s capacity factor is also included for comparison.
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Figure 4.2 Case Study I: Comparing ELCC results from the conven-
tional calculations, non-iterative approximation and capacity factor
approximation for: (a) wind plants created from WP-1 source data,
and (b) wind plants created from WP-2 source data

4.6.1.6 Discussion

Table 4.5 compares the ELCC results obtained from the case study. The

non-iterative method quite accurately approximates the conventional method,

only slightly overestimating the ELCC by 1.4% to 2.5%. Plus, it gives consis-

tent results for both sources of power output data (WP-1 and WP-2). On the

other hand, the capacity factor approximation is only accurate at penetration

levels of 2%, with a relative error of about 4%; it becomes quite inaccurate
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Table 4.5 Comparison of ELCC results for Case Study I

WP-1 ( All units [%] )

Wind plant penetration level 2 5 10 15 20

ELCC Classical method 29.8 27.5 24.3 21.5 19.5

ELCC Approximate method 30.4 27.9 24.7 22.0 19.9

Percent relative error 2.0 1.4 1.6 2.3 1.9

Capacity factor 31.1 31.1 31.1 31.1 31.1

Percent relative error 4.4 13.1 28.0 44.7 59.5

WP-2 ( All units [%] )

Wind plant penetration level 2 5 10 15 20

ELCC Classical method 32.4 29.9 26.4 23.4 21.2

ELCC Approximate method 32.9 30.3 26.9 24.0 21.6

Percent relative error 1.7 1.4 2.0 2.5 2.1

Capacity factor 33.6 33.6 33.6 33.6 33.6

Percent relative error 3.7 12.4 27.3 43.6 58.5

at higher penetration levels, reaching a relative error of nearly 60% for the

wind plant penetration level of 20%. Therefore, although the capacity factor

approximation is convenient because it does not require any reliability model-

ing, it is a misleading overall ELCC approximation. When system generation

and load data are available, the non-iterative approximation should be used;

it produces more accurate ELCC estimates for all penetration levels, while

requiring minimal reliability modeling and computational efforts.
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4.6.2 Case Studies II and III: Period-specific ELCCs

In the second case study, the existing power system (System 2) consists

of the IEEE Reliability Test System, which has a total capacity of 3,405-MW

[34]. It contains the 32 conventional generating units of Table 4.6 as well

as their force outage rate (FOR), representing unit unavailability. System 2

Table 4.6 Case Study II: IEEE-RTS Generating units reliability data

Unit size [MW] Number of units Unavailability; FOR

12 5 0.02

20 4 0.10

50 6 0.01

76 4 0.02

100 3 0.04

155 4 0.04

197 3 0.05

350 1 0.08

400 2 0.12

serves a typical load demand with a 2,627-MW annual peak load8. For this

typical load demand, the computed LOLE is 2.4 hours per year. Figure 4.3

illustrates the hourly load data time-series.

The addition of a 150-MW wind plant is under consideration for System

2. Only a year of power output data was available for the wind plant under

study. Optimally, multiple years of data from the chosen evaluation period

8This is not the IEEE-RTS load demand.
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Figure 4.3 Case Study II: Hourly load data time-series for System 2
over a year long evaluation period

would be used to build the wind model. Figure 4.4 illustrates the yearly

power output data of the 150-MW wind plant.
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Figure 4.4 Case Study II: Power output for the 150-MW wind plant
over a year long evaluation period (Note the interannual variability of the
wind generation.)
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In the third case study, in addition to the 32 conventional units, the

existing power system (System 3) also includes a 234-MW wind plant. This

3,639-MW system serves a typical load demand of 2,682-MW annual peak load

and exhibits a 2.4 hours per year LOLE. The load demand displays the same

variability as the load data in Case Study II. In this case, a 114-MW wind

plant is added to the generation portfolio of System 3. Figure 4.5 illustrates

the yearly power output data of the 114-MW wind plant.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0

20

40

60

80

100

120

P
ow

er
 O

ut
pu

t [
M

W
]

Figure 4.5 Case Study III: Power output for the 114-MW wind plant
over the year long evaluation period (Note the interannual variability of
the wind generation.)

4.6.2.1 Choosing the Evaluation Period

In these case studies, period-specific ELCCs are computed for three

evaluation periods: yearly, monthly and peak load hours. The peak load hours

period is defined as the weekdays hours from 3PM through 6PM during the

months of June, July, August and September. Once the evaluation period is
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chosen, the appropriate data must be used in the calculations. For example, to

determine the ELCC during the month of August for the 150-MW wind plant,

we use the wind power output data of August to build the wind reliability

model. Furthermore, to compute the m parameter of the non-iterative method,

we must also use the August load data for the LOLE calculations. Figure 4.6

illustrates System 2’s load demand for the month of August while Figure 4.7

illustrates the power output data of the 150-MW wind plant during the month

of August.
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Figure 4.6 Case Study II: Hourly load data time-series for August

Although a thorough cross-correlation analysis is recommended, fig-

ures 4.8 and 4.9 give some insights on how to identify periods of significant

wind/load correlation. A weak negative correlation related to diurnal effect

can be identified from these figures. In further analysis, this correlation could

be captured by choosing hourly evaluation periods as it is applied for the peak
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Figure 4.7 Case Study II: Power output for the 150-MW wind plant
during August

load hours period. Even though correlation is not explicitly investigated in

these case studies, results will show the importance of identifying periods of

potential wind/load correlations. A thorough cross-correlation analysis would

be more conclusive but figures 4.8 and 4.9 can still provide some insights on

how to identify periods of significant wind/load correlation. A weak negative

correlation related to diurnal effect can be identified from these figures. In fur-

ther analysis, this correlation could be captured by choosing hourly evaluation

periods as it is applied for the peak load hours period. Although correla-

tion is not explicitly investigated in these case studies, results will show the

importance of identifying periods of potential wind/load correlations.

Using the data corresponding to the relevant evaluation period, we can

determine the multi-state representation of the wind plant.
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Figure 4.8 Case Study II: Superimposed load and wind power output
time-series for August
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Figure 4.9 Case Study II: Correlation graph between load demand
and wind power output time-series for August

4.6.2.2 Building the Wind Plant’s Reliability Model

The preferred multi-state representation as described in Section 3.1.1

is used to model the wind plant. A resolution of 1-MW is used to model
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all wind plants in these case studies. For example, in the second case study,

the 150-MW wind plant is modeled by 151 partial capacity outage states:

C1=0-MW, C2=1-MW, ...C149=148-MW, C150=149-MW, C151=CA=150-MW.

Given the wind plant’s power output data for the chosen evaluation period,

the individual probability pj associated with the partial capacity outage states

Cj are computed using (3.1). In these calculations, when a power output

data point fell between two values of CA − Cj, it was rounded to the closest

partial capacity outage state. For example, a power output of 142.3-MW was

counted as an occurrence for the 142-MW partial capacity outage state while

a power output of 65.5-MW was counted as an occurrence for the 66-MW

partial capacity outage state. For low resolution, this rounding approximation

has an insignificant impact on the final model. Table 4.7 represents part of

the 150-MW wind plant’s multi-state representation for an evaluation period

of a year. Similar multi-state representations are built for the wind plants in

Case Study III.

4.6.2.3 Building the COPT of System 2 and System 3

For the second case study, the generators’ data from Table 4.6 is used

to build the existing system’s COPT using the recursive algorithm presented

in Section 2.1.1. For System 3, an already existing 234-MW wind plant is also

convolved in the reliability model. With the existing system’s COPT, the next

step is to obtain the m parameter for each case study.
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Table 4.7 Case Study II: Multi-state representation for the 150-MW
wind plant using a resolution of 1-MW and an evaluation period of
a year

Capacity outage state Individual probability

Cj [MW] pj

0 0

1 0

2 0.000057

3 0.000148

4 0.000272

5 0.002319

6 0.001967

· · · · · ·
145 0.013754

146 0.016739

147 0.015611

148 0.016050

149 0.018080

150 0.089935

4.6.2.4 Determining the m Parameter of System 2 and System 3

Given the chosen evaluation period’s appropriate data and using (4.5),

various new load data time-series are created with shifting percentages of -20%,

-17.5%, -15%, ...0%, +2.5%, ...+20%. In each case study, the existent power

system’s LOLE is computed for these 16 new load data time-series in addition

to the typical load data time-series. For example, Table 4.8 presents the re-

sultant LOLE values with their associated load data time-series for System 2
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during August. Although the peak load LCpk
is used to represent the load data

Table 4.8 Case Study II: LOLE for various load data time-series
during August for System 2

Load data time-series Monthly peak load LOLE

Lc = Lt ± c × Ltpk
[MW] LCpk

[MW] [hrs per month]

Lt−20%×Ltpk
1911 0.0003254

Lt−17.5%×Ltpk
1971 0.0007529

Lt−15%×Ltpk
2031 0.001655

Lt−12.5%×Ltpk
2091 0.003725

Lt−10%×Ltpk
2150 0.007798

Lt−7.5%×Ltpk
2210 0.01556

Lt−5%×Ltpk
2270 0.03137

Lt−2.5%×Ltpk
2329 0.05808

Lt, Aug. Typical Load Data 2389 0.1034

Lt+2.5%×Ltpk
2449 0.1838

Lt+5%×Ltpk
2509 0.3180

Lt+7.5%×Ltpk
2568 0.5328

Lt+10%×Ltpk
2628 0.8755

Lt+12.5%×Ltpk
2688 1.4174

Lt+15%×Ltpk
2748 2.2490

Lt+17.5%×Ltpk
2807 3.4824

Lt+20%×Ltpk
2867 5.3688

time-series Lc, the LOLE calculations were performed using all the relevant

hourly load data points, not only the peak load. These calculations are done

for all evaluation periods in both case studies. Note that in Case Study III,

period-specific COPTs are computed using the corresponding period-specific

multi-state representation for the already existing wind plant. After the LOLE

values have been computed for a particular evaluation period, the results are
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graphed to obtain the relationship approximating the LOLE as a function

of a shifted increase or decrease in load demand. Figure 4.10 illustrates the

relationship between System 2’s LOLE and the peak load of each curve for

August. Using a curve fitting tool, the data points are curve-fitted with an
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Figure 4.10 Case Study II: Exponential relationship between the
existing system’s LOLE and a shifted increase or decrease in the
typical load demand during August

exponential relationship to determine the m parameter. The following expo-

nential relationship was established for System 2 in August. It attributed a

value of 1.0054465 × 10−2 MW−1 to the m parameter:

LOLELpk
= B × e1.0054465×10−02×Lpk . (4.27)
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Applying the same approach, the m parameters were computed for all

evaluation periods in both Case Study II and III.

4.6.2.5 Results

Using the existing system’s m parameter with the wind plant’s multi-

state model (Cj and pj values), we applied the estimating function (4.23)

to obtain the ELCC estimates. The resulting period-specific ELCC estimates

were compared to the classically computed values as well as to the wind plant’s

capacity factor. Both the classical ELCC and the capacity factor calculations

were performed using the data relevant to the evaluation period. Figures 4.11

and 4.12 illustrate these results which will be discussed in the following section.
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Figure 4.11 Case Study II: Comparing ELCC results obtained from
the non-iterative approximation (NI), the conventional method and
capacity factor approximation(CF)
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Figure 4.12 Case Study III: Comparing ELCC results obtained from
the non-iterative approximation (NI), the conventional method and
capacity factor approximation(CF)

4.6.2.6 Discussion

In Case Study II and III, we demonstrated that the non-iterative ap-

proximation can be applied whether or not wind generation is already present

in the existing generation portfolio. Moreover, it is shown that the proposed

method can be adjusted for various evaluation periods. The non-iterative ap-

proximation provides excellent ELCC estimates independent of the scenario

or choice of evaluation period. Figures 4.11 and 4.12 (or tables 4.9 and 4.10)

summarize and compare the ELCC results obtained in each case study. For

all evaluation periods, the non-iterative method accurately approximates the

conventional calculations with an average percent relative error of 2.2% for

Case Study II and 1.4% for Case Study III.
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Table 4.9 Case Study II: Comparison of ELCC results obtained for
150-MW wind plant (Percent relative errors in parenthesis)

Evaluation Non-iterative Classical Capacity factor

Period Approx. [%] Method [%] Approx. [%]

Yearly 32.2 (1.2) 31.8 37.9 (19.1)

Monthly

January 39.5 (4.1) 41.2 49.5 (20.2)

February 30.0 (1.2) 30.3 39.6 (30.7)

March 34.3 (0.7) 34.5 43.3 (25.3)

April 35.9 (1.7) 36.5 44.5 (21.7)

May 35.8 (2.9) 36.9 45.1 (22.3)

June 25.9 (0.3) 25.8 30.6 (18.8)

July 29.0 (1.9) 28.5 32.9 (15.7)

August 20.1 (1.9) 19.7 24.0 (21.8)

September 24.6 (2.0) 25.1 30.3 (20.5)

October 32.3 (4.7) 33.9 39.6 (16.6)

November 36.2 (5.6) 38.3 45.0 (17.3)

December 25.4 (1.1) 25.7 30.1 (17.2)

Peak Hours 15.5 (2.2) 15.1 17.6 (16.0)

Average

% Rel. Error (2.2) — (20.2)

On the other hand, the capacity factor approximation offers less ac-

curate ELCC estimates with average percent relative error of 20.2% for Case

Study II and 14.1% for Case Study III. The capacity factor method is also less

consistent between the two case studies. As we pointed out in Case Study I,

the greater the size of the wind plant in comparison with the total system’s

capacity (wind plant penetration level), the less accurate are the capacity fac-
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Table 4.10 Case Study III: Comparison of ELCC results for 114-MW
wind plant (Percent relative errors in parenthesis)

Evaluation Non-iterative Classical Capacity factor

Period Approx. [%] Method [%] Approx. [%]

Yearly 36.4 (0.1) 36.4 40.9 (12.4)

Monthly

January 42.1 (1.7) 42.8 48.6 (13.6)

February 31.3 (2.4) 32.1 38.4 (19.6)

March 36.3 (1.8) 36.9 42.7 (15.7)

April 40.6 (0.5) 40.8 47.6 (16.6)

May 41.1 (1.1) 41.6 48.6 (16.8)

June 30.5 (0.6) 30.4 34.7 (14.5)

July 32.7 (0.1) 32.6 36.0 (10.4)

August 24.3 (0.5) 24.4 27.5 (12.7)

September 28.3 (1.7) 28.8 32.7 (13.6)

October 35.5 (2.2) 36.3 40.8 (12.3)

November 42.9 (2.9) 44.2 50.4 (14.1)

December 37.0 (1.8) 37.6 42.6 (13.2)

Peak Hours 17.7 (2.0) 17.4 19.4 (11.9)

Average

% Rel. Error (1.4) N/A (14.1)

tor estimates. Here, the non-iterative approximation offers more consistent

estimates between the two case studies, with 0.8% difference between the av-

erage errors. Again, although the capacity factor approximation is convenient

because it does not require any reliability modeling, it is not a good method

for obtaining an overall ELCC approximation. When system generation and

load data are available, the non-iterative approximation is more appropriate;
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it produces more accurate ELCC estimates for any chosen evaluation period

while requiring minimal reliability modeling and computational efforts. In

summary, there are four advantages to using the non-iterative approximation

over the conventional calculations:

1. The only LOLE calculations needed are the ones performed to determine

the m parameter.

2. There is no need to build a generation reliability model, or COPT, to

represent the potential power system including the additional wind plant.

Consequently, alternate wind expansion scenarios can easily be studied.

3. There is no computationally-intensive iterative process to solve for ∆L.

4. Only a simple function using basic operations is needed to compute an

accurate ELCC estimate.

Furthermore, if the actual ELCC value is needed, one could use the resulting

∆L estimate as a starting point to reduce the number of iterations required

by the conventional calculations.

Finally, results in Case Study II and III show that there can be a signif-

icant difference between the capacity values computed for different evaluation

periods. In Case Study II, the estimated capacity value of the 150-MW wind

plant varies from a minimum of 15.5% during the peak hours period to a

maximum of 39.5% during the month of January, a 24% difference between
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the two values. In Case Study III, the estimated capacity value of the 114-

MW wind plant varies from a minimum of 17.7% for the peak hours period

to a maximum of 42.9% during the month of November, a 25.2% difference.

These findings suggests the importance of period-specific ELCC calculations

to qualify a wind plant’s variable reliability contribution.

4.7 Concluding Remarks

In this chapter, a wind plant’s capacity contribution was quantified by

using the metric of effective load carrying capability. In addition to applying

conventional ELCC calculations to several case studies, a novel non-iterative

approximation was introduced and yielded accurate ELCC estimates. Case

study findings suggested the importance of period-specific ELCC calculations

to better evaluate the variable reliability contribution of wind plants. Relevant

evaluation periods should be system and wind plant dependent while also

reflecting interannual variability and possible wind/load correlation.

Thus far, the reliability contribution of wind plants has been studied

from a system planning perspective. The findings and methods presented in

this chapter should prove useful in generation expansion studies or generation

adequacy assessment when determining system planning reserves. Even when

considering a well-planned system where wind generation has been appropri-

ately integrated in the adequacy assessment, wind plants do create significant

challenges to maintaining reliability on an operational level. The following

chapter will address theses challenges while proposing an operational adequacy
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assessment method for power systems with significant wind generation.
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Chapter 5

Operational Generation Adequacy Assessment

for Power Systems with Wind Generation

System operators are responsible for maintaining adequate system re-

liability while constantly monitoring and matching the system generation to

the load demand. Ancillary services are procured to maintain security and

reliability during system disturbances and to account for load forecasting de-

viations. The increasing presence of wind generation, with its inherent vari-

ability, makes it more challenging for system operators to maintain the desired

system reliability. Adequate monthly or annual ancillary service requirements

are usually determined based on engineering experience and historical system

performance. Since these requirements may or may not capture wind gener-

ation’s uncertainties, being able to assess the system reliability status would

be beneficial for system operators.

As we have shown in previous chapters, generation adequacy assess-

ments using loss-of-load calculations are not usually made from an operational

perspective but are instead based on planning cases to determine planning re-

serve margins. In this chapter, we propose an approach that would allow

system operators to assess whether enough capacity is available to cover for
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potential generator forced outages, load forecasting deviations and, most im-

portantly, wind forecasting deviations. Our purpose with this assessment tool

is to equip system operators with a quantitative evaluation method to assess

the reliability risk levels on day-ahead and hour-ahead basis, and consequently

enable them to identify high risk periods and make the necessary adjustments

to ensure acceptable levels of system reliability.

5.1 Concept Description

While most commonly used in generation adequacy assessment studies

for system planning purposes, the loss-of-load probability (LOLP) has been

adapted in the past to provide useful operational information such as spinning

reserve requirements [44]. In this chapter, a novel application of the LOLP is

presented while proposing to use the metric as an operational reliability assess-

ment tool in the context where wind capacity is a significant part of the gen-

eration portfolio. As described in Chapter 3, in planning generation adequacy

studies, loss-of-load calculations are usually performed while integrating wind

plants using one of two main approaches: negative load adjustment or multi-

state representation. In each approach, preferably a year or more of actual

power output data is used to create the wind plant’s reliability model. Given

an acceptable yearly risk level, loss-of-load calculations are then performed to

ensure that enough generating capacity is present in the system to meet the

projected load demands. Unlike system planning applications, the proposed

operational assessment tool performs hourly LOLP calculations to ensure that
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Figure 5.1 Conceptual diagram of the operational reliability assess-
ment tool reflecting hourly operational LOLP calculations

enough generators have been scheduled to reliably meet the hourly forecasted

load demand. The hourly LOLP reflects not only the possible generator forced

outages but also the load and wind power forecasting deviations. Figure 5.1

summarizes the proposed operational reliability assessment tool. As shown

in this figure, each scheduled generating unit is represented with a reliability

model specific to the type of generation: conventional1, combined-cycle and

wind. When all generating units have been modeled, the system’s COPT is

created using the recursive probabilistic algorithm of Section 2.1.1. Similar to

1In this case, conventional generation means all generation except combined-cycle and
wind.
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planning applications, wind plants can be modeled either as generation in the

COPT or as negative load. Incorporating an hourly load model which consid-

ers forecasting deviations, the loss-of-load probability is then computed for the

hour under study. This hourly assessment can be performed on a day-ahead or

hour-ahead time horizon given that appropriate forecasting deviations are used

in the calculations. The calculated hourly risk or the compounded daily risk is

then compared to a pre-determined acceptable risk criterion. If the scheduled

generation turns out to be inadequate to meet the criterion, demand response

and additional fast start units can then be included in the risk assessment.

The proposed operational LOLP calculations are performed much like

the planning LOLP calculations, with the main difference being how the wind

generation and load demand are represented and handled in the calculations.

Note that wind and load forecasting deviations are assumed to be statistically

independent while performing the hourly LOLP calculations, an assumption

which will be discussed later in this chapter. The following sections will present

the generation and load reliability models used in the proposed tool.

5.2 Conventional Unit and Combined-cycle Plant Reli-

ability Model

Conventional units and combined-cycle plants are modeled as described

in Section 2.2.1 and Appendix A by using a two-state and multi-state represen-

tations respectively. Since short term statistics are not readily available, long

term steady-state statistics can be used to approximate a unit’s unavailability
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in an operational time frame. When unit-specific statistics are unavailable,

the NERC GADS database can provide the necessary information to compute

a unit’s unavailability probability according to its type and size [37].

5.3 Proposed Operational Load Reliability Model

The operational load model is created using the hourly forecasted sys-

tem load and expected forecasting deviations. Optimally, these forecasting

deviations would be obtained from the load forecasting provider and be depen-

dent on the number of hours-ahead for which the forecast is being performed.

Meanwhile, we proposed that a reasonable approximation of the forecasting de-

viations could be determined using multiple years of historical load forecasts

and actual load demands. These approximate forecasting deviations could

also be period-specific such as on a seasonally, monthly and/or peak/off-peak

hourly bases. The following simple example suggests how these forecasting

deviations can be approximated using historical forecasts and actual load de-

mands for the period of interest. For a particular hourly load forecast, the

conditional probability that the actual load demand will take a certain histor-

ically possible value is simply computed as follows:

Pl(La|Lf ) =
# of actual load equal to La when the forecasted load is Lf

# of load forecast Lf
.

(5.1)

Note that we only use the historical load forecast and actual load demand for

the period of interest in the calculations. For example, if we have a year of

historical load data, but we want to build a forecasting deviations distribution
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for the month of July, we will only use the hourly load data of that month.

Given the simple load history shown in Table 5.1, a forecast Lf of 10-MW

can take actual values La of 5-MW, 10-MW and 15-MW with probabilities

Pl(La|Lf ) of Pl(5|10) = 1/5 = 0.20, Pl(10|10) = 3/5 = 0.60 and Pl(15|10) =

1/5 = 0.20. Similarly, a 20-MW forecast can take actual values of 10-MW,

15-MW and 20-MW, with probabilities of Pl(10|20) = 1/5 = 0.20, Pl(15|20) =

2/5 = 0.40 and Pl(20|20) = 2/5 = 0.40.

Table 5.1 Example: Simple history of forecasts and actual load de-
mands for estimating forecasting deviations (Note that the load history
is specific to the period of interest.)

Load forecast Lf [MW] Actual load La [MW]

10 5

10 10

10 10

10 10

10 15

20 10

20 15

20 15

20 20

20 20

The forecasting deviations distribution associated with a particular

forecast Lf is then represented with the n possible actual values La,i and

corresponding probabilities Pl(La,i|Lf ). Table 5.2 represents the resulting dis-

tributions for our simple example.
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Table 5.2 Example: Estimated load forecasting deviations distribu-
tion by load forecast

Load forecast Lf of 10-MW

Possible actual load La,i [MW] Probability Pl(La,i|Lf)

5 0.20

10 0.60

15 0.20

Load forecast Lf of 20-MW

Possible actual load La,i [MW] Probability Pl(La,i|Lf)

10 0.20

15 0.40

20 0.40

The load forecasting deviations distribution associated with a particu-

lar load forecast embodies the operational load model used in the hourly LOLP

calculation. As we will show in subsequent sections, we mathematically incor-

porate this load model in the LOLP by applying the law of total probability.

Firstly, though, the wind plant reliability model must be developed.

5.4 Proposed Operational Wind Plant Reliability Model

As was shown in regard to planning LOLP calculations, wind plants

can also be integrated in the operational calculations as either generation or

negative load. In both cases, the wind plant’s hourly power output forecast

and associated forecasting deviations are used to create the reliability model.

The following sections describe the two integration approaches.

100



5.4.1 Integrating Wind Plant as Generation

In this approach, the proposed wind plant’s hourly operational reliabil-

ity model is essentially a multi-state representation. As for the planning model,

the operational multi-state representation consists of partial outage states and

corresponding individual probabilities which is then convolved as generation

in the system’s COPT. The operational model differs from the planning model

in that hourly forecasted power output and associated forecasting deviations

are used instead of the power output times series. Ideally, the forecasting

deviations would be obtained from the wind forecasting provider and depend

on the number of hours-ahead the forecast is being performed. Usually, one

would expect an hour-ahead forecast to be more accurate than a day-ahead

forecast. In addition, forecasting deviations could also reflect other aspects,

such as particular weather patterns or extreme weather conditions. It is recog-

nized that wind forecasting is still a developing area and accurate forecasting

deviations are still limited at this time.

Meanwhile, analogously to the method used to construct the load model,

reasonable forecasting deviations can be approximated given enough histori-

cal forecasted power output data and corresponding actual values. A wind

plant’s forecasting deviations distribution would be created along lines simi-

lar to the load distribution described in the previous section. To each power

output forecast would be associated a distribution of possible actual values

and corresponding probabilities. Using this distribution, the wind plant’s op-

erational multi-state representation would be determined and then convolved
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in the COPT of the system. Table 5.3 provides the forecasting deviations

distribution associated with a 100-MW wind plant and a 70-MW forecast.

Table 5.3 Example: Forecasting deviations distribution associated
with a 70-MW forecast of a 100-MW wind plant

Wind power forecast Wf of 70-MW

Possible actual wind power Wa,k [MW] Probability Pw(Wa,k|Wf )

90 0.125

80 0.50

70 0.25

60 0.10

50 0.025

In this case, the distribution indicates that a 70-MW forecast has his-

torically taken actual values Wa,k of 50-MW, 60-MW, 70-MW, 80-MW and 90-

MW with corresponding individual probabilities Pw(Wa,k|Wf ) of 0.025, 0.10,

0.25, 0.50, 0.125. Again, analogous to the probabilities Pl(La,i|Lf ) for the load

model, the probability Pw(Wa,k|Wf) of having a power output of Wa,k given a

forecasted power output of Wf can be obtained as follows:

Pw(Wa|Wf ) =
# of actual power output equal to Wa,k when forecast is Wf

# of forecasts Wf

.

(5.2)

For the purpose of building the system’s COPT and given the 70-MW fore-

cast’s distribution in Table 5.3, the 100-MW wind plant is seen as a multi-state

unit with maximum possible capacity of 90-MW that can exist in 4 partial

capacity outage states. The maximum possible capacity Cw of the multi-

state unit is therefore defined as the maximum possible actual power output
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max(Wa,k). Table 5.4 presents the multi-state representation with all possible

capacity outage states and corresponding individual probability. The possible

capacity outage states Cj are simply obtained from Cw −Wa,k.

Table 5.4 Example: Operational multi-state representation of a 100-
MW wind plant given a 70-MW forecast

Capacity outage Cj [MW] Individual probability pj

0 0.125

10 0.50

20 0.25

30 0.10

40 0.025

90 0

Only the capacity outage states with non-zero probabilities will actually

have an impact on the system’s COPT. However, when calculating the LOLP,

the margin Cs −L must take into account a multi-state unit of 90-MW in the

maximum possible capacity Cs of the system, which is the reason it is included

in the model.

Since the COPT concept requires that all generator unavailabilities be

independent random events, wind plants in geographical proximity which are

subject to the same wind regime must be aggregated into one multi-state unit.

In this case, forecasting deviations would be determined for the aggregated

wind plants. As previously mentioned, it is assumed that wind forecasts and

forecasting deviations are uncorrelated and statistically independent from load
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forecasts and forecasting deviations. It may be possible to formulate the nega-

tive load approach without this assumption, but we will initially consider that

forecasting deviations are statistical independent.

5.4.2 Wind Plants Integrated as Negative Load

The negative load approach also models wind plants by incorporating

hourly power output forecasts and forecasting deviations. However, in this

case, the forecasts of all wind plants are aggregated into one forecast with its

associated aggregated forecasting deviations. The aggregated forecasting de-

viations distribution can be estimated from the history of aggregated forecasts

and aggregated actual power output, as it was done for load or individual wind

plants. Since the wind generation is considered as negative load, it is not inte-

grated in the COPT but, instead, is subtracted from the load. In this case, the

aggregated wind power forecasting deviations distribution directly represents

the wind generation model since power output levels are needed instead of

capacity outages. The following section will provide a detailed description of

computing the LOLP considering both wind plant integration methods.

5.5 Operational LOLP Calculations

The operational LOLP is computed hourly given the generation sched-

uled, the wind plants’ power output forecast and the load forecast. The wind

power output and load forecasting deviations which are chosen depend upon

the assessment’s time horizon and perhaps even the season, month and/or time
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of day. The load model is integrated in the LOLP calculations using the law

of total probability. Given that the load forecast Lf can take n possible actual

values La,i with corresponding probabilities Pl(Lf |La), the hourly LOLP is

calculated with the following equation

LOLPLf
=

n∑

i=1

LOLPLa,i × Pl(La,i|Lf ) (5.3)

where La,i and Pl(La,i|Lf) are provided from the load forecasting deviations

distribution. The LOLPLa,i is computed using the basic LOLP equation for a

load level La,i

LOLPLa,i = P (X > Cs − La,i) (5.4)

where Cs is the total possible system capacity and P (X > Cs − La,i) is the

cumulative probability of having a system capacity outage greater than Cs −

La,i, which is obtained from the COPT. When wind plants are integrated as

generation, this operational LOLP calculation doesn’t need to be modified,

as the wind plants’ multi-state representations are integrated in the COPT.

However, if wind plants are integrated as negative load, then the calculations

must be modified. Given that an aggregated wind forecast of Wf can take m

actual values Wa,k with corresponding probabilities Pw(Wa,k|Wf), there exists

n times m possible combinations of net load La,i−Wa,k. The probability of the

net load is simply the multiplication of Pl(La,i|Lf ) and Pw(Wa,k|Wf) - in this

case, it is assumed that the likelihood of a certain actual load La,i happening is

independent of the likelihood of a certain aggregated wind power output Wa,k

happening. When wind plants are integrated as negative load, the LOLP can
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be computed with the following equation:

LOLPLf ,Wf
=

n∑

i=1

m∑

k=1

[
P

(
X >Cs−(La,i−Wa,k)

)
×Pl(La,i|Lf)×Pw(Wa,k|Wf )

]
.

(5.5)

However, suppose that during certain periods of the year or during

certain weather conditions, almost each time the load is overforecasted, the

aggregated wind power output is also underforecasted. In this case, the two

distributions would display some correlation and we can’t assume indepen-

dence. The only wind integration method that could mathematically consider

the potential statistical dependence would be the negative load approach by

using the joint probability of Pl,w(La,i,Wa,k|Lf ,Wf ). However, even building

an estimate of this system-specific joint probability would require access to

several years of synchronized forecasted and actual values for both load and

aggregated wind power output. Future research considering hidden Markov

chains could possibly address this issue [45]. At this point, from a practical

point of view, if certain weather patterns seem to indicate a significant correla-

tion, and if these events threaten the system reliability, they should be handled

separately by procuring additional capacity. Note that the study presented in

[19] reports that, for the system under study, an “extremely weak correlation”

exists between the load forecast deviations and the wind forecast deviations2

In summary, an hourly operational LOLP can now be computed while

integrating wind plants as either generation or negative load. However, in

2Note that we are not referring to the wind/load correlation mentioned in planning
calculations but rather to the correlation between the forecast deviations.
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this dissertation, the operational assessment tool will integrate wind plants as

generation in the system’s COPT. Prior to applying the proposed method to a

simple case study, the risk criterion used in the assessment must be discussed.

5.5.1 Operational LOLP Risk Criterion

A risk criterion is essential in the operational generation adequacy as-

sessment: it determines whether the risk concurred by the system is accept-

able. Ideally, this risk criterion would be system specific and based on socio-

economic studies which outline what level of reliability consumers are willing

to pay for. However, in practice, as it was discussed for the planning LOLE

criteria, acceptable risk levels are usually based on engineering judgment and

system historical performance. Therefore, by studying a history of operational

hourly LOLPs or compounded daily LOLEs, a system specific criterion could

be designed specific to seasons, months and/or peak/off peak periods. Further-

more, by looking at the historical operational LOLPs before wind generation

became a significant part of the system, one could determined what has been

considered an acceptable level of operational reliability.

There might be some interest in relating the planning LOLE standard

of “1 day in 10 years” to an hourly or daily operational criterion. However,

since the planning LOLE and operational LOLP concepts are derived from

different system conditions and apply different mathematics, they can’t be

readily related. One might say that a conservative hourly or daily criterion

could be determined from the LOLE standard by computing an “average”
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hourly LOLP or an “average” daily LOLE. In this case, the “1 day in 10

years” would reduce to a “average” hourly LOLP of 2.74×10−4 or an “average”

daily LOLE of 6.58× 10−3hours/day. By using such criteria in an operational

assessment, there would be some peak load periods when the criterion wouldn’t

be reachable. Keep in mind that the “1 day in 10 years” standard is obtained

from a planning LOLE calculation that basically compounds LOLP values,

some higher and some lower than the “average” LOLP value. Therefore if the

average LOLP is not reachable from a planning perspective when all system

generation is considered, it won’t be more reachable from an operational one.

5.6 Feasibility Study

The purpose of this simple study is to provide a reproducible scenario

to test the feasibility of the proposed concept and help the reader understand

its application. Consequently, the results obtained do not refer to any specific

real world system.

In the presented case study, a day-ahead and hour-ahead assessment

will be performed for two different days: a summer day with high load and

low wind penetration and a winter day with low load and high wind pen-

etration3. Prior to applying the operational assessment, hourly generation

schedules will be created given three parameters: the system’s generation, the

forecasted load demand and the wind plant power forecast. To this end, a

3Wind penetration is defined as the wind forecast divided by the load forecast.
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simple offer-based economic dispatch will be used [46]. We will assume the

same forecasted values for both the day-ahead and hour-ahead assessment.

However, the forecasting deviations will be different to reflect the forecasting

time horizons. The assessment will be based on an hourly risk criterion of 2%.

A step-by-step application will be presented and followed by a discussion of

the outcome.

5.6.1 Test System

The test system’s conventional generation consists of the 23 units pre-

sented in Table 5.5, totaling 2760-MW of capacity. The capacity, number, fuel

type, marginal cost, unavailability probability and start up time are defined for

each type of generator. No combined-cycle plants are present and the system

includes a demand response program of 150-MW.

In addition to the conventional generation, the test system also includes

a 525-MW wind plant, which will be scheduled in every dispatch. The hourly

load and wind power forecasts for the two-days under study are listed in Ta-

ble 5.6; the same forecasts will be used for both day-ahead and hour-ahead

assessment.

For simplicity’s sake, a discrete seven-step approximation of the normal

distribution [25] is chosen to models both the wind and load forecasting devia-

tions. The resulting discrete distribution is found in Table 5.7. In practice, the

forecasting deviations would either be obtained from the forecasting provider

or approximated as described in Sections 5.3 and 5.4.1.
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Table 5.5 Feasibility Study: Conventional generating units data

Cap.[MW] # Units Fuel Marg. cost[$/MWh] pdown Start up[hrs]

20 1 Gas 105 0.0778 0.25

30 2 Gas 100 0.0778 0.25

50 3 Gas 90 0.0778 0.25

60 2 Gas 85 0.0778 0.30

100 4 Gas 80 0.657 0.8

120 5 Coal 40 0.0437 2

130 1 Gas 65 0.0657 1

170 1 Coal 35 0.0437 4

180 1 Coal 30 0.0437 4

190 2 Gas 50 0.0657 2

550 1 Coal 20 0.0522 8

The standard deviations are defined as 10% of the load forecast for the

day-ahead assessment and 2% for the hour-ahead assessment. For the wind

power forecasting deviations distribution, a standard deviation of 50% of the

forecast will be used for day-ahead and 20% for hour-ahead. It is assumed

that the day-ahead forecasting deviations distribution is the same throughout

the day, even though in reality it would depend on the number of hours ahead

the forecast is being performed. As an example, Table 5.8 represents the hour-

ahead wind forecasting deviations for a 200-MW wind power forecast and the

resulting 0.20×200-MW or 40-MW standard deviation. The load forecasting

deviations are also determined in this manner.
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Table 5.6 Feasibility Study: Two days of 24 hourly load forecasts
(Lf) and wind plant power output forecasts (Wf)

Day 1: Summer day forecasts Day 2: Winter day forecasts

Hour Lf [MW] Wf [MW] Lf [MW] Wf [MW]

12AM 1235 120 960 210

1AM 1140 135 960 195

2AM 1140 135 960 195

3AM 1045 120 880 195

4AM 1045 135 960 195

5AM 1140 135 1040 180

6AM 1235 120 1120 180

7AM 1425 105 1360 180

8AM 1615 90 1520 165

9AM 1710 90 1600 150

10AM 1805 90 1600 150

11AM 1900 90 1520 135

12PM 1805 60 1440 150

1PM 1900 60 1440 150

2PM 1900 90 1440 150

3PM 1805 90 1360 165

4PM 1710 105 1440 165

5PM 1615 105 1440 180

6PM 1615 105 1520 180

7PM 1615 120 1520 195

8PM 1615 120 1440 195

9PM 1520 135 1440 210

10PM 1425 135 1280 210

11PM 1330 120 1120 210
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Table 5.7 Discrete seven-step approximation of the normal distribu-
tion

# of st. dev. from the mean Probability

-3 0.006

-2 0.061

-1 0.242

0 0.382

1 0.242

2 0.061

3 0.006

Table 5.8 Hour-ahead wind power forecasting deviations for a 200-
MW forecast using the discrete seven-step approximation of the
normal distribution

Possible actual wind power Wa,k [MW] Probability Pw(Wa,k|Wf )

80 0.006

120 0.061

160 0.242

200 0.382

240 0.242

280 0.061

320 0.006

5.6.2 Creating Hourly Generation Schedules

The hourly generation schedules are created using a simplified offer-

based economic dispatch [46]. The first step is to sort all generators in as-

cending order of marginal cost. Then, generators (each of which commits 80%

of its total output to meet the demand and 20% as reserve) are procured un-
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til the forecasted demand is met. Maximum and minimum generating limits

are ignored. The wind power is always procured in the generation schedule.

The simplified offer-based economic dispatch is therefore performed with the

following steps:

1. Sort the n conventional units of the system by marginal cost (MC) in

ascending order.

MC(PG,1) ≤ MC(PG,2) ≤ · · · ≤ MC(PG,n) (5.6)

2. Add one unit at a time and find min(y) that satisfies

y∑

i=1

0.80 × PG,i ≥
(
Lf − Wf

)
. (5.7)

All 23 generators of the test system in Table 5.5 are considered available and

participants in the dispatch. Transmission constraints are ignored.

5.6.3 Step-by-step Application of the Operational Assessment

A step-by-step application of the operational assessment will be pre-

sented with intermediate results for the day-ahead summer system conditions

at 11PM. Although the presented steps are applied to the day-ahead assess-

ment, the hour-ahead assessment follows the same approach.

Firstly, generation schedules must be created for the 11PM summer

day conditions, that is a 120-MW wind power forecast and a 1330-MW load

forecast. The simplified, offer-based economic dispatch described in Section
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Table 5.9 Summer Day at 11PM: Conventional generators scheduled
given a 120-MW wind power forecast and a 1330-MW load forecast

Capacity C [MW] Unavailability prob. pdown

550 0.0522

180 0.0437

170 0.0437

120 0.0437

120 0.0437

120 0.0437

120 0.0437

120 0.0437

190 0.0657

5.6.2 is applied according to the generator’s marginal cost of Table 5.5. The

resulting generation schedule is found in Table 5.9.

The scheduled generators will be integrated in the COPT of the system

using a two-state representation. In practice, the day-ahead or hour-ahead

resource plans would provide the hourly generation scheduled.

5.6.3.1 Step 1: Build the wind plant’s operational reliability model

Before building the COPT of the system, the wind plant must also

be modeled with its multi-state representation. For a 120-MW wind forecast

and a day-ahead assessment, the standard deviation will be 0.50×120-MW or

60-MW. In this case, when using the seven-step approximation of Table 5.7,

the possible wind power outputs are -60-MW, 0-MW, 60-MW, 120-MW, 180-

MW, 240-MW and 300-MW. When negative values of possible output arise,
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they are grouped with the 0-MW level. When using actual or even estimated

forecasting deviations, this approximate grouping won’t be necessary. Thus,

for the example hour, the resulting possible wind power outputs and respective

probabilities are presented in Table 5.10.

Table 5.10 Summer Day at 11PM: Day-ahead wind power forecasting
deviations for a 120-MW forecast

Possible actual wind power Wa,k [MW] Probability Pw(Wa,k|Wf )

0 0.067

60 0.242

120 0.382

180 0.242

240 0.061

300 0.006

As explained in Section 5.4.1, when a wind plant is integrated as gen-

eration, the multi-state model is used to represent the wind plant. This model

consists of the possible capacity outage states and is integrated in the COPT

of the system. Given the possible power output levels in Table 5.10, the wind

plant is seen as a multi-state unit with maximum possible capacity Cw of

300-MW. Consequently, the possible power output states must be converted

to possible capacity outage states. Table 5.11 represents the resulting opera-

tional multi-state representation for the 120-MW forecast.

Along with the two-state representation of the conventional generators,

the wind plant multi-state representation can now be integrated in the COPT

calculations.
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Table 5.11 Summer Day at 11PM: Day-ahead wind plant operational
multi-state representation for a 120-MW forecast

Capacity outage Cj [MW] Individual probability pj

300 0.067

240 0.242

180 0.382

120 0.242

60 0.061

0 0.006

5.6.3.2 Step 2: Build the system’s hourly COPT

The system’s COPT is built as described in Section 2.1.1, using a two-

state model for each conventional generator of Table 5.9 and the multi-state

wind plant model of Table 5.11. The resulting COPT consists of 100 possible

capacity outage states, a sample of which is represented in the following table.

5.6.3.3 Step 3: Determine the operational load model

The load model consists of the load forecasting deviations distribution.

Given a 1330-MW forecast and a day-ahead assessment, the standard deviation

will be 0.10×1330-MW or 133-MW. The resulting load reliability model is

found in Table 5.13.
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Table 5.12 Summer Day at 11PM: Day-ahead hourly COPT

Capacity outage states x [MW] P (X ≥ x)
0 1.000000
60 0.996114
120 0.956605
170 0.798978
180 0.798801
190 0.542181
230 0.541908
... ...
530 0.068388
540 0.066066
550 0.062312
590 0.058525
... ...

1810 3.93242×10−11

1820 9.90340×10−12

1870 8.37304×10−12

1930 3.22526×10−13

1990 6.99328×10−14

Table 5.13 Summer Day at 11PM: Day-ahead load reliability model
for 1330-MW forecast

Possible actual load La,i [MW] Probability Pl(La,i|1330)
931 0.006

1064 0.061

1197 0.242

1330 0.382

1463 0.242

1596 0.061

1729 0.006
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5.6.3.4 Step 4: Compute the hourly operational LOLP

The hourly operational LOLP is computed using (5.3). For the example

hour, the calculations are performed as follows.

1. Using (5.3), the law of total probability is applied as:

LOLP1330 =
7∑

i=1

LOLPLa,i × Pl(La,i|1330) .

2. Expanding the previous equation, it becomes:

LOLP1330 = LOLP931 × Pl(931|1330) + LOLP1064 × Pl(1064|1330)

+ LOLP1197 × Pl(1197|1330) + LOLP1330 × Pl(1330|1330)

+ LOLP1463 × Pl(1463|1330) + LOLP1596 × Pl(1596|1330)

+ LOLP1729 × Pl(1729|1330) .

3. Considering the total possible capacity Cs of 1990-MW and replacing the

LOLPLa,i terms by (5.4), the equation is as follows:

LOLP1330 = P (X > 1990 − 931) × Pl(931|1330)

+ P (X > 1990 − 1064) × Pl(1064|1330)

+ P (X > 1990 − 1197) × Pl(1197|1330)

+ P (X > 1990 − 1330) × Pl(1330|1330)

+ P (X > 1990 − 1463) × Pl(1463|1330)

+ P (X > 1990 − 1596) × Pl(1596|1330)

+ P (X > 1990 − 1729) × Pl(1729|1330)
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or

LOLP1330 = P (X > 1059) × Pl(931|1330)

+ P (X > 926) × Pl(1064|1330)

+ P (X > 793) × Pl(1197|1330)

+ P (X > 660) × Pl(1330|1330)

+ P (X > 527) × Pl(1463|1330)

+ P (X > 394) × Pl(1596|1330)

+ P (X > 261) × Pl(1729|1330) .

4. Reading the P (X > x) from the system’s COPT and replacing all Pl(La,i|1330)

with the corresponding probabilities from the load reliability model in Table

5.11, the equation becomes:

LOLP1330 = 8.91789 × 10−04 × 0.006 + 4.62301 × 10−03 × 0.061

+ 0.016235 × 0.242 + 0.051188 × 0.382

+ 0.068388 × 0.242 + 0.136053 × 0.061

+ 0.342886 × 0.006 .

The day-ahead hourly LOLP for the 1330-MW load forecast amounts to

0.050677.

5.6.3.5 Step 5: Compare hourly LOLP to the criterion

In this case study, the hourly criterion or acceptable level of loss-of-

load probability is 0.02. For the hours which displayed hourly LOLP higher
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than the hourly criterion, demand response and additional fast start units

were considered to reduce the level of risk. For 11PM on the summer day, the

day-ahead hourly LOLP is around 0.051, which is higher than our 0.02 hourly

criterion. The following section will demonstrate how demand response and

fast start units can be included in the operational reliability assessment.

5.6.3.6 Step 6: Consider demand response and fast start units

The test system includes a 150-MW demand response program that is

assumed to be fully available upon request. This demand response (DR) was

integrated in the assessment and the resulting hourly LOLPs were compared

once more to the hourly criterion. To consider demand response, (5.4) must

be modified as follows. Note that this modification requires no change to the

system COPT.

LOLPLa,i , DR = P
(
X > Cs − (La,i − DR)

)
(5.8)

For the example hour, the LOLP calculations are adjusted as follows:

LOLP1330 = P (X > 1990 − (931 − 150)) × Pl(931|1330)

+ P (X > 1990 − (1064 − 150)) × Pl(1064|1330)

+ P (X > 1990 − (1197 − 150)) × Pl(1197|1330)

+ P (X > 1990 − (1330 − 150)) × Pl(1330|1330)

+ P (X > 1990 − (1463 − 150)) × Pl(1463|1330)

+ P (X > 1990 − (1596 − 150)) × Pl(1596|1330)

+ P (X > 1990 − (1729 − 150)) × Pl(1729|1330)
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or

LOLP1330 = P (X > 1209) × Pl(931|1330)

+ P (X > 1076) × Pl(1064|1330)

+ P (X > 943) × Pl(1197|1330)

+ P (X > 810) × Pl(1330|1330)

+ P (X > 677) × Pl(1463|1330)

+ P (X > 544) × Pl(1596|1330)

+ P (X > 411) × Pl(1729|1330) .

The next step is to obtain the P (X > x) from the system’s COPT and replace

the Pl(La,i|1330) with the corresponding values in Table 5.13.

LOLP1330,DR = 1.06215 × 10−04 × 0.006 + 8.91782 × 10−04 × 0.061

+ 4.62301 × 10−03 × 0.242 + 0.016082 × 0.382

+ 0.041943 × 0.242 + 0.062312 × 0.061

+ 0.127167 × 0.006 .

When considering the 150-MW of demand response, the resulting hourly LOLP

becomes 0.022031. This hourly LOLP is still higher than the hourly criterion

that is our benchmark for the acceptable level of risk, which tells us that

additional capacity must be procured.

In this case study, generators are identified as fast start units when

they are not scheduled and they have a start up time equal to or less than 30
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minutes. These fast start units are used for both time horizons although units

with longer start up time could be considered in the day-ahead assessment.

For the hour under study, the available fast start units are found in Table 5.14.

Table 5.14 Summer Day at 11PM: Day-ahead available fast start
generators

Cap.[MW] # Units Fuel Marg. cost[$/MWh] pdown Start up[hrs]

20 1 Gas 105 0.0778 0.25

30 2 Gas 100 0.0778 0.25

50 3 Gas 90 0.0778 0.25

60 2 Gas 85 0.0778 0.30

For the purpose of this study, fast start units were chosen based on the

lowest marginal cost. One fast start unit is added at a time as a two-state

unit in the system’s COPT until the LOLP (considering demand response)

meet the hourly criterion. For the hour under study, only one 60-MW fast

start unit was needed to reduce the hourly LOLP below the criterion. With

this additional 60-MW unit, the new COPT consists of 104 possible capacity

outage states with a maximum possible capacity Cs of 2050-MW. Part of the

new COPT is found in Table 5.15.

The LOLP calculations are adjusted as follows when adding a 60-MW
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Table 5.15 Summer Day at 11PM: Day-ahead COPT including ad-
ditional fast start unit

Capacity outage states x [MW] P (X ≥ x)
0 1.000000
60 0.996416
120 0.959679
170 0.811242
180 0.811078
190 0.562160
... ...
530 0.070026
540 0.067501
550 0.063376
590 0.059293
... ...

1860 1.08584×10−11

1870 1.07810×10−11

1880 1.06792×10−12

1930 9.48856×10−13

1990 8.95845×10−14

2050 5.44077×10−15

fast start unit and still considering the 150-MW of demand response.

LOLP1330 = P (X > 2050 − (931 − 150)) × Pl(931|1330)

+ P (X > 2050 − (1064 − 150)) × Pl(1064|1330)

+ P (X > 2050 − (1197 − 150)) × Pl(1197|1330)

+ P (X > 2050 − (1330 − 150)) × Pl(1330|1330)

+ P (X > 2050 − (1463 − 150)) × Pl(1463|1330)

+ P (X > 2050 − (1596 − 150)) × Pl(1596|1330)

+ P (X > 2050 − (1729 − 150)) × Pl(1729|1330)
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or

LOLP1330 = P (X > 1269) × Pl(931|1330)

+ P (X > 1136) × Pl(1064|1330)

+ P (X > 1003) × Pl(1197|1330)

+ P (X > 870) × Pl(1330|1330)

+ P (X > 737) × Pl(1463|1330)

+ P (X > 604) × Pl(1596|1330)

+ P (X > 471) × Pl(1729|1330) .

Then, obtain the P (X > x) from the system’s new COPT and replace the

Pl(La,i|1330) terms with the corresponding values in Table 5.13.

LOLP1330,DR = 4.28070 × 10−5 × 0.006 + 4.01551 × 10−4 × 0.061

+ 2.25243 × 10−3 × 0.242 + 9.62261 × 10−3 × 0.382

+ 0.028385 × 0.242 + 0.056457 × 0.061

+ 0.087831 × 0.006 .

When considering demand response and the additional fast start unit

of 60-MW, the hourly LOLP is reduced to 0.015086, which is now below the

hourly criterion of 0.02. The step-by-step approach described in this section

was applied for both days and both time-horizons. The obtained results are

presented and discussed in the following section.
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5.6.4 Case Study Results

Following the step-by-step approach described in the previous section,

day-ahead and hour-ahead operational assessments were performed for the

daily system conditions presented in Table 5.6. For the summer day, we observe

higher load forecasts with lower wind power forecasts, while we observe lower

load forecasts with higher wind power forecasts for the winter day. Results are

gathered in Figures 5.2, 5.3, 5.4 and 5.5, and will be discussed in the following

sections.

5.6.5 Discussion

First and foremost, system operators equipped with the proposed re-

liability assessment tool would have a direct and quick means to track the

system’s operational generation adequacy status. This tool would enable op-

erators to identify high risk periods in both day-ahead and hour-ahead time

frames. As a complement to ancillary services requirements, the proposed as-

sessment could ensure that enough total capacity is available to account for

potential capacity outages, load forecasting deviations and wind power fore-

casting deviations. When necessary, adequate adjustments such as procuring

additional generation could be made to maintain the acceptable level of risk.

The actual amount of additional generation needed can also be determined

with the proposed assessment tool. The main objective of the case study was

to demonstrate these capabilities but also help the reader understand how

to apply the method. Although the obtained results don’t represent an ac-
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12:00 AM 1235 120 9.72 1500 1800 565 1970 735 170 0.0636 0.0375 0.0142
1:00 AM 1140 135 11.8 1260 1598 458 1868 728 270 0.1114 0.0572 0.0153
2:00 AM 1140 135 11.8 1260 1598 458 1868 728 270 0.1114 0.0572 0.0153
3:00 AM 1045 120 11.5 1260 1560 515 1730 685 170 0.0689 0.0427 0.0160
4:00 AM 1045 135 12.9 1140 1478 433 1748 703 270 0.1287 0.0564 0.0193
5:00 AM 1140 135 11.8 1260 1598 458 1868 728 270 0.1114 0.0572 0.0153
6:00 AM 1235 120 9.72 1500 1800 565 1970 735 170 0.0636 0.0375 0.0142
7:00 AM 1425 105 7.37 1690 1953 528 2123 698 170 0.0890 0.0425 0.0193
8:00 AM 1615 90 5.57 2010 2235 620 2355 740 120 0.0664 0.0292 0.0157
9:00 AM 1710 90 5.26 2110 2335 625 2455 745 120 0.0706 0.0307 0.0166

10:00 AM 1805 90 4.99 2210 2435 630 2555 750 120 0.0762 0.0331 0.0179
11:00 AM 1900 90 4.74 2310 2535 635 2655 755 120 0.0802 0.0347 0.0189
12:00 PM 1805 60 3.32 2210 2360 555 2480 675 120 0.0877 0.0371 0.0200

1:00 PM 1900 60 3.16 2310 2460 560 2630 730 170 0.0930 0.0396 0.0163
2:00 PM 1900 90 4.74 2310 2535 635 2655 755 120 0.0802 0.0347 0.0189
3:00 PM 1805 90 4.99 2210 2435 630 2555 750 120 0.0762 0.0331 0.0179
4:00 PM 1710 105 6.14 2010 2273 563 2443 733 170 0.1047 0.0453 0.0192
5:00 PM 1615 105 6.5 2010 2273 658 2393 778 120 0.0600 0.0284 0.0138
6:00 PM 1615 105 6.5 2010 2273 658 2393 778 120 0.0600 0.0284 0.0138
7:00 PM 1615 120 7.43 1880 2180 565 2400 785 220 0.1043 0.0485 0.0157
8:00 PM 1615 120 7.43 1880 2180 565 2400 785 220 0.1043 0.0485 0.0157
9:00 PM 1520 135 8.88 1880 2218 698 2278 758 60 0.0541 0.0251 0.0174

10:00 PM 1425 135 9.47 1690 2028 603 2198 773 170 0.0793 0.0340 0.0155
11:00 PM 1330 120 9.02 1690 1990 660 2050 720 60 0.0507 0.0220 0.0151

Summer Day: Day-ahead Assessment

Figure 5.2 Summer Day: Day-ahead assessment results
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12:00 AM 1235 120 9.7 1500 1692 457 1812 577 120 0.0542 0.0384 0.0122
1:00 AM 1140 135 11.8 1260 1476 336 1696 556 220 0.0654 0.0528 0.0149
2:00 AM 1140 135 11.8 1260 1476 336 1696 556 220 0.0654 0.0528 0.0149
3:00 AM 1045 120 11.5 1260 1452 407 1572 527 120 0.0550 0.0507 0.0158
4:00 AM 1045 135 12.9 1140 1356 311 1576 531 220 0.0656 0.0528 0.0176
5:00 AM 1140 135 11.8 1260 1476 336 1696 556 220 0.0654 0.0528 0.0149
6:00 AM 1235 120 9.7 1500 1692 457 1812 577 120 0.0542 0.0384 0.0122
7:00 AM 1425 105 7.4 1690 1858 433 1978 553 120 0.0590 0.0468 0.0167
8:00 AM 1615 90 5.6 2010 2154 539 2214 599 60 0.0545 0.0202 0.0138
9:00 AM 1710 90 5.3 2110 2254 544 2314 604 60 0.0542 0.0208 0.0143

10:00 AM 1805 90 5.0 2210 2354 549 2414 609 60 0.0549 0.0219 0.0143
11:00 AM 1900 90 4.7 2310 2454 554 2514 614 60 0.0535 0.0219 0.0143
12:00 PM 1805 60 3.3 2210 2306 501 2366 561 60 0.0588 0.0255 0.0181

1:00 PM 1900 60 3.2 2310 2406 506 2466 566 60 0.0589 0.0266 0.0187
2:00 PM 1900 90 4.7 2310 2454 554 2514 614 60 0.0535 0.0219 0.0143
3:00 PM 1805 90 5.0 2210 2354 549 2414 609 60 0.0549 0.0219 0.0143
4:00 PM 1710 105 6.1 2010 2178 468 2298 588 120 0.0630 0.0355 0.0167
5:00 PM 1615 105 6.5 2010 2178 563 2178 563 0 0.0511 0.0183 0.0183
6:00 PM 1615 105 6.5 2010 2178 563 2178 563 0 0.0511 0.0183 0.0183
7:00 PM 1615 120 7.4 1880 2072 457 2192 577 120 0.0634 0.0411 0.0174
8:00 PM 1615 120 7.4 1880 2072 457 2192 577 120 0.0634 0.0411 0.0174
9:00 PM 1520 135 8.9 1880 2096 576 2096 576 0 0.0503 0.0165 0.0165

10:00 PM 1425 135 9.5 1690 1906 481 1966 541 60 0.0564 0.0320 0.0189
11:00 PM 1330 120 9.0 1690 1882 552 1882 552 0 0.0518 0.0156 0.0156

 Summer Day: Hour-ahead Assessment

Figure 5.3 Summer Day: Hour-ahead assessment results
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12:00 AM 960 210 21.9 1020 1545 585 1815 855 270 0.1147 0.0506 0.0140
1:00 AM 960 195 20.3 1020 1508 548 1778 818 270 0.1209 0.0512 0.0143
2:00 AM 960 195 20.3 1020 1508 548 1778 818 270 0.1209 0.0512 0.0143
3:00 AM 880 195 22.2 900 1388 508 1688 808 300 0.1162 0.0549 0.0145
4:00 AM 960 195 20.3 1020 1508 548 1778 818 270 0.1209 0.0512 0.0143
5:00 AM 1040 180 17.3 1140 1590 550 1810 770 220 0.1133 0.0511 0.0188
6:00 AM 1120 180 16.1 1260 1710 590 1880 760 170 0.0866 0.0418 0.0194
7:00 AM 1360 180 13.2 1500 1950 590 2170 810 220 0.1089 0.0492 0.0163
8:00 AM 1520 165 10.9 1880 2293 773 2353 833 60 0.0504 0.0221 0.0160
9:00 AM 1600 150 9.4 1880 2255 655 2425 825 170 0.0831 0.0383 0.0156

10:00 AM 1600 150 9.4 1880 2255 655 2425 825 170 0.0831 0.0383 0.0156
11:00 AM 1520 135 8.9 1880 2218 698 2278 758 60 0.0541 0.0251 0.0174
12:00 PM 1440 150 10.4 1690 2065 625 2235 795 170 0.0837 0.0357 0.0156

1:00 PM 1440 150 10.4 1690 2065 625 2235 795 170 0.0837 0.0357 0.0156
2:00 PM 1440 150 10.4 1690 2065 625 2235 795 170 0.0837 0.0357 0.0156
3:00 PM 1360 165 12.1 1500 1913 553 2133 773 220 0.1184 0.0537 0.0196
4:00 PM 1440 165 11.5 1690 2103 663 2273 833 170 0.0758 0.0342 0.0146
5:00 PM 1440 180 12.5 1690 2140 700 2260 820 120 0.0724 0.0329 0.0168
6:00 PM 1520 180 11.8 1690 2140 620 2360 840 220 0.1164 0.0514 0.0171
7:00 PM 1520 195 12.8 1690 2178 658 2398 878 220 0.1127 0.0503 0.0161
8:00 PM 1440 195 13.5 1690 2178 738 2298 858 120 0.0688 0.0324 0.0165
9:00 PM 1440 210 14.6 1690 2215 775 2335 895 120 0.0632 0.0294 0.0153

10:00 PM 1280 210 16.4 1380 1905 625 2125 845 220 0.1187 0.0508 0.0165
11:00 PM 1120 210 18.8 1140 1665 545 1965 845 300 0.1346 0.0663 0.0154

 Winter Day: Day-ahead Assessment

Figure 5.4 Winter Day: Day-ahead assessment results
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12:00 AM 960 210 21.9 1020 1545 585 1815 855 270 0.0583 0.0523 0.0106
1:00 AM 960 195 20.3 1020 1508 548 1778 818 270 0.0602 0.0525 0.0133
2:00 AM 960 195 20.3 1020 1508 548 1778 818 270 0.0602 0.0525 0.0133
3:00 AM 880 195 22.2 900 1388 508 1688 808 300 0.0698 0.0529 0.0105
4:00 AM 960 195 20.3 1020 1508 548 1778 818 270 0.0602 0.0525 0.0133
5:00 AM 1040 180 17.3 1140 1590 550 1810 770 220 0.0589 0.0523 0.0185
6:00 AM 1120 180 16.1 1260 1710 590 1880 760 170 0.0572 0.0507 0.0123
7:00 AM 1360 180 13.2 1500 1950 590 2170 810 220 0.0606 0.0510 0.0154
8:00 AM 1520 165 10.9 1880 2293 773 2353 833 60 0.0414 0.0136 0.0136
9:00 AM 1600 150 9.4 1880 2255 655 2425 825 170 0.0579 0.0276 0.0183

10:00 AM 1600 150 9.4 1880 2255 655 2425 825 170 0.0579 0.0276 0.0183
11:00 AM 1520 135 8.9 1880 2218 698 2278 758 60 0.0503 0.0165 0.0165
12:00 PM 1440 150 10.4 1690 2065 625 2235 795 170 0.0564 0.0320 0.0187

1:00 PM 1440 150 10.4 1690 2065 625 2235 795 170 0.0564 0.0320 0.0187
2:00 PM 1440 150 10.4 1690 2065 625 2235 795 170 0.0564 0.0320 0.0187
3:00 PM 1360 165 12.1 1500 1913 553 2133 773 220 0.0625 0.0524 0.0175
4:00 PM 1440 165 11.5 1690 2103 663 2273 833 170 0.0559 0.0297 0.0178
5:00 PM 1440 180 12.5 1690 2140 700 2260 820 120 0.0548 0.0256 0.0165
6:00 PM 1520 180 11.8 1690 2140 620 2360 840 220 0.0633 0.0478 0.0196
7:00 PM 1520 195 12.8 1690 2178 658 2398 878 220 0.0615 0.0437 0.0179
8:00 PM 1440 195 13.5 1690 2178 738 2298 858 120 0.0537 0.0220 0.0146
9:00 PM 1440 210 14.6 1690 2215 775 2335 895 120 0.0526 0.0200 0.0121

10:00 PM 1280 210 16.4 1380 1905 625 2125 845 220 0.0602 0.0510 0.0158
11:00 PM 1120 210 18.8 1140 1665 545 1965 845 300 0.0718 0.0532 0.0194

 Winter Day: Hour-ahead Assessment

Figure 5.5 Winter Day: Hour-ahead assessment results
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tual power system with real forecasting deviations, we can still discuss certain

observations. However, keep in mind that LOLP calculations are highly non-

linear and absolute conclusions shouldn’t be drawn. It will be shown that

results are not necessarily intuitive but are highly dependent on the actual

system conditions used in the calculations. Intuitions don’t cope well with

non-linearity - consequently one should always rely on the calculations.

5.6.5.1 Effect of Demand Response and Fast Start Units on LOLP

Figures 5.6, 5.7, 5.8 and 5.9 present the effect of demand response and

fast start units on the hourly LOLP. For both days and both time horizons,

demand response effectively reduces the hourly LOLP. The margin Cs−(La,i−

DR) is greater in the presence of demand response and therefore more gener-

ators would have to be on simultaneous capacity outage for a loss of load to

occur. The likelihood of having more generators on forced outage all at the

same time is less probable and consequently considering demand response will

lower the LOLP. Adding fast start units also has the effect of increasing the

margin and therefore reducing the LOLP. In this case study, fast start units

were added only if the LOLP with demand response was higher than the hourly

criterion. In all hours under study, the hourly LOLP was effectively reduced

when additional fast start units were included in the assessment. The exact

amount of fast start capacity can be found in the overall tabulated results

given in Section 5.6.4.
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Figure 5.6 Summer Day Day-ahead Assessment: Effects of demand
response (DR) and fast start units (FS) on LOLP
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Figure 5.7 Summer Day Hour-ahead Assessment: Effects of demand
response (DR) and fast start units (FS) on LOLP
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Figure 5.8 Winter Day Day-ahead Assessment: Effects of demand
response (DR) and fast start units (FS) on LOLP
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Figure 5.9 Winter Day Hour-ahead Assessment: Effects of demand
response (DR) and fast start units (FS) on LOLP
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5.6.5.2 Comparing Hour-ahead vs. Day-ahead Results

The forecasting deviations used in this case study are defined such that

hour-ahead forecasts are more likely to be accurate than day-head forecasts.

In this case, since system conditions and generation schedules were the same in

both time-horizons, one would intuitively expect the hour-ahead LOLP results

to be lower than the day-ahead LOLP results; yet it turns out that this is not

necessarily always the case. Indeed, it is true that for the summer day results

in Tables 5.3 and 5.2, all hour-ahead LOLPs are lower than day-ahead LOLPs

except at 11PM. Even if the generation scheduled are the same for both time

horizons, the respective COPTs will be different since wind power forecasting

deviations and corresponding resulting wind power multi-state representations

are not the same. The different load forecasting deviations will also affect the

LOLP calculations. The day-ahead calculations for the summer day at 11PM

were presented in the step-by-step section and resulted in a hourly LOLP of

0.050677; let’s look at the hour-ahead calculations for comparison.

For a forecast of 120-MW, the hour-ahead wind power forecasting de-

viations distribution will present a standard deviation of 20% instead of 50%

and can be found in Table 5.16. For the purpose of building the COPT, the

wind plant can be seen as a multi-state unit with maximum possible capacity

of 192-MW and the multi-state representation of Table 5.17.

Given this new wind power multi-state representation but the same

generation schedule shown on Table 5.9, the hour-ahead COPT for the summer

day at 11PM is represented with a new set of possible capacity outage states
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Table 5.16 Summer Day at 11PM: Hour-ahead wind power forecast-
ing deviations for a 120-MW forecast

Possible actual wind power Wa,k [MW] Probability Pw(Wa,k|Wf )

48 0.006

72 0.061

96 0.242

120 0.382

144 0.242

168 0.061

192 0.006

Table 5.17 Summer Day at 11PM: Hour-ahead wind plant multi-
state representation for a 120-MW forecast (Note that the capacity
outage state of 192-MW has no impact on the whole system’s COPT. However,
it must be considered in the maximum possible capacity of the system Cs when
computing the LOLP.)

Capacity outage Cj [MW] Individual probability pj

192 0
144 0.006
120 0.061
96 0.242
72 0.382
48 0.242
24 0.061
0 0.006

and cumulative probabilities. The complete COPT consists of 384 possible

capacity outage states and is partly represented in Table 5.18. Note that

the maximum possible capacity outage state is 1834-MW, even though the

maximum possible system capacity is 1882-MW. Indeed, since the wind plant

is being represented as a multi-state unit with a maximum possible capacity
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of 192-MW but minimal power output of 48-MW, it is impossible to have all

1882-MW on forced outage.

Table 5.18 Summer Day at 11PM: Hour-ahead hourly COPT

Capacity outage states x [MW] P (X ≥ x)
0 1.000000
24 0.996114
48 0.956605
72 0.799866
96 0.552451
120 0.395712
... ...
530 0.053684
538 0.053646
540 0.053531
542 0.053493
... ...

1714 1.72275E-12
1738 9.73840E-13
1762 7.21247E-13
1786 3.22526E-13
1810 6.99328E-14
1834 6.26264E-15

The hour-ahead load forecast’s distribution found in Table 5.19 consid-

ers a standard deviation of 2% the forecasted load.
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Table 5.19 Summer Day at 11PM: Hour-ahead load reliability model
for 1330-MW forecast

Possible actual load La,i [MW] Probability Pl(La,i|1330)
1250.2 0.006

1276.8 0.061

1303.4 0.242

1330 0.382

1356.6 0.242

1383.2 0.061

1409.8 0.006

Finally, the hour-ahead LOLP calculations are performed as follows:

LOLP1330 = P (X > 1834 − 1250.2) × Pl(1250.2|1330)

+ P (X > 1834 − 1276.8) × Pl(1276.8|1330)

+ P (X > 1834 − 1303.4) × Pl(1303.4|1330)

+ P (X > 1834 − 1330) × Pl(1330|1330)

+ P (X > 1834 − 1356.6) × Pl(1356.6|1330)

+ P (X > 1834 − 1383.2) × Pl(1383.2|1330)

+ P (X > 1834 − 1409.8) × Pl(1409.8|1330)
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LOLP1330 = P (X > 631.8) × Pl(1250.2|1330)

+ P (X > 605.2) × Pl(1276.8|1330)

+ P (X > 578.6) × Pl(1303.4|1330)

+ P (X > 552) × Pl(1330|1330)

+ P (X > 525.4) × Pl(1356.6|1330)

+ P (X > 498.8) × Pl(1383.2|1330)

+ P (X > 472.2) × Pl(1409.8|1330) .

Reading the P (X > x) from the system’s COPT and replacing the Pl(La,i|1330)

with the corresponding probability from the load model in Table 5.19, the final

LOLP is obtained from the following calculations:

LOLP1330 = 0.027749 × 0.006 + 0.041485 × 0.061

+ 0.050332 × 0.242 + 0.052915 × 0.382

+ 0.054033 × 0.242 + 0.054857 × 0.061

+ 0.055884 × 0.006 .

The resulting hour-ahead LOLP amounts to 0.051849, which is higher

than the day-ahead results of 0.050677. These results, as we pointed out

above, go against what would intuitively be expected: a better hour-ahead

LOLP since forecasting deviations are more accurate. But because LOLP

calculations are highly non-linear, when system conditions or even only fore-

casting deviations change, it is hard to predict what effect it will have on the

calculated risk. When a set of generator models are convolved together it will

137



create a certain set of possible capacity outage states and corresponding cu-

mulative probabilities; when we change one of the generator’s models, as in

the case of the wind plant, a whole new set of possible outage states and cor-

responding cumulative probabilities will be created. Furthermore, depending

on the total possible capacity of the system and the load distribution, condi-

tional LOLPs will also vary. The bottom line is that one should always rely

on the calculations to determine the operational risk level. Figure 5.11 and

5.10 compare hour-ahead and day-ahead results for both days. For the winter

day, all hour-ahead LOLPs happen to be lower than day-ahead LOLPs. In

the next section, it will be shown that the effect of wind penetration level can

produce results that also seem counterintuitive.

5.6.5.3 Effect of Wind Penetration Level on Hourly LOLP

If wind penetration is described as the forecasted wind power output

divided by the forecasted load, one might expect to see higher risk levels when

wind penetration is high. However, this is not necessarily the case. As seen

in Figure 5.12, high LOLPs are not necessarily tied to high wind penetration

levels; rather, the calculated LOLP depends on multiple variables and how

they merge together in the calculations. Not only does wind forecast and fore-

casting deviations come into play, but also the load forecast and forecasting

deviations, the total capacity available and the mix of generators and their

unavailabilities. Furthermore, in the case of a symmetric wind power forecast-

ing deviations distribution, wind power output can take higher values leading
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Figure 5.10 Summer Day: Day-ahead against hour-ahead hourly
LOLP results

to the possibility of more capacity in the system. Perhaps if high wind levels

were constantly overforecasted, one might see riskier periods with high wind

penetration levels. However, a system characteristic that is more likely to be

related to high LOLPs is the capacity margin Cs −Lf , which will be discussed

in the next section.

5.6.5.4 Effect of Capacity Margin on Hourly LOLP

Figure 5.13 presents the relationship between the hourly capacity mar-

gin Cs−Lf and the hourly LOLP for both days and both time horizons. It can
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Figure 5.11 Winter Day: Day-ahead against hour-ahead hourly
LOLP results

be seen from the figure that LOLPs are more likely to be lower when margins

are higher. Keep in mind however, that system conditions are different from

hour to hour; the load, the wind, the scheduled generation all vary, and the

system is essentially a different one every hour. Again, because of the nature

of the calculations, even if there is a general tendency to have lower LOLPs

for higher margins, this relationship is not linear. Furthermore, the results

suggest that using a fixed capacity margin reliability criteria, such as the loss

of the largest unit reserve, could actually result in high levels of risk. For

example, margins of around 550-MW results in LOLPs between 0.05 to 0.13.

140



0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.0 5.0 10.0 15.0 20.0 25.0

Wind penetration [%]

H
ou

rly
 L

O
LP

 

Summer Hour-ahead Summer Day-ahead Winter Hour-ahead Winter Day-ahead

Figure 5.12 Effect of wind penetration on hourly LOLP

Again, expecting the system to behave a certain way corresponding to changes

in the system conditions could turn out to be erroneous; one should always

rely on the calculations.

5.6.5.5 Effect of Large Units on the LOLP

Finally, when a relatively large unit is scheduled relative to the sched-

uled maximum possible capacity, it will have a significant effect on the calcu-

lated hourly LOLP. Indeed, in the test system, the 550-MW baseload generator

has a significant effect on the risk level. When this unit’s unavailability was

changed from 0.0522 to 0.02 and all other variables were kept constant, the
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Figure 5.13 Effect of capacity margin on hourly LOLP

resulting hourly LOLPs were significantly reduced. Figure 5.14 depicts this ef-

fect for the summer day day-ahead assessment. In this case study, the 550-MW

unit was modeled with a two-state representation for simplicity, but since a

large unit has such a large impact on the LOLP result, the best practice would

be to model it as accurately as possible. Consequently, if derated states are

possible, they should be taken into account by modeling the unit with a multi-

state representation. The larger the unit in comparison with the maximum

possible capacity scheduled, the more weight it will have on the LOLP results.
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Figure 5.14 Summer Day Day-ahead Assessment: Effect of large
units on LOLP

5.6.6 Concluding Remarks

In this chapter, an operational reliability assessment tool has been pro-

posed to assist operators in quantitatively evaluating the system’s operational

generation adequacy while considering generator forced outages, load and wind

power forecasts and forecasting deviations. Using the loss-of-load probability

metric from an operational perspective, operators will be able to identify high

risk periods both on a day-ahead and hour-ahead horizon. When the sched-

uled generation doesn’t ensure an acceptable risk level, the risk assessment

can include demand response and even determine the fast start generation to
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meet the risk criterion. Since LOLP calculations are highly non-linear and

dependent on various variables, resulting hourly LOLPs should be carefully

interpreted. If system conditions or forecasting deviations change, one should

always rely on the calculations to determine the operational risk level. The suc-

cess of the proposed concept is contingent on having accurate system-specific

load and wind forecasting deviations as well as on determining an acceptable

hourly risk criterion.
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Chapter 6

Summary and Conclusion

Although new wind plants are now capable of offering low-voltage ride-

through, voltage control and reactive power capabilities just like conventional

generation, they remain a variable, uncertain and non-dispatchable source of

electric power. When wind generation formed only an insignificant portion

of generation portfolios, existing system capabilities and operations processes

were capable of handling its variable and uncertain nature. However, the in-

creasing presence of wind generation is creating new challenges for both system

planners and system operators. Among these challenges is the need to ensure

generation adequacy. Obviously, when it comes to maintaining power system

reliability, the primary objective must be to avoid falling short of generat-

ing capacity. In this dissertation, we investigated and assessed the planning

and operational generation adequacy of power systems with significant wind

generation.

In Chapter 2, we reviewed the key metrics determining a power system’s

generation adequacy assessment based on loss-of-load analytical methods. The

concepts of loss-of-load probability, loss-of-load expectation, and the capacity

outage probability table, along with conventional generating unit’s reliability
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modeling were all presented to obtain a framework for assessing generation

adequacy. With these key metrics understood, we moved on, in Chapter 3,

to clearly describe how to integrate wind plants in term of these assessments

methods. Indeed, in this chapter, we provided a detailed methodology for

appropriately integrating wind plants in system planning-based loss-of-load

calculations. Through the examination of a case study, we demonstrated that

wind generation can indeed contribute to the generation adequacy of power

systems. Results from this case study suggested that at penetration levels of

5%, a wind plant could reduce the loss-of-load expectation metric to the same

extent as an energy equivalent conventional unit [20]. However, at higher

penetration levels the wind plants were less efficient at improving the risk

metric.

In Chapter 4, a wind plant’s capacity contribution was quantified us-

ing the concept of effective load carrying capability. In addition to providing

a detailed methodology and applying the conventional ELCC calculations to

several case studies, a novel non-iterative approximation was introduced and

yielded accurate1 ELCC estimates while requiring less reliability modeling and

being less computationally-intensive. Case study findings suggested the im-

portance of period-specific ELCC calculations as a means to better evaluate

the variable reliability contribution of wind plants [22, 23]. Furthermore, rele-

vant evaluation periods should be system and wind plant dependent and reflect

1Percent relative errors between the non-iterative method estimates and the classically-
computed ELCC values averaged around 2%.
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interannual variability and possible wind/load correlation.

Chapter 2 to 4 provided the necessary concepts and methodologies to

ensure that wind plants are adequately integrated in the generation adequacy

assessment from a system planning perspective. Even in well planned systems,

system operators are responsible for constantly monitoring and matching the

system generation to the load demand and from this operational perspective,

the variable and uncertain nature of wind generation still presents significant

challenges. To maintain security and reliability of supply, monthly or annual

ancillary service requirements are determined usually based on a system’s his-

torical performance. Since these requirements may or may not capture the

wind generation’s uncertainty in the operational time frame, being able to as-

sess the operational generation adequacy would be very beneficial for system

operators. To address this need, Chapter 5 proposes an operational reliability

assessment tool to assist operators in quantitatively evaluating the system’s

operational generation adequacy, while considering generator forced outages,

load and wind power forecasts and forecasting deviations [24]. The core of

the reliability assessment tool was to apply the loss-of-load probability metric

from a operational perspective by considering hourly forecasted load and wind

power information and comparing the resulting computed risk to an accept-

able criterion. The feasibility of the proposed concept was examined through a

reproducible case study. We concluded that if system operators were equipped

with the proposed tool, they would be able to identify high risk periods in both

day-ahead and hour-ahead horizons and make the necessary adjustments to
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ensure acceptable levels of operational system reliability. Since LOLP calcula-

tions are highly non-linear and dependent on various variables, resulting hourly

LOLPs need to be carefully interpreted. It was noted that if system conditions

or forecasting deviations change, one should always rely on the calculations,

rather than intuitions, to determine the operational risk level. Foremost, we

pointed out that the success of the proposed operational assessment tool is not

only contingent on having accurate system-specific load and wind forecasting

deviations, but also on the determination of an acceptable risk criterion.
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Appendix A

Combined-Cycle Plant Reliability Modeling

Reference [35] addresses the importance of representing the operating

characteristics of combined-cycle plants when performing generation adequacy

assessment with loss-of-load analytical methods. Instead of assuming that

the steam and gas units of a combined-cycle plant function independently, a

model based on dispatch patterns is proposed to consider the joint operating

characteristics. As is shown in [35], neglecting these operating characteristics

may lead to over-optimistic LOLP results for power systems with significant

combined-cycle generation. Furthermore, when plant-specific dispatch pat-

terns are unavailable, a generic model is proposed to accurately estimate the

actual LOLP of the system. This appendix summarizes the key concepts of

the proposed combined-cycle plant reliability models.

A.1 Combined-Cycle Plants

Combined-cycle plants (CC plant) are usually composed of one or

more high-temperature gas turbines (GTs) that are combined with a low-

temperature steam turbine (ST). Combined-cycle plants usually fall in two

categories: single-shaft and multi-shaft plants. Single-shaft plants consist of
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one GT and one ST while multi-shaft plants usually consist of multiple GTs

combined with one ST. The ST uses the energy from the GTs’ exhaust gas.

Therefore, the ST’s power output is dependent on the availability of the GTs.

When a GT in a multi-shaft plant becomes unavailable due to some forced out-

age, the ST’s power output may be reduced or even shut down. Considering

that the units of a combined cycle plant act separately when we are building

the system’s reliability model will not reflect this operating characteristic. For

example, Table A.1 represents the unavailability probability of the units of a

3GT-1ST combined-cycle plant.

Table A.1 Example: Combined-cycle units unavailability

Size [MW] pdown

GT 1 50 0.0864

GT 2 50 0.0864

GT 3 50 0.0864

ST 150 0.0697

Again, each generating unit could be added separetely to the COPT

with a two-state reliability model by ignoring the combined-cycle operation of

the plant. However, [35] shows us why this may yield over-optimistic LOLP

results. Therefore, two different models are proposed to account for the op-

erating characteristics of CC plants: a plant-specific dispatch model and a

generic dispatch model. In addition to the separate unit unavailability infor-

mation, further logic must be considered to build the representative CC plant

models. The first approach uses the plant’s actual dispatch pattern while the
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other applies a generic dispatch and can be used when plant-specific dispatch

patterns are unavailable. The generic approach provides decent estimates of

the actual LOLP.

A.2 Plant-Specific Dispatch Model

First, the availability matrix of the combined-cycle plant is built with-

out any combined-cycle operations. This matrix consists of the possible power

output states with their corresponding probability, which is computed by mul-

tiplying the appropriate pdown and pup (or 1 − pdown) values. Table A.2 rep-

resents the availability matrix for our example in Table A.1, where 1 means

the unit is availabile and 0 means the unit is on forced outage and therefore

unavailable. In order to accurately determine the combined-cycle plant’s un-

known capacity outputs (Cap. In and Cap. Out1) in Table A.2, the plant’s

dispatch patterns must be known. In some cases, the plant might have a

minimum number of GTs required to allow any output on the ST. In other

cases, when a reduced number of GTs are present, the associated reduction in

the ST’s output might not be proportional to the GTs’ reduced total output.

Table A.3 presents the dispatch patterns of our example.

From Table A.3,we note that this particular plant requires a minimum

of two GTs for the ST to have an output. Furthermore, when the number

1Cap. In refers to the actual capacity outputs and Cap. Out refers to the capacity
outages calculated by substracting the Cap. In from the total possible capacity of the
combined-cycle plant
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Table A.2 Example: Initial combined-cycle plant availability matrix

GT1 GT2 GT3 ST Cap. In Cap. Out Individual
50-MW 50-MW 50-MW 150-MW [MW] [MW] probability

1 1 1 1 300 0 0.7094
0 1 1 1 ? ? 0.06709
1 0 1 1 ? ? 0.06709
0 0 1 1 ? ? 0.006345
1 1 0 1 ? ? 0.06709
0 1 0 1 ? ? 0.006345
1 0 0 1 ? ? 0.006345
0 0 0 1 ? ? 0.0006000
1 1 1 0 150 150 0.05315
0 1 1 0 100 200 0.005026
1 0 1 0 100 200 0.005026
0 0 1 0 50 250 0.0004754
1 1 0 0 50 250 0.005026
0 1 0 0 50 250 0.0004754
1 0 0 0 50 250 0.0004754
0 0 0 0 0 300 0.00004495

of GTs is less than the original three units, the ST’s output is not reduced

in proportion; the pattern displays a particular reduction ratio. Using the

information provided by the dispatch pattern, we can complete the unknown

capacity values in the availability matrix of Table A.2. The complete avail-

ability matrix is presented in Table A.4. Note that because of the minimum

requirement of 2 GTs for the ST to function, when only one GT is available,

the ST will not produce any output even if it is available. Although the ST’s

power output is dependent on the GTs, the GTs can function independently

from the ST.
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Table A.3 Example: Plant-specific dispatch patterns for the 3GT-
1ST combined-cycle plant

GT1 GT2 GT3 ST
Dispatch Block Gross MW Gross MW Gross MW Gross MW

DB-1 50 50 50 150
DB-2 50 0 50 80
DB-3 50 50 0 80
DB-4 0 50 50 80
DB-5 50 50 50 0
DB-6 50 50 0 0
DB-7 50 0 50 0
DB-8 0 50 50 0
DB-9 50 0 0 0
DB-10 0 50 0 0
DB-11 0 0 50 0

The availability matrix in Table A.4 can be reduced to a multi-state

representation with corresponding partial capacity outage states and individ-

ual propabilities. If a particular capacity outage state can occur from different

unit combinations, the probabilities are simply given by being summed up.

For example, a capacity outage of 300-MW can occur two different ways: if all

units are unavailable or if all GTs are unavailable. Therefore, the probability

of a capacity outage of 300-MW is equal to 0.0006000+0.0000450=0.0006450.

Table A.5 represents the multi-state model of our CC plant.

A.3 Generic Dispatch Model

When plant-specific dispatch patterns are not available, the generic

dispatch model can be used to estimate the ST’s derated states. In this model
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Table A.4 Example: Complete combined-cycle availability matrix
(The symbol * indicates when the minimum requirement of 2 GT is not met)

GT1 GT2 GT3 ST Cap. In Cap. Out Individual
50-MW 50-MW 50-MW 150-MW [MW] [MW] probability

1 1 1 1 300 0 0.7094
0 1 1 1 180 120 0.06709
1 0 1 1 180 120 0.06709
0 0 1 1 50* 250 0.006345
1 1 0 1 180 120 0.06709
0 1 0 1 50* 250 0.006345
1 0 0 1 50* 250 0.006345
0 0 0 1 0 300 0.0006000
1 1 1 0 150 150 0.05315
0 1 1 0 100 200 0.005026
1 0 1 0 100 200 0.005026
0 0 1 0 50 250 0.0004754
1 1 0 0 50 250 0.005026
0 1 0 0 50 250 0.0004754
1 0 0 0 50 250 0.0004754
0 0 0 0 0 300 0.00004495

Table A.5 Example: Combined-cycle plant multi-state representa-
tion using the plant-specific dispatch model

Capacity outage states Cj [MW] Individual prob. pj

0 0.7094

120 0.2013

150 0.05315

200 0.01508

250 0.02046

300 0.0006450
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the ST’s ouput is reduced proportionally to the GTs’ power ouput reduction.

For example, when GTs are reduced from 150-MW (or 50+50+50-MW) to 100-

MW (or 50+50-MW), the ST’s ouput is reduced to 100-MW (or 100/150×150-

MW). The generic dispatch pattern for the example unit is presented in Table

A.6. Using the same approach, the generic dispatch model can be reduced to

Table A.6 Example: Generic dispatch patterns for the 3GT-1ST
combined-cycle plant

GT1 GT2 GT3 ST
Dispatch Block Gross [MW] Gross [MW] Gross [MW] Gross [MW]

DB-1 50 50 50 150
DB-2 50 0 50 100
DB-3 50 50 0 100
DB-4 0 50 50 100
DB-5 50 50 50 0
DB-6 50 50 0 0
DB-7 50 0 50 0
DB-8 0 50 50 0
DB-9 50 0 0 50
DB-10 0 50 0 50
DB-11 0 0 50 50
DB-12 50 0 0 0
DB-13 0 50 0 0
DB-14 0 0 50 0

the multi-state representation of Table A.7, which is slightly different than the

plant-specific dispatch representation.
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Table A.7 Example: Combined-cycle plant multi-state representa-
tion using the generic dispatch model

Capacity outage states Cj [MW] Individual prob. pj

0 0.7094

100 0.2013

150 0.05315

200 0.03411

250 0.001426

300 0.0006450

A.4 Concluding Remarks

In contradistinction from the cases we have been presenting, building

a multi-state representation while considering all units independent from each

other would result in a significantly different representation as seen in Table

A.8.

Table A.8 Example: Combined-cycle plant multi-state representa-
tion considering independent units

Capacity outage states Cj [MW] Individual prob. pj

0 0.7094

50 0.2013

100 0.01903

150 0.05375

200 0.01508

250 0.001426

300 0.00004495

Combined-cycle plants must be adequately represented in LOLP cal-
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culations, especially when they represent a significant portion of a generation

portfolio. More details on the proposed combined-cycle models are presented

in [35], where the concept is applied to a case study.
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