

Copyright

by

Timothy Lee Whiteaker

2001

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UT Digital Repository

https://core.ac.uk/display/5184263?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Prototype Toolset for the ArcGIS Hydro Data Model

by

Timothy Lee Whiteaker, B.S.

Thesis

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Engineering

The University of Texas at Austin

August 2001

A Prototype Toolset for the ArcGIS Hydro Data Model

Approved by
Supervising Committee:

David R. Maidment

Howard M. Liljestrand

Francisco Olivera

Acknowledgments

I would like to thank Dr. David Maidment of the Center for Research in

Water Resources for his guidance and enthusiasm. I would also like to thank

Camp Dresser & McKee Inc. for their generous support of my research. Thanks

go to David Arctur and Steve Grise of Environmental Systems Research Institute

Inc. for providing valuable assistance and insights. Thanks also go to Dr.

Francisco Olivera for his enlightening perspective. I would like to give a special

thanks to the CRWR family (Mom, Dad, sisters, pals) for making this journey a

blast. Finally, I would like to thank Dr. Vincent Neary of Tennessee

Technological University for encouraging me to further my knowledge of

hydrology and GIS at the graduate level.

August 17, 2001

 iv

Abstract

A Prototype Toolset for the ArcGIS Hydro Data Model

Timothy Lee Whiteaker, M.S.E.

The University of Texas at Austin, 2001

Supervisor: David R. Maidment

The incorporation of a COM-compliant design, object-oriented

programming, and relational database technology into Geographic Information

Systems has opened the door for the next generation of GIS-enabled hydrologic

simulation models to be developed. The ArcGIS Hydro Data Model (Arc Hydro)

helps to bridge the gap between GIS and computational models by facilitating the

preparation of GIS data for model use. This thesis describes some approaches for

developing a simulation model on top of Arc Hydro, discusses object-oriented

programming concepts, and provides software construction guidelines. The result

is a set of tools which operate on Arc Hydro in order to prepare GIS data for use

in a simulation model.

 v

Table of Contents

List of Tables... x

List of Figures .. xi

Chapter 1: Introduction .. 1
1.1 Background .. 1
1.2 Motivation .. 3
1.3 Objective and Scope... 5
1.4 Thesis Outline .. 6

Chapter 2: Literature Review ... 8
2.1 Software Design Principles .. 8

2.1.1 Robustness.. 9
2.1.2 Extensibility ... 9
2.1.3 Reusability.. 10
2.1.4 Compatibility.. 10

2.2 Object-Oriented Programming... 10
2.2.1 Concepts ... 11
2.2.2 COM... 13
2.2.3 Object-Oriented Programming and Software Design

Principles.. 14
2.3 Interface Design ... 15

2.3.1 User in Control ... 15
2.3.2 Directness ... 16
2.3.3 Consistency .. 16
2.3.4 Forgiveness... 16
2.3.5 Feedback... 16
2.3.6 Aesthetics ... 17
2.3.7 Simplicity ... 17

 vi

2.4 Existing Models.. 17
2.4.1 HEC-HMS.. 18
2.4.2 Kortflom... 19
2.4.3 SMILE.. 20
2.4.4 Noah 1D ... 21
2.4.5 Map-Based Surface and Subsurface Flow Simulation Models .. 22
2.4.6 ArcFM .. 23

2.5 Conclusions .. 25

Chapter 3: Methodology... 27
3.1 Object-Oriented Programming and Hydrologic Modeling 27
3.2 Software Overview... 28

3.2.1 RDBMS Technology.. 33
3.2.2 Geodatabase Structure.. 34
3.2.3 Custom Features... 36
3.2.4 COM-Compliance .. 39
3.2.5 MapObjects .. 39

3.3 ArcGIS Hydro Data Model .. 40
3.3.1 Hydro Features ... 41
3.3.2 Hydro Network... 43
3.3.3 Drainage Areas ... 46
3.3.4 Channel Features .. 47
3.3.5 Time Series... 49
3.3.6 Stage of Development .. 50

3.4 Development Approaches .. 50
3.4.1 Data Model Pre-Processing.. 50
3.4.2 Data Model Extension.. 53

3.5 Interface Design ... 54

 vii

Chapter 4: Procedure of Analysis... 55
4.1 Creating Tools for Use in ArcMap... 55

4.1.1 Creating the DLL ... 56
4.1.2 Adding the DLL to ArcMap... 70

4.2 Applying Design Principles ... 72
4.2.1 Software Construction.. 72
4.2.2 User Interface Design... 75

Chapter 5: Results .. 80
5.1 Arc Hydro Tools... 80

5.1.1 Arc Hydro Tools Toolbar ... 81
5.1.2 Assign Hydro ID .. 83
5.1.3 Calculate Downstream Length ... 86
5.1.4 Assign Downstream Length to Junctions................................... 89
5.1.5 Assign Flow Direction ... 93
5.1.6 Store Flow Direction .. 96
5.1.7 Find Next Downstream .. 97
5.1.8 Store Area Outlets .. 100
5.1.9 Accumulate Area Values to Points... 105
5.1.10 Find Distance Between Junctions .. 107
5.1.11 Make Schematic Lines ... 109

5.2 Retrieve NWIS Data... 110
5.2.1 Description ... 110
5.2.2 Beneficial Uses... 113
5.2.3 Limitations ... 114

Chapter 6: Conclusions .. 115
6.1 Future Work ... 119

 viii

Appendix A: ArcHydro and NWIS Tools User Guide....................................... 121

Appendix B: Data Dictionary... 152

Bibliography.. 156

Vita 158

 ix

List of Tables

Table 3.1 Hydro Feature Classes... 43
Table 3.2 Hydro Network Classes... 45
Table 3.3 Drainage Area Classes .. 47
Table 3.4 Channel Features Classes.. 49
Table 4.1 Implementation Code for ICommand Properties 61
Table 5.1 Function of Arc Hydro Tools .. 83
Table 5.2 esriFlowDirection Constants ... 93
Table 5.3 Components of NWIS-Web URL 111

 x

List of Figures

Figure 3.1 ArcCatalog Graphical User Interface 30
Figure 3.2 ArcMap Graphical User Interface...................................... 31
Figure 3.3 ArcToolbox Graphical User Interface 32
Figure 3.4 Feature Class Table Structure .. 34
Figure 3.5 Sample UML Diagram... 37
Figure 3.6 Procedure for Creating Custom Features in ArcGIS 38
Figure 4.1 Procedure for Creating a Custom Tool in ArcGIS 56
Figure 4.2 Properties of clsSampleTool .. 57
Figure 4.3 Adding a Reference to the ESRI Object Library 59
Figure 4.4 Implementing ICommand Interface................................... 60
Figure 4.5 ICommand Stub Code.. 60
Figure 4.6 Implementation Code for ICommand Properties............... 61
Figure 4.7 Template Input Form ... 64
Figure 4.8 Sample Progress Form ... 65
Figure 4.9 Module, Form, and Class Files in Sample Project............. 66
Figure 4.10 Project Properties Window .. 69
Figure 4.11 Show OIDs Tool in Customize Window 70
Figure 4.12 Show OIDs Button... 71
Figure 4.13 Sample Output from Show OIDs Tool 71
Figure 4.14 Comparison Between Form Layouts 77
Figure 5.1 Sample Progress Form with Cancel Button....................... 81
Figure 5.2 Arc Hydro Tools Toolbar .. 82
Figure 5.3 Result of Downstream Length Computation 87
Figure 5.4 Incorrect Downstream Length Calculation for Complex

Edges .. 89
Figure 5.5 Result of Assign Downstream Length to Junctions

Computation ... 91
Figure 5.6 Default Flow Direction in a Network 94

 xi

Figure 5.7 Result of Changing Flow Direction with Assign Flow
Direction Tool .. 95

Figure 5.8 Results of Find Next Downstream Computation............... 98
Figure 5.9 Results of Store Area Outlets Computation..................... 101
Figure 5.10 First Pass: All Junctions on Boundary.......................... 102
Figure 5.11 Second Pass: Junctions Producing Upstream Edges in

Area .. 102
Figure 5.12 Third Pass: Junction With Most Upstream Edges in

Area .. 103
Figure 5.13 Results of Accumulate Areas to Points Computation.. 1066
Figure 5.14 Results of Find Distance Between Junctions

Computation ... 108
Figure 5.15 Results of Make Schematic Lines Operation............... 1099
Figure 5.16 NWIS Splash Screen.. 112
Figure 5.17 Table Resulting from Retrieve NWIS Data Operation.. 113

 xii

Chapter 1: Introduction

Through recent innovations in Geographic Information Systems

technology, users can now create custom objects with special properties and

behaviors to represent geographic features. The ArcGIS Hydro Data Model uses

this technology to store water resources features in a manner which facilitates the

conversion of the data for use in a water resources simulation model. This thesis

explores methods that may be used to build a simulation model on top of the

ArcGIS Hydro Data Model, and presents a prototype toolset which operates on

the ArcGIS Hydro Data Model.

1.1 BACKGROUND

A Geographic Information System (GIS) is a computer system that

enables the creation, manipulation, analysis, storing, and display of

geographically referenced information. By incorporating database technology

and a suite of both proprietary and non-proprietary tools, GIS allows users to

examine spatial relationships that might otherwise have been overlooked in the

decision-making process. GIS was used primarily for display purposes during its

early stages, with applications in the transportation plans of Detroit and Chicago

(Goodchild and Kemp, 1990). In the 1980s, advancements in both hardware and

software technology enabled GIS to become available on platforms affordable by

a much larger group of potential users (Goodchild and Kemp, 1990), while also

extending the analysis capabilities of the software. Today, GIS technology can be

found in thousands of organizations around the world, including municipalities,

 1

crime investigation units, forestry services, and Internet-based mapping services

such as MapQuest.

In 2000, GIS entered a new era in technological advancement when the

Environmental Systems Research Institute (ESRI), the world’s leading producer

of GIS software, released the latest versions of its ArcInfo and ArcView GIS

software. Collectively known as ArcGIS, this software system enables a truly

object-oriented representation of geographic features. By creating COM-standard

interfaces, users can associate properties and behaviors with features (COM is

defined in section 2.2.2.). This means that in addition to appearing as a simple

blue line on the map, the GIS representation of a river can possess attributes that

more accurately model its real-world counterpart. Because ArcGIS is COM-

compliant, it can easily communicate with other COM-compliant software, such

as Microsoft Word or Internet Explorer. ArcGIS can also be customized using

Visual Basic and can utilize all other COM-compliant object libraries registered

on the machine where the software is installed. ArcGIS also employs innovations

in database technology that allow tables to possess a blob field, which can store

anything from an integer to an image to a file. By storing the spatial

representation of features in a blob field, ArcGIS more tightly couples the spatial

data with its attribute information.

To take advantage of ArcGIS’s new and innovative capabilities, a

consortium for GIS in water resources coordinated by the Center for Research in

Water Resources at the University of Texas at Austin has developed a data model

to represent water resources features, in both a hydrologic and hydrographic

 2

sense, by creating a series of custom objects with their own attributes and

behaviors. The ArcGIS Hydro data model (Arc Hydro), as the model is called, is

not meant to serve as a sophisticated hydrologic simulation model. As a data

model, its primary purpose is to provide a geospatial framework for storing water

resources data, with some simple methods that facilitate data development for use

in a simulation model, such as HEC-HMS or MIKE-SHE. Arc Hydro attempts to

integrate the extensive resources of cartographic information available with the

components required as input to water resources computational models by

providing a structure that accommodates both types of data as well as conversion

and some overlap between data types.

Since its conception two years ago, ArcGIS Hydro data model has

undergone numerous reviews and is now completed, at least structurally speaking.

The next step in Arc Hydro’s development is to examine to what extent it

supports the linkage between GIS and a computational model. The purpose of

this research is to explore the methods available, given the new innovations in

technology, to create a water resources simulation model on top of the ArcGIS

Hydro Data Model.

1.2 MOTIVATION

Hydrologic simulation models have existed for decades. The routines to

perform hydrologic computations are so well understood, and the models

themselves have been validated through so many years of use, that few models

have undergone significant changes in recent years. However, with the latest

advances in GIS technology, there are new benefits to be gained by linking GIS

 3

with hydrologic models. ArcGIS geodatabases use the familiar and accessible

structure of Relational Database Management Systems (RDBMS) to store GIS

data, making ArcGIS the first GIS software produced by ESRI that does not rely

on a proprietary file format to store the spatial representation of features. The

COM-compliant nature of ArcGIS also improves compatibility with other

software, meaning that ArcGIS is able to communicate with hydrologic

simulation models in a manner that was previously not possible.

In addition to bringing GIS and hydrologic software closer together, the

potential also exists to narrow the gap between GIS data and inputs to a

hydrologic model. Traditionally, a hydrologic model can use only its own type of

data format for model inputs. While data can be created in a model to represent

components of reality, typically a great storehouse of data already exists in the

form of a GIS. Incorporating this data into a hydrologic model can save a great

deal of time and avoid the “redundant” creation of data. GIS utilities such as

CRWR Pre-Pro can already export GIS data for use in hydrologic models (in this

case HEC-HMS,) but these utilities typically write the data to a text file, which is

later imported into the model (Olivera, 2001). With COM-compliance, this data

conversion could happen in a single step if the object libraries of the GIS and the

model are compatible. In fact, it may be possible to use a single source of data for

both the GIS and the model. Thus, when a parameter is added or changed on one

end, that change is reflected in the other software as well. The ability of ArcGIS

to support custom objects makes this connection even more attainable. Instead of

a computational model being forced to use a standard GIS data format, custom

 4

objects could be developed that possess the properties and methods necessary to

function in both the GIS and the model.

ArcGIS allows the user to create specially defined classes known as

custom feature classes that extend the power and functionality of GIS features.

The ArcGIS Hydro data model is the first attempt at using custom feature classes

in ArcGIS to improve the connection between GIS data and the requirements for a

computational hydrologic or hydraulic model. Arc Hydro contains custom feature

classes to represent cartographic features, drainage patterns, channel systems, and

the movement of water through the landscape. Yet while the structural

representation of these features is complete, no methods have been attached to

any feature classes in Arc Hydro. In addition, Arc Hydro has not yet been used to

prepare data for a water resources computational model, so the effectiveness with

which it supports the link between GIS and hydrologic models is not known.

Exploring different strategies to developing a computational model on top of the

ArcGIS Hydro data model will not only test its ability to support this link, but it

may also provide insight as to the appropriate methods that should be attached to

the custom objects in Arc Hydro. This research will also lead to a better

understanding of how GIS and a computational hydrologic model can be

connected in general.

1.3 OBJECTIVE AND SCOPE

The purpose of this research is to explore methods to create a

computational hydrologic or hydraulic model on top of the ArcGIS Hydro data

model. As such, the procedures outlined and the resulting tools developed are

 5

intended to be applied within the framework of the ArcGIS software and the

ArcGIS Hydro data model. However, some of the discussion involves general

principles behind the application of object-oriented concepts towards hydrologic

and hydraulic modeling, and may provide value outside of the ArcGIS context.

The goal of this thesis is not to create a computational model, but to

determine the various methods that may be used to create such a model given the

latest innovations in software technology and the evolution of the ArcGIS Hydro

data model. Advances in object-oriented programming and RDBMS technology

have dramatically increased the functionality, compatibility, and power of GIS.

These advances may have opened up new avenues for integrating computational

models with geographic data. This thesis attempts to discover those avenues and

learn how they can be applied from within the context of the ArcGIS Hydro Data

Model.

Another goal of this research is to examine the effectiveness with which

Arc Hydro links GIS data and computational models. Currently, no classes in Arc

Hydro possess behavior. By exploring different needs of hydrologic

computational models, potential behaviors (or methods of preparing data) for Arc

Hydro classes can be formulated.

1.4 THESIS OUTLINE

This thesis is divided into six chapters. The first provides some

background information about Geographic Information Systems and the ArcGIS

Hydro data model, followed by an overview of the motivation, scope, and

objective in developing a computational model on top of Arc Hydro. The second

 6

provides some general concepts about object-oriented modeling and reviews the

principles of sound software construction and user interface design. This chapter

also describes other object-oriented hydrologic and hydraulic models that were

studied to gain a better understanding of model development. The third chapter

provides an overview of some innovations behind the design of the ArcGIS

software, and introduces the components of the ArcGIS Hydro data model. The

application of object-oriented principles towards hydrologic model design is also

discussed in this chapter. This chapter concludes with a description of

development approaches and interface design techniques for computational model

development in relation to the ArcGIS Hydro data model. The fourth chapter

details the steps taken to create a set of custom tools that operate on Arc Hydro,

followed by a discussion of how software design principles were applied to the

development of the tools. The fifth describes each tool that was developed, with a

discussion of benefits and limitations for each tool. The sixth draws conclusions

and suggests future work that may be undertaken.

 7

Chapter 2: Literature Review

Before the first line of code is written for a computational model, a good

understanding of proper software construction techniques should be acquired.

Meyer (1997) outlines some key concepts related to intelligent software design in

Object-Oriented Software Construction. These concepts lend themselves to

object-oriented programming, which has been the programming style of choice

since the early 1990s. Aside from the structure of a software’s design, perhaps an

equally important component of a software system is the interface through which

communication occurs between the user and the program. Hartley (1998)

provides some instruction on graphical user interface design. All of these

concepts can be used to evaluate object-oriented models in the water resources

realm that have already been created. Indeed, a study of existing models has

proven useful in determining effective approaches in developing a computational

model on top of the ArcGIS Hydro data model.

2.1 SOFTWARE DESIGN PRINCIPLES

Meyer (1997) provides some widely accepted guidelines on intelligent

software construction. The key indicator of a program’s quality is the degree to

which it successfully performs the tasks outlined in the solution to the problem

statement. However, in addition to functioning correctly, a software product

should also be robust, extensible, reusable, and compatible (Meyer, 1997).

 8

2.1.1 Robustness

Robustness refers to the ability of software to function when conditions

fall outside of the specification made by the problem statement. No matter how

meticulously the designer plans the software development, situations will always

occur outside the designer’s specifications. A robust software system will handle

these unexpected situations gracefully, without crashing or producing other

catastrophic events (Meyer, 1997).

2.1.2 Extensibility

Extensibility refers to the ease with which adaptations may be made to

software in order to meet changing needs or specifications. Typically, the larger

the software system, the more difficult it is to make changes due to a more and

more complex interconnection between software components. By following two

principles, design simplicity and decentralization, software extensibility can be

dramatically improved. The concept behind design simplicity is that simple

designs are easier to change than complex ones. If the designer is not careful, a

software system can become so convoluted that making changes to the system

design requires more time than simply rebuilding the system from scratch. The

principle of decentralization states that as software modules become more

autonomous, changes in software design will be more likely to affect a single

module, rather than requiring changes throughout a large chain of modules

(Meyer, 1997).

 9

2.1.3 Reusability

Reusability measures the ability of a software system’s components (or the

system itself) to be reused for different applications. Often different applications

will require similar tasks to be performed, such as closing a window or opening a

file. Being able to reuse common components between software applications

saves much time in the development process. Reusing software components also

provides a quality check in many situations, as those components have already

been tested, debugged, and proven through previous applications (Meyer, 1997).

2.1.4 Compatibility

Compatibility measures the ability of a software system to be combined

with others. Compatibility is becoming more and more important as developers

seek complete and integrated solutions that follow a problem from its initial

statement to its final, presentable solution output. A software product that

operates in an isolated environment will soon find itself inadequate and obsolete,

while a product that can work with Internet, word processing, database,

multimedia, or other utilities will remain useful components of a total solution

(Meyer, 1997).

2.2 OBJECT-ORIENTED PROGRAMMING

Many of the design principles stated above describe the very nature of

Object-oriented programming. When combined with COM, an object-oriented

approach can lead to a solution that can be integrated with many other software

systems.

 10

2.2.1 Concepts

Object-oriented programming uses fundamental constructs called objects

to represent real-world concepts. Objects possess both a data structure and

behavior. An object’s data structure is described by its properties or attributes. A

property is a descriptor for an object that may take on different values. For

example, a river object could be described by a width property. An object’s

behavior is also known as its methods or operations. A method is a task that an

object performs. For instance, a river object might have a method that routes a

hydrograph through it. Object-oriented development is a thought process and is

largely independent of its actual implementation in a programming language. By

focusing first on the design of objects rather than implementation, designers can

create objects that best model the relevant aspects of their real counterpart. An

object-oriented approach generally includes four concepts: identity,

classification, polymorphism, and inheritance (Rumbaugh et al., 1991).

Identity refers to the quantification of data as discrete objects. Objects can

represent both concrete entities such as a reservoir, or concepts such as a reservoir

operating policy (Rumbaugh et al., 1991).

Classification refers to the grouping of objects with the same properties

and methods into a class. The class defines the properties and methods for the

objects, with each object representing an instance of the class. In a water

resources application, an example of a class might be a reservoir, while the

Ashokan Reservoir and Center Hill Reservoir would be examples of reservoir

objects. Although each reservoir object contains the same properties, such as the

 11

name of its managing agency, the values of the properties may differ (Rumbaugh

et al., 1991).

Polymorphism means that different classes may implement the same

behavior in different ways. For instance, a reservoir object might perform a flood

routing operation differently than a river object. Polymorphism allows new

classes to utilize existing operations without the need for rewriting code, as long

as each new class contains the code it needs to handle the operation (Rumbaugh et

al., 1991).

Inheritance refers to the hierarchical sharing of properties and methods

among related classes. Properties and methods common to several types of

objects can be grouped into a superclass, also known as a parent class.

Subclasses, or child classes, can then inherit those properties and methods in

addition to defining their own. For example, a waterbody could be modeled as a

superclass, with subclasses of river, lake, and fishpond. Each subclass may have

a fish count property, while the lake and fishpond classes may also define a

surface area property. Some superclasses are useful for grouping properties and

methods, but are never used to instantiate objects of their own. These classes are

called abstract classes. By grouping common properties and methods into

superclasses and then utilizing inheritance, repetition in a program is greatly

reduced (Rumbaugh et al., 1991).

Encapsulation is another key concept crucial to a sound object-oriented

design. Encapsulation means that the external properties and methods of an

object (those visible to other objects) are separated from the implementation

 12

details of the object, which are hidden from other objects. By internalizing the

implementation details, a system becomes much easier to maintain. The designer

can change the implementation (for instance to fix a bug or improve efficiency) of

a particular object’s methods without having to change the way those methods are

called by other objects (Rumbaugh et al., 1991).

2.2.2 COM

COM, which stands for Component Object Model, is a binary

specification standard devised by Microsoft that allows compliant software to

utilize the object libraries of other COM-compliant software. COM itself is not a

programming language, although languages such as C++ and Visual Basic lend

themselves towards COM-compliant software design. Rather, COM provides a

standard set of rules for developing software such that components from a

program with a COM-compliant design can access components from other COM-

compliant programs, regardless of the language that each program was developed

in.

COM may be most evident within the Microsoft Office applications of

Excel and Word. Because each software can utilize the object libraries of the

other software, each can incorporate useful components from the other software

into its own documents. For instance, copying and pasting a range of Excel cells

from a spreadsheet or a chart into a Word document is an easy operation and

produces no error. In fact, Excel’s charting capabilities are directly linked to

Microsoft Graph, another COM-compliant object library distributed with

Microsoft Office.

 13

By incorporating COM-compliance into a software system’s design, that

software possesses the potential to utilize components from any other COM-

compliant software. This means that a purely computational model could be

extended to produce graphs, prepare reports, carry out spreadsheet operations,

update databases, or even upload results to a web site, while keeping the core

functionality of the model relatively simple.

2.2.3 Object-Oriented Programming and Software Design Principles

When combined with a COM-compliant design, object-oriented

programming addresses many of the key software design principles stated above.

Because object-oriented design focuses on the nature of the required objects and

their relationship to their real counterparts, rather than just the functionality

required by the current problem statement, object-oriented software possesses a

greater potential for robustness that function-driven software. The modular nature

of object-oriented programming lends itself to an extensible design, as changes in

design requirements can be implemented by changing only the necessary objects.

Encapsulation further improves extensibility, as a change in an object’s

internal procedure is hidden from other components of the system, and thus the

rest of the system needs no modification to support the object’s internal change.

A modular design and polymorphism promote reusability, by allowing reuse of

both modules (objects) and operations when necessary.

Finally, a COM-compliant design and encapsulation allow components of

an object-oriented system to be compatible with other programs, regardless of the

programming language or implementation details of those components. One way

 14

in which this is accomplished is through the incorporation of DLLs into a

software system. A DLL, or dynamic linked library, is a set of objects, functions,

or routines that operate in the same process space as the calling application. By

including a DLL from another COM-compliant application in a particular

application’s software design, that application can use components from the other

application that are included in the DLL.

2.3 INTERFACE DESIGN

A well-written computational model remains ineffective without a clear

link between the program and the user. Graphical User Interface (GUI) design is

one of the key issues in software construction today. Hartley (1998) provides

seven useful design principles: User in Control, Directness, Consistency,

Forgiveness, Feedback, Aesthetics, and Simplicity (Hartley 5).

2.3.1 User in Control

Users should feel that they are in control of the software. Navigation

between different elements in the GUI should be relatively easy and

straightforward. Selection processes should not make incorrect assumptions

about which objects the user intended to select. Difficulty in routine navigation

and selection tasks can quickly lead to frustration. The ability to customize the

software should also be taken into account, as more experienced users often seek

ways to maximize efficiency and improve functionality for specific applications.

Keyboard shortcuts and Visual Basic for Applications macros can provide such

customization potential (Hartley 1998).

 15

2.3.2 Directness

The GUI should be intuitive to the user. If the user already possesses a

sense of familiarity with the GUI, then the mental workload required by the user

to learn the GUI will be reduced. Directness is evident in many programs that

mimic the standard interface of Microsoft Windows applications. This interface

includes File, Edit, View, and Help menus, and a toolbar with icons for opening,

saving, and printing files (Hartley 1998).

2.3.3 Consistency

Consistency between different components of an application reduces the

mental workload of the user by allowing the user to transfer experience between

components. Elements of consistency include placement of controls, labeling of

controls (font and name), and operational behavior (Hartley 1998).

2.3.4 Forgiveness

The application should be designed to handle errors resulting from either

physical mistakes (an inadvertent key press) or mental mistakes (calling the

wrong task.) The application should gracefully recover from such errors, and

provide feedback about the nature of the error to assist the user in recovering from

the error and preventing future mistakes (Hartley 1998).

2.3.5 Feedback

An interface should provide feedback for each action that a user takes.

When a change is made to an object in the application, the interface should

indicate that the request for change was accepted and that the operation was

 16

successful. Excessive delays cause stress for the user, even if the delay is a matter

of seconds. For long processing tasks, the application should indicate the

system’s status and progress. This is commonly accomplished with a progress bar

(Hartley 1998).

2.3.6 Aesthetics

The layout of elements of a user interface should not detract from their

function. In fact, proper grouping and aligning of elements will help to make the

purpose of the interface more obvious. The elements should be arranged in a

logical order (if applicable), with broader information at the top of the interface

and more specific information proceeding down the interface (Hartley 1998).

2.3.7 Simplicity

A form should not prompt or show the user for an excessive amount of

information. Rather, the information should be communicated in incremental

forms. The elements of the interface should be arranged so that the interface is

easy to use. Descriptive labels help clarify the purpose of a particular element.

Grouping and utilizing different colors or font styles helps to distinguish different

logical groupings of elements. For instance, a set of buttons that are related to a

common task could be organized into a toolbar or menu (Hartley 1998).

2.4 EXISTING MODELS

The principles behind intelligent software construction, object-oriented

programming and GUI design provide useful guidelines in developing a

computational model on top of the ArcGIS Hydro data model. Examining how

other existing hydrologic and hydraulic models incorporate those principles into

 17

their design is an insightful and worthwhile task. Several models have been

investigated for that purpose, with the nature of the models ranging from an

extension of a GIS to fully independent programs.

2.4.1 HEC-HMS

The Hydrologic Modeling System (HMS), created by the US Army Corps

of Engineers Hydraulic Engineering Center (HEC), is a hydrologic model that

utilizes seven objects to route water through the landscape: Subbasin, Reach,

Reservoir, Junction, Diversion, Source, and Sink. Each object is defined by the

manner in which it conducts water through the landscape. All objects possess an

identification number. The connectivity between objects is known, and is

established for each object by storing the ID number of the next downstream

object. From this, a schematic can be drawn of connected components. In HMS,

water can only be passed in the downstream direction (no backwater effects).

Thus, the objects in HMS act essentially as time series processors that receive an

inflow time series from upstream sources, process the inflow to produce an

outflow time series, and pass the outflow to the next downstream object (HEC,

2001).

A simulation run is governed by three major components: the Basin

Model, the Meteorological Model, and the Control Specifications. The Basin

Model contains information about the properties and connectivity of the seven

objects described above. The Meteorological Model contains rainfall and

evaporation information in the form of time series associated with rainfall gages.

 18

The Control Specifications component defines simulation properties such as time

step and duration (HEC, 2001).

The HEC has recently produced a library of routines used for hydrologic

calculations in the form of a DLL called libHydro. These are many of the same

routines used in the HEC-1 software (which is the predecessor to HMS), and thus

have been proven through years of use. These routines can be accessed through

calling statements in programming languages such as Visual Basic or C++ (HEC,

1995). By releasing HEC-1 routines in a reusable format, the HEC has made a

vast library of useful hydrologic functions available.

2.4.2 Kortflom

Alfredsen and Saether (2000) created a program called Kortflom for

performing flood analysis in river systems at the Norwegian University of Science

and Technology. The model routes water through a river system that may include

lakes and reservoirs. The object-oriented framework behind the program supports

a set of hydrological components, topological relationships between those

components, and specialized system behavior during simulation. The model is

written in C++ and is designed to allow users to easily create new components,

either through specification or generalization of existing components. To

promote a robust design, the model allows for the use of different methods in

calculating flows on reaches, depending on data availability and reach

characteristics. The model is designed so that the basic structural components

(e.g. rivers, lakes and catchments) of a real world river system are modeled along

with their topological associations, but without a link to a specific computational

 19

component. This makes it easier to choose which computational method to use

for a specific component (Alfredsen and Saether, 2000).

The model is divided into four major components: structural components

and system topology, computational methods, data containers, and simulation

control. A special control object ensures that only appropriate components (such

as a river branch) can be inserted at a given location. The model incorporates two

time series classes, RegularTimeSeries and IrregularTimeSeries, with both classes

inheriting from an abstract base time series class. RegularTimeSeries keeps data

for time series with regular time intervals, while IrregularTimeSeries keeps data

for time series with irregular time intervals. In addition to the classes designed to

store time series data, several classes have been developed to handle time series

transformations. These classes support transformation, sorting, and statistical

analysis of time series data. During simulation, timing in the model is handled by

a global time control class. Before a simulation can be run, three steps must be

performed: 1) create the components to model the river system, 2) collect data to

describe the components, and 3) connect the components in a topological

network. In the future, the system may be stored in an object-oriented database

(Alfredsen and Saether, 2000).

2.4.3 SMILE

Spanou and Chen (2000) developed an object-oriented tool called SMILE

for modeling point-source pollution in river systems. The software allows the

user to represent river basins, while supporting the computation of river flows and

water quality.

 20

To represent river basins, the software uses a Watershed object that is a

composition of a RiverSystem object, and optionally of several other objects such

as Community and WastewaterTreatmentPlant. The Watershed object is designed

so that it can be easily extended to allow the inclusion of other objects (such as

agricultural areas) if needed (Spanou and Chen, 2000).

The network in the model is made up of RiverNode and RiverReach

objects. The RiverNode class has subclasses that represent flow change points

(WasteDischargePoints) and monitoring points (SamplingStations). The

RiverNode class also has a subclass called MixingPoints where computations

involving flow continuity and mass balance are performed (Spanou and Chen,

2000).

2.4.4 Noah 1D

Murray and Kutija (2000) developed an object-oriented model called

Noah 1D that uses a variety of numerical schemes to solve one-dimensional free

surface and pressurized flow problems. The model uses a central ModelControl

object to create and perform maintenance on each component of the model. A

separate SolutionControl object actually performs the simulation process. Data

input objects in the model consist of ConnectionEdges, ConnectionVertices,

PhysicalEdges, CrossSections, and BoundaryConditions. ConnectionEdges and

ConnectionVertices define how the components of the model are connected.

PhysicalEdges contain data that describe the physical properties of an edge, or

river segment. CrossSections define the geometry along an edge, while

BoundaryConditions define the boundary conditions for the model. By utilizing

 21

both ConnectionEdges and PhysicalEdges, the connectivity between components

in the flow system is separated from the physical description of the components.

Input data and solutions are also separated into different objects. While input data

is maintained by the data input objects described above, solutions from

simulations are stored in SolutionPoint objects (Murray and Kutija, 2000).

2.4.5 Map-Based Surface and Subsurface Flow Simulation Models

Ye (1996) developed a surface and subsurface flow simulation model that

integrates hydrologic process calculations, a map-based representation of the

hydrologic system, and the underlying database of information that describes the

system. The application runs from within an ArcView 3.2 project file, with

additional functionality implemented through code. Ye used an object-oriented

approach in developing river basin and river section classes, with each class

containing properties to describe an object’s state, and simple behaviors to handle

such tasks as drawing and returning spatial location. Behaviors associated with

hydrologic and hydraulic processes were left to be described by mathematical

models within the program (Ye, 1996).

To store time series data, Ye investigated creating a time series table for

each parameter at each location. Thus three monitoring points measuring stage

and flow velocity would be associated with six time series tables. However, Ye

chose not to implement this strategy due to the large number of tables that would

be created with even a small number of spatial features. Instead, Ye’s application

creates a time series table for each time series attribute. The columns in the table

represent the spatial locations associated with the attribute, while the rows

 22

represent the timestamps. Thus a cell in the table would represent the value of a

time-varying attribute at a particular location at a particular time (Ye, 1996).

2.4.6 ArcFM

ArcFM (Arc Facilities Manager) is a standalone software application

designed to facilitate the planning and management of water, electric, and gas

utilities. ArcFM is more of a planning and analysis model, rather than a

computational model, with an emphasis on the layout, status, and relationships

between utilities features. The application consists of a GIS-based user-interface

through which users can map and analyze utilities. The GIS is directly linked to a

geospatial relational database, such as Oracle. ArcFM is built to work on the

Windows NT platform, and was written with Visual Basic 5.0 (ESRI, 1998).

ArcFM is built on the ArcGIS software system. ArcFM provides the user

with several features designed to streamline utilities management. These include

a graphical user-interface with a custom ArcFM Viewer, a rich toolset geared

towards facilities-based tasks (such as traces, mapping, and construction), and a

RuleBase Engine (RBE) that supports automatic validation checks, connectivity

assurance, and other business rules defined by the user (ESRI, 1998).

ArcFM’s user-interface was designed with Visual Basic to resemble

typical Windows-based applications. The software contains standard menus such

as a “File” menu, and utilizes buttons and tools like MS Word or Excel (ESRI,

1998). Using familiar components in a graphical user-interface shortens the

learning curve for a given application. This is an example of Directness as

described by Hartley (1998).

 23

ArcFM comes with its own viewer software. The viewer provides utilities

for reporting, charting, mapping, and outputting data. With the viewer, the user

can select from a list of feature types to create in a toolbox-style window. The

viewer also contains custom tools such as an attribute inspection tool and a tool

which assigns images to particular features (ESRI, 1999).

ArcFM contains a RuleBase Engine (RBE) to help insure model integrity

and ease maintenance efforts by encoding business rules specified by the user.

The RBE controls display of features, defines the structure of the user interface,

asserts connectivity rules between features, and performs attribute validation for

features. The RBE can simplify editing tasks by allowing only the appropriate

pipes to be connected to certain valves, for example. When making a connection,

the RBE automatically snaps features together, enforcing topological

connectivity. By separating the rulebase from the actual data, ArcFM preserves

the integrity of the data while enhancing the maintenance and creation of ArcFM

features (ESRI, 1999). In addition to the basic rules provided by ArcFM, the user

can add his own business rules to suit the needs of his specific application (ESRI,

1998).

An example of inheritance can be found in the ArcFM object model. To

build the analysis model for ArcFM, individual classes were conceptualized.

Properties of each class were then defined, in the process revealing common

properties between classes. Higher-order classes were then created to define the

common properties, with the appropriate classes inheriting from these

superclasses. These superclasses were often abstract (ESRI, 2000).

 24

2.5 CONCLUSIONS

Alfredsen and Saether, Murray and Kutija, and Ye each incorporated a

differentiation between data and analysis operations by separating the structure

and topology of the river system from computational components. Murray and

Kutija further specialized river system components by storing connectivity

(topology) between components and the physical description of the components in

separate objects, which is similar to the use of HydroEdge (for connectivity) and

HydroFeature (for properties) objects in the ArcGIS Hydro Data Model. This

differentiation helps to secure the integrity of the data while promoting a modular

structure in the software’s design. This scheme also encourages use of

preexisting computational procedures, such as those available in HEC’s libHydro.

Using proven routines not only shortens development time for a computational

model, but also validation time as well.

The three steps that must be followed before a simulation is run in

Kortflom are equivalent to the data preparation that routinely occurs in a GIS.

The network model in SMILE bears a resemblance to the current network model

in ArcGIS. In particular, the RiverNode subclasses of WasteDischargePoint and

SamplingStation demonstrate a direct correlation to the WaterDischarge and

MonitoringPoint classes in the ArcGIS Hydro data model. From these examples,

it is clear that GIS and the ArcGIS Hydro data model may provide a sound data

structure and pre-processing environment for the data components of a hydrologic

simulation model.

 25

Both Kortflom and Noah 1D use a simulation control object to control the

simulation run, as well as objects to manage time series data. To keep track of the

movement of water through the landscape, both spatially and through different

processes, a hydrologic simulation model might benefit from a similar control

object, like a conductor to the orchestra of hydrologic processes. While the

ArcGIS Hydro data model does provide a TimeSeries class, a more elaborate

scheme may be required to store time series information from a simulation model.

Each of the independent programs described above possesses the freedom

of a structural and user-interface design best suited for its model needs. Each of

those models can also run in the absence of a GIS system. However, ArcFM and

Ye’s simulation models, which are integrated into the GIS environment, have the

benefit of using a GUI already familiar to GIS users. By creating a model that

runs inside of a GIS, much of the work in developing a GUI can be avoided since

a basic GUI already exists. ArcGIS’s COM-compliant design and extensive

object library also encourage development from within a GIS. Ultimately, the

nature of the model and the resources available will probably determine the

platform on which the model is built.

 26

Chapter 3: Methodology

The new capabilities made possible by the latest innovations in GIS

technology were one of the primary factors responsible for the development of the

object-oriented ArcGIS Hydro data model (Davis, 1999). This chapter begins by

discussing how hydrologic modeling lends itself to object-oriented programming,

followed by a brief description of innovations behind ArcGIS’s software design.

It also describes the ArcGIS Hydro data model, including how it benefits from the

GIS innovations and how it extends the capabilities of GIS software in a water

resources engineering context. With a basic understanding of Arc Hydro and the

software established, this chapter discusses approaches for developing a

computational model on top of Arc Hydro. Finally, this chapter outlines some

design alternatives for creating a user interface for the computational model.

3.1 OBJECT-ORIENTED PROGRAMMING AND HYDROLOGIC MODELING

The hydrologic cycle involves several processes, such as rainfall/runoff

and channel routing, which must be integrated to produce a complete solution

through modeling. Thus hydrologic and hydraulic modeling lends itself to a

modular style of programming, in which each of the processes is controlled by a

sub-model that is interconnected to other components in the whole system

(Alfredsen and Saether 2000). Due to the modular nature of object-oriented

programming, and the fact that object-oriented programming has now been

incorporated into GIS technology through ArcGIS, it seems logical that a

hydrologic simulation model would benefit from an object-oriented design.

 27

Several modeling programs already exist that use this approach, such as HEC-

HMS, Noah1D, and the Map-Based Surface and Subsurface Flow Simulation

Models developed by Ye.

In terms of GIS Features, the basic identity and attributes of objects (the

Features) are already defined. What remains is to associate methods or behaviors

with those objects. The HEC has contributed a great resource to this effort by

creating libHydro, a DLL containing the hydrologic functions and subroutines

from the HMS software in a form that may be called by Visual Basic, C++, or

other programming languages (HEC, libHydro). By calling these routines from

an object’s methods, an object can possess a variety of hydrologic behaviors such

as runoff determination or channel routing. On the developer’s side, development

time is greatly shortened since the routines are already written. Validation time is

also greatly reduced since the routines have been tested through years of use in

the HEC software.

Because an object-oriented design lends itself to hydrologic modeling, and

because object-oriented programming has been integrated into ArcGIS, this paper

discusses approaches of computational model development from within the

context of object-oriented programming.

3.2 SOFTWARE OVERVIEW

ArcInfo 8 and ArcView 8 are the latest releases of ESRI’s GIS software.

Collectively known as ArcGIS, the software exhibits many new features and

innovations that mark it as the next step in the evolution of GIS. ArcInfo 8 is

 28

ESRI’s enterprise GIS software and is composed of three major components:

ArcCatalog, ArcMap, and ArcToolbox.

ArcCatalog resembles Windows Explorer in look and feel, its purpose

being the creation and maintenance of GIS files. ArcCatalog provides three types

of views for browsing data: Contents, Preview, and Metadata. The Contents

view shows tables and geodatabase files in the same way that folders and files are

shown in the windows explorer (the geodatabase model is described in section

3.2.2). ArcCatalog can also display coverages and shapefiles, which are the file

formats used by earlier versions of ESRI’s ArcInfo and ArcView GIS software,

respectively. The Preview view displays a preview of the highlighted GIS file,

either through a spatial display or by showing the attributes of the data in a table.

The Metadata view reveals metadata about the GIS file, such as the creator of the

data, the date the data were created, etc.

 29

Figure 3.1 ArcCatalog Graphical User Interface

ArcCatalog is the utility used to create relationships between GIS features

and to build geometric networks. Relationships define associations between

features through attribute keys. Geometric networks define connectivity between

line and point features. ArcCatalog can also be used to import and export GIS

data from one file format to another.

 30

Figure 3.2 ArcMap Graphical User Interface

ArcMap is used for viewing and analyzing GIS data. It contains tools for

zooming, panning, and making printable maps, as well as special editing and

network tracing tools. Tools performing similar functions are organized into

toolbars, which can be moved and docked in different locations to improve the

ergonomics of the interface. The ArcMap user interface may be customized by

 31

creating custom tools and toolbars, and then associating those tools with code that

performs a particular task.

ArcToolbox contains many utilities that operate on GIS data, including

projection utilities and data conversion tools. The data conversion tools use the

same routines that ArcCatalog uses for importing and exporting data between

different GIS file formats (e.g. coverages, shapefiles, etc.) GIS data can also be

processed to create new data with ArcToolbox. For instance, the Create

Centerlines tool creates a centerline between dual-line features.

Figure 3.3 ArcToolbox Graphical User Interface

 32

ArcView 8.1 is sold as a separate package from ArcInfo 8 and is used for

viewing GIS data. ArcView 8.1 can edit shapefiles and simple feature classes, but

it cannot create geometric networks or edit network feature classes.

3.2.1 RDBMS Technology

In previous versions of ESRI’s GIS software, spatial data were stored in a

proprietary format. ESRI attempted to use a more database-centric structure upon

the release of their ArcView GIS software. Yet while ArcView versions 1-3

could store attribute information in dBase format, the geographic representation

of data was still linked to a separate file.

This changed when ESRI incorporated relational database management

systems (RDBMS) structure into ArcGIS. Previous database technology required

fields in a table (such as a dBase table) to be of a standard data type, such as

integer or string. For this reason, old versions of ArcView could store the

attributes of a Feature in a dBase file, but the information necessary to define that

Feature’s spatial representation had to be stored in a separate file. However,

today’s RDBMS software allows a table to possess one or more blob fields. A

blob field can store data of any type, including standard data types such as

integers and strings, as well as images and files. ArcGIS utilizes a blob field in

the design of Feature Classes. A Feature Class is a table made up of Features of

the same type, such as rivers. Rows in the table represent an individual Feature,

such as the Tennessee River. By including a blob field in the Feature Class table,

the attribute information of the Tennessee River is stored alongside its spatial

representation, providing a more intimate link between the two.

 33

Figure 3.4 Feature Class Table Structure

3.2.2 Geodatabase Structure

ArcGIS supports two main categories of Features: Simple Features and

Network Features. Simple Features include points, lines, and polygons. Network

Features include Simple Edges, Complex Edges, Simple Junctions, and Complex

Junctions. All Edges are connected by Junctions. A Simple Edge is a linear

Network Feature with no internal junctions. A Complex Edge is a linear Network

Feature that may contain one or more internal junctions, which are junctions that

lie on the edge but do not split the edge. Thus a Complex Edge may join another

Complex Edge anywhere along its length, while Simple Edges can only join other

Simple Edges at their endpoints. Simple Junctions can be thought of as the nodes

 34

that connect Edge Features, although Junctions do not have to be attached to any

Edges. Complex Junctions are Junctions with special internal connectivity,

analogous to a switchboard.

A collection of Features of the same type is stored as a Feature Class.

Each row in the Feature Class table represents an individual Feature. Feature

Classes that share a common use can be grouped into Feature Datasets. A Feature

Dataset is a container that defines a reference frame for the Feature Classes that it

contains. The reference frame includes information about the spatial projection,

coordinate range and coordinate precision for the data. Feature Datasets can also

store relationships between Feature Classes, as well as geometric networks.

Relationships in ArcGIS are comparable to relationships in any RDBMS, with

related rows in different tables being linked by a common identifier in key fields

in each table. Geometric networks are used for defining network topology

between Features. Geometric networks support tracing and connectivity tasks.

Only Network Features may participate in a geometric network.

Feature Datasets, Feature Classes, relationships, geometric networks, and

non-spatial tables are all stored in a Geodatabase. A Geodatabase is a relational

database that serves as a container for spatial data in ArcGIS. Other RDBMS

software, such as Oracle or Access, can open a Geodatabase. Using such software

to view a Geodatabase reveals Feature Class tables, as well as other tables used to

maintain the Geodatabase.

 35

3.2.3 Custom Features

ArcGIS has extended the power and functionality of a Feature by

incorporating object-oriented technology into its software design. In addition to

their spatial and attribute information, Features can also possess special behaviors

through the use of interfaces. For example, in addition to being a simple blue line

on a map, the GIS representation of a river may also know how to route a flood

wave from its upstream to its downstream end, how to draw itself at different

scales, and which Features to notify if its spatial or attribute information changes.

By adding custom behavior to Features, the GIS representation of real-world

objects becomes a more accurate depiction of the reality that GIS is trying to

model.

Custom Features can also take advantage of ArcGIS’s COM-compliant

design. Because ArcGIS is COM-compliant, Features can access the capabilities

of software such as Microsoft Excel to plot graphs, or Word to prepare reports.

The code behind a Feature’s behavior can be written with a COM-compliant

programming language, such as C++, meaning that users no longer must learn a

proprietary programming language to customize the software.

To create custom Features, the name, inheritance, attributes, and interfaces

are created in the Unified Modeling Language, or UML. UML is a standard

language for writing software blueprints using object-oriented techniques (Booch,

Grady, James Rumbaugh, and Ivar Jacobson, 1999). Custom ArcGIS Features

are created in a UML static structure diagram, which is analogous to an object

model diagram. As defined by Rumbaugh et al., an object model “describes the

 36

static structure of the objects in a system and their relationships” (6). Each

diagram in the model contains nodes, which represent custom Feature or Object

classes, and arcs, which represent relationships (inheritance, associations, etc.)

between classes. Packages organize UML items to display a common role of a set

of classes, or to show relationships between classes.

Figure 3.5 Sample UML Diagram

In the diagram above, the custom Parcel class inherits from the ESRI class

Feature, as designated by the line with the arrow pointing from Parcel to Feature.

In addition to Parcel inheriting the Shape attribute of Feature, Parcel also defines

a ParcelValue attribute and a GetParcelValue method (behavior). Although a

method has been defined in the static structure diagram, the implementation of the

method actually occurs in the Visual C++ or other programming environment.

Parcel is in a one-to-many relationship with the custom Building class. The

relationship is read as Parcel Contains Building. Each object instantiated from the

Parcel class may contain one or more Building objects.

 37

UML diagrams are created with a CASE (Computer Aided Software

Engineering) tool, which is a graphic software system. Once the object model has

been created with a CASE tool, the UML is exported to the Microsoft Repository.

Using a code generation wizard that ships with the ArcGIS software, stub code

can be generated in Visual C++ from the repository, and the code required to

implement each of the behaviors of the geoobjects can be created. After code

generation is complete, a DLL is created and linked to all instances of the custom

Features in ArcGIS. By accessing the Microsoft Repository in ArcCatalog using

the Schema Creation Wizard, Feature Classes that will store custom features can

be created, or the schema can be applied to existing data in a geodatabase.

Figure 3.6 Procedure for Creating Custom Features in ArcGIS

 38

3.2.4 COM-Compliance

ArcGIS is the first GIS software released by ESRI with a COM-compliant

design. Through COM, ArcGIS can now communicate with other COM-

compliant software, such as Word, Excel, and Internet Explorer, by utilizing

public components (those that can be accessed by other applications) from each

software’s object library. ArcGIS also uses Visual Basic for Applications (VBA)

as its customization language, no longer requiring users to learn a proprietary

language (such as Avenue or AML) for customization purposes. Note that Visual

Basic (VB) is different from VBA, in that Visual Basic is used to create

standalone applications or DLLs, while VBA is used from within a software

application to customize that application. Through VBA, the graphical user

interface of ArcMap and ArcCatalog can be tailored to the fit the needs of the

user. Custom buttons and toolbars can be created, and macros can be written to

automate complex tasks. VBA is also the means by which the object libraries of

other COM-compliant software are accessed. This means that ArcGIS can now

link spatial data to spreadsheet applications, reports, and even web utilities. The

customization potential provided by COM-compliance and VBA has extended the

functionality of ArcGIS far beyond that of any GIS software in the past.

3.2.5 MapObjects

In addition to the customization capabilities within ArcGIS, ESRI has also

provided a means to create separate programs that utilize one or more components

from ArcGIS. These streamlined applications incorporate only the ArcGIS

components they need, resulting in a much smaller and much faster software

 39

product than the powerful ArcGIS software. This collection of reusable

components is referred to as MapObjects.

MapObjects consists of a Map control and over thirty other objects that

can be used in Visual Basic, Delphi, and other industry standard programming

environments (ESRI 8). These controls possess much of the same functionality

found in ArcGIS. Applications built with MapObjects can support the display of

spatial information, with functionality such as panning and zooming. MapObjects

also supports basic querying of features (either spatially or by attribute data),

location of addresses, feature selection, and statistical calculations. While

MapObjects is not intended to act as a substitute for complete ArcGIS

functionality, it can add GIS capabilities to an application that would otherwise be

lacking a mapping component.

3.3 ARCGIS HYDRO DATA MODEL

The ArcGIS Hydro data model attempts to take advantage of some of the

new customization capabilities available in ArcGIS. The ArcGIS Hydro data

model is a collection of custom feature and object classes organized to facilitate

the preparation and maintenance of geospatial data for use in water resources

applications. It is designed to work within the ArcGIS software system. Arc

Hydro itself is not a simulation model. The primary goal of Arc Hydro is to

provide a schema that, when applied to GIS data, produces data that can be easily

used in hydrologic or hydraulic analyses. In essence, it is a data support system

for hydrologic simulation. Yet in organizing Arc Hydro’s classes, a structure for

developing GIS data useful in a water resources engineering context was also

 40

developed that is of value even if Arc Hydro itself is not applied. Arc Hydro

serves as a conceptual framework that integrates the latest advances in GIS

technology with the latest advances in the realm of hydrologic database

development.

The ArcGIS Hydro data model was designed in UML using Visio 2000, a

CASE tool. Arc Hydro is composed of five major packages, with four packages

representing Feature Datasets that will be included in the geodatabase, and the

fifth package representing time series data. The packages are Hydro Features,

Hydro Network, Drainage Areas, Channel Features, and Time Series.

3.3.1 Hydro Features

The Hydro Features package contains twelve classes used to represent the

cartographic features of the landscape. The HydroPoint, HydroLine, HydroArea,

and Waterbody classes store typical hydrography data layers such as rivers,

swamps, and lakes. In addition to map hydrography, there is a vast collection of

water resources features stored in extensive databases, such as the National

Inventory of Dams (U.S. Army Corps of Engineers par. 1). The Dams, Bridges,

Structures, WaterWithdrawal, WaterDischarge, MonitoringPoint and UserPoint

classes are designed to store such features. Each of these classes inherits attributes

from an abstract HydroFeatures class. These attributes include HydroID, an

identifier for features in Arc Hydro; and FeatureType, which is used to further

distinguish features for cartographic or display purposes. The Hydro Features

package also contains a HydroResponseUnit class, which is used to represent data

pertaining to the calculation of the vertical water balance. This class contains

 41

such data as the distribution of soil types, climate data, land use, and

administrative boundaries.

Class

(Type)
Inherits

From
Attribute

(Type)
Description

Dam
(Point)

HydroPoint A structure creating a pond or
reservoir storing water

Bridge
(Point)

HydroPoint A structure carrying a road
across a stream

Structure
(Point)

HydroPoint Any other kind of water
resources structure

Monitoring
Point

(Point)

HydroPoint A measurement station or
sampling point

Water
Withdrawal

(Point)

HydroPoint Point of withdrawal of water

Water
Discharge

(Point)

HydroPoint Point of discharge of water

UserPoint
(Point)

HydroPoint Any other point of interest

Hydro
Feature

(Abstract)

Feature
(ESRI)

 Abstract class with common
attributes and methods for

Hydro Features
 HydroID

(String)
Unique feature identifier in the

geodatabase
 FeatureType

(String)
Type of geographic feature

 Name
(String)

Geographic name

HydroPoint
(Point)

HydroFeature Point features from map
hydrography and inventory

sources
 JunctionID

(String)
Identifier for the corresponding

junction on the network
HydroLine
(Polyline)

HydroFeature Line features from map
hydrography

HydroArea
(Polygon)

HydroFeature Area features from map
hydrography

 42

Waterbody
(Polygon)

HydroArea An area of water

 AreaInSqKm
(Double)

Area independent of map units

 JunctionID
(String)

Identifier for the junction at the
outlet of the area

Hydro
ResponseUnit

(Polygon)

Feature
(ESRI)

 Any subdivision of the
landscape used for surface
water balance accounting

 HydroID
(String)

Unique feature identifier in the
geodatabase

 AreaInSqKm
(Double)

Area independent of map units

Table 3.1 Hydro Feature Classes

3.3.2 Hydro Network

The Hydro Network package contains a geometric network named

HydroNetwork designed to transmit water through the drainage system of the

landscape. The network includes a HydroJunction class, which is used to connect

edges to edges or drainage areas to the river network, and a HydroEdge class,

which transports the water along the network. Key attributes on HydroEdge

include ReachID, LengthDownstream, HydroEdgeType, and FeatureType.

ReachID is an identifier used for linear referencing events along a river such as a

water quality segment. LengthDownstream stores the distance from the most

downstream node of the edge to the sink (lake, ocean, sinkhole, etc.) to which the

river flows. This attribute is useful in establishing a measure system for linear

referencing, or for finding the distance between segments of a river.

HydroEdgeType distinguishes the two major categories of HydroEdges:

Flowlines and Shorelines. Shorelines represent edges along the boundaries of

 43

areal water features, such as lakes or oceans. Flowlines represent all other edges

including river centerlines and streamlines through a pipe system. FeatureType

provides an additional level of classification for HydroEdges.

The HydroNetwork is associated with two classes designed to support

linear referencing on the network, HydroPointEvent and HydroLineEvent. These

classes store events at a single point along on edge, and across a segment of one

or more edges, respectively. These classes inherit from an abstract HydroEvent

class, which contains a ReachID attribute that maps to the ReachID attribute in

HydroEdge.

Class

(Type)
Inherits

From
Attribute

(Type)
Description

HydroEdge
(Complex

Edge)

Complex
Edge

(ESRI)

 Linear segments in the
HydroNetwork

 HydroID
(String)

Unique feature identifier in the
geodatabase

 ReachID
(String)

Reach identifier (used for linear
referencing)

 Name
(String)

Geographic name

 LengthInKm
(Double)

Length independent of map
units

 Length
Downstream

(Double)

Length along shortest path to a
downstream reference location

 Flow
Direction
(Integer)

Labels flow direction:
Uninitialized = 0, WithDigitized

= 1, AgainstDigitized = 2,
Indeterminate = 3

 FeatureType
(String)

Type of geographic feature

 HydroEdge
Type

Type of HydroEdge:
Flowline = 1

 44

(Integer) Shoreline = 2
HydroJunction

(Simple
Junction)

Simple
Junction
(ESRI)

 Junctions in the HydroNetwork,
used for outlets, sinks, or other

purposes
 HydroID

(String)
Unique feature identifier in the

geodatabase
 Next

Downstream
(String)

Identifier for next downstream
feature in the HydroNetwork

 Length
Downstream

(Double)

Length along shortest path to a
downstream reference location

 Drainage
Area

(Double)

Accumulation of all areas that
drain to this junction,

independent of map units
 FeatureType

(String)
Type of geographic feature

HydroEvent
(Abstract)

Object
(ESRI)

 Abstract class with common
attributes and methods for

events
 ReachID

(String)
Identifier of linear referencing
segment, maps to ReachID on

HydroEdge
HydroPoint

Event
(Object)

HydroEvent A point event

 Measure
(Double)

Measure location of an event

HydroLine
Event

(Object)

HydroEvent A line event

 FromMeasure
(Double)

Measure location of the start of
the line event

 ToMeasure
(Double)

Measure location of the end of
the line event

 Offset
(Double)

Offset distance that the event is
displayed from the HydroEdge

Table 3.2 Hydro Network Classes

 45

3.3.3 Drainage Areas

A drainage area is an area of the landscape that drains to a point on a river

network, to a river segment, or to a waterbody. The Drainage Areas package

contains five classes that represent the elevation-based drainage pattern of the

landscape: DrainagePoint, DrainageLine, Catchment, Watershed, and Basin.

Catchments represent drainage areas defined by a consistent set of rules, such as a

threshold drainage area method or the Pfaffstetter coding system. Watersheds

represent any arbitrarily defined drainage area. Basins refer to a set of watersheds

administratively derived to represent the principal drainage areas in a particular

region, such as the 8-digit Hydrologic Cataloging Units established in the United

States. Drainage lines represent the primary courses of water through the

landscape as derived through digital elevation model (DEM) analysis. Due to the

practical limits on the precision of elevation data, these lines often are not exactly

spatially coincident with the actual river system. A drainage point lies at the

center of a digital elevation model cell, which serves as the outlet cell of a DEM-

derived drainage area. Drainage points are also known as seed points or pour

points.

Class

(Type)
Inherits

From
Attribute

(Type)
Description

Drainage
Feature

(Abstract)

Feature
(ESRI)

 Abstract class for drainage
system features

 HydroID
(String)

Unique feature identifier in the
geodatabase

 DrainageID
(Integer)

Link between point, line and
area features of a drainage
system, such as GridCode,

 46

Pfaffstetter number, or HUC
number

Drainage
Point

(Point)

Drainage
Feature

 Point at the center of a DEM
cell on a drainage path, usually

seed point location for
drainage area delineation

 JunctionID
(String)

Identifier for the junction that
corresponds to the drainage

point
DrainageLine

(Polyline)
Drainage
Feature

 Line through the centers of the
DEM cells on a drainage path

DrainageArea
(Abstract)

Drainage
Feature

 Abstract class for common
drainage area attributes

 AreaInSqKm
(Double)

Drainage area independent of
map units

 Next
Downstream

(String)

Identifier of next downstream
area in this drainage area

Feature Class
 JunctionID

(String)
Identifier for the junction at the

outlet of the area
Catchment
(Polygon)

DrainageArea An elementary drainage area
produced by a uniform process

of landscape subdivision
Watershed
(Polygon)

DrainageArea Any subdivision of the
landscape into drainage areas

Basin
(Polygon)

DrainageArea A set of standardized drainage
areas for data archiving and

delivery

Table 3.3 Drainage Area Classes

3.3.4 Channel Features

The Channel Features package contains three classes used to define the

channel system of a river. The ProfileLine class defines longitudinal segments of

the channel. This class contains three subtypes for further classifying the

longitudinal components of a channel system: Thalweg, Bankline, and

 47

Streamline. The thalweg represents the line formed by connecting the lowest

points in each transverse section of the channel. The thalweg can also represent

the channel centerline. Banklines represent the boundary of the channel at a given

discharge. Streamlines represent any other flow lines in the longitudinal

direction. The CrossSection class defines transverse sections of the channel.

Both the CrossSection and ProfileLine classes contain an (x,y) spatial location,

elevation, and measure values.

Sometimes historical cross-section data contain no (x,y) location

information, but do contain river stationing location of the cross-section along the

river. These data can be stored in the CrossSectionPoint class, which is a non-

spatial (object) class containing cross-section events.

Class

(Type)
Inherits

From
Attribute

(Type)
Description

Channel
Feature

(Abstract)

Feature
(ESRI)

 Abstract class for common
channel attributes

 HydroID
(String)

Unique feature identifier in the
geodatabase

 ReachID
(String)

Identifier of linear referencing
segment, analogous to

ReachID on HydroEdge
 RiverID

(String)
Identifier of linear referencing
segment, usually corresponds

to named rivers
ProfileLine

(3D Polyline)
Channel
Feature

 Longitudinal profile of the
channel

 ProfileLine
Type

(Integer)

Labels profile lines:
Thalweg = 1, Bankline = 2,

Streamline = 3
CrossSection
(3D Polyline)

Channel
Feature

 Transverse section of a
channel

 Cross CrossSection identifier

 48

SectionID
(String)

 CrossSection
Origin
(String)

Description of origin of cross
section data

 ProfileM Location of the CrossSection
on ProfileLine’s measure

system
 JunctionID

(String)
Identifier for the junction at the

outlet of the area
CrossSection

Point
(Object)

Object
(ESRI)

 Non-spatial cross-section data

 Cross
SectionID
(String)

Identifier of the corresponding
CrossSection feature

 Cross
SectionM
(Double)

CrossSection measure point
location

 Elevation
(Point)

Elevation of CrossSection
point above mean sea level

Table 3.4 Channel Features Classes

3.3.5 Time Series

One of the most crucial components in hydrologic and hydraulic

computations is time series data. The ArcGIS Hydro data model stores time

series in a simple TimeSeries class with four attributes: FeatureID, TSType,

TSDateTime, and TSValue. FeatureID is the HydroID of the feature related to a

particular time series record. TSType, TSDateTime, and TSValue represent the

type of time series data, the timestamp for a particular value, and the value,

respectively.

 49

3.3.6 Stage of Development

Currently, none of the Feature Classes in the ArcGIS Hydro data model

possess behavior. Efforts to this point in Arc Hydro’s development have been

focused on establishing the Feature Classes necessary to represent the water

resources domain in GIS, as well as organizing those Feature Classes into useful

Feature Datasets. The next step in Arc Hydro’s development is to determine what

interfaces should be added to the feature classes to support the main goal of the

model. Examining how Arc Hydro can be connected to a computational model

may help determine some of those interfaces.

3.4 DEVELOPMENT APPROACHES

ArcHydro is a data model, or a model providing a structure for storing

water resources data in a GIS. This is different from a water resources simulation

model, which performs calculations on hydrologic or hydraulic data. There are

two primary approaches for building a simulation model on top of the ArcGIS

Hydro data model: Using Arc Hydro as a Pre-Processor, and Extending Arc

Hydro. It should be noted that while each approach is different, elements of both

could be merged to produce a blend of the two approaches.

3.4.1 Data Model Pre-Processing

The majority of water resources computational applications utilizing

information prepared by a GIS involve pre-processing data in the GIS, and then

exporting that data to a separate program where the bulk of the computations are

carried out. For example, CRWR Pre-Pro is a set of GIS utilities developed at the

Center for Research in Water Resources at University of Texas at Austin for

 50

generating data, which can be imported into HEC-HMS for analysis (Olivera,

2001). The ArcGIS Hydro data model is intended to be used for this purpose,

although on a much broader scale. Arc Hydro organizes features in a manner that

lends itself to computational modeling. Arc Hydro also provides core attributes

that often prove useful in hydrologic and hydraulic analyses, such as unique

identifiers and measure values.

In some cases, the computational model is built within the GIS. This

approach tends to avoid some of the errors or difficulties that may occur when

attempting to communicate between two different software packages. In this

scenario, the computational model could directly access features in the ArcGIS

Hydro data model. Some basic concepts behind developing an internal or

external computational model are discussed below.

3.4.1.1 External Model

Creating a water resources model that runs independently of ArcGIS

provides the model developer with much freedom of design. In fact, this is the

route that most hydrologic simulation models have taken. The disadvantage of

this approach is that the developer may have to “recreate” some of the core

functionality provided by ArcGIS, such as a network model and editing routines.

While some of this functionality can be added using MapObjects components

(viewing, querying, etc.), the more powerful GIS operations can take place only

within an ArcGIS application. Of course, ideally this type of functionality would

not be required, as the ArcGIS Hydro data model has created the bulk of the

necessary spatially related information for the computational model.

 51

Since the computational model is designed to run externally from the GIS,

some routine would have to be developed to export data from the GIS to a format

that the computational model can understand. Note that an export/import routine

may not be required if the model utilizes the ESRI object library (which is

possible given ArcGIS’s COM-compliant nature); however, an external model

should be expected to run in the absence of GIS data or even a GIS system, so the

ESRI object library would most likely not be included in the model. This is the

case with HEC-RAS, which allows the user to either create the components for

the model simulation in the RAS user interface, or import the information

required to create the components from exported GIS data (HEC, 1999). The

simplest approach is to export to and import from a file format that is both

compatible with and efficient to access from the GIS and the computational

model. With ArcGIS, the two most obvious choices for file types are database

files and text files. No matter which file format is used, the routines used to

export the GIS data should be independent of Arc Hydro. Programming export

routines that are compatible with every hydrologic or hydraulic model in

existence into the basic structure of Arc Hydro would make Arc Hydro very

cumbersome to use and maintain.

3.4.1.2 Internal Model

If a hydrologic model is built to operate within a GIS, then the problem of

creating export routines is avoided since computational model components can

communicate directly with Arc Hydro components. An internal model can also

incorporate the functionality provided by the GIS. In this scenario, the model

 52

would be created as an ActiveX DLL that utilizes the ESRI object library. The

DLL can then be added to an ArcMap document as a custom tool. The

disadvantage of this approach is that the computational model’s operation must

follow the rules of the ArcMap application. In other words, if the model tries to

get too fancy, it may generate an error that causes ArcMap to crash.

3.4.2 Data Model Extension

Another approach to developing a computational model on top of the

ArcGIS Hydro data model is simply to extend the core functionality of Arc

Hydro. Algorithms already exist for using the structure of Arc Hydro to generate

data that is useful in hydrologic or hydraulic analyses. In a relatively simple

application, the classes in Arc Hydro could be extended one step further to

include the capabilities of hydrologic computations. An extension of Arc Hydro

has already been created to support Digital Flood Insurance Rate Maps (DFIRM)

for the National Flood Insurance Program. This extension includes the creation of

new classes that inherit from Data Model classes, as well as some simple methods

involving parcel value computations (Donnelly, 2001). In a hydrologic extension

to Arc Hydro, routing methods would be associated with linear components

(HydroEdge, ProfileLine), while methods for calculating runoff would be

associated with drainage area classes (Watershed, Catchment, Basin.) However,

as the scope and computational needs of a hydrologic model grow more complex,

so do the methods and components needed to perform the computations. A very

complex hydrologic model would require so many modifications to the existing

Data Model, that creating a computational model independent of Arc Hydro

 53

would become a much cleaner approach. In other words, Arc Hydro should only

be extended when the application is relatively simple and the structure of Arc

Hydro already provides some core functionality required by the computational

model.

3.5 INTERFACE DESIGN

There are three main alternatives for creating a user interface for a

computational model in the context of ArcGIS. The first involves the creation of

an external computational model. In this case, the developer has complete

freedom as to the design of the interface. However, the developer should still

follow guidelines of sound interface design, such as those outlined by Hartley

(1998).

The second alternative is to create a custom graphical user interface within

ArcGIS. This is the approach that ArcFM uses with its special ArcFM Viewer.

The Viewer is built from the basic ArcGIS GUI components, with additional tools

and buttons designed to work with the ArcFM software (ESRI, 1998). By

developing the user interface within the GIS, many of the basic interface

components (such as file menus, selection processes, etc.) from the GIS may be

used, resulting in a shortened development time for a given application.

The third alternative is to operate the computational model from a custom

toolbar or menu in the GIS. This approach works best when the model is

relatively simple and does not require a robust set of tools and procedures to

prepare a simulation run.

 54

Chapter 4: Procedure of Analysis

Due to the great breadth involved in the procedure for creating software

systems, that subject will not be discussed in this paper. There are several books,

software packages, and courses available that are designed to assist the developer

in the creation of new software, both within and independent of existing GIS

platforms.

The process of extending the ArcGIS Hydro Data Model with new classes

designed to perform hydrologic and hydraulic computations is also a subject that

will not be discussed here. See Davis (1999) for a discussion of how to create

custom features for use in ArcGIS.

For this research, eleven tools were created which operate on the Feature

Classes in the ArcGIS Hydro Data Model to integrate the Feature Classes and

provide support for more intensive hydrologic computations. These tools are

implemented as custom add-ins in the ArcMap environment. The general

procedure for creating these tools is described below, followed by a discussion of

how the design principles of software construction and GUI design were applied

in the development of the toolset.

4.1 CREATING TOOLS FOR USE IN ARCMAP

By using the ESRI object library, a DLL can be created in Visual Basic

that can be added to an ArcMap document as a custom tool. Custom tools extend

the functionality of ArcMap to perform tasks specific to a user’s needs. Eleven

tools were created for this research. The general procedure used to create these

 55

tools is outlined below. This discussion assumes a basic knowledge of the Visual

Basic development environment and the ArcMap user interface. As an illustrative

example, a sample tool is described that operates on the first layer in an ArcMap

document. For each selected Feature from the layer, the tool displays a message

box giving that Feature’s ObjectID.

Figure 4.1 Procedure for Creating a Custom Tool in ArcGIS

4.1.1 Creating the DLL

Custom tools in ArcMap are implemented as DLLs that are created in

Visual Basic. Note that Visual Basic is a separate software system from ArcGIS

and must be loaded on the machine in addition to ArcGIS in order to create

custom tools.

 56

To create a new DLL, start Visual Basic by clicking

Start>Programs>Microsoft Visual Studio>Microsoft Visual Basic. When

prompted for the type of project to create, click ActiveX DLL and then click

Open. Visual Basic prepares the current project for the creation of a DLL. In the

Project Explorer window, note that a single class (Class1) has been created.

Class1 is the default startup component for the DLL, which serves as the link

between ArcMap and the functionality of the custom tool. In the Properties

window, several properties for Class1 are listed. For the purposes of this

discussion, Class1 is renamed to clsSampleTool. In the (Name) property of Class,

type clsSampleTool and press Enter.

Figure 4.2 Properties of clsSampleTool

 57

4.1.1.1 Implementing the esriCore.ICommand Interface

In order for ArcMap to recognize clsSampleTool as a custom tool, the

clsSampleTool must implement the ICommand interface. ICommand is one of

the COM interfaces available in the ESRI object library (see Fig. 4.3). The ESRI

object library contains a standard set of object classes and interfaces used to

perform various tasks in ArcGIS. A COM interface is simply a declaration of

related properties and methods that may be used by a class. No implementation

code exists in the interface. The implementation details are left up to the class

that implements the interface. The properties and methods of ICommand are used

to define a tool in ArcMap. Before the ICommand interface can be implemented,

the project must obtain a reference to the ESRI object library. On the Project

menu, click References to open the references window. Place a check by ESRI

ArcMap Object Library and ESRI Object Library, and then click OK. The project

can now access all public components of the ESRI Object Library.

 58

Figure 4.3 Adding a Reference to the ESRI Object Library

In the code window for clsSampleTool, add the following line of code.

Implements esriCore.ICommand

This line of code informs the project that clsSampleTool will implement,

or supply the code for, the properties and methods of the ICommand interface in

the ESRI object library. In the object drop down box in the code window, click

ICommand.

 59

Figure 4.4 Implementing ICommand Interface

In the Declarations drop down box, notice that all of the properties and

methods for ICommand are now listed. Click on each item in the drop down box

to generate stub code for the properties and methods in the code window. Stub

code provides the basic definition for a property or method, without defining how

the property or method is accessed or implemented.

Figure 4.5 ICommand Stub Code

If a class implements an interface, it must implement all of that interface’s

properties and methods, even if the class does not provide code for some of those

 60

properties and methods. Properties and methods are implemented by generating

stub code as shown above. For this discussion, stub code is generated for the

Bitmap, Checked, HelpContextID, HelpFile, and Message properties, but code to

respond to calls to those properties is not written. Code for the other properties is

written as shown below.

Property Code

Caption ICommand_Caption = "Show OIDs"
Category ICommand_Category = "Sample Tools"
Enabled ICommand_Enabled = True
Name ICommand_Name = "SampleTools_ShowOIDs"
Tooltip ICommand_Tooltip = "Display ObjectIDs for Selected Features"

Table 4.1 Implementation Code for ICommand Properties

Figure 4.6 Implementation Code for ICommand Properties

 61

The OnCreate procedure from ICommand is used to create a hook to the

application that calls the DLL. In this example, the hook is a pointer to the

ArcMap application that contains the custom tool. Without the hook, the tool

would not know which ArcMap application it operates on. A module-level

variable that stores an ArcMap Application object is set to the hook argument in

the OnCreate procedure with the following code.

Set m_pApp = hook

Normally, this variable is stored as a global variable, g_pApp, and is

declared in a separate module called modGlobals. However, for this example, all

required functionality for the tool is coded in clsSampleTool (to keep things

simple.) The purpose of modGlobals as well as other modules and forms that

could be added to the project is discussed below.

4.1.1.2 Additional Modules and Forms

The class file that creates a custom tool may be supported by other

modules and forms in the Visual Basic Project. In general, the tools created for

this research included three modules (global variables, general utilities, network

utilities) and three forms (input form, progress form, help form.) Modules differ

from forms in that modules contain only code, while forms contain both code and

a graphical component that interacts with the user.

Each of the modules is stored on disk. These modules do not change from

project to project, except when new functions, subroutines, or declarations are

added to them. Because the existing content of the modules is left unchanged,

older projects that rely on the modules are not affected by these additions.

 62

modGlobals is a module that stores global variables for use throughout the

project. A global variable can be accessed by any component of the project.

Global variables are useful for passing arguments, such as user inputs, between

forms and classes. A global variable, g_pApp, is also used to store the hook to

the application that calls the DLL.

modUtilsGeneral is a module that contains public functions and

subroutines that are useful for many general applications. An example of a

function from this module is GetFeatureLayer. This function returns a Feature

Layer from a map document given the Feature Layer’s name, which might be

provided by the user on an input form.

modNetworkUtils is a module that contains a variety of network related

functions and subroutines. Components in the project can make calls to this

module to initialize a trace solver, create flags at points on the network, and

perform other useful network tasks.

The input form is based on a template that already contains many of the

elements and code required to process a user’s inputs. When a new tool is

created, the template form is copied and modified to suit the specific needs of the

tool. Using a template form takes advantage of the reusable nature of input forms

and saves much time in the development process of new tools. The template form

contains four combo boxes (see Fig. 4.7). The first box and third box store the

first layer and second layer that the user is interested in, respectively. The second

box and fourth box store a field from the first layer and a field from the second

layer that the user is interested in, respectively. Each combo box lists only valid

 63

choices dependent upon the purpose of the tool. For instance, if a tool operates on

polygon layers, then the combo box will not list the names of any point or

polyline layers. OK, Cancel, and Help buttons are arranged at the bottom of the

tool. The OK button places the user’s choices into global variables so that those

choices can be accessed by the class file that builds the tool. The Cancel button

stops the operation. The Help button displays a help form that provides

information about the tool.

Figure 4.7 Template Input Form

The progress form (see Fig. 4.8) is a standard form stored on disk that can

be added to any project, as long as Microsoft Common Controls 6 (MCC6) is

installed on the computer. The form uses the progress bar control from MCC6 to

 64

display the progress of a tool’s operations. The form possesses a Cancel button

that the user may click at any time to cancel the current task. Each tool created

for this research is designed to gracefully recover from a cancel request without

loss of data or crashing. The progress bar’s properties can be accessed by other

components in the project to set the status of the progress bar, so no modification

is ever required to the progress form stored on disk. Because clsSampleTool does

not perform lengthy operations, the progress form is not added to the project in

this example.

Figure 4.8 Sample Progress Form

The help form is a simple form that consists of a help message and an OK

button. This form is created for each tool.

A Project Explorer window showing the modules and forms discussed

above is shown in Fig. 4.9 for an example tool. Each component of the project is

included in the final DLL that is produced.

 65

Figure 4.9 Module, Form, and Class Files in Sample Project

4.1.1.3 Code for the OnClick Procedure

clsSampleTool will be added to ArcMap as a command button. When the

user presses the button, the OnClick procedure from the ICommand interface is

called. Fill in the OnClick procedure in clsSampleTool with the code as shown

below.

Private Sub ICommand_OnClick()
On Error GoTo errorhandler
 Dim Counter As Long 'universal counter
 Dim pMap As IMap
 Dim pDoc As IMxDocument
 Set pDoc = m_pApp.Document
 Set pMap = pDoc.FocusMap

 'Get the first layer in the map document
 Dim pFLayer As IFeatureLayer
 Set pFLayer = pMap.Layer(0)

 'Get the selected features
 Dim pFeatureSelection As IFeatureSelection
 Dim pSelectionSet As ISelectionSet
 Set pFeatureSelection = pFLayer

 66

 Set pSelectionSet = pFeatureSelection.SelectionSet
 If pSelectionSet.Count = 0 Then
 MsgBox "Please select features first"
 Else
 Dim pFCursor As IFeatureCursor
 Dim pFeature As IFeature
 Set pFCursor = pFLayer.Search(Nothing, False)
 Set pFeature = pFCursor.NextFeature
 Do Until pFeature Is Nothing
 MsgBox "ObjectID = " & CStr(pFeat.OID), _
 , _
 "Sample Tool"
 Set pFeature = pFCursor.NextFeature
 Loop
 End If

 Exit Sub

errorhandler:
 MsgBox Err.Description, , "Error Number " & Err.Number
End Sub

This code gets a reference to ArcMap through the Application variable,

m_pApp. It then gets a reference to the first layer in the map, which has an index

of zero. The second layer has an index of 1, and so on. Next, the code creates a

cursor, called pFCursor, which points to the selected Features in the layer. If no

Features are selected, the code displays a message box asking the user to select

features first. Otherwise, the cursor cycles through each selected Feature,

displaying ObjectIDs in a message box. If any errors occur, a message box

appears giving the error number and a description of the error.

4.1.1.4 The Importance of Error Handling

If a tool produces an error and does not adequately handle that error, then

ArcMap considers the tool to be “broken” and will not allow further calls to the

tool. If a tool is broken, then it will not function again until the tool’s DLL is

 67

reinstalled on the computer (preferably with added error handlers.) For this

research, errors were addressed in two ways: error prevention and error handling.

A useful method to prevent errors is to limit the range of inputs allowed by

the user. For instance, if a tool adds values from a user-specified field to produce

a total value, then the input form should limit the choice of fields to those that

store numeric values. Similarly, tools that perform network operations should

only display network layers as choices on the input form. Limiting user inputs to

feasible values can save many hours of error handling work later on. Limiting

user selections also benefits the user by removing many of the fields or layers that

the user would not select anyway.

A second method for preventing errors is to check the nature of each value

before processing that value. For instance, before an operation is performed on a

value in a field, the tool should check to see if that value exists. Otherwise, the

tool may attempt to perform an operation on a null value, resulting in an error.

While this method is a more secure way of preventing errors than the previous

method, it can also add an enormous amount of code to the project. A

combination of both methods was found to be the best approach to error

prevention.

If errors do occur during a tool’s operation, a message box appears

displaying a description and number for the error. In some cases, the location of

the error within the code is also specified. While this technique may not be the

best strategy for handling errors, it is easy to implement and satisfies ArcMap

sufficiently so that the tool is not considered as broken.

 68

4.1.1.5 Making the DLL

With code written for each component of the project, the next step is to

make the DLL. From the Project menu, choose Project1 Properties. In the

Project Properties window that appears, change the name of the project to

Sample_Tool. Then click OK.

Figure 4.10 Project Properties Window

From the File menu, click Make Sample_Tool.dll. All of the code is

compiled and checked for obvious errors. If no errors are found, Sample_Tool.dll

is created in the specified directory.

 69

4.1.2 Adding the DLL to ArcMap

Once the DLL is created, it can be added to ArcMap as a custom tool.

Start ArcMap by clicking Start>Programs>ArcGIS>ArcMap. In the Tools menu,

click Customize. In the Customize window, click the Commands tab. This

window displays a list of all command buttons that can be added to the ArcMap

document. To add the custom tool to this list, click Add From File. Navigate to

Sample_Tool.dll and click Open. A window appears displaying which objects

were added. Click OK to close the window. The Show OIDs tool is now

displayed in the Customize window under the Sample Tools category.

Figure 4.11 Show OIDs Tool in Customize Window

 70

Drag the Show OIDs tool next to another button on the ArcMap interface.

The tool is now ready for use.

Figure 4.12 Show OIDs Button

If a layer is added to the document and Features are selected from that

layer, a message box similar to the following will be displayed when the Show

OIDs button is clicked.

Figure 4.13 Sample Output from Show OIDs Tool

If no layers were present in the map, or if Features in the current layer had

no ObjectID, then a message box would appear displaying an error.

 71

4.2 APPLYING DESIGN PRINCIPLES

The design principles behind intelligent software construction and

graphical user interface design were used as guidelines in the development

process of the prototype Arc Hydro tools developed for this research. The general

adherence to the guidelines is discussed below.

4.2.1 Software Construction

Although the tools created represent a relatively simple and

straightforward software system, the principles of intelligent software

construction were still applied to their development. This helps to insure that the

tools will be reusable, and it also tests the extent that tools created for use in

ArcGIS can adhere to the guidelines.

4.2.1.1 Robustness

Although originally intended to work with the structure and Feature

Classes of the ArcGIS Hydro Data Model, each tool developed in this research

has been designed to support operations on any Feature Class in the GIS, provided

that the Feature Class contains the correct structure for each tool’s operation.

If an error occurs during a tool’s operation, and the tool does not

adequately handle that error, ArcMap considers the tool to be broken and no

longer allows access to the tool. To prevent this from occurring, each tool

possesses a simple error handler and cleanup routine. The error handler displays a

message box giving a description of the error, the error number, and in some cases

the location in the code where the error occurred. The cleanup routine usually

consists of hiding all forms associated with the tool, stopping any edit operations,

 72

and cleaning up temporary objects from the computer’s memory. While a more

advanced error handling method could be applied, the message box method is

easy to implement and prevents the tool from being considered broken by

ArcMap.

Each tool requires ArcMap to be in an Edit session before the tool will

proceed. By operating from within an edit session, the user has the option of

ending the edit session without saving any changes that the tool made to the data.

This proves valuable when an error occurs midway through a task, and only half

of the data is processed. In this situation, the user has the option of fixing the

error, or ending the edit session without saving edits to recover the old data.

4.2.1.2 Extensibility

As each tool was developed, repetitive routines from the tool’s operation

were separated into functions and subroutines outside of the tool’s main

procedure. Depending on how specific the routines were to the tool’s purpose,

they were either placed as an additional routine in the tool’s main class module, or

as a routine in a global utility module (such as modNetworkUtils.) As each

routine was created, the code in the tool’s main procedure became cleaner, more

compact, and easier to read. This process also partitioned the main procedure into

sections marked by calls to each routine. These factors improved the extensibility

of the tool, since a modification to the tool’s design could be isolated to a single

partition.

The nature in which a tool’s main procedure communicates with the form

that accepts user inputs also promotes an extensible design. At first, the input

 73

form writes the user’s inputs to public variables declared in the form. The main

procedure, usually located in the tool’s class file, then reads from those public

variables. However, as more tools were developed for a single DLL, this strategy

lead to a large set of public variables scattered through the project. As a second

approach, user inputs were stored in public variables in a single module. Still,

there were a large number of public variables declared, even though they were all

located in one place. This also led to confusion as to which variable belonged to

which tool in the project. The current approach involves writing user inputs to a

public dynamic array in a module. The main procedure then reads its required

inputs from each item in the array. Now a single array can store the inputs from

any number of user forms associated with any number of tools. More

importantly, the main procedure of each tool does not care where the inputs came

from, as long as they have been assigned to the public array. In this situation, the

module with the public array acts as a switchboard between input and operation.

This allows each tool to be extended to allow inputs from a variety of sources.

4.2.1.3 Reusability

Separating repetitive tasks into routines as described above also promotes

a very reusable design. Because common routines are stored as public functions

or subroutines in modules, they can be used by any tool in the project. The design

of each tool is highly modular in general. Separate components control accepting

user inputs, displaying status and progress of an operation, and performing the

main operation required by a tool.

 74

A direct application of reusability is the use of a template form to create

all inputs forms for the tools. As early input forms were created, similarities were

noted in each form’s display, as well as the coding and functionality behind each

form. This basic functionality was programmed into a template form that can be

copied and modified as needed. The template form contains basic routines for

accepting layer names and field names from the user, as well as routines for

populating various components on the form with the appropriate values. Using

the template form greatly reduces the development time for a given tool, since

creating an effective user-interface is often be one of the most challenging aspects

of the design process.

4.2.1.4 Compatibility

Because the tools were developed in a COM-compliant environment, they

can easily include the functionality of other COM-compliant software. However,

because the tools are designed to operate on ArcGIS objects, they have little

potential to be included as components of an ArcGIS independent software

system.

4.2.2 User Interface Design

The principles of good user interface design were useful in developing

effective interfaces for the tools. Design aspects related to each of the seven

principles are discussed below.

4.2.2.1 User in Control

All tools but two (Make Schematic Lines and Accumulate Area Values to

Points) can run on all records in the feature class, or records selected by the user.

 75

Each form that accepts user inputs, automatically screens out values that would

obviously produce errors. However, the forms do allow users to select input

values that may potentially cause problems (such as writing numeric string values

to an integer field). In such situations, the form alerts the user to the problem that

may arise, but still allows the user to proceed if so desired. The goal was to give

the user a sense of being in control while minimizing the occurrence of user-

generated errors.

 Three tools (Store Area Outlets, Accumulate Area Values to Points, Find

Distance Between Points) allow the user to cancel processing at any time during

the tool’s operation, without adverse effects on the stability of the application or

the integrity of the data being manipulated. The cancel button is displayed on a

progress form that appears during long operations.

4.2.2.2 Directness

The interface for each tool is relatively simple, with inputs at the top of the

form and OK-Cancel-Help buttons at the bottom. OK, Cancel, and Help buttons

are commonly used in other Windows applications, and their use is intuitive in

each of the tools developed for this research. The format used by the tools for

requesting input from the user strongly resembles that of the basic tools provided

with ArcGIS software, with layer names given first, followed by field names or

other parameters.

4.2.2.3 Consistency

Each tool uses the same format for the user interface, with the inputs at the

top of the form and the OK-Cancel-Help buttons at the bottom of the form. Each

 76

form is developed from the same template, to simplify the task of producing a

consistent GUI design. The basic functionality required by input forms is already

programmed into the template form, resulting in consistency both in the display of

the form as well as the coding behind the form.

Figure 4.14 Comparison Between Form Layouts

In some cases, the course of action that a tool takes may vary depending

on the user’s inputs. When this occurs, the tool’s operation appears the same to

the user no matter which course of action the tool takes (when appropriate.)

 77

4.2.2.4 Forgiveness

The tools possess error handlers to trap errors that occur during operations.

In most cases, a message box appears on the screen describing the nature of the

error, and sometimes giving the name of the component that generated the error.

This type of “forgiveness” is extremely important within an ArcMap application.

If a tool does not adequately handle errors, ArcMap considers the tool to be

broken and allows no further access to the tool.

When prompting for user inputs, all forms automatically screen out values

that are obviously incorrect, allowing the user to only select from a list of

potentially acceptable choices. However, some freedom is still allowed for

options that may or may not produce an error. In such situations, a message box

appears alerting the user to the potential problem before the operation takes place.

If the user decides to continue, and an error occurs, the error is caught by the

tool’s error handler and processed in a safe manner.

4.2.2.5 Feedback

All tools that perform tasks more than a few seconds long display a

progress bar indicating the progress of the operation and the nature of the current

operation. When a tool produces tangible output (a file saved to disk) that can be

displayed in ArcMap, that output is automatically added to ArcMap to indicate

success upon completion of the operation. When a tool changes the state of a

component on the map display, the display is refreshed to indicate the changed

state of the component. For example, if the flow direction for a particular edge is

reversed, an arrow indicating the new flow direction is drawn on the display.

 78

4.2.2.6 Aesthetics

When a tool requires a Feature Layer and fields from the Feature Layer,

the user is prompted for the name of the Feature Layer first (at the top of the

form), with the input boxes for fields aligned below the Feature Layer input box.

The forms posses no fancy graphics or other items that may distract the user from

purpose of the form. All items on a form are aligned properly, with minimal

“dead space” and an intuitive arrangement of form elements.

4.2.2.7 Simplicity

A descriptive label is placed above each input box to indicate the purpose

of the box. All input forms and help forms posses a caption that indicates their

function. Input boxes are grouped according to the Feature Layer that they are

related to. In developing these tools, following simplicity of design not only

improved the quality of the user interface, but also decreased the time required to

make modifications to the interface.

 79

Chapter 5: Results

Eleven custom tools were developed for this research. These tools make

up a prototype toolset that operates on the ArcGIS Hydro data model. The tools

are designed to work in ArcMap as custom add-ins. Ten of these tools are located

in an Arc Hydro Tools toolbar, while the remaining tool, an application designed

to work with the USGS National Water Information System (NWIS), resides as a

separate command button. The DLL and all source files used to create the Arc

Hydro Tools and the NWIS application can be found in a CD at the back of this

thesis.

These tools facilitate the integration of Arc Hydro with hydrologic

simulation models through data preparation and by establishing connectivity

between features in the landscape (through the use of key attributes). This

connectivity information is essential to hydrologic simulation models, as these

models pass time series information, such as rainfall/runoff data, between

appropriate hydrologic features, such as a watershed and a monitoring gage

located at its outlet.

5.1 ARC HYDRO TOOLS

The term Arc Hydro Tools refers to a set of 10 custom tools created in the

Visual Basic programming environment to automate useful tasks within an

ArcMap application. These tools are saved as an Active-X DLL

(ArcHydroTools.dll) and can be added to an ArcMap document through the

customization window in ArcMap. The tools represent an early attempt to

 80

incorporate additional analysis and computational capabilities relevant to water

resources applications into the ArcMap environment. As each tool was created,

an improved knowledge of general programming techniques and specific

strategies to work with ArcObjects was acquired. As a result, more recent tools in

the toolset exhibit a more efficient and intelligent programming style, with a more

modular structure, a more robust design, and better potential for reusability. The

more recent tools also reflect a smoother integration with the ArcMap user

interface, incorporating functionality such as a cancel button for long tasks.

Figure 5.1 Sample Progress Form with Cancel Button

5.1.1 Arc Hydro Tools Toolbar

The Arc Hydro Tools toolbar contains all of the Arc Hydro Tools

organized into toolbar items and menus. Once installed, the Arc Hydro Tools

toolbar can be added to an ArcMap document like any other ArcMap toolbar.

5.1.1.1 Description

The Arc Hydro Tools toolbar contains three main items: An Arc Hydro

Tools menu, a Point Nav menu, and Make Schematic button. The Arc Hydro

Tools menu contains tools for performing various tasks in populating the

 81

attributes of the ArcGIS Hydro data model. This menu contains three items: an

Assign HydroID button, a Downstream Length menu, and a Flow Direction menu.

The Downstream Length menu has two items: a Calculate for Edges button and

an Assign to Junctions button. The Flow Direction menu has two items: a Store

Flow Direction button and an Assign Flow Direction button.

Figure 5.2 Arc Hydro Tools Toolbar

The Point Nav menu contains tools for developing relationships between

points in a network and accumulating values through them in the downstream

direction. The Point Nav menu contains four items: a Find Next Downstream

Button, a Store Area Outlets button, an Accumulate Areas to Points button, and a

Find Distance Between Junctions button.

Each of the buttons on the toolbar can be added individually to the

ArcMap user interface through the customization window. As with all ArcMap

command buttons, they can also be grouped into different toolbars with generic

ArcMap buttons if so desired. A table providing a brief description of the purpose

 82

of each tool is shown below. Each of the buttons in Arc Hydro Tools is described

in the remainder of this chapter.

Tool Purpose

Assign HydroID Assign HydroIDs to features on the map
Calculate Downstream Length Calculate downstream length for edges
Copy Downstream Length to Junctions Copy downstream length to junctions
Assign Flow Direction Assign flow direction to edges
Store Flow Direction Store flow direction of edges in table
Find Next Downstream Find next downstream junction
Store Area Outlets Find outlets for areas
Accumulate Area Values to Points Accumulate values from areas to points
Find Distance Between Junctions Find distance between junctions on a network
Make Schematic Lines Make a schematic lines from a set of points

Table 5.1 Function of Arc Hydro Tools

5.1.2 Assign Hydro ID

This tool assigns HydroIDs to Feature Classes and tables in the current

map that have a HydroID field of type String. This tool is designed to operate on

the HydroID attribute that is present in all Feature Classes in the ArcGIS Hydro

data model.

5.1.2.1 Description

A HydroID is a unique identifier across a geodatabase. The ID is built

from the object class ID of the table or Feature Class and the ObjectID of each

row or feature in the table or Feature Class. The object class ID is a unique

identifier for a Feature Class or table in a geodatabase. The ObjectID is a unique

identifier for a row or feature in a table or Feature Class. The ObjectID starts at 1

and increments by 1 with each new row added to the table. Similarly, the object

 83

class ID starts at 1 and increments by 1 with each new class created in the

geodatabase. For instance, if a geodatabase contains three Feature Classes, their

object class IDs may be 1,2, and 3, respectively.

The HydroID is built by concatenating the object class ID and the

ObjectID into a single ID. Because ObjectIDs are unique in a Feature Class or

table, and because object class IDs are unique in a geodatabase, the combination

of object class ID and ObjectID is unique across a geodatabase. The HydroID has

the following format: CC000000, where “CC” represents the object class ID, and

“000000” represents the ObjectID. The format does not support geodatabases

with more than 99 Feature Classes and tables. It also does not support Feature

Classes or tables with more than 999,999 records. However, such situations are

highly unlikely to occur, as such a geodatabase would be too cumbersome to be

practical.

As an example of how a HydroID is created, consider a HydroEdge

feature in the HydroEdge Feature Class. The third HydroEdge (with ObjectID =

3) in the Feature Class (with object class ID = 2) would have a HydroID of

02000003.

The Assign HydroID tool assigns HydroIDs to rows that have a HydroID

field of type String. If the HydroID field is not found in the table, the tool skips

that table and moves on to the next one. Note that those Feature Classes and

tables that are in the database, but not registered with the geodatabase always

have an object class ID of -1. If more than one such table or Feature Class exists

in a geodatabase, then the HydroID may not be unique across the geodatabase.

 84

The tool can run on a selected set of records or all records. If no features

are selected, the tool runs on all records. If any features are selected, the tool runs

only on the selected records.

5.1.2.2 Beneficial Uses

A unique HydroID identifier is useful for a variety of reasons. In a

hydrologic context, a unique ID allows each feature to be treated as an individual

component in a hydrologic system. Each feature can be “connected” to other

individual features from any Feature Class by storing the HydroID of one class as

an attribute of another. This is similar to the manner in which objects in HEC-

HMS are connected (HEC, HEC-HMS). Thus a watershed can contain the

HydroID of the junction it drains to, while a junction can contain the HydroID of

the next downstream junction it flows to, and so on.

5.1.2.3 Limitations

At present, the tool does not allow the user to select which field to assign

HydroIDs to. In order to assign HydroIDs, a field named “HydroID” must appear

in the table. The field type for HydroID must also be of type String. There are

two reasons for required a string field type: 1) HydroID is defined as a string type

in the ArcGIS Hydro data model, 2) a string type supports a wider variety of

HydroID formats than a numeric type.

The tool also does not allow the user to choose the format for the

HydroID. There are a number of schemes for applying a unique identifier to

features across a geodatabase. The Assign HydroID tool only uses one of them.

 85

5.1.3 Calculate Downstream Length

This tool calculates the length from the most downstream node on each

edge in a given layer to the sink that the edge flows to. It then populates the

specified length downstream field with those calculated values. This tool is

designed to operate on the LengthDownstream attribute of HydroEdge in the

ArcGIS Hydro data model.

5.1.3.1 Description

The LengthDownstream value starts at zero at a sink and increases in the

upstream direction. The LengthDownstream value for a given edge includes the

lengths of all downstream edges, but not the length of the current edge. Thus the

length downstream for an edge at the most upstream segment of a river is the

entire length of the river minus the length of that upstream segment. Likewise,

the length downstream for any edge that is connected to a sink is zero. The tool

works by tracing downstream from each edge in the network. The sum of length

values from all edges returned in the trace (except for the current edge) is written

to the length downstream field in the current edge.

Before using this tool, flow direction must be set in the network. If no

flow direction is set, then the length downstream for every edge is zero (because

the edge does not know where to flow.)

 86

Figure 5.3 Result of Downstream Length Computation

The tool can run on a selected set of records or all records. If no features

are selected, the tool runs on all records. If any features are selected, the tool runs

only on the selected records.

5.1.3.2 Beneficial Uses

LengthDownstream may be used to populate measure values on edges.

LengthDownstream may also be used in conjunction with flow velocity to

 87

compute travel times in rivers. In hydrologic computational algorithms,

LengthDownstream may be used to determine which features are processed first

(those with the greatest LengthDownstream) in a system where backwater effects

are negligible.

5.1.3.3 Limitations

The Calculate Length Downstream tool requires that a field to store length

downstream already exists in the Feature Class. The tool should be run on a non-

branching, non-looping network, or else incorrect downstream length values may

be calculated. Non-branching means that the network does not branch in the

downstream direction (as may occur with diversions.) Branching in the upstream

direction is allowed.

The tool will not work correctly if there are complex edges in the network

and some edges join other edges at anywhere but their endpoints. The tool works

by adding up the lengths of all downstream features. If an edge joins a

downstream edge in the middle of the downstream edge (as is possible with

complex edges), the downstream edge’s entire length is added to the upstream

edge’s downstream length total, when in fact only the portion of the downstream

edge’s length that should be added is the portion below where the upstream edge

joins.

 88

Figure 5.4 Incorrect Downstream Length Calculation for Complex Edges

To work properly in such situations, a measure system would have to be

defined on the edges, and the tool would have to be revised to read values from

the measure system.

This tool is designed to work with a network with a single Edge Feature

Class. If the network has more than one Edge Feature Class, the tool may not

work correctly.

5.1.4 Assign Downstream Length to Junctions

The tool reads LengthDownstream values from edges and writes those

values to junctions in the network. This tool is designed to operate on the

LengthDownstream attribute of HydroJunction in the ArcGIS Hydro data model.

5.1.4.1 Description

Once downstream length values have been calculated for edges, they may

be copied to junctions using this tool. For each junction, the tool finds all edges

connected to that junction, reads the downstream length values from those edges,

 89

and then selects the edge with the smallest downstream length. In a non-

branching (in downstream direction), non-looping network, this edge will be the

only edge that the junction flows to, and it represents the most downstream edge

that the junction is connected to. The tool adds the downstream length value of

the edge to the edge’s length to produce the downstream length value for the

junction. If the downstream length values for all edges connected to a junction

are zero, then this junction is treated as a sink, and it is assigned a downstream

length value of zero. If no edges are found, a value of zero is assigned for the

downstream length.

 90

Figure 5.5 Result of Assign Downstream Length to Junctions Computation

The tool can run on a selected set of records or all records. If no features

are selected, the tool runs on all records. If any features are selected, the tool runs

only on the selected records.

5.1.4.2 Beneficial Uses

Calculating the difference between downstream length values for two

points of interest gives the distance between those points along the network. In

computational algorithms, downstream length may be used to determine which

 91

features are processed first (those with the greatest downstream length) in a

system where backwater effects are negligible. An example of such an algorithm

is an accumulation routine where values from upstream junctions are passed down

and added to values on downstream junctions.

5.1.4.3 Limitations

The Assign Downstream Length to Junctions tool requires that a field to

store LengthDownstream already exists in the Feature Class. The tool should be

run on a non-branching, non-looping network, or else incorrect downstream

length values may be calculated.

In some networks, some junctions may be spatially coincident with each

other. When this happens, the network builder chooses one and only one junction

at a given location to be connected to the network. The other junctions just 'float'

in the same location without being connected to other network features. This tool

looks for this type of junction and copies the length downstream values from the

junction that IS on the network to the other spatially coincident junctions.

However, if the network includes junctions from another Feature Class that are

spatially coincident with the junctions of interest, and if the junction from the

other Feature Class happens to be the one connected to the network, then the tool

may not work correctly and a value of zero for length downstream will be

assigned to the junctions of interest at that location.

The tool will not work correctly if the junctions are on the interior of

complex edges. If the tool selects the complex edge as the most downstream edge

that the junction is connected to, it will add the entire shape length of the complex

 92

edge to its downstream length value, instead of correctly adding only the portion

of the edge that is downstream of the junction. To work properly in such

situations, a measure system would have to be defined on the edges, and the tool

would have to be revised to read values from the measure system.

This tool is designed to work with a network with one edge Feature Class.

If the network has more than one edge Feature Class, the tool may not work

correctly.

5.1.5 Assign Flow Direction

This tool assigns flow direction to edges in a network, either by choosing a

flow direction to assign, or by reading values from a table. This tool is designed

to operate on the FlowDirection attribute of HydroEdge in the ArcGIS Hydro data

model.

5.1.5.1 Description

Flow direction in a network is stored as esriFlowDirection constants.

These constants are shown in Table 5.2.

Constant Value Description

esriFDUninitialized 0 The flow direction is
uninitialized.

esriFDWithFlow 1 The flow direction is
in the direction of
digitization.

esriFDAgainstFlow 2 The flow direction is
opposite the direction
of digitization.

esriFDIndeterminate 3 The flow direction is
indeterminate.

Table 5.2 esriFlowDirection Constants

 93

This tool accesses the flow direction for a set of edges using the network,

and then assigns the flow direction for the edges. When assigning flow direction,

the user may either choose one of the four esriFlowDirections to assign to all

edges, or use values from a field in the edge Feature Class. The values in the field

must correspond to esriFlowDirection constants, i.e. 0, 1, 2, or 3. If values in the

flow direction field do not correspond to esriFlowDirection constants, the

esriFlowDirection chosen by the user will default as the flow direction assigned to

the edge.

The figures below show how the Assign Flow Direction tool can be used

to set the flow direction of edges in the network. The first figure shows the

default flow direction based on sinks in the network. The second figure shows the

flow moving towards a different location after the tool was used.

Figure 5.6 Default Flow Direction in a Network

 94

Figure 5.7 Result of Changing Flow Direction with Assign Flow Direction Tool

The tool can run on a selected set of records or all records. If no features

are selected, the tool runs on all records. If any features are selected, the tool runs

only on the selected records.

5.1.5.2 Beneficial Uses

Assigning flow direction based on an attribute allows the user to delete the

network (for maintenance or distribution reasons) and still retain the proper flow

direction values. Once the network is reestablished, flow direction can be

assigned by attribute without having to create sinks in the network. Flow

direction for indeterminate cases (such as edges in loops) can be assigned

manually with this tool. Situations in which flow directions may change (such as

in canals in flat areas) can also be modeled.

 95

5.1.5.3 Limitations

A network must be present to assign flow direction.

5.1.6 Store Flow Direction

This tool reads the flow direction for a set of edges from the network and

writes the value of the flow direction to the Feature Class. This tool is designed

to operate on the FlowDirection attribute of HydroEdge in the ArcGIS Hydro data

model.

5.1.5.1 Description

Flow direction in a network is stored as esriFlowDirection constants.

These constants are shown in Table 5.2. The Store Flow Direction tool reads

edge flow directions from the network and writes the esriFlowDirection values to

the table of the edge Feature Class. The field chosen to store esriFlowDirection

values must be of a numeric type.

The tool can run on a selected set of records or all records. If no features

are selected, the tool runs on all records. If any features are selected, the tool runs

only on the selected records.

5.1.6.2 Beneficial Uses

This tool allows manual editing of flow direction. Once flow direction is

stored, the network may be deleted and flow directions will still be known on the

edge (to the user, but not to the software). Also, storing flow direction makes

possible the assignment of flow direction based on an attribute in a table.

 96

5.1.6.3 Limitations

The field chosen to store flow direction must be of a numeric type. This

helps to prevent users from inadvertently inputting invalid flow directions, such as

text or dates.

5.1.7 Find Next Downstream

The Find Next Downstream tool uses the network to find the next

downstream junction in a particular Feature Class, and assigns the ID of the

downstream junction to a downstream junction ID field in the Feature Class table.

This tool is designed to operate on the NextDownstream attribute of

HydroJunction in the ArcGIS Hydro data model.

5.1.7.1 Description

For each junction in the network, this tool creates a flag at that junction

and barriers at all other junctions. The tool then traces downstream from that

junction and returns the ID of the junction stopping the trace. This is the ID of the

next downstream junction. This ID is written to a field in the junction Feature

Class table. The tool requires that flow direction is already set in the network.

 97

Figure 5.8 Results of Find Next Downstream Computation

The tool can run on a selected set of records or all records. If no features

are selected, the tool runs on all records. If any features are selected, the tool runs

only on the selected records.

 98

5.1.7.2 Beneficial Uses

Having the next downstream junction listed as an attribute in the table

allows junctions to “communicate” with each other without the presence of a

network, passing values or other information as desired. Knowing the next

downstream point of interest is also important for applications such as water

rights analysis and Total Maximum Daily Load studies.

5.1.7.3 Limitations

Some junctions in the network may be spatially coincident with each

other. When this happens, the network builder chooses one and only one junction

at a given location to be connected to the network. The other junctions just 'float'

in the same location without being connected to other network features. This tool

looks for this type of junction and copies the downstream junction ID values from

the junction that IS on the network to the other spatially coincident junctions.

However, if more than one junction is in the next downstream location for a given

upstream junction, then only one of the downstream junction's IDs (the one that is

connected to the network) will be assigned to the upstream junction. If no

downstream junction is found, the tool assigns a value of -1 to the downstream

ID.

This tool will not work correctly if the junctions are on the interior of

complex edges. It will also not work correctly if there are junctions from another

Feature Class participating in the network that are spatially coincident with the

junctions of interest, unless those junctions are sinks.

 99

5.1.8 Store Area Outlets

This tool determines the outlet junction for an area and assigns the ID of

that junction to a Junction ID field in the area Feature Class table. This tool is

designed to operate on the JunctionID field of polygon feature classes in the

ArcGIS Hydro data model.

5.1.8.1 Description

To perform hydrologic analyses involving rainfall/runoff and channel

routing, areas must somehow be connected to the river network in order to pass

runoff to the river channel. This tool is designed to facilitate a scheme where

areas are connected to the network through outlet junctions. Each area in this

scheme possesses an OutletID attribute. This attribute stores the ID of the

junction that serves as the outlet for the area. Hypothetically, a junction may

serve as the outlet of multiple areas, but each area will have only one outlet.

 100

Figure 5.9 Results of Store Area Outlets Computation

This tool works by selecting all junctions along the boundary of an area.

For each selected junction, the tool creates a flag at that junction and barriers at all

other junctions along the boundary. The tool then traces upstream from the

junction flag and counts the number of resulting edges that occur inside the area.

If the number of edges is greater than zero, then this junction is a possible outlet

junction. In most situations, only one junction will return edges inside the area

after an upstream trace. However, situations may occur when there is more than

one junction that returns a positive number of edges in the area after an upstream

trace. When this happens, the junction with the most number of edges inside the

area is designated as the outlet junction. The following figures illustrate the

 101

process of selecting the outlet junction. The tool is operating on the pink area for

this example.

Figure 5.10 First Pass: All Junctions on Boundary

Figure 5.11 Second Pass: Junctions Producing Upstream Edges in Area

 102

Figure 5.12 Third Pass: Junction With Most Upstream Edges in Area

If only one junction is found, a downstream trace is performed from that

junction. If any resulting edges are found to be inside the polygon, then this

junction is not designated as an outlet. Otherwise, it is designated as an outlet. If

no junctions return edges in the area after an upstream trace, and there is more

than one junction along the boundary of the area, then no junction is designated as

the outlet.

If no outlet is assigned to an area, or if an area has more than one potential

outlet according to the algorithm described above, then the ObjectIDs of those

areas are copied to the Windows clipboard, and the user is notified. From there,

they may be pasted into a document or spreadsheet so that the user may inspect

each area manually.

The tool can run on a selected set of records or all records. If no features

are selected, the tool runs on all records. If any features are selected, the tool runs

only on the selected records.

 103

5.1.8.2 Data Preparation

This tool requires some data preparation before it can be run. First, the

polylines that represent the network should be intersected with the areas of

interest to break the lines where they intersect the boundary of the areas. This

may be done with the Geoprocessing wizard in ArcMap. The resulting line set

should then be built into a network, producing a set of junctions. Some of these

junctions will occur at the intersection of the areas and the lines. Outlet junctions

will be selected from these junctions. A network must be loaded, and flow

direction must be set on the network before running the tool.

5.1.8.3 Beneficial Uses

By connecting areas to the network through outlet junctions, areas can

pass information to the network, such as runoff or pollutant loads. If the junctions

also possess the NextDownstream attribute, then navigation of the landscape can

be performed with the network as well as through areas.

5.1.8.4 Limitations

To insure that all junctions along the boundary of an area are selected, the

tool builds a buffer polygon which is one map unit (e.g. meter or foot) bigger than

the area, and another buffer polygon one map unit smaller than the area. The tool

then selects all junctions between those buffer polygons. As a result, working in a

coordinate system where 1 map unit corresponds to a great distance, such as a

geographic coordinate system, may lead to more junctions being selected than

intended. Data should be projected to a coordinate system with map units that

 104

provide sufficient precision in measurements before running the Store Area

Outlets tool.

5.1.9 Accumulate Area Values to Points

This tool accumulates values from areas to the outlet junction of the areas,

and then accumulates those values through each downstream junction in the

network. This tool is designed to operate on the JunctionID attribute of polygon

Feature Classes, and the LengthDownstream and NextDownstream attributes of

HydroJunction in the ArcGIS Hydro data model.

5.1.9.1 Description

Once areas have been connected to the network through outlet junctions,

values can be passed from the areas to the network through the junctions. The

Accumulate Areas to Points tool demonstrates a simple application of

accumulating values from areas onto the outlets of those areas, and then passing

the accumulated values downstream from junction to junction by using the

NextDownstream ID on the junction Feature Class. Because this tool requires

that the Junction ID of the areas, the NextDownstream ID on the junctions, and

the LengthDownstream on the junctions be populated, no network is required to

navigate from areas to junctions, and from one junction to another.

The tool starts by setting the field chosen to store the values in the junction

Feature Class to zero. It then starts with the junction that has the greatest

downstream length and finds all areas for which that junction is the outlet. It then

adds all the values from those areas to the value field in the junction Feature Class

table. Next, the tool finds the next downstream junction for the given junction

 105

and adds its value to its downstream neighbor. The tool then moves on to the

junction with the next greatest downstream length and iterates until all junctions

have been processed.

By working from the greatest downstream length downward, the tool

insures that values for all upstream areas are summed before processing

downstream areas. This scheme is useful when no “backwater” effects occur in

the area/point network.

The following figure shows the results of running the tool where the

accumulated value was the area of each polygon in acres. The figure shows the

outlet point for the most upstream area in the network.

Figure 5.13 Results of Accumulate Areas to Points Computation

 106

5.1.9.2 Beneficial Uses

This tool serves a number of uses relating to hydrologic computations.

Any application which requires information to be passed from areas onto the

network may benefit from this tool or some variation thereof. The algorithms

used in connecting areas to points, and points to their downstream points, may

prove useful in another application that requires navigation through the landscape.

5.1.9.3 Limitations

At present, the tool can only run on the entire junction Feature Class.

Letting the user accumulate area values for a few, possibly disconnected junctions

may produce misleading and inaccurate results. A future revision to the tool may

involve allowing the user to select a set of junctions, and then accumulating

values for ALL areas and junctions that flow to those selected junctions.

5.1.10 Find Distance Between Junctions

This tool finds the distance between a point or junction and its next

downstream neighbor. This tool is designed to operate on the NextDownstream

and LengthDownstream attributes of HydroJunction in the ArcGIS Hydro data

model.

5.1.10.1 Description

If next downstream ID and length downstream have been populated for a

set of junctions, finding the distance between a junction and its next downstream

neighbor is a relatively simple task. This tool performs that task by subtracting

the downstream lengths of two junctions to determine the distance between them.

 107

If no next downstream junction is found, or if the length downstream values are

corrupted, then the tool assigns a value of -1 as the distance between junctions.

Figure 5.14 Results of Find Distance Between Junctions Computation

The tool can run on a selected set of records or all records. If no features

are selected, the tool runs on all records. If any features are selected, the tool runs

only on the selected records.

5.1.10.2 Beneficial Uses

Knowing the distance between points is useful in determining time of

travel between points in a network. The information is also useful in water rights

analysis and Total Maximum Daily Load analyses.

 108

5.1.10.3 Limitations

The tool requires that the next downstream ID and length downstream

attributes are already populated on the point or junction Feature Class. However,

no network is required to run this tool once those attributes have been populated.

5.1.11 Make Schematic Lines

This tool creates a schematic line Feature Class from a set of points or

junctions. This tool is designed to operate on the NextDownstream attribute of

HydroJunction in the ArcGIS Hydro data model.

5.1.11.1 Description

If next downstream ID is known for a set of junctions, then a schematic

line set can be creating connecting those junctions. A schematic line is a simple,

straight line that directly connects two topologically related points in a network.

Schematic networks are simplified versions of actual networks and are often used

in hydrologic and hydraulic models to represent the hydrological system. The

tool runs on the entire set of points or junctions from the given Feature Class.

Figure 5.15 Results of Make Schematic Lines Operation

 109

5.1.11.2 Beneficial Uses

A schematic line set is useful in creating a simple network that possesses

all of the necessary information to perform a hydrologic or hydraulic analysis,

without all of the cartographic information normally found in representations of

river networks in Geographic Information Systems. A schematic network may

give a clearer picture of topological relationships between features. In essence, a

schematic network is a fully functional network without any bells or whistles.

5.1.11.3 Limitations

Currently, the tool builds a set of schematic lines, but does not build a

network. That part is left to the user. In the future, geometric network creation

may be included in a revision to the tool.

5.2 RETRIEVE NWIS DATA

This tool retrieves NWIS data from the Internet and builds time series

tables from the data. The structure for the time series tables follows that of the

TimeSeries class in the ArcGIS Hydro data model.

5.2.1 Description

The USGS National Water Information System (NWIS) contains historical

daily streamflow information for USGS stream gages in the United States, with

records dating back as far as 100 years. The data can be accessed from the

Internet by inputting parameters such as gage number and period of record at the

NWIS-Web site. The site then builds a URL and retrieves the data. The

following table breaks down each component of a sample NWIS URL.

 110

Sample URL:

http://waterdata.usgs.gov/nwis-

w/TX/data.components/hist.cgi?statnum=08159000&bdate_month=03&b

date_day=23&bdate_year=1976&edate_month=09&edate_day=30&edate

_year=1999&graphsize=1.5&mode=data&dateformat=0

Component Meaning (Example)

http://waterdata.usgs.gov/nwis-w/ Base address of NWIS-Web site
TX State that the gages are located in (TX)

statnum=08159000 Station number (08159000)
bdate_month=03 Start month (March)

bdate_day=23 Start day (23rd)
bdate_year=1976 Start year (1976)
edate_month=09 End month (September)

edate_day=30 End day (30th)
edate_year=1999 End year (1999)

graphsize=1.5&mode=data&dateformat=0 Output format (Tabular Data)

Table 5.3 Components of NWIS-Web URL

The data is retrieved based on the contents of the URL, as opposed to a

hidden processing of the user’s inputs. This means that if the user is familiar with

the NWIS-Web URL format, and if the necessary parameters for data retrieval are

known, then the user can type the URL in the web browser and jump directly to

the data of interest without having to fill in each parameter at the NWIS-Web site.

A more powerful application of this technology is the automation of NWIS-Web

data retrieval. If a program can build the URL and possesses Internet capabilities,

 111

then it can automatically retrieve NWIS data and process that data without the

user ever having to open a web browser.

The Retrieve NWIS Data tool is an example of such an application. This

tool reads USGS gage numbers from a set of gages in the GIS. It then prompts

the user for a period of record to retrieve and the state that the gages are located

in. With these inputs, the tool downloads the NWIS data from the Internet and

builds a time series table using the structure of the TimeSeries class from the

ArcGIS Hydro data model. During the Internet data transfer, a simple Splash

screen appears.

Figure 5.16 NWIS Splash Screen

If any of the gage numbers in the GIS do not correspond to valid USGS

gage numbers, that number is skipped and the tool moves to the next gage. When

the tool is finished, the time series table is added to the map document, and a

message box appears giving some statistics about the tool’s operation. If any data

cannot be retrieved for any gages, the IDs of those gages are listed in a message

box at the end of the tool’s operation.

 112

Figure 5.17 Table Resulting from Retrieve NWIS Data Operation

5.2.2 Beneficial Uses

This tool allows users to automatically retrieve time series information for

USGS stream gages when needed. More importantly, this tool serves as a point of

departure for the development of other tools that integrate GIS with automatic

data retrieval from the Internet. One possible application would be a real-time

flood forecasting model that would periodically retrieve time series information

from the web, process the data, and alert the user if a flood hazard was predicted

by the model. A second application relates directly to the drought that occurred in

Texas in the summer of 2000. By accessing USGS real time data for streams,

 113

reservoirs, and groundwater levels, a water-available model could be constructed

that would assess the amount of water available in various sources throughout a

given geographic region.

5.2.3 Limitations

The tool does not provide a mechanism for avoiding duplicate entries of

time series data in the same table. This situation occurs if the user retrieved data

for overlapping periods of record for the same gage station. The tool requires a

connection to the Internet.

 114

Chapter 6: Conclusions

The main contribution of this research is a prototype Arc Hydro toolset.

This toolset is designed to operate with and populate the attributes of classes from

the ArcGIS Hydro Data Model. However, the toolset is flexible enough to

operate on any feature class, provided that it has the appropriate geometry and

attribute structure.

To populate the attributes of Arc Hydro, each tool must not only operate

within the functionality provided by the ArcGIS software system, but also follow

the general principle or concept behind the attribute itself. For instance, length

downstream may be interpreted in a number of ways, such as the average length

of all downstream branches, or the length to the nearest sink. In the case of Arc

Hydro, length downstream refers to the sum of the lengths of all downstream

branches. While this method is relatively simple to implement, it will result in

length downstream values that are greater than expected if there are downstream

loops in the network. This tool could be improved by calculating length

downstream as shortest path between the item of interest and the nearest sink.

The shortest path is determined by reading weights from each network element

that is traversed during the trace. The combination of network elements that

connects the two end points while resulting in the lowest sum of weights is the

shortest path. While this definition eliminates ambiguity as to what is really

returned from a length downstream calculation, it requires the user to include an

extra step (specifying the attribute to use as a weight) when creating the geometric

 115

network, as well as increased processing time (to check path lengths to all

connected sinks.) Other variations on the definition of length downstream could

require even more effort from the user, or even more processing power and time

from the computer. Thus when defining an attribute in Arc Hydro, care should be

taken to insure that the attribute is meaningful to the water resources community,

is simple for the user to populate, and can be produced unambiguously by the

software’s functionality.

Another concern for the developer is the logic behind the implementation

of each tool. For example, a watershed outlet may be defined as the point where a

watershed connects to the network. In many cases, this point is located by

examining where the watershed and the network intersect. However, some cases

may arise in which the watershed and the network intersect in more than one

place, or even not at all. A tool designed to locate watershed outlets should either

possess a scheme for dealing with these cases, or skip these cases during

processing and provide a list of unprocessed watersheds as output. Because

several schemes may exist to solve a given problem, the user should always be

provided with information about how a tool operates, especially when it operates

outside of normal conditions. The best practice is to clearly define how an

attribute is interpreted with each possible situation from the start, and then leave it

to the user to resolve unanticipated ambiguities.

These tools work very well with simple networks. However, the

effectiveness of the tools may diminish with increasingly complex networks.

Branches, loops, and Complex Edges may create ambiguities that demand more

 116

stringent rules for trace task operations in order to produce the desired result. In

most cases, these ambiguities can be resolved. A more serious problem involves

operations on networks with more than one Edge Feature Class. If a tool utilizes

an attribute or weight from network edges, then those attributes and weights must

be defined and specified for all Edge Feature Classes in the network. Preparing

for the possibility of multiple Edge Feature Classes in a network greatly increases

development efforts. In addition, the graphical user interface becomes more

complex, and the overall efficiency of the tool drops as each Edge Feature Class

is processed for a given cycle of an operation.

Due to the complexity involved in trying to prepare the toolset for every

possible situation, a better development approach is to design the tools to work

strictly on Arc Hydro Feature Classes. Inherent in Arc Hydro’s design is a set of

rules, which provides a well-defined environment that each tool can expect to

operate in. While the tools may allow flexibility in the names of attributes or

Feature Classes, the network and other components to which the tools are applied

should conform to the structure of Arc Hydro (such as one and only one Edge

Feature Class in the network.)

In addition to improving the philosophy behind the design of the toolset

(and Arc Hydro), the functionality of several of the tools may be improved as

well. Currently, length downstream is calculated for an edge by summing the

lengths of all edges produced in a downstream trace from that edge. This length

would include both sides of a downstream loop, resulting in a value higher than

what should be produced according to Arc Hydro’s definition of length

 117

downstream. The Calculate Length Downstream tool should be modified to find

the least cost path based on edge length between a given edge and the nearest

sink. It should also be modified to calculate length downstream for edges, or

junctions, or both. Currently, length downstream must first be calculated for

edges and then copied to junctions. This is not a very efficient design since it

requires one tool to be run before the other. Because the process for calculating

length downstream is identical for edges and junctions, the tool should allow

length downstream to be calculated for both network element types.

The Assign Flow Direction tool could be improved by adding a separate

button, which allows the user to change the flow direction of selected edges

without having to open the graphical user interface for the tool. In other words,

the user would choose the flow direction that will be assigned to edges. From that

point forward, each time the button is pressed, that flow direction will be assigned

to the selected edges.

Use of the NextDownstream attribute on HydroJunctions leads to an

important concept: navigation of the landscape based on an attribute. This

concept can be extended to include a NextDownstream attribute for a variety of

Feature Classes. Thus, Watersheds could be connected to HydroJunctions, which

could be connected to HydroEdges or a UserPoint. A tool could be written to

navigate these Feature Classes based on the NextDownstream attribute. Such a

tool would probably require a “HydroConnectivity” table, which contains the

HydroIDs of Features and the HydroIDs of each feature’s next downstream

element. This concept could also lead to an improvement in the Make Schematic

 118

Lines tool. This tool could be modified to create a set of points and lines which

connect each feature involved in the HydroConnectivity table.

On a more general note, this research has proven that effective tools can

be developed to work in ArcGIS by creating a DLL in the Visual Basic

programming environment. While creating a water resources computational

model which operates on top of the ArcGIS Hydro Data Model is certainly a more

complex task, it is certainly within the realm of possibilities. The model

developer must carefully consider to what extent the model is linked with

ArcGIS, and how the graphic user interface is designed. In addition, the

components of the model should be constructed in a COM-compliant and reusable

fashion. Finally, care should be taken to separate the data from the computational

components of the model. This approach helps to insure the integrity of the data

and promotes a more modular design of the model.

6.1 FUTURE WORK

Each of the tools developed for this research should be considered a draft

version. A good understanding of the proper protocols and techniques for

developing tools in ArcGIS should be acquired directly from ESRI personnel, and

then applied to the design of each tool to ensure the smoothest link with the

ArcGIS environment.

The success of the tools in populating attributes of the ArcGIS Hydro Data

Model suggests that the functionality of the tools may be incorporated into Data

Model classes as methods. This process would involve generating code in Visual

C++ using the Code Generation Wizard. Methods such as calculating length

 119

downstream and storing flow direction are relatively straightforward and could be

added to the HydroEdge class. However, methods such as accumulating area

values to outlets or storing area outlets may require some thought as to where the

methods should go and how they should be implemented.

Once some elementary methods have been written, the next step in the

development of Arc Hydro is to use Arc Hydro to prepare data for a simulation

model. Then a true evaluation of Arc Hydro’s effectiveness can be ascertained.

Several innovations regarding GIS technology and the potential to link

GIS data with computational models have been described. COM-compliance has

made GIS the newest member of a family of COM-compliant software that can

share components and utilize each other’s object libraries. Object-oriented

programming has extended the power of Features in GIS. HEC’s libHydro has

provided geoobjects with a great resource of efficient and well-established

hydrologic computational routines. The next step is to take each of these

elements and build the next generation of GIS-enabled hydrologic and hydraulic

models.

 120

Appendix A: ArcHydro and NWIS Tools User Guide

A.1 INSTALLING ARCHYDRO TOOLS

The ArcHydro Tools toolbar contains all of the ArcHydro Tools organized

into toolbar items and menus. Once installed, the ArcHydro Tools toolbar can be

added to an ArcMap document like any other ArcMap toolbar.

Installing ArcHydro Tools requires the following software:

ArcInfo 8.1 or higher

Installing ArcHydro Tools requires the following files:

 ArcHydroTools.dll
 ArcHydroTools.lib
 ArcHydroTools.exp

These files, as well as all source files, can be found on the CD-ROM

included with this thesis. Once the files have been extracted from CD-ROM,

open the ArcMap document where ArcHydro Tools are to be installed.

� Click the Tools menu and then click Customize.

� In the customization window, click Add From File.

� Navigate to ArcHydroTools.dll, click on ArcHydroTools.dll, and then

click Open. After a moment, a list of added items will be shown in a
popup window. Click OK to close the window and proceed.

� In the customization window under the Toolbars tab, place a check next to

ArcHydroTools. The ArcHydro Tools toolbar will appear on the map
document. You may now close the customization window.

ArcHydro Tools can also be added to ArcMap by registering the

ArcHydroTools.dll with ArcMap using RegCat.exe, and then adding the toolbar

 121

to ArcMap like any other ArcMap toolbar. See ArcMap documentation for

details.

A.2 ASSIGN HYDRO ID

This tool assigns HydroIDs to Feature Classes and tables in the current

map that have a HydroID field of type String. To use this tool, add all Feature

Classes and tables that you want to assign HydroID to, to the ArcMap document.

In the editor toolbar, click Start Editing. In the ArcHydro Tools toolbar, click

ArcHydro Tools, then click Assign HydroID.

Figure A.1 Assign HydroID Button

The tool will work through each Feature Class and table in the map,

assigning HydroIDs to records with a HydroID field of type String. You may also

select features that you want to assign HydroID to. The tool will then only assign

HydroIDs to selected features. A progress bar shows the tool’s progress in the

lower left corner of the map. When the tool is finished, investigate the tables to

 122

ensure that HydroID was properly assigned. If you decide that you do not want

HydroIDs, stop the edit session without saving edits.

Figure A.2 HydroIDs for Rivers Feature Class

A.3 CALCULATE DOWNSTREAM LENGTH

This tool calculates the length from the most downstream node on each

edge in a given layer to the sink that the edge flows to. It then populates the

specified length downstream field with those calculated values. To use this tool,

add the edge Feature Class to the map document. Start an edit session. Before

using the Calculate Downstream Length tool, make sure that flow direction is set

on the network. Once flow direction is set, on the ArcHydro Tools toolbar click

ArcHydro Tools, then click Downstream Length, then click Calculate for Edges.

 123

Figure A.3 Calculate Downstream Length Button

A form asking for the name of the edge layer, the field that contains the

lengths of the edges, and the field to store downstream lengths appears.

Figure A.4 Input Form for Calculate Downstream Length Tool

You may click the Help button to show information about the tool if you

wish. Input the edge layer that you want to compute downstream lengths for in

 124

the first box. Input the field in the edge layer that contains the lengths of each

edge in the second box. These lengths are used to compute the downstream

length for each edge. This field must be of type Double. Input the field in the

edge layer that will hold the length downstream in the third box. This field must

also be of type Double. Then click OK. The tool calculates values for a selected

set of edges, or for the entire Feature Class if no edges are selected. A progress

bar shows the tool’s progress in the lower left corner of the map.

Figure A.5 Result of Downstream Length Computation

 125

A.4 ASSIGN DOWNSTREAM LENGTH TO JUNCTIONS

The tool reads length downstream values from edges and writes those

values to junctions in the network. To use this tool, add the network with the

junction Feature Class of interest to the map document. Start an edit session.

Make sure that downstream length has already been calculated for the edges in the

network. On the ArcHydro Tools toolbar click ArcHydro Tools, then click

Downstream Length, then click Assign to Junctions.

Figure A.6 Assign Downstream Length to Junctions Button

A form asking for layers and fields used by the tool appears.

 126

Figure A.7 Input Form for Copy Downstream Length to Junctions Tool

You may click the Help button to show information about the tool if you

wish. Input the edge layer containing length downstream values in the first box.

Enter the field in the edge layer where the length downstream values are stored in

the second box. This field must be of type Double. Enter the shape length field

for the edge layer in the third box. This field must be of type Double. Enter the

junction layer where you want to write length downstream values to in the fourth

box. Enter the field in the junction layer where you want to store length

downstream values in the fifth box. This field must be of type Double. Then

click OK. The tool calculates values for a selected set of junctions, or for the

entire Feature Class if no junctions are selected. A progress bar shows the tool’s

progress in the lower left corner of the map.

 127

Figure A.8 Result of Assign Downstream Length to Junctions Computation

A.5 ASSIGN FLOW DIRECTION

This tool assigns flow direction to edges in a network, either by choosing a

flow direction to assign, or by reading values from a table. To use this tool, add

the network with the edge Feature Class of interest to the map document. Start an

edit session. On the ArcHydro Tools toolbar click ArcHydro Tools, then click

Flow Direction, then click Assign Flow Direction.

 128

Figure A.9 Assign Flow Direction Button

A form asking for an edge layer and assignment options appears.

Figure A.10 Input Form for Assign Flow Direction Tool

You may click the Help button to show information about the tool if you

wish. Input the edge layer that you want to assign flow direction to in the first

 129

box. Select an esriFlowDirection from the options on the right. If not assigning

flow direction based on an attribute, flow direction for the entire set of edges will

be assigned based on the chosen esriFlowDirection. If assigning by attribute,

place a check by the Assign based on attribute check box. The Select Flow

Direction Field combo box will become enabled. The flow direction will be read

from the field selected in the combo box. This field must be of a numeric type.

With the desired options selected, click OK. The tool assigns flow direction to

either a selected set of edges, or for the entire Feature Class if no edges are

selected. A progress bar shows the tool’s progress in the lower left corner of the

map.

The figures below show how the Assign Flow Direction tool can be used

to set the flow direction of edges in the network. The first figure shows the

default flow direction based on sinks in the network. The second figure shows the

flow moving towards a different location after the tool was used.

Figure A.11 Default Flow Direction in a Network

 130

Figure A.12 Result of Changing Flow Direction with Assign Flow Direction Tool

A.6 STORE FLOW DIRECTION

This tool reads the flow direction for a set of edges from the network and

writes the value of the flow direction to the Feature Class. To use this tool, add

the network with the edge Feature Class of interest to the map document. Start an

edit session. Make sure that flow direction has already been set for the network.

On the ArcHydro Tools toolbar click ArcHydro Tools, then click Flow Direction,

then click Store Flow Direction.

 131

Figure A.13 Store Flow Direction Button

A form asking for an edge layer and a field to store flow direction appears.

Figure A.14 Input Form for Store Flow Direction Tool

You may click the Help button to show information about the tool if you

wish. Input the edge layer that you want to store flow direction for in the first

box. Enter the field in the edge layer where the flow direction values are to be

stored in the second box. This field must be of a numeric type. Then click OK.

The tool reads flow directions values from the network and writes them to the

Feature Class table. The tool finds values for a selected set of edges, or for the

 132

entire Feature Class if no edges are selected. A progress bar shows the tool’s

progress in the lower left corner of the map. Results for storing flow direction for

a sample set of edges are shown below. Note that a coded value domain has been

applied to the FlowDirection field. Instead of displaying the numeric value stored

in the field, a text description of the value’s meaning is shown.

Figure A.15 Results of Store Flow Direction Operation

A.77 FIND NEXT DOWNSTREAM

The Find Next Downstream tool uses the network to find the next

downstream junction in a particular Feature Class, and assigns the ID of the

downstream junction to a downstream junction ID field in the Feature Class table.

To use this tool, add the network with the junction Feature Class of interest to the

map document. Start an edit session. On the ArcHydro Tools toolbar click Point

Nav, then click Find Next Downstream.

 133

Figure A.16 Find Next Downstream Button

A form asking for a junction layer and required fields appears.

Figure A.17 Input Form for Find Next Downstream Tool

You may click the Help button to show information about the tool if you

wish. Input the junction layer that you want to process in the first box. Enter the

field that holds the junction IDs in the second box. Enter the field to store the

downstream junction IDs in the third box. The field type of this field should

match up with the field type of the ID field. Next click OK. The tool finds the

 134

next downstream junctions and assigns the IDs of those junctions to the

downstream junction ID field in the junction Feature Class table. The tool finds

next downstream junctions for either a selected set of junctions, or for the entire

Feature Class if no junctions are selected. A progress bar shows the tool’s

progress in the lower left corner of the map.

Figure A.18 Results of Find Next Downstream Computation

 135

A.8 STORE AREA OUTLETS

This tool determines the outlet junction for an area and assigns the ID of

that junction to an outlet ID field in the area Feature Class table. To use this tool,

add the area Feature Class of interest and the network with the junction Feature

Class of interest to the map document. Start an edit session. On the ArcHydro

Tools toolbar click Point Nav, then click Store Area Outlets.

Figure A.19 Store Area Outlets Button

A form asking for the required layers and fields appears.

 136

Figure A.20 Input Form for Store Area Outlets Tool

You may click the Help button to show information about the tool if you

wish. Input the polygon layer that represents the areas of interest in the first box.

Input the field to store outlet IDs in the area Feature Class in the second box.

Input the junction layer that will serve as outlets for the areas in the third box.

Input the field in the junction Feature Class that contains the IDs that will be

written to the Outlet ID field in the area Feature Class in the fourth box. Then

click OK. The tool uses the scheme described above to assign outlet IDs to the

areas of interest. The tool runs on either a selected set of areas, or for the entire

Feature Class if no areas are selected.

During processing, a form with a progress bar is displayed in the center of

the screen. The user may press the Cancel button on the form to cancel

 137

processing. When the tool is finished, a message box appears displaying the

ObjectIDs of any areas for which the outlet could not be determined, or for which

there was more than one potential outlet. If no such areas were found, then the

message box does not appear.

Figure A.21 Results of Store Area Outlets Computation

A.9 ACCUMULATE AREAS TO POINTS

This tool accumulates values from areas to the outlet junction of the areas,

and then accumulates those values through each downstream junction in the

network. To use this tool, add the area Feature Class of interest and the point or

junction Feature Class of interest to the map document. Start an edit session. On

the ArcHydro Tools toolbar click Point Nav, then click FAC to Pts.

 138

Figure A.22 Accumulate Areas to Points Button

A form asking for the required layers and fields appears.

Figure A.23 Input Form for Accumulate Areas to Points Tool

 139

You may click the Help button to show information about the tool if you

wish. Input the polygon layer that represents the areas of interest in the first box

in the column on the left. Input the field that contains outlet IDs in the area

Feature Class in the second box. Input the field that contains the values to be

summed in the third box. In the column on the right, input the junction layer that

serves outlets for the areas in the first box. Input the field in the junction Feature

Class that contains the IDs that correspond to the Outlet ID field in the area

Feature Class in the second box. Input the field that will store the values from the

areas in the third box. Input the field that contains the Next Downstream IDs in

the fourth box. Input the field that corresponds to the IDs in the Next

Downstream IDs field in the fifth box. Input the field that contains length

downstream in the sixth box. The ID fields should be of type Integer or String,

and they should match in type. The Length Downstream field must be of type

Double. The field that stores the values from the areas may be numeric, String, or

Date. With all fields entered, click OK.

The tool uses the scheme described above to accumulate values from areas

onto points, and then passes those values through the network in the downstream

direction. The tool operates on the entire set of points or junctions. During

processing, a form with a progress bar is displayed in the center of the screen.

The user may press the Cancel button on the form to cancel processing.

The following figure shows the results of running the tool where the

accumulated value was the area of each polygon in acres. The figure shows the

outlet point for the most upstream area in the network.

 140

Figure A.24 Results of Accumulate Areas to Points Computation

A.10 FIND DISTANCE BETWEEN JUNCTIONS

This tool finds the distance between a point or junction and its next

downstream neighbor. To use this tool, add the point or junction Feature Class of

interest to the map document. Start an edit session. On the ArcHydro Tools

toolbar click Point Nav, then click Find Distance Between Junctions.

 141

Figure A.25 Find Distance Between Junctions Button

A form asking for the required layer and fields appears.

Figure A.26 Input Form for Find Distance Between Junctions Tool

 142

You may click the Help button to show information about the tool if you

wish. Input the junction or point layer in the first box. Input the field that

contains length downstream in the second box. This field must by of type Single

or Double. Input the field that contains the next downstream IDs in the third box.

Input the field that contains the IDs that correspond to the next downstream IDs in

the fourth box. The ID fields must be of type String or Integer, and they should

match. Input the field to store the distance between a junction and its downstream

junction in the fifth box. This field must be of type Single or Double. With all

parameters inputted, click OK.

The tool uses the scheme described above to find the distance between

junctions. The tool operates on a selected set of points or junctions, or the entire

set if none are selected. During processing, a form with a progress bar is

displayed in the center of the screen. The user may press the Cancel button on the

form to cancel processing.

 143

Figure A.27 Results of Find Distance Between Junctions Computation

A.11 MAKE SCHEMATIC LINES

This tool creates a schematic line Feature Class from a set of points or

junctions. To use this tool, add the point or junction Feature Class of interest to

the map document. Start an edit session. On the ArcHydro Tools toolbar click

Make Schematic.

Figure A.28 Make Schematic Lines Button

 144

A form asking for the required layer and fields appears.

Figure A.29 Input Form for Make Schematic Lines Tool

You may click the Help button to show information about the tool if you

wish. Input the junction or point layer in the first box. Input the field that

contains the next downstream IDs in the second box. Input the field that contains

the IDs that correspond to the next downstream IDs in the third box. The ID

fields must be of type String or Integer, and they should match. Input a name for

the schematic line Feature Class in the fourth box. Remember that this name

should conform to a valid class name according to ESRI rules. Invalid class

names will produce an error. With all parameters inputted, click OK.

 145

The tool uses the next downstream ID to build a set of schematic lines

between all points in the given point or junction Feature Class. A progress bar

shows the tool’s progress in the lower left corner of the map.

Figure A.30 Results of Make Schematic Lines Operation

A.12 NWIS TOOL

This tool retrieves NWIS data from the Internet and builds time series

tables from the data. Once installed, the NWIS button can be added to an

ArcMap document like any other ArcMap command button.

Installing the NWIS tool requires the following software:

ArcInfo 8.1 or higher

Installing the NWIS tool requires the following files:

 NWIS.dll
 NWIS.lib
 NWIS.exp

 146

These files, as well as all source files, can be found on the CD-ROM

included with this thesis. Once the files have been extracted to the computer,

open the ArcMap document where the NWIS tool is to be installed.

� Click the Tools menu and then click Customize.

� In the customization window, click the Commands tab.

Note:

In the lower left corner of the window, you will see a Save in… dropdown

box. Make sure you are not saving in normal.mxt by clicking in the

dropdown box and selecting the name of the map document. If you save

in normal.mxt, then the NWIS tool will load for each new document that

you create with ArcMap. This creates some extra overhead, especially if

you do not need the NWIS tool in every new ArcMap document.

� Click on Get NWIS Data with the left mouse button.

� While holding down the left mouse button, drag the Get NWIS Data

button next to another button in the gray area where all the commands and
tools are in ArcMap. When you see the insertion cursor (looks like a
capital I,) that means that tool can be placed in that location. Release the
left mouse button to drop the tool in that location. The Get NWIS Data
button is now ready for use.

To use this tool, add the Feature Class that contains the USGS stream

gages of interest to the map document. The Feature Class table should contain a

field that stores USGS stream gage ID numbers. Click the Get NWIS Data

button.

 147

Figure A.31 Retrieve NWIS Data Button

A form asking for a layer that represents USGS stream gages appears.

Figure A.32 Input Form for Layer and Fields

Input the Feature Layer that represents USGS stream gages in the first

combo box. Input the field in that layer that stores USGS stream gage IDs in the

second combo box. An example of a USGS stream gage ID is 08158000, which

is for the Colorado River in Austin. Input the field that stores Feature IDs in the

third combo box. Values in this field will be stored in the FeatureID field in the

time series table, in order to link the time series data with the appropriate feature.

Click OK. A form asking for the period of record to retrieve and the state the

gages are located in appears.

 148

Figure A.33 Input Form for Period of Record and State

With the period of record and state inputted, press Go. The tool checks to

make sure the dates exist, and that the start date occurs before the end date. The

tool then asks for a database and table to store the data in. With these inputs, the

tool then retrieves data from the Internet and builds the time series table. During

the Internet transfer, the tool displays a simple Splash screen. During processing,

a form with a progress bar is displayed in the center of the screen. The user may

press the Cancel button on the form to cancel processing.

 149

Figure A.34 NWIS Splash Screen

When the tool is finished, the table is added to the ArcMap document, and

a message box appears giving some statistics about the table creation process. If

data for any gages could not be downloaded, the IDs of those gages appear in a

message box.

 150

Figure A.35 Table Resulting from Retrieve NWIS Data Operation

 151

Appendix B: Data Dictionary

Following is a list of files included on the CD-ROM attached to this thesis.

B.1 ARCHYDRO TOOLS

ArcHydroTools.dll DLL containing ArcHydro Tools

ArcHydroTools.exp Query expression for ArcHydroTools.dll

ArcHydroTools.lib Lib file for ArcHydroTools.dll

ArcHydroTools.vbp ArcHydro Tools VB Project

ArcHydroTools.vbw ArcHydro Tools VB Workspace

clsArcHydroMenu.cls ArcHydro Menu

clsArcHydroToolbar.cls ArcHydro Toolbar

clsAsgFlowDir.cls Assign Flow Direction Tool

clsCalcDSLength.cls Calculate Downstream Length for Edges

Tool

clsCopyDSLength.cls Assign Downstream Length to Junctions

Tool

clsFACtoPts.cls Accumulate Area Values to Points Tool

clsFindDistBTPts.cls Find Distance Between Points Tool

clsFindFlowDir.cls Store Flow Direction Tool

clsFindNextDS.cls Find Next Downstream Tool

clsMakeSchLines.cls Make Schematic Lines Tool

clsMenuDSLength.cls Downstream Length Menu

clsMenuFlowDir.cls Flow Direction Menu

 152

clsMxHydroID.cls Assign Hydro ID Tool

clsPointNavMenu.cls Point Nav Menu

clsStoreAreaOutlets.cls Store Area Outlets Tool

frm2by1.frm Template input form

frmAsgFlowDir.frm Assign Flow Direction Input Form

frmBitmaps.frm Bitmaps form

frmCalcDSL.frm Calculate Downstream Length for Edges

Input Form

frmCopyDSL.frm Copy Downstream Length to Junctions

Input Form

frmFACtoPts.frm Accumulate Area Values to Points Input

Form

frmFindDistBTPts.frm Find Distance Between Points Input Form

frmFindFlowDir.frm Store Flow Direction Input Form

frmFindNextDS.frm Find Next Downstream Input Form

frmHelpASGFlowDir.frm Assign Flow Direction Help Form

frmHelpCalcDSL.frm Calculate Downstream Length for Edges

Help Form

frmHelpCopyDSL.frm Copy Downstream Length to Junctions Help

Form

frmHelpFACtoPts.frm Accumulate Area Values to Points Help

Form

frmHelpFindDistBTPts.frm Find Distance Between Points Help Form

 153

frmHelpFindFlowDir.frm Store Flow Direction Help Form

frmHelpFindNextDS.frm Find Next Downstream Help Form

frmHelpStoreAreaOutlet.frm Store Area Outlets Help Form

frmProgress.frm Progress Form

frmSchematic.frm Make Schematic Lines Input Form

frmSchematicHelp.frm Make Schematic Lines Help Form

frmStoreAreaOutlet.frm Store Area Outlets Input Form

modGlobals.bas Global Variables Module

modNetworkUtils.bas Network Utilities Module

modUtilsGeneral.bas General Utilities Module

readmeArcHydroTools.txt Basic readme file for ArcHydro Tools

B.2 NWIS TOOL

clsNWIS.cls NWIS Tool

frmHelpNWISFields.frm Fields Help Form

frmHelpNWISLayers.frm Layers Help Form

frmNWISFields.frm Fields Input Form

frmNWISinputs.frm General NWIS Inputs Form

frmNWISLayers.frm Layers Input Form

frmProgress.frm Progress Form

frmSplash.frm Splash Form

modArcHydro.bas Module with other ArcHydro utilities

modGlobals.bas Global Variables Module

modUSGSData.bas USGS Data-sorting Module

 154

modUtilsGeneral.bas General Utilities Module

NWIS.dll DLL containing NWIS Tool

NWIS.exp Query expression for NWIS.dll

NWIS.lib Lib file for NWIS.dll

NWIS.vbp NWIS Tool VB Project

NWIS.vbw NWIS Tool VB Workspace

readmeNWIS.txt Basic readme file for NWIS Tool

B.3 SAMPLE TOOL

clsSampleTool.cls Sample Tool

Project1.vbp Sample Tool VB Project

Project1.vbw Sample Tool VB Workspace

Sample_Tool.dll Sample Tool DLL

Sample_Tool.exp Query expression for Sample_Tool.dll

Sample_Tool.lib Lib file for Sample_Tool.dll

 155

Bibliography

Alfredsen, Knut, and Bjorn Saether. ”An Object-oriented Application Framework
for Building Water Resource Information and Planning Tools Applied to
the Design of a Flood Analysis System.” Environmental Modelling and
Software. 15.3 (Mar. 2000): 215-224. 3 Mar. 2001
<http://www.sciencedirect.com/>.

Booch, Grady, James Rumbaugh, and Ivar Jacobson. The Unified Modeling
Language User Guide. Reading: Addison-Wesley Longman, Inc., 1999.

Davis, Kim. Object-Oriented Modeling of Rivers and Watersheds in Geographic
Information Systems. Thesis. The University of Texas at Austin, 1999. <
http://www.ce.utexas.edu/prof/maidment/grad/davis/home.htm>

Donnelly, Kevin. Developing Digital Flood Insurance Rate Maps for Lago Vista.
Thesis. The University of Texas at Austin, 2001.

ESRI. Arc Facilities Manager (ArcFM): A Powerful New ARC/INFO-Based
Application for Utilities. ESRI White Paper. Environmental Systems
Research Institute, Inc, 1998.

ESRI. ArcFM GIS for Utilities. CD-ROM. Environmental Systems Research
Institute, Inc, 1999.

ESRI. ArcFM Water: AM/FM/GIS for Water Utility Systems. ESRI White
Paper. Environmental Systems Research Institute, Inc, 2000.

ESRI. Building Applications with MapObjects. USA: Environmental Systems
Research Institute, Inc., 1996.

Goodchild, M.F., and K.K. Kemp, eds. NCGIA Core Curriculum in GIS.
National Center for Geographic Information and Analysis, University of
California, Santa Barbara CA. 1990
<http://www.geog.ubc.ca/courses/klink/gis.notes/ncgia/u23.html#UNIT23
>.

Hartley, Tim. GUI Design Fundamentals Learning Guide. Phoenix:
ComputerPREP, 1998.

 156

HEC. HEC-GeoRAS: An Application for Support of HEC-RAS Using Arc/Info.
Davis: Hydraulic Engineering Center, 1999.

HEC. HEC-HMS. Hydrologic Modeling System, Version 2.1. 17 Apr. 2001
<http://www.hec.usace.army.mil/software/software_distrib/hec-
hms/hechmsprogram.html>.

HEC. libHydro Users Manual. Davis: Hydraulic Engineering Center, 1995.

Meyer, Bertrand. Object-Oriented Software Construction. Hertfordshire:
Prentice Hall, 1997.

Murray, M.G., and V. Kutija. “Experiences in Object Oriented Design.”
Proceedings of 4th International Conference Hydroinformatics 2000.
Cedar Rapids, Iowa. CD-ROM. 2000.

Olivera, Francisco. CRWR-PrePro: An ArcView Preprocessor for Hydrologic,
Hydraulic and Environmental Modeling. 27 Apr. 2001
<http://www.ce.utexas.edu/prof/olivera/prepro/prepro.htm>.

Rumbaugh, James, et al. Object-Oriented Modeling and Design. Englewood
Cliffs: Prentice Hall, 1991.

Spanou, Maria, and Daoyi Chen. “An Object-oriented Tool for the Control of
Point-source pollution in river systems.” Environmental Modelling and
Software. 15.1 (Jan. 2000): 35-54. 3 Mar. 2001
<http://www.sciencedirect.com/>.

U.S. Army Corps of Engineers. National Inventory of Dams. 27 Apr. 2001
<http://crunch.tec.army.mil/nid/webpages/nid.cfm>.

Ye, Zichuan. Map-based Surface and Subsurface Flow Simulation Models: An
Object-Oriented and GIS Approach. Diss. The University of Texas at
Austin, 1996.

 157

Vita

Timothy Lee Whiteaker was born in Cookeville, Tennessee on April 3,

1976, the son of Leigh Whiteaker and Charles Ed Whiteaker. After completing

his work at Cumberland County High School, Crossville, Tennessee, in 1994, he

entered Tennessee Technological University in Cookeville, Tennessee. He

received the degree of Bachelor of Science in Civil and Environmental

Engineering from Tennessee Technological University in May, 1999. In

September, 1999, he entered The Graduate School at The University of Texas at

Austin.

Permanent address: 523 Madison Ave.

 Sparta, TN 38583

This thesis was typed by the author.

 158

	List of Tables
	List of Figures
	Chapter 1: Introduction
	1.1 Background
	Motivation
	1.3 Objective and Scope
	1.4 Thesis Outline

	Chapter 2: Literature Review
	2.1 Software Design Principles
	2.1.1 Robustness
	2.1.2 Extensibility
	2.1.3 Reusability
	2.1.4 Compatibility

	2.2 Object-Oriented Programming
	2.2.1 Concepts
	2.2.2 COM
	2.2.3 Object-Oriented Programming and Software Design Principles

	2.3 Interface Design
	2.3.1 User in Control
	2.3.2 Directness
	2.3.3 Consistency
	2.3.4 Forgiveness
	2.3.5 Feedback
	2.3.6 Aesthetics
	2.3.7 Simplicity

	2.4 Existing Models
	2.4.1 HEC-HMS
	2.4.2 Kortflom
	2.4.3 SMILE
	2.4.4 Noah 1D
	2.4.5 Map-Based Surface and Subsurface Flow Simulation Models
	2.4.6 ArcFM

	2.5 Conclusions

	Chapter 3: Methodology
	3.1 Object-Oriented Programming and Hydrologic Modeling
	3.2 Software Overview
	
	
	
	
	Figure 3.1 ArcCatalog Graphical User Interface
	Figure 3.2 ArcMap Graphical User Interface
	Figure 3.3 ArcToolbox Graphical User Interface

	3.2.1 RDBMS Technology
	
	
	
	Figure 3.4 Feature Class Table Structure

	3.2.2 Geodatabase Structure
	3.2.3 Custom Features
	
	
	
	Figure 3.5 Sample UML Diagram
	Figure 3.6 Procedure for Creating Custom Features in ArcGIS

	3.2.4 COM-Compliance
	3.2.5 MapObjects

	3.3 ArcGIS Hydro Data Model
	3.3.1 Hydro Features
	
	
	Table 3.1 Hydro Feature Classes

	3.3.2 Hydro Network
	
	
	Table 3.2 Hydro Network Classes

	3.3.3 Drainage Areas
	
	
	Table 3.3 Drainage Area Classes

	3.3.4 Channel Features
	
	
	Table 3.4 Channel Features Classes

	3.3.5 Time Series
	3.3.6 Stage of Development

	3.4 Development Approaches
	3.4.1 Data Model Pre-Processing
	3.4.1.1 External Model
	3.4.1.2 Internal Model

	3.4.2 Data Model Extension

	3.5 Interface Design

	Chapter 4: Procedure of Analysis
	4.1 Creating Tools for Use in ArcMap
	
	
	
	
	Figure 4.1 Procedure for Creating a Custom Tool in ArcGIS

	4.1.1 Creating the DLL
	
	
	
	Figure 4.2 Properties of clsSampleTool

	4.1.1.1 Implementing the esriCore.ICommand Interface
	
	
	Figure 4.3 Adding a Reference to the ESRI Object Library
	Figure 4.4 Implementing ICommand Interface
	Figure 4.5 ICommand Stub Code

	Table 4.1 Implementation Code for ICommand Properties
	Figure 4.6 Implementation Code for ICommand Properties

	4.1.1.2 Additional Modules and Forms
	
	
	Figure 4.7 Template Input Form
	Figure 4.8 Sample Progress Form
	Figure 4.9 Module, Form, and Class Files in Sample Project

	4.1.1.3 Code for the OnClick Procedure
	4.1.1.4 The Importance of Error Handling
	4.1.1.5 Making the DLL
	
	
	Figure 4.10 Project Properties Window

	4.1.2 Adding the DLL to ArcMap
	
	
	
	Figure 4.11 Show OIDs Tool in Customize Window
	Figure 4.12 Show OIDs Button
	Figure 4.13 Sample Output from Show OIDs Tool

	4.2 Applying Design Principles
	4.2.1 Software Construction
	4.2.1.1 Robustness
	4.2.1.2 Extensibility
	4.2.1.3 Reusability
	4.2.1.4 Compatibility

	4.2.2 User Interface Design
	4.2.2.1 User in Control
	4.2.2.2 Directness
	4.2.2.3 Consistency
	
	
	Figure 4.14 Comparison Between Form Layouts

	4.2.2.4 Forgiveness
	4.2.2.5 Feedback
	4.2.2.6 Aesthetics
	4.2.2.7 Simplicity

	Chapter 5: Results
	5.1 Arc Hydro Tools
	
	
	
	
	Figure 5.1 Sample Progress Form with Cancel Button

	5.1.1 Arc Hydro Tools Toolbar
	5.1.1.1 Description
	
	
	Figure 5.2 Arc Hydro Tools Toolbar

	Table 5.1 Function of Arc Hydro Tools

	5.1.2 Assign Hydro ID
	5.1.2.1 Description
	5.1.2.2 Beneficial Uses
	5.1.2.3 Limitations

	5.1.3 Calculate Downstream Length
	5.1.3.1 Description
	
	
	Figure 5.3 Result of Downstream Length Computation

	5.1.3.2 Beneficial Uses
	5.1.3.3 Limitations
	
	
	Figure 5.4 Incorrect Downstream Length Calculation for Complex Edges

	5.1.4 Assign Downstream Length to Junctions
	5.1.4.1 Description
	
	
	Figure 5.5 Result of Assign Downstream Length to Junctions Computation

	5.1.4.2 Beneficial Uses
	5.1.4.3 Limitations

	5.1.5 Assign Flow Direction
	5.1.5.1 Description
	
	Table 5.2 esriFlowDirection Constants
	Figure 5.6 Default Flow Direction in a Network
	Figure 5.7 Result of Changing Flow Direction with Assign Flow Direction Tool

	5.1.5.2 Beneficial Uses
	5.1.5.3 Limitations

	5.1.6 Store Flow Direction
	5.1.5.1 Description
	5.1.6.2 Beneficial Uses
	5.1.6.3 Limitations

	5.1.7 Find Next Downstream
	5.1.7.1 Description
	
	
	Figure 5.8 Results of Find Next Downstream Computation

	5.1.7.2 Beneficial Uses
	5.1.7.3 Limitations

	5.1.8 Store Area Outlets
	5.1.8.1 Description
	
	
	Figure 5.9 Results of Store Area Outlets Computation
	Figure 5.10 First Pass: All Junctions on Boundary
	Figure 5.11 Second Pass: Junctions Producing Upstream Edges in Area
	Figure 5.12 Third Pass: Junction With Most Upstream Edges in Area

	5.1.8.2 Data Preparation
	5.1.8.3 Beneficial Uses
	5.1.8.4 Limitations

	5.1.9 Accumulate Area Values to Points
	5.1.9.1 Description
	
	
	Figure 5.13 Results of Accumulate Areas to Points Computation

	5.1.9.2 Beneficial Uses
	5.1.9.3 Limitations

	5.1.10 Find Distance Between Junctions
	5.1.10.1 Description
	
	
	Figure 5.14 Results of Find Distance Between Junctions Computation

	5.1.10.2 Beneficial Uses
	5.1.10.3 Limitations

	5.1.11 Make Schematic Lines
	5.1.11.1 Description
	
	
	Figure 5.15 Results of Make Schematic Lines Operation

	5.1.11.2 Beneficial Uses
	5.1.11.3 Limitations

	5.2 Retrieve NWIS Data
	5.2.1 Description
	
	
	Table 5.3 Components of NWIS-Web URL
	Figure 5.16 NWIS Splash Screen
	Figure 5.17 Table Resulting from Retrieve NWIS Data Operation

	5.2.2 Beneficial Uses
	5.2.3 Limitations

	Chapter 6: Conclusions
	6.1 Future Work

	Appendix A: ArcHydro and NWIS Tools User Guide
	A.1 Installing ArcHydro Tools
	A.2 Assign Hydro ID
	
	
	
	
	Figure A.1 Assign HydroID Button
	Figure A.2 HydroIDs for Rivers Feature Class

	A.3 Calculate Downstream Length
	
	
	
	
	Figure A.3 Calculate Downstream Length Button
	Figure A.4 Input Form for Calculate Downstream Length Tool
	Figure A.5 Result of Downstream Length Computation

	A.4 Assign Downstream Length to Junctions
	
	
	
	
	Figure A.6 Assign Downstream Length to Junctions Button
	Figure A.7 Input Form for Copy Downstream Length to Junctions Tool
	Figure A.8 Result of Assign Downstream Length to Junctions Computation

	A.5 Assign Flow Direction
	
	
	
	
	Figure A.9 Assign Flow Direction Button
	Figure A.10 Input Form for Assign Flow Direction Tool
	Figure A.11 Default Flow Direction in a Network
	Figure A.12 Result of Changing Flow Direction with Assign Flow Direction Tool

	A.6 Store Flow Direction
	
	
	
	
	Figure A.13 Store Flow Direction Button
	Figure A.14 Input Form for Store Flow Direction Tool
	Figure A.15 Results of Store Flow Direction Operation

	A.77 Find Next Downstream
	
	
	
	
	Figure A.16 Find Next Downstream Button
	Figure A.17 Input Form for Find Next Downstream Tool
	Figure A.18 Results of Find Next Downstream Computation

	A.8 Store Area Outlets
	
	
	
	
	Figure A.19 Store Area Outlets Button
	Figure A.20 Input Form for Store Area Outlets Tool
	Figure A.21 Results of Store Area Outlets Computation

	A.9 Accumulate Areas to Points
	
	
	
	
	Figure A.22 Accumulate Areas to Points Button
	Figure A.23 Input Form for Accumulate Areas to Points Tool
	Figure A.24 Results of Accumulate Areas to Points Computation

	A.10 Find Distance Between Junctions
	
	
	
	
	Figure A.25 Find Distance Between Junctions Button
	Figure A.26 Input Form for Find Distance Between Junctions Tool
	Figure A.27 Results of Find Distance Between Junctions Computation

	A.11 Make Schematic Lines
	
	
	
	
	Figure A.28 Make Schematic Lines Button
	Figure A.29 Input Form for Make Schematic Lines Tool
	Figure A.30 Results of Make Schematic Lines Operation

	A.12 NWIS Tool
	
	
	
	
	Figure A.31 Retrieve NWIS Data Button
	Figure A.32 Input Form for Layer and Fields
	Figure A.33 Input Form for Period of Record and State
	Figure A.34 NWIS Splash Screen
	Figure A.35 Table Resulting from Retrieve NWIS Data Operation

	Appendix B: Data Dictionary
	B.1 ArcHydro Tools
	B.2 NWIS Tool
	B.3 Sample Tool

	Bibliography
	Vita

