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The primary objective of the NASA sponsored ICESat mission is to study the short 

and long term changes in the ice mass in the Greenland and Antarctica regions. The 

satellite was therefore placed into a frozen near-polar near-circular repeat groundtrack to 

ensure an adequate coverage of the polar regions while keeping the groundtrack periodic 

and reducing the variations in the orbital elements, and more specifically the semi-major 

axis of the ICESat orbit. After launch, a contingency plan had to be devised to 

compensate for a laser that dangerously compromised the lifetime of the ICESat mission. 

This new plan makes an intensive use of the ICESat subcycles, a characteristic of the 

repeat groundtrack orbits often over-looked. The subcycle of a repeat groundtrack orbit 

provide global coverage within a time shorter than the groundtrack repetition period. For 

a satellite with an off-nadir pointing capacity, the subcycles provide near-repeat tracks 
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which represents added opportunity for altimetry measurement over a specific track. The 

ICESat subcycles were also used in a very innovative fashion to reposition the satellite 

within its repeat cycle via orbital maneuvers called phasing maneuver. The necessary 

theoretical framework is provided for the subcycle analysis and the implementation of 

phasing maneuvers for any future repeat orbit mission. In the perspective of performing 

cross-validation of missions like CryoSat using the ICESat off-nadir capacity, a study 

was conducted to determine the geolocations of crossovers between two different repeat 

groundtrack Keplerian orbits. The general analytical solution was applied to ICESat vs. 

several other repeat groundtrack orbit mission, including the future ICESat-II mission. 

ICESat’s repeat groundtrack orbit was designed using a disturbing force model that 

includes only the Earth geopotential. Though the third body effect from the Sun and the 

Moon was neglected in the orbit design, it does in fact disrupt the repeatability condition 

of the groundtrack and consequently implies orbit correction maneuvers. The 

perturbations on ICESat orbit due to the third body effect are studied as a preliminary 

work towards including these forces in the design of the future ICESat-II repeat 

groundtrack orbit. 
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CHAPTER 1 

THE ICESAT MISSIONS 

 

 

1.1 THE FIRST ICESAT MISSION 

 1.1.1 MISSION DESCRIPTION 

NASA’s Ice Cloud and land Elevation Satellite was launched on January 12, 2003 

on a Boeing Delta-2 rocket from Vandenberg Air Force Base in California. ICESat’s 

primary objective is to determine the seasonal and long-term changes of the ice mass in 

the polar regions, more specifically in the Greenland and Antarctica regions. The ice 

mass contained at the poles is equivalent to a 65 m rise of the global see level. Each year, 

the Earth’s ice sheets exchange with the oceans a volume of water equivalent to 8 mm of 

global sea level. This exchange is the main contribution to the global sea level changes. 

The other two contributions come from the melting of land glaciers around the world and 

the thermal expansion of the oceans. Though these contributions shouldn’t be ignored, 

they remain marginal compared to the polar ice sheets contribution. It has been shown 

that the ice sheets react much faster to the environmental and climate changes than 



2 

initially thought. However, the complexity of the dynamic of the ice mass changes and 

distribution makes it difficult to generate accurate projections. It is therefore critical to 

get a better understanding of the dynamics behind the interaction between the oceans and 

the polar ice sheets. By observing the seasonal and long-term changes of the ice sheets 

mass, ICESat provides valuable clues toward a better understanding of their change as 

well as the contribution to the global sea level. 

Other applications include land topography, cloud heights and vertical distribution, 

as well as atmospheric aerosol distribution. ICESat’s measurements of the vegetation 

canopy heights were also used to map the distribution of the biomass above ground but 

with an accuracy lower than required by the ecosystem science community. 

The precise measurements are obtained using the Geoscience Laser Altimeter 

System (GLAS). GLAS comprises three identical lasers used successively throughout the 

mission lifetime. The lasers pulse at two wavelengths: the near infrared channel is used 

for altimetry and thick cloud height measurements; the channel in the green spectrum is 

used for aerosol and more sensitive measurements of cloud distribution. The lasers were 

designed with a laser spot size of 70 m in diameter and a Pulse Repetition Frequency 

(PRF) of 40 Hz, which translates into a distance of 170 m between consecutive spots at 

ICESat’s altitude. The satellite off-nadir pointing capacity allows the laser to point at 

targets off the nominal groundtrack (up to 5°). For example, the off-pointing capacity has 

been successfully used to monitor the elevation of land elevation on specific sites that are 

not located along ICESat’s ground track, like the volcanic dome growth of Mt. Saint 
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Helens (Washington State). The off-nadir pointing is also used to compensate the orbit 

drift while pointing at the reference groundtrack. 

 

 1.1.2 ORBIT REQUIREMENTS 

The ICESat satellite was launched in a low Earth orbit, at an altitude of 

approximately 600 km. Due to the nature of the mission, it was important that the orbit 

allowed for an optimum observation of the polar ice sheets. An inclination of 90° would 

guarantee a complete coverage at the pole. However, such an inclination does not provide 

a dense distribution of crossovers, or groundtrack intersections, which is an important 

method of analyzing the measurements for surface change. Another constraint for the 

choice of the inclination was to ensure the coverage of the major ice streams in the West 

Antarctica Ice Sheet which extend to 86° South. With an inclination of 94°, ICESat’s 

groundtrack provides a global coverage between the latitudes 86° South and 86° North. 

The narrow regions at the poles not covered by the groundtrack can be mapped using 

airborne laser altimetry. 

Because the ICESat mission is above all a laser altimetry mission, a very accurate 

knowledge of the satellite position is mandatory. This knowledge is rendered easier with 

the use of a near-circular frozen orbit. Indeed, a frozen orbit limits the variations of the 

orbital elements in the average sense. The argument of perigee of the ICEsat orbit is set 

to 90° in average and does not circulate. The frozen eccentricity is then equal to 0.0013 in 

average. 
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Finally, to be able to observe the evolution of the ice mass and make comparisons 

between measurements taken at different times it is required to fly over the same 

geolocations. The crossovers provide the opportunity to compare measurement. However 

for the density and accuracy of the information desired, it is necessary for the satellite to 

be put in a repeat groundtrack orbit. Only with a repeat groundtrack orbit are along-track 

measurements comparisons possible throughout the entire mission lifetime. When in a 

repeat groundtrack orbit, the time between two consecutive measurements over the same 

site depends on the value of the semi-major axis. Three different repeat groundtrack 

orbits were designed for the ICESat mission (only one is used for the operation mode). 

To these three orbits correspond three different altitudes, all in the vicinity of 600 km. 

 

1.2 FUTURE ICESAT MISSIONS 

 1.2.1 MISSION OBJECTIVES 

ICESat-II is scheduled for launch in 2015 as the ICESat follow-on mission. It has 

been identified as a top-priority mission by NASA’s New Decadal Survey issued in 

January 2007. The main purpose of the mission will therefore be similar to the ones of 

ICESat while providing additional and improved information. The mission objectives fall 

under five main directions: ice sheets, sea ice, vegetation, solid earth/hydrology and 

atmosphere: 

 The ice sheets study should improve the predictive capabilities of the ice sheets 

and glaciers numerical model while determining the contribution of the ice 

sheets to the sea level rise. 
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 The changes in thickness of sea ice are still not well understood. Combining 

laser altimetry and radar altimetry would greatly benefit the measurement of sea 

ice thickness. 

 By reducing the size of the laser footprint to a diameter less than 25 m, the error 

on a the vegetation height would be greatly reduced which, in turn, would 

improve the estimation of the global distribution of the carbon stored in the 

above-ground biomass. 

 Better agility and pointing accuracy should enable the satellite to observe land 

elevation changes due to natural hazard like volcano eruptions or tectonic 

activity. For hydrology, a smaller footprint and a higher frequency of the pulse 

repetition would improve the information on the water level in smaller rivers. 

 The goal for the atmospheric study is to continue the observation of the cloud 

and aerosol distribution, especially at high altitudes, as the ICESat, CloudSat 

and CALYPSO missions are approaching the end of their lifetime. 

 

 1.2.2 ORBIT CONSIDERATIONS 

At the time this dissertation is being written, the operation and calibration orbits for 

the ICESat-II mission have not been decided yet. The successes and the lessons learned 

during the first ICESat mission provided, and still provide, a valuable heritage on which 

to build the follow-on mission. To take full advantage of this heritage it was suggested 

that the ICESat-II orbit should be identical to the one of the first ICESat (with the 

exception of the line of node that should be adjusted in order to obtain the exact same 
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groundtrack as the ICESat groundtrack). However, it was also suggested at some point 

that the orbit be at a lower altitude, around 500 km instead of 600 km. It was also 

suggested that the new orbit should provide a denser spacing for the DEM mapping. This 

would translate into a longer repeat groundtrack orbit and consequently a different semi-

major axis. Other changes in terms of orbital period have also been proposed but the 

currently preferred strategy would be to keep the same identical orbit as the first ICESat 

mission. Nevertheless, different orbits that have been suggested for ICESat-II will be 

analyzed in this study. 
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CHAPTER 2 

REPEAT GROUNDTRACK ORBITS: 

CONCEPT AND GENERATION 

 

2.1 BACKGROUND OF REPEAT GROUNDTRACK ORBIT MISSIONS 

Satellite missions devoted to the observation of the Earth and its climate, as well as 

constellations of navigation satellites, commonly use repeat groundtrack orbits. In the 

case of Earth observation, the repeat groundtrack configuration is particularly useful as it 

allows a satellite to fly over the same site at the surface of the Earth after some interval of 

time. The periodicity of the groundtrack enables comparison measurements at specific 

observation sites for calibration or validation purposes, as well as the monitoring of the 

evolution of climatic and geologic phenomenon. Repeat groundtrack orbits were used as 

early as 1978 with the launch of the first Block-I GPS satellite. That same year, the 

satellite SeaSat was launched and put into a 17-day repeat groundtrack orbit. The mission 

ended prematurely after a massive short circuit in the solar array drive assembly. The 

GeoSat mission was then designed to complete the geoid mapping started with SeaSat. 

The GeoSat satellite was launched in 1985 into a SeaSat-similar orbit. In 1998, GFO 
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(GeoSat Follow-On) succeeded to GeoSat and the 17-day repeat groundtrack orbit was 

retained. The European Remote Sensing satellites (ERS-1 and ERS-2) were launched in 

1991 and 1995 and put into comparable 35-day repeat groundtrack orbit, with different 

right ascension of the ascending node. From 1995 to 1996 (end of the ERS-1 mission), 

the two satellites operated in tandem mode, with ERS-2 flying over the same groundtrack 

as ERS-1, but 24 hours after ERS-1. In 1992, the satellite Topex/Poseidon was launched 

in 1992 as a joint effort from CNES and NASA. Its successor, Jason-1, was launched in 

2001 (Jason-2 is scheduled for launch mid-2008). Both satellites were put in a 10-days 

repeat groundtrack orbit. In 2002, ESA launched the satellite ENVISAT into a 35-day 

repeat orbit using the same repeat pattern as the one established for ERS-1 and ERS-2. 

The ICESat (Ice, Cloud and land Elevation Satellite) was launched in 2003. Like all the 

missions previously mentioned, the main objective of the ICESat mission is Earth 

observation. More specifically, the mission goals are to measure the ice sheet mass 

evolution, cloud and aerosol heights, land topography and vegetation. The primary 

ICESat science objectives are addressed with a 91-day frozen repeat groundtrack orbit 

designed with a near-polar inclination of 94° in order to provide coverage of the polar ice 

sheets while respecting other mission requirements. Moreover, ICESat has used an 8-day 

repeat groundtrack orbit to support calibration activities. 

Repeat groundtrack orbits (which we will simply call repeat orbits from now on), 

frozen and non-frozen, have been extensively studied. A frozen orbit is an orbit for which 

the secular drift and the long-periodic oscillations of both the eccentricity and the 

argument of perigee are nullified. Therefore, with such an orbit, the altitude variations 
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can be described as a function of the latitude. Frozen orbits in the zonal problem, their 

stability and their classification into families have been the subject of studies  

(Rosborough and Ocampo, 1991), (Coffey, 1994) that form the basis of frozen repeat 

orbit dynamics. Repeat orbits are periodic in longitude and latitude and are therefore 

considered to be 2-D periodic in a rotating frame attached to the Earth. An orbit is frozen 

in the mathematical sense when the orbit is periodic in the orbital plane. The immediate 

consequence is that the orbit is also frozen in the mean (or averaged) sense, which is the 

definition most commonly used for frozen orbits. Therefore, a repeat orbit that is frozen 

in the mathematical sense is 3-D periodic in a rotating frame attached to the Earth. 

However, the frozen condition does not necessary ensure the periodicity of the 

groundtrack. General methods have been developed to identify 3-D periodic frozen repeat 

orbits (Lara, 1999) and 2-D periodic frozen repeat orbits (Lim, 1995), as well as polar 

repeat orbits (Lara, 1997). The problem of the 3-D periodicity has also been studied 

through an orbit maintenance approach. This work has been achieved by Rim et al. 

(2000) where the perturbed repeat orbit for a proposed LightSAR mission is maintained 

within a 125m diameter tube about the reference orbit. The perturbing forces model used 

by Rim include the Joint Gravity Model 3 with geopotential harmonics up to degree 70 

and order 70 (JGM3 70×70), luni-solar effect, drag and radiation pressure. More specific 

studies have been conducted to analyze practical cases and missions. Uphoff et al. (1992) 

investigated the RadarSat sun-synchronous frozen repeat orbit and its groundtrack 

stability. Mission design work done by Lim and Schutz (1996) for the ICESat mission 
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provided numerical tools to design frozen orbits with exact repeat groundtracks in the 

Joint Gravity Model 3 with zonal harmonics up to degree 31 (JGM3 31×0). 

 

2.2 GENERAL CHARACTERISTICS OF REPEAT GROUNDTRACK ORBITS 

We consider an intersection of a satellite’s ascending groundtrack and the equator. 

We label AN1 the longitude corresponding to the intersection site, also known as an 

ascending node. After one orbital period, Tsat, the nadir trace of the satellite crosses the 

equator a second time in the ascending direction. The longitude of this second 

intersection is labeled AN2. Without the Earth rotation, or if the satellite’s orbit plane was 

fixed in an Earth centered fixed frame, the two equatorial crossings would occur over the 

same site and we would have AN1 = AN2. Since neither the Earth rotation nor the 

precession of the orbital plane can be neglected, the longitude difference between the two 

ascending nodes, or longitude shift, is determined by  

satTANAN ⊕=−=Δ '12 ωλ  (2.1)

where Ω−= ⊕⊕
&ωω '  is the Earth rotation rate relative to the satellite’s orbit plane. The 

term ⊕ω  represents the Earth rotation rate in the inertial frame and Ω&  represents the 

rotation rate of the satellite’s line of node. Since the Earth is rotating eastward and 

Ω>⊕
&ω  for a Low Earth Orbit (LEO), an equatorial crossing will be located west of the 

previous crossing in the case of a LEO. 
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The term ⊕'ω  allows introducing a new definition of a day. We already can 

differentiate several definition of a day. For example, a sidereal day is defined as the time 

required for the Earth to complete one revolution with respect to the axes of an Earth 

Centered Inertial frame (ECI). A solar day corresponds to the time required for the Earth 

to complete one revolution with respect to the rotating Sun-Earth line. Using the relative 

rotation rate of the Earth with respect to the satellite’s orbit plane ⊕'ω , we can define a 

nodal day, also called nodal period of Greenwich (Vallado, 1997), TGW. One nodal day 

corresponds to the time the Earth takes to complete one revolution with respect to the 

orbit plane. The notion of nodal day is therefore ‘orbit-dependent’ and is computed as 

follows: 

Ω−
==

⊕⊕
&ω

π
ω
π 2
'

2
GWT  (2.2)

A repeat groundtrack orbit is a two dimensional periodic orbit in a rotating frame 

attached to the Earth. Indeed, if we consider the orbit in the spherical coordinates of the 

rotating Earth Centered Earth Fixed frame (ECEF) defined by the triplet (ρ, λ, φ), 

respectively radius, longitude and latitude, the periodicity of λ and φ suffices to ensure 

the periodicity of the groundtrack. The periodicity of the groundtrack, that is the 

groundtrack retraces itself exactly after a certain time, is achieved when the nodal period 

of the satellite and the nodal period of Greenwich are commensurate. This translates into 

the following synchronicity equation: 
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satGW TNTD ⋅=⋅  (2.3) 

where D and N are integers relatively prime. Tsat is the ‘node-to-node’ period of the 

satellite. In the absence of perturbations, the nodal period is equal to the Keplerian 

period. However, in a perturbed model, it is necessary to take into account the rotation 

rate of the perigee of the satellite. Recombining Eq.(2.2) and Eq.(2.3) leads to the 

following constraint to design a repeat orbit: 

ω
π

ω
π

&&& +
⋅=

Ω−
⋅

⊕ M
ND 22  (2.4) 

where ω&& +M  is the rate of the mean argument of latitude, M&  is the satellite’s mean 

motion and ω&  the rate of its argument of perigee. Eq. (2.4) establishes the synchronicity 

between the Earth rotation and the satellite rotation. The satellite completes N nodal 

revolutions while the Earth performs D rotations with respect to the satellite’s orbital 

plane. In other words, the satellite completes N nodal revolutions in D nodal days. 

 

2.3 GENERATION OF REPEAT ORBITS IN FULL GEOPOTENTIAL 

Looking at Eq. (2.4), it is obvious that the design of a repeat orbit will depend on 

the perturbing forces included in the calculation of the time rate of the satellite orbital 

elements. The gravitational potential of the Earth, or geopotential, is by far the main 

disturbing force to consider when trying satisfying the synchronicity condition of  

Eq. (2.4). The geopotential can be accounted for to a high degree and order of the 
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gravitational potential. The higher terms of the gravitational potential expansion becomes 

more relevant as the duration of the repeat orbit to be designed gets longer, i.e. the value 

of D gets greater. Several approaches can be chosen to obtain a precise reference repeat 

orbital in the full geopotential. We review two different methods: the first one developed 

by Martin Lara which leads to frozen repeat orbits that are 3-D periodic using a full zonal 

potential; a second method was developed by Samsung Lim and applied at the Center for 

Space Research (CSR) to design the ICESat mission’s various repeat orbits. Those orbits 

are frozen (2-D periodic) in the full geopotential, including the zonal, sectoral and 

tesseral terms. 

 

 2.3.1 SADSaM 

The Software Assistant for Designing Satellite Missions (SADSaM) was developed 

by Martin Lara for the Real Instituto y Observatorio de la Armada. Unlike most of the 

procedures used by aerospace engineers that consist in an iterative trial and error based 

on the refinement of the eccentricity and the semi-major axis, SADSaM searches for the 

periodic solutions of the zonal gravitational problem, that is to say orbits that are 3-D 

periodic in the ECEF frame. These orbits naturally repeat their groundtrack exactly and 

can therefore be used as reference orbits for missions requiring repeat groundtrack orbits. 

Fig. (2.1) is a reproduction of the flowchart of the SADSaM algorithm as given in the 

SADSam user’s manual (Lara, 1999). 
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Figure 2.1: Flowchart of SADSaM software to compute repeat groundtrack frozen orbits. 
(taken from SADSaM handbook – Martín Lara – CNES) 
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Starting with the value of D, N and i (respectively the number of nodal days, the 

number and the inclination of satellite revolution of the repeat orbit), a first analytical 

approximation is computed. In the computation, only the J2 term of the zonal potential 

expansion is used in the expression of the time rates of the orbital elements appearing in 

Eq. (2.4), which are given by the Lagrangian Planetary Equations (LPE). 
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The approximation obtained is nearly periodic in the full zonal potential. This 

approximate solution is refined using an iterative procedure aiming at achieving 

successively: 

• The periodicity of the orbit in its orbit plane (2-D periodicity) 

• The periodicity of the groundtrack 

• The correction of the inclination to match its desired value.  

This is done by implementing three interactive steps. The first step achieves the 2-D 

periodicity of the orbit in the full zonal potential by adjusting the cylindrical coordinates 

of the satellite at the ascending node. Since the 2-D periodic orbit obtained at the end of 
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the first step will generally not repeat its groundtrack (nor match the desired value for the 

eccentricity), a correction is computed in the second step to achieve the periodicity of the 

groundtrack. The Secant method is used to converge to the desired repeat orbit with a 

first guess computed using the Newton-Raphson method. The convergence is performed 

by adjusting the energy h of the orbit until Eq. (2.3) is satisfied. In the third step, the 

Secant method is used again to converge to the desired value for the inclination. This is 

done indirectly using the polar component of the orbit’s angular momentum: 

( ) iea cos1 2−−=Λ μ  (2.8) 

 

 2.3.2 ALTERNATE METHOD 

The procedure proposed by Lara for the generation of frozen repeat groundtrack 

orbits leads to 3-D periodic orbits in the ECEF frame, i.e. to orbits that are frozen in the 

mathematical sense in the ECEF frame. Though these orbits are perfect candidates for the 

design of reference repeat orbits, the only necessary constraints to satisfy are the frozen 

condition in the mean sense and the synchronicity condition given by Eq. (2.4). 

Therefore, it suffices to find the set of mean orbital elements that satisfies simultaneously 

the three following differential equations to design a good reference frozen repeat orbit: 

0=e&  (2.9)

0=ω&  (2.10)

( ) 0=−Ω⋅+⋅ ⊕ω&& NMD  (2.11)
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The time rate of the orbital elements can be expressed using the LPEs, where U  

represents the averaged zonal potential and 3/ an μ=  is the mean motion of the 

satellite in the two body problem. 
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A first approximation of the solution of Eq. (2.9) to (2.11) can be found by looking 

at the dominant terms of Eq. (2.12) through (2.15). First, the semi-major axis can be 

approximated by finding the solution of Eq. (2.4) considering only the J2 effect in the 

series expansion of U  and neglecting the eccentricity. Consequently, Eq. (2.4) becomes: 

00
2

1
2/7

2 =++ CaCaC  (2.16)

where the coefficients C0, C1 and C2 are defined by: 
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μ
N
DC =1  (2.18)

⊕−= ω2C  (2.19)

An acceptable approximation of the solution to Eq. (2.16) axis is given below. This 

approximate value of the semi-major axis can in turn be used in Eq. (2.12) to (2.15). 
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Considering only the terms J2 and J3 in the series expansion of U , the LPEs for the 

time rate of the eccentricity and the argument of perigee can be written as follows: 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ −

−
⎟
⎠
⎞

⎜
⎝
⎛= ⊕ 1sin

4
5cossin

12
3 2

22

3
3

ii
e

J
a

R
ne ω&  (2.21)

( ) ( )i
e

J
a

Rn 2
22

2
2

cos51
14

3
−

−
⎟
⎠
⎞

⎜
⎝
⎛−= ⊕ω&  

          
( ) iee

J
a

R
n

sin
sin

12
3

32

3
3 ω

−
⎟
⎠
⎞

⎜
⎝
⎛− ⊕  

           
⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ − iieii 22222 cossin

4
351sin1sin

4
5  

(2.22)

The constraint on the time rate of the eccentricity and the argument of perigee can 

be satisfied in the J2+J3 by choosing the mean value of the argument of the perigee equal 

to ± 2/π  which nullifies Eq. (2.21) and the mean eccentricity equal to the value given in 

Eq. (2.23) where the minus sign corresponds to 2/πω =  and the plus sign corresponds 

to 2/πω −= : 
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Once the approximate solution is found for the zonal potential including only the 

dominant terms, an iterative procedure allows the refinement of the mean orbital 

elements to account for higher degrees of the averaged zonal potential. The iteration are 

performed through trial and error on the values of both the eccentricity and the semi-

major starting with the initial values given by Eq. (2.19) and Eq. (2.23), keeping the value 

of the argument of the perigee equal to ± 2/π . For each iteration, the new value for a 

and e is computed using the Jacobian matrix of the system of equations (2.10) and (2.11): 
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The next step is to determine the initial osculating orbital elements corresponding to 

the mean values previously found. The correction to apply to the mean orbital elements to 

get the osculating value is computed using the part of the zonal geopotential that includes 

only the short period perturbations. This potential is called U*. 

U* UU −=  (2.25)

where U is the non averaged zonal potential. The corrections to the orbital elements are 

obtained as functions of the mean values after the integration of the LPEs applied to the 
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potential U*. Though these initial osculating orbital elements should lead to a near-repeat 

groundtrack after D days, the exact closure of the groundtrack is not ensured. 

The purpose of the next step is to refine the value of the initial osculating elements 

to achieve an exact closure of the groundtrack. Lim (1995) showed that out of the six 

orbital elements, the ones experiencing the greatest variation between their initial value 

and their value at D days were the semi-major axis a and the argument of perigee 

ω .Therefore, a new trial and error procedure is performed to refine the initial values of 

the eccentricity and the semi-major axis in order to satisfy the following final conditions: 

0),,( 000 =− ateaa ff  (2.26)

0),,( 000 =−ωω ff tea  (2.27)

For each iteration, the new value for a and e is computed as follows: 
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As the value of the semi-major axis of the orbit is being modified, so is the nodal 

period of the satellite and the duration of a nodal day which is orbit-dependent. It is 

therefore necessary to adjust for the final time tf along with the initial semi-major axis 

and eccentricities. This is done using the difference in longitude λ  (in ECEF) of the node 

at the initial time and final time: 
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At this point of the procedure, only the zonal terms of the geopotential have been 

accounted for in the refinement of the initial osculating elements. A new set of initial 

osculating orbital elements can be estimated via a least square fit procedure that includes 

the tesseral and sectoral terms of the geopotential force model, starting with the initial 

osculating orbital elements obtained at the end of the previous step. However, the exact 

repeat condition is lost at the end of the estimation procedure. A new adjustment of the 

orbital elements, similar to Eq.(2.26) through Eq.(2.29), is necessary to conclude the 

design of a frozen exact repeat groundtrack in the full geopotential.  

 

2.4 ICESAT REPEAT GROUNDTRACK ORBITS 

The ICESat satellite operates with two different repeat orbits. The altimeter 

measurements are made when the satellite is flying in 91-day repeat orbit. A second orbit 

is an 8-day repeat orbit into which ICESat was initially launched. The 8-day repeat orbit 

was used during the calibration phase of the ICESat mission since it enabled the flight 

over specific calibration site every 8 days. A third orbit was generated for the ICESat 

mission. It was designed to be the actual operational orbit, with the groundtrack repeating 

every 183 days. A malfunction in the first of the three lasers onboard of ICESat caused 

the lifetime of the laser to be greatly decreased. Since it was assumed that this 

malfunction would affect all three lasers, it was decided to switch to a shorter orbit, hence 
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 8-day repeat 91-day repeat 183-day repeat 

Number of nodal days (D) 8 91 183 

Number of satellite revs. (N) 119 1354 2723 

Ratio N/D 14.875 14.879 14.880 

Mean Semi-major axis (km) 6971.524 6970.239 6970.033 

Inclination (deg) 94 94 94 

Table 2.1: Main characteristics of ICESat’s repeat orbits 

the 91-day repeat orbit. The reference orbits used in the ICESat missions were generated 

at the Center for Space Research (CSR). The actual satellite orbit is forced to follow these 

reference orbits with an allowed East/West displacement from the reference orbit of ±800 

meters at the equator. These reference repeat orbits were designed by Charles Webb 

(personal communication) through a numerical method based on the work by Lim (1995, 

1996) described previously. The main characteristics of the three repeat orbits are 

summarized in Table (2.1). 

The first step in the numerical method described in the previous section was to 

compute the values of the mean semi-major axis and the frozen eccentricity for the 

desired values of the inclination, D, N, and an approximate value for the semi-major axis. 

The frozen eccentricity and mean semi-major axis were obtained for a geopotential which 

accounts for the first 31 averaged zonal terms. The short period perturbations were then 

added to find the initial osculating elements in the non-averaged zonal potential up to the 

31st degree. The adjustment of the initial osculating orbital elements was performed with 
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a convergence criteria for the groundtrack closure error to be less than 1 meter at the 

equator. Once the groundtrack was closed in the 31×0 geopotential, a new set of initial 

osculating orbital elements was computed via a least square fit using a more complete the 

geopotential including all the harmonics up to 70th degree and 70th order (70×70). 

Finally, the new initial osculating orbital elements were adjusted to achieve the closure of 

the groundtrack in the 70×70 geopotential with the same convergence criteria as before. 

Two different gravity models were used to generate the 8-day, 183-day and 91-day 

repeat orbits in the method described above. The 8-day and 183-day repeat orbit were 

generated using the Joint Gravity Model 3 (JGM3) as it was the most accurate model at 

the time. The 91-day repeat orbit was generated later in the mission using the more 

accurate Grace Gravity Model 01 (GGM01). For the three reference orbit designed, the 

position of the satellite was obtained for 1 second sampling frequency over the entire 

repeat interval. 

 

2.5 MOTIVATION AND OUTLINE OF WORK 

Following the failure of the first laser, it was decided that the remaining 2 lasers 

onboard of ICESat would not be fired continuously as it was initially planned. Instead, 

the lasers are fired during campaigns of 33 days at a time. The duration of these 

campaigns was chosen according to what was then known as one of ICESat 91-day repeat 

orbit’s subcycles. Subcycles are a characteristic of repeat groundtrack orbits that has not 

been the subject of much research at the time this dissertation is written. By making great 
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use of its repeat orbit subcycles, the ICESat mission proved the importance of including 

considerations on the choice of adequate subcycles in the design of a repeat orbit. The 

question of the subcycles will be approached both in a theoretical context and through the 

example of ICESat 91-day repeat orbit in Chapter 3. 

On one hand, the altimetry measurements provided by the GLAS altimeter onboard 

of ICESat are performed over a portion of its groundtrack that corresponds to the 33-day 

campaign. On the other hand, there exist seasonal and calendar mission constraints for 

the timing of these measurements. To reconcile these two constraints , the ICESat team 

devised a set of standardized maneuvers to reposition the ICESat satellite above the 

desired portion of the groundtrack at the desired time. These maneuvers are called 

phasing maneuvers and make use of the 8-day calibration orbit as an intermediary orbit. 

Though these maneuvers were designed specifically for the ICESat mission, they 

represent a fuel-efficient standardized contingency option for any repeat orbit mission. 

We will therefore provide in Chapter 4 the framework necessary to the design of such 

maneuvers for any repeat groundtrack orbit. 

Another line of work on the ICESat repeat groundtrack orbit came from the  

off-nadir capacity of ICESat’s laser. There has been a growing interest in the ICESat off-

nadir capacity, especially for the cross-validation of a future CryoSat mission, placed into 

a repeat groundtrack orbit and which mission objectives are similar to the ones of ICESat. 

A cross-validation procedure for CryoSat using ICESat altimeter measurements as 
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reference requires the precise determination of the locations of the intersections, or 

crossovers, between CryoSat and ICESat repeat groundtracks. The results of the study on 

these crossovers are presented in Chapter 5. 

Finally, a study of the third body effect on ICESat 91-day repeat orbit is conducted 

in Chapter 6. When generating a precise reference repeat orbit, it is necessary to account 

for as many perturbing forces as possible. Each perturbing force neglected can cause a 

drift from the ideal reference orbit, which will in turn require corrections maneuvers. 

Forces like drag or solar pressure are difficult to predict and to include in the design of a 

precise repeat orbit. Other forces however, like third body perturbations, can be 

accurately represented via a disturbing potential that can be expressed in terms of the 

satellite orbital elements. In the ICESat mission, it has been observed that the third body 

forces due to the gravitation of the Moon and the Sun cause a drift of the satellite’s 

groundtrack that exceed the acceptable drift defines in the mission requirements (namely 

800 meters from the reference groundtrack). About every three months, a North-South 

correction maneuver is applied to compensate for the change in inclination due to the 

luni-solar effect. The change in the argument of the node is compensated by an East-West 

correction maneuver which also accounts for the groundtrack drift due to the drag. It 

seems therefore interesting to include the luni-solar effect in the orbit design of a future 

mission in order to reduce the amount of fuel required for correction maneuvers. The 

necessary derivatives to include the third body effect into Lim’s procedure for the design 

of frozen repeat orbits are developed in Chapter 6. 
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CHAPTER 3 

SUBCYCLES OF REPEAT ORBITS 

 

 

Repeat orbits are commonly used in Earth and climate changes monitoring missions 

for the advantages they present in terms of multiple and periodic observation 

opportunities. Besides these obvious advantages, the subcycles of a repeat orbit also 

represents an important orbit characteristic for the observation of the Earth, though little 

study has been conducted on the subcycle aspect of the repeat orbits. Work has been done 

however on the pattern of the groundtracks of repeat orbits. As far as the geometry of the 

repeat groundtracks is concerned, some important results were established by King[11] 

regarding the location of the ascending nodes and by Farless[12] on the topic of the 

location of crossovers for the Topex mission. The dynamic behind the subcycles of a 

repeat orbit and how they govern the overall pattern of the groundtrack is less 

understood. The subcycles of a repeat orbit are however of great importance as they can 

help resolve conflicting requirements from satellite users that need frequent observation 

opportunities and dense coverage at the same time (Rees, 1992), especially when there 
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are multiple users, or multiple scientific communities making use of one satellite placed 

in a repeat orbit as it is the case for the ICESat mission. Using the theoretical framework 

developed by Lim (1995), we analyze ICESat’s repeat orbits and subcycles as an 

example.  

 

3.1 DEFINITIONS 

 3.1.1 REPEAT CYCLE 

We consider a satellite in a repeat orbit made of N satellite revolutions and of 

duration D nodal days. We call repeat cycle the time interval that separates one arbitrary 

ascending node that represents the origin of the repeat cycle, AN0, from the ascending 

node that corresponds to the N+1th ascending node after AN0. This later ascending node 

represents the end of the repeat cycle and is designated as ANN and the node AN0 is called 

the reference ascending node of the repeat cycle. This implies that the duration of a 

repeat cycle is equal to D nodal days and that the repeat groundtrack starts retracing itself 

at the end of one repeat cycle. When defined in an Earth-fixed frame, the N ascending 

(respectively descending) equatorial crossings divide the equator into N equal segments 

of arc (King, 1976). The angle separating two ascending (respectively descending) nodes 

consecutive in space is called nodal spacing (Lim, 1995) and is referred to as σ. Since the 

distribution of the nodes is uniform throughout the 360° of the equator, one nodal spacing 

is equal to : 

N
πσ 2

=  (3.1) 
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Each ascending (respectively descending) equatorial crossing is intersected along 

the ascending (respectively descending) direction once and only once throughout one 

repeat cycle. Finally, the angle separating two ascending nodes consecutive in time is 

called longitude shift and is equal to Dσ (King, 1976). The value given by Eq. (3.2) 

represents only the magnitude of the shift. Some considerations on the orbit need to be 

made to determination the direction of the longitude shift. 

N
DD πσλ 2

==Δ  (3.2) 

Using the reference orbits generated at the CSR for the ICESat mission, we can 

obtain the average values for the longitude shift, Δλ, and the nodal spacing, σ over the 

repeat cycle. We can compare these values to the ones obtained with Eq. (3.1) and Eq. 

(3.2). The results are summarized in Table (3.1) for the three reference orbits. The 

negative values in the first column show that the track is shifting westward, which is 

consistent with the comment made in the previous chapter about Eq.(2.1).  

We observe that Eq. (3.1) and Eq. (3.2) that characterize the spacing between tracks 

in a ideal model match the average values of the reference with an accuracy in the order 

of 10-6 degrees for the three repeat orbits and . Consequently, the standard deviations for 

the longitude shift and the nodal spacing of the reference orbits correspond to the 

quadratic errors between the simplified theoretical values from Eq. (3.1) and Eq. (3.2) 

and the nominal values. In the case of the 183-day repeat orbit, the error corresponds to a  



29 

 Longitude Shift, Δλ Nodal Spacing, σ 

 
Ref. Orbit: 

~ average value 
~ std. deviation 

Eq. (3.2) 
Ref. Orbit: 

~ average value 
~ std. deviation 

Eq. (3.1) 

8-day repeat (deg) 
-24.2016815 

s = 7.26·10-4 
24.2016807 3.0252077 

s = 3.61·10-4 
3.0252101 

91-day repeat (deg) 
-24.1949770 

s = 7.20·10-4 
24.1949778 0.2658787 

s = 1.83·10-4 
0.2658789 

183-day repeat (deg) 
-24.1939032 

s = 3.17·10-3 
24.1939038 0.1322078 

s = 3.49·10-3 
0.1322071 

Table 3.1: Spacing between time-consecutive, Δλ, and space-consecutive, σ, ascending nodes. 
 

distance of 400 meters at the equator. For the 8-day and 91-day repeat orbits, this 

distance is between 20 and 80 meters. These errors, though too large to study the closure 

of the groundtracks or to determine the exact location of the sub-satellite nadir point, are 

acceptable for our study of the relative distribution of the tracks and the general overall 

groundtrack pattern throughout the repeat cycle. 

We also observe that the longitude shifts of the three orbits are of the same order. 

As illustrated in Eq. (3.2), it is a direct consequence of the three ratios N/D being 

comparable which itself is a consequence of the semi-major axes also being comparable, 

as summarized in Table (2.1). 
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 3.1.2 NEAR REPEAT GROUNDTRACKS 

Although the groundtrack shifts are almost identical for the three ICESat repeat 

orbits, Fig. (3.1) and Fig. (3.2) show the consequence of the small difference in the shift 

on the overall layout of equatorial crossings. The two numbers appearing to the right of 

the crossing are the official node number (above) as used in the ICESat data processing 

and the longitude difference (below) with the reference ascending node AN0of the repeat 

cycle considered. 

In the official ICESat data processing, the nodes are assigned a track number in a 

chronological order, i.e. the order in which the ICESat satellite flies over the nodes. The 

track number #1 is assigned to the node the closest to the Greenwich meridian. Since the 

choice of the reference ascending node of the repeat cycle is often chosen with 

considerations to the mission time line and required maneuvers, the reference ascending 

is not necessarily assigned the track number #1. 

The reference ascending node of the 8-day repeat cycle represented on Fig. (3.1) is 

designated as the node #29. It can be observed that the next node, #30, which occurs one 

satellite revolution later, is not found immediately to the left of the node #29 (the 

direction of the longitude shift is westward). Indeed, in the case of repeat orbits for which 

D > 1, therefore Δλ > σ, the distribution of the ascending nodes along the equator is not 

consistent with the order in which they occur throughout the repeat cycle. Consequently, 

several other equatorial crossings will lie in between two time-consecutive equatorial  
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Fig. 3.1: Close up of the groundtrack pattern at the equator in the case of ICESat’ 

  8-day repeat orbit (only ascending track segments are shown). 
 

crossings. In the case of the 8-day repeat orbit, we observe that 7 ascending nodes are 

found between the nodes #88 and #89. That is to say that the node #89 lies 8 nodes west 

of the node #88. This is consistent Eq.(3.2). 

Similarly on Fig. (3.2), the reference ascending node is designated as #1132. 

Directly west of the node #1278 is the node #787. In the case of the 91-day repeat orbit, 

the time-consecutive node to node #1278, i.e. node #1279, is found 91 nodes west of 

node #1278. The node #1279 does not appear on Fig. 2, since only 11 ascending nodes 

are represented on the graph fro readability purposes. 
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Fig. 3.2: Close up of the groundtrack pattern at the equator in the case of ICESat’s 

91-day repeat orbit (only ascending track segments are shown). 
 

In the case of the ICESat 91-day repeat orbit, the distance between two  

space-consecutive tracks is approximately equal to 29.6 km at the equator. For example, 

the track #906 lies 29.6 km west of the track #415. This means that after 491 satellite 

revolutions, the groundtrack almost retraces itself. The track #906 is called near-repeat 

groundtrack with respect to track #415. Near-repeat groundtracks are very important in 

mapping missions because they perform a global coverage in a time interval 

corresponding to one near-repeat cycle[Mars Global Surveyor – 14]. In the case of the ICESat  

91-day orbit, the near-repeat cycle that corresponds to 491 satellite revolution has an 

offset of 29.6 km eastward. 
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Fig. 3.3: Close up of the groundtrack pattern at the equator in the case of ICESat’s 

 183-day repeat orbit (only ascending track segments are shown). 
 

There exist other near-repeat cycles to the ICESat 91-day repeat orbit. A second 

near-repeat groundtrack corresponding to 365 satellite revolutions is illustrated by the 

tracks #906 and #1278. The track #1278 lies two nodal spacing, i.e. 59.2 km, west of the 

track #906. This second near-repeat cycle is shorter in time, but the offset between the 

tracks is twice the one described in the previous paragraph and in the opposite direction. 

In the case of the 183-day repeat orbit, the distance between two space-consecutive 

nodes is approximately equal to 14.7 km at the equator. Therefore on Fig. (3.3), the 

node#1343 lies 14.7 km west of the reference node whose track number is #971. This 

means that there exist a near repeat cycle with an offset of one nodal spacing westward 
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and corresponding to 372 satellite revolutions. Another near repeat cycle can be found 

with an offset of three nodal spacing eastward and corresponding to 1607 satellite 

revolution. This near repeat cycle is illustrated by the ascending node referenced as 

#2578. Many more near repeat cycle can be read on Fig. (3.3) in both directions: 

eastward and westward. 

As before, only 11 tracks are shown for readability purposes. Therefore, Fig. (3.3) 

does not show two time consecutive nodes. The ascending node belonging to track #972, 

that occurs one satellite revolution after the reference ascending node and separated from 

it by one longitude shift, would be found 183 nodes west of track #971. 

 

 3.1.3 SUBCYCLES 

We use the definition of a subcycle as it was given by Lim[1,2] for the study of a  

183-day repeat groundtrack for the EOS ALT/GLAS mission. According to his 

definition, a subcycle is an integer number of nodal days after which the groundtrack 

nearly repeats itself with a small offset. This offset can be described as a multiple of 

nodal spacing. In other words, a subcycle can be viewed as a near-repeat cycle with a 

duration equal to a integer number of nodal days. It is therefore relevant to identify the D 

ascending nodes of the repeat cycle that correspond to an integer number of nodal days in 

order to select the ones for which the longitude difference with the reference ascending 

node is small. 
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Fig. 3.4: Spacing pattern of the ascending nodes on the extended equatorial arc. 
  (Simplified illustration for a retrograde obit, not the actual ICESat groundtrack) 

 

To identify these D ascending nodes, we use an approach similar to the one used by 

(King, 1976). For an observer at a fixed location in the satellite orbit plane above the 

Earth equator, the equatorial arc from longitude 0AN  to longitude 3600 −AN  represents 

a +360° rotation of the Earth. In other words, this equatorial arc represents one nodal day. 

Consequently, the entire D-day repeat cycle can be represented by repeating D times this 

equatorial arc in a continuous line. We call extended equatorial arc the equatorial line 

made of these D equatorial arcs and extended longitude the longitude of a node on the 

extended arc. The extended longitude of node is therefore in the interval 

);360( 00 ANDAN ⋅−  and corresponds to the traditional longitude modulo 360°. On the 

extended equatorial arc, the longitude AN0 is represented D+1 with a modulo 360° and 

the Nth ascending node of the orbit’s groundtrack coinciding with the Dth repetition of the 

origin AN0. This representation of the extended equatorial arc is shown in Fig. (3.4). 
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The Earth performs a rotation of 360 degrees with respect to the orbit plane in one 

nodal day. Consequently, every single equatorial arc ( ){ }3601;360 00 ⋅−−⋅− kANkAN , 

with k=1...D, shown on Fig. (3.3) represents one nodal day and every value of 

( )3600 ⋅− kAN  refers to the same traditional longitude AN0 on the equator. Thus, looking 

for the subcycle at k nodal days is equivalent to looking for the ascending node whose 

extended longitude is the nearest to ( )3600 ⋅− kAN  on Fig. (3.3). This way, D-1 

ascending nodes are identified; the Dth ascending node identified is the one occurring 

after D nodal days, that is to say when the groundtrack repeats itself exactly. The Dth 

subcycle coincides with the complete D-day repeat cycle and the longitude of its 

ascending node is AN0. For each extended longitude ( )3600 ⋅− kAN , the closest 

ascending node is selected among all the orbit’s ascending nodes. Therefore, if the D 

equatorial arcs are superimposed again (which is equivalent to switching from the 

extended longitudes to traditional longitudes) the D-1 ascending nodes selected are 

naturally the D-1 closest ascending node to the origin of the repeat cycle AN0. 

Looking back at Fig. (3.1), this means that the 4 tracks west of the reference 

ascending node (#89, #74, #59, #44) and the 3 tracks east of the reference ascending node 

(#14, #118, #103) correspond to the 7 subcycles of the ICESat 8-day repeat orbit. The 8th 

subcycle corresponds to the complete 8-day repeat cycle. In the case of the ICESat  

91-day repeat orbit, the first 45 ascending nodes west of the reference node and the first 

45 east of the reference ascending node correspond to the 90 subcycles of the repeat orbit. 

Finally in the case of the 183-day repeat orbit, the first 91 ascending nodes west and the 



37 

first 91 ascending nodes east of the reference ascending node correspond to the 182 

subcycles of the repeat orbit. Fig. (3.2) and Fig (3.3) show only 11 tracks each, including 

the reference ones. Therefore, all the nodes represented on Fig. (3.2) and Fig. (3.3) 

correspond to subcycles of their respective repeat orbits. 

One remark should be made about the definition of subcycle. In Lim’s definition, 

there are no specifics given for the offset, other than being “small”. On Fig. (3.1), let’s 

consider the 4th ascending node west of the origin of the 8-day repeat cycle (# 89). We 

could consider the 45th ascending nodes east and west of the origin of the 91-day repeat 

cycle, or also the 91st ascending nodes east and west of the origin of the 183-day repeat 

cycle, not represented in Fig. (3.2) and Fig (3.3). They all lie about 1350km from the 

repeat cycles’ reference ascending nodes. In these cases, the offsets of the groundtracks 

are not small. However, to remain general in our study and since the acceptable range for 

the groundtrack offset depends on mission requirements, all the D-1 ascending nodes 

identified by the method above will be called subcycles of the D-day repeat orbit they 

belong to. 

It is also important to understand that the crossing of the equator corresponding to 

the k-day subcycle does not occur exactly at the time corresponding to k nodal days. 

Indeed, if the crossing of the equator was to occur exactly at that time, then the extended 

longitude of that ascending node would be ( )3600 ⋅− kAN  in the extended equatorial arc. 

This longitude would therefore correspond to the reference longitude AN0 with a modulo 

360°. That is to say that the groundtrack would repeat itself exactly at the end of the kth 



38 

nodal day. In the case of non-degenerated orbit (the ratio N/D is irreducible), this only 

occurs for k = D. Moreover, observations show that the greater the difference between the 

longitude of AN0 and the longitude of the ascending node corresponding to the k-day 

subcycle, the greater the time difference (positive or negative) between the occurrence of 

the crossing and the time corresponding to k nodal days exactly. 

 

3.2 SUBCYCLES OF THE THREE ICESAT REPEAT ORBITS 

Once the ascending nodes that correspond to the subcycles are identified as 

described above, the results are shown in a graph that we call chart of subcycles. For each 

subcycle, the chart shows the number of nodal days versus the groundtrack offset from 

the longitude of the reference ascending node AN0. These offset values are presented in 

two different ways. The scale of the Y-axis shows the distance between the tracks at the 

equator (in km). The offset is also shown as a multiple of the nodal spacing, σ. A positive 

offset is to be interpreted as an offset to the east, and a negative offset as an offset to the 

west. The chart also lists the number of satellite revolutions, m, for each subcycle. 

Fig. (3.5) shows the chart of subcycles for the ICESat 8-day repeat orbit. All the 

subcycles represented on Fig. (3.1) appear on the chart: four subcycles westward and 

three subcycles eastward. The new information given by the chart is the number of nodal 

days at which each subcycle occurs. In the case of the 8-day orbit the layout of the 

subcycles throughout the entire repeat cycle is very simple. 
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Fig. 3.5: Chart of subcycles for the ICESat 8-day repeat orbit with N = 119. For each  
subcycle, the number of the nodal can be read on the X-axis (Xday) or on the 
graph (for example 2d correspond to the 2-day subcycle). The offset can be 
read on the Y-axis in km at the equator or on the graph in terms of nodal 
spacings (for example 2 σ correspond to an offset of two nodal spacings 
westward). The parameter m represents the number of satellite revolutions 
corresponding to each subcycle.
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Fig. 3.6: Chart of subcycles for the ICESat 91-day repeat orbit with N = 1354. 
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Fig. 3.7: Chart of subcycles for the ICESat 183-day repeat orbit with N = 2723. 
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Fig. (3.6) and Fig. (3.7) show the chart of subcycles for the ICESat 91-day and  

183-day repeat orbits respectively. In these two cases, the layouts of the subcycles are 

more complex. It is however possible to identify a few geometrical properties on the 

charts of subcycles. These properties allow to easily breakdown the repeat cycle into a 

succession of several subcycles for which the offsets from the reference ascending node 

remain small. 

 

3.3 PROPERTIES OF THE CHART OF SUBCYCLES 

 3.3.1 BOUNDED DISTRIBUTION 

The first property exhibited on Fig. (3.5)) is that the distribution of the offsets is 

bounded. This property corresponds to the previous discussion on the location of the 

subcycles. The maximum offsets are found within ±Dσ/2. These boundaries are reached, 

i.e. there exists a subcycle with an offset at ±Dσ/2 exactly, if and only if D is an even 

number. For example on the chart for the 8-day repeat orbit in Fig. (3.5), the largest offset 

corresponds to the 4-day subcycle with a deviation of 4σ eastward. In the case of the  

91-day repeat orbit on Fig. (3.6), the largest offsets are found for the 29-day subcycle 

with an offset of 45σ and the 62-day subcycle with an offset of -45σ. Finally on Fig (3.7) 

showing the subcycles of ICESat 183-day repeat orbit, the two largest offsets are found 

for the subcycles at 79 nodal days with a deviation of -91σ and 104 nodal days with a 

deviation of 91σ. 
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 3.3.2 SYMMETRICAL DISTRIBUTION 

A second property illustrated by the charts of the three ICESat orbits is the central 

symmetry of the distribution of the subcycle. The central point of symmetry is located on 

the chart at the coordinates {(D/2)d, 0σ}. For example, on Fig.(3.6), the subcycle at 32 

nodal days {32d, +12σ} has a symmetrical subcycle at 59 nodal days {59d,-12σ}. These 

two subcycles are at the same distance from the central point of symmetry on the chart. 

Moreover, their groundtrack offsets have the exact opposite value. The three charts 

presented in Fig. (3.5) to (3.7) show that every subcycle has a symmetrical subcycle. The 

only exception is found for the 8-day repeat orbit. The subcycle at 4 nodal days with an 

offset of -4σ does not exhibit any symmetrical subcycle at +4σ. This is typical of  

non-degenerated repeat orbit with an even number of nodal days. When D is an even 

integer, there is an odd number, D-1, of subcycles. Naturally, the symmetry of the 

distribution is broken (for one subcycle) in the case of an odd number of subcycles. In the 

case of these orbits, the subcycle at D/2 nodal days is found on either the upper or lower 

boundary described in the previous section. We’ll see in the following section how, to 

some extent, this is still consistent with the overall symmetry of the subcycles’ 

distribution. 
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Fig. (3.8):  Close-up of Fig. (3.6). The subcycles are located on a set of parallel lines. 

In the case of ICESat 91-day repeat orbit, the slope of these lines is  
-11σ per nodal day. 

 

 3.3.3 LINEAR DISTRIBUTION 

The third property is the linearity of the distribution of the subcycles. The 

distribution of the offsets from the reference ascending node AN0 consists of a set of 

parallel straight lines. The slope of these lines can be read simply by looking at the first 

subcycle. In the case of ICESat 91-day orbit represented in a close-up view on Fig. (3.8), 

the first subcycle (subcycle corresponding to one nodal day) is found at a deviation of -

11σ. Consequently, the slope of the lines is equal to -11σ per nodal day; in other words, 

the ICESat groundtrack shifts 11 nodal spacings westward per nodal day. In the case of 

the 183-day repeat orbit, Fig. (3.9) shows that the slope is twice the one of the 91-day  
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Fig. (3.9): Close-up of Fig. (3.7). In the case of ICESat 183-day repeat orbit, 

 the slope of these lines is -22σ per nodal day. 
 

repeat orbit, that is to say that the groundtrack shifts 22 nodal spacings westward per 

nodal day. Keeping in mind that the value of the nodal spacing is orbit dependent, the 

groundtrack shift per nodal day of each orbit are actually of the same order. 

It might be useful to visualize a chart of subcycle as a three dimensional torus as 
shown on Fig. (3.10). First, let’s transform the chart into a horizontal cylinder by 
patching the upper boundary at +Dσ/2 to the lower boundary at -Dσ/2. This is an artificial 
transformation that is inspired by the fact that the extremities of each segment on Fig. 
(3.8) and (3.9) lines up perfectly with one another (as illustrated by the vertical lines). In 
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Fig. (3.10): Three-dimensional representation of the chart of subcycles  

for ICEsat’s 91-day repeat orbit. 
 

this representation, the set of parallel lines become one continuous spiral around the 

cylinder. Then, by patching the edge of the cylinder at X = 0 days to the edge at X = D, 

we obtain a torus on which the spiral closes. This second transformation is not as 

artificial since it represents the periodicity of the repeat groundtrack. 

The representation of the chart of subcycle as a three dimensional torus does not 

have a physical meaning, but it is useful to fully understand the next property. It also 

reconciles the absence of a symmetrical subcycle when the offset of the subcycle is found 

on either the upper or lower boundary. In the torus representation, both boundaries are 

merged together and a subcycle with an offset on any of the boundary becomes its own 

symmetrical subcycle. 
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Fig. (3.11): Close-up of Fig. (3.6). The combination of the 7-day subcycle and the  

  17-day subcycle leads to the 24-day subcycle. On the chart of subcycles,  
  the subcycles can be added like vectors. 

 

 3.3.4 SUBCYCLE COMBINATION 

The last property of the chart of subcycles is less trivial. On the chart, subcycles can 

be added together like vectors, which we call subcycle combination. For example the 

chart shown on Fig. (3.6), exhibits a subcycle at 7 nodal days with an offset of +14σ and  

m = 104. Another subcycle is found at 17 nodal days with an offset of -5σ and m = 253: 

The subcycles are respectively labeled (7d,+14σ) and (17d,-5σ). As shown on the chart, 

the subcycle at 24 nodal days has an offset of +9σ and m = 357. The offset and the 

number of satellite revolutions for the 24-day subcycle correspond to the sum of the ones  
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Fig. (3.12): The combination of the 21-day subcycle and the 31-day subcycle. 
leads to the 52-day subcycle when the combination is considered in the 
three dimensional representation. 

 

corresponding to the two previously mentioned subcycles. This combination is easily 

identified by a vectorlike addition of the subcycles as shown on Fig. (3.11). The 

representation of the chart as a torus allows extending this property to combinations of 

subcycles that would otherwise lead incorrectly to a resulting subcycle outside of the 

chart’s boundaries as illustrated on Fig. (3.12). 
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3.4 ICESAT’S SEQUENCE OF SUBCYCLES 

Using this last property, it became possible to illustrate a very particular 

characteristic of ICESat’s repeat cycle. In the 91-day repeat orbit, it was observed that a 

subdivision of the cycle into three main subcycles of 33 days, 25 days, and 33 days led to 

offsets of one nodal spacing at the end of each subcycle. This pattern can be explained 

using the chart shown on Fig. (3.6). The subcycle at 33 nodal days has an offset of +1σ as 

represented on Fig. (3.3). If this subcycle is then combined with the one at 25 nodal days 

labeled {25d,-2σ}, the resulting subcycle is therefore the one labeled {58d,-1σ}. Finally, 

combining this resulting subcycle with another 33-day subcycle {33d,+1σ} leads to the 

full cycle {91d,0σ}. The ICESat entire cycle can therefore be achieved with a 33-25-33 

subcycle sequence. Fig. (3.6) also illustrates the existence of many other subcycle 

sequences. For example, one among many could be the 8-17-8-17-16-17-8 subcycle 

sequence which leads the following successive offsets: +3σ, 2σ, +1σ, -4σ, +2σ, -3σ. 

However, the 33-25-33 subcycle sequence might be the most interesting sequence has it 

is the only one with the offsets no greater than ±1σ. More specifically, such a sequence 

gives an interpretation of the layout of the groundtrack throughout the entire repeat cycle. 

The 33-25-33 subcycle sequence divides the repeat cycle into three main subcycles (MS): 

MS1 corresponds to the first 33 nodal days of the repeat cycle, MS2 corresponds to the 

following 25 nodal days, finally MS3 corresponds to the last 33 nodal days. During MS1, 

a first segment of the groundtrack is being traced. The groundtrack flown over during 

MS2 almost retraces, or duplicates, the one corresponding to MS1 but with an offset of  
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Fig. 3.13: Close-up of Fig. (3.6). Sequence of subcycles 33-25-33. The maximum offset from  

 the reference ascending node AN0 within this sequence is one nodal spacing. 
 

one nodal spacing eastward. However, MS2 being 8 nodal days shorter than MS1, the 

groundtrack corresponding to the last 8 days of the first phase is not being duplicated. At 

the end of MS2, the satellite is over the track corresponding to the 58th day of the repeat 

cycle. This track is naturally located two nodal spacings west of the track corresponding 

to the 25th nodal day of the repeat cycle. As Fig. (3.13) shows, this track is also located 

one nodal spacing west of the reference track, i.e. the beginning of MS1. Consequently, 

during MS3, the groundtrack almost retraces the segment corresponding to MS1 but with 

an offset of one nodal spacing westward. In the end, the groundtrack corresponding to the  
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first 25 nodal days of the repeat cycle is nearly retraced (once eastward and once 

westward). The groundtrack corresponding to the following 8 nodal days (from day 25 to 

day 33) nearly retraced once westward. 

This existence of subcycles within the ICESat 91-day repeat cycle turned out to be a 

very useful characteristic of the orbit in order to achieve the observation goals of the 

ICESat mission, given the equipment difficulties suffered by the ICESat satellite. After 

the launch of ICESat, the first of the three lasers failed while in the 8-day repeat orbit 

used for the instrumentation calibration. The defect that caused the failure was expected 

to exist in the remaining two lasers. An alternate operation scenario was therefore devised 

to allow measurements over several years to create a time series to meet the science 

requirements. This scenario was based on approximately 30-day operation, three times 

per year. The 91-day repeat cycle offers a subcycle at 33 nodal days which met this 

requirement. The 33-day campaigns provide a global coverage. This global coverage is 

less dense that the one provided by the entire 91-day repeat orbit. However, these 33-day 

campaigns have been the operational periods of the ICESat satellite, that is to say the 

periods when the laser is actually being fired. 

 

3.5 INFLUENCE OF THE PARAMETER N 

As we have seen before, a particular layout of the subcycles on the chart might be 

preferable to another one to achieve the scientific requirements and goals of a mission. In 

the case of ICESat, the values of the parameters D and N are known {D = 91, N =1354}. 
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However, these parameters might not always be known or fixed to some imposed values 

when a study of the subcycles is being conducted as a part of the orbit design phase of a 

mission. For scientific purposes, it might be required to design an orbit with a specific 

subcycle with a specific deviation. For a fixed value of D, there is a large range of 

different subcycle patterns of the subcycles depending on the value of N. To illustrate this 

point, we give the chart of subcycles for two hypothetical ICESat orbits: one in which 

one satellite revolution was removed {D = 91, N =1353} on Fig. (3.14); a second in 

which a satellite revolution was added {D = 91, N =1355} on Fig. (3.15). 

 

 3.5.1 ICESAT-II REPEAT ORBIT 

The repeat orbit for the future ICESat mission (ICESat-II) is still currently being 

discussed and the issue of the subcycles was raised. In order to take advantage of 

successes and the lessons learned during the first ICESat mission, it was suggested that 

this second satellite should be placed in the same repeat orbit used for ICESat so that 

ICESat-II would follow exactly ICESat 91-day repeat groundtrack. However, it was also 

suggested that ICESat-II could be put in a longer repeat orbit in order to provide a denser 

global coverage. In this case, the operation repeat orbit could be chosen to be the original 

183-day repeat orbit described in Table (2.1) and which chart of subcycles is presented 

on Fig. (3.7). 
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Fig. 3.14:   Chart of subcycles for a 91-day repeat orbit with N = 1353 satellite revolutions. The 

subcycle sequence at ±1σ is 38-15-38: MS1=38 nodal days, MS2=15 nodal days, 
MS3=38 nodal days. 
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Fig. 3.15: Chart of subcycles for a 91-day repeat orbit with N = 1355 satellite revolutions. 

 The subcycle sequence at ±1σ is 9-73-9: MS1=9 nodal days, MS2=73 nodal 
 days, MS3=9 nodal days. 



55 

Other considerations may result in a requirement for a lower altitude: 500km instead 

of 600km for ICESat. With such an orbit, the idea would be to obtain a subcycle pattern 

identical to Fig. (3.6) at this new altitude. This pattern can be defined by one of the 

subcycle, for example (33d,+1σ). This is a direct consequence of the linearity property 

and the torus representation: since the distribution is a linear spiral around the torus, it is 

entirely defined by the slope of the spiral or, in other words, by one unique subcycle. 

Since the parameter N depends directly on the semi-major axis, we can expect its value to 

be different than 1354 as the semi-major axis varies. 

 

 3.5.2 THE BEZOUT THEOREM 

To solve for the new value of N, we use the Bezout equation and then compare the 

resulting semi-major axis to the requirement of a ≈ 6878 km. On one hand, the Bezout 

theorem (Everest and Ward, 2005) states that, given the following equation: 

kDmNd =⋅−⋅  (3.3)

where d, D, and k≠0 are integers, an integer solution (N, m) exists if and only if k is a 

multiple of the greater common divisor of d and D. On the other hand, Lim (1995) 

showed that the d-day subcycle of a D-day repeat orbit that consists of N satellite 

revolutions has a deviation of kσ, where k satisfies the following equation: 

kNd =⋅   mod (D) (3.4)
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N a   (km) Deviation of the 33-day 
subcycle 

… … … 

1172 7673.4872168396405 +1σ 

1194 7579.023314480136 -1σ 

1263 7300.700251132113 +1σ 

1285 7217.233481438066 -1σ 

1354 
(ICESat case) 6970.244381135064 +1σ 

1376 6895.8652264702105 -1σ 

1445 6674.937531969953 +1σ 

… … … 

Table 3.2: Solutions of the Bezout equation for the ICESat-II 91-day repeat orbit 
with a subcycle at 33 nodal days with a deviation ±1σ. 

 

Equations (3.3) and (3.4) are equivalent when m is an integer. It is therefore possible 

to use the Bezout equation to solve for N. In the case of the ICESat-II mission with a 

lower altitude at 500 km, we look for a repeat orbit such that D = 91, d = 33 and k = 1. 

Since 1 is the greater common divisor of 91 and 33, the Bezout theorem confirms that an 

integer solution (N, m) exists. In Table (3.2), we present possible values for N and the 

corresponding values for the semi-major axes. We extended the search to a deviation ±1σ 

instead of just +1σ. 

Table (3.2) shows that a 91-day repeat orbit with a pattern similar to the one of 

ICESat orbit can be found at an altitude of approximately 518 km for N = 1376. 

However, it can be observed that the deviation of the 33-day subcycle is -1σ instead of 
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+1σ. This can be seen on Fig. (3.16) which shows the chart of subcycles for D = 91 and  

N = 1376. The distribution of the subcycles on this new chart is the similar Fig. (3.6), but 

flipped horizontally. The values of m which represents the number of satellite revolutions 

corresponding to each subcycle are however different since the total number of revolution 

is itself different. Furthermore, since N = 1376 for ICESat-II versus 1354 for ICESat, the 

new value of the nodal spacing is smaller: σ = 0.26163 degrees for ICESat-II versus 

0.26588 degrees for ICESat. 

Another suggested repeat orbit for the future ICESat mission was designed based 

solely on altitude consideration. This orbit is 91-day repeat groundtrack and consists in 

1367 satellite revolutions with a semi-major axis equal to 6926 km. Using Eq. (3.3) and 

Eq. (3.4), we find that the subcycle at +1σ corresponds to the values d = 46 and m = 691. 

The subcycle at -1σ corresponds to the values d = 45 and m = 676. Fig (3.17) shows the 

chart of subcycle of this particular orbit. For the readability of the chart, only the values 

of d (nodal days) and deviation (in term of σ) are represented on the graph. It can be 

observed that a few short subcycles have small deviations: the subcycle at 1 nodal day 

has a +2σ deviation and the subcycle at 2 nodal days has a +4σ deviation. However, the 

sequence of subcycles with deviations of ±1σ is made of the three following main 

subcycles: 45 days, 1 day and 45 days (45-1-45). Depending on the mission requirement, 

this might not be the most adequate subcycle pattern. 
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Fig. 3.16: Chart of subcycles for a future ICESat-II mission with a 91-day 

 repeat orbit consisting in 1376 satellite revolutions. 
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Fig. 3.17: Chart of subcycles for a future ICESat-II mission with a 91-day 

 repeat orbit consisting in 1367 satellite revolutions.
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CHAPTER 4 

PHASING MANEUVERS 

 

 

In the previous chapter we presented the concept subcycle of repeat orbits in the 

most general fashion. Though some authors would restrict their studies to the subcycles 

with the minimal deviation, i.e. ±1σ, we looked at the entire range of near-repeat tracks 

corresponding to an integer number of nodal days. This general approach was necessary 

to fully grasp the dynamic behind the concept of subcycles and will prove to be equally 

useful to understand the close relationship between the subcycles of a D-day repeat orbit 

and the shorter D’-day repeat orbits (D’ < D) with comparable semi-major axis. 

More specifically, in the case of the ICESat mission, one of these short-term repeat 

orbits, namely the 8-day repeat orbit presented in Table (2.1), is frequently used as a 

parking or transition orbit. Transferring between the 8-day and the 91-day repeat orbits 

proves to be a very practical way to perform some of the orbital maneuvers required in 

the mission to enable operation in a 33-day campaigns fashion which was designed after 

the failure of GLAS first laser. 
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The first laser to operate on board of the ICESat satellite failed after just 36 days of 

operation. After thorough analysis of the origin of the failure, an alternate plan was 

adopted in order to extend the life of the remaining three lasers. It was decided that the 

laser would operate in a campaign fashion during which the laser would be fired 

continuously for 33 nodal days at a time. These 33-day campaigns are being repeated 

three times a year, winter, summer and autumn, which allows for the observation of 

seasonal climate and ice mass changes. These campaigns correspond to a specific 

segment within the groundtrack of the 91-day repeat orbit. During each campaign, the 

measurements are made along the same portion of the groundtrack. However, the 

beginning of each campaign is calendar-specific. This could be an issue since, the 

adequate position of the satellite within the Earth Fixed reference frame is not guaranteed 

at the time of the beginning of the campaign. Rather than waiting until the next cycle 

which could completely violate the time requirement for the campaign, a phasing 

maneuver is applied to the satellite in order to reposition it into a different portion of the 

repeat cycle. 

 

4.1 DEFINITIONS 

The phasing maneuver is performed in two steps that consist in transferring into a 

second repeat orbit and back to the 91-day repeat orbit after the appropriate waiting time. 

This second repeat orbit is called a transition orbit. As it will be shown later in this 

chapter, the transfers into and out of the transition orbit have to be performed at specific 
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times in order to minimize the ΔV impulse required. Those times are called transition 

opportunities and depend on the transition orbit chosen. 

The term phasing maneuver was adopted when the campaign approach was 

designed for the ICESat mission. Since the two orbits involved in the maneuver already 

corresponded to the operation phase and the calibration/validation phase, the transfer 

from one orbit to another was called phasing maneuver. Though this term does not reflect 

truly the purpose of the maneuver (outside maybe of the ICESat case), it is kept as the de 

facto term to describe the maneuver. 

 

 4.1.1 TRANSITION ORBIT 

The transition orbit is a frozen repeat orbit with the same inclination and 

eccentricity as the one of the satellite operation repeat orbit. The semi-major axis of the 

transition orbit is nearly the same as the one of the operation orbit and its duration is 

shorter than the one of the operation orbit. In the case of the ICESat mission, the possible 

transition orbits are 1-day to 90-day repeat orbits with a semi-major axis approaching 

6970 km. To find these repeat orbits, we use a map of resonance similar to the ones 

produced by Klokocnick(15). This map is shown on Fig. (4.1). The value of the semi-

major axis is given for any combination of integers N and D (i.e. the number of satellite 

revolutions and the number of nodal days respectively) and for all the repeat orbits 

shorter than 91 days with a semi major axis in the neighborhood of 6970 km. The semi-

major axis is computed in a gravitational model that includes the coefficients J2 and J3 
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only, which account for most of the effects. Once the transition orbit is selected, it is 

necessary to recompute the semi-major axis in a more complete geopotential. This can be 

done using the procedures described in Chapter 2. Once the map of resonance is obtained, 

it is however necessary to disregard some of the repeat orbits plotted on Fig. (4.1). 

Indeed, if we look at the semi-major axis of the 8-day repeat with N = 119 we observe 

that other repeat orbits have the same exact semi-major axis. This is explained by the fact 

that the orbits {D=16, N=238}, {D=24, N=357}, and so on until {D=88, N=1309} are all 

degenerate repeat orbits based on the non-degenerated repeat orbit {D=8, N=119}. This is 

evident since the ratios 16/238, 24/357 … 88/1309 are all reducible to 8/119 which is 

itself irreducible. The resonance map in Fig. (4.1) is therefore simplified by eliminating 

the redundant orbits. This gives the new resonance map shown in Fig. (4.2). The 

transition orbit for the ICESat satellite was chosen to be the 8-day repeat with N = 119 

satellite revolution. This orbit had already been studied by the ICESat team and had been 

successfully used for the calibration phase of the ICESat mission. It was therefore the 

natural choice when a solution had to be found to the pre-launch operations scenario. 

Furthermore among the orbits with the shortest repeat interval represented on Fig. 16, the 

8-day repeat orbit has the semi-major axis the closest to the one of the 91-day repeat 

orbit. This implies that choosing an 8-day repeat orbit as a transition orbit will requires 

less fuel than, for example, a 7-day repeat orbit. 
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Fig. 4.1: Resonance map for 1-day to 91-day repeat orbits with a semi-major axis comparable to 

ICESat 91-day repeat orbit semi-major axis.
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Fig. 4.2: Resonance map for 1-day to 91-day repeat orbits with redundant orbits.
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A quick comparison of the resonance map before the elimination of the redundant 

orbits on Fig. (4.1) and the chart of subcycles for the ICESat 91-day repeat orbit on  

Fig. (3.6) shows a visible connection between the two graphs. To each subcycle 

corresponds a repeat orbit with the same number of satellite revolutions. The relative 

distribution of these repeat orbits with respect to the ICESat orbit on the resonance map is 

similar to the distribution of their respective subcycles on the chart of subcycles. The 

repeat orbits on Fig. (4.1) are located in an area centered on the ICESat semi-major axis 

and bounded by lower and upper envelopes which correspond to the lower and upper 

bounds on Fig. (3.6). For practical purposes, the locations of the repeat orbits at 1, 2, 3, 4, 

5, 6, and 12 days are not represented on Fig. (4.1) and Fig. (4.2) since the values for the 

semi-major axes are too far apart to keep the graphs readable. 

 

 4.1.2 TRANSITION OPPORTUNITIES 

We call transition opportunities the times at which the impulse ΔV necessary to the 

orbit change maneuver between the satellite’s orbit and its transition orbit will be 

minimal. If we consider that the impulse is instantaneous, the vector ΔV is the sum of two 

impulse vectors: one to change the semi-major axis, a second one to change the line of 

node of the orbital plane. The change in semi-major axis can not be minimized since it is 

fixed by the choice of the transition orbit. Selecting an adequate time for the phasing 

maneuver can however reduce the line of node change. We call ΔAN the longitude 

difference in ECEF between an ascending node belonging to the groundtrack of the 
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transition orbit and an ascending node belonging to the ICESat groundtrack. The impulse 

required for the change in node which brings the satellite from one of the above 

ascending nodes to the other is minimized when ΔAN is a minimum. Therefore, the 

transition opportunities correspond to the smallest values of ΔAN. 

The locations in ECEF of the ascending nodes of the transition orbit relative to the 

locations of the ICESat’s ascending nodes can be characterized by the value of ΔAN0 

which represents the longitude difference between the reference ascending nodes of the 

transition orbit and the ICESat operation orbit. For each orbit, the reference ascending 

node is nothing more than one ascending node arbitrarily picked to represent the 

beginning of a repeat cycle. In the case of ICESat, the following ascending nodes were 

chosen to represents the beginnings of the 8-day and 91-day repeat cycles. As shown on 

Fig. (3.1) and Fig. (3.2), The reference ascending nodes are (AN0)8-day = 40.555° and 

(AN0)91-day = 62.948°. We then proceeded to compare the longitude of each ascending 

node of the transition orbit to all the ascending nodes of the ICESat 91-day orbit. This 

enables us to identify the pairs of ascending nodes (AN8-day, AN91-day) for which ΔAN is 

minimal or within an acceptable range for the orbit change maneuver. To illustrate our 

point better, we decided to consider in this study all the pairs of ascending nodes that lie 

within 4 km of each other at the equator. The ICESat mission requirements actually set 

this criterion to 800 meters. 

For each pair identified, we compute the time corresponding to the two ascending 

nodes. These times are computed in nodal days and represent the time elapsed since the 
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Fig. 4.3: Longitudes of the 91-day orbit’s ascending nodes compared to the longitudes of the 

8-day repeat orbit’s ascending nodes. The results are shown using the distance 
between the nodes at the equator rather that the longitude difference. The ICESat 
mission requirements set the maximum admissible distance to 800 meters 

 

beginning of the repeat cycle. It is important to remember that since the duration of one 

nodal day is orbit-dependent, the times of the ascending nodes are computed on two 

different scales depending on which repeat cycle they belong to. On Fig. (4.3), we show 

the distance between the two ascending nodes of each pair identified and the time 

corresponding to the ascending nodes. The positive part of the X-axis represents the time 

corresponding to the ascending nodes of the 91-day orbit. The negative part of the X-axis 

represents the time corresponding to the ascending nodes of the 8-day orbit. Therefore, 

for each pair of ascending nodes, the distance that separates them appears twice on the 

graph: once on the positive side and once on the negative side. 

91-day orbit vs. 8-day orbit 

      Nodal Days 



69 

 

8-day repeat orbit 

(transition orbit) 

91-day repeat orbit 

(operation orbit) 
Longitude 

difference at 

equator (deg) 

Distance at 

equator 

(km) Track 

number 
Time 

(nodal days) 

Track 

number 
Time 

(nodal days)

Opportunity 1 60 2.118 194 18.146 1.55·10-3 0.172 

Opportunity 2 20 7.428 645 48.457 6.8·10-4 0.075 

Opportunity 3 99 4.739 1096 78.768 3.08·10-3 0.343 

Table 4.1: Transition opportunities between the 8 day and the 91-day repeat orbits. 
 

On both sides of the X-axis, we observe that the transition opportunities are almost 

lined up along three central values. Which means that we have three opportunities to 

transfer inexpensively from the 91-day repeat orbit to the 8-day repeat orbit, or from the 

8-day repeat orbit to the 91-day repeat orbit. Using the double occurrence of the distance 

value on both the negative and positive sides of the X-axis, we also observe that the 

opportunities that occur at 18.1, 48.5 and 78.8 nodal days in the 91-day repeat cycle 

correspond respectively to 2.1, 7.4 and 4.7 nodal days in the 8-day repeat cycle. The 

values corresponding to each transition opportunity are summarized in Table (4.1). 

On a practical point of view, this means that transferring from the 91-day orbit to 

the 8-day orbit at an epoch that correspond to 18.1 nodal days into the 91-day repeat 

cycle places the ICESat satellite in the 8-day orbit at a location that corresponds to 2.1 

nodal days into the 8-day repeat cycle. Once in the transition orbit, let’s suppose that the 

satellite remains in the 8-day orbit until it reaches the location that corresponds to 4.7 
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Fig. 4.4: Correspondence of the transition opportunities between the 8-day 

and the 91-day repeat orbits. 
 

nodal days, which corresponds to a transition of 2.6 nodal days. A transfer back to the  

91-day orbit at this epoch places the satellite at a location that corresponds to 78.8 nodal 

days into the 91-day repeat cycle. Therefore by waiting 2.6 nodal days in the 8-day orbit, 

the satellite can therefore jump 60.7 nodal days ahead into the 91-day repeat cycle. The 

diagram on Fig. (4.4) summarizes this idea. 

Due to the time required for the data analysis after the first transfer to the transition 

orbit, or just in order to wait for the adequate time imposed by the calendar constraint oh 

the 33-day campaign, it might not be realistic to plan a jump back into the 91-day orbit 

after only a couple of nodal days in the transition orbit. ICESat usually stays park in the 

8-day orbit until all the data has been processed or until the time constraint is met. At that 

point, there is no more than 8 nodal days to wait until the desired transition opportunity, 

time at which the satellite is transferred back to the 91-day repeat orbit. 
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Fig. 4.5: Longitudes of the 91-day orbit’s ascending nodes compared to the longitudes of the 

9-day repeat orbit’s ascending nodes. 
 

 

4.2 NUMBER OF TRANSITION OPPORTUNITIES 

It appears that the number of transition opportunities is related to the deviation of 

the subcycle corresponding to the transition orbit. In our case, we are considering an  

8-day repeat orbit with 119 satellite revolutions which offers three transition 

opportunities. Its corresponding subcycle in the 91-day repeat cycle has a deviation of 

+3σ as shown on Fig. (3.6). This correspondence between the number of transition 

opportunities and the deviation of the subcycle from which the transition orbit is derived 

can be observed for all the non-degenerated short-term repeat orbits shown on Fig (4.2).

91-day orbit vs. 9-day orbit 

Nodal Days 
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Fig. 4.6: Longitudes of the 91-day orbit’s ascending nodes compared to the longitudes of the 
25-day repeat orbit’s ascending nodes. 

 

On Fig (4.5) to Fig. (4.7), the results are shown for three repeat orbits that could 

have just as well been used as transition orbits for the ICESat mission: 9-day, 25-day and 

58-day repeat orbits. The 9-day repeat orbit is made of 134 satellite revolutions as can be 

read on Fig. (4.2). Its corresponding subcycle has a deviation of -8σ. The graph of the 

transition opportunities between the 91-day and the 9-day repeat orbits on Fig. (4.5) 

shows eight transition opportunities at 4, 15.4, 26.8, 38.2, 49.5, 60.9, 72.3 and 83.7 nodal 

days into the 91-day repeat cycle. As for the 25-day repeat orbit (N=372), the distances at 

the equator between its ascending nodes and the ones of the 91-day repeat orbit are 

shown on Fig. (4.6). It can be observed that there exist two transition opportunities at 36 

and 81.5 nodal days into the 91 day repeat cycle. Consistently, Fig (3.6) shows that the 

25-day subcycle corresponds to a deviation of -2σ. 

91-day orbit vs. 25-day orbit 

Nodal Days 
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Fig. 4.7: Longitudes of the 91-day orbit’s ascending nodes compared to the longitudes of the 

58-day repeat orbit’s ascending nodes. 
 

It is interesting to look at the phasing between the 91-day and the 58-day repeat 

orbits. Indeed, the 58-day subcycle shows a deviation of -1σ. We observe only one 

transition opportunity on Fig. (4.7). This means that transferring to the 58-day orbit and 

back using the transition opportunity would send the satellite back to the exact same 

position where it left off the 91-day orbit. Transferring into the 58-day repeat orbit could 

be seen as pausing the progression of the 91-day repeat cycle. In the case of ICESat 91-

day repeat cycle, it is not an interesting option since the transition orbit would have such 

a long repeat cycle and one would need to wait at least 58 nodal days before transferring 

back to the 91-day. We can however envisage some long repeat orbits containing a short 

subcycle with a deviation of ±1σ. For example, on Fig. (3.16) we considered a 

hypothetical orbit for the ICESat 91-day orbit with N = 1355. This hypothetical orbit has 

91-day orbit vs. 58-day orbit 

Nodal Days 
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a subcycle at 9 nodal days with a deviation of +1σ. This means that there would be only 

one transition opportunity between this hypothetical orbit and the 9-day repeat orbit. 

However, the waiting time to transfer back to the 91-day orbit would be only 9 nodal 

days. Or. the satellite could remain parked into this transition orbit with an opportunity 

every 9 days to resume its progression into its operation orbit. 

 

4.3 ADVANTAGES 

The ICESat satellite is being regularly repositioned in a different location of its orbit 

via phasing maneuvers. Each time, the transfers in and out of the transition orbit occurred 

at a time corresponding to one of the same three transition opportunities described in 

Table (4.1) and Fig (4.4). Therefore in the case of the ICESat 91-day repeat orbit and an 

8-day repeat transition orbit, the six maneuvers corresponding to the three possible 

transfers into the transition orbit and the three possible transfers out of the transition orbit 

are the only maneuvers that have to be designed. This simplifies greatly the analytical 

work that precedes any in-flight maneuver. Indeed, if the satellite was repositioned at 

anytime of the repeat cycle via a direct maneuver which would consist in a change of its 

orbit plane’s line of node, the maneuver would have to be recomputed each time. 

A second and more important advantage is the fuel efficiency of the phasing 

maneuver compared to a more direct approach. As described earlier, the impulse for the 

first step of the phasing maneuver is the sum of an impulse to change the line of node and 
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an impulse to change the semi-major axis. A second maneuver is then necessary to go 

back into the ICESat orbit. On the other hand, only one impulse is required for a direct 

maneuver to change the line of node. This last impulse is computed as follows: 

2
sinsin2 ΔΩ

=Δ Ω iVV  (4.1) 

with i the inclination and ΔΩ the line of node change. For the purpose of this particular 

discussion we neglect the eccentricity of the orbit and the variations of the other orbital 

elements. Consequently, we can approximate the actual velocity of the satellite V in the 

91-day repeat orbit to the velocity of the satellite if it was in a circular Keplerian orbit: 

2
sinsin)(2 91

ΔΩ
=Δ −Ω inaV day  (4.2) 

with n the mean motion of the satellite and a the mean semi-major axis of the ICESat 91-

day repeat orbit.  

In the case of the phasing maneuver, the impulse required to change only the line of 

node can also be obtained using Eq. 10. The impulse required to change only the  

semi-major axis is equal to ΔVa. The magnitude of the vector resulting from the sum of 

the two impulses previously mentioned corresponds to the total impulse for the transfer 

from the 91-day repeat orbit to the 8-day repeat orbit. The magnitude of the total impulse 

is equal to: 
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2
sinsin2 122

1 11

ΔΩ
ΔΔ−Δ+Δ=Δ ΩΩ iVVVVV aa  

(4.3) 

where     daydaya nanaV −− −=Δ 918 )()(  (4.4) 

with 
1ΩΔV  is given by Eq. (4.2) and ΔΩ1 is the difference of line of node between the  

91-day and the 8-day repeat orbits. The second impulse ΔV2 is obtained by substituting 

ΔΩ2 to ΔΩ1 in Eq. (4.3). The total fuel cost for the phasing maneuver is  

ΔVtotal = ΔV1 + ΔV2. The impulse corresponding to the phasing and the direct maneuvers 

are plotted on Fig. (4.8). In order to simplify the plot to a 2-dimensional graph, ΔΩ1 is set 

to be equal to ΔΩ2. 

For any value of ΔΩ, we observe that the impulse required for a phasing maneuver 

is greater than the one required for a direct maneuver. However, two major 

considerations must be made. First, a direct maneuver repositions the satellite into the 

same 91-day repeat orbit: the maneuver would consist in jumping from one track to 

another. Consequently ΔΩ is a multiple of the nodal spacing σ, which is equal to  

0.266 degree. Secondly, the two transfers of the phasing maneuver occurs at times 

corresponding to transition opportunities, that is to say when the longitude difference 

between the track belonging to the 8-day repeat orbit and the track belonging to the  

91-day repeat orbit is minimal. At a transition opportunity, the maximum longitude 

difference between tracks is 3.08·10-3 degree as summarized in Table (4.1). Fig. (4.9) is a 

close-up of Fig. (4.8) around the origin of the graph. 
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Fig. 4.8: Fuel cost for a direct maneuver and a phasing maneuver between  the 91-day  

repeat orbit and the 8-day repeat orbit. 
 

On one hand, the minimum impulse for a direct maneuver corresponds to the 

impulse required to perform a line of node change equal to one nodal spacing: ΔV = 

3.503·10-2 km/s. On the other hand, the maximum impulse for a phasing maneuver 

corresponds to the two transition opportunities where ΔΩ1 = ΔΩ2 = 3.08·10-3 degree. In 

this case, the impulse is 22 times smaller than the impulse corresponding to a direct 

maneuver: ΔV = 1.612·10-3 km/s. 
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Fig. 4.9:  Comparison between the minimum fuel cost for a direct maneuver and the 

maximum fuel cost for a phasing maneuver between  the 91-day repeat orbit and 
the 8-day repeat orbit. The close-up view shows the fuel cost of a phasing rbit for 
the smallest value of ΔΩ. For ΔΩ = 0, the phasing maneuver consists in two 
Hohman transfers. 

 

In practice, the change in line of node is not accounted for during the phasing 

maneuver due to the small values of ΔΩ2 and ΔΩ1. The small East/West error due to this 

simplification of the maneuver is accounted for during the regular corrective maneuvers 

performed by the ICESat satellite in order to compensate for the East/west drift of the 

orbit due mainly to the effect of the drag. However, Fig (4.8) and Fig (4.9) show that for 

larger values of ΔΩ2 and ΔΩ1 it becomes necessary to take the change in line of node into 

 
Close-up view 

10-3 
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account. As we just mentioned, the phasing maneuvers between ICESat 91-day operation 

orbit and its 8-day transition orbit does not account for the line of node change. The 

phasing maneuver consists therefore in two Hohman transfers from the operation orbit to 

the transition orbit and back. For each of the two transfers, two impulse burns are 

applied: one at the beginning of the transfer to leave the first orbit, the second at the end 

of the transfer to adjust the satellite velocity to the targeted orbit. In the case of ICESat, 

each impulse accounts for 0.35 m/s. To complete the phasing maneuver. four impulses 

are required which bring the total fuel cost of the maneuver to 1.4 m/s as can be verified 

on the close-up view of Fig (4.9) when ΔΩ = 0. 
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CHAPTER 5 

CROSSOVERS 

 

 

The CryoSat mission was approved in 1999 as part of the ESA Living Planet 

Program (ESA, 2003). Its purpose was very similar to some of ICESat mission goals. The 

CryoSat satellite was designed to make measurements of the thickness of the floating sea 

ice and the elevation of the ice sheets in the Polar Regions. Ultimately, the purpose of the 

CryoSat mission was to help to understand the influence of the global warming effect on 

the polar ice caps. The measurements were to be made by the on-board SIRAL radar 

altimeter operating in Synthetic Aperture Radar mode (SAR). The satellite was design to 

fly for a period of three years. The CryoSat orbit was designed to support the sole 

purpose of the mission, monitoring the changes in the sea ice thickness and the ice sheets 

elevation over Antarctica and Greenland. It was decided by ESA that the satellite would 

be placed into a non Sun-synchronous 369-day repeat groundtrack orbit to meet the 

science requirements, with an altitude of 717 km and a near-polar inclination. CryoSat 

was designed to fly at an inclination of 92° in order to provide a coverage that would 

satisfy the mission requirements in terms of crossover and latitude limit. This inclination 
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was a compromise to a polar orbit which would not have allowed a high density of 

crossover measurements over the polar regions. Indeed, the elevation measurements are 

made at the crossover locations, i.e. the intersection of an ascending track with a 

descending track. In the case of a polar orbit, the tracks would be parallel to the Earth 

meridians if it wasn’t for the rotation of the Earth. The meridians intersect only at the 

poles. Therefore in the case of a polar orbit, the crossovers are due solely to the Earth 

rotation and are consequently too few to ensure a sufficient coverage of a region that is 

not in close vicinity to the pole, like Greenland.  

As part of the calibration phase of the CryoSat mission, it was apparent that ICESat 

could provide opportunities to compare altitude measurements obtained by ICESat to the 

ones obtained by CryoSat. To implement this cross-validation, it is necessary that the 

altitude measurements obtained by each satellite be made over the exact same geographic 

location. In other words, the cross-validation measurements are made at the intersection 

of an ICESat track and a CryoSat track. Using ICESat’s off-nadir capability, its laser can 

point at the locations along the CryoSat’s track rather than its own. Cross-validation is a 

concept that has been used in the past: for example, in the case of Jason-1 and TOPEX, 

the ERS satellites or ENVISAT and ERS (Beneviste, 2000). However, in the three cases 

cited above, the satellites were required to fly in a tandem formation, i.e. in comparable 

orbits: same orbital elements except for the line of node of the orbit plane. The line of 

node is designed such that the two satellites involved in the cross-validation are flying 

exactly above the same groundtrack. The advantage of ICESat off-nadir capability is that 

CryoSat was not required to fly over ICESat’s groundtrack, which would not have been 
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possible considering the 27 km difference between the two satellites’ semi-major axes 

and consequently the difference in their orbital periods and groundtracks. 

To perform the rotation of the laser on ICESat, it is necessary to know two things. 

First, the locations of the intersections between the ICESat groundtrack and the CryoSat 

groundtrack need to be determined. Though the theory on the location of crossovers 

between two different orbits has not been overly studied, a theoretical framework was 

developed for the in-depth analysis of the crossovers between the GEOSAT, ERS-1 and 

TOPEX/POSEIDON orbits (Kim, 1997). The second essential parameter to be computed 

is the angle between the two intersecting tracks. When designing the off-nadir pointing 

rotation maneuver, it is necessary to allow some time for ICESat’s laser to be aligned 

with CryoSat groundtrack. ICESat’ laser then follows Cryosat’s groundtrack for a short 

amount of time before and after the crossover and finally come back to its nadir  

pointing position. Similar maneuvers have already been performed numerous times 

during the ICESat mission to point the laser at Targets Of Opportunitiy, or TOO  

(Webb et al., 2006). Indeed, though ICESat measurements are now mainly obtained when 

flying in its 91-day repeat groundtrack orbit, a lot of valuable data was collected when it 

was flying in its 8-day repeat groundtrack calibration orbit. The off-nadir capability of 

ICESat’s laser has been used to point at the tracks of the 8-day orbit from the 91-day 

repeat orbit. However in this case the orbital inclination of the two orbits is the same, so 

the respective tracks are parallel. 
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The rotation maneuvers described above are designed at the Laboratory for 

Atmospheric and Space Physics (LASP) at the University of Colorado at Boulder. The 

rotation maneuvers are simulated to test for their feasibility as they shouldn’t force the 

satellite to go in its built-in Safe-Hold mode. Among other situations, the switch to the 

Safe-Hold mode could happen if the rotation angle is above the limitation of the 

instrumentation, if the acceleration rate is too high or if the position of the GLAS 

telescope with respect to the Sun is critical. Unfortunately, the launch of CryoSat ended 

in a failure on October 8th 2005 due to an anomaly in the launch sequence. However, the 

work done on the crossover between ICESat and CryoSat groundtracks is still relevant as 

it can be applied to other missions, and maybe even applied to ICESat and CryoSat-2 

which is scheduled to launch by the end of the year 2009. 

 

5.1 CROSSOVER LOCATION BETWEEN TWO ORBITS 

 5.1.1 IMPLICIT FUNCTION 

Given two satellites in two different orbits around one main body with different 

semi-major axes, eccentricities and inclinations, we are first interested in finding the 

location of the crossover between two of their tracks, that is to say where the 

groundtracks of the two satellites intersect. In a second part and after obtaining the 

latitude and longitude at the crossover, we will compute the angle between the two tracks 

at the location of the crossover. For each satellite, we define its position vector as 

follows, where rε̂  and 'ˆrε  are unit vectors pointing from the Earth center to the satellites: 
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rrr ε̂⋅=
r  (5.1)

'ˆ'' rrr ε⋅=
r  (5.2)

In an Earth Centered Earth Fixed (ECEF) reference frame defined by the unit 

vectors )ˆ,ˆ,ˆ( 321 εεε , the unit vector rε̂  can be expressed in terms of the longitude, λ , and 

the latitude, ϕ , of the satellite in ECEF: 

321 ˆsinˆsincosˆcoscosˆ εϕελϕελϕε ⋅+⋅+⋅=r  (5.3)

where 1̂ε  is in the equatorial plane and in the direction of the Greenwich meridian, 3ε̂  is 

perpendicular to the equatorial plane pointing North, 2ε̂  completes the orthogonal  

direct-oriented triplet. In this first section, we are looking for the location of the 

crossovers of the two satellites’ groundtracks knowing the characteristics of the two 

orbits and the longitudes of the equatorial crossings. The intersection occurs when the 

longitudes and latitudes of the two satellites are respectively equal. This condition is 

equivalent to rε̂  = 'ˆrε . Unfortunately, the expression using the longitudes and latitudes 

of the satellites is not useful to find a general solution to the location of the crossovers. 

Therefore, we express rε̂  and 'ˆrε  in terms of the mean orbital elements: 
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with the true anomalies ν  and 'ν , the arguments of perigees ω  and 'ω , the inclinations 

i  and 'i  and the longitudes of the nodes Ωλ  and 'Ωλ  in ECEF. The longitudes of nodes 

are not orbital elements per se, but they are the equivalent of the arguments of the nodes 

(or Right Ascension of the Ascending Node, RAAN) in the ECEF rotating frame. In other 

words, the longitudes of nodes correspond to the longitudes of the ascending equator 

crossing. Since the orbital plane is not fixed in the ECEF frame, the longitude of the node 

is time-dependent due to the rotation of the Earth. The time rate of the node of each 

satellite in the inertial frame, Ω&  and 'Ω& , are neglected and we assume a 2-body motion. 

For each satellite, the longitude of the node at the instant t is therefore defined as follows 
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(5.8)

(5.9)

where Gθ  is the angle between the vernal equinox and the direction given by the unit 

vector 1̂ε , Eω  is the rotation rate of the Earth and 0t  is a reference epoch. The epoch 0t  is 

chosen to represent the time at which the satellite crosses the equatorial plane in the 



86 

ascending direction, that is to say the time corresponding to the ascending node. It is 

important to note that the values of 0t , t and dt are different a priori from 0't , 't  and 'dt . 

Substituting Eq. (5.8) into Eq. (5.4) and Eq. (5.5), the condition rε̂  = 'ˆrε  can be 

written as a system of three independent equations: 
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(5.10)

(5.11)

(5.12)

Recombining these three equations together we obtain the following necessary 

condition for the crossover: 

( ) ΩΩΩ Δ−Δ−Δ=+ λλλων sinsin'cotcossin'cotcoscot)cot( iiiii  (5.13)

Eq. (5.13) gives the argument of latitude for one satellite passing above the 

crossover location as a function of its orbit inclination and the difference in longitude 

between the nodes of the two orbit planes. Knowing the longitude of the line of node for 

each orbit and therefore the value for ΩΔλ , it seems straight forward to obtain the 

location of the crossover given by ων + . However, Eq. (5.13) is not a practical equation 

to use in order to determine the location of the crossover. Looking at the groundtrack of 

the satellites, the difference in longitude between the ascending node of each satellite 

0ΩΔλ  does not represent the longitude difference between the lines of nodes at the time 

when the satellites pass above the location of the crossover as shown in Eq. (5.9). The 
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parameter ΩΔλ  is a function of dt  and 'dt , which are themselves directly related to the 

respective true anomalies of the satellites ν  and 'ν . More precisely, the times 0t  and '0t  

in Eq. (5.6) and Eq. (5.7) are chosen to represent the epochs at which the satellites pass 

over the equator in the ascending direction, and the times t  and 't  the epochs at which 

the satellites pass over the location of the crossover. The difference ΩΔλ  between the 

longitudes of the nodes of the two satellites will not be the same when the satellites are 

above the equator or above the crossover location as shown in Eq. (5.8) and Eq. (5.9). 

Hence, it appears that Eq. (5.13) is in fact an implicit function, which would require an 

iterative method to obtain an approximate numerical solution. In the following section, 

we will show a different approach to the problem that leads to an explicit analytical 

solution using some of the relations established in this section. 

 

 5.1.2 EXPLICIT FUNCTION 

In this section, the problem of finding the location of a crossover between two 

groundtracks is approached differently. In the previous section, we started with the 

groundtracks of two satellites and we determined where they intersected. We are now 

taking the opposite approach. Suppose that the latitude at the crossover, CrOvϕ , is being 

determined by mission and science requirements and suppose that the longitude of the 

equatorial crossing of one of the two satellites, called SatA, is also known or pre-

determined (in our case, we will work with the ascending crossing). We designate this 
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longitude as 0,AΩλ . To achieve the crossover, the only parameter left to be determined is 

the longitude of the equatorial crossing of the second satellite, SatB. 

We first consider the intersection of SatA’s orbit and the parallel at latitude CrOvϕ . 

There are in fact two intersections, which can be identified by their arguments of latitude 

νω +  on SatA’s orbit. Using the spherical law of cosines, we get: 

)sin(
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ϕ
νω =+  (5.14)

where Ai  and Aω  are respectively the inclination and the argument of perigee of SatA’s 

orbit. Eq. (5.14) has two solutions for the true anomaly Aν . The same results can be 

applied to SatB’s orbit: 
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(5.18)

Though the approach is different from the previous section, the Keplerian geometry 

of the orbits remains the same. Therefore, to determine the longitude of the equatorial 
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crossing of SatB, it will ultimately be necessary to express the time differences 0tt −  and 

'' 0tt −  and t’-t0’ from Eq. (5.6) and Eq. (5.7) in terms of the orbital elements of each 

satellite. In this respect, we transform into eccentric anomalies the four true anomalies of 

Eq. (5.15) to Eq. (5.18), as well as the true anomalies of both satellites at their equatorial 

crossings, 0Aν  and 0Bν . This is done using the following relationships between true and 

eccentric anomalies: 
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(5.20)

where X represents either A or B for SatA or SatB, and n is 0, 1 or 2 for the anomalies at 

the equator or the anomalies solutions of Eq. (5.15) to Eq. (5.18). Finally, Xe  is the 

eccentricity of either SatA or SatB. Once the eccentric anomalies are known, it is possible 

to express the time required for each satellite to travel from its position over the 

equatorial crossing to any of the two positions determined in Eq. (5.15) to Eq. (5.18). 

This time difference is computed using the mean anomalies, M , and the Kepler’s 

equation: 

SatX
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where SatXn  is the mean motion of the SatA or SatB. Now that the values of the time 

differences are know, it is possible to determine the longitude of Sat1’s line of node at the 

times it passes over each crossover location, 1,AΩλ  and 2,AΩλ  using Eq. (5.6). 

Recombining Eq. (5.3) and Eq (5.4), it is then finally possible to compute the longitudes 

of the two crossover locations, 1,CrOvλ  and 2,CrOvλ : 

AnEAAn dtωλλ −= ΩΩ 0,,  (5.23)
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(5.25)

The last parameter to determine is the longitude of SatB’s equatorial crossing, 

0,BΩλ . Since there are two true anomalies for each satellite that correspond to the latitude 

CrOvλ , there will be four configurations possible for a track crossover at that latitude: one 

possible intersection between two ascending tracks; one possible intersection; finally, two 

intersections are possible between an ascending track and a descending track. Therefore, 

we introduce a new subscript, m = 1..2, to differentiate the two true anomalies defined in 

Eq. (5.17) and Eq. (5.18). The step described in Eq. (5.26) to Eq. (5.28) is the exact 

reverse as the one describe from Eq. (5.23) to Eq (5.25) as it gives the value of 0,BΩλ  

knowing the value of CrOvλ : 
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(5.27)

BnEBnmnmB dtωλλ += ΩΩ ,0,  (5.28)

Starting from a desired latitude where the crossover is required to occur and the 

longitude of the equatorial crossing of one of the two satellites, we were able to get an 

analytical solution for the longitude of the crossover as well as the longitude of the 

equatorial crossing of the second satellite’s track. The other orbital characteristics of the 

two satellites being given, we have determined the positions of the two orbital planes that 

will lead to a crossover at the latitude imposed by the mission requirements. In the case 

where the location of the crossover would be site-specific, therefore fixing not only the 

value of nCrOv,ϕ , but also the value of nCrOv,λ , the step described in Eq. (5.23) to Eq (5.25) 

would be replaced by a step similar to the one described in Eq. (5.26) to Eq. (5.28) but 

applied to SatA. 

However, in this section it is still not possible to give an analytical solution to the 

problem as it was set in the previous section. Given solely the longitude of the ascending 

of each satellite track, it is not possible to find an analytical solution for CrOvϕ  and CrOvλ  

in the general case of two non-circular orbits. 
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5.2 ANGLE BETWEEN TRACKS 

In this section we want to determine the angle between the groundtracks at the 

location of the crossover, CrOvω . If we can express the unit vectors tangential to each 

track, then a simple dot product will give us the angle between the two vectors, therefore 

between the tracks. Each of the tangential vectors TXε̂ , with X = A or B for SatA or SatB, 

can be expressed in terms of the satellite’s orbital elements in the Earth Centered Inertial 

(ECI) frame as follows: 
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where )ˆ,ˆ,ˆ( 321 III εεε  are the unit vectors of the ECI frame. After much trigonometric 

simplifications and making use of Eq. (5.9), we find the following expression for the  

crossover track angle: 
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5.3 APPLICATIONS TO ICESAT AND CRYOSAT 

The theory presented in the two previous sections was developed to address the 

problem of groundtracks crossover for the ICESat and CryoSat satellites. The analytical 

solutions, both implicit and explicit, remain however general enough so that they can be 

used to identify the intersections between the groundtracks of any two elliptic Keplerian 

orbits. As the interest for the intersections between ICESat and CryoSat groundtracks was 

the first incentive for this study, we will use the results obtained for this case to illustrate 

the theory detailed previously. In the following sections, we will look at other cases 

including the ENVISAT orbit and the ICESat calibration orbit. 

The results presented below were obtained to test the feasibility of an off-nadir 

maneuver in which the ICESat GLAS altimeter would be pointed at athe CryoSat track. It 

is required that the off-nadir rotation should not exceed 5 degrees. This limit represents 

one of the criteria for the feasibility of the maneuver, along with the attitude acceleration 

rate of the satellite. For this reason, we were interested in determining the relative 

position between the tracks of the two satellites that would lead to a minimum value for 

the angle between the tracks. The characteristics of ICESat’s orbit as well as its 

groundtrack are well known. On the other hand, some of the characteristics of the 

CryoSat orbit, such as the exact mean value of its semi-major axis had to be inferred from 

the CryoSat mission overview documents (ESA, 2003). 
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Orbit Characteristics ICESat orbit CryoSat orbit 

Repeat Cycle 91 nodal days 369 nodal days 

Number of Sat. Rev. per Cycle 1354 5344 

Semi-Major Axis 6970.238 km 7095.348 km 

Eccentricity 0.0013 0.0014 

Inclination 94° 92° 

Argument of Perigee 90° 90° 

Longitude of Node for the  
chosen track: λΩ0 

29.043°W (To Be Determined) 

Table 5.1: Characteristics of ICESat and CryoSat orbits. 
Sources from Mission Overview documents: (Schutz et al., 2005) 
(ESA, 2003) and (Wingham et al., 2006) 

 

Finally, since the case to be studied is a hypothetical one, there is no actual 

requirement for the location of the crossover, but the location was chosen to represent a 

typical choice in the polar region. Hence a latitude in the vicinity of 70°N. One of 

ICESat’s 1354 tracks was selected arbitrarily with an ascending segment of the track that 

cuts through the Greenland region. The characteristics of the two orbit are summarized in 

Table (5.1). 

The results of Eq. (5.30) are shown on Fig. (5.1) for values of ( )0,0, IC ΩΩ − λλ  

ranging from -180° to 180° and values of the latitude at the crossover ( CrOvϕ ) ranging 

from 0° to 86°. The latitude equal 86° corresponds to the highest latitude reached by  
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Fig. 5.1: 3-dimensional plot giving the latitude at the crossover (φCrOv) as a function of 

the difference of the equatorial crossings longitudes (λΩ,C0  - λΩ,I0) and the angle 
between the tracks at the crossover (ωCrOv). 

 

ICESat. The plot is approximately symmetrical with respect to the vertical plane defined 

by ( ) 00,0, =− ΩΩ IC λλ . The small asymmetry is due to the rotation of the Earth during 

each satellite’s half revolution over the northern hemisphere, and the fact that the two 

orbits do not have the some nodal period. The discontinuity in the derivative of the 

function in the region of ( ) °±=− ΩΩ 1800,0, IC λλ  is explained by the 360°-periodicity of 

the term ( )0,0, IC ΩΩ − λλ . The lower segment of the curve at ( ) °=− ΩΩ 1800,0, IC λλ  is the 

continuation of the function beyond ( ) °−=− ΩΩ 1800,0, IC λλ  but translated back into 
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Fig. 5.2: Off-nadir pointing. 
 

the interval (-180°,180°) via a modulo 360°, and vice versa. It is desired to implement the 

off-nadir maneuver above the latitude 70°N and the maximum off-nadir angle, γ , 

permitted for the rotation of ICESat is 5°. As illustrated on Fig. (5.2), the angle γ  is 

directly related to the angle between the groundtracks (simply referred on the picture as 

ω  instead of CrOvω ) and the length of the CryoSat track segment that is being followed 

by ICESat. If it is assumed that the segments are sufficiently small with respect to the 

Earth radius, then the triangle described by the segments of lengths a and b in Fig. (5.2) is 

in a plane. 

 

ICESat ICESat track 

CryoSat track 
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Under the previous assumption, γ  and CrOvω  satisfy the following relationship: 
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To test the feasibility of the off-nadir pointing maneuver, the interval of time dt was 

arbitrarily chosen to be equal to 50 seconds. More precisely, ICESat follows the CryoSat 

groundtrack 25 seconds before and 25 seconds after flying over the crossover location. 

The value of γ  varies throughout the maneuver reaching a minimum of 0° at the 

crossover. The maximum value is found the furthest away from the crossover, that is 

when a and b are equal to: 

dtn
R

a ICESat
Earth

2
=  (5.32)

dtn
R

b CryoSat
Earth

2
=  (5.33)

with the eccentricities being neglected and where ICESatn  and CryoSatn  are the mean motion 

of the two satellites. Eq. (5.31) through Eq. (5.33) are applied to the case of ICESat to 

find the maximum acceptable value for the angle between the tracks, CrOvω . To ensure 

that γ remains less than 5°, CrOvω , must be less than 17.6°. 
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Fig. 5.3: ICESat vs. CryoSat case. 3-dimensional plot giving the latitude at the crossover 

(φCrOv) as a function of the difference of the equatorial crossings longitudes 
(λΩ,C0  - λΩ,I0) and the angle between the tracks at the crossover (ωCrOv). 
A solution is selected for an altitude of 70°N and an angle between tracks  
less than 17.6°. 

 

Using the three-dimensional plot on Fig. (5.3) and its two-dimensional projections 

on Fig. (5.4), it is possible to identify a solution for the value of the longitude difference 

between the equatorial crossings of the ICESat and CryoSat tracks at a latitude of 70°N 

while respecting the condition CrOvω  < 17.6°. The condition on CrOvω  is indeed respected 

since the angle between tracks at this altitude is equal to 5.855°. The rest of the results are 

summarized in Table (5.2). The resulting crossover is illustrated on Fig. (5.5) and a close-

up of the Greenland region is given in Fig. (5.6). 
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Fig. 5.4: Projections of Fig. (5.3) 
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Off-nadir maneuver parameters 

Latitude: CrOvϕ  69.998°N 

Longitude: CrOvλ  44.857°W 

ICESat ascending node (ECEF): 0,IΩλ  29.043°W 

CryoSat ascending node (ECEF): 0,CΩλ  34.508°W 

0,0, IC ΩΩ − λλ  -5.465° 

ICESat track segment: a 339.121 meters 

CryoSat track segment: b 335.066 meters 

Angle between track: CrOvω  5.855° 

Off-nadir angle: γ  1.657° 

Table 5.2: Summary of the parameters for the off-nadir maneuver 
 over Greenland at latitude 70°N. 

 

 
Fig. 5.5: Crossover between ICESat and CryoSat tracks over Greenland at latitude 70°N. 

(Background picture from http://visibleearth.nasa.gov) 
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Fig. 5.6: Close-up of ICESat and CryoSat crossover at latitude 70°N. The segments of the 

groundtrack corresponding to the 50 seconds during which the ICESat laser 
follows the CryoSat groundtrack appear in black. 
(Background picture from http://visibleearth.nasa.gov) 

 

5.4 APPLICATION TO ICESAT AND ENVISAT 

ENVISAT was launched in March 2002 as part of the European Space Agency 

Earth Observation program. The ENVISAT mission is the follow-on of the very 

successful mission ERS-1 and ERS-2. The main objectives of the mission are to provide 

extensive continuous data to environmental and climate studies, which includes ocean 

dynamics, ice sheet characteristics and sea ice distribution among others. It was launched 

into an orbit similar to the ERS orbits: sun-synchronous with an inclination of 98.55° and 

a mean altitude of 799.8 km. The orbit is also repeat-groundtrack, with a repeat cycle of 

35 nodal days which is consists made of 501 satellite revolutions. Because of its  

sun-synchronous characteristic, the maximum latitude reached by the satellite is 81.45°, 
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Orbit Characteristics ICESat orbit ENVISAT orbit 

Repeat Cycle 91 nodal days 35 nodal days 

Number of Sat. Rev per Cycle 1354 501 

Semi-Major Axis 6970.238 km 7159.5 km 

Eccentricity 0.0013 0.0014 

Inclination 94° 98.55° 

Argument of perigee 90° 90° 

Table 5.3: Characteristics of ICESat and ENVISAT orbits. 
 

much lower than ICESat. This greater difference between the inclinations of the two 

satellites leads to results slightly different from the ones presented on Fig. (5.3) and Fig. 

(5.4) for the CryoSat satellite. The overall character of the plots however remains similar 

to the CryoSat’s plots. 

We apply the same method used in the previous discussion to the search for an 

intersection over Greenland between ICESat and ENVISAT groundtracks. Though the 

problem seems identical, the approach used to solve the case of ENVISAT is slightly 

different from the one used previously to solve the case of CryoSat. The difference 

results from the fact that the CryoSat mission failed at launch. Consequently, the data 

defining the ECEF longitudes of the ascending nodes of the CryoSat orbit are not 

available. In the case of ENVISAT, however, the 501 ECEF longitude values 

corresponding to each ascending node of the 35-day repeat orbit are known. While it was 

possible in the previous section to adjust the angle between the tracks CrOvω  to any value 
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that would satisfy the latitude and off-nadir angle constraints, in the case of ENVISAT 

the value of CrOvω  depends on the tracks selected for ICESat and ENVISAT. Instead of 

choosing beforehand the value of ICESat’s ascending node longitude λΩ,I0 as done 

previously in the CryoSat case, we select a triplet { 0,0, IE ΩΩ − λλ , CrOvω , CrOvϕ  } that 

satisfies the required constraints. The selection is done using Fig. (5.7), and for a more 

exact solution the triplets output file used to plot Fig. (5.7). The plot presented on Fig. 

(5.7) is similar to the one presented in Fig. (5.3). It shows the correspondence between 

latitude of the crossover, the angle between tracks and the ascending node longitude 

difference for ICESat’s 91-day repeat orbit and ENVISAT’s 35-day repeat orbit.To assist 

with the interpretation of the plot, the graph is projected onto the three main orthogonal 

planes of the 3-dimensional view in Fig. (5.8). 

Once again, the latitude chosen for the location of the crossover is 70° N. The  

off-nadir angle constraint is inherent to the ICESat instrumentation limitation and, as 

such, remains unchanged: the maximum acceptable value for γ is 5°. Using Eq. (5.31) 

through Eq. (5.33) and replacing CryiSatn by ENVISATn  in Eq. (5.33), we find that the off-

nadir angle constraint translates into a maximum value of approximately 17.6° for CrOvω . 

The maximum value for CrOvω  is about the same as the one found previously in the case 

of CryoSat. This similarity is explained by the fact that CryoSat and ENVISAT’s mean 

semi-major axis are only 64 km apart. Therefore CryiSatn  and ENVISATn  also have 

comparable values. 



104 

 
Fig. 5.7: ICESat vs ENVISAT case. 3-dimensional plot giving the latitude at the crossover 

(φCrOv) as a function of the difference of the equatorial crossings longitudes  
(λΩ,C0  - λΩ,I0) and the angle between the tracks at the crossover (ωCrOv). 
Selecting a solution for an altitude of 70°N and an angle between tracks  
less than 17.6°. 

 

On Fig. (5.7), two horizontal lines at latitude 70° N intersect the plot at 

°= 997.13CrOvω . One of the intersection points corresponds to a solution with 

°=−=Δ ΩΩΩ 616.130,0,1,0 IE λλλ  (in red). The second intersection corresponds to a 

solution with °−=−=Δ ΩΩΩ 122.130,0,2,0 IE λλλ  (in green). 

The projections shown on Fig.(5.8) illustrate the comment made in the first 

paragraph of this section regarding the difference in the inclinations of the two satellites. 

In the case of ICESat versus CryoSat, the difference in inclination was only 2 degrees. As 
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Fig. 5.8: Projections of Fig. (5.7) 
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Fig. 5.9: Locations of crossovers between ICESat and ENVISAT tracks at latitude 70ºN. 

(Background picture from http://visibleearth.nasa.gov) 
 

a result, small values for CrOvω  were found at relatively high latitude. In the case of 

ICESat versus ENVISAT, the difference in inclination is equal to 4.55 degrees and the 

limit value for CrOvω  due to the off-nadir angle limitation is reached for a much lower 

latitude than in the previous case, which is clearly apparent when we compare the 

projection ( CrOvω , CrOvϕ ) of Fig. (5.4) and Fig. (5.8). 

Once the two values of the parameter 0ΩΔλ  are known for a crossover at latitude 

70°N, we scan through the ascending node files of both ICESat and ENVISAT and 

identify the pairs with longitude differences that approach either 01ΩΔλ  or 02ΩΔλ . 
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λCrOv φCrOv ≈ 70º λΩ,I0 λΩ,E0 ΔλΩ0 ωCrOv γ < 5º 

-21.0804 70.0142 155.2110 142.0839 -13.1272 13.9479 3.9799 

-21.7286 70.0025 -5.9124 7.7126 13.6250 13.9400 3.9777 

-28.2510 70.0243 148.0330 134.8982 -13.1347 13.9555 3.9820 

-28.8999 69.9928 -13.0899 0.5270 13.6168 13.9323 3.9756 

-33.3225 69.9953 142.9809 129.8683 -13.1126 13.9344 3.9761 

-36.0723 69.9846 -20.2681 -6.6587 13.6094 13.9253 3.9736 

-40.4972 70.0026 135.8018 122.6827 -13.1192 13.9410 3.9780 

-43.2480 69.9778 -27.4477 -13.8443 13.6034 13.9196 3.9721 

-47.6682 70.0124 128.6243 115.4970 -13.1273 13.9481 3.9799 

-48.3176 70.0040 -32.4997 -18.8742 13.6254 13.9396 3.9776 

-54.8404 70.0214 121.4453 108.3114 -13.1339 13.9542 3.9816 

-55.4881 69.9949 -39.6772 -26.0599 13.6173 13.9328 3.9757 

Table 5.4: Detailed information of the crossovers between ICESat and ENVISAT occurring over 
the Greenland region. The negative values in the first, third and fourth columns 
indicate longitudes west of the Greenwich meridian. 

 

Starting from the ascending equatorial passing, the orbits of each satellite are propagated 

for half a revolution. The intersection of the two groundtracks is then found by 

interpolation of the latitudes over the half-revolution. The interpolation gives the value of 

the latitude as well as the longitude of the crossover. This last step is performed for each 

pair of ascending node longitude identified previously. The locations of the crossovers 

between ICESat and ENVISAT that satisfy the latitude constraint (and therefore the  

off-nadir constraint) are plotted on Fig. (5.9). The color code is consistent with the one  
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Fig 5.10: Close-up of Fig.(5.9) over the Greenland region for ICESat and ENVISAT crossovers. 

 

used on Fig. (5.7) and Fig. (5.8): the locations in red correspond to ascending nodes’ 

longitude difference close to 01ΩΔλ  and in green for values close to 02ΩΔλ . Twelve 

crossovers were found to occur over the Greenland region while satisfying our 

constraints. The information for each ofthese crossovers is summarized in Table (5.4) and 

then plotted on Fig. (5.10) which is a close-up view of Fig. (5.9) over Greenland. The 

maximum error in latitude for the crossovers listed in Table (5.4) is 0.02º. A larger 

tolerance for the constraint on the latitude at crossover would have resulted in a denser 

distribution of the crossover locations. 
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Fig. 5.11: 3-dimensional plot giving the latitude φCrOv as a function of λII

Ω,I0 –λI
Ω,I0 and the 

angle ωCrOv, where λII
Ω,I0 is the ECEF longitude of the ascending node 

belonging to the hypothetical ICESat-II 91-day repeat orbit track (1376 satellite 
revolutions and altitude of 518 km) and λI

Ω,I0 is the one corresponding to the 
usual ICESat 91-day repeat orbit. 

 

5.5 APPLICATION TO ICESAT AND ICESAT-II 

The operational orbit for the future ICESat-II mission is still under discussion. 

Unless the orbit is chosen to be the exact same orbit as the first ICESat mission, the new 

repeat groundtrack will not match the one of ICESat. In such a case, the comparison 

between the altitude measurements along the repeat tracks will be much more difficult to 

achieve. However, the mission requirements for the future ICESat mission call for a 

greater agility of the satellite. While 10 minutes are allowed for the ICESat satellite to 
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perform a 5° off-nadir pointing maneuver, ICESat-II should be required to perform this 

same maneuver in less than 60 seconds. Therefore in the case of a new operational orbit 

for the future ICESat mission, we could expect that the off-nadir pointing capabilities of 

the satellite would be used routinely to enable comparison measurements along segments 

of the first mission groundtrack. A precise knowledge of the geolocation of the 

crossovers between the old and the new groundtracks will then be mandatory. 

For example, suppose that the operational orbit chosen for the ICESat-II mission is 

the 91-day repeat orbit presented in Section 3.5.2, with an altitude of 518 km and 1376 

satellite revolutions. Fig (5.11) and Fig (5.12) show the 3-dimensional graph that 

represent the relationship between the latitude at the crossover, the angle between tracks 

and the longitude difference at the equator between the tracks of ICESat and ICESat-II. 

The graph shows that crossovers with an admissible angle between tracks can only be 

found at the highest latitude 85.99° to 86°. This result compromises entirely the idea of 

performing comparison measurements between the two ICESat missions using the  

off-nadir pointing maneuver around the crossovers. However, by selecting tracks that lie 

close to one another, it could be conceivable to perform off-nadir targeting comparable to 

the ones performed for the TOOs at lower latitudes than the ones corresponding to 

crossover (Webb et al., 2006). Since it is essential that the data collected by the future 

ICESat- II mission can be used in correlation with the data collect by ICESat, the 

feasibility of such maneuvers should be studied before any decision is made regarding 

ICESat-II’s operation orbit. 
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Fig. 5.12: Projections of Fig. (5.11)
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CHAPTER 6 

THIRD BODY PERTURBATIONS 

 

 

In this chapter, we study the influence of a perturbing third body on the mean orbital 

elements of ICESat 91-day repeat groundtrack orbit. Prior literature on the third body 

perturbation includes the work of Kaula (1962) and Giacaglia (1977). Kaula (1962) 

expressed the disturbing function in osculating Keplerian elements in a fashion similar to 

the work he did for the terrestrial gravitational field. Giacaglia (1977) developed the 

geopotential, the third body and the solar pressure disturbing functions in nonsingular 

variables. Some recent works include Prado (2003) and Broucke (2003). Both use a 

double averaging of the third-body potential. Prado (2003) used this potential to analyze 

the evolution of orbits around major natural moons of the solar system, while Broucke’s 

(2003) motivation was to study the long-term third-body effects on the stability of an 

Earth satellite. Solórzano and Prado (2004) published a paper in which they study the 

long term evolution of the orbital elements using a single average model. 
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In our study, we use a simplified model of the third-body problem. The main body 

with mass ⊕m  is at the origin of the system. The orbit of the perturbing body of mass 'm  

is assumed to be unperturbed Keplerian and elliptical. However, the numerical 

experiments in this chapter assume that the third body is in a circular orbit. The orbit of 

the massless spacecraft around the main body is three-dimensional and nominally 

elliptical. Though the expansion of the disturbing is in part based on the computation 

developed by Kaula (1962) and Giacaglia (1977), we depart from their work by 

introducing Chebychev polynomials in the expansion of the potential instead of the usual 

Hansen’s coefficients. By using the Chebychev polynomials we obtain the dependency 

on the satellite eccentricity as a finite series, whereas the Hansen’s coefficients lead to an 

infinite series and therefore an additional truncation of the disturbing function is 

necessary during numerical experiments. 

 

6.1 SINGLE-AVERAGE DISTURBING FUNCTION 

We recall the most general expression of the disturbing function of a the third-body 

on a massless spacecraft, which can simply be written as a function of the position 

vectors of both the spacecraft and the third body with respect from the main body 

(Morando, 1966): 
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where: 

 'μ  = 
'

'
mm

m
+⊕

,  ⊕m = mass of the main body,  'm  = mass of the third body 

 'n  = mean motion of the third body 

 'a  = semi-major axis of the third body’s orbit 

 'rr  = position vector of the third body with respect to the main body 

 rr  = position vector of the spacecraft with respect to the main body 

Under the assumption that 'r >> r , this expression can be developed into a series 

expansion using the Legendre polynomials:  
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where Pn are the Legendre polynomials and 'α is the geocentric elongation of the 

spacecraft from the third body, or the angle between the position vectors rr  and 'rr . It is 

possible to relate the elongation angle and the equatorial coordinates by the equation 

below:  

( )'cos'coscos'sinsin'cos λλϕϕϕϕα −+=  (6.4)
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where: 

 φ  = latitude of the spacecraft (with respect to the equator) 

 λ  = longitude of the spacecraft (from the Greenwich meridian in the equator) 

 'φ  = latitude of the third body (with respect to the equator) 

 'λ  = longitude of the third body (from the Greenwich meridian in the equator) 

The Legendre Polynomials can then be developed further using the equatorial 

coordinates:  
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where mm 02 δε −=  and δ  represents the Kronecker function. Giacaglia (1977) 

introduced some harmonic coefficients to separate the spacecraft’s coordinates from the 

ones of the perturbing body: 
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Using these harmonic coefficients, the disturbing function is rewritten as:  
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with 

( ){ }λλφ mSmCPrU lmlmlm
l

lm sin'cos'sin' +=  (6.9)

Finally, the lmU '  terms can be transformed into functions of the spacecraft’s orbital 

coordinates rather than the equatorial ones by introducing the usual inclination functions 

Flmp (Kaula, 1966) and the angles lmpψ . This leads to:  
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where 

Ω++−= mfpllmp ))(2( ωψ  (6.11)

with ω , f , Ω , being respectively the argument of the perigee, the true anomaly and the 

argument of node. The terms A’lm and B’lm are defined as follows: 

 l – m even:  A’lm = C’lm, B’lm = S’lm 

 l – m odd:  A’lm = – S’lm, B’lm = C’lm. 
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In order to perform the average of the disturbing function over the short period of 

the satellite, we separate the true anomaly from the other orbital angles using basic 

trigonometric identities:  
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The single-averaged potential 'U  is obtained by integration over the mean anomaly 

M which is proportional to time. To avoid discussion on the convergence of the 

integrated Legendre series of Eq. (6.2) and for practical computation purposes, the 

disturbing function is truncated to nth degree before the integration is performed: 
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Using the relation )cos1( Eear −=  and the change of variable 

dEEedM )cos1( −= , where E is the eccentric anomaly, we obtain:  
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where: ( )Ω−−= mplclmp ω)2(cos      and     ( )Ω−−= mplslmp ω)2(sin  

We then use the Chebychev polynomials of the first kind to transform fpl )2cos( −  

and the Chebychev polynomials of the second kind to transform fpl )2sin( − : 
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and ⎣ ⎦  represents the floor function. We call Tlpk and T*
lpk the modified Chebychev 

coefficients of the first and second kind respectively. They are based on the usual 

Chebychev, but applied to the specific case of Eq. (6.16) and (6.17). 

Since the true and the eccentric anomalies are directly dependent, we need to  

replace f by E in Eq. (6.16) and Eq. (6.17). We do so by using the usual relations 

)cos1/()(coscos EeeEf −−=  and )cos1/()sin1(sin 2 EeEef −−= . We can rewrite 

Eq. (6.15) as follows:  
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lpkI *  proves to be equal to 0 for any l, p and k such that 02 >− pl . If 02 =− pl , 

then the sin function under the second integration in Eq. (6.15) is equal to 0, which 

cancels the second integration. We can therefore simplify Eq. (6.20) and get our final 

expression of the single-averaged disturbing potential truncated at the Legendre 

polynomial of degree n:  
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The next step is to develop the disturbing function with respect to the third body’s 

orbital coordinates. We start by bringing back the coordinates of the third body 'λ  and 'ϕ  

which appear in the terms lmA'  and lmB' . We introduce the following coefficients: 
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Using the two coefficients above, the term lmpkU '  can be rewritten in the following 

fashion: 

( ){ }'sin''cos''sin' λλϕ mBmAPU lmpklmpklmlmpk +=  (6.27) 

where A’lm and B’lm are defined as follows: 

 l – m even:  A’lmpk = C’lmpk, B’lmpk = S’lmpk 

 l – m odd:  A’lmpk = S’lmpk, B’lmpk = – C’lmpk. 

Finally, the lmpkU '  terms can be transformed into functions of the third body’s 

orbital coordinates rather than the equatorial ones by introducing the usual inclination 

functions 'lmpF  and the angles 'lmpψ . This leads to:  
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where 

')'')('2(' Ω++−= mfpllmp ωψ  (6.29)

with 'i , 'ω , 'f  and 'Ω  being respectively the inclination, the argument of the perigee, 

the true anomaly and the argument of node. The terms Xlm and Ym are defined as follows: 

 l – m even:  Xlmpk = A’lmpk    = C’lmpk, Ylmpk = B’lmpk  = S’lmpk 

 l – m odd: Xlmpk = – B’lmpk,= C’lmpk Ylmpk = A’lmpk  = S’lmpk. 
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Therefore, lmpkU '  can be simply written as: 
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6.2 EQUATIONS OF MOTION 

To study the perturbations of the third body, the single-averaged disturbing function 

obtained in Eq. (6.23) is used in the Lagrangian Planetary Equations (LPEs),  

(Kaula, 1966): 
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In our study, the Lagrangian Equation for the semi-major axis a is equal to zero 

since the mean anomaly, M, disappeared when the disturbing function was averaged over 

one satellite revolution in Eq. (6.13). To use the five remaining LPEs, the partial 

derivatives of the disturbing function with respect of the orbital elements e, ω , i, and Ω  

have to be computed: 
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Eq. (6.39) and Eq. (6.41) contains the derivatives of the eccentricity functions lpkI  

and the derivatives of the inclination functions lmpF  respectively. The derivatives of the 

eccentricity functions lpkI  are defined as: 

if 
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The derivatives of the inclination functions lmpF  are defined as: 
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if ml −  odd: 
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Finally, substituting the partial derivatives into the LPEs, we obtain the following 

expressions for the time derivatives of the orbital elements due to the third body 

perturbing force only: 
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6.3 APPLICATION TO A SIMPLIFIED CASE 

In this section, we apply the Lagrangian equations in Eq. (6.49) through Eq. (6.53) 

to the mean orbital elements of ICESat 91-day repeat groundtrack orbit in order to study 

the perturbations due to the Moon and to the Sun. For both the perturbations due to the 

Moon and the perturbations due to the Sun, the Earth is defined as the main body. In a 

first approach we simplify the 3-body configuration by assuming that the third body’s 

motion, or its apparent motion in an Earth Centered Inertial frame (ECI), is a circular 

orbit in the equatorial plane of the Earth. The time rates of the third body’s orbital 

elements are being neglected. Furthermore, in the case of a third body in a circular orbit, 

the third body’s true anomaly, f′, is a linear function of time and can be easily propagated 

in time along with ICESat’s mean orbital elements. Table (6.1) summarizes ICESat’s 

initial mean orbital elements and the third body’s orbital elements at the epoch t0 for the 

propagation. To study the perturbations due to the Moon, the ICESat orbital elements are 

propagated over a 28 days time interval. In the case of the Sun, the propagation is 

performed over 365 days. Two propagations for both the Moon and the Sun were 

performed. The first propagation is performed the disturbing function truncated to the 2nd 

degree, i.e. n = 2 in Eq. (6.13). For the second propagation, the disturbing function is 

truncated to the 4th degree. Due to the complexity of Eq. (6.50) to Eq. (6.54), all the 

propagations of these equations were made using a very elementary fixed step integrator 

based on the Newton method (forward difference). The size of the step was manually 

adjusted to fit the steepest sections of the plot while keeping the process time reasonable. 
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Orbital elements and 
epochs ICESat Moon Sun 

Semi-major axis 6970.238 km 3.844 ·10-5 km 1.496 ·10-8 km 

Eccentricity 0.0013 0 0 

Inclination 94° 0° 0° 

Argument of Perigee 90° 0° 0° 

Line of Node 0° 0° 0° 

True Anomaly N/A 0° 0° 

t0 N/A 0 sec 0 sec 

tf N/A 2432093.63 sec 31704077.63 sec 

Table 6.1: Initial conditions for the propagation of ICESat’s orbital elements 
in the simplified case of the third in the equatorial plane. 

 

Fig. (6.1) through Fig (6.3) show the evolution of ICESat mean orbital elements 

( ωcose , ωsine , i, and Ω ) under the 3rd body influence of the Sun and with a disturbing 

function expanded up to the 2nd degree. On Fig (6.1), the eccentricity vector exhibits a 

twice per year oscillation. The amplitude of the oscillations is equal to 6 ·10-8 in the sine 

direction. The drift along the cosine direction is equal to 1.7 ·10-6.On Fig (6.2), we 

observe that the inclination also exhibits oscillations with a period half the one of the 

Sun. The amplitude of the oscillations of the inclination is 8 ·10-3 degree which 

corresponds to a groundtrack shift at the apex equal to 890 meters which exceeds the 800 

meters tolerance for the groundtrack drift according to the ICESat mission requirements. 

Finally, Fig (6.3) shows the evolution of ICESat’s argument of the node. The argument of 

the node increases linearly throughout the entire apparent revolution of the Sun. The 
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slope of the drift computed via a linear fitting of the data is about 9.6 ·10-6 degree per day 

which leads to a groundtrack drift at the equator of 390 meters after a year. 

Fig. (6.4) through Fig (6.6) show the difference between the 4th degree and 2nd 

degree computation in the evolutions of ICESat eccentricity vector, inclination and 

argument of the node with the Sun acting as the perturbing 3rd body. The correction 

brought to the eccentricity vector is in the order of 10-9. The correction to the inclination 

oscillations is in the order of 10-10 degree. Finally the correction for the line of node is  

10-9 degree. In the case of Sun, it is therefore reasonable to consider only the second 

degree of the disturbing function’s expansion. 
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Figure 6.1: Perturbations of ICESat eccentricity vector due to the Sun propagated over 

365 days with a disturbing function expanded to the 2nd degree. 

 
Figure 6.2: Perturbations of ICESat inclination due to the Sun propagated over 365 

days with a disturbing function expanded to the 2nd degree.
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Figure 6.3: Perturbations of ICESat line of node due to the Sun propagated over 365 

days with a disturbing function expanded to the 2nd degree. 

 
Figure 6.4: Perturbations of ICESat eccentricity vector due to the Sun propagated over 

365 days: comparison between the 4th degree and 2nd degree. 
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Figure 6.5: Perturbations of ICESat inclination due to the Sun propagated over 365 days: 

comparison between the 4th degree and 2nd degree. 

 
Figure 6.6: Perturbations of ICESat line of node due to the Sun propagated over 365 

days: comparison between the 4th degree and 2nd degree. 
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Fig (6.7) through Fig (6.9) show the evolution of ICESat mean orbital elements 

( ωcose , ωsine , i, and Ω ) under the 3rd body influence of the Moon and with a 

disturbing function expanded up to the 2nd degree. On Fig (6.10), the eccentricity vector 

exhibit the same general trend as in the case of the Sun. The period of the oscillations is 

half the one of the Moon. The amplitude of the oscillations in the cosine direction is 

equal to 10-8 and the drift along the sine direction is equal to 2.5 ·10-7. On Fig (6.8), we 

observe that, like in the case of the Sun, the inclination values oscillate twice per 

revolution of the Moon. The amplitude of the oscillations of the inclination is 1.23 ·10-3 

degree which corresponds to a drift of the groundtrack at the apex equal to 137 meters. 

Finally Fig (6.9) shows the evolution of ICESat’s argument of the node. Just like in the 

case of the Sun, the argument of the node increases linearly throughout the entire 

revolution of the Moon. The slope of the drift on Fig (6.9) is greater than the one 

observed on Fig (6.3). By performing a linear fitting of the argument of the node values, 

we find that the slope is about 2.0 ·10-5 degree per day which is twice the value of the 

slope on Fig (6.3) for the case of the Sun. 

Fig. (6.10) through Fig (6.12) show the difference between the 4th degree and 2nd 

degree computation in the evolutions of ICESat eccentricity vector, inclination and 

argument of the node with the Sun acting as the perturbing 3rd body. Contrary to the case 

of the Sun, the 4th degree expansion of the disturbing function for the Moon as the third 

body brings noticeable change in the evolution of the eccentricity vector. The correction 

brought to the eccentricity vector is in the order of 4 ·10-7 in the sine direction and in the 

order of 1.6 ·10-8 in the cosine direction. However, the amplitude of the oscillations 
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remains negligible compared to the mean value of the eccentricity. The correction to the 

inclination oscillations is in the order of 10-7 degree. Finally the correction for the line of 

node is 3 ·10-7 degree. . Like in the case of the Sun, it is therefore reasonable to consider 

only the second degree in the expansion of the Moon’s disturbing function. 
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Figure 6.7: Perturbations of ICESat eccentricity vector due to the Moon propagated over 

28 days with a disturbing function expanded to the 2nd degree.  

 
Figure 6.8: Perturbations of ICESat inclination due to the Moon propagated over 28 days 

with a disturbing function expanded to the 2nd degree. 
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Figure 6.9: Perturbations of ICESat line of node due to the Moon propagated over 28 days 

with a disturbing function expanded to the 2nd degree. 

 
Figure 6.10: Perturbations of ICESat eccentricity vector due to the Moon propagated over 

28 days: comparison between the 4th degree and 2nd degree. 
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Figure 6.11: Perturbations of ICESat inclination due to the Moon propagated over 28 

days: comparison between the 4th degree and 2nd degree. 

 
Figure 6.12: Perturbations of ICESat line of node due to the Moon propagated over 28 

days: comparison between the 4th degree and 2nd degree. 
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6.4 DOUBLE-AVERAGE DISTURBING FUNCTION 

In the section before, we have presented the evolution of the ICESat mean orbital 

elements that are affected by the third body effect according to the LPEs in Eq. (6.49) 

through Eq. (6.53). The disturbing potential was a single-average function since it was 

obtained after performing an average over one satellite revolution in Eq. (6.13). However, 

a double-average disturbing function is frequently used to study the third body 

perturbations (Broucke, 2003), (Prado, 2003), (Folta and Quinn, 2006). This double-

average disturbing function is often given under the assumption that the third body is in a 

circular orbit around the main body in the XY-plane, where X and Y refer to two of three 

direction of an inertial frame centered on the main body. The spacecraft on the other hand 

is assumed to be in a 3-dimensional Keplerian orbit around the main body. This 

description of the problem is identical to the one given in our simplified example in the 

previous section. Under the previous assumptions, the double-average disturbing function 

truncated after the 2nd degree is equal to: 

( )( )[ ]ωμ 2cossin30322cos31''
32
1' 22222

2 ieeianU +++=  (6.55)

We use the potential in Eq. (6.55) to verify the results obtain in the previous section 

for the ICESat orbital elements under the influence of the Sun and the Moon. The new 

LPEs used to propagate the orbital elements are: 

0=
dt
da  (6.56)
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The results obtained with this double-average disturbing function, for both the Sun 

and the Moon, are shown on Fig. (6.13) through Fig. (6.18). To get a better understanding 

of the evolution of the mean orbital elements of a satellite under the influence of a third 

body disturbance, we look at the long-term effect of the Sun and the Moon (separately) 

on ICESat’s 91-day repeat orbit. The propagation is performed over 21552 years in the 

case of the Sun and 10091 years for the Moon using the MATLAB built-in  

Runge-Kutta 45 integrator. Though these durations are not relevant in the context of a 

satellite mission, the propagation of the orbital elements over these long time intervals 

give valuable insight of their behaviors over a shorter time interval by giving them a 

more global context. The plots obtained for the inclination and eccentricity in the 

equatorial cases are consistent with the ones obtained by Prado (2003), Broucke (2003) or 

Solórzano and Prado (2004). 
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Figure 6.13: ICESat eccentricity vector due to the Sun over 21552 years in the 

hypothetical case of the Sun in the equatorial plane. The eccentricity 
describes the above cycle three times over. 

 
Figure 6.14: ICESat inclination due to the Sun over 21552 years in the hypothetical case 

of the Sun in the equatorial plane. 



141 

 
Figure 6.15: ICESat line of node due to the Sun over 21552 years in the hypothetical case 

of the Sun in the equatorial plan 

 
Figure 6.16: ICESat eccentricity vector due to the Moon over 10091 years in the 

hypothetical case of the Moon in the equatorial plane. The eccentricity 
describes the above cycle three times over. 
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Figure 6.17: ICESat inclination due to the Moon over 10091 years in the hypothetical case 

of the Moon in the equatorial plane. 

 
Figure 6.18: ICESat line of node due to the Moon over 10091 years in the hypothetical 

case of the Moon in the equatorial plane. 
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6.5 THIRD BODY IN INCLINED ORBITAL PLANE 

In the two previous sections, it was assumed that the motion of the third body was 

in the Earth equatorial plane. We now look at the effect of the inclination of third body on 

the evolution of ICESat mean orbital elements e , ω , i, and Ω . To do so, the disturbing 

function in Eq. (6.30) is averaged over one complete revolution of the third body. The 

third body is still considered to be in a circular motion around the Earth. Therefore, its 

semi-major axis is constant, its eccentricity is set to 0 and the average is performed by 

integration over its mean anomaly 'M , with ''' fM += ω  in the case of a circular orbit: 

The double-average disturbing function in this case is: 
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where     ( ) ( )
x

xx sinsinc =     if x ≠ 0,    and ( ) 10sinc =  

(6.62)

As in the previous section, the propagation of the orbital elements is performed over 

21552 years in the case of the Sun and 10091 years for the Moon For numerical 

efficiency purposes, the propagations of ICESat’s orbital elements over these extended 

time interval are performed using the expansion truncated after the 2nd degree of the 

double average disturbing given in Eq. (6.61). 
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The inclination of the Sun is assumed to be constant and equal to the ecliptic value 

23°26′. The inclination of the Moon was approximated to the ecliptic. The Moon orbit 

plane actually oscillates with an amplitude of ±5° about the ecliptic plane with a period of 

18.04 years (Saros Cycle). 

In the previous section, it was shown that for both the Sun and the Moon cases, the 

long term evolutions of the orbital elements are periodic when the perturbing third body 

is in the equatorial plane (with a periodic additional offset in the case of the argument of 

perigee). The long-term periodicity disappears completely for the eccentricity and the 

inclination when the third body is assumed to be orbiting in an inclined plane (namely the 

ecliptic plane in our case). The argument of node is also modified, but it retains its 

pseudo-periodic characteristic. 
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Figure 6.19: ICESat eccentricity vector due to the Sun over 21552 years with the Sun in 

the ecliptic plane. 

 
Figure 6.20: ICESat inclination due to the Sun over 21552 years with the Sun in the 

ecliptic plane. 
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Figure 6.21: ICESat line of node due to the Sun over 21552 years with the Sun in the 

ecliptic plane. 

 
Figure 6.22: ICESat eccentricity vector due to the Moon over 10091 years with the Moon 

in the ecliptic plane. 
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Figure 6.23: ICESat inclination due to the Moon over 10091 years with the Moon in the 

ecliptic plane. 

 
Figure 6.24:  ICESat line of node due to the Moon over 10091 years with the Moon in the 

ecliptic plane. 
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For the purpose of the ICESat mission, it is necessary to look at the effect of the 

Sun and the Moon on the ICESat orbit for the real case of the third body orbiting (or 

apparently orbiting) in an inclined plane with respect to the Earth’s equatorial plane using 

the single-average potential. We however maintain the other assumption that the third 

body motion, or apparent motion, around the Earth is circular. The propagation of 

ICESat’s orbital elements is performed using the expansion to the 2nd degree of the single 

average disturbing function from Eq. (6.30). For each case, Sun and Moon, the 

propagation is performed twice: a first propagation over one period of the third body  

(365 days in the case of the Sun and 28 days in the case of the Moon); a second 

propagation over a longer time interval (5 years for the Sun and 365 days for the Moon) 

to demonstrate the more general trend of the evolution of the orbital elements. The initial 

conditions for the propagation are summarized in Table 6.2. The results of the longer 

propagations are compared to the ones obtained using the double-averaged potential 

given by Eq. (6.61). It can be observed that the eccentricity vector and the inclination still 

exhibit oscillations with period equal to half the period of the third body. The amplitude 

of the eccentricity vector is in the order of 3 ·10-4 in the case of the Sun and in the order 

of 4 ·10-8 in the case of the Moon. The drifts of the eccentricity vectors along the cosine 

direction are comparable to the ones obtained for the case the third body in the equatorial 

plane. The amplitudes of the oscillations for the inclinations are also comparable to the 

case of the third body in the equatorial plane. Therefore the amplitude of the inclination 

oscillations due to the Sun results in a groundtrack shift at the apex larger than the 800 

meters tolerance. Furthermore in the case of the Moon, the inclination exhibits what
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Orbital elements and 
epochs ICESat Moon Sun 

Semi-major axis 6970.238 km 3.844 ·10-5 km 1.496 ·10-8 km 

Eccentricity 0.0013 0 0 

Inclination 94° 23.45° 23.45° 

Argument of Perigee 90° 0° 0° 

Line of Node 0° 5.145° 0° 

True Anomaly N/A 0° 0° 

t0 N/A 0 sec 0 sec 

tf1 

tf2 

N/A 

N/A 

2432093.63 sec 

31704077.63 sec 

31704077.63 sec 

158520388.15 sec 

Table 6.2: Initial conditions for the propagation of ICESat’s orbital elements 
in the case of the third in an inclined plane. 

 

appears to be a secular drift of 3.4 ·10-6 degrees/day which leads to a secular groundtrack 

drift of 140 meters/year. Actually, by looking at Fig. (6.23) we see that it is not a secular 

drift but the long term effect of the third body in the inclined plane. Finally, the argument 

of the node also exhibits some small oscillations about a secular drift. Like the other 

orbital elements, the period of the oscillations of the node is equal to half the period of 

the third body. In addition, the slope of the drift in the case of the Moon is once again 

twice the slope of the drift in the case of the Sun: -4.3 ·10-5 degree/day for the Sun and -

8.9 ·10-5 degree/day for the Moon. These drifts of the node correspond to groundtrack 

shifts at the equator of 1.75 km/year in the case of the Sun and 3.62 km/year in the case 

of the Moon.  
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Figure 6.25: Perturbations of ICESat eccentricity vector due to the Sun over 365 days with the 

Sun in the ecliptic plane. 

 
Figure 6.26: Perturbations of ICESat eccentricity vector due to the Sun over 5 years with the 

Sun in the ecliptic plane: comparison between single- and double-average potential. 
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Figure 6.27: Perturbations of ICESat Inclination due to the Sun over 365 days with days with 

the Sun in the ecliptic plane. 

 
Figure 6.28: Perturbations of ICESat inclination due to the Sun over 5 years with the Sun in the 

ecliptic plane: comparison between single- and double-average potential. 
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Figure 6.29: Perturbations of ICESat line of node due to the Sun over 365 days with the Sun in 

the ecliptic plane. 

 
Figure 6.30: Perturbations of ICESat line of node due to the Sun over 5 years with the Sun in the 

ecliptic plane: comparison between single- and double-average potential. 
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Figure 6.31: Perturbations of ICESat eccentricity vector due to the Moon over 28 days with the 

Moon in the ecliptic plane. 

 
Figure 6.32: Perturbations of ICESat eccentricity vector due to the Moon over 365 days with the 

Moon in the ecliptic plane: comparison between single- and double-average 
potential. 
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Figure 6.33: Perturbations of ICESat inclination due to the Moon over 28 days with days with 

the Moon in the ecliptic plane. 

 
Figure 6.34: Perturbations of ICESat inclination due to the Moon over 365 days with the Moon 

in the ecliptic plane: comparison between single- and double-average potential. 
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Figure 6.35: Perturbations of ICESat line of node due to the Moon over 28 days with the Moon 

in the ecliptic plane. 

 
Figure 6.36: Perturbations of ICESat line of node due to the Moon over 365 days with the Moon 

in the ecliptic plane: comparison between single- and double-average potential. 
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6.6 APPLICATION TO REPEAT GROUNDTRACK ORBITS 

In Chapter 2, we presented the method used at the Center for Space Research to 

design repeat groundtrack orbits. The repeat orbits generated for the ICESat mission are 

frozenin the average sense and therefore satisfy Eq. (2.9) to Eq.(2.11): 

0=e&  (2.9) 

0=ω&  (2.10) 

( ) 0=−Ω⋅+⋅ ⊕ω&& NMD  (2.11) 

However, as we mentioned in Chapter 2, the force model used in the design of 

ICESat’s repeat orbits is the geopotential expanded to degree 70 and order 70 (JGM3 for 

the 8-day and 183-day orbits, and GGM01 for the 91-day orbit). To avoid corrective 

orbital maneuvers on the ICESat satellite to compensate for the perturbation of the  

luni-solar effect, it would be interesting to include the single-average, or at least the 

double-average, third body disturbing function described in Eq. (6.30) and Eq. (6.61) in 

the methodology presented in the section 2.3.2 of Chapter 2. By including the third body 

effect, Eq. (2.9) to Eq. (2.11) become: 

0
''
=++

MS UUU eee &&&  (6.63)

0
''
=++

MS UUU ωωω &&&  (6.64)

( ) ( ) 0
''''

=−Ω+Ω+Ω⋅+++⋅ ⊕ω
MSMS UUUUUU NMMMD &&&&&&  (6.65)



157 

where the subscripts U  refer to the time rates given for the geopotential in Eq. (2.12) to 

Eq. (2.15), 'SU  to the time rate given for the double-average third body disturbing 

function corresponding to the Sun and subscripts 'MU  refer to the time rate given for the 

double-average third body disturbing function corresponding to the Moon. 

Since the J2+J3 terms of the geopotential perturbations are dominant over the rest of 

the geopotential expansion and the third body perturbations, the argument of perigee 

value can be kept equal to 2/π+  or 2/π−  as it is done when only the geopotential is 

included in the force model. This value for the argument of perigee nullifies Eq. (2.21) 

from Chapter 2: 
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and by doing so, Eq. (6.63) is consider nullified also. The solutions for Eq. (6.64) and  

Eq. (6.65) can be obtained by a numerical iteration procedure similar to the one described 

in Chapter in Eq. (2.24), with the same initial for the eccentricity and the semi-major 

axis: 
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To implement this procedure, it is necessary to develop the partial derivatives 

appearing  in the Jacobian matrix:  
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At this point, all the terms necessary to modified the procedure established by Lim 

(1995) in order to include the third body effect in the design of repeat groundtrack orbits 

are in place. At the end of the iteration described in Eq. (2.24), the values obtained for the 

orbital elements are the mean values that satisfy the frozen condition in the average sense 

and the repeat groundtrack condition simultaneously. As described in Chapter 2, the next 

step consists of getting the initial osculating orbital elements by including the short 

period oscillations of the non-averaged potential. For the third body effect however, the 

short period oscillations that disappear during the averaging can still be neglected. 

Consequently, the second part of Lim’s procedure to get the osculating orbital elements 

remains unchanged. 
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CHAPTER 7 

CONCLUSIONS 

 

 

Tough the ICESat mission is not the not the first satellite mission to make use of 

repeat groundtrack orbits to achieve its mission purposes, ICESat increased the 

understanding of the repeat groundtrack orbits dynamics and characteristics. From the 

generation of the repeat orbits in a 70x70 geopotential using state of the art Grace Gravity 

Model to the intensive use of the ICESat orbit’s subcycles as a partial remedy to the 

initial in flight laser failure, the ICESat mission has provided valuable insights on a type 

of orbits commonly chosen for Earth observation satellite mission. The high agility of the 

ICESat satellite enables the off-nadir pointing to close-by tracks, whether they belong to 

ICESat own repeat groundtrack or the repeat groundtrack from another orbit with 

different inclination and semi-major axis. ICESat off-nadir capacity prompted a thorough 

analysis of crossover locations between two distinct repeat groundtrack orbits.  
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7.1 SUBCYCLES 

Based on the framework developed by Lim (1995) and the concept of near-repeat 

track, a general definition of repeat track subcycles was given and illustrated with the 

three repeat orbits designed for the ICESat mission. The chart of subcycles was 

introduced as a tool to visualize the entire range of subcycles for one specific orbit, 

giving information on both the duration and the groundtrack offset for each subcycle. The 

geometrical properties of these charts were used to explain the decomposition of the 

ICESat repeat cycle into the sequence of three main subcycles of 25, 33 and 25 nodal 

days. The Bezout theorem was presented to explain the underlying mathematical concept 

behind the distribution pattern of the subcycles on the chart. The charts of subcycle along 

with the Bezout theorem are presented as a valuable tool for the design of repeat 

groundtrack orbits.  

 

7.2 PHASING 

The concept of a phasing maneuver as it was developed for the ICESat mission was 

presented along with its correlation with the ICESat’s subcycle. The design of the 

phasing maneuvers which, in the case of ICESat, consist in transferring back and forth 

between 91-day repeat orbit and the 8-day repeat orbit relies on two key elements: the 

transition orbits and the transition opportunities. The direct link between the possible 

transition orbits and the subcycle of the 91-day repeat orbit was illustrated by comparing 

the resonance map of repeat orbits to the chart of subcycle. Furthermore, the number of 
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transition opportunities for any possible transition repeat orbit was shown to be related to 

the groundtrack offset of the corresponding subcycle. The phasing maneuver proves to be 

a fuel efficient approach to reposition the ICESat satellite above a different segment of 

the 91-day repeat groundtrack. 

 

7.3 CROSSOVERS 

The off-nadir pointing capacity of the ICESat satellite make it a very attractive 

cross-validation option for other mission flying in repeat groundtrack orbits with near 

polar inclination. A numerical procedure to find the location of crossovers was developed 

based on the geometry of two tracks belonging to two distinct Keplerian orbits. This 

procedure was applied to the case of ICESat vs. CryoSat in order to find the crossover 

locations between the two repeat groundtrack at latitude 70°N. The same procedure was 

applied to find the crossover locations between ICESat and ENVISAT with latitudes in 

the vicinity of 70°N. Through the example of ICESat vs. ICESat-II, in the hypothetical 

case of ICESat-II being placed into a 91-day repeat orbit with 1376 satellite revolution, it 

was shown that the off-nadir pointing around crossover location was not a suitable 

approach for cross-validation between two orbits with close orbital period and identical 

inclination. In that case, an approach similar to the Targets Of Opportunities (TOO) 

should be preferred.  
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7.4 THIRD BODY PERTUBATIONS 

The perturbations due to the third, whether it is the Moon or the Sun, affect the 

orbital elements of the ICESat satellite, and more specifically the argument of the node. 

The perturbations on the node have a direct effect on the repeat characteristic of the 

ICESat groundtrack. Therefore, it would be interesting to include the third body 

perturbation in the force model used in the design of the repeat groundtrack orbits. As a 

preliminary work towards this goal, the close-forms of the orbital elements time 

derivatives, which accounts for the third body perturbations, are given. Starting from the 

expansion of the third body disturbing function expansion using the Legendre 

polynomials, a new close form of the single-average potential was presented using the 

Chebychev polynomials. This single-average disturbing function was used in the 

Lagrangian Planetary Equations to illustrate the effect of the Sun and the Moon 

separately on ICESat orbital elements. A comparison between hypothetical equatorial 

cases (with the third body orbiting in the Earth’s equatorial plane) and the ecliptic case 

showed the non-negligible effect of the ecliptic on the evolution of the orbital elements. 

Finally, the close form derivatives necessary to include the third body effect in the frozen 

repeat groundtrack orbit analysis were established using the single-average disturbing 

function. The numerical results obtained with this new expansion of the potential were 

successfully compared the double-average disturbing function more commonly found in 

the literature. However, the equation of motions and their applications to ICESat require 

a thorough validation. 
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7.5 FUTURE WORK 

Though the phasing orbit concept and its direct link to the repeat orbit subcycle 

seems well-understood in the light of our study, more theoretical work would be 

necessary to completely validate our findings beyond any doubt. A theoretical framework 

could possibly provide numerical tools to convert directly the well-known resonance map 

(Klokočník, 2003) for repeat orbits into chart of subcycles. 

The crossover study is based on the geometry of Keplerian orbits. A much needed 

improvement to the study would be to work with more realistic orbits. Also in order to 

improve the reliability of the results a method to check for the total number of existing 

crossover location at inside a specific latitude range should be implemented. 

Finally, the study on the third body effect was presented as a preliminary work 

towards the improvement of the repeat groundtrack orbit design. A future effort should be 

made to validate the numerical results presented for the case of ICESat. Upon validation, 

the procedure developed by Lim (1995) should be modified to include the new terms due 

to the third body effect. The ultimate goal will be to obtain a new set of initial osculating 

orbital elements for a new design of ICESat repeat orbit that would include the third body 

effect into the force model. 
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