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Abstract 

 

A Prototype Toolset for the ArcGIS Hydro Data Model 

 

 

 

Timothy Lee Whiteaker, M.S.E. 

The University of Texas at Austin, 2001 

 

Supervisor:  David R. Maidment 

 

The incorporation of a COM-compliant design, object-oriented 

programming, and relational database technology into Geographic Information 

Systems has opened the door for the next generation of GIS-enabled hydrologic 

simulation models to be developed.  The ArcGIS Hydro Data Model (Arc Hydro) 

helps to bridge the gap between GIS and computational models by facilitating the 

preparation of GIS data for model use.  This thesis describes some approaches for 

developing a simulation model on top of Arc Hydro, discusses object-oriented 

programming concepts, and provides software construction guidelines.  The result 

is a set of tools which operate on Arc Hydro in order to prepare GIS data for use 

in a simulation model. 
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Chapter 1:  Introduction 

Through recent innovations in Geographic Information Systems 

technology, users can now create custom objects with special properties and 

behaviors to represent geographic features.  The ArcGIS Hydro Data Model uses 

this technology to store water resources features in a manner which facilitates the 

conversion of the data for use in a water resources simulation model.  This thesis 

explores methods that may be used to build a simulation model on top of the 

ArcGIS Hydro Data Model, and presents a prototype toolset which operates on 

the ArcGIS Hydro Data Model. 

1.1 BACKGROUND 

A Geographic Information System (GIS) is a computer system that 

enables the creation, manipulation, analysis, storing, and display of 

geographically referenced information.  By incorporating database technology 

and a suite of both proprietary and non-proprietary tools, GIS allows users to 

examine spatial relationships that might otherwise have been overlooked in the 

decision-making process.  GIS was used primarily for display purposes during its 

early stages, with applications in the transportation plans of Detroit and Chicago 

(Goodchild and Kemp, 1990).  In the 1980s, advancements in both hardware and 

software technology enabled GIS to become available on platforms affordable by 

a much larger group of potential users (Goodchild and Kemp, 1990), while also 

extending the analysis capabilities of the software.  Today, GIS technology can be 

found in thousands of organizations around the world, including municipalities, 
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crime investigation units, forestry services, and Internet-based mapping services 

such as MapQuest.   

In 2000, GIS entered a new era in technological advancement when the 

Environmental Systems Research Institute (ESRI), the world’s leading producer 

of GIS software, released the latest versions of its ArcInfo and ArcView GIS 

software.  Collectively known as ArcGIS, this software system enables a truly 

object-oriented representation of geographic features.  By creating COM-standard 

interfaces, users can associate properties and behaviors with features (COM is 

defined in section 2.2.2.).  This means that in addition to appearing as a simple 

blue line on the map, the GIS representation of a river can possess attributes that 

more accurately model its real-world counterpart.  Because ArcGIS is COM-

compliant, it can easily communicate with other COM-compliant software, such 

as Microsoft Word or Internet Explorer.  ArcGIS can also be customized using 

Visual Basic and can utilize all other COM-compliant object libraries registered 

on the machine where the software is installed.  ArcGIS also employs innovations 

in database technology that allow tables to possess a blob field, which can store 

anything from an integer to an image to a file.  By storing the spatial 

representation of features in a blob field, ArcGIS more tightly couples the spatial 

data with its attribute information. 

To take advantage of ArcGIS’s new and innovative capabilities, a 

consortium for GIS in water resources coordinated by the Center for Research in 

Water Resources at the University of Texas at Austin has developed a data model 

to represent water resources features, in both a hydrologic and hydrographic 
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sense, by creating a series of custom objects with their own attributes and 

behaviors.  The ArcGIS Hydro data model (Arc Hydro), as the model is called, is 

not meant to serve as a sophisticated hydrologic simulation model.  As a data 

model, its primary purpose is to provide a geospatial framework for storing water 

resources data, with some simple methods that facilitate data development for use 

in a simulation model, such as HEC-HMS or MIKE-SHE.  Arc Hydro attempts to 

integrate the extensive resources of cartographic information available with the 

components required as input to water resources computational models by 

providing a structure that accommodates both types of data as well as conversion 

and some overlap between data types.   

Since its conception two years ago, ArcGIS Hydro data model has 

undergone numerous reviews and is now completed, at least structurally speaking.  

The next step in Arc Hydro’s development is to examine to what extent it 

supports the linkage between GIS and a computational model.  The purpose of 

this research is to explore the methods available, given the new innovations in 

technology, to create a water resources simulation model on top of the ArcGIS 

Hydro Data Model.   

1.2 MOTIVATION 

Hydrologic simulation models have existed for decades.  The routines to 

perform hydrologic computations are so well understood, and the models 

themselves have been validated through so many years of use, that few models 

have undergone significant changes in recent years.  However, with the latest 

advances in GIS technology, there are new benefits to be gained by linking GIS 
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with hydrologic models.  ArcGIS geodatabases use the familiar and accessible 

structure of Relational Database Management Systems (RDBMS) to store GIS 

data, making ArcGIS the first GIS software produced by ESRI that does not rely 

on a proprietary file format to store the spatial representation of features.  The 

COM-compliant nature of ArcGIS also improves compatibility with other 

software, meaning that ArcGIS is able to communicate with hydrologic 

simulation models in a manner that was previously not possible.   

In addition to bringing GIS and hydrologic software closer together, the 

potential also exists to narrow the gap between GIS data and inputs to a 

hydrologic model.  Traditionally, a hydrologic model can use only its own type of 

data format for model inputs.  While data can be created in a model to represent 

components of reality, typically a great storehouse of data already exists in the 

form of a GIS.  Incorporating this data into a hydrologic model can save a great 

deal of time and avoid the “redundant” creation of data.  GIS utilities such as 

CRWR Pre-Pro can already export GIS data for use in hydrologic models (in this 

case HEC-HMS,) but these utilities typically write the data to a text file, which is 

later imported into the model (Olivera, 2001).  With COM-compliance, this data 

conversion could happen in a single step if the object libraries of the GIS and the 

model are compatible.  In fact, it may be possible to use a single source of data for 

both the GIS and the model.  Thus, when a parameter is added or changed on one 

end, that change is reflected in the other software as well.  The ability of ArcGIS 

to support custom objects makes this connection even more attainable.  Instead of 

a computational model being forced to use a standard GIS data format, custom 
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objects could be developed that possess the properties and methods necessary to 

function in both the GIS and the model.   

ArcGIS allows the user to create specially defined classes known as 

custom feature classes that extend the power and functionality of GIS features.  

The ArcGIS Hydro data model is the first attempt at using custom feature classes 

in ArcGIS to improve the connection between GIS data and the requirements for a 

computational hydrologic or hydraulic model.  Arc Hydro contains custom feature 

classes to represent cartographic features, drainage patterns, channel systems, and 

the movement of water through the landscape.  Yet while the structural 

representation of these features is complete, no methods have been attached to 

any feature classes in Arc Hydro.  In addition, Arc Hydro has not yet been used to 

prepare data for a water resources computational model, so the effectiveness with 

which it supports the link between GIS and hydrologic models is not known.  

Exploring different strategies to developing a computational model on top of the 

ArcGIS Hydro data model will not only test its ability to support this link, but it 

may also provide insight as to the appropriate methods that should be attached to 

the custom objects in Arc Hydro.  This research will also lead to a better 

understanding of how GIS and a computational hydrologic model can be 

connected in general. 

1.3 OBJECTIVE AND SCOPE 

The purpose of this research is to explore methods to create a 

computational hydrologic or hydraulic model on top of the ArcGIS Hydro data 

model.  As such, the procedures outlined and the resulting tools developed are 
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intended to be applied within the framework of the ArcGIS software and the 

ArcGIS Hydro data model.  However, some of the discussion involves general 

principles behind the application of object-oriented concepts towards hydrologic 

and hydraulic modeling, and may provide value outside of the ArcGIS context.   

The goal of this thesis is not to create a computational model, but to 

determine the various methods that may be used to create such a model given the 

latest innovations in software technology and the evolution of the ArcGIS Hydro 

data model.  Advances in object-oriented programming and RDBMS technology 

have dramatically increased the functionality, compatibility, and power of GIS.  

These advances may have opened up new avenues for integrating computational 

models with geographic data.  This thesis attempts to discover those avenues and 

learn how they can be applied from within the context of the ArcGIS Hydro Data 

Model. 

Another goal of this research is to examine the effectiveness with which 

Arc Hydro links GIS data and computational models.  Currently, no classes in Arc 

Hydro possess behavior.  By exploring different needs of hydrologic 

computational models, potential behaviors (or methods of preparing data) for Arc 

Hydro classes can be formulated.   

1.4 THESIS OUTLINE 

This thesis is divided into six chapters.  The first provides some 

background information about Geographic Information Systems and the ArcGIS 

Hydro data model, followed by an overview of the motivation, scope, and 

objective in developing a computational model on top of Arc Hydro.  The second 
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provides some general concepts about object-oriented modeling and reviews the 

principles of sound software construction and user interface design.  This chapter 

also describes other object-oriented hydrologic and hydraulic models that were 

studied to gain a better understanding of model development.  The third chapter 

provides an overview of some innovations behind the design of the ArcGIS 

software, and introduces the components of the ArcGIS Hydro data model.  The 

application of object-oriented principles towards hydrologic model design is also 

discussed in this chapter.  This chapter concludes with a description of 

development approaches and interface design techniques for computational model 

development in relation to the ArcGIS Hydro data model.  The fourth chapter 

details the steps taken to create a set of custom tools that operate on Arc Hydro, 

followed by a discussion of how software design principles were applied to the 

development of the tools.  The fifth describes each tool that was developed, with a 

discussion of benefits and limitations for each tool.  The sixth draws conclusions 

and suggests future work that may be undertaken. 
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Chapter 2:  Literature Review 

Before the first line of code is written for a computational model, a good 

understanding of proper software construction techniques should be acquired.  

Meyer (1997) outlines some key concepts related to intelligent software design in 

Object-Oriented Software Construction.  These concepts lend themselves to 

object-oriented programming, which has been the programming style of choice 

since the early 1990s.  Aside from the structure of a software’s design, perhaps an 

equally important component of a software system is the interface through which 

communication occurs between the user and the program.  Hartley (1998) 

provides some instruction on graphical user interface design.  All of these 

concepts can be used to evaluate object-oriented models in the water resources 

realm that have already been created.  Indeed, a study of existing models has 

proven useful in determining effective approaches in developing a computational 

model on top of the ArcGIS Hydro data model. 

2.1 SOFTWARE DESIGN PRINCIPLES 

Meyer (1997) provides some widely accepted guidelines on intelligent 

software construction.  The key indicator of a program’s quality is the degree to 

which it successfully performs the tasks outlined in the solution to the problem 

statement.  However, in addition to functioning correctly, a software product 

should also be robust, extensible, reusable, and compatible (Meyer, 1997).   
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2.1.1 Robustness 

Robustness refers to the ability of software to function when conditions 

fall outside of the specification made by the problem statement.  No matter how 

meticulously the designer plans the software development, situations will always 

occur outside the designer’s specifications.  A robust software system will handle 

these unexpected situations gracefully, without crashing or producing other 

catastrophic events (Meyer, 1997). 

2.1.2 Extensibility 

Extensibility refers to the ease with which adaptations may be made to 

software in order to meet changing needs or specifications.  Typically, the larger 

the software system, the more difficult it is to make changes due to a more and 

more complex interconnection between software components.  By following two 

principles, design simplicity and decentralization, software extensibility can be 

dramatically improved.  The concept behind design simplicity is that simple 

designs are easier to change than complex ones.  If the designer is not careful, a 

software system can become so convoluted that making changes to the system 

design requires more time than simply rebuilding the system from scratch.  The 

principle of decentralization states that as software modules become more 

autonomous, changes in software design will be more likely to affect a single 

module, rather than requiring changes throughout a large chain of modules 

(Meyer, 1997). 
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2.1.3 Reusability 

Reusability measures the ability of a software system’s components (or the 

system itself) to be reused for different applications.  Often different applications 

will require similar tasks to be performed, such as closing a window or opening a 

file.  Being able to reuse common components between software applications 

saves much time in the development process.  Reusing software components also 

provides a quality check in many situations, as those components have already 

been tested, debugged, and proven through previous applications (Meyer, 1997).   

2.1.4 Compatibility 

Compatibility measures the ability of a software system to be combined 

with others.   Compatibility is becoming more and more important as developers 

seek complete and integrated solutions that follow a problem from its initial 

statement to its final, presentable solution output.  A software product that 

operates in an isolated environment will soon find itself inadequate and obsolete, 

while a product that can work with Internet, word processing, database, 

multimedia, or other utilities will remain useful components of a total solution 

(Meyer, 1997).   

2.2 OBJECT-ORIENTED PROGRAMMING 

Many of the design principles stated above describe the very nature of 

Object-oriented programming.  When combined with COM, an object-oriented 

approach can lead to a solution that can be integrated with many other software 

systems.   
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2.2.1 Concepts 

Object-oriented programming uses fundamental constructs called objects 

to represent real-world concepts.  Objects possess both a data structure and 

behavior. An object’s data structure is described by its properties or attributes.  A 

property is a descriptor for an object that may take on different values.  For 

example, a river object could be described by a width property.  An object’s 

behavior is also known as its methods or operations.  A method is a task that an 

object performs.  For instance, a river object might have a method that routes a 

hydrograph through it.  Object-oriented development is a thought process and is 

largely independent of its actual implementation in a programming language.  By 

focusing first on the design of objects rather than implementation, designers can 

create objects that best model the relevant aspects of their real counterpart.  An 

object-oriented approach generally includes four concepts:  identity, 

classification, polymorphism, and inheritance (Rumbaugh et al., 1991).  

Identity refers to the quantification of data as discrete objects.  Objects can 

represent both concrete entities such as a reservoir, or concepts such as a reservoir 

operating policy (Rumbaugh et al., 1991). 

Classification refers to the grouping of objects with the same properties 

and methods into a class.  The class defines the properties and methods for the 

objects, with each object representing an instance of the class.  In a water 

resources application, an example of a class might be a reservoir, while the 

Ashokan Reservoir and Center Hill Reservoir would be examples of reservoir 

objects.  Although each reservoir object contains the same properties, such as the 
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name of its managing agency, the values of the properties may differ (Rumbaugh 

et al., 1991). 

Polymorphism means that different classes may implement the same 

behavior in different ways.  For instance, a reservoir object might perform a flood 

routing operation differently than a river object.  Polymorphism allows new 

classes to utilize existing operations without the need for rewriting code, as long 

as each new class contains the code it needs to handle the operation (Rumbaugh et 

al., 1991). 

Inheritance refers to the hierarchical sharing of properties and methods 

among related classes.  Properties and methods common to several types of 

objects can be grouped into a superclass, also known as a parent class.  

Subclasses, or child classes, can then inherit those properties and methods in 

addition to defining their own.  For example, a waterbody could be modeled as a 

superclass, with subclasses of river, lake, and fishpond.  Each subclass may have 

a fish count property, while the lake and fishpond classes may also define a 

surface area property.  Some superclasses are useful for grouping properties and 

methods, but are never used to instantiate objects of their own.  These classes are 

called abstract classes.  By grouping common properties and methods into 

superclasses and then utilizing inheritance, repetition in a program is greatly 

reduced (Rumbaugh et al., 1991). 

Encapsulation is another key concept crucial to a sound object-oriented 

design.  Encapsulation means that the external properties and methods of an 

object (those visible to other objects) are separated from the implementation 
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details of the object, which are hidden from other objects.  By internalizing the 

implementation details, a system becomes much easier to maintain.  The designer 

can change the implementation (for instance to fix a bug or improve efficiency) of 

a particular object’s methods without having to change the way those methods are 

called by other objects (Rumbaugh et al., 1991). 

2.2.2 COM 

COM, which stands for Component Object Model, is a binary 

specification standard devised by Microsoft that allows compliant software to 

utilize the object libraries of other COM-compliant software.  COM itself is not a 

programming language, although languages such as C++ and Visual Basic lend 

themselves towards COM-compliant software design.  Rather, COM provides a 

standard set of rules for developing software such that components from a 

program with a COM-compliant design can access components from other COM-

compliant programs, regardless of the language that each program was developed 

in.   

COM may be most evident within the Microsoft Office applications of 

Excel and Word.  Because each software can utilize the object libraries of the 

other software, each can incorporate useful components from the other software 

into its own documents.  For instance, copying and pasting a range of Excel cells 

from a spreadsheet or a chart into a Word document is an easy operation and 

produces no error.  In fact, Excel’s charting capabilities are directly linked to 

Microsoft Graph, another COM-compliant object library distributed with 

Microsoft Office.   
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By incorporating COM-compliance into a software system’s design, that 

software possesses the potential to utilize components from any other COM-

compliant software.  This means that a purely computational model could be 

extended to produce graphs, prepare reports, carry out spreadsheet operations, 

update databases, or even upload results to a web site, while keeping the core 

functionality of the model relatively simple. 

2.2.3 Object-Oriented Programming and Software Design Principles 

When combined with a COM-compliant design, object-oriented 

programming addresses many of the key software design principles stated above.  

Because object-oriented design focuses on the nature of the required objects and 

their relationship to their real counterparts, rather than just the functionality 

required by the current problem statement, object-oriented software possesses a 

greater potential for robustness that function-driven software.  The modular nature 

of object-oriented programming lends itself to an extensible design, as changes in 

design requirements can be implemented by changing only the necessary objects.   

Encapsulation further improves extensibility, as a change in an object’s 

internal procedure is hidden from other components of the system, and thus the 

rest of the system needs no modification to support the object’s internal change.  

A modular design and polymorphism promote reusability, by allowing reuse of 

both modules (objects) and operations when necessary.   

Finally, a COM-compliant design and encapsulation allow components of 

an object-oriented system to be compatible with other programs, regardless of the 

programming language or implementation details of those components.  One way 
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in which this is accomplished is through the incorporation of DLLs into a 

software system.  A DLL, or dynamic linked library, is a set of objects, functions, 

or routines that operate in the same process space as the calling application.  By 

including a DLL from another COM-compliant application in a particular 

application’s software design, that application can use components from the other 

application that are included in the DLL. 

2.3 INTERFACE DESIGN 

A well-written computational model remains ineffective without a clear 

link between the program and the user.  Graphical User Interface (GUI) design is 

one of the key issues in software construction today.  Hartley (1998) provides 

seven useful design principles: User in Control, Directness, Consistency, 

Forgiveness, Feedback, Aesthetics, and Simplicity (Hartley 5). 

2.3.1 User in Control 

Users should feel that they are in control of the software.  Navigation 

between different elements in the GUI should be relatively easy and 

straightforward.  Selection processes should not make incorrect assumptions 

about which objects the user intended to select.  Difficulty in routine navigation 

and selection tasks can quickly lead to frustration.  The ability to customize the 

software should also be taken into account, as more experienced users often seek 

ways to maximize efficiency and improve functionality for specific applications.  

Keyboard shortcuts and Visual Basic for Applications macros can provide such 

customization potential (Hartley 1998). 
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2.3.2 Directness 

The GUI should be intuitive to the user.  If the user already possesses a 

sense of familiarity with the GUI, then the mental workload required by the user 

to learn the GUI will be reduced.  Directness is evident in many programs that 

mimic the standard interface of Microsoft Windows applications.  This interface 

includes File, Edit, View, and Help menus, and a toolbar with icons for opening, 

saving, and printing files (Hartley 1998). 

2.3.3 Consistency 

Consistency between different components of an application reduces the 

mental workload of the user by allowing the user to transfer experience between 

components.  Elements of consistency include placement of controls, labeling of 

controls (font and name), and operational behavior (Hartley 1998).   

2.3.4 Forgiveness 

The application should be designed to handle errors resulting from either 

physical mistakes (an inadvertent key press) or mental mistakes (calling the 

wrong task.)  The application should gracefully recover from such errors, and 

provide feedback about the nature of the error to assist the user in recovering from 

the error and preventing future mistakes (Hartley 1998). 

2.3.5 Feedback 

An interface should provide feedback for each action that a user takes.  

When a change is made to an object in the application, the interface should 

indicate that the request for change was accepted and that the operation was 
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successful.  Excessive delays cause stress for the user, even if the delay is a matter 

of seconds.  For long processing tasks, the application should indicate the 

system’s status and progress.  This is commonly accomplished with a progress bar 

(Hartley 1998).   

2.3.6 Aesthetics 

The layout of elements of a user interface should not detract from their 

function.  In fact, proper grouping and aligning of elements will help to make the 

purpose of the interface more obvious.  The elements should be arranged in a 

logical order (if applicable), with broader information at the top of the interface 

and more specific information proceeding down the interface (Hartley 1998). 

2.3.7 Simplicity 

A form should not prompt or show the user for an excessive amount of 

information.  Rather, the information should be communicated in incremental 

forms.  The elements of the interface should be arranged so that the interface is 

easy to use.  Descriptive labels help clarify the purpose of a particular element.  

Grouping and utilizing different colors or font styles helps to distinguish different 

logical groupings of elements.  For instance, a set of buttons that are related to a 

common task could be organized into a toolbar or menu (Hartley 1998). 

2.4 EXISTING MODELS 

The principles behind intelligent software construction, object-oriented 

programming and GUI design provide useful guidelines in developing a 

computational model on top of the ArcGIS Hydro data model.  Examining how 

other existing hydrologic and hydraulic models incorporate those principles into 
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their design is an insightful and worthwhile task.  Several models have been 

investigated for that purpose, with the nature of the models ranging from an 

extension of a GIS to fully independent programs. 

2.4.1 HEC-HMS 

The Hydrologic Modeling System (HMS), created by the US Army Corps 

of Engineers Hydraulic Engineering Center (HEC), is a hydrologic model that 

utilizes seven objects to route water through the landscape:  Subbasin, Reach, 

Reservoir, Junction, Diversion, Source, and Sink.  Each object is defined by the 

manner in which it conducts water through the landscape.  All objects possess an 

identification number.  The connectivity between objects is known, and is 

established for each object by storing the ID number of the next downstream 

object.  From this, a schematic can be drawn of connected components.  In HMS, 

water can only be passed in the downstream direction (no backwater effects).  

Thus, the objects in HMS act essentially as time series processors that receive an 

inflow time series from upstream sources, process the inflow to produce an 

outflow time series, and pass the outflow to the next downstream object (HEC, 

2001).   

A simulation run is governed by three major components:  the Basin 

Model, the Meteorological Model, and the Control Specifications.  The Basin 

Model contains information about the properties and connectivity of the seven 

objects described above.  The Meteorological Model contains rainfall and 

evaporation information in the form of time series associated with rainfall gages.  
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The Control Specifications component defines simulation properties such as time 

step and duration (HEC, 2001).   

The HEC has recently produced a library of routines used for hydrologic 

calculations in the form of a DLL called libHydro.  These are many of the same 

routines used in the HEC-1 software (which is the predecessor to HMS), and thus 

have been proven through years of use.  These routines can be accessed through 

calling statements in programming languages such as Visual Basic or C++ (HEC, 

1995).  By releasing HEC-1 routines in a reusable format, the HEC has made a 

vast library of useful hydrologic functions available.   

2.4.2 Kortflom 

Alfredsen and Saether (2000) created a program called Kortflom for 

performing flood analysis in river systems at the Norwegian University of Science 

and Technology.  The model routes water through a river system that may include 

lakes and reservoirs.  The object-oriented framework behind the program supports 

a set of hydrological components, topological relationships between those 

components, and specialized system behavior during simulation.  The model is 

written in C++ and is designed to allow users to easily create new components, 

either through specification or generalization of existing components.  To 

promote a robust design, the model allows for the use of different methods in 

calculating flows on reaches, depending on data availability and reach 

characteristics.  The model is designed so that the basic structural components 

(e.g. rivers, lakes and catchments) of a real world river system are modeled along 

with their topological associations, but without a link to a specific computational 
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component.  This makes it easier to choose which computational method to use 

for a specific component (Alfredsen and Saether, 2000). 

The model is divided into four major components:  structural components 

and system topology, computational methods, data containers, and simulation 

control.  A special control object ensures that only appropriate components (such 

as a river branch) can be inserted at a given location.  The model incorporates two 

time series classes, RegularTimeSeries and IrregularTimeSeries, with both classes 

inheriting from an abstract base time series class.  RegularTimeSeries keeps data 

for time series with regular time intervals, while IrregularTimeSeries keeps data 

for time series with irregular time intervals.  In addition to the classes designed to 

store time series data, several classes have been developed to handle time series 

transformations.  These classes support transformation, sorting, and statistical 

analysis of time series data.  During simulation, timing in the model is handled by 

a global time control class.  Before a simulation can be run, three steps must be 

performed:  1) create the components to model the river system, 2) collect data to 

describe the components, and 3) connect the components in a topological 

network.  In the future, the system may be stored in an object-oriented database 

(Alfredsen and Saether, 2000). 

2.4.3 SMILE 

Spanou and Chen (2000) developed an object-oriented tool called SMILE 

for modeling point-source pollution in river systems.  The software allows the 

user to represent river basins, while supporting the computation of river flows and 

water quality. 
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To represent river basins, the software uses a Watershed object that is a 

composition of a RiverSystem object, and optionally of several other objects such 

as Community and WastewaterTreatmentPlant.  The Watershed object is designed 

so that it can be easily extended to allow the inclusion of other objects (such as 

agricultural areas) if needed (Spanou and Chen, 2000).   

The network in the model is made up of RiverNode and RiverReach 

objects.  The RiverNode class has subclasses that represent flow change points 

(WasteDischargePoints) and monitoring points (SamplingStations).  The 

RiverNode class also has a subclass called MixingPoints where computations 

involving flow continuity and mass balance are performed (Spanou and Chen, 

2000).  

2.4.4 Noah 1D 

Murray and Kutija (2000) developed an object-oriented model called 

Noah 1D that uses a variety of numerical schemes to solve one-dimensional free 

surface and pressurized flow problems.  The model uses a central ModelControl 

object to create and perform maintenance on each component of the model.  A 

separate SolutionControl object actually performs the simulation process.  Data 

input objects in the model consist of ConnectionEdges, ConnectionVertices, 

PhysicalEdges, CrossSections, and BoundaryConditions.  ConnectionEdges and 

ConnectionVertices define how the components of the model are connected.  

PhysicalEdges contain data that describe the physical properties of an edge, or 

river segment.  CrossSections define the geometry along an edge, while 

BoundaryConditions define the boundary conditions for the model.  By utilizing 
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both ConnectionEdges and PhysicalEdges, the connectivity between components 

in the flow system is separated from the physical description of the components.  

Input data and solutions are also separated into different objects.  While input data 

is maintained by the data input objects described above, solutions from 

simulations are stored in SolutionPoint objects (Murray and Kutija, 2000). 

2.4.5 Map-Based Surface and Subsurface Flow Simulation Models 

Ye (1996) developed a surface and subsurface flow simulation model that 

integrates hydrologic process calculations, a map-based representation of the 

hydrologic system, and the underlying database of information that describes the 

system.  The application runs from within an ArcView 3.2 project file, with 

additional functionality implemented through code.  Ye used an object-oriented 

approach in developing river basin and river section classes, with each class 

containing properties to describe an object’s state, and simple behaviors to handle 

such tasks as drawing and returning spatial location.  Behaviors associated with 

hydrologic and hydraulic processes were left to be described by mathematical 

models within the program (Ye, 1996).   

To store time series data, Ye investigated creating a time series table for 

each parameter at each location.  Thus three monitoring points measuring stage 

and flow velocity would be associated with six time series tables.  However, Ye 

chose not to implement this strategy due to the large number of tables that would 

be created with even a small number of spatial features.  Instead, Ye’s application 

creates a time series table for each time series attribute.  The columns in the table 

represent the spatial locations associated with the attribute, while the rows 
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represent the timestamps.  Thus a cell in the table would represent the value of a 

time-varying attribute at a particular location at a particular time (Ye, 1996).   

2.4.6 ArcFM 

ArcFM (Arc Facilities Manager) is a standalone software application 

designed to facilitate the planning and management of water, electric, and gas 

utilities.  ArcFM is more of a planning and analysis model, rather than a 

computational model, with an emphasis on the layout, status, and relationships 

between utilities features.  The application consists of a GIS-based user-interface 

through which users can map and analyze utilities.  The GIS is directly linked to a 

geospatial relational database, such as Oracle.  ArcFM is built to work on the 

Windows NT platform, and was written with Visual Basic 5.0 (ESRI, 1998).   

ArcFM is built on the ArcGIS software system.  ArcFM provides the user 

with several features designed to streamline utilities management.  These include 

a graphical user-interface with a custom ArcFM Viewer, a rich toolset geared 

towards facilities-based tasks (such as traces, mapping, and construction), and a 

RuleBase Engine (RBE) that supports automatic validation checks, connectivity 

assurance, and other business rules defined by the user (ESRI, 1998).   

ArcFM’s user-interface was designed with Visual Basic to resemble 

typical Windows-based applications.  The software contains standard menus such 

as a “File” menu, and utilizes buttons and tools like MS Word or Excel (ESRI, 

1998).  Using familiar components in a graphical user-interface shortens the 

learning curve for a given application.  This is an example of Directness as 

described by Hartley (1998).   
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ArcFM comes with its own viewer software.  The viewer provides utilities 

for reporting, charting, mapping, and outputting data.  With the viewer, the user 

can select from a list of feature types to create in a toolbox-style window.  The 

viewer also contains custom tools such as an attribute inspection tool and a tool 

which assigns images to particular features (ESRI, 1999). 

ArcFM contains a RuleBase Engine (RBE) to help insure model integrity 

and ease maintenance efforts by encoding business rules specified by the user.  

The RBE controls display of features, defines the structure of the user interface, 

asserts connectivity rules between features, and performs attribute validation for 

features.  The RBE can simplify editing tasks by allowing only the appropriate 

pipes to be connected to certain valves, for example.  When making a connection, 

the RBE automatically snaps features together, enforcing topological 

connectivity.  By separating the rulebase from the actual data, ArcFM preserves 

the integrity of the data while enhancing the maintenance and creation of ArcFM 

features (ESRI, 1999).  In addition to the basic rules provided by ArcFM, the user 

can add his own business rules to suit the needs of his specific application (ESRI, 

1998).   

An example of inheritance can be found in the ArcFM object model.  To 

build the analysis model for ArcFM, individual classes were conceptualized.  

Properties of each class were then defined, in the process revealing common 

properties between classes.  Higher-order classes were then created to define the 

common properties, with the appropriate classes inheriting from these 

superclasses.  These superclasses were often abstract (ESRI, 2000).   
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2.5 CONCLUSIONS 

Alfredsen and Saether, Murray and Kutija, and Ye each incorporated a 

differentiation between data and analysis operations by separating the structure 

and topology of the river system from computational components.  Murray and 

Kutija further specialized river system components by storing connectivity 

(topology) between components and the physical description of the components in 

separate objects, which is similar to the use of HydroEdge (for connectivity) and 

HydroFeature (for properties) objects in the ArcGIS Hydro Data Model.  This 

differentiation helps to secure the integrity of the data while promoting a modular 

structure in the software’s design.  This scheme also encourages use of 

preexisting computational procedures, such as those available in HEC’s libHydro.  

Using proven routines not only shortens development time for a computational 

model, but also validation time as well. 

The three steps that must be followed before a simulation is run in 

Kortflom are equivalent to the data preparation that routinely occurs in a GIS.  

The network model in SMILE bears a resemblance to the current network model 

in ArcGIS.  In particular, the RiverNode subclasses of WasteDischargePoint and 

SamplingStation demonstrate a direct correlation to the WaterDischarge and 

MonitoringPoint classes in the ArcGIS Hydro data model.  From these examples, 

it is clear that GIS and the ArcGIS Hydro data model may provide a sound data 

structure and pre-processing environment for the data components of a hydrologic 

simulation model. 
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Both Kortflom and Noah 1D use a simulation control object to control the 

simulation run, as well as objects to manage time series data.  To keep track of the 

movement of water through the landscape, both spatially and through different 

processes, a hydrologic simulation model might benefit from a similar control 

object, like a conductor to the orchestra of hydrologic processes.  While the 

ArcGIS Hydro data model does provide a TimeSeries class, a more elaborate 

scheme may be required to store time series information from a simulation model. 

Each of the independent programs described above possesses the freedom 

of a structural and user-interface design best suited for its model needs.  Each of 

those models can also run in the absence of a GIS system.  However, ArcFM and 

Ye’s simulation models, which are integrated into the GIS environment, have the 

benefit of using a GUI already familiar to GIS users.  By creating a model that 

runs inside of a GIS, much of the work in developing a GUI can be avoided since 

a basic GUI already exists.  ArcGIS’s COM-compliant design and extensive 

object library also encourage development from within a GIS.  Ultimately, the 

nature of the model and the resources available will probably determine the 

platform on which the model is built.   
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Chapter 3:  Methodology 

The new capabilities made possible by the latest innovations in GIS 

technology were one of the primary factors responsible for the development of the 

object-oriented ArcGIS Hydro data model (Davis, 1999).  This chapter begins by 

discussing how hydrologic modeling lends itself to object-oriented programming, 

followed by a brief description of innovations behind ArcGIS’s software design.  

It also describes the ArcGIS Hydro data model, including how it benefits from the 

GIS innovations and how it extends the capabilities of GIS software in a water 

resources engineering context.  With a basic understanding of Arc Hydro and the 

software established, this chapter discusses approaches for developing a 

computational model on top of Arc Hydro.  Finally, this chapter outlines some 

design alternatives for creating a user interface for the computational model.   

3.1 OBJECT-ORIENTED PROGRAMMING AND HYDROLOGIC MODELING 

The hydrologic cycle involves several processes, such as rainfall/runoff 

and channel routing, which must be integrated to produce a complete solution 

through modeling.  Thus hydrologic and hydraulic modeling lends itself to a 

modular style of programming, in which each of the processes is controlled by a 

sub-model that is interconnected to other components in the whole system 

(Alfredsen and Saether 2000).  Due to the modular nature of object-oriented 

programming, and the fact that object-oriented programming has now been 

incorporated into GIS technology through ArcGIS, it seems logical that a 

hydrologic simulation model would benefit from an object-oriented design.  
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Several modeling programs already exist that use this approach, such as HEC-

HMS, Noah1D, and the Map-Based Surface and Subsurface Flow Simulation 

Models developed by Ye.   

In terms of GIS Features, the basic identity and attributes of objects (the 

Features) are already defined.  What remains is to associate methods or behaviors 

with those objects.  The HEC has contributed a great resource to this effort by 

creating libHydro, a DLL containing the hydrologic functions and subroutines 

from the HMS software in a form that may be called by Visual Basic, C++, or 

other programming languages (HEC, libHydro).  By calling these routines from 

an object’s methods, an object can possess a variety of hydrologic behaviors such 

as runoff determination or channel routing.  On the developer’s side, development 

time is greatly shortened since the routines are already written.  Validation time is 

also greatly reduced since the routines have been tested through years of use in 

the HEC software. 

Because an object-oriented design lends itself to hydrologic modeling, and 

because object-oriented programming has been integrated into ArcGIS, this paper 

discusses approaches of computational model development from within the 

context of object-oriented programming. 

3.2 SOFTWARE OVERVIEW 

ArcInfo 8 and ArcView 8 are the latest releases of ESRI’s GIS software.  

Collectively known as ArcGIS, the software exhibits many new features and 

innovations that mark it as the next step in the evolution of GIS.  ArcInfo 8 is 
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ESRI’s enterprise GIS software and is composed of three major components:  

ArcCatalog, ArcMap, and ArcToolbox.   

ArcCatalog resembles Windows Explorer in look and feel, its purpose 

being the creation and maintenance of GIS files.  ArcCatalog provides three types 

of views for browsing data:  Contents, Preview, and Metadata.  The Contents 

view shows tables and geodatabase files in the same way that folders and files are 

shown in the windows explorer (the geodatabase model is described in section 

3.2.2).  ArcCatalog can also display coverages and shapefiles, which are the file 

formats used by earlier versions of ESRI’s ArcInfo and ArcView GIS software, 

respectively.  The Preview view displays a preview of the highlighted GIS file, 

either through a spatial display or by showing the attributes of the data in a table.  

The Metadata view reveals metadata about the GIS file, such as the creator of the 

data, the date the data were created, etc.   
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Figure 3.1 ArcCatalog Graphical User Interface 

ArcCatalog is the utility used to create relationships between GIS features 

and to build geometric networks.  Relationships define associations between 

features through attribute keys.  Geometric networks define connectivity between 

line and point features.  ArcCatalog can also be used to import and export GIS 

data from one file format to another.   
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Figure 3.2 ArcMap Graphical User Interface 

ArcMap is used for viewing and analyzing GIS data.  It contains tools for 

zooming, panning, and making printable maps, as well as special editing and 

network tracing tools.  Tools performing similar functions are organized into 

toolbars, which can be moved and docked in different locations to improve the 

ergonomics of the interface.  The ArcMap user interface may be customized by 
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creating custom tools and toolbars, and then associating those tools with code that 

performs a particular task.   

ArcToolbox contains many utilities that operate on GIS data, including 

projection utilities and data conversion tools.  The data conversion tools use the 

same routines that ArcCatalog uses for importing and exporting data between 

different GIS file formats (e.g. coverages, shapefiles, etc.)  GIS data can also be 

processed to create new data with ArcToolbox.  For instance, the Create 

Centerlines tool creates a centerline between dual-line features. 

 

 

Figure 3.3 ArcToolbox Graphical User Interface 
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ArcView 8.1 is sold as a separate package from ArcInfo 8 and is used for 

viewing GIS data.  ArcView 8.1 can edit shapefiles and simple feature classes, but 

it cannot create geometric networks or edit network feature classes.   

3.2.1 RDBMS Technology 

In previous versions of ESRI’s GIS software, spatial data were stored in a 

proprietary format.  ESRI attempted to use a more database-centric structure upon 

the release of their ArcView GIS software.  Yet while ArcView versions 1-3 

could store attribute information in dBase format, the geographic representation 

of data was still linked to a separate file.   

This changed when ESRI incorporated relational database management 

systems (RDBMS) structure into ArcGIS.  Previous database technology required 

fields in a table (such as a dBase table) to be of a standard data type, such as 

integer or string.  For this reason, old versions of ArcView could store the 

attributes of a Feature in a dBase file, but the information necessary to define that 

Feature’s spatial representation had to be stored in a separate file.  However, 

today’s RDBMS software allows a table to possess one or more blob fields. A 

blob field can store data of any type, including standard data types such as 

integers and strings, as well as images and files.  ArcGIS utilizes a blob field in 

the design of Feature Classes.  A Feature Class is a table made up of Features of 

the same type, such as rivers.  Rows in the table represent an individual Feature, 

such as the Tennessee River.  By including a blob field in the Feature Class table, 

the attribute information of the Tennessee River is stored alongside its spatial 

representation, providing a more intimate link between the two.   

 33



 

 

Figure 3.4 Feature Class Table Structure 

3.2.2 Geodatabase Structure 

ArcGIS supports two main categories of Features:  Simple Features and 

Network Features.  Simple Features include points, lines, and polygons.  Network 

Features include Simple Edges, Complex Edges, Simple Junctions, and Complex 

Junctions.  All Edges are connected by Junctions.  A Simple Edge is a linear 

Network Feature with no internal junctions.  A Complex Edge is a linear Network 

Feature that may contain one or more internal junctions, which are junctions that 

lie on the edge but do not split the edge.  Thus a Complex Edge may join another 

Complex Edge anywhere along its length, while Simple Edges can only join other 

Simple Edges at their endpoints.  Simple Junctions can be thought of as the nodes 
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that connect Edge Features, although Junctions do not have to be attached to any 

Edges.  Complex Junctions are Junctions with special internal connectivity, 

analogous to a switchboard.   

A collection of Features of the same type is stored as a Feature Class.  

Each row in the Feature Class table represents an individual Feature.  Feature 

Classes that share a common use can be grouped into Feature Datasets.  A Feature 

Dataset is a container that defines a reference frame for the Feature Classes that it 

contains.  The reference frame includes information about the spatial projection, 

coordinate range and coordinate precision for the data.  Feature Datasets can also 

store relationships between Feature Classes, as well as geometric networks.  

Relationships in ArcGIS are comparable to relationships in any RDBMS, with 

related rows in different tables being linked by a common identifier in key fields 

in each table.  Geometric networks are used for defining network topology 

between Features.  Geometric networks support tracing and connectivity tasks.  

Only Network Features may participate in a geometric network. 

Feature Datasets, Feature Classes, relationships, geometric networks, and 

non-spatial tables are all stored in a Geodatabase.  A Geodatabase is a relational 

database that serves as a container for spatial data in ArcGIS.  Other RDBMS 

software, such as Oracle or Access, can open a Geodatabase.  Using such software 

to view a Geodatabase reveals Feature Class tables, as well as other tables used to 

maintain the Geodatabase.   
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3.2.3 Custom Features  

ArcGIS has extended the power and functionality of a Feature by 

incorporating object-oriented technology into its software design.  In addition to 

their spatial and attribute information, Features can also possess special behaviors 

through the use of interfaces.  For example, in addition to being a simple blue line 

on a map, the GIS representation of a river may also know how to route a flood 

wave from its upstream to its downstream end, how to draw itself at different 

scales, and which Features to notify if its spatial or attribute information changes.  

By adding custom behavior to Features, the GIS representation of real-world 

objects becomes a more accurate depiction of the reality that GIS is trying to 

model.   

Custom Features can also take advantage of ArcGIS’s COM-compliant 

design.    Because ArcGIS is COM-compliant, Features can access the capabilities 

of software such as Microsoft Excel to plot graphs, or Word to prepare reports.  

The code behind a Feature’s behavior can be written with a COM-compliant 

programming language, such as C++, meaning that users no longer must learn a 

proprietary programming language to customize the software.  

To create custom Features, the name, inheritance, attributes, and interfaces 

are created in the Unified Modeling Language, or UML.  UML is a standard 

language for writing software blueprints using object-oriented techniques (Booch, 

Grady, James Rumbaugh, and Ivar Jacobson, 1999).   Custom ArcGIS Features 

are created in a UML static structure diagram, which is analogous to an object 

model diagram.  As defined by Rumbaugh et al., an object model “describes the 
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static structure of the objects in a system and their relationships” (6).  Each 

diagram in the model contains nodes, which represent custom Feature or Object 

classes, and arcs, which represent relationships (inheritance, associations, etc.) 

between classes.  Packages organize UML items to display a common role of a set 

of classes, or to show relationships between classes. 

 

 

Figure 3.5 Sample UML Diagram 

In the diagram above, the custom Parcel class inherits from the ESRI class 

Feature, as designated by the line with the arrow pointing from Parcel to Feature.  

In addition to Parcel inheriting the Shape attribute of Feature, Parcel also defines 

a ParcelValue attribute and a GetParcelValue method (behavior).  Although a 

method has been defined in the static structure diagram, the implementation of the 

method actually occurs in the Visual C++ or other programming environment.  

Parcel is in a one-to-many relationship with the custom Building class.  The 

relationship is read as Parcel Contains Building.  Each object instantiated from the 

Parcel class may contain one or more Building objects.   
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UML diagrams are created with a CASE (Computer Aided Software 

Engineering) tool, which is a graphic software system.  Once the object model has 

been created with a CASE tool, the UML is exported to the Microsoft Repository.  

Using a code generation wizard that ships with the ArcGIS software, stub code 

can be generated in Visual C++ from the repository, and the code required to 

implement each of the behaviors of the geoobjects can be created.  After code 

generation is complete, a DLL is created and linked to all instances of the custom 

Features in ArcGIS.  By accessing the Microsoft Repository in ArcCatalog using 

the Schema Creation Wizard, Feature Classes that will store custom features can 

be created, or the schema can be applied to existing data in a geodatabase. 

 

 

Figure 3.6 Procedure for Creating Custom Features in ArcGIS 
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3.2.4 COM-Compliance 

ArcGIS is the first GIS software released by ESRI with a COM-compliant 

design.  Through COM, ArcGIS can now communicate with other COM-

compliant software, such as Word, Excel, and Internet Explorer, by utilizing 

public components (those that can be accessed by other applications) from each 

software’s object library.  ArcGIS also uses Visual Basic for Applications (VBA) 

as its customization language, no longer requiring users to learn a proprietary 

language (such as Avenue or AML) for customization purposes.  Note that Visual 

Basic (VB) is different from VBA, in that Visual Basic is used to create 

standalone applications or DLLs, while VBA is used from within a software 

application to customize that application.  Through VBA, the graphical user 

interface of ArcMap and ArcCatalog can be tailored to the fit the needs of the 

user.  Custom buttons and toolbars can be created, and macros can be written to 

automate complex tasks.  VBA is also the means by which the object libraries of 

other COM-compliant software are accessed.  This means that ArcGIS can now 

link spatial data to spreadsheet applications, reports, and even web utilities.  The 

customization potential provided by COM-compliance and VBA has extended the 

functionality of ArcGIS far beyond that of any GIS software in the past.   

3.2.5 MapObjects 

In addition to the customization capabilities within ArcGIS, ESRI has also 

provided a means to create separate programs that utilize one or more components 

from ArcGIS.  These streamlined applications incorporate only the ArcGIS 

components they need, resulting in a much smaller and much faster software 
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product than the powerful ArcGIS software.  This collection of reusable 

components is referred to as MapObjects.   

MapObjects consists of a Map control and over thirty other objects that 

can be used in Visual Basic, Delphi, and other industry standard programming 

environments (ESRI 8).  These controls possess much of the same functionality 

found in ArcGIS.  Applications built with MapObjects can support the display of 

spatial information, with functionality such as panning and zooming.  MapObjects 

also supports basic querying of features (either spatially or by attribute data), 

location of addresses, feature selection, and statistical calculations.  While 

MapObjects is not intended to act as a substitute for complete ArcGIS 

functionality, it can add GIS capabilities to an application that would otherwise be 

lacking a mapping component.   

3.3 ARCGIS HYDRO DATA MODEL 

The ArcGIS Hydro data model attempts to take advantage of some of the 

new customization capabilities available in ArcGIS.  The ArcGIS Hydro data 

model is a collection of custom feature and object classes organized to facilitate 

the preparation and maintenance of geospatial data for use in water resources 

applications.  It is designed to work within the ArcGIS software system.  Arc 

Hydro itself is not a simulation model.  The primary goal of Arc Hydro is to 

provide a schema that, when applied to GIS data, produces data that can be easily 

used in hydrologic or hydraulic analyses.  In essence, it is a data support system 

for hydrologic simulation.  Yet in organizing Arc Hydro’s classes, a structure for 

developing GIS data useful in a water resources engineering context was also 
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developed that is of value even if Arc Hydro itself is not applied.  Arc Hydro 

serves as a conceptual framework that integrates the latest advances in GIS 

technology with the latest advances in the realm of hydrologic database 

development.   

The ArcGIS Hydro data model was designed in UML using Visio 2000, a 

CASE tool.  Arc Hydro is composed of five major packages, with four packages 

representing Feature Datasets that will be included in the geodatabase, and the 

fifth package representing time series data.  The packages are Hydro Features, 

Hydro Network, Drainage Areas, Channel Features, and Time Series. 

3.3.1 Hydro Features 

The Hydro Features package contains twelve classes used to represent the 

cartographic features of the landscape.  The HydroPoint, HydroLine, HydroArea, 

and Waterbody classes store typical hydrography data layers such as rivers, 

swamps, and lakes.  In addition to map hydrography, there is a vast collection of 

water resources features stored in extensive databases, such as the National 

Inventory of Dams (U.S. Army Corps of Engineers par. 1).  The Dams, Bridges, 

Structures, WaterWithdrawal, WaterDischarge, MonitoringPoint and UserPoint 

classes are designed to store such features. Each of these classes inherits attributes 

from an abstract HydroFeatures class.  These attributes include HydroID, an 

identifier for features in Arc Hydro; and FeatureType, which is used to further 

distinguish features for cartographic or display purposes.  The Hydro Features 

package also contains a HydroResponseUnit class, which is used to represent data 

pertaining to the calculation of the vertical water balance.  This class contains 
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such data as the distribution of soil types, climate data, land use, and 

administrative boundaries.   

 
Class 

(Type) 
Inherits 

From 
Attribute 

(Type) 
Description 

Dam 
(Point) 

HydroPoint  A structure creating a pond or 
reservoir storing water 

Bridge 
(Point) 

HydroPoint  A structure carrying a road 
across a stream 

Structure 
(Point) 

HydroPoint  Any other kind of water 
resources structure 

Monitoring 
Point 

(Point) 

HydroPoint  A measurement station or 
sampling point 

Water 
Withdrawal 

(Point) 

HydroPoint  Point of withdrawal of water  

Water 
Discharge 

(Point) 

HydroPoint  Point of discharge of water 

UserPoint 
(Point) 

HydroPoint  Any other point of interest 

Hydro 
Feature 

(Abstract) 

Feature 
(ESRI) 

 Abstract class with common 
attributes and methods for 

Hydro Features 
  HydroID 

(String) 
Unique feature identifier in the 

geodatabase 
  FeatureType 

(String) 
Type of geographic feature 

  Name 
(String) 

Geographic name 

HydroPoint 
(Point) 

HydroFeature  Point features from map 
hydrography and inventory 

sources 
  JunctionID 

(String) 
Identifier for the corresponding 

junction on the network 
HydroLine 
(Polyline) 

HydroFeature  Line features from map 
hydrography 

HydroArea 
(Polygon) 

HydroFeature  Area features from map 
hydrography 
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Waterbody 
(Polygon) 

HydroArea  An area of water 

  AreaInSqKm 
(Double) 

Area independent of map units 

  JunctionID 
(String) 

Identifier for the junction at the 
outlet of the area 

Hydro 
ResponseUnit 

(Polygon) 

Feature 
(ESRI) 

 Any subdivision of the 
landscape used for surface 
water balance accounting 

  HydroID 
(String) 

Unique feature identifier in the 
geodatabase 

  AreaInSqKm 
(Double) 

Area independent of map units 

Table 3.1 Hydro Feature Classes 

3.3.2 Hydro Network 

The Hydro Network package contains a geometric network named 

HydroNetwork designed to transmit water through the drainage system of the 

landscape.  The network includes a HydroJunction class, which is used to connect 

edges to edges or drainage areas to the river network, and a HydroEdge class, 

which transports the water along the network.  Key attributes on HydroEdge 

include ReachID, LengthDownstream, HydroEdgeType, and FeatureType.  

ReachID is an identifier used for linear referencing events along a river such as a 

water quality segment.  LengthDownstream stores the distance from the most 

downstream node of the edge to the sink (lake, ocean, sinkhole, etc.) to which the 

river flows.  This attribute is useful in establishing a measure system for linear 

referencing, or for finding the distance between segments of a river.  

HydroEdgeType distinguishes the two major categories of HydroEdges:  

Flowlines and Shorelines.  Shorelines represent edges along the boundaries of 
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areal water features, such as lakes or oceans.  Flowlines represent all other edges 

including river centerlines and streamlines through a pipe system.  FeatureType 

provides an additional level of classification for HydroEdges. 

The HydroNetwork is associated with two classes designed to support 

linear referencing on the network, HydroPointEvent and HydroLineEvent.  These 

classes store events at a single point along on edge, and across a segment of one 

or more edges, respectively.  These classes inherit from an abstract HydroEvent 

class, which contains a ReachID attribute that maps to the ReachID attribute in 

HydroEdge. 

 
Class 

(Type) 
Inherits 

From 
Attribute 

(Type) 
Description 

HydroEdge 
(Complex 

Edge) 

Complex 
Edge 

(ESRI) 

 Linear segments in the 
HydroNetwork 

  HydroID 
(String) 

Unique feature identifier in the 
geodatabase 

  ReachID 
(String) 

Reach identifier (used for linear 
referencing) 

  Name 
(String) 

Geographic name 

  LengthInKm 
(Double) 

Length independent of map 
units 

  Length 
Downstream 

(Double) 

Length along shortest path to a 
downstream reference location 

  Flow 
Direction 
(Integer) 

Labels flow direction:  
Uninitialized = 0, WithDigitized 

= 1, AgainstDigitized = 2, 
Indeterminate = 3 

  FeatureType 
(String) 

Type of geographic feature 

  HydroEdge 
Type 

Type of HydroEdge: 
Flowline = 1 
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(Integer) Shoreline = 2 
HydroJunction 

(Simple 
Junction) 

Simple 
Junction 
(ESRI) 

 Junctions in the HydroNetwork, 
used for outlets, sinks, or other 

purposes  
  HydroID 

(String) 
Unique feature identifier in the 

geodatabase 
  Next 

Downstream 
(String) 

Identifier for next downstream 
feature in the HydroNetwork 

  Length 
Downstream 

(Double) 

Length along shortest path to a 
downstream reference location 

  Drainage 
Area 

(Double) 

Accumulation of all areas that 
drain to this junction, 

independent of map units 
  FeatureType 

(String) 
Type of geographic feature 

HydroEvent 
(Abstract) 

Object 
(ESRI) 

 Abstract class with common 
attributes and methods for 

events 
  ReachID 

(String) 
Identifier of linear referencing 
segment, maps to ReachID on 

HydroEdge 
HydroPoint 

Event 
(Object) 

HydroEvent  A point event 

  Measure 
(Double) 

Measure location of an event 

HydroLine 
Event 

(Object) 

HydroEvent  A line event 

  FromMeasure 
(Double) 

Measure location of the start of 
the line event 

  ToMeasure 
(Double) 

Measure location of the end of 
the line event 

  Offset 
(Double) 

Offset distance that the event is 
displayed from the HydroEdge 

Table 3.2 Hydro Network Classes 
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3.3.3 Drainage Areas 

A drainage area is an area of the landscape that drains to a point on a river 

network, to a river segment, or to a waterbody.  The Drainage Areas package 

contains five classes that represent the elevation-based drainage pattern of the 

landscape:  DrainagePoint, DrainageLine, Catchment, Watershed, and Basin.  

Catchments represent drainage areas defined by a consistent set of rules, such as a 

threshold drainage area method or the Pfaffstetter coding system.  Watersheds 

represent any arbitrarily defined drainage area.  Basins refer to a set of watersheds 

administratively derived to represent the principal drainage areas in a particular 

region, such as the 8-digit Hydrologic Cataloging Units established in the United 

States.  Drainage lines represent the primary courses of water through the 

landscape as derived through digital elevation model (DEM) analysis.  Due to the 

practical limits on the precision of elevation data, these lines often are not exactly 

spatially coincident with the actual river system.  A drainage point lies at the 

center of a digital elevation model cell, which serves as the outlet cell of a DEM-

derived drainage area.  Drainage points are also known as seed points or pour 

points. 

 
Class 

(Type) 
Inherits 

From 
Attribute 

(Type) 
Description 

Drainage 
Feature 

(Abstract) 

Feature 
(ESRI) 

 Abstract class for drainage 
system features 

  HydroID 
(String) 

Unique feature identifier in the 
geodatabase 

  DrainageID 
(Integer) 

Link between point, line and 
area features of a drainage 
system, such as GridCode, 
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Pfaffstetter number, or HUC 
number 

Drainage 
Point 

(Point) 

Drainage 
Feature 

 Point at the center of a DEM 
cell on a drainage path, usually 

seed point location for 
drainage area delineation 

  JunctionID 
(String) 

Identifier for the junction that 
corresponds to the drainage 

point 
DrainageLine 

(Polyline) 
Drainage 
Feature 

 Line through the centers of the 
DEM cells on a drainage path 

DrainageArea 
(Abstract) 

Drainage  
Feature 

 Abstract class for common 
drainage area attributes 

  AreaInSqKm 
(Double) 

Drainage area independent of 
map units 

  Next 
Downstream 

(String) 

Identifier of next downstream 
area in this drainage area 

Feature Class 
  JunctionID 

(String) 
Identifier for the junction at the 

outlet of the area 
Catchment 
(Polygon) 

DrainageArea  An elementary drainage area 
produced by a uniform process 

of landscape subdivision 
Watershed 
(Polygon) 

DrainageArea  Any subdivision of the 
landscape into drainage areas 

Basin 
(Polygon) 

DrainageArea  A set of standardized drainage 
areas for data archiving and 

delivery 

Table 3.3 Drainage Area Classes 

3.3.4 Channel Features 

The Channel Features package contains three classes used to define the 

channel system of a river.  The ProfileLine class defines longitudinal segments of 

the channel.  This class contains three subtypes for further classifying the 

longitudinal components of a channel system:  Thalweg, Bankline, and 
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Streamline.  The thalweg represents the line formed by connecting the lowest 

points in each transverse section of the channel.  The thalweg can also represent 

the channel centerline.  Banklines represent the boundary of the channel at a given 

discharge.  Streamlines represent any other flow lines in the longitudinal 

direction.  The CrossSection class defines transverse sections of the channel.  

Both the CrossSection and ProfileLine classes contain an (x,y) spatial location, 

elevation, and measure values.   

Sometimes historical cross-section data contain no (x,y) location 

information, but do contain river stationing location of the cross-section along the 

river.  These data can be stored in the CrossSectionPoint class, which is a non-

spatial (object) class containing cross-section events. 

 
Class 

(Type) 
Inherits 

From 
Attribute 

(Type) 
Description 

Channel 
Feature 

(Abstract) 

Feature 
(ESRI) 

 Abstract class for common 
channel attributes 

  HydroID 
(String) 

Unique feature identifier in the 
geodatabase 

  ReachID 
(String) 

Identifier of linear referencing 
segment, analogous to 

ReachID on HydroEdge 
  RiverID 

(String) 
Identifier of linear referencing 
segment, usually corresponds 

to named rivers 
ProfileLine 

(3D Polyline) 
Channel 
Feature 

 Longitudinal profile of the 
channel 

  ProfileLine 
Type 

(Integer) 

Labels profile lines: 
Thalweg = 1, Bankline = 2, 

Streamline = 3 
CrossSection 
(3D Polyline) 

Channel 
Feature 

 Transverse section of a 
channel 

  Cross CrossSection identifier 
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SectionID 
(String) 

  CrossSection 
Origin 
(String) 

Description of origin of cross 
section data 

  ProfileM Location of the CrossSection 
on ProfileLine’s measure 

system 
  JunctionID 

(String) 
Identifier for the junction at the 

outlet of the area 
CrossSection 

Point 
(Object) 

Object 
(ESRI) 

 Non-spatial cross-section data 

  Cross 
SectionID 
(String) 

Identifier of the corresponding 
CrossSection feature 

  Cross 
SectionM 
(Double) 

CrossSection measure point 
location 

  Elevation 
(Point) 

Elevation of CrossSection 
point above mean sea level 

Table 3.4 Channel Features Classes 

3.3.5 Time Series 

One of the most crucial components in hydrologic and hydraulic 

computations is time series data.  The ArcGIS Hydro data model stores time 

series in a simple TimeSeries class with four attributes:  FeatureID, TSType, 

TSDateTime, and TSValue.  FeatureID is the HydroID of the feature related to a 

particular time series record.  TSType, TSDateTime, and TSValue represent the 

type of time series data, the timestamp for a particular value, and the value, 

respectively.   
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3.3.6 Stage of Development 

Currently, none of the Feature Classes in the ArcGIS Hydro data model 

possess behavior.  Efforts to this point in Arc Hydro’s development have been 

focused on establishing the Feature Classes necessary to represent the water 

resources domain in GIS, as well as organizing those Feature Classes into useful 

Feature Datasets.  The next step in Arc Hydro’s development is to determine what 

interfaces should be added to the feature classes to support the main goal of the 

model.  Examining how Arc Hydro can be connected to a computational model 

may help determine some of those interfaces. 

3.4 DEVELOPMENT APPROACHES 

ArcHydro is a data model, or a model providing a structure for storing 

water resources data in a GIS.  This is different from a water resources simulation 

model, which performs calculations on hydrologic or hydraulic data.  There are 

two primary approaches for building a simulation model on top of the ArcGIS 

Hydro data model:  Using Arc Hydro as a Pre-Processor, and Extending Arc 

Hydro.  It should be noted that while each approach is different, elements of both 

could be merged to produce a blend of the two approaches. 

3.4.1 Data Model Pre-Processing 

The majority of water resources computational applications utilizing 

information prepared by a GIS involve pre-processing data in the GIS, and then 

exporting that data to a separate program where the bulk of the computations are 

carried out.  For example, CRWR Pre-Pro is a set of GIS utilities developed at the 

Center for Research in Water Resources at University of Texas at Austin for 
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generating data, which can be imported into HEC-HMS for analysis (Olivera, 

2001).  The ArcGIS Hydro data model is intended to be used for this purpose, 

although on a much broader scale.  Arc Hydro organizes features in a manner that 

lends itself to computational modeling.  Arc Hydro also provides core attributes 

that often prove useful in hydrologic and hydraulic analyses, such as unique 

identifiers and measure values.   

In some cases, the computational model is built within the GIS.  This 

approach tends to avoid some of the errors or difficulties that may occur when 

attempting to communicate between two different software packages.  In this 

scenario, the computational model could directly access features in the ArcGIS 

Hydro data model.  Some basic concepts behind developing an internal or 

external computational model are discussed below. 

3.4.1.1 External Model 

Creating a water resources model that runs independently of ArcGIS 

provides the model developer with much freedom of design.  In fact, this is the 

route that most hydrologic simulation models have taken.  The disadvantage of 

this approach is that the developer may have to “recreate” some of the core 

functionality provided by ArcGIS, such as a network model and editing routines.  

While some of this functionality can be added using MapObjects components 

(viewing, querying, etc.), the more powerful GIS operations can take place only 

within an ArcGIS application.  Of course, ideally this type of functionality would 

not be required, as the ArcGIS Hydro data model has created the bulk of the 

necessary spatially related information for the computational model.   
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Since the computational model is designed to run externally from the GIS, 

some routine would have to be developed to export data from the GIS to a format 

that the computational model can understand.  Note that an export/import routine 

may not be required if the model utilizes the ESRI object library (which is 

possible given ArcGIS’s COM-compliant nature); however, an external model 

should be expected to run in the absence of GIS data or even a GIS system, so the 

ESRI object library would most likely not be included in the model.  This is the 

case with HEC-RAS, which allows the user to either create the components for 

the model simulation in the RAS user interface, or import the information 

required to create the components from exported GIS data (HEC, 1999).  The 

simplest approach is to export to and import from a file format that is both 

compatible with and efficient to access from the GIS and the computational 

model.  With ArcGIS, the two most obvious choices for file types are database 

files and text files.  No matter which file format is used, the routines used to 

export the GIS data should be independent of Arc Hydro.  Programming export 

routines that are compatible with every hydrologic or hydraulic model in 

existence into the basic structure of Arc Hydro would make Arc Hydro very 

cumbersome to use and maintain. 

3.4.1.2 Internal Model 

If a hydrologic model is built to operate within a GIS, then the problem of 

creating export routines is avoided since computational model components can 

communicate directly with Arc Hydro components.  An internal model can also 

incorporate the functionality provided by the GIS.  In this scenario, the model 
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would be created as an ActiveX DLL that utilizes the ESRI object library.  The 

DLL can then be added to an ArcMap document as a custom tool.  The 

disadvantage of this approach is that the computational model’s operation must 

follow the rules of the ArcMap application.  In other words, if the model tries to 

get too fancy, it may generate an error that causes ArcMap to crash.   

3.4.2 Data Model Extension 

Another approach to developing a computational model on top of the 

ArcGIS Hydro data model is simply to extend the core functionality of Arc 

Hydro.  Algorithms already exist for using the structure of Arc Hydro to generate 

data that is useful in hydrologic or hydraulic analyses.  In a relatively simple 

application, the classes in Arc Hydro could be extended one step further to 

include the capabilities of hydrologic computations.  An extension of Arc Hydro 

has already been created to support Digital Flood Insurance Rate Maps (DFIRM) 

for the National Flood Insurance Program.  This extension includes the creation of 

new classes that inherit from Data Model classes, as well as some simple methods 

involving parcel value computations (Donnelly, 2001).  In a hydrologic extension 

to Arc Hydro, routing methods would be associated with linear components 

(HydroEdge, ProfileLine), while methods for calculating runoff would be 

associated with drainage area classes (Watershed, Catchment, Basin.)  However, 

as the scope and computational needs of a hydrologic model grow more complex, 

so do the methods and components needed to perform the computations.  A very 

complex hydrologic model would require so many modifications to the existing 

Data Model, that creating a computational model independent of Arc Hydro 
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would become a much cleaner approach.  In other words, Arc Hydro should only 

be extended when the application is relatively simple and the structure of Arc 

Hydro already provides some core functionality required by the computational 

model.   

3.5 INTERFACE DESIGN 

There are three main alternatives for creating a user interface for a 

computational model in the context of ArcGIS.  The first involves the creation of 

an external computational model.  In this case, the developer has complete 

freedom as to the design of the interface.  However, the developer should still 

follow guidelines of sound interface design, such as those outlined by Hartley 

(1998).  

The second alternative is to create a custom graphical user interface within 

ArcGIS.  This is the approach that ArcFM uses with its special ArcFM Viewer.  

The Viewer is built from the basic ArcGIS GUI components, with additional tools 

and buttons designed to work with the ArcFM software (ESRI, 1998).  By 

developing the user interface within the GIS, many of the basic interface 

components (such as file menus, selection processes, etc.) from the GIS may be 

used, resulting in a shortened development time for a given application.   

The third alternative is to operate the computational model from a custom 

toolbar or menu in the GIS.  This approach works best when the model is 

relatively simple and does not require a robust set of tools and procedures to 

prepare a simulation run.     
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Chapter 4:  Procedure of Analysis 

Due to the great breadth involved in the procedure for creating software 

systems, that subject will not be discussed in this paper.  There are several books, 

software packages, and courses available that are designed to assist the developer 

in the creation of new software, both within and independent of existing GIS 

platforms.   

The process of extending the ArcGIS Hydro Data Model with new classes 

designed to perform hydrologic and hydraulic computations is also a subject that 

will not be discussed here.  See Davis (1999) for a discussion of how to create 

custom features for use in ArcGIS.   

For this research, eleven tools were created which operate on the Feature 

Classes in the ArcGIS Hydro Data Model to integrate the Feature Classes and 

provide support for more intensive hydrologic computations.  These tools are 

implemented as custom add-ins in the ArcMap environment.  The general 

procedure for creating these tools is described below, followed by a discussion of 

how the design principles of software construction and GUI design were applied 

in the development of the toolset. 

4.1 CREATING TOOLS FOR USE IN ARCMAP 

By using the ESRI object library, a DLL can be created in Visual Basic 

that can be added to an ArcMap document as a custom tool.  Custom tools extend 

the functionality of ArcMap to perform tasks specific to a user’s needs.  Eleven 

tools were created for this research.  The general procedure used to create these 
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tools is outlined below.  This discussion assumes a basic knowledge of the Visual 

Basic development environment and the ArcMap user interface.  As an illustrative 

example, a sample tool is described that operates on the first layer in an ArcMap 

document.  For each selected Feature from the layer, the tool displays a message 

box giving that Feature’s ObjectID. 

 

 

Figure 4.1 Procedure for Creating a Custom Tool in ArcGIS 

4.1.1 Creating the DLL 

Custom tools in ArcMap are implemented as DLLs that are created in 

Visual Basic.  Note that Visual Basic is a separate software system from ArcGIS 

and must be loaded on the machine in addition to ArcGIS in order to create 

custom tools. 
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To create a new DLL, start Visual Basic by clicking 

Start>Programs>Microsoft Visual Studio>Microsoft Visual Basic.  When 

prompted for the type of project to create, click ActiveX DLL and then click 

Open.  Visual Basic prepares the current project for the creation of a DLL.  In the 

Project Explorer window, note that a single class (Class1) has been created.  

Class1 is the default startup component for the DLL, which serves as the link 

between ArcMap and the functionality of the custom tool.  In the Properties 

window, several properties for Class1 are listed.  For the purposes of this 

discussion, Class1 is renamed to clsSampleTool.  In the (Name) property of Class, 

type clsSampleTool and press Enter.   

 

 

Figure 4.2 Properties of clsSampleTool 
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4.1.1.1 Implementing the esriCore.ICommand Interface 

In order for ArcMap to recognize clsSampleTool as a custom tool, the 

clsSampleTool must implement the ICommand interface.  ICommand is one of 

the COM interfaces available in the ESRI object library (see Fig. 4.3).  The ESRI 

object library contains a standard set of object classes and interfaces used to 

perform various tasks in ArcGIS.  A COM interface is simply a declaration of 

related properties and methods that may be used by a class.  No implementation 

code exists in the interface.  The implementation details are left up to the class 

that implements the interface.  The properties and methods of ICommand are used 

to define a tool in ArcMap.  Before the ICommand interface can be implemented, 

the project must obtain a reference to the ESRI object library.  On the Project 

menu, click References to open the references window.  Place a check by ESRI 

ArcMap Object Library and ESRI Object Library, and then click OK.  The project 

can now access all public components of the ESRI Object Library.   
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Figure 4.3 Adding a Reference to the ESRI Object Library 

In the code window for clsSampleTool, add the following line of code. 

 
Implements esriCore.ICommand 

This line of code informs the project that clsSampleTool will implement, 

or supply the code for, the properties and methods of the ICommand interface in 

the ESRI object library.  In the object drop down box in the code window, click 

ICommand. 
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Figure 4.4 Implementing ICommand Interface 

In the Declarations drop down box, notice that all of the properties and 

methods for ICommand are now listed.  Click on each item in the drop down box 

to generate stub code for the properties and methods in the code window.  Stub 

code provides the basic definition for a property or method, without defining how 

the property or method is accessed or implemented. 

 

 

Figure 4.5 ICommand Stub Code 

If a class implements an interface, it must implement all of that interface’s 

properties and methods, even if the class does not provide code for some of those 

 60



properties and methods.  Properties and methods are implemented by generating 

stub code as shown above.  For this discussion, stub code is generated for the 

Bitmap, Checked, HelpContextID, HelpFile, and Message properties, but code to 

respond to calls to those properties is not written.  Code for the other properties is 

written as shown below. 

 
Property Code 

Caption ICommand_Caption = "Show OIDs" 
Category ICommand_Category = "Sample Tools" 
Enabled ICommand_Enabled = True 
Name ICommand_Name = "SampleTools_ShowOIDs" 
Tooltip ICommand_Tooltip = "Display ObjectIDs for Selected Features" 

Table 4.1 Implementation Code for ICommand Properties 

 

 

Figure 4.6 Implementation Code for ICommand Properties 
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The OnCreate procedure from ICommand is used to create a hook to the 

application that calls the DLL.  In this example, the hook is a pointer to the 

ArcMap application that contains the custom tool.  Without the hook, the tool 

would not know which ArcMap application it operates on.  A module-level 

variable that stores an ArcMap Application object is set to the hook argument in 

the OnCreate procedure with the following code.   

 
Set m_pApp = hook 

Normally, this variable is stored as a global variable, g_pApp, and is 

declared in a separate module called modGlobals.  However, for this example, all 

required functionality for the tool is coded in clsSampleTool (to keep things 

simple.)  The purpose of modGlobals as well as other modules and forms that 

could be added to the project is discussed below. 

4.1.1.2 Additional Modules and Forms 

The class file that creates a custom tool may be supported by other 

modules and forms in the Visual Basic Project.  In general, the tools created for 

this research included three modules (global variables, general utilities, network 

utilities) and three forms (input form, progress form, help form.)  Modules differ 

from forms in that modules contain only code, while forms contain both code and 

a graphical component that interacts with the user. 

Each of the modules is stored on disk.  These modules do not change from 

project to project, except when new functions, subroutines, or declarations are 

added to them.  Because the existing content of the modules is left unchanged, 

older projects that rely on the modules are not affected by these additions.   
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modGlobals is a module that stores global variables for use throughout the 

project.  A global variable can be accessed by any component of the project.  

Global variables are useful for passing arguments, such as user inputs, between 

forms and classes.  A global variable, g_pApp, is also used to store the hook to 

the application that calls the DLL.  

modUtilsGeneral is a module that contains public functions and 

subroutines that are useful for many general applications.  An example of a 

function from this module is GetFeatureLayer.  This function returns a Feature 

Layer from a map document given the Feature Layer’s name, which might be 

provided by the user on an input form.   

modNetworkUtils is a module that contains a variety of network related 

functions and subroutines.  Components in the project can make calls to this 

module to initialize a trace solver, create flags at points on the network, and 

perform other useful network tasks.   

The input form is based on a template that already contains many of the 

elements and code required to process a user’s inputs.  When a new tool is 

created, the template form is copied and modified to suit the specific needs of the 

tool.  Using a template form takes advantage of the reusable nature of input forms 

and saves much time in the development process of new tools.  The template form 

contains four combo boxes (see Fig. 4.7).  The first box and third box store the 

first layer and second layer that the user is interested in, respectively.  The second 

box and fourth box store a field from the first layer and a field from the second 

layer that the user is interested in, respectively.  Each combo box lists only valid 
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choices dependent upon the purpose of the tool.  For instance, if a tool operates on 

polygon layers, then the combo box will not list the names of any point or 

polyline layers.  OK, Cancel, and Help buttons are arranged at the bottom of the 

tool.  The OK button places the user’s choices into global variables so that those 

choices can be accessed by the class file that builds the tool.  The Cancel button 

stops the operation.  The Help button displays a help form that provides 

information about the tool.   

 

 

Figure 4.7 Template Input Form 

The progress form (see Fig. 4.8) is a standard form stored on disk that can 

be added to any project, as long as Microsoft Common Controls 6 (MCC6) is 

installed on the computer.  The form uses the progress bar control from MCC6 to 
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display the progress of a tool’s operations.  The form possesses a Cancel button 

that the user may click at any time to cancel the current task.  Each tool created 

for this research is designed to gracefully recover from a cancel request without 

loss of data or crashing.  The progress bar’s properties can be accessed by other 

components in the project to set the status of the progress bar, so no modification 

is ever required to the progress form stored on disk.  Because clsSampleTool does 

not perform lengthy operations, the progress form is not added to the project in 

this example. 

 

 

Figure 4.8 Sample Progress Form 

The help form is a simple form that consists of a help message and an OK 

button.  This form is created for each tool.   

A Project Explorer window showing the modules and forms discussed 

above is shown in Fig. 4.9 for an example tool.  Each component of the project is 

included in the final DLL that is produced. 
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Figure 4.9 Module, Form, and Class Files in Sample Project 

4.1.1.3 Code for the OnClick Procedure 

clsSampleTool will be added to ArcMap as a command button.  When the 

user presses the button, the OnClick procedure from the ICommand interface is 

called.  Fill in the OnClick procedure in clsSampleTool with the code as shown 

below. 

 
Private Sub ICommand_OnClick() 
On Error GoTo errorhandler 
    Dim Counter As Long 'universal counter 
    Dim pMap As IMap 
    Dim pDoc As IMxDocument 
    Set pDoc = m_pApp.Document 
    Set pMap = pDoc.FocusMap 
 
    'Get the first layer in the map document 
    Dim pFLayer As IFeatureLayer 
    Set pFLayer = pMap.Layer(0) 
     
    'Get the selected features 
    Dim pFeatureSelection As IFeatureSelection 
    Dim pSelectionSet As ISelectionSet 
    Set pFeatureSelection = pFLayer 
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    Set pSelectionSet = pFeatureSelection.SelectionSet 
    If pSelectionSet.Count = 0 Then 
        MsgBox "Please select features first" 
    Else 
        Dim pFCursor As IFeatureCursor 
        Dim pFeature As IFeature 
        Set pFCursor = pFLayer.Search(Nothing, False) 
        Set pFeature = pFCursor.NextFeature 
        Do Until pFeature Is Nothing 
            MsgBox "ObjectID = " & CStr(pFeat.OID), _ 
                , _ 
                "Sample Tool" 
            Set pFeature = pFCursor.NextFeature 
        Loop 
    End If 
 
    Exit Sub 
 
errorhandler: 
    MsgBox Err.Description, , "Error Number " & Err.Number 
End Sub 

This code gets a reference to ArcMap through the Application variable, 

m_pApp.  It then gets a reference to the first layer in the map, which has an index 

of zero.  The second layer has an index of 1, and so on.  Next, the code creates a 

cursor, called pFCursor, which points to the selected Features in the layer.  If no 

Features are selected, the code displays a message box asking the user to select 

features first.  Otherwise, the cursor cycles through each selected Feature, 

displaying ObjectIDs in a message box.  If any errors occur, a message box 

appears giving the error number and a description of the error.   

4.1.1.4 The Importance of Error Handling 

If a tool produces an error and does not adequately handle that error, then 

ArcMap considers the tool to be “broken” and will not allow further calls to the 

tool.  If a tool is broken, then it will not function again until the tool’s DLL is 
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reinstalled on the computer (preferably with added error handlers.)  For this 

research, errors were addressed in two ways:  error prevention and error handling. 

A useful method to prevent errors is to limit the range of inputs allowed by 

the user.  For instance, if a tool adds values from a user-specified field to produce 

a total value, then the input form should limit the choice of fields to those that 

store numeric values.  Similarly, tools that perform network operations should 

only display network layers as choices on the input form.  Limiting user inputs to 

feasible values can save many hours of error handling work later on.  Limiting 

user selections also benefits the user by removing many of the fields or layers that 

the user would not select anyway.   

A second method for preventing errors is to check the nature of each value 

before processing that value.  For instance, before an operation is performed on a 

value in a field, the tool should check to see if that value exists.  Otherwise, the 

tool may attempt to perform an operation on a null value, resulting in an error.  

While this method is a more secure way of preventing errors than the previous 

method, it can also add an enormous amount of code to the project.  A 

combination of both methods was found to be the best approach to error 

prevention. 

If errors do occur during a tool’s operation, a message box appears 

displaying a description and number for the error.  In some cases, the location of 

the error within the code is also specified.  While this technique may not be the 

best strategy for handling errors, it is easy to implement and satisfies ArcMap 

sufficiently so that the tool is not considered as broken. 
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4.1.1.5 Making the DLL 

With code written for each component of the project, the next step is to 

make the DLL.  From the Project menu, choose Project1 Properties.  In the 

Project Properties window that appears, change the name of the project to 

Sample_Tool.  Then click OK. 

 

 

Figure 4.10 Project Properties Window 

From the File menu, click Make Sample_Tool.dll.  All of the code is 

compiled and checked for obvious errors.  If no errors are found, Sample_Tool.dll 

is created in the specified directory. 
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4.1.2 Adding the DLL to ArcMap 

Once the DLL is created, it can be added to ArcMap as a custom tool.  

Start ArcMap by clicking Start>Programs>ArcGIS>ArcMap.  In the Tools menu, 

click Customize.  In the Customize window, click the Commands tab.  This 

window displays a list of all command buttons that can be added to the ArcMap 

document.  To add the custom tool to this list, click Add From File.  Navigate to 

Sample_Tool.dll and click Open.  A window appears displaying which objects 

were added.  Click OK to close the window.  The Show OIDs tool is now 

displayed in the Customize window under the Sample Tools category. 

 

 

Figure 4.11 Show OIDs Tool in Customize Window 
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Drag the Show OIDs tool next to another button on the ArcMap interface.  

The tool is now ready for use.   

 

 

Figure 4.12 Show OIDs Button 

If a layer is added to the document and Features are selected from that 

layer, a message box similar to the following will be displayed when the Show 

OIDs button is clicked. 

 

 

Figure 4.13 Sample Output from Show OIDs Tool 

If no layers were present in the map, or if Features in the current layer had 

no ObjectID, then a message box would appear displaying an error. 
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4.2 APPLYING DESIGN PRINCIPLES 

The design principles behind intelligent software construction and 

graphical user interface design were used as guidelines in the development 

process of the prototype Arc Hydro tools developed for this research.  The general 

adherence to the guidelines is discussed below. 

4.2.1 Software Construction 

Although the tools created represent a relatively simple and 

straightforward software system, the principles of intelligent software 

construction were still applied to their development.  This helps to insure that the 

tools will be reusable, and it also tests the extent that tools created for use in 

ArcGIS can adhere to the guidelines. 

4.2.1.1 Robustness 

Although originally intended to work with the structure and Feature 

Classes of the ArcGIS Hydro Data Model, each tool developed in this research 

has been designed to support operations on any Feature Class in the GIS, provided 

that the Feature Class contains the correct structure for each tool’s operation.   

If an error occurs during a tool’s operation, and the tool does not 

adequately handle that error, ArcMap considers the tool to be broken and no 

longer allows access to the tool.  To prevent this from occurring, each tool 

possesses a simple error handler and cleanup routine.  The error handler displays a 

message box giving a description of the error, the error number, and in some cases 

the location in the code where the error occurred.  The cleanup routine usually 

consists of hiding all forms associated with the tool, stopping any edit operations, 
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and cleaning up temporary objects from the computer’s memory.  While a more 

advanced error handling method could be applied, the message box method is 

easy to implement and prevents the tool from being considered broken by 

ArcMap.   

Each tool requires ArcMap to be in an Edit session before the tool will 

proceed.  By operating from within an edit session, the user has the option of 

ending the edit session without saving any changes that the tool made to the data.  

This proves valuable when an error occurs midway through a task, and only half 

of the data is processed.  In this situation, the user has the option of fixing the 

error, or ending the edit session without saving edits to recover the old data.   

4.2.1.2 Extensibility 

As each tool was developed, repetitive routines from the tool’s operation 

were separated into functions and subroutines outside of the tool’s main 

procedure.  Depending on how specific the routines were to the tool’s purpose, 

they were either placed as an additional routine in the tool’s main class module, or 

as a routine in a global utility module (such as modNetworkUtils.)  As each 

routine was created, the code in the tool’s main procedure became cleaner, more 

compact, and easier to read.  This process also partitioned the main procedure into 

sections marked by calls to each routine.  These factors improved the extensibility 

of the tool, since a modification to the tool’s design could be isolated to a single 

partition.   

The nature in which a tool’s main procedure communicates with the form 

that accepts user inputs also promotes an extensible design.  At first, the input 
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form writes the user’s inputs to public variables declared in the form.  The main 

procedure, usually located in the tool’s class file, then reads from those public 

variables.  However, as more tools were developed for a single DLL, this strategy 

lead to a large set of public variables scattered through the project.  As a second 

approach, user inputs were stored in public variables in a single module.  Still, 

there were a large number of public variables declared, even though they were all 

located in one place.  This also led to confusion as to which variable belonged to 

which tool in the project.  The current approach involves writing user inputs to a 

public dynamic array in a module.  The main procedure then reads its required 

inputs from each item in the array.  Now a single array can store the inputs from 

any number of user forms associated with any number of tools.  More 

importantly, the main procedure of each tool does not care where the inputs came 

from, as long as they have been assigned to the public array.  In this situation, the 

module with the public array acts as a switchboard between input and operation.  

This allows each tool to be extended to allow inputs from a variety of sources.   

4.2.1.3 Reusability 

Separating repetitive tasks into routines as described above also promotes 

a very reusable design.  Because common routines are stored as public functions 

or subroutines in modules, they can be used by any tool in the project.  The design 

of each tool is highly modular in general.  Separate components control accepting 

user inputs, displaying status and progress of an operation, and performing the 

main operation required by a tool.   
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A direct application of reusability is the use of a template form to create 

all inputs forms for the tools.  As early input forms were created, similarities were 

noted in each form’s display, as well as the coding and functionality behind each 

form.  This basic functionality was programmed into a template form that can be 

copied and modified as needed.  The template form contains basic routines for 

accepting layer names and field names from the user, as well as routines for 

populating various components on the form with the appropriate values.  Using 

the template form greatly reduces the development time for a given tool, since 

creating an effective user-interface is often be one of the most challenging aspects 

of the design process.   

4.2.1.4 Compatibility 

Because the tools were developed in a COM-compliant environment, they 

can easily include the functionality of other COM-compliant software.  However, 

because the tools are designed to operate on ArcGIS objects, they have little 

potential to be included as components of an ArcGIS independent software 

system.   

4.2.2 User Interface Design 

The principles of good user interface design were useful in developing 

effective interfaces for the tools.  Design aspects related to each of the seven 

principles are discussed below. 

4.2.2.1 User in Control 

All tools but two (Make Schematic Lines and Accumulate Area Values to 

Points) can run on all records in the feature class, or records selected by the user.  
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Each form that accepts user inputs, automatically screens out values that would 

obviously produce errors.  However, the forms do allow users to select input 

values that may potentially cause problems (such as writing numeric string values 

to an integer field).  In such situations, the form alerts the user to the problem that 

may arise, but still allows the user to proceed if so desired.  The goal was to give 

the user a sense of being in control while minimizing the occurrence of user-

generated errors. 

 Three tools (Store Area Outlets, Accumulate Area Values to Points, Find 

Distance Between Points) allow the user to cancel processing at any time during 

the tool’s operation, without adverse effects on the stability of the application or 

the integrity of the data being manipulated.  The cancel button is displayed on a 

progress form that appears during long operations.   

4.2.2.2 Directness 

The interface for each tool is relatively simple, with inputs at the top of the 

form and OK-Cancel-Help buttons at the bottom.  OK, Cancel, and Help buttons 

are commonly used in other Windows applications, and their use is intuitive in 

each of the tools developed for this research.  The format used by the tools for 

requesting input from the user strongly resembles that of the basic tools provided 

with ArcGIS software, with layer names given first, followed by field names or 

other parameters. 

4.2.2.3 Consistency 

Each tool uses the same format for the user interface, with the inputs at the 

top of the form and the OK-Cancel-Help buttons at the bottom of the form.  Each 

 76



form is developed from the same template, to simplify the task of producing a 

consistent GUI design.  The basic functionality required by input forms is already 

programmed into the template form, resulting in consistency both in the display of 

the form as well as the coding behind the form. 

 

            

Figure 4.14 Comparison Between Form Layouts 

In some cases, the course of action that a tool takes may vary depending 

on the user’s inputs.  When this occurs, the tool’s operation appears the same to 

the user no matter which course of action the tool takes (when appropriate.) 
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4.2.2.4 Forgiveness 

The tools possess error handlers to trap errors that occur during operations.  

In most cases, a message box appears on the screen describing the nature of the 

error, and sometimes giving the name of the component that generated the error.  

This type of “forgiveness” is extremely important within an ArcMap application.  

If a tool does not adequately handle errors, ArcMap considers the tool to be 

broken and allows no further access to the tool.   

When prompting for user inputs, all forms automatically screen out values 

that are obviously incorrect, allowing the user to only select from a list of 

potentially acceptable choices.  However, some freedom is still allowed for 

options that may or may not produce an error.  In such situations, a message box 

appears alerting the user to the potential problem before the operation takes place.  

If the user decides to continue, and an error occurs, the error is caught by the 

tool’s error handler and processed in a safe manner. 

4.2.2.5 Feedback 

All tools that perform tasks more than a few seconds long display a 

progress bar indicating the progress of the operation and the nature of the current 

operation.  When a tool produces tangible output (a file saved to disk) that can be 

displayed in ArcMap, that output is automatically added to ArcMap to indicate 

success upon completion of the operation.  When a tool changes the state of a 

component on the map display, the display is refreshed to indicate the changed 

state of the component.  For example, if the flow direction for a particular edge is 

reversed, an arrow indicating the new flow direction is drawn on the display.   
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4.2.2.6 Aesthetics 

When a tool requires a Feature Layer and fields from the Feature Layer, 

the user is prompted for the name of the Feature Layer first (at the top of the 

form), with the input boxes for fields aligned below the Feature Layer input box.  

The forms posses no fancy graphics or other items that may distract the user from 

purpose of the form.  All items on a form are aligned properly, with minimal 

“dead space” and an intuitive arrangement of form elements. 

4.2.2.7 Simplicity 

A descriptive label is placed above each input box to indicate the purpose 

of the box.  All input forms and help forms posses a caption that indicates their 

function.  Input boxes are grouped according to the Feature Layer that they are 

related to.  In developing these tools, following simplicity of design not only 

improved the quality of the user interface, but also decreased the time required to 

make modifications to the interface. 
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Chapter 5:  Results 

Eleven custom tools were developed for this research.  These tools make 

up a prototype toolset that operates on the ArcGIS Hydro data model.  The tools 

are designed to work in ArcMap as custom add-ins.  Ten of these tools are located 

in an Arc Hydro Tools toolbar, while the remaining tool, an application designed 

to work with the USGS National Water Information System (NWIS), resides as a 

separate command button.  The DLL and all source files used to create the Arc 

Hydro Tools and the NWIS application can be found in a CD at the back of this 

thesis. 

These tools facilitate the integration of Arc Hydro with hydrologic 

simulation models through data preparation and by establishing connectivity 

between features in the landscape (through the use of key attributes).  This 

connectivity information is essential to hydrologic simulation models, as these 

models pass time series information, such as rainfall/runoff data, between 

appropriate hydrologic features, such as a watershed and a monitoring gage 

located at its outlet. 

5.1 ARC HYDRO TOOLS 

The term Arc Hydro Tools refers to a set of 10 custom tools created in the 

Visual Basic programming environment to automate useful tasks within an 

ArcMap application.  These tools are saved as an Active-X DLL 

(ArcHydroTools.dll) and can be added to an ArcMap document through the 

customization window in ArcMap.  The tools represent an early attempt to 
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incorporate additional analysis and computational capabilities relevant to water 

resources applications into the ArcMap environment.  As each tool was created, 

an improved knowledge of general programming techniques and specific 

strategies to work with ArcObjects was acquired.  As a result, more recent tools in 

the toolset exhibit a more efficient and intelligent programming style, with a more 

modular structure, a more robust design, and better potential for reusability.  The 

more recent tools also reflect a smoother integration with the ArcMap user 

interface, incorporating functionality such as a cancel button for long tasks.   

 

 

Figure 5.1 Sample Progress Form with Cancel Button 

5.1.1 Arc Hydro Tools Toolbar 

The Arc Hydro Tools toolbar contains all of the Arc Hydro Tools 

organized into toolbar items and menus.  Once installed, the Arc Hydro Tools 

toolbar can be added to an ArcMap document like any other ArcMap toolbar. 

5.1.1.1 Description 

The Arc Hydro Tools toolbar contains three main items:  An Arc Hydro 

Tools menu, a Point Nav menu, and Make Schematic button.  The Arc Hydro 

Tools menu contains tools for performing various tasks in populating the 
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attributes of the ArcGIS Hydro data model.  This menu contains three items:  an 

Assign HydroID button, a Downstream Length menu, and a Flow Direction menu.  

The Downstream Length menu has two items:  a Calculate for Edges button and 

an Assign to Junctions button.  The Flow Direction menu has two items:  a Store 

Flow Direction button and an Assign Flow Direction button.  

 

 

Figure 5.2 Arc Hydro Tools Toolbar 

The Point Nav menu contains tools for developing relationships between 

points in a network and accumulating values through them in the downstream 

direction.  The Point Nav menu contains four items:  a Find Next Downstream 

Button, a Store Area Outlets button, an Accumulate Areas to Points button, and a 

Find Distance Between Junctions button.   

Each of the buttons on the toolbar can be added individually to the 

ArcMap user interface through the customization window.  As with all ArcMap 

command buttons, they can also be grouped into different toolbars with generic 

ArcMap buttons if so desired.  A table providing a brief description of the purpose 
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of each tool is shown below.  Each of the buttons in Arc Hydro Tools is described 

in the remainder of this chapter. 

 
Tool Purpose 

Assign HydroID Assign HydroIDs to features on the map 
Calculate Downstream Length Calculate downstream length for edges 
Copy Downstream Length to Junctions Copy downstream length to junctions 
Assign Flow Direction Assign flow direction to edges 
Store Flow Direction Store flow direction of edges in table 
Find Next Downstream Find next downstream junction 
Store Area Outlets Find outlets for areas 
Accumulate Area Values to Points Accumulate values from areas to points 
Find Distance Between Junctions Find distance between junctions on a network 
Make Schematic Lines Make a schematic lines from a set of points 

Table 5.1 Function of Arc Hydro Tools 

5.1.2 Assign Hydro ID 

This tool assigns HydroIDs to Feature Classes and tables in the current 

map that have a HydroID field of type String.  This tool is designed to operate on 

the HydroID attribute that is present in all Feature Classes in the ArcGIS Hydro 

data model. 

5.1.2.1 Description 

A HydroID is a unique identifier across a geodatabase.  The ID is built 

from the object class ID of the table or Feature Class and the ObjectID of each 

row or feature in the table or Feature Class.  The object class ID is a unique 

identifier for a Feature Class or table in a geodatabase.  The ObjectID is a unique 

identifier for a row or feature in a table or Feature Class.  The ObjectID starts at 1 

and increments by 1 with each new row added to the table.  Similarly, the object 
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class ID starts at 1 and increments by 1 with each new class created in the 

geodatabase.  For instance, if a geodatabase contains three Feature Classes, their 

object class IDs may be 1,2, and 3, respectively.   

The HydroID is built by concatenating the object class ID and the 

ObjectID into a single ID.  Because ObjectIDs are unique in a Feature Class or 

table, and because object class IDs are unique in a geodatabase, the combination 

of object class ID and ObjectID is unique across a geodatabase.  The HydroID has 

the following format:  CC000000, where “CC” represents the object class ID, and 

“000000” represents the ObjectID.  The format does not support geodatabases 

with more than 99 Feature Classes and tables.  It also does not support Feature 

Classes or tables with more than 999,999 records.  However, such situations are 

highly unlikely to occur, as such a geodatabase would be too cumbersome to be 

practical.   

As an example of how a HydroID is created, consider a HydroEdge 

feature in the HydroEdge Feature Class.  The third HydroEdge (with ObjectID = 

3) in the Feature Class (with object class ID = 2) would have a HydroID of 

02000003. 

The Assign HydroID tool assigns HydroIDs to rows that have a HydroID 

field of type String.  If the HydroID field is not found in the table, the tool skips 

that table and moves on to the next one.  Note that those Feature Classes and 

tables that are in the database, but not registered with the geodatabase always 

have an object class ID of -1.  If more than one such table or Feature Class exists 

in a geodatabase, then the HydroID may not be unique across the geodatabase. 
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The tool can run on a selected set of records or all records.  If no features 

are selected, the tool runs on all records.  If any features are selected, the tool runs 

only on the selected records.   

5.1.2.2 Beneficial Uses 

A unique HydroID identifier is useful for a variety of reasons.  In a 

hydrologic context, a unique ID allows each feature to be treated as an individual 

component in a hydrologic system.  Each feature can be “connected” to other 

individual features from any Feature Class by storing the HydroID of one class as 

an attribute of another.  This is similar to the manner in which objects in HEC-

HMS are connected (HEC, HEC-HMS).  Thus a watershed can contain the 

HydroID of the junction it drains to, while a junction can contain the HydroID of 

the next downstream junction it flows to, and so on.  

5.1.2.3 Limitations 

At present, the tool does not allow the user to select which field to assign 

HydroIDs to.  In order to assign HydroIDs, a field named “HydroID” must appear 

in the table.  The field type for HydroID must also be of type String.  There are 

two reasons for required a string field type:  1) HydroID is defined as a string type 

in the ArcGIS Hydro data model, 2) a string type supports a wider variety of 

HydroID formats than a numeric type. 

The tool also does not allow the user to choose the format for the 

HydroID.  There are a number of schemes for applying a unique identifier to 

features across a geodatabase.  The Assign HydroID tool only uses one of them.   
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5.1.3 Calculate Downstream Length 

This tool calculates the length from the most downstream node on each 

edge in a given layer to the sink that the edge flows to.  It then populates the 

specified length downstream field with those calculated values.  This tool is 

designed to operate on the LengthDownstream attribute of HydroEdge in the 

ArcGIS Hydro data model. 

5.1.3.1 Description 

The LengthDownstream value starts at zero at a sink and increases in the 

upstream direction.  The LengthDownstream value for a given edge includes the 

lengths of all downstream edges, but not the length of the current edge.  Thus the 

length downstream for an edge at the most upstream segment of a river is the 

entire length of the river minus the length of that upstream segment.  Likewise, 

the length downstream for any edge that is connected to a sink is zero.  The tool 

works by tracing downstream from each edge in the network.  The sum of length 

values from all edges returned in the trace (except for the current edge) is written 

to the length downstream field in the current edge. 

Before using this tool, flow direction must be set in the network.  If no 

flow direction is set, then the length downstream for every edge is zero (because 

the edge does not know where to flow.) 
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Figure 5.3 Result of Downstream Length Computation 

The tool can run on a selected set of records or all records.  If no features 

are selected, the tool runs on all records.  If any features are selected, the tool runs 

only on the selected records.   

5.1.3.2 Beneficial Uses 

LengthDownstream may be used to populate measure values on edges.  

LengthDownstream may also be used in conjunction with flow velocity to 
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compute travel times in rivers.  In hydrologic computational algorithms, 

LengthDownstream may be used to determine which features are processed first 

(those with the greatest LengthDownstream) in a system where backwater effects 

are negligible. 

5.1.3.3 Limitations 

The Calculate Length Downstream tool requires that a field to store length 

downstream already exists in the Feature Class.  The tool should be run on a non-

branching, non-looping network, or else incorrect downstream length values may 

be calculated.  Non-branching means that the network does not branch in the 

downstream direction (as may occur with diversions.)  Branching in the upstream 

direction is allowed. 

The tool will not work correctly if there are complex edges in the network 

and some edges join other edges at anywhere but their endpoints.  The tool works 

by adding up the lengths of all downstream features.  If an edge joins a 

downstream edge in the middle of the downstream edge (as is possible with 

complex edges), the downstream edge’s entire length is added to the upstream 

edge’s downstream length total, when in fact only the portion of the downstream 

edge’s length that should be added is the portion below where the upstream edge 

joins.   
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Figure 5.4 Incorrect Downstream Length Calculation for Complex Edges 

To work properly in such situations, a measure system would have to be 

defined on the edges, and the tool would have to be revised to read values from 

the measure system. 

This tool is designed to work with a network with a single Edge Feature 

Class.  If the network has more than one Edge Feature Class, the tool may not 

work correctly. 

5.1.4 Assign Downstream Length to Junctions 

The tool reads LengthDownstream values from edges and writes those 

values to junctions in the network.  This tool is designed to operate on the 

LengthDownstream attribute of HydroJunction in the ArcGIS Hydro data model. 

5.1.4.1 Description 

Once downstream length values have been calculated for edges, they may 

be copied to junctions using this tool.  For each junction, the tool finds all edges 

connected to that junction, reads the downstream length values from those edges, 
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and then selects the edge with the smallest downstream length.  In a non-

branching (in downstream direction), non-looping network, this edge will be the 

only edge that the junction flows to, and it represents the most downstream edge 

that the junction is connected to.  The tool adds the downstream length value of 

the edge to the edge’s length to produce the downstream length value for the 

junction.  If the downstream length values for all edges connected to a junction 

are zero, then this junction is treated as a sink, and it is assigned a downstream 

length value of zero.  If no edges are found, a value of zero is assigned for the 

downstream length.   
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Figure 5.5 Result of Assign Downstream Length to Junctions Computation 

The tool can run on a selected set of records or all records.  If no features 

are selected, the tool runs on all records.  If any features are selected, the tool runs 

only on the selected records.   

5.1.4.2 Beneficial Uses 

Calculating the difference between downstream length values for two 

points of interest gives the distance between those points along the network.  In 

computational algorithms, downstream length may be used to determine which 
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features are processed first (those with the greatest downstream length) in a 

system where backwater effects are negligible.  An example of such an algorithm 

is an accumulation routine where values from upstream junctions are passed down 

and added to values on downstream junctions. 

5.1.4.3 Limitations 

The Assign Downstream Length to Junctions tool requires that a field to 

store LengthDownstream already exists in the Feature Class.  The tool should be 

run on a non-branching, non-looping network, or else incorrect downstream 

length values may be calculated.   

In some networks, some junctions may be spatially coincident with each 

other.  When this happens, the network builder chooses one and only one junction 

at a given location to be connected to the network.  The other junctions just 'float' 

in the same location without being connected to other network features.  This tool 

looks for this type of junction and copies the length downstream values from the 

junction that IS on the network to the other spatially coincident junctions.  

However, if the network includes junctions from another Feature Class that are 

spatially coincident with the junctions of interest, and if the junction from the 

other Feature Class happens to be the one connected to the network, then the tool 

may not work correctly and a value of zero for length downstream will be 

assigned to the junctions of interest at that location.   

The tool will not work correctly if the junctions are on the interior of 

complex edges.  If the tool selects the complex edge as the most downstream edge 

that the junction is connected to, it will add the entire shape length of the complex 
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edge to its downstream length value, instead of correctly adding only the portion 

of the edge that is downstream of the junction.  To work properly in such 

situations, a measure system would have to be defined on the edges, and the tool 

would have to be revised to read values from the measure system. 

This tool is designed to work with a network with one edge Feature Class.  

If the network has more than one edge Feature Class, the tool may not work 

correctly. 

5.1.5 Assign Flow Direction 

This tool assigns flow direction to edges in a network, either by choosing a 

flow direction to assign, or by reading values from a table.  This tool is designed 

to operate on the FlowDirection attribute of HydroEdge in the ArcGIS Hydro data 

model. 

5.1.5.1 Description 

Flow direction in a network is stored as esriFlowDirection constants.  

These constants are shown in Table 5.2.   

 
Constant Value Description 

esriFDUninitialized 0 The flow direction is 
uninitialized. 

esriFDWithFlow 1 The flow direction is 
in the direction of 
digitization. 

esriFDAgainstFlow 2 The flow direction is 
opposite the direction 
of digitization. 

esriFDIndeterminate 3 The flow direction is 
indeterminate. 

Table 5.2 esriFlowDirection Constants 
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This tool accesses the flow direction for a set of edges using the network, 

and then assigns the flow direction for the edges.  When assigning flow direction, 

the user may either choose one of the four esriFlowDirections to assign to all 

edges, or use values from a field in the edge Feature Class.  The values in the field 

must correspond to esriFlowDirection constants, i.e. 0, 1, 2, or 3.  If values in the 

flow direction field do not correspond to esriFlowDirection constants, the 

esriFlowDirection chosen by the user will default as the flow direction assigned to 

the edge. 

The figures below show how the Assign Flow Direction tool can be used 

to set the flow direction of edges in the network.  The first figure shows the 

default flow direction based on sinks in the network.  The second figure shows the 

flow moving towards a different location after the tool was used.   

 

 

Figure 5.6 Default Flow Direction in a Network 
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Figure 5.7 Result of Changing Flow Direction with Assign Flow Direction Tool 

The tool can run on a selected set of records or all records.  If no features 

are selected, the tool runs on all records.  If any features are selected, the tool runs 

only on the selected records.   

5.1.5.2 Beneficial Uses 

Assigning flow direction based on an attribute allows the user to delete the 

network (for maintenance or distribution reasons) and still retain the proper flow 

direction values.  Once the network is reestablished, flow direction can be 

assigned by attribute without having to create sinks in the network.  Flow 

direction for indeterminate cases (such as edges in loops) can be assigned 

manually with this tool.  Situations in which flow directions may change (such as 

in canals in flat areas) can also be modeled. 
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5.1.5.3 Limitations 

A network must be present to assign flow direction. 

5.1.6 Store Flow Direction 

This tool reads the flow direction for a set of edges from the network and 

writes the value of the flow direction to the Feature Class.  This tool is designed 

to operate on the FlowDirection attribute of HydroEdge in the ArcGIS Hydro data 

model. 

5.1.5.1 Description 

Flow direction in a network is stored as esriFlowDirection constants.  

These constants are shown in Table 5.2.  The Store Flow Direction tool reads 

edge flow directions from the network and writes the esriFlowDirection values to 

the table of the edge Feature Class.  The field chosen to store esriFlowDirection 

values must be of a numeric type.   

The tool can run on a selected set of records or all records.  If no features 

are selected, the tool runs on all records.  If any features are selected, the tool runs 

only on the selected records.   

5.1.6.2 Beneficial Uses 

This tool allows manual editing of flow direction.  Once flow direction is 

stored, the network may be deleted and flow directions will still be known on the 

edge (to the user, but not to the software).  Also, storing flow direction makes 

possible the assignment of flow direction based on an attribute in a table. 
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5.1.6.3 Limitations 

The field chosen to store flow direction must be of a numeric type.  This 

helps to prevent users from inadvertently inputting invalid flow directions, such as 

text or dates.   

5.1.7 Find Next Downstream 

The Find Next Downstream tool uses the network to find the next 

downstream junction in a particular Feature Class, and assigns the ID of the 

downstream junction to a downstream junction ID field in the Feature Class table.  

This tool is designed to operate on the NextDownstream attribute of 

HydroJunction in the ArcGIS Hydro data model. 

5.1.7.1 Description 

For each junction in the network, this tool creates a flag at that junction 

and barriers at all other junctions.  The tool then traces downstream from that 

junction and returns the ID of the junction stopping the trace.  This is the ID of the 

next downstream junction.  This ID is written to a field in the junction Feature 

Class table.  The tool requires that flow direction is already set in the network.   
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Figure 5.8 Results of Find Next Downstream Computation 

The tool can run on a selected set of records or all records.  If no features 

are selected, the tool runs on all records.  If any features are selected, the tool runs 

only on the selected records.   
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5.1.7.2 Beneficial Uses 

Having the next downstream junction listed as an attribute in the table 

allows junctions to “communicate” with each other without the presence of a 

network, passing values or other information as desired.  Knowing the next 

downstream point of interest is also important for applications such as water 

rights analysis and Total Maximum Daily Load studies. 

5.1.7.3 Limitations 

Some junctions in the network may be spatially coincident with each 

other.  When this happens, the network builder chooses one and only one junction 

at a given location to be connected to the network.  The other junctions just 'float' 

in the same location without being connected to other network features.  This tool 

looks for this type of junction and copies the downstream junction ID values from 

the junction that IS on the network to the other spatially coincident junctions.  

However, if more than one junction is in the next downstream location for a given 

upstream junction, then only one of the downstream junction's IDs (the one that is 

connected to the network) will be assigned to the upstream junction.  If no 

downstream junction is found, the tool assigns a value of -1 to the downstream 

ID.  

This tool will not work correctly if the junctions are on the interior of 

complex edges.  It will also not work correctly if there are junctions from another 

Feature Class participating in the network that are spatially coincident with the 

junctions of interest, unless those junctions are sinks. 
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5.1.8 Store Area Outlets 

This tool determines the outlet junction for an area and assigns the ID of 

that junction to a Junction ID field in the area Feature Class table.  This tool is 

designed to operate on the JunctionID field of polygon feature classes in the 

ArcGIS Hydro data model. 

5.1.8.1 Description 

To perform hydrologic analyses involving rainfall/runoff and channel 

routing, areas must somehow be connected to the river network in order to pass 

runoff to the river channel.  This tool is designed to facilitate a scheme where 

areas are connected to the network through outlet junctions.  Each area in this 

scheme possesses an OutletID attribute.  This attribute stores the ID of the 

junction that serves as the outlet for the area.  Hypothetically, a junction may 

serve as the outlet of multiple areas, but each area will have only one outlet.   
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Figure 5.9 Results of Store Area Outlets Computation 

This tool works by selecting all junctions along the boundary of an area.  

For each selected junction, the tool creates a flag at that junction and barriers at all 

other junctions along the boundary.  The tool then traces upstream from the 

junction flag and counts the number of resulting edges that occur inside the area.  

If the number of edges is greater than zero, then this junction is a possible outlet 

junction.  In most situations, only one junction will return edges inside the area 

after an upstream trace.  However, situations may occur when there is more than 

one junction that returns a positive number of edges in the area after an upstream 

trace.  When this happens, the junction with the most number of edges inside the 

area is designated as the outlet junction.  The following figures illustrate the 
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process of selecting the outlet junction.  The tool is operating on the pink area for 

this example. 

 

 

Figure 5.10 First Pass:  All Junctions on Boundary 

 

Figure 5.11 Second Pass:  Junctions Producing Upstream Edges in Area 
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Figure 5.12 Third Pass:  Junction With Most Upstream Edges in Area 

If only one junction is found, a downstream trace is performed from that 

junction.  If any resulting edges are found to be inside the polygon, then this 

junction is not designated as an outlet.  Otherwise, it is designated as an outlet.  If 

no junctions return edges in the area after an upstream trace, and there is more 

than one junction along the boundary of the area, then no junction is designated as 

the outlet. 

If no outlet is assigned to an area, or if an area has more than one potential 

outlet according to the algorithm described above, then the ObjectIDs of those 

areas are copied to the Windows clipboard, and the user is notified.  From there, 

they may be pasted into a document or spreadsheet so that the user may inspect 

each area manually. 

The tool can run on a selected set of records or all records.  If no features 

are selected, the tool runs on all records.  If any features are selected, the tool runs 

only on the selected records.   
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5.1.8.2 Data Preparation 

This tool requires some data preparation before it can be run.  First, the 

polylines that represent the network should be intersected with the areas of 

interest to break the lines where they intersect the boundary of the areas.  This 

may be done with the Geoprocessing wizard in ArcMap.  The resulting line set 

should then be built into a network, producing a set of junctions.  Some of these 

junctions will occur at the intersection of the areas and the lines.  Outlet junctions 

will be selected from these junctions.  A network must be loaded, and flow 

direction must be set on the network before running the tool. 

5.1.8.3 Beneficial Uses 

By connecting areas to the network through outlet junctions, areas can 

pass information to the network, such as runoff or pollutant loads.  If the junctions 

also possess the NextDownstream attribute, then navigation of the landscape can 

be performed with the network as well as through areas.   

5.1.8.4 Limitations 

To insure that all junctions along the boundary of an area are selected, the 

tool builds a buffer polygon which is one map unit (e.g. meter or foot) bigger than 

the area, and another buffer polygon one map unit smaller than the area.  The tool 

then selects all junctions between those buffer polygons.  As a result, working in a 

coordinate system where 1 map unit corresponds to a great distance, such as a 

geographic coordinate system, may lead to more junctions being selected than 

intended.  Data should be projected to a coordinate system with map units that 
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provide sufficient precision in measurements before running the Store Area 

Outlets tool. 

5.1.9 Accumulate Area Values to Points 

This tool accumulates values from areas to the outlet junction of the areas, 

and then accumulates those values through each downstream junction in the 

network.  This tool is designed to operate on the JunctionID attribute of polygon 

Feature Classes, and the LengthDownstream and NextDownstream attributes of 

HydroJunction in the ArcGIS Hydro data model. 

5.1.9.1 Description 

Once areas have been connected to the network through outlet junctions, 

values can be passed from the areas to the network through the junctions.  The 

Accumulate Areas to Points tool demonstrates a simple application of 

accumulating values from areas onto the outlets of those areas, and then passing 

the accumulated values downstream from junction to junction by using the 

NextDownstream ID on the junction Feature Class.  Because this tool requires 

that the Junction ID of the areas, the NextDownstream ID on the junctions, and 

the LengthDownstream on the junctions be populated, no network is required to 

navigate from areas to junctions, and from one junction to another.   

The tool starts by setting the field chosen to store the values in the junction 

Feature Class to zero.  It then starts with the junction that has the greatest 

downstream length and finds all areas for which that junction is the outlet.  It then 

adds all the values from those areas to the value field in the junction Feature Class 

table.  Next, the tool finds the next downstream junction for the given junction 
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and adds its value to its downstream neighbor.  The tool then moves on to the 

junction with the next greatest downstream length and iterates until all junctions 

have been processed.   

By working from the greatest downstream length downward, the tool 

insures that values for all upstream areas are summed before processing 

downstream areas.  This scheme is useful when no “backwater” effects occur in 

the area/point network.   

The following figure shows the results of running the tool where the 

accumulated value was the area of each polygon in acres.  The figure shows the 

outlet point for the most upstream area in the network. 

 

 

Figure 5.13 Results of Accumulate Areas to Points Computation 
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5.1.9.2 Beneficial Uses 

This tool serves a number of uses relating to hydrologic computations.  

Any application which requires information to be passed from areas onto the 

network may benefit from this tool or some variation thereof.  The algorithms 

used in connecting areas to points, and points to their downstream points, may 

prove useful in another application that requires navigation through the landscape. 

5.1.9.3 Limitations 

At present, the tool can only run on the entire junction Feature Class.  

Letting the user accumulate area values for a few, possibly disconnected junctions 

may produce misleading and inaccurate results.  A future revision to the tool may 

involve allowing the user to select a set of junctions, and then accumulating 

values for ALL areas and junctions that flow to those selected junctions. 

5.1.10 Find Distance Between Junctions 

This tool finds the distance between a point or junction and its next 

downstream neighbor.  This tool is designed to operate on the NextDownstream 

and LengthDownstream attributes of HydroJunction in the ArcGIS Hydro data 

model. 

5.1.10.1 Description 

If next downstream ID and length downstream have been populated for a 

set of junctions, finding the distance between a junction and its next downstream 

neighbor is a relatively simple task.  This tool performs that task by subtracting 

the downstream lengths of two junctions to determine the distance between them.  
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If no next downstream junction is found, or if the length downstream values are 

corrupted, then the tool assigns a value of -1 as the distance between junctions. 

 

 

Figure 5.14 Results of Find Distance Between Junctions Computation 

The tool can run on a selected set of records or all records.  If no features 

are selected, the tool runs on all records.  If any features are selected, the tool runs 

only on the selected records.   

5.1.10.2 Beneficial Uses 

Knowing the distance between points is useful in determining time of 

travel between points in a network.  The information is also useful in water rights 

analysis and Total Maximum Daily Load analyses.  
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5.1.10.3 Limitations 

The tool requires that the next downstream ID and length downstream 

attributes are already populated on the point or junction Feature Class.  However, 

no network is required to run this tool once those attributes have been populated. 

5.1.11 Make Schematic Lines 

This tool creates a schematic line Feature Class from a set of points or 

junctions.  This tool is designed to operate on the NextDownstream attribute of 

HydroJunction in the ArcGIS Hydro data model. 

5.1.11.1 Description 

If next downstream ID is known for a set of junctions, then a schematic 

line set can be creating connecting those junctions.  A schematic line is a simple, 

straight line that directly connects two topologically related points in a network.  

Schematic networks are simplified versions of actual networks and are often used 

in hydrologic and hydraulic models to represent the hydrological system.  The 

tool runs on the entire set of points or junctions from the given Feature Class. 

 

 

Figure 5.15 Results of Make Schematic Lines Operation 
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5.1.11.2 Beneficial Uses 

A schematic line set is useful in creating a simple network that possesses 

all of the necessary information to perform a hydrologic or hydraulic analysis, 

without all of the cartographic information normally found in representations of 

river networks in Geographic Information Systems.  A schematic network may 

give a clearer picture of topological relationships between features.  In essence, a 

schematic network is a fully functional network without any bells or whistles. 

5.1.11.3 Limitations 

Currently, the tool builds a set of schematic lines, but does not build a 

network.  That part is left to the user.  In the future, geometric network creation 

may be included in a revision to the tool. 

5.2 RETRIEVE NWIS DATA 

This tool retrieves NWIS data from the Internet and builds time series 

tables from the data.  The structure for the time series tables follows that of the 

TimeSeries class in the ArcGIS Hydro data model. 

5.2.1 Description 

The USGS National Water Information System (NWIS) contains historical 

daily streamflow information for USGS stream gages in the United States, with 

records dating back as far as 100 years.  The data can be accessed from the 

Internet by inputting parameters such as gage number and period of record at the 

NWIS-Web site.  The site then builds a URL and retrieves the data.  The 

following table breaks down each component of a sample NWIS URL. 
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Sample URL: 

http://waterdata.usgs.gov/nwis-

w/TX/data.components/hist.cgi?statnum=08159000&bdate_month=03&b

date_day=23&bdate_year=1976&edate_month=09&edate_day=30&edate

_year=1999&graphsize=1.5&mode=data&dateformat=0 

 
Component Meaning (Example) 

http://waterdata.usgs.gov/nwis-w/ Base address of NWIS-Web site 
TX State that the gages are located in (TX)

statnum=08159000 Station number (08159000) 
bdate_month=03 Start month (March) 

bdate_day=23 Start day (23rd) 
bdate_year=1976 Start year (1976) 
edate_month=09 End month (September) 

edate_day=30 End day (30th) 
edate_year=1999 End year (1999) 

graphsize=1.5&mode=data&dateformat=0 Output format (Tabular Data) 

Table 5.3 Components of NWIS-Web URL 

The data is retrieved based on the contents of the URL, as opposed to a 

hidden processing of the user’s inputs.  This means that if the user is familiar with 

the NWIS-Web URL format, and if the necessary parameters for data retrieval are 

known, then the user can type the URL in the web browser and jump directly to 

the data of interest without having to fill in each parameter at the NWIS-Web site.  

A more powerful application of this technology is the automation of NWIS-Web 

data retrieval.  If a program can build the URL and possesses Internet capabilities, 
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then it can automatically retrieve NWIS data and process that data without the 

user ever having to open a web browser.   

The Retrieve NWIS Data tool is an example of such an application.  This 

tool reads USGS gage numbers from a set of gages in the GIS.  It then prompts 

the user for a period of record to retrieve and the state that the gages are located 

in.  With these inputs, the tool downloads the NWIS data from the Internet and 

builds a time series table using the structure of the TimeSeries class from the 

ArcGIS Hydro data model.  During the Internet data transfer, a simple Splash 

screen appears. 

 

 

Figure 5.16 NWIS Splash Screen 

If any of the gage numbers in the GIS do not correspond to valid USGS 

gage numbers, that number is skipped and the tool moves to the next gage.  When 

the tool is finished, the time series table is added to the map document, and a 

message box appears giving some statistics about the tool’s operation.  If any data 

cannot be retrieved for any gages, the IDs of those gages are listed in a message 

box at the end of the tool’s operation. 
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Figure 5.17 Table Resulting from Retrieve NWIS Data Operation 

5.2.2 Beneficial Uses 

This tool allows users to automatically retrieve time series information for 

USGS stream gages when needed.  More importantly, this tool serves as a point of 

departure for the development of other tools that integrate GIS with automatic 

data retrieval from the Internet.  One possible application would be a real-time 

flood forecasting model that would periodically retrieve time series information 

from the web, process the data, and alert the user if a flood hazard was predicted 

by the model.  A second application relates directly to the drought that occurred in 

Texas in the summer of 2000.  By accessing USGS real time data for streams, 
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reservoirs, and groundwater levels, a water-available model could be constructed 

that would assess the amount of water available in various sources throughout a 

given geographic region.   

5.2.3 Limitations 

The tool does not provide a mechanism for avoiding duplicate entries of 

time series data in the same table.  This situation occurs if the user retrieved data 

for overlapping periods of record for the same gage station.  The tool requires a 

connection to the Internet. 
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Chapter 6:  Conclusions 

The main contribution of this research is a prototype Arc Hydro toolset.  

This toolset is designed to operate with and populate the attributes of classes from 

the ArcGIS Hydro Data Model.  However, the toolset is flexible enough to 

operate on any feature class, provided that it has the appropriate geometry and 

attribute structure.   

To populate the attributes of Arc Hydro, each tool must not only operate 

within the functionality provided by the ArcGIS software system, but also follow 

the general principle or concept behind the attribute itself.  For instance, length 

downstream may be interpreted in a number of ways, such as the average length 

of all downstream branches, or the length to the nearest sink.  In the case of Arc 

Hydro, length downstream refers to the sum of the lengths of all downstream 

branches.  While this method is relatively simple to implement, it will result in 

length downstream values that are greater than expected if there are downstream 

loops in the network.  This tool could be improved by calculating length 

downstream as shortest path between the item of interest and the nearest sink.  

The shortest path is determined by reading weights from each network element 

that is traversed during the trace.  The combination of network elements that 

connects the two end points while resulting in the lowest sum of weights is the 

shortest path.  While this definition eliminates ambiguity as to what is really 

returned from a length downstream calculation, it requires the user to include an 

extra step (specifying the attribute to use as a weight) when creating the geometric 
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network, as well as increased processing time (to check path lengths to all 

connected sinks.)  Other variations on the definition of length downstream could 

require even more effort from the user, or even more processing power and time 

from the computer.  Thus when defining an attribute in Arc Hydro, care should be 

taken to insure that the attribute is meaningful to the water resources community, 

is simple for the user to populate, and can be produced unambiguously by the 

software’s functionality.   

Another concern for the developer is the logic behind the implementation 

of each tool.  For example, a watershed outlet may be defined as the point where a 

watershed connects to the network.  In many cases, this point is located by 

examining where the watershed and the network intersect.  However, some cases 

may arise in which the watershed and the network intersect in more than one 

place, or even not at all.  A tool designed to locate watershed outlets should either 

possess a scheme for dealing with these cases, or skip these cases during 

processing and provide a list of unprocessed watersheds as output.  Because 

several schemes may exist to solve a given problem, the user should always be 

provided with information about how a tool operates, especially when it operates 

outside of normal conditions.  The best practice is to clearly define how an 

attribute is interpreted with each possible situation from the start, and then leave it 

to the user to resolve unanticipated ambiguities.   

These tools work very well with simple networks.  However, the 

effectiveness of the tools may diminish with increasingly complex networks.  

Branches, loops, and Complex Edges may create ambiguities that demand more 
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stringent rules for trace task operations in order to produce the desired result.  In 

most cases, these ambiguities can be resolved.  A more serious problem involves 

operations on networks with more than one Edge Feature Class.  If a tool utilizes 

an attribute or weight from network edges, then those attributes and weights must 

be defined and specified for all Edge Feature Classes in the network.  Preparing 

for the possibility of multiple Edge Feature Classes in a network greatly increases 

development efforts.  In addition, the graphical user interface becomes more 

complex, and the overall efficiency of the tool drops as each Edge Feature Class 

is processed for a given cycle of an operation.   

Due to the complexity involved in trying to prepare the toolset for every 

possible situation, a better development approach is to design the tools to work 

strictly on Arc Hydro Feature Classes.  Inherent in Arc Hydro’s design is a set of 

rules, which provides a well-defined environment that each tool can expect to 

operate in.  While the tools may allow flexibility in the names of attributes or 

Feature Classes, the network and other components to which the tools are applied 

should conform to the structure of Arc Hydro (such as one and only one Edge 

Feature Class in the network.)   

In addition to improving the philosophy behind the design of the toolset 

(and Arc Hydro), the functionality of several of the tools may be improved as 

well.  Currently, length downstream is calculated for an edge by summing the 

lengths of all edges produced in a downstream trace from that edge.  This length 

would include both sides of a downstream loop, resulting in a value higher than 

what should be produced according to Arc Hydro’s definition of length 
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downstream.  The Calculate Length Downstream tool should be modified to find 

the least cost path based on edge length between a given edge and the nearest 

sink.  It should also be modified to calculate length downstream for edges, or 

junctions, or both.  Currently, length downstream must first be calculated for 

edges and then copied to junctions.  This is not a very efficient design since it 

requires one tool to be run before the other.  Because the process for calculating 

length downstream is identical for edges and junctions, the tool should allow 

length downstream to be calculated for both network element types.   

The Assign Flow Direction tool could be improved by adding a separate 

button, which allows the user to change the flow direction of selected edges 

without having to open the graphical user interface for the tool.  In other words, 

the user would choose the flow direction that will be assigned to edges.  From that 

point forward, each time the button is pressed, that flow direction will be assigned 

to the selected edges.   

Use of the NextDownstream attribute on HydroJunctions leads to an 

important concept:  navigation of the landscape based on an attribute.  This 

concept can be extended to include a NextDownstream attribute for a variety of 

Feature Classes.  Thus, Watersheds could be connected to HydroJunctions, which 

could be connected to HydroEdges or a UserPoint.  A tool could be written to 

navigate these Feature Classes based on the NextDownstream attribute.  Such a 

tool would probably require a “HydroConnectivity” table, which contains the 

HydroIDs of Features and the HydroIDs of each feature’s next downstream 

element.  This concept could also lead to an improvement in the Make Schematic 
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Lines tool.  This tool could be modified to create a set of points and lines which 

connect each feature involved in the HydroConnectivity table.   

On a more general note, this research has proven that effective tools can 

be developed to work in ArcGIS by creating a DLL in the Visual Basic 

programming environment.  While creating a water resources computational 

model which operates on top of the ArcGIS Hydro Data Model is certainly a more 

complex task, it is certainly within the realm of possibilities.  The model 

developer must carefully consider to what extent the model is linked with 

ArcGIS, and how the graphic user interface is designed.  In addition, the 

components of the model should be constructed in a COM-compliant and reusable 

fashion.  Finally, care should be taken to separate the data from the computational 

components of the model.  This approach helps to insure the integrity of the data 

and promotes a more modular design of the model. 

6.1 FUTURE WORK 

Each of the tools developed for this research should be considered a draft 

version.  A good understanding of the proper protocols and techniques for 

developing tools in ArcGIS should be acquired directly from ESRI personnel, and 

then applied to the design of each tool to ensure the smoothest link with the 

ArcGIS environment.   

The success of the tools in populating attributes of the ArcGIS Hydro Data 

Model suggests that the functionality of the tools may be incorporated into Data 

Model classes as methods.  This process would involve generating code in Visual 

C++ using the Code Generation Wizard.  Methods such as calculating length 
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downstream and storing flow direction are relatively straightforward and could be 

added to the HydroEdge class.  However, methods such as accumulating area 

values to outlets or storing area outlets may require some thought as to where the 

methods should go and how they should be implemented.   

Once some elementary methods have been written, the next step in the 

development of Arc Hydro is to use Arc Hydro to prepare data for a simulation 

model.  Then a true evaluation of Arc Hydro’s effectiveness can be ascertained. 

Several innovations regarding GIS technology and the potential to link 

GIS data with computational models have been described.  COM-compliance has 

made GIS the newest member of a family of COM-compliant software that can 

share components and utilize each other’s object libraries.  Object-oriented 

programming has extended the power of Features in GIS.  HEC’s libHydro has 

provided geoobjects with a great resource of efficient and well-established 

hydrologic computational routines.  The next step is to take each of these 

elements and build the next generation of GIS-enabled hydrologic and hydraulic 

models. 
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Appendix A:  ArcHydro and NWIS Tools User Guide 

A.1 INSTALLING ARCHYDRO TOOLS 

The ArcHydro Tools toolbar contains all of the ArcHydro Tools organized 

into toolbar items and menus.  Once installed, the ArcHydro Tools toolbar can be 

added to an ArcMap document like any other ArcMap toolbar. 

Installing ArcHydro Tools requires the following software: 

ArcInfo 8.1 or higher 

Installing ArcHydro Tools requires the following files: 
 
 ArcHydroTools.dll  
 ArcHydroTools.lib 
 ArcHydroTools.exp 

These files, as well as all source files, can be found on the CD-ROM 

included with this thesis.  Once the files have been extracted from CD-ROM, 

open the ArcMap document where ArcHydro Tools are to be installed.  
 
� Click the Tools menu and then click Customize. 
 
� In the customization window, click Add From File. 

 
� Navigate to ArcHydroTools.dll, click on ArcHydroTools.dll, and then 

click Open.  After a moment, a list of added items will be shown in a 
popup window.  Click OK to close the window and proceed. 

 
� In the customization window under the Toolbars tab, place a check next to 

ArcHydroTools.  The ArcHydro Tools toolbar will appear on the map 
document.  You may now close the customization window. 

ArcHydro Tools can also be added to ArcMap by registering the 

ArcHydroTools.dll with ArcMap using RegCat.exe, and then adding the toolbar 
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to ArcMap like any other ArcMap toolbar.  See ArcMap documentation for 

details. 

A.2 ASSIGN HYDRO ID 

This tool assigns HydroIDs to Feature Classes and tables in the current 

map that have a HydroID field of type String.  To use this tool, add all Feature 

Classes and tables that you want to assign HydroID to, to the ArcMap document.  

In the editor toolbar, click Start Editing.  In the ArcHydro Tools toolbar, click 

ArcHydro Tools, then click Assign HydroID. 

   

 

Figure A.1 Assign HydroID Button 

The tool will work through each Feature Class and table in the map, 

assigning HydroIDs to records with a HydroID field of type String.  You may also 

select features that you want to assign HydroID to.  The tool will then only assign 

HydroIDs to selected features.  A progress bar shows the tool’s progress in the 

lower left corner of the map.  When the tool is finished, investigate the tables to 
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ensure that HydroID was properly assigned.  If you decide that you do not want 

HydroIDs, stop the edit session without saving edits. 

  

 

Figure A.2 HydroIDs for Rivers Feature Class 

A.3 CALCULATE DOWNSTREAM LENGTH 

This tool calculates the length from the most downstream node on each 

edge in a given layer to the sink that the edge flows to.  It then populates the 

specified length downstream field with those calculated values.  To use this tool, 

add the edge Feature Class to the map document.  Start an edit session.  Before 

using the Calculate Downstream Length tool, make sure that flow direction is set 

on the network.  Once flow direction is set, on the ArcHydro Tools toolbar click 

ArcHydro Tools, then click Downstream Length, then click Calculate for Edges.   
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Figure A.3 Calculate Downstream Length Button 

A form asking for the name of the edge layer, the field that contains the 

lengths of the edges, and the field to store downstream lengths appears.  

 

 

Figure A.4 Input Form for Calculate Downstream Length Tool 

You may click the Help button to show information about the tool if you 

wish.  Input the edge layer that you want to compute downstream lengths for in 
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the first box.  Input the field in the edge layer that contains the lengths of each 

edge in the second box.  These lengths are used to compute the downstream 

length for each edge.  This field must be of type Double.  Input the field in the 

edge layer that will hold the length downstream in the third box.  This field must 

also be of type Double.  Then click OK.  The tool calculates values for a selected 

set of edges, or for the entire Feature Class if no edges are selected.  A progress 

bar shows the tool’s progress in the lower left corner of the map. 

 

 

Figure A.5 Result of Downstream Length Computation 
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A.4 ASSIGN DOWNSTREAM LENGTH TO JUNCTIONS 

The tool reads length downstream values from edges and writes those 

values to junctions in the network.  To use this tool, add the network with the 

junction Feature Class of interest to the map document.  Start an edit session.  

Make sure that downstream length has already been calculated for the edges in the 

network.  On the ArcHydro Tools toolbar click ArcHydro Tools, then click 

Downstream Length, then click Assign to Junctions.   

 

 

Figure A.6 Assign Downstream Length to Junctions Button 

A form asking for layers and fields used by the tool appears. 

 

 126



 

Figure A.7 Input Form for Copy Downstream Length to Junctions Tool 

You may click the Help button to show information about the tool if you 

wish.  Input the edge layer containing length downstream values in the first box.  

Enter the field in the edge layer where the length downstream values are stored in 

the second box.  This field must be of type Double.  Enter the shape length field 

for the edge layer in the third box.  This field must be of type Double.  Enter the 

junction layer where you want to write length downstream values to in the fourth 

box.  Enter the field in the junction layer where you want to store length 

downstream values in the fifth box.  This field must be of type Double.  Then 

click OK.  The tool calculates values for a selected set of junctions, or for the 

entire Feature Class if no junctions are selected.  A progress bar shows the tool’s 

progress in the lower left corner of the map. 
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Figure A.8 Result of Assign Downstream Length to Junctions Computation 

A.5 ASSIGN FLOW DIRECTION 

This tool assigns flow direction to edges in a network, either by choosing a 

flow direction to assign, or by reading values from a table.  To use this tool, add 

the network with the edge Feature Class of interest to the map document.  Start an 

edit session.  On the ArcHydro Tools toolbar click ArcHydro Tools, then click 

Flow Direction, then click Assign Flow Direction.   
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Figure A.9 Assign Flow Direction Button 

A form asking for an edge layer and assignment options appears. 

 

 

Figure A.10 Input Form for Assign Flow Direction Tool 

You may click the Help button to show information about the tool if you 

wish.  Input the edge layer that you want to assign flow direction to in the first 
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box.  Select an esriFlowDirection from the options on the right.  If not assigning 

flow direction based on an attribute, flow direction for the entire set of edges will 

be assigned based on the chosen esriFlowDirection.  If assigning by attribute, 

place a check by the Assign based on attribute check box.  The Select Flow 

Direction Field combo box will become enabled.  The flow direction will be read 

from the field selected in the combo box.  This field must be of a numeric type.  

With the desired options selected, click OK.  The tool assigns flow direction to 

either a selected set of edges, or for the entire Feature Class if no edges are 

selected.  A progress bar shows the tool’s progress in the lower left corner of the 

map. 

The figures below show how the Assign Flow Direction tool can be used 

to set the flow direction of edges in the network.  The first figure shows the 

default flow direction based on sinks in the network.  The second figure shows the 

flow moving towards a different location after the tool was used.   

 

 

Figure A.11 Default Flow Direction in a Network 
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Figure A.12 Result of Changing Flow Direction with Assign Flow Direction Tool 

A.6 STORE FLOW DIRECTION 

This tool reads the flow direction for a set of edges from the network and 

writes the value of the flow direction to the Feature Class.  To use this tool, add 

the network with the edge Feature Class of interest to the map document.  Start an 

edit session.  Make sure that flow direction has already been set for the network.  

On the ArcHydro Tools toolbar click ArcHydro Tools, then click Flow Direction, 

then click Store Flow Direction.   
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Figure A.13 Store Flow Direction Button 

A form asking for an edge layer and a field to store flow direction appears. 

 

 

Figure A.14 Input Form for Store Flow Direction Tool 

You may click the Help button to show information about the tool if you 

wish.  Input the edge layer that you want to store flow direction for in the first 

box.  Enter the field in the edge layer where the flow direction values are to be 

stored in the second box.  This field must be of a numeric type.  Then click OK.  

The tool reads flow directions values from the network and writes them to the 

Feature Class table.  The tool finds values for a selected set of edges, or for the 
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entire Feature Class if no edges are selected.  A progress bar shows the tool’s 

progress in the lower left corner of the map.  Results for storing flow direction for 

a sample set of edges are shown below.  Note that a coded value domain has been 

applied to the FlowDirection field.  Instead of displaying the numeric value stored 

in the field, a text description of the value’s meaning is shown. 

 

 

Figure A.15 Results of Store Flow Direction Operation 

A.77 FIND NEXT DOWNSTREAM 

The Find Next Downstream tool uses the network to find the next 

downstream junction in a particular Feature Class, and assigns the ID of the 

downstream junction to a downstream junction ID field in the Feature Class table.  

To use this tool, add the network with the junction Feature Class of interest to the 

map document.  Start an edit session.  On the ArcHydro Tools toolbar click Point 

Nav, then click Find Next Downstream.   
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Figure A.16 Find Next Downstream Button 

A form asking for a junction layer and required fields appears. 

 

 

Figure A.17 Input Form for Find Next Downstream Tool 

You may click the Help button to show information about the tool if you 

wish.  Input the junction layer that you want to process in the first box.  Enter the 

field that holds the junction IDs in the second box.  Enter the field to store the 

downstream junction IDs in the third box.  The field type of this field should 

match up with the field type of the ID field.  Next click OK.  The tool finds the 
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next downstream junctions and assigns the IDs of those junctions to the 

downstream junction ID field in the junction Feature Class table.  The tool finds 

next downstream junctions for either a selected set of junctions, or for the entire 

Feature Class if no junctions are selected.  A progress bar shows the tool’s 

progress in the lower left corner of the map. 

 

 

Figure A.18 Results of Find Next Downstream Computation 
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A.8 STORE AREA OUTLETS 

This tool determines the outlet junction for an area and assigns the ID of 

that junction to an outlet ID field in the area Feature Class table.  To use this tool, 

add the area Feature Class of interest and the network with the junction Feature 

Class of interest to the map document.  Start an edit session.  On the ArcHydro 

Tools toolbar click Point Nav, then click Store Area Outlets.   

 

 

Figure A.19 Store Area Outlets Button 

A form asking for the required layers and fields appears. 
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Figure A.20 Input Form for Store Area Outlets Tool 

You may click the Help button to show information about the tool if you 

wish.  Input the polygon layer that represents the areas of interest in the first box.  

Input the field to store outlet IDs in the area Feature Class in the second box.  

Input the junction layer that will serve as outlets for the areas in the third box.  

Input the field in the junction Feature Class that contains the IDs that will be 

written to the Outlet ID field in the area Feature Class in the fourth box.  Then 

click OK.  The tool uses the scheme described above to assign outlet IDs to the 

areas of interest.  The tool runs on either a selected set of areas, or for the entire 

Feature Class if no areas are selected.   

During processing, a form with a progress bar is displayed in the center of 

the screen.  The user may press the Cancel button on the form to cancel 
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processing.  When the tool is finished, a message box appears displaying the 

ObjectIDs of any areas for which the outlet could not be determined, or for which 

there was more than one potential outlet.  If no such areas were found, then the 

message box does not appear. 

 

 

Figure A.21 Results of Store Area Outlets Computation 

A.9 ACCUMULATE AREAS TO POINTS 

This tool accumulates values from areas to the outlet junction of the areas, 

and then accumulates those values through each downstream junction in the 

network.  To use this tool, add the area Feature Class of interest and the point or 

junction Feature Class of interest to the map document.  Start an edit session.  On 

the ArcHydro Tools toolbar click Point Nav, then click FAC to Pts.   
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Figure A.22 Accumulate Areas to Points Button 

A form asking for the required layers and fields appears. 

 

 

Figure A.23 Input Form for Accumulate Areas to Points Tool 
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You may click the Help button to show information about the tool if you 

wish.  Input the polygon layer that represents the areas of interest in the first box 

in the column on the left.  Input the field that contains outlet IDs in the area 

Feature Class in the second box.  Input the field that contains the values to be 

summed in the third box.  In the column on the right, input the junction layer that 

serves outlets for the areas in the first box.  Input the field in the junction Feature 

Class that contains the IDs that correspond to the Outlet ID field in the area 

Feature Class in the second box.  Input the field that will store the values from the 

areas in the third box.  Input the field that contains the Next Downstream IDs in 

the fourth box.  Input the field that corresponds to the IDs in the Next 

Downstream IDs field in the fifth box.  Input the field that contains length 

downstream in the sixth box.  The ID fields should be of type Integer or String, 

and they should match in type.  The Length Downstream field must be of type 

Double.  The field that stores the values from the areas may be numeric, String, or 

Date.  With all fields entered, click OK.   

The tool uses the scheme described above to accumulate values from areas 

onto points, and then passes those values through the network in the downstream 

direction.  The tool operates on the entire set of points or junctions.  During 

processing, a form with a progress bar is displayed in the center of the screen.  

The user may press the Cancel button on the form to cancel processing.   

The following figure shows the results of running the tool where the 

accumulated value was the area of each polygon in acres.  The figure shows the 

outlet point for the most upstream area in the network. 
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Figure A.24 Results of Accumulate Areas to Points Computation 

A.10 FIND DISTANCE BETWEEN JUNCTIONS 

This tool finds the distance between a point or junction and its next 

downstream neighbor.  To use this tool, add the point or junction Feature Class of 

interest to the map document.  Start an edit session.  On the ArcHydro Tools 

toolbar click Point Nav, then click Find Distance Between Junctions.   
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Figure A.25 Find Distance Between Junctions Button 

A form asking for the required layer and fields appears. 

 

 

Figure A.26 Input Form for Find Distance Between Junctions Tool 

 142



You may click the Help button to show information about the tool if you 

wish.  Input the junction or point layer in the first box.  Input the field that 

contains length downstream in the second box.  This field must by of type Single 

or Double.  Input the field that contains the next downstream IDs in the third box.  

Input the field that contains the IDs that correspond to the next downstream IDs in 

the fourth box.  The ID fields must be of type String or Integer, and they should 

match.  Input the field to store the distance between a junction and its downstream 

junction in the fifth box.  This field must be of type Single or Double.  With all 

parameters inputted, click OK.   

The tool uses the scheme described above to find the distance between 

junctions.  The tool operates on a selected set of points or junctions, or the entire 

set if none are selected.  During processing, a form with a progress bar is 

displayed in the center of the screen.  The user may press the Cancel button on the 

form to cancel processing.   
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Figure A.27 Results of Find Distance Between Junctions Computation 

A.11 MAKE SCHEMATIC LINES 

This tool creates a schematic line Feature Class from a set of points or 

junctions.  To use this tool, add the point or junction Feature Class of interest to 

the map document.  Start an edit session.  On the ArcHydro Tools toolbar click 

Make Schematic.   

 

 

Figure A.28 Make Schematic Lines Button 

 144



A form asking for the required layer and fields appears. 

 

 

Figure A.29 Input Form for Make Schematic Lines Tool 

You may click the Help button to show information about the tool if you 

wish.  Input the junction or point layer in the first box.  Input the field that 

contains the next downstream IDs in the second box.  Input the field that contains 

the IDs that correspond to the next downstream IDs in the third box.  The ID 

fields must be of type String or Integer, and they should match.  Input a name for 

the schematic line Feature Class in the fourth box.  Remember that this name 

should conform to a valid class name according to ESRI rules.  Invalid class 

names will produce an error.  With all parameters inputted, click OK.   
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The tool uses the next downstream ID to build a set of schematic lines 

between all points in the given point or junction Feature Class.  A progress bar 

shows the tool’s progress in the lower left corner of the map. 

 

 

 

Figure A.30 Results of Make Schematic Lines Operation 

A.12 NWIS TOOL 

This tool retrieves NWIS data from the Internet and builds time series 

tables from the data.  Once installed, the NWIS button can be added to an 

ArcMap document like any other ArcMap command button. 

Installing the NWIS tool requires the following software: 

ArcInfo 8.1 or higher 

Installing the NWIS tool requires the following files: 
 
 NWIS.dll  
 NWIS.lib 
 NWIS.exp 
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These files, as well as all source files, can be found on the CD-ROM 

included with this thesis.  Once the files have been extracted to the computer, 

open the ArcMap document where the NWIS tool is to be installed.  
 
� Click the Tools menu and then click Customize. 
 
� In the customization window, click the Commands tab. 

 

Note: 

In the lower left corner of the window, you will see a Save in… dropdown 

box.  Make sure you are not saving in normal.mxt by clicking in the 

dropdown box and selecting the name of the map document.  If you save 

in normal.mxt, then the NWIS tool will load for each new document that 

you create with ArcMap.  This creates some extra overhead, especially if 

you do not need the NWIS tool in every new ArcMap document. 
 
� Click on Get NWIS Data with the left mouse button.   
 
� While holding down the left mouse button, drag the Get NWIS Data 

button next to another button in the gray area where all the commands and 
tools are in ArcMap.  When you see the insertion cursor (looks like a 
capital I,) that means that tool can be placed in that location.  Release the 
left mouse button to drop the tool in that location.  The Get NWIS Data 
button is now ready for use. 

To use this tool, add the Feature Class that contains the USGS stream 

gages of interest to the map document.  The Feature Class table should contain a 

field that stores USGS stream gage ID numbers.  Click the Get NWIS Data 

button.   
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Figure A.31 Retrieve NWIS Data Button 

A form asking for a layer that represents USGS stream gages appears.   

 

 

Figure A.32 Input Form for Layer and Fields 

Input the Feature Layer that represents USGS stream gages in the first 

combo box.  Input the field in that layer that stores USGS stream gage IDs in the 

second combo box.  An example of a USGS stream gage ID is 08158000, which 

is for the Colorado River in Austin.  Input the field that stores Feature IDs in the 

third combo box.  Values in this field will be stored in the FeatureID field in the 

time series table, in order to link the time series data with the appropriate feature.  

Click OK.  A form asking for the period of record to retrieve and the state the 

gages are located in appears. 
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Figure A.33 Input Form for Period of Record and State 

With the period of record and state inputted, press Go.  The tool checks to 

make sure the dates exist, and that the start date occurs before the end date.  The 

tool then asks for a database and table to store the data in.  With these inputs, the 

tool then retrieves data from the Internet and builds the time series table.  During 

the Internet transfer, the tool displays a simple Splash screen.  During processing, 

a form with a progress bar is displayed in the center of the screen.  The user may 

press the Cancel button on the form to cancel processing.   
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Figure A.34 NWIS Splash Screen 

When the tool is finished, the table is added to the ArcMap document, and 

a message box appears giving some statistics about the table creation process.  If 

data for any gages could not be downloaded, the IDs of those gages appear in a 

message box. 
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Figure A.35 Table Resulting from Retrieve NWIS Data Operation 
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Appendix B:  Data Dictionary 

Following is a list of files included on the CD-ROM attached to this thesis. 

B.1 ARCHYDRO TOOLS 

ArcHydroTools.dll   DLL containing ArcHydro Tools 

ArcHydroTools.exp   Query expression for ArcHydroTools.dll 

ArcHydroTools.lib   Lib file for ArcHydroTools.dll 

ArcHydroTools.vbp   ArcHydro Tools VB Project 

ArcHydroTools.vbw   ArcHydro Tools VB Workspace 

clsArcHydroMenu.cls   ArcHydro Menu 

clsArcHydroToolbar.cls  ArcHydro Toolbar 

clsAsgFlowDir.cls   Assign Flow Direction Tool 

clsCalcDSLength.cls   Calculate Downstream Length for Edges  

Tool 

clsCopyDSLength.cls   Assign Downstream Length to Junctions  

Tool 

clsFACtoPts.cls   Accumulate Area Values to Points Tool 

clsFindDistBTPts.cls   Find Distance Between Points Tool 

clsFindFlowDir.cls   Store Flow Direction Tool 

clsFindNextDS.cls   Find Next Downstream Tool 

clsMakeSchLines.cls   Make Schematic Lines Tool 

clsMenuDSLength.cls   Downstream Length Menu 

clsMenuFlowDir.cls   Flow Direction Menu 
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clsMxHydroID.cls   Assign Hydro ID Tool 

clsPointNavMenu.cls   Point Nav Menu 

clsStoreAreaOutlets.cls  Store Area Outlets Tool 

frm2by1.frm    Template input form 

frmAsgFlowDir.frm   Assign Flow Direction Input Form 

frmBitmaps.frm   Bitmaps form 

frmCalcDSL.frm   Calculate Downstream Length for Edges  

Input Form 

frmCopyDSL.frm   Copy Downstream Length to Junctions 

Input Form 

frmFACtoPts.frm   Accumulate Area Values to Points Input  

Form 

frmFindDistBTPts.frm  Find Distance Between Points Input Form 

frmFindFlowDir.frm   Store Flow Direction Input Form 

frmFindNextDS.frm   Find Next Downstream Input Form 

frmHelpASGFlowDir.frm  Assign Flow Direction Help Form 

frmHelpCalcDSL.frm   Calculate Downstream Length for Edges  

Help Form 

frmHelpCopyDSL.frm  Copy Downstream Length to Junctions Help  

Form 

frmHelpFACtoPts.frm  Accumulate Area Values to Points Help  

Form 

frmHelpFindDistBTPts.frm  Find Distance Between Points Help Form 

 153



frmHelpFindFlowDir.frm  Store Flow Direction Help Form 

frmHelpFindNextDS.frm  Find Next Downstream Help Form 

frmHelpStoreAreaOutlet.frm  Store Area Outlets Help Form 

frmProgress.frm   Progress Form 

frmSchematic.frm   Make Schematic Lines Input Form 

frmSchematicHelp.frm  Make Schematic Lines Help Form 

frmStoreAreaOutlet.frm  Store Area Outlets Input Form 

modGlobals.bas   Global Variables Module 

modNetworkUtils.bas   Network Utilities Module 

modUtilsGeneral.bas   General Utilities Module 

readmeArcHydroTools.txt  Basic readme file for ArcHydro Tools 

B.2 NWIS TOOL 

clsNWIS.cls    NWIS Tool 

frmHelpNWISFields.frm  Fields Help Form 

frmHelpNWISLayers.frm  Layers Help Form 

frmNWISFields.frm   Fields Input Form 

frmNWISinputs.frm   General NWIS Inputs Form 

frmNWISLayers.frm   Layers Input Form 

frmProgress.frm   Progress Form 

frmSplash.frm    Splash Form 

modArcHydro.bas   Module with other ArcHydro utilities 

modGlobals.bas   Global Variables Module 

modUSGSData.bas   USGS Data-sorting Module 
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modUtilsGeneral.bas   General Utilities Module 

NWIS.dll    DLL containing NWIS Tool 

NWIS.exp    Query expression for NWIS.dll 

NWIS.lib    Lib file for NWIS.dll 

NWIS.vbp    NWIS Tool VB Project  

NWIS.vbw    NWIS Tool VB Workspace 

readmeNWIS.txt   Basic readme file for NWIS Tool 

B.3 SAMPLE TOOL 

clsSampleTool.cls   Sample Tool 

Project1.vbp    Sample Tool VB Project 

Project1.vbw    Sample Tool VB Workspace 

Sample_Tool.dll   Sample Tool DLL 

Sample_Tool.exp   Query expression for Sample_Tool.dll 

Sample_Tool.lib   Lib file for Sample_Tool.dll 
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