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 The Center for Research in Water Resources (CRWR) at the University of 
Texas at Austin over the past few years has spent significant effort developing 
CRWR-PrePro.  This package, which runs off of a Geographic Information Systems 
(GIS) platform, provides a link between GIS data and the Hydrologic Engineering 
Center’s (HEC) Hydrologic Modeling System (HMS).  This project focuses on the 
application of CRWR-PrePro and HMS to generate a hydrologic model of the Buffalo 
Bayou watershed, which is west of Houston, Texas along Interstate 10.  In October, 
1994, a severe storm event occurred over the Houston metropolitan area, dropping 
rainfall totals ranging from 5 to 40+ inches.  Since the National Weather Service had 
recently installed Next Generation Weather Radar (NEXRAD) equipment in Houston 
prior to this event, high-resolution (1 km2) rainfall data were available.  These rainfall 
data were processed using a new Avenue-based version of the UNIX code 
(GridParm) the HEC had used previously to create the necessary rainfall data file for 
HMS.  In addition, 30-meter DEM data were acquired via the internet and analyzed 
by CRWR-PrePro to complete a sub-watershed delineation of the Buffalo Bayou in 
the area of interest.  Using the results from the new GridParm procedure and the 
output from CRWR-PrePro, a HMS model of the Buffalo Bayou was created.  Results 
from the model indicate that the use of 30-meter DEM data is inadequate when 
dealing with a place as flat as Houston.  Higher resolution terrain data, such as 
LIDAR, would presumably work much better.  Nonetheless, this project revealed the 
benefits of using CRWR-PrePro to link GIS with HMS. 
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Chapter 1:  Introduction 
 

The greater Houston metropolitan area receives approximately forty-five 

inches of rain annually. All too often in Houston, sudden rainstorms cause severe 

flooding, which, as Houston continues to grow, will only get worse.  As the risk of 

significant flooding increases, concerns about flood damage within the city rise.  

Considering that the U.S. continental record for rainfall in a twenty-four period is 

forty-three inches in nearby Alvin, TX, these concerns are warranted.  If a rainstorm 

comparable in magnitude struck Houston, it is vital to understand the rainfall/runoff 

aspects of the terrain.  The ability to predict the velocity and magnitude of the flood 

peaks as they move through the city is extremely valuable.   

Many of the channel systems in Houston are called bayous instead of rivers.  

The Buffalo Bayou lies mostly to the west of downtown Houston and drains 

approximately 360 mi2.  Within the bayou are two reservoirs—the Addicks and 

Barker reservoirs.  Though the bayou forms in a rural area near the western edge of 

Harris County, it eventually flows through the heart of Houston on its way to the 

Houston Ship Channel.  Because of this, the bayou is of particular interest since a 

severe storm event occurring in the western area of the bayou watershed could cause 

significant damage as the flood wave passes through Houston.  In response to these 

concerns, the Galveston, TX, District of the United States Army Corps of Engineers 

(the USACE) and the Hydrologic Engineering Center (HEC) in Davis, CA, have 

teamed up to sponsor the work done to complete this thesis.  The overall goal of this 
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study is to develop and calibrate a surface-water model of the Addicks/Barker 

reservoir system in the Buffalo Bayou upstream of Houston proper using a 

geographic information system (GIS) in connection with HEC’s surface-water model, 

the Hydrologic Modeling System (HMS).  The process of creating such a model can 

be broken down into several major steps.  Briefly, these include collecting the 

necessary GIS data, processing them for calculations within the GIS environment, 

applying a new CRWR-PrePro for connecting GIS systems with other modeling 

packages, and finally performing the actual modeling using the HMS.  

The first piece of the study involved the construction of a geographic 

information system database of the area in and around Houston, which covers about 

3420 mi2.  A GIS provides an environment for displaying and manipulating spatial 

data.  Typical GIS data sets included in the collection are thirty-meter digital 

elevation maps (DEM), digital line graphs (DLG), Anderson Land Use/Land 

Coverage data, and STATSGO soils data.  These data were organized within an 

ArcView environment and represent the terrain-based aspects of the model.   

In addition to terrain data, rainfall data were required for creation of the 

model.  The rainfall data used for this model were NEXRAD-based rainfall data.  

NEXRAD, from NEXt generation RADar, uses Doppler radar to record both the 

intensity of rainfall as well as average raindrop size to deduce rainfall rates.  For this 

model, the rainfall data used have a spatial resolution of one km2 and a time 

resolution of approximately six minutes and are from a rainfall event which occurred 

from 16-18 October 1994.  These data were generously supplied by the Princeton 
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Environmental Institute.  During these few days, a convergence of several weather 

systems caused a severe, widespread rainfall event in the Houston metropolitan area.  

While some areas reported only a few inches of rain, typical values of rainfall within 

Houston were between ten and twenty inches of rain with some small areas reporting 

values of over forty inches!  This is the type of event which flood forecasters in 

Houston fear the most.  As such, this storm serves as a benchmark event in the study 

of flooding in Houston.    
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Figure 1.1: Average daily flow for Buffalo Bayou at Houston flow gauge 
 
With data assembly complete, the next step of the modeling involved 

processing the acquired information in a GIS environment.  In recent years, the 

Center for Research in Water Resources (CRWR) at the University of Texas at Austin 

(UT-Austin) has devoted substantial resources to the development of CRWR-PrePro, 
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which employs the geospatial data collected in phase one to create an input basin 

model for HMS.  While the actual modeling of Buffalo Bayou occurs in HMS, 

CRWR-PrePro greatly simplifies the creation of this model. 

Once CRWR-PrePro had been used to generate an HMS basin model, all 

remaining work occurred within the HMS environment.  Most of the time spent 

working with HMS focused on model calibration.  During this flood event, the United 

States Geological Survey (USGS) maintained five flow gauges within the Buffalo 

Bayou.  These gauges provided the field results to which the model results can be 

compared.  In addition to the flow data, the USGS also collected water level storage 

data for both of the reservoirs.  These data are important for determining flow values 

downstream of the reservoir system.    

 The remaining sections of this thesis, in addition to providing a pertinent 

literature review, address the details in carrying out the process previously outlined.  

This approach involves first collecting data to create a GIS database of not just the 

Buffalo Bayou but the greater Houston metropolitan area as well.  In Chapter 3, both 

the acquisition and preprocessing of these data sets are addressed.  From here, terrain 

processing in CRWR-PrePro is discussed.  The end result of the CRWR-PrePro 

analysis is a usable basin model for HEC-HMS.  Chapter 4 describes how this file 

was created using CRWR-PrePro.  The next section reviews the techniques used to 

prepare the NEXRAD rainfall data for use in the HMS environment in conjunction 

with the basin model from CRWR-PrePro.  From there, Chapter 6 relates how the 

HMS model was used to analyze the October, 1994 storm event in the Buffalo  
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Bayou.  This chapter includes the results of the modeling process.  Finally, 

conclusions and recommendations for future work are included in the last chapter of 

this thesis. 

Overall, this thesis presents an original contribution to knowledge in that it is 

one of the first large-scale applications of the CRWR-PrePro software package.  The 

benefits of this package, such as a simplified approach to creating a basin model for 

HMS and a steady link between GIS data and non-GIS modeling software, are 

presented.  In addition, the research done for this project included updating the 

process created by the HEC to generate the rainfall grid file HMS needs to link 

gridded rainfall data with one of its basin files.  This process, dubbed ModClark by 

the HEC, while first written using AML files in a UNIX environment, has been 

rewritten for direct use with CRWR-PrePro.  Finally, an end result of this work is a 

rainfall/runoff model of the Buffalo Bayou for the major rainfall event of October, 

1994.  As a group, these subtopics work together to present a different take on 

modeling sizable areas using GIS and HEC-HMS.   

 



 6

Chapter 2:  Literature Review 
 

This chapter summarizes literature reviewed as part of this study.  Previous 

research efforts of interest include the original development of the CRWR-PrePro 

code, the feasibility of the use of NEXRAD in rainfall/runoff models, past 

applications of grid-based rainfall data in modeling studies, and previous studies of 

the Buffalo Bayou region.  

The research performed for this thesis extends two primary points presented in 

previous research.  First, NEXRAD data have recently become more available over a 

larger portion of the country in the past few years.  HEC (1996) performed an early 

study of the application of this type of data on the Salt River Basin in Missouri.  The 

HEC, in its documentation of its research, indicates that a primary purpose of the 

work was to provide an example application of the technology that other field offices 

of theirs could follow.  This report concludes that NEXRAD rainfall data "has the 

potential to make major improvements to the modeling of spatially varied rainfall 

events."  Furthermore, Reed (1995) concludes that NEXRAD data provide "high 

quality rainfall estimates."  Individual rain gauges do not always have the ability to 

capture localized convective events, while NEXRAD radar data excel at quantifying 

the details of events such as these.  In addition, using NEXRAD data allows the 

modeler to break up the terrain surface into a finer resolution, which leads to better 

model results.  The application of NEXRAD data in this study provides an extension 
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of the research presented by HEC in 1996.  Further examples of the value of this type 

of data set will hopefully lead to greater availability and application. 

HEC itself clearly understands the value of this type of rainfall data.  

However, to be used effectively, the data must be managed properly.  To incorporate 

NEXRAD data into its HEC-HMS modeling software, HEC has developed the 

ModClark algorithm for converting NEXRAD data into a format which HMS can 

handle.  When considering grid-based rainfall, HMS requires the modeler to break the 

terrain into a grid of a pre-specified resolution (Chapter 5) .  ModClark, using this 

resolution, assigns rainfall quantities to each cell in the grid as well as average 

distance from each location in this cell to the sub-watershed outlet.  In addition to 

discussing this procedure in the aforementioned Salt River Basin study, HEC 

contributed an entire study on the ModClark procedure in a 1996 study of the 

Muskingum River Basin in Ohio.  While this study employs rain gauge data over 

NEXRAD data, the conclusions stress the importance of the ModClark procedure in 

preparing rainfall data for use in HMS by stating that "the ModClark method had 

significant potential for improving forecasting capability."  Since it appears that 

NEXRAD data are the superior type of rainfall data and that the ModClark procedure 

is the best algorithm at preparing rainfall data for use in HMS, this study incorporates 

both of these issues in its scope.  To create a more integrating GIS package, the 

ModClark procedure was rewritten for this project in the Avenue scripting language.  

By doing this, a seamless connection between CRWR-PrePro and rainfall data 

preparation could be achieved.   
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At the heart of this research, however, rests CRWR-PrePro.  Originally 

developed in the Arc/Info Macro Language (AML) by Hellweger and Maidment 

(1997), this procedure has been adapted in the Avenue programming language and 

provides a bridge between GIS data and application of these data in HMS.  Currently, 

offices such as the Texas Natural Resource Information System offer a wealth of free 

GIS data of the state of Texas.  In addition, groups such as HEC provide effective 

rainfall/runoff models.  However, in the past, packages linking these two primary 

concepts have not existed.  CRWR-PrePro, however, offers a methodology for 

bridging this gap.  This research project represents one of the first applications of 

CRWR-PrePro on a large-scale scope.  In fact, the primary objective of this research 

is to demonstrate the effectiveness of CRWR-PrePro in manipulating GIS data for use 

in modeling software packages such as HMS.      

A final important element of this research presents an updated study of the 

Buffalo Bayou region.  Two groups have performed hydrologic studies of the Buffalo 

Bayou.  The first study, executed by HEC in 1977, addresses the urbanization in the 

vicinity of the Addicks and Barker Reservoirs in the upstream portion of the bayou on 

the effectiveness of these reservoirs at flood control.  While this study does not 

directly discuss this issue, the modeling results should provide a modern view of the 

additional impact of urbanization in the watershed since 1977.  In addition to this 

HEC study, the Harris County Flood Control District (HCFCD) contracted the 

consulting firm Bernard Johnson, Inc. to perform a management study (1992) of the 

Addicks Reservoir.  As with the HEC report, this research should also supplement 
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this study.  The use of NEXRAD and GIS data in the creation of a rainfall/runoff 

model of the Buffalo Bayou should provide further insight into the management 

needs of the both the reservoirs and the bayou.   
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Chapter 3:  Data Collection and Preprocessing 
 
 While the Galveston District of the Corps of Engineers requested that the 

model created for this study specifically address the Buffalo Bayou region upstream 

of Houston proper, it also requested that the GIS database assembled cover all of the 

Houston metropolitan area.  Figure 3.1 shows the area for which GIS data were 

collected, a range from 95° W to 96° W in longitude and from 29° 30’ N to 30° 15’ N 

in latitude. 

A fundamental aspect of working within a GIS environment is the map 

projection one wishes to use for the analysis.  Since the earth is a spheroid, to work 

with GIS data, one must first choose a map projection such that the three-dimensional 

data may be represented in two-dimensional space.  The map projection for this 

project was specified by the USACE.  HEC recognizes two basic map projections for 

NEXRAD rainfall data, the Hydrologic Rainfall Analysis Project (HRAP) grid and 

the Standard Hydrologic Grid (SHG).  For this project, the District specified that the 

SHG be used.  The parameters for the SHG map projection are as follows: 

 
 STANDARD HYDROLOGIC GRID MAP PROJECTION PARAMETERS 

 
Projection: Albers 
Datum: North American Datum of 1983 (NAD83)  
Ellipsoid: Geodetic Reference System of 1980 (GRS80)  
Map units: meters  
Central Meridian: 96° W (-96.00)  
Reference Latitude: 23° N (23.00)  
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Figure 3.1: Area covered by the GIS database 
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Standard Parallel 1: 29° 30´ N (29.50)  
Standard Parallel 2: 45° 30´ N (45.50)  
False Easting: 0.0  
False Northing: 0.0 

 
As part of the GIS data preprocessing, all data were converted into this map 

projection. 

 An additional basic concept within a GIS is the difference between raster and 

vector data.  A raster data set divides a rectangular domain into a mesh of square 

cells.  In a GIS, this raster set is referred to as a grid.  Two examples of a grid are a 

DEM and NEXRAD rainfall data.  A vector data set, on the other hand, represents 

points, lines, or polygons and is referred to as a coverage.  A line is an open sequence 

of points, and a polygon is a closed sequence of lines.  Examples of point, line, and 

polygon coverages could be gauging stations, a stream network, and a watershed, 

respectively.  Other examples of vector data that were assembled for this project 

include the Anderson Land Use/Land Cover set and the STATSGO soils data.  It is 

important to differentiate between raster and vector data in a GIS.  For instance, one 

may multiply grids together using a process called map algebra in which 

mathematical operations are done on a cell-by-cell basis to cells in corresponding 

locations in the various grids defining the variables required.  Each grid cell can have 

only a single value.  Moreover, one must convert a coverage to a grid in order to 

multiply data in a coverage by data in a grid.  Conversion operations along these lines 

are included in the ArcView software package. 
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The following sections describe the acquisition and preprocessing procedures 

performed on each data set.  These descriptions include information such as data 

source, original map projection, and algorithms used for preprocessing.  A full data 

dictionary may be found in the Appendix. 

 
3.1 Preparation of DEM Data for Use in CRWR-PrePro  
 

The Texas Natural Resources Information System (TNRIS) offers thirty-meter 

DEMs over the internet free of charge at www.tnris.state.tx.us.  As a raster data set, 

this  DEM contains elevation points of the earth’s surface in a grid spaced at thirty-

meter intervals.  These data are interpolated from the contour elevation data contained 

in 1:24,000 USGS topographic map sheets.  The TNRIS organizes the DEM data by 

USGS 7.5 minute quad names with elevation points measured in feet.  For the data 

collection area of interest, this includes 48 7.5' quadrangles, as shown in  Figure 3.2.  

Note that the names are properly oriented spatially to each other.   

As taken from the TNRIS, the DEM data are not immediately usable in a GIS.  

To save storage space and expedite the download time, the TNRIS stores DEM data 

in text form on its web site.  Fortunately, the USGS has specified a particular method 

for storing DEM data in text form so conversion into a useful product is simple.  

Included in the Spatial Analyst Extension of ArcView is the Import Data Source 

command, which allows a user to load these text-based DEMs into the ArcView 

environment.  One simply indicates that the DEM is in USGS DEM format and then 
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Figure 3.2: DEM names of interest on the TNRIS server 
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specifies the location of the file of interest.  Once the import process is complete, the 

user may view the DEM data in ArcView.  However, one should pay attention to 

whether the TNRIS has labeled the data sets properly since some data sets 

downloaded for this project were incorrectly named while others were in vertical 

units of meters instead of feet.  Fortunately, it was obvious when errors such as these 

were present since, for example, mislabeled DEM sets were spatially correct even if 

named incorrectly. 

Since the DEM data were available from the TNRIS as forty-eight separate 

data sets, these sets first had to be merged together into a single DEM before any 

further analysis was performed.  Using the Merge command within the Grid 

subsection of Arc/Info conveniently and quickly accomplished this task.  For 

instance, to merge two DEMs arbitrarily named DEM1 and DEM2 requires  

 
Arc: grid 
Grid:  merged_dem = merge(DEM1,DEM2) 
 

The merge command looks for overlap between the two DEM sets and appropriately 

matches them together.  Unfortunately, the merged DEM was marred by a severed 

problem, as may be seen in Figure 3.3. 
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Figure 3.3: Gaps existent in the DEM data 
 
While the black border on the left edge represents the physical edge of the 

data set (i.e., NODATA cells), the black lines present in Figure 3.3 demonstrate the 

presence of gaps between some of the forty-eight individual DEMs sets when they 

were combined into a single DEM.  For whatever reason, the gap was always six cell 

values in height while the width of the gaps varied.  This, of course, posed a problem 

since ArcView considers these areas as locations with no data values.   
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 After consideration, the hurdle was overcome as follows.  First, using the 

ArcView Export Data Source command, the entire DEM was converted into an 

ArcView ASCII-based grid.  A file of this type has a header at the top which 

describes the number of rows, the number of columns, the location of the lower-left 

hand corner of the grid, the grid’s cell size, and the value a cell would possess for 

ArcView to consider it a no-data cell.  After this header, the file contains the values of 

each individual cell.  After removing the header portion of the DEM ASCII file, the 

file was loaded into a spreadsheet.  Since the area of consideration is flat and since 

the height of the data gaps was only one hundred eighty meters, which is small 

considering the size of the data set, a simple interpolation technique was used to 

generate values to fill in the data gaps.  After replacing the header in the file, the text-

based file could be re-imported back into ArcView.  Figure 3.4 shows the interpolated 

DEM. 
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Figure 3.4: Interpolated DEM 

The next aspect of the DEM to consider is its map projection.  As its standard 

map projection, the TNRIS employs the Texas State Mapping System, whose 

parameters follow. 

  TEXAS STATE MAPPING SYSTEM PARAMETERS 
 
Projection: Lambert Conformal Conic 
Datum: North American Datum of 1983 (NAD83)  
Ellipsoid: Geodetic Reference System of 1980 (GRS80)  
Map units: meters  
Central Meridian: 100°W (-100.0000)  
Reference Latitude: 31° 10´ N (31.166667)  
Standard Parallel 1: 27° 25´ N (27.416667)  
Standard Parallel 2: 34° 55´ N (34.916667)  
False Easting: 1000000  
False Northing: 1000000  
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As this is different from the SHG map projection, a conversion process must be 

employed to switch between the two map projections.  To accomplish this, Arc/Info 

contains a reprojection command which has the following form: 

Arc: project grid in_name out_name projection_file.txt  
 
The projection file in this command line contains the projection parameters of the 

original and newly-projected grids.  The following projection file was used in this 

situation: 

input 
projection    LAMBERT                                           
units         METERS   
datum         NAD83          
spheroid      GRS80 
parameters 
27 25 00 
34 55 00 
-100 00 00 
31 10 00 
1000000.0 
1000000.0 
output 
projection    ALBERS                                            
datum         NAD83                                             
units         METERS                                            
spheroid      GRS80                                             
Parameters                                                      
29 30 00  
45 30 00 
-96 00 00 
23 00 00 
0.00000 
0.00000 
end 
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 Note that switching between the Lambert and Albers map projections alters 

the resolution of the DEM from 30 meters to 30.8 meters. 

 Before moving on to other concepts concerning the area terrain, a final aspect 

of the DEM preprocessing must be considered.  As taken from the TNRIS, DEM 

elevation points are measured in feet above the employed datum, which in this case is 

the North American Datum of 1983 (NAD83).  The CRWR-PrePro system used to 

analyze the GIS data in ArcView requires that the DEM elevation points be measured 

in meters.  By dividing the reprojected DEM by 3.281 using floating point division 

within ArcView, values were converted from feet to meters. 

 
3.1.1 Photographs in and around Addicks Reservoir 
 

In order to understand better the topography of the terrain, photographs of the 

Addicks reservoir area were taken.  While previous studies had indicated that slopes 

in the region averaged around five feet per mile, which is very flat, it was decided that 

pictures would provide an even better idea of the lack of terrain relief in the area.  In 

addition, the photography trip provided additional insight about the area, such as how 

the reservoir itself is designed, errors in maps about the reservoir, and drainage 

problems present. 

The Addicks reservoir, like the Barker reservoir, possesses berms which were 

constructed using soil.  The picture below, taken from inside the east edge of the 

Addicks reservoir, indicates the height of these berms. 
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Figure 3.5: View of berm from inside Addicks Reservoir 
 
A startling revelation gleaned for acquiring these pictures is the general poor shape in 

which the drainage system upstream of the Addicks reservoir is maintained.  Figure 

3.6, which is of a major set of culverts in the soccer fields in the northwest corner of 

the reservoir, typifies the condition of many of the culverts witnessed while taking 

pictures of the drainage features of the reservoir.. 

Finally, the last photo, Figure 3.7, is of the exit point of Addicks Reservoir.  It 

is included to give the reader an idea as to the size of the gates available to discharge 

water from the reservoir.  Notice the man on top of the blue metal structure. 
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Figure 3.6: Blocked culverts in the upstream part of Addicks Reservoir 
 

 
 

 
Figure 3.7: Exit point of Addicks Reservoir 
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3.1.2 Creation of a Triangular Irregular Network (TIN) 
 
 A TIN describes a three-dimensional surface while occupying much less 

memory than a DEM.  Essentially, a TIN is comprised of a set of contiguous, non-

overlapping triangles.  Each node where triangles meet is assigned an elevation value.  

Lines connecting the nodes (i.e. edges of triangles) are straight which means that 

elevations between nodes may be linearly interpolated.  The triangles within the TIN 

are relatively small in areas where the terrain possesses fine details and large in areas 

which are flat. 

 A TIN is pertinent to this project in that it provides an additional method for 

viewing the land’s surface throughout the modeling area.  Initial inspection of the 

DEM data set indicated that the slope in the region averaged 0.0010, or slightly over 

five feet per mile. Because of this low slope, it was a concern that the DEM itself was 

not going to be able to provide completely accurate information concerning the shape 

of the stream network.  A TIN, however, does provide an additional source of 

information for deriving the stream network and, in fact, proved invaluable in 

determining the orientation of the stream network.   

The ArcView extension 3-D Analyst adds functionality for creating a TIN 

from a DEM.  In this case, with the 3-D Analyst activated, one merely has to 

"Convert Grid to TIN" under the "Theme" menu list to create a TIN.  To show the 

difference between a TIN and a DEM, the figure below shows a small area within the 

modeling region using a DEM and using a TIN.  Note that around the stream 

network, the TIN provides a better three-dimensional visualization of the ground 
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surface.  This improvement primarily resides in that the finer details of the terrain 

relief may be gleaned from the TIN since the TIN does a better job of shading small 

differences in elevation.  If a DEM is broken down such that each color represents a 

ten-meter block of elevation values, all values, say, between ten and nineteen meters 

would be the same color.  In a TIN, however, one could discern slight differences in 

elevation because of the shading, which is enhanced by the presence of each of the 

triangles which make up the TIN.  Being able to recognize these slight differences in 

elevation proved to be useful considering the general lack of relief in Houston-area 

topography. 

 

                            
 

Figure 3.8: DEM (left) and TIN (right) of the same area 
 

Of interest is the fact that the TIN of the modeling region occupies 6.4 

megabytes of memory while the floating-point DEM of the same area resides in 14.5 

megabytes. 
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3.2 Preparation of NEXRAD Data 
 

The Princeton Environmental Institute (the Institute) supplied all rainfall data 

for the 16-18 October 1994 storm, which began about 1530 hrs on the 16th and ended 

around 2230 hrs on the 18th.   As received from the Institute, the data were zipped into 

three files, with each day of the storm covered by one file (e.g. 1016.zip, 1017.zip, 

1018.zip).  These zip files contain many different spreadsheet-readable text files, each 

of which held instantaneous rainfall information for a given time in a geographic map 

projection.  To determine the time associated with a given text file, note that the 

names are set up in an mmdd_hhmmss format.  For instance, 1016_152947 indicates 

that the data in that file are for a little before 1530 hrs on October 16th.  Though not 

separated by a constant interval, these rainfall data files were separated by 

approximately six-minute intervals.  For example, the first three files in 1016.zip 

were 

 
1016_152947 
1016_153431 
1016_154031 
 

Note that the first and the second file are separated by four minutes and forty-four 

seconds while the second and third files were separated by exactly six minutes.   

 Each of these files holds ten thousand points of rainfall intensities (mm/hr) at 

one-square-kilometer resolution in a latitude-longitude map projection.  Furthermore, 

the ten thousand points formed a 100- x 100-cell grid with each cell assigned a 
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latitude, a longitude, and a rainfall intensity.  Figure 3.9 shows how the rainfall data 

are oriented spatially. 

 

 
 
 

 
Figure 3.9: Area covered by NEXRAD rainfall data 

 
The preprocessing of the rainfall data contained two distinct aspects.  The first 

aspect considered reprojection problems between the original geographic data and 

their SHG counterparts.  The second required that the rainfall data be converted from 

a column-based format into a grid-based format.   

The end goal of the preprocessing of the NEXRAD data was a set of files 

which conformed to ArcView’s ASCII raster file format, which looks like 

 
ncols  integer  
nrows  integer 
xllcorner   real 

30.39° N, 96.29° W 

29.50° N, 96.29° W 

30.39° N, 95.27° W 

29.50° N, 95.27° W 



 27

yllcorner   real 
cellsize   integer 
NODATA_value  integer 
cell_value  cell_value  cell_value, etc 

 
 where ncols = the number of columns in the grid 
 nrows = the number of rows in the grid 

xllcorner = x-value of the position of the lower-left-hand corner of the grid 
yllcorner = y-value of the position of the lower-right-hand corner of the grid 
cellsize = the cell size of the grid 
NODATA_value = number assigned to a cell with no data in it 
 

The number of rows and the number of columns both equal 100 since the Institute 

indicated that this was the case.  In addition, the Institute also specified that the 

cellsize equals 1000 meters since the rainfall data are at 1-km2 resolution.   Next, the 

NODATA_value was arbitrarily set to -99999.  The xllcorner and the yllcorner 

values, however, required a bit more thought. 

The lower-left-hand corner values in the SHG map projection were obtained 

by taking the coordinates of the lower-left hand corner of the rainfall intensity grids in 

the geographic map projection (e.g. from 29.50° N, 96.29° W) and converting them 

into the corresponding SHG map projection coordinates.  An Avenue program named 

defgage.ave that converts a point shape file from a geographic map projection to any 

Albers equal area map projection was used.  This program, which may be found in 

the Appendix, calculated that the xllcorner value equals -28715 meters while the 

yllcorner value equals 713439.  Using a cell size of 1000 meters, the upper-right-hand 

corner of the grid resides at (70985 m,813139 m).  Unfortunately, visual inspection of 

a grid using these header values reveals that a cell size of 1000 meters is not correct.  

Consider Figure 3.10, which is in the SHG map projection.
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  Figure 3.10: Inadequacy of 1000 meter cell size in ASCII files 
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 The top image in Figure 3.10 shows the lower-left-hand corner of a rainfall 

grid using a cell size of 1000 meters while the bottom image shows the upper-right-

hand corner of the same grid.  The dotted grid was made by taking the 

latitude/longitude points from the original rainfall data set and reprojecting them into 

the SHG map projection directly.  Each dot represents a rainfall intensity from the 

original rainfall data sets.  The square-based grid underneath the dotted grid was 

created using the header file described earlier.  Inspection of the lower image in 

Figure 3.10 reveals that the right-most column in the salmon grid does not contain 

any intensity values (i.e. green dots).  Notice how the right-most column, whose 

boundaries can be determined by looking at the difference in coloration in the upper 

right-hand-corner of the lower image, does not have any green dots in it.  Each dot 

must have its own unique cell in the square-based grid.  Keep in mind that the dot 

does not have to fall in the middle of its unique cell; it merely has to fall somewhere 

inside of it.  Hence, initial guesses as to a solution figured that changing the cell size 

value in the header for the grid would solve this problem.  After some trial and error, 

a cell size of 997 meters generated a grid whose upper-right-hand corner is shown in 

the following image. 
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Figure 3.11: Upper-right-corner of rainfall grid using cell size of 997 meters 

 
Clearly the problem has been solved.  Since each cell in the far-right column has its 

own unique dot, the reprojection from a geographic map projection to the SHG map 

projection was now successful. 

This discrepancy between the grid resolution as defined by the Institute and 

the grid resolution used in the SHG map projection may be explained as follows.  The 

difference resulted from the map projection conversion from the original geographic 

map projection to the SHG map projection.  Where the geographic map projection 

takes into account the curvature of the earth, the SHG map projection, being an 

Albers map projection, is flat.  Thus, the conversion from the geographic map 

projection to the SHG map projection warranted a change in cell size to ensure that 

each of the ten thousand “rain gauges” in the NEXRAD rainfall grid was represented 

by a unique cell in that grid.  With this problem overcome, the second piece of the 

preprocessing of the NEXRAD data could be tackled.   
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Completion of the second aspect of the preprocessing necessitated solving 

three primary problems.  First, the ten thousand points in each data set, while 

originally oriented in a single column, needed to be reorganized in a 100- X 100-cell 

grid.  Second, the irregular time steps between each of the rainfall files had to be 

converted into a single consistent time step.  A time step of ten minutes was chosen 

since this value would be small enough to capture the details of the storm, yet large 

enough that routing problems do not arise from too small a time step.  Finally, as 

HEC-HMS requires rainfall depths when using grid-based rainfall, conversion from 

intensities to depths was needed.  A MATLAB computer code was written to solve 

these problems; these programs, which are described below, may be found in their 

entirety in the Appendix.  Since these rainfall data could always be represented using 

matrices whether in column or grid form, MATLAB was chosen since a primary 

strength of MATLAB is its ability to manipulate matrices.  The pseudocode of the 

programs is listed below. 

Program 1 – convert.m –  Changes time step from irregular values to a  
constant ten-minute value.  Then switches 
rainfall intensities to rainfall depths.  

 
• Load original rainfall data 
• Load times associated with each of the separate rainfall files 
• Remove first two columns from rainfall data (latitude/longitude 

values) 
• Determine ten-minute value closest to time of first data set of the day 

 -- i.e. 21:42:39 yields 21:40:00 
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• Reorganize data from irregular time steps into regular ten-minute time 

step 
 

o Include data sets until combined time-interval of data sets 
exceeds ten minutes 

o Convert intensities in each data set to depths of rain since start 
time of set 

o Sum the rainfall accumulated in the ten-minute time step 
o Store rainfall in remaining time for the next time step 
o Find data sets in the next ten-minute interval and keep looping 

until finished 
 

• Store results in a temporary text file. 
 
Program 2 – makefile.m –  Switches output of program 1 from column 

format 
     into 100x100 grids.  Assigns header required by 
     ArcView ASCII grids to top of each new file. 

 
• Load output from program 1 
• Take each column from this output and send it to a filer function: 

o Convert to a 100x100 grid.  Start building grid at lower left-
hand corner, building rows before columns. 

o Attach ASCII header to top of grid. This header is described 
earlier in this section. 

o Output results to file. 
 

Application of these two programs to the Institute rainfall intensity data sets 

resulted in 331 grids, each of which holds the rainfall depth values for one ten-minute 

interval in the storm.  With the pre-processing of the NEXRAD data complete, work 

on the digital line graph data sets could begin.    

 
3.3 Preparation of Digital Line Graph Data for the Stream Network 
 

A typical problem when working with DEM data, particularly when 

considering an area as flat as the Houston region, stems from a lack of resolution in 
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the DEM.  In fact, this dilemma represented one of the major issues facing this 

project.  With slopes around five feet per mile, the modeling area proved to be too flat 

to describe adequately the stream network.  Initial attempts at determining the stream 

network based on the DEM alone resulted in streams which made no sense based on 

inspection of the area.  Consider Figure 3.12: 

 
 

Figure 3.12: Demonstration of inadequacies in original DEM 
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The black lines represent the delineated stream network on the unaltered 

DEM.  However, the exit points from each reservoir on the stream network, marked 

by the black arrows, clearly do not agree with the delineated exit points.  To mitigate 

this problem, 1:100,000-scale digital line graph (DLG) data were used.  Essentially, 

these data are  

digital representations of cartographic information. Data files of 
topographic and planimetric map features are derived from 
cartographic source materials using manual and automated digitizing 
methods. 

 
Intermediate or 100,000-scale DLG data are derived from U.S. 
Geological Survey (USGS) 1:100,000-scale 30- by 60-minute 
quadrangle maps. If these maps are not available, Bureau of  Land 
Management planimetric maps at a scale of 1:100,000 are used.  The 
1:100,000-scale DLG data distributed by the USGS are in the DLG-
Level 3 (DLG-3) format. A DLG-3 file contains a full range of 
attribute codes, has full topological structuring, and has passed certain 
quality-control checks.   
 
(source http://www.ce.utexas.edu/prof/maidment/gishyd97/library/websites/dlg1doc.htm) 
 

 The DLG data source for this project was a CD-ROM from the USGS entitled 

“1:100,000-Scale DLG Data Hydrography and Transportation”, which contains 1993 

DLG information over Texas and Oklahoma including the 1:100,000-scale Beaumont 

and Houston maps.  This CD-ROM provided three different types of raw DLG data—

political boundary data, hydrography data, and transportation data.  Of these three 

data sets, the hydrography set possessed the greatest value.  While the political 

boundary data did little more than show county boundaries and while the 

transportation data displayed major transportation routes, the hydrography data 

provided an excellent source for delineating the stream network.  Before discussing 
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the benefits of these data, it is important to note that some preprocessing was required 

before the data could be used in an ArcView format.   

 Conveniently , an AML for Arc/Info was available for preprocessing the DLG 

data.  This AML may be found at http://www.ce.utexas.edu/prof/maidment/ 

gishydro/docs/amls/dlg.htm.  As this is a generalized piece of code, the exact code 

used to process the hydrography data for the Houston area may be found in the 

Appendix.  In a nutshell, this code first converts the data from the DLG optional 

format (as found on the CD-ROM) into coverages which Arc/Info recognizes.  From 

here, the code creates the topology of the data set using the “build” command.  Since 

each of the coverages created only represents a 15’ map with a border around it, the 

separate sets had to be combined and the borders removed.  Finally, the coverages 

had to be reprojected into the SHG map projection.  Once this series of steps was 

completed, the data sets were usable for this project.  For convenience, a piece of the 

completed DLG data is shown in Figure 3.13.  Note the berms of the two reservoirs 

near the center of the image. 
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Figure 3.13: DLG hydrography features of the study area 
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While this data set proved to helpful, it suffers from the fact that while the 

features are spatially correct, there is no labeling system to identify what each feature 

is in the set.  For instance, the two reservoirs in the system, located toward the upper-

left-hand corner of the above image are no different from a data point of view from 

any of the other lines.  While this posed a problem, it was eventually overcome.  As 

the discussion in this section is confined to data preprocessing, solutions to this 

problem will be discussed later in this thesis.  

 
3.4 Preparation of USGS Flow Data 
 

During the storm event of interest, the USGS maintained seven flow gauges 

and two reservoir storage gauges in the study area.  The table below lists the names of 

these gauges as well as their positions in latitude and longitude coordinates. 

 
Gauge Name Latitude Longitude 

Cypress Creek at Katy-Hockley Road near Hockley, TX 29° 57’ 00" N 95° 48’ 29" W 
Cypress Creek at House-Hahl Road near Cypress, TX 29° 57’ 32" N 95° 43’ 03" W 

Barker Reservoir near Addicks, TX  29° 46’ 11" N 95° 38’ 49" W 
Bear Creek near Barker, TX  29° 49’ 50" N 95° 41’ 12" W 

Langham Creek at West Little York Rd near Addicks, TX  29° 52’ 01" N 95° 38’ 47" W 
Addicks Reservoir near Addicks, TX  29° 47’ 28" N 95° 37’ 24" W 

Buffalo Bayou at West Belt Dr at Houston, TX  29° 45’ 43" N 95° 33’ 27" W 
Buffalo Bayou at Piney Point, TX  29° 44’ 48" N 95° 31’ 24" W 

Buffalo Bayou near Katy, TX  29° 44’ 35" N 95° 48’ 24" W 

 
Table 3.1: Names and locations of pertinent USGS flow and storage gauges 
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At http://txwww.cr.usgs.gov/databases.html, which is within the USGS Texas web 

page, one may request via email archived data from the USGS.  Thankfully, Dr. Fred 

Liscum honored this request and sent materials via mail to CRWR.  The data he sent 

document the water elevation above a given datum at a given gauge as a function of 

time.  The time interval for these tables is one hour.  Data were requested for the time 

period covering midnight on 1 October 1994 to midnight on 15 November 1994. 

In USGS terminology, the initial tables with water surface elevations are 

called primary gauge heights.  To translate these primary gauge heights into actual 

flow values, the USGS uses rating tables.  Before these rating tables may be used, 

however, the gauge heights themselves need to be converted from primary gauge 

heights to adjusted gauge heights.  The relationship between water surface elevation 

and flow at a particular site is not constant over time due to factors such as vegetation 

growth, the accumulation of sediment in the channel, and the scouring of the channel 

from erosion.  To address this issue, the USGS periodically uses field observations 

linking water surface elevation and flow to create variable shift tables.  These tables 

provide the adjustments required to shift the primary elevation values to their 

associated adjusted elevation values.  As an example, consider the Katy gauge from 

the above table.  From here, consider three arbitrary primary elevations which may 

have occurred on 20 October, such as 21.00 feet, 27.00 feet, and 33.00 feet.  Now 

consider the variable shift table for this gauge, which is partially reproduced below.  
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DATE/TIME INPUT SHIFT INPUT SHIFT INPUT SHIFT 

--------------------------------------------------------------------------------- 
09 10 2300 23.00 1.22 24.50 1.22 26.50 0.00 
10 18 2300 23.00 1.22 24.50 1.22 26.50 0.00 
--------------------------------------------------------------------------------- 
10 18 2400 23.00 1.24 24.00 1.24 31.00 0.00 
02 28 0400 23.00 1.24 24.00 1.24 31.00 0.00 
--------------------------------------------------------------------------------- 
02 28 0500 22.00 1.13 24.00 1.13 31.00 0.00 
…  … … … … … … 
NB:   The shifts during each time interval are fixed.  The USGS uses  

field observations to update the shift values from time interval  
to time interval.  
  

Table 3.2: Partial variable shift table for Buffalo Bayou near Katy, TX 
 

Since the date for this discussion is 20 October, the time interval of interest on 

the variable shift table is 2400 hrs on 18 October 1994 to 0400 hrs on 28 February 

1995.  For primary elevation values less than 23.00 feet in this interval, the shift is 

1.24 feet.  Thus, the first arbitrary primary elevation of 21.00 feet would have an 

adjusted value of 22.24 feet.  Similarly, the third value of 33.00 feet would have an 

adjusted value of 33.00 feet since primary elevations above 31.00 feet do not need to 

be adjusted.  The middle arbitrary value, 27.00 feet, requires a somewhat more 

complex process for it to be adjusted.  As the shift at a primary elevation of 24.00 feet 

is 1.24 feet, and the shift at a primary elevation of 31.00 feet is 0.00 feet, an 

interpolation procedure is used to convert from primary to adjusted elevation between 

24 and 31 feet.  In this case, 27.00 feet is three-sevenths of the way from 24.00 feet to 

31.00 feet.  Thus the shift is (1-3/7)*1.24 or 0.71 feet, and the adjusted value would 
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then be 27.71 feet.  The conversion of all primary elevation data to adjusted elevation 

data occurred using an Excel spreadsheet.  

 Once the adjusted gauge elevations were available for each of the gauges 

(note that for a reservoir the primary and adjusted elevations equal each other), USGS 

rating tables were employed to deduce gauge flows (or storage values) for each 

gauge.  Rating tables contain, for each adjusted elevation value, a corresponding flow 

value (or storage value); simply take a given adjusted gauge elevation, look at the 

rating table, and find the associated flow (or storage) value.   

The process of converting all adjusted elevation values to flow (or storage) by 

hand would require an extensive amount of time.  To expedite this procedure, a 

database containing all of the rating table data was created.  From there, MATLAB 

programs were again employed.  This simple program, findflow.m, may be found in 

the Appendix; its pseudocode appears below: 

 
• Read adjusted elevation data for a given gauge 
• Read rating table data for the same gauge 
• Loop through all adjusted elevations 

o For each elevation, find the two elevations on the rating table 
on each side of the given elevation 

o Using interpolation and the information from the rating table 
data, convert the adjusted elevation to the proper flow value 

• End loop 
 

Once this program was executed on each of the adjusted gauge values, flow and 

storage values were available.  Values generated by these programs could be checked 
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for accuracy since the data from the USGS included hourly average flow values.  

Note that flow values had units of ft3/sec and storage values had units of acre-feet. 

 An additional way to view this process of generating flows from elevations is 

graphically.  First consider that two relationships are available for the USGS— 

elevation vs. time and flow vs. elevation.  The top two charts in Figure 3.14 reveal 

this relationship for the Katy gauge from midnight on 17 October 1994 to midnight 

on 25 October 1994.  The key is to realize that the following equality also applies: 

 
The flow vs. elevation relationship provides a single number by which to multiply 

every  point on the elevation vs. time chart such that a new relationship, flow vs. time, 

is produced.  As a result, because flow is proportional to elevation, the flow vs. time 

curve looks like the elevation vs. time curve.  However, the primary difference is that 

since larger elevations are multiplied by larger flows, the flow vs. time curve is higher 

and narrower than its elevation vs. time counterpart. 

 
 
 
 

Time

Flow

Elevation

Flow

Time

Elevation =* Eqn. 3-1 
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Figure 3.14: Graphical relationship among elevation vs. time (top), 

flow vs. elevation (middle), and flow vs. time (bottom) 
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3.5 Acquisition of Anderson Land Use/Land Cover data 

 
The TNRIS offers Anderson Land Use/Land Cover data for the region of 

interest through its FTP site (ftp://www.tnris.state.tx.us/pub/GIS/).  Data for the 

region were originally collected by the USGS from 1:100,000 and 1:250,000 maps 

and then converted to Arc/Info format by the EPA in a geographic map projection.  

The TNRIS then took these data and converted them into the Texas State Mapping 

System Lambert map projection.  Two land use/land cover data sets were downloaded 

from the TNRIS--Beaumont and Houston.  To expedite downloading, the TNRIS 

stores data sets of this type in a zipped format on its web site, so the first step for 

preparing the data involved unzipping the files using PKUNZIP.  Unzipping a given 

file, such as houston.zip, generated a file named houston.e00.  Using the ESRI 

program IMPORT 71, these *.e00 files were converted into files which ArcView 

could readily recognize.  Before use in ArcView, however, these data sets needed to 

be converted from the Texas State Mapping System Lambert map projection into the 

SHG map projection.  This was accomplished within the Arc/Info environment.  Once 

reprojected, the data were viewed in the ArcView system.   

Viewed with ArcView, the land use data sets were initially monochromatic 

and uninformative.  To get around this, an ArcView legend file was created.  The 

parameters within this legend follow.   
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Value Label Symbol 
Color 

0-9 Unknown White 
10-19 Urban Red 
20-29 Agriculture Yellow 
30-39 Range Land Green 
40-49 Forest Dark Green 
50-59 Water Blue 
60-69 Wetlands Light Blue 
70-79 Barren Grey 

 
Table 3.3: Legend for land use data 

 
Once this process was complete the Land Use/Land Cover data were easy to 

read and use.  A cursory check of the data set indicated that the agriculture label 

dominated most of the area in the Addicks/Barker reservoir region, although small 

percentages of wetlands and forests were present.  The following table summarizes 

the relative presence of each of the different land-use types in the modeling area. 

Value Label Percentage 
0-9 Unknown 0.00 

10-19 Urban 13.5 
20-29 Agriculture 67.9 
30-39 Range Land 0.00 
40-49 Forest 17.1 
50-59 Water 0.29 
60-69 Wetlands 0.99 
70-79 Barren 0.22 

 
Table 3.4: Percentages of land-use types in modeling area 

 
While some parts of the region have been developed since these data were 

accumulated, visual inspection of aerial photography (see section 3.8) of the region 

reveals that most of the agricultural area has remained agricultural.     
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3.6 Acquisition of the STATSGO Data Set 
 

As with the Land Use/Land Cover data, the TNRIS has available STATSGO 

soils data for the entire state of Texas on its web site (ftp://tnris.state.tx.us/GIS/ 

land_use/statsgo/).  After the data had been downloaded from the TNRIS site, they 

were moved into a UNIX environment since these files required the UNIX command 

gunzip for unzipping.  The end result of using gunzip was a standard *.e00 file which 

could be prepared for use in ArcView using ArcView’s IMPORT 71 utility.  IMPORT 

71 produced a STATSGO soils data set in the Texas State Mapping System Lambert 

map projection for the entire state of Texas.  After reprojecting the data within 

Arc/Info to the SHG map projection, the data were loaded into ArcView.  To make 

the data more readable, the Legend Type in the Legend Editor was changed from 

single color to unique value, with muid (i.e. map unit identifier) being the field used 

to determine unique values.   

 After preparing the data set for ArcView, the comp (i.e. soil component 

identifier) and muid tables, located in the INFO directory associated with the data set, 

were loaded to get an idea concerning what types of soils were present in the area.  

Conveniently, one particular muid--TX248--dominated the area upstream of the 

Addicks and Barker reservoirs.  This muid contains ten separate components.  The 

primary surface texture, making up 91% of the muid, is fine sandy loam.  

Additionally, 93% of this muid has a hydrologic soil group type of D, which means 

that it drains poorly.  In a more general sense, consider the next table, which breaks 

down the entire modeling region by hydrologic soil group.   
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Hydrologic Group Name Percentage Present 
A 0.0479 
B 0.144 
C 10.7 
D 89.2 

 
Table 3.5: Breakdown of hydrologic groups in study area 

 
Note that this information plays a role later when deciding what sort of initial 

infiltration parameters should be used with the HMS model. 

 
3.7 Preparation of the Curve Number Grid 
 
 Traditionally, one combines information from land use/land cover data and 

soils data to calculate what is known as the curve number grid.  This concept, 

established by the Soil Conservation Service, assigns a curve number, CN, such that 0 
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area will runoff; conversely, if CN equals 0, then the soil absorbs all water.  Thus, one 

may use this grid to determine what amount of rainfall will turn into direct runoff in a 

storm.    

 While the USACE requested that the Anderson Land Use/Land Cover data 

and the STATSGO soils data be acquired for this project, it did not specify that the 

curve number grid for this analysis had to be created from these two results.  While 

that was the original plan for generating the curve number grid for this study, an 

alternate curve number grid was provided by Dr. Francisco Olivera at CRWR.  Dr. 

Olivera had created a CD-ROM in May, 1998, entitled "U.S. Spatial Hydrology 
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Database" which contains a 250-meter curve number grid of the entire country with 

the following parameters for its map projection: 

 
Projection     ALBERS                                                             
Zunits         NO                                                                 
Units          METERS                                                             
Spheroid       CLARKE1866                                                         
Xshift         0.0000000000                                                       
Yshift         0.0000000000                                                       
Parameters                                                                       
 29 30  0.000  /* 1st standard parallel                                           
 45 30  0.000  /* 2nd standard parallel                                           
-96  0  0.000  /* central meridian                                                
 23  0  0.000  /* latitude of map projection’s origin                                 
0.0 /* false easting (meters) 
0.0  /* false northing (meters) 
 

Dr. Olivera suggested that this grid be used for this project since, in his 

opinion, it would have been unlikely that a more accurate grid could have been 

generated from the available land use/land cover and soils data.  In addition, as 

indicated by this curve number grid, the curve number for most of the actual 

modeling area was 70.  With this kind of consistency present in the curve number 

grid, it was deemed unnecessary that a new grid be made specifically for this project. 

 
3.8 Acquisition of Digital Orthophoto Quarter Quadrangles for Study Area 
 
 While digital orthophoto quarter quadrangles (DOQQs) exist for only parts of 

the state of Texas, the great majority of the data collection area and the entire 

modeling area for this study have been photographed.  DOQQs, made available 

through the Texas Orthoimagery Program and the Texas Strategic Mapping Program, 

may currently be downloaded from the TNRIS web site (http://www.tnris.state.tx.us/ 
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DigitalData/DOQ_2.5m/2_5mdoqs.htm) in 2.5-meter resolution, although photo 

resolutions of one, ten, and 30 meters may be ordered.  Earlier in this project, the 

TNRIS allowed users to download 30-meter DOQQs; these were used to save space 

since a DOQQ of this resolution occupies 175 Kb.  This makes manipulation of these 

data much easier considering that a 2.5-meter DOQQ of the same area would occupy 

about 8,000 Kb while a one-meter DOQQ would be 149 Mb.       

 Other background information about DOQQs include that these orthophotos 

are scanned aerial photos that have been corrected to removed distortions.  

Furthermore, they are derived from 1:40,000 National Aerial Photography Program 

(NAPP) images taken between 1994 and 1997.  . 

The quadrangle names listed in Table 3.2 above, which contains the names of 

the individual 30-meter DEMs in the area, also apply to the DOQQ sets except that 

four DOQQs reside in a given USGS quadrangle sheet in the interest of keeping file 

size low.  Of the forty-eight quads of interest, complete DOQQs exist for all but 

three--La Porte, League City, and Plum Grove.  As these missing data sets reside in 

the corners of the data collection area, far from the modeling area itself, their loss has 

no negative impact on this study.   

Once downloaded, the DOQQs were converted from their original map 

projection, Universal Transverse Mercator (UTM), to the SHG map projection.  This 

reprojection occurred in the Arc/Info environment.  To convert color images from one 

map projection to another, the following set of commands is used in Arc/Info. 
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imagegrid original_DOQQ.tif ucode color 
project grid ucodec1 acodec1 txtoshg.txt 
project grid ucodec2 acodec2 txtoshg.txt 
project grid ucodec3 acodec3 txtoshg.txt 
gridimage acode.stk none new.tif tiff compression 
kill ucode all 
kill acodec1 all 
kill acodec2 all 
kill acodec3 all 
 
The first line converts the image file into a stack of three grids.  These three 

grids represent the red, green, and blue content on a scale of zero to 255 for each 

pixel in the picture.  The next three lines of code reproject each color grid from the 

UTM map projection to the SHG map projection.  The projection file used follows. 

input 
projection    UTM                
zone          15                                                
units         METERS   
datum         NAD27          
spheroid      CLARKE1866 
xshift        0.0000000000                                      
yshift        0.0000000000                                      
parameters 
output 
projection    ALBERS                                            
datum         NAD83                                             
zunits        NO                                                
units         METERS                                            
spheroid      GRS80                                             
xshift        0.0000000000                                      
yshift        0.0000000000                                      
Parameters                                                      
 29 30  0.000 /* 1st standard parallel                          
 45 30  0.000 /* 2nd standard parallel                          
-96  0  0.000 /* central meridian                               
 23  0  0.000 /* latitude of map projection’s origin            
0.00000 /* false easting (meters)                               
0.00000 /* false northing (meters)        
end 
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Finally, the gridimage command line converts the reprojected color stack of grids 

back into a usable image file. 

 This process represents the technique used to reproject one image.  However, 

in this case, multiple images needed to be reprojected.  In addition, these individual 

images had to be merged into a single image.  To achieve this single image required 

converting all of the individual images into their own color stacks, merging all of the 

color stacks into a single color stack using the merge command with Grid, and then 

converting this large color stack into a single digital orthophoto of the entire region.  

As an example of what a piece of this final image looked like, consider Figure 3.15, 

which is an aerial photo of the Addicks Reservoir.  
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Figure 3.15: Digital orthophoto of Addicks Reservoir 
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Chapter 4:  Terrain Processing Using CRWR-PrePro 
 

Dr. Maidment and Dr. Olivera’s research team at CRWR has worked on the 

CRWR-PrePro code for several years.  This code, written for the ArcView 

environment in the Avenue programming language, considers a fundamental problem 

with GIS in general. 

 
 

 
 
 
 
 
 
 
 

Figure 4.1: Linking GIS Data and modeling software 
 
Few mechanisms currently exist which fill the role of box 2 in the above 

diagram.  CRWR-PrePro, however,  breaks down GIS data and creates an output file 

which is the input for box 3, which in this case is HEC-HMS.   By using CRWR-

PrePro to analyze the terrain data sets described in the previous chapter, one can save 

considerable time and energy when creating a model to be used in HMS.  The 

following sections in this chapter describe the use of CRWR-PrePro for creating a 

basic model for HMS. 

 
4.1 Descriptions of Functions within CRWR-PrePro 
 
 Dr. Olivera maintains a web site at CRWR, http://www.ce.utexas.edu/ 

prof/olivera/prepro/prepro.htm, which documents the most recent versions of CRWR-

Box 1 
GIS Data 

Box 2 
????? 

Box 3 
Modeling 
Software 
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PrePro and includes directions on how to use CRWR-PrePro.  The work done for this 

project incorporates the version prepro03.apr from this web page.  To begin using 

CRWR-PrePro, an ArcView user loads a CRWR-PrePro project file.  As long as the 

user has the spatial analyst extension within ArcView, CRWR-PrePro may be 

executed.   

 To develop a HMS model, CRWR-PrePro proceeds through a series of steps.  

The image below shows these steps in order. 

 

 
 

Figure 4.2: CRWR-PrePro menu 
 

 The first primary step in the list above, Fill Sinks, analyzes the DEM and 

looks for sinks, or pits.  Sinks on a DEM are places where water gets trapped.  In 

other words, each of the elevation points surrounding a pit is higher than the elevation 
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of the pit itself; therefore, pits trap water and hinder flow.  It is necessary in an 

analysis of this type that if water falls on to any of the cells in the DEM, the water is 

able to flow to the edge of the DEM via some route.  Thus, the Fill Sinks function 

eliminates all pits from the DEM.  While it is necessary for all pits to be removed, the 

inaccuracies of the DEM data set will create some pits that are not really there.  

Fortunately, this is not a problem since pits of this nature are minor, and smoothing 

them out of the DEM will not significantly alter the flow patterns in the DEM.  It 

should be noted, however, that in some cases, a pit in the DEM should not be 

removed, such as one which represents a salt lake with no outlets.  It is up to the user 

to ensure that only superfluous pits are removed. 

 The second function creates from the DEM a flow direction grid.  When water 

lands on one of the grid points on the DEM, it may flow one of eight different 

directions to an adjacent grid cell depending upon which direction offers the steepest 

descent.  This flow direction grid indicates which direction water will flow from each 

point on the elevation grid.  Thus, from this flow direction grid, a stream network 

may be created.   

 Next, CRWR-PrePro makes a flow accumulation grid from the flow direction 

grid.   Each value on the flow accumulation grid represents the number of grid cells 

that the grid cell in question drains.  This flow accumulation grid plays an important 

role in the Stream Definition calculation section of CRWR-PrePro.  When the user 

selects the threshold of the stream definition, the user informs CRWR-PrePro how 

many cells must be upstream of a given cell for that cell to be considered part of the 
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stream network.  Obviously, all cells belong to the stream network, but only the cells 

that drain significant (i.e. a threshold number) of cells should be considered a river or 

a stream or some other sort of drainage mechanism. For this project, the stream 

definition threshold chosen is 8000 cells.  While this number is arbitrary, it appears to 

create a dense enough stream network while at the same time not overcrowding the 

GIS screen with superfluous stream lines.   

 With the stream network established, CRWR-PrePro then moves toward 

developing watershed boundaries.  The Stream Segmentation (Links) algorithm 

breaks up each stream into its corresponding links in which each stream reach 

between tributaries is labeled as a unique entity.  For instance, a stream shaped like a 

Y would have three links, two upstream, one downstream.  After identifying all of the 

links with the stream network, CRWR-PrePro assigns an outlet to the downstream 

cell of each of the links.  CRWR-PrePro carries out these two steps of identifying 

links and assigning outlets since each outlet will eventually be the exit location of a 

sub-watershed.  Figure 4.3 illustrates how CRWR-PrePro separates a stream network 

into links and outlets.  The left image in the figure represents a stream network while 

the right image shows a collection of links.  Each link is drawn with a different color 

and possesses an outlet at its downstream cell. 
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Figure 4.3: A stream network broken into links 
 
 The Add Outlets option allows the user to enter additional outlet points within 

the stream network.  This function makes CRWR-PrePro more flexible in that it 

allows the user to specify certain points within the stream network as sub-watershed 

outlet points even though these additional points are not at the downstream ends of 

outlets.  This function has great value for this project in that the locations of the 

USGS gauges may be properly placed within the stream network.  This was 

accomplished by creating a shapefile of the USGS gauge points in a geographic map 

projection since the USGS specifies the locations of all of its gauges in decimal 

degrees on its web page.  Using this shape file as input, one may add outlets to a 

CRWR-PrePro model.  Schematically, adding outlets breaks links into smaller links. 

 To create the sub-watersheds themselves, one invokes the Sub-Watershed 

Delineation section of CRWR-PrePro.  This set of calculations takes each of the 

outlets, both those which CRWR-PrePro established when creating outlets from links 
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and those which the user added, determines which cells are upstream of that outlet but 

downstream of the nearest upstream outlet, and delineates this set of cells as a sub-

watershed.   

 CRWR-PrePro was used successfully to establish the stream network and the 

shapes of the sub-watersheds within the DEM of interest.  While this is an excellent 

start to creating a surface-water flow model of a given area, no parameters have been 

assigned to any of the watersheds.  Since it is difficult to assign parameters to a group 

of cells in a raster environment within ArcView, CRWR-PrePro now converts the 

streams and sub-watersheds into vector data sets so that tables better describing the 

system may be created and assigned to the appropriate elements of the model.  Hence, 

the next step of the model, Vectorize Streams and Watersheds, does just that.  By 

converting the streams and sub-watersheds into a vector format, not only can CRWR-

PrePro now more easily assign data to the different watersheds in the modeling area, 

but the user may also manipulate the GIS data more easily.  For example, the user 

may now merge sub-watersheds quickly using the next tool in the CRWR-PrePro 

battery.  Merging sub-watersheds is usually necessary since a few extremely tiny sub-

watersheds, with an area equal to only a few cells on the DEM, are created.  Since 

water may flow through these minute watersheds more quickly than the ten minutes 

specified as the analysis time interval, small sub-watersheds may skew model results.  

Hence, it is in the best interest of the model that they be eliminated.  In this case, all 

sub-watersheds smaller than two km2 were merged with the next sub-watershed 

upstream. 
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 The next two sets of calculations within CRWR-PrePro, Soil Group 

Percentages and Curve Number Grid, are required only if the user wishes to create a 

curve number grid based on land use/land cover and soils data.  Since this model 

incorporates a curve number grid from a separate source (see Chapter 3.7), there was 

no need to invoke these two functions. 

 In the Calculate Attributes section, CRWR-PrePro determines the remaining 

parameters it requires before it is able to create a HMS input file.  The types of 

parameters calculated in this section include sub-watershed slopes, curve numbers, 

and lag times.  The end goal of this block of calculations is to determine both 

abstraction and lag time data.    

The heart of the CRWR-PrePro system resides in the next set of calculations.  

Within the HMS Schematic section, CRWR-PrePro creates the input basin model file 

for the HMS processor.  Features of the HMS model which CRWR-PrePro creates 

include sub-watershed connectivity, sub-watershed areas, and average sub-watershed 

curve numbers.  In addition, Muskingum routing parameters (K and X) are included 

in the model.  While the user has to insert additional data for the Buffalo Bayou into 

the HMS system before executing the model, the majority of the model will be 

prepared by the CRWR-PrePro code.        

 
4.2 Use of CRWR-PrePro to Create the HMS Basin Model 
 
 Using the thirty-meter DEM as described in Chapter 3.1, an exploratory run 

was made to get a general idea of where any troublesome areas in the DEM were 
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located.  This preliminary investigation revealed obviously incorrect stream networks 

in certain areas on the DEM, especially in the vicinity of the reservoirs; therefore, it 

was decided that burning the streams into the DEM would be necessary.  The best 

available stream data for the region were the DLG hydrography data described in 

Chapter 3.3.  The process of burning in streams is given in the following Figure 4.4 . 
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Figure 4.4: Burning a stream network into a DEM 
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 Essentially, burning in streams involves taking the stream network and 

converting it into a grid in the same map projection as the DEM onto which the 

streams will be burned.  Once the stream grid is dropped onto the DEM, all points on 

the DEM which are not part of the stream network are raised an arbitrary value; in 

this case five hundred feet was used.  Burning in the streams accomplishes two 

things.  First, it ensures that a more accurate stream network will be created from the 

DEM.  Second, it guarantees that once water enters a part of the stream network, it 

will stay within the network and eventually flow off of the DEM.   

 Before burning in the streams took place, a grid of the stream network itself 

had to be created.  Though the DLG data are the best available data for burning in the 

streams, this data set has its limitations.  The data set’s primary weakness is that none 

of its features is labeled.  Since hydrography features include rivers, streams, canals, 

ditches, irrigation channels, and pipelines, it was not easy to determine which aspects 

of the hydrography data should be included in the actual stream network.  Therefore, 

for the next attempt with CRWR-PrePro, all data from the hydrography data set were 

eliminated except for those which were considered natural streams.  These streams 

stood out compared to the rest of the data in that they exhibited a meandering quality 

whereas non-natural flow paths possessed man-made qualities such as straightness 

and sharp angles.  While this natural stream network did not include some stream 

paths which were part of the network, this network nonetheless provided a good 

starting point for CRWR-PrePro analysis.  Figure 4.5 shows a representative portion 

of the natural network used in this part of the analysis. 
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Figure 4.5: Natural stream network used when burning in steams 
 
 After filling in the sinks, the flow direction and accumulation calculations 

occurred without incident.  When delineating the stream network, a stream threshold 

value of eight thousand cells was chosen via trial and error.  By choosing eight 

thousand as the threshold, CRWR-PrePro created a stream network which gave good 

insight as to the shape of the stream network without being overly complex.  From 

this point, the link and outlet grids were created.  Incorporating the flow and reservoir 

storage gauges into the CRWR-PrePro system required first building a shapefile of 

the gauge locations.  From an Avenue script, a table of the gauges was made which 

held the location of each gauge in the geographic map projection.  This program then 

reprojected these points into the SHG map projection.  This new reprojected shapefile 

was then used to add the gauges as outlets in the CRWR-PrePro model. 



 63

 The next several steps in the CRWR-PrePro process delineated the watershed 

boundaries.  After converting these results from raster format to vector format, and 

after clipping out the appropriate watersheds, the modeled region looked like this. 

 
Figure 4.6: Watershed delineation using natural stream network 

 
Unfortunately, a cursory inspection of the results at this time indicated that the 

stream network which was burned into the original DEM lacked enough detail to 

model the region of interest properly.  Consider the following table. 

Gauge Name USGS gauge  
area (km2) 

Calculated gauge  
area (km2) 

% Error 

Buffalo Bayou at Piney Point 821 793 -3.4 
Addicks Reservoir 352 342 -2.9 
Barker Reservoir 332 371 11 
Langham Creek 63.7 58.3 -8.5 

Bear Creek 55.7 89.3 60 
Buffalo Bayou near Katy, TX 164 196 20 

Table 4.1 Area comparisons using natural stream network 
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 While the overall size of the watershed compared favorably with the official 

USGS value, the Bear Creek and Katy gauge areas exhibited substantial error.  In an 

attempt to improve upon these results, the stream network burned into the original 

DEM was scrapped in favor of one that took into account the man-made aspects of 

the hydrography data set.  Any piece of the hydrography data set that looked like it 

belonged to the stream network was included as part of the stream network.  As 

before, CRWR-PrePro analyzed this stream network to the point where a vector 

image of the watersheds could be viewed.  The image below shows the watershed 

system delineated using this stream network as in input. 

 

 
Figure 4.7: Delineated network using a combination of  

natural streams and man-made channels 
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Again, calculated drainage areas represent the best parameter for determining 

whether the watersheds have been delineated properly.  The following table reveals 

how well this stream network fared. 

  
Gauge Name USGS gauge  

area (km2) 
Calculated gauge  

area (km2) 
% Error 

Buffalo Bayou at Piney Point 821 816 -0.6 
Addicks Reservoir 352 375 6.5 
Barker Reservoir 332 330 -0.6 
Langham Creek 63.7 90.7 42 

Bear Creek 55.7 47.7 14 
Buffalo Bayou near Katy, TX 164 155 -5.5 

 
Table 4.2: Area comparisons using a combination of natural streams  

and man-made channels 
 
 While this represents a clear improvement over the first attempt at modeling 

the system, the large error present for the Langham Creek gauge indicates that a 

better match might be achieved.  To create yet another stream network for the burning 

process required some method of determining which pieces of the hydrography data 

set actually belonged in the stream network.  Using the 3-D Analyst extension within 

ArcView, a TIN of the DEM was created.  Via careful inspection of the TIN, a third 

stream network was created by looking at the hydrography data set draped over the 

TIN and determining whether various aspects of the hydrography data belonged to the 

network or not.  A piece of the hydrography information belonged to the network if 

the TIN indicated that a flow channel was indeed associated with that given piece.  To 

get a better idea of how this network was created, consider the following image. 
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Figure 4.8: DLG data draped over TIN to show which parts of  
the DLG data belong in the network 

 
 This image shows a four-km2 area within the modeling zone with the black 

line representing a piece of the DLG data and the background displaying a piece of 

the TIN.  Inspection of this image reveals that the TIN shows, via valleys in the 

graphic, where the actual channel is located within the DLG data set.  Hence, the 

nearly horizontal line, with no gully under it, should not be included in the stream 
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network.  To determine which parts of the DLG data to include in this newest stream 

network, careful inspection of the entire modeling area using the TIN and the DLG 

data sets was performed.  Only those segments of the DLG data with depressions 

beneath them were included in this network.   

 When burning this stream network onto the DEM, a slightly different process 

was used which required two steps of burning instead of one.  The stream network for 

this trial can be considered to be made up of two different networks--a natural 

network and a man-made network.  While the natural network includes the tortuous 

aspects of the major drainage paths, the man-made network includes the smaller, 

artificial parts of the network such as irrigation ditches.  Since the area of interest is 

so flat, the DEM elevations were raised 500 hundred feet above the man-made 

network and 1000 feet above the natural network.  This way, once water flowed into 

the man-made network, it remained in the network until it flowed off of the DEM.  

Furthermore, once water flowed into the natural network, not only did it remain in the 

network, but it never reverted back to the man-made network.   Using this network, 

the following watersheds were delineated. 
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Figure 4.9:  Delineated system using stream network based on TIN and DLG 

data 
 
 With this new network, CRWR-PrePro yet again delineated a set of 

watersheds.  The table below shows how well the modeled drainage areas match up 

with the USGS drainage areas.  

 
Gauge Name USGS gauge 

area (km2) 
Calculated gauge 

area (km2) 
% Error 

Buffalo Bayou at Piney Point 821 792 -3.5 
Addicks Reservoir 352 348 -1.1 
Barker Reservoir 332 322 -3.0 
Langham Creek 63.7 92.8 45 

Bear Creek 55.7 42.5 -24 
Buffalo Bayou near Katy, TX 164 162 -1.2 

 
Table 4.3: Area comparisons using stream network derived from TIN 
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 From these results, it appears that modeling the area drained by the Langham 

Creek and Bear Creek gauges may be more difficult than imagined.  No matter which 

of the three stream networks provided the foundation for the CRWR-PrePro model, 

both of these gauges exhibited significant error between their actual and modeled 

drainage areas.  However, if one considers the combined areas of these two gauges, 

the error equals about -12%.  Nonetheless, these results indicate that for regions as 

flat as the area west of Houston, a thirty-meter DEM is at least partially inadequate, 

and more accurate terrain information, such as that from LIDAR, is needed. 

 Regardless of the erroneous results concerning the Langham Creek and Bear 

Creek gauges, the stream network made from the DLG and TIN data was chosen as 

the best available stream network for the following reasons.  Whereas the first attempt 

completely ignored the DLG data and the second attempt over relied on it, this 

attempt carefully considered each segment of the DLG data for inclusion in the 

stream network via direct investigation of the TIN and the DEM.  Furthermore, since 

the Langham Creek and the Bear Creek gauges exist in the vicinity of each other, it is 

possible that any shortcomings resulting from the DEM would be localized to the area 

where these two gauges are located, especially since the errors associated with the 

other gauges all fall under four per cent.  It is particularly interesting to note that the 

Langham Creek and Bear Creek gauges, with their incorrect drainage areas, both fall 

within the Addicks Reservoir basin, which has an overall drainage area error of about 

one per cent.       
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 Having decided on this third network as the network of choice, it was possible 

to move forward within the CRWR-PrePro section of the modeling process.  The next 

CRWR-PrePro step involved adjusting the sizes of the sub-watersheds within the 

region such that all basin areas were manageable.  Using the Merge Sub-Watersheds 

function on the CRWR-PrePro menu allows the user to combine easily one sub-

watershed with another.  This came in handy since CRWR-PrePro created nine sub-

watersheds with areas less than two km2.  Sub-basins this small can lead to quirky 

results in the HMS because their lag times approach the ten-minute time step of the 

model.  Therefore, each sub-watershed smaller than two km2 was merged with the 

sub-watershed directly upstream from it.   

On the other end of the spectrum, CRWR-PrePro created some sub-

watersheds which were exceptionally large.  Since a higher number of sub-basins 

allows for better modeling, all sub-basins larger than thirty km2 were split in half.  To 

do this, seven additional outlets were placed in the same shapefile that held the gauge 

location information.  CRWR-PrePro was then executed again from the Add Outlets 

menu choice so that a new set of sub-basins could be created in which no sub-basin 

exceeded the thirty-km2 criterion. 
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Figure 4.10: Basin used by CRWR-PrePro to create the HMS basin model 
 
 The final step before creating the HMS basin model required calculating a 

variety of parameters for the now-complete set of sub-watersheds using the Calculate 

Attributes option.  These parameters addressed abstractions, lag times, sub-watershed 

velocities, and Muskingum routing parameters.  For the abstractions calculation, 

CRWR-PrePro offers two choices, SCS or Initial/Constant.  With a curve number grid 

readily available, the SCS method was chosen, and CRWR-PrePro generated average 

curve numbers for each of the sub-basins.  Generally, the average curve number for a 

given basin was around 70 upstream of the reservoir exits and around 90 downstream 

of the reservoir exits.  For calculating lag time, CRWR-PrePro offers two options--
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SCS and length/velocity.  Again, with a curve number grid available, the SCS 

equation for generating lag times was used. 
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−=   Eqn. 4-1 

 
 where t = lag time in minutes 
 L = length of the longest flow path in feet 
 CN = average sub-basin curve number 
 S = average sub-basin slope expressed as a percentage 
  
Note that the lag time = 0.6 * Tc, or the time of concentration of a watershed. 
 
 Calculation of the Muskingum routing parameters first required computing the 

sub-watershed velocities, which represent how quickly water flows through the 

stream channels.  While each sub-watershed technically has its own velocity value, 

the same value was assigned to every sub-watershed.  In several ways, the watershed 

as a whole is homogenous; slopes, curve numbers, and land usage, for example, do 

not vary significantly across much of the watershed.  As a result, a single velocity 

seemed appropriate.  To generate this velocity, the hydrographs of two gauges on 

Buffalo Bayou (Piney Point and West Belt Drive) which reside near each other were 

used.  The period of record analyzed for this project was 1 October 1994 through 15 

November 1994.  By analyzing the flow data using the CORREL function in Excel, it 

was possible to estimate how long it took for water to travel between the gauges.   
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Figure 4.11: Correlation to determine average watershed velocity 
 

By taking the flow data from each gauge and shifting them appropriately, the 

above graph is generated.  The time when the correlation factor reaches its highest 

value corresponds to the time it takes water to travel from one gauge to the other.  

Since it is possible to measure this travel distance within ArcView, a velocity may 

easily be generated.  In this case, the flows from the two gauges of interest best match 

up when they are shifted by 1.1 hours (3960 sec) compared to each other.  Since the 

flow distance between the two gauges is 5500 m, the watershed velocity is 5500 

m/3960 sec or 1.39 m/s.  This value was used to calculate the Muskingum K 

parameter, which equals the length of the stream flow path in the sub-watershed over 

this velocity value.  To enter sub-watershed values into CRWR-PrePro, one merely 

creates a text file with the grid code (i.e. sub-watershed id value), sub-watershed 

velocity, and sub-watershed Muskingum X value.  For this model, X equaled 0.2 for 

all sub-watersheds since 0.2 is typically acceptable for natural streams.  When 
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CRWR-PrePro is ready for this file, it prompts the user for this file’s location.  To 

generate the number of Muskingum reaches in a stream, CRWR-PrePro uses the 

higher result from the following equations: 
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where N1 = number of reaches using Eqn. 4-2 
N2 = number of reaches using Eqn. 4-3  
X = Muskingum X value = 0.2 
L = length of stream flow path in meters 
∆T = model time step in minutes 
V = sub-watershed stream velocity = 1.39 m/s 
 
Completion of the Muskingum calculations marked the end of the parameter 

calculation section.  With all parameters generated, it was now possible to create the 

basin model for the HMS.  To do this, one invokes the HMS Schematic option on the 

CRWR-PrePro menu.  This portion of the code uses the nodes in the stream network 

to identify junctions and sinks using a node classification scheme developed by 

Hellweger and Maidment (1997).  By definition, junctions and sinks also serve as 

sub-basin outlets.  A sub-basin and its associated outlet are linked together based on 

the proximity of the outlet point to the sub-basin polygon boundary.  Finally, 

pertinent streamlines are identified as reach elements by the type of nodes at the 

beginning and end of each streamline.  In addition, this section of the code also 

creates symbolic point and symbolic line attribute tables to store information related 
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to the connectivity among hydrologic features.  All of this information is then written 

into a format which conforms to that of an HMS basin file (Olivera, 1998). 
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Chapter 5:  NEXRAD Processing 
 
 The preprocessing of the NEXRAD data, as described in Chapter 3.2, created 

text-based grids which ArcView could easily import for viewing.   To get a better 

idea of the quantity of rain which fell over the model area during the 16-18 October 

1994 event, consider the following image: 

 

 
  

Figure 5.1: Rainfall totals (inches) over the Buffalo Bayou 
 

This image indicates that rainfall values of four to nine inches fell over the 

rainfall area.  Compared to other regions around Houston, the Addicks/Barker 

reservoirs avoided the full strength of this event.  For instance, one does not have to 

travel far to the northwest of this image to encounter areas where the rainfall 

quantities consistently exceed twenty inches.  Nonetheless, while the reservoirs may 
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not have received an incredibly large amount of rain, the storm still provides ample 

rainfall for this research. 

 
5.1 Preparing the Rainfall Grids for the HMS 
 
 The HMS system allows a user to include grid-based rainfall data in a model 

only if the data are in the Hydrologic Engineering Center Data Storage System (DSS) 

format.  This format, created by the HEC in 1979, was designed primarily for water 

resource applications.  The strength of this format resides in its ability to transfer data 

in blocks of continuous data.  The DSS system considers each block of continuous 

data a single element, which makes searches of the data set easier and more efficient.  

Tom Evans of the HEC supplied a program called ai2dssGrid for converting rainfall 

data in ArcView’s ASCII-grid format into the DSS format.  His program requires that 

the data be in one of two map projections, one of which is the SHG map projection.  

To convert from ASCII-grid to DSS, one simply types in a UNIX environment for 

each rainfall depth grid 

ai2dssGrid input dssfile pathname sdate stime edate etime gridtype  
  
 where input = name of input ASCII grid containing cumulative  

rainfall data over one time step 
 dssfile = name of output DSS file (e.g. rain.dss) 
 pathname = apart/bpart/cpart/dpart/epart/fpart/ within  

DSS file = /bayou/buff/PRECIP///radar/ 
 sdate = starting date of rainfall data in input ASCII grid 
 stime =  starting time of rainfall data in input ASCII grid 
 edate = ending date of rainfall data in input ASCII grid 
 etime = ending time of rainfall data in input ASCII grid 
 gridtype = map projection of ASCII grid = SHG 
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As the rainfall in the October, 1994 event covered 331 ten-minute intervals, each of 

which has a grid as described in Chapter 3.2, a batch file with 331 calls of ai2dssGrid 

was used to create a DSS file named rain.dss.  With this file completed, one simply 

needs to inform HMS of the file’s location for inclusion in a HMS model.   

 
5.2 The ModClark Parameter File with the HMS 
 
 The HMS requires a ModClark parameter file for use in conjunction with 

grid-based rainfall in the DSS format.  This parameter file contains values for 

hydrologic properties of cells defined by the intersection of a set of watershed 

boundaries with cells in the SHG grid.  The intersection of the watershed boundaries 

with the SHG grid necessitated that all ArcView data sets be reprojected in the SHG 

map projection.  A discussion of the SHG grid follows. 

   
5.2.1 The SHG Grid 
 
 In an effort to standardize grid-based precipitation reporting practices, the 

HEC created the Standard Hydrologic Grid, an Albers map projection which covers 

the conterminous United States.   The HEC officially recognizes resolutions of 10,000 

m, 5,000 m, 2,000 m, 1,000 m, 500 m, 200 m, 100 m, 50 m, 20 m, and 10 m, although 

the resolution may technically be set to any value.  Typically, the HEC prefers as a 

default a 2,000-m grid, although, in this project, a grid resolution of 997 m has been 

chosen to accommodate the available rainfall data (See Chapter 3.2). 

 Each cell in the grid possesses a unique pair of integer indices (i,j) for 

identification.  These indices represent the number of grid cells the southwest corner 
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of a given cell is from the origin of the grid, which is located at (23° N, 96° W).  The 

formulae for determining the indices for a given cell follow: 

)(
cellsize

easting
floori =  Eqn. 5-1 )(

cellsize

northing
floorj =  Eqn. 5-2 

 where floor(x) = the largest integer less than or equal to x. 
 

 As an example, consider that the HEC, located in Davis, CA, resides at (38° 

35′ N, 121° 45′ W).  This position translates to -2185019 m easting and 2063359 

northing.  Using the default grid resolution of 2,000 m, i = floor(-2185019/2000) = 

floor(-1092.5) = -1093 and j = floor(2063359/2000) = floor(1031.7) = 1031. 

 
5.2.2 Use of GridParm to Create the ModClark Parameter File 
 
 In addition to the DSS file, the HMS system also requires a ModClark 

parameter file which, for each sub-watershed, lists the i- and j-indices of the SHG 

cells within the sub-basin, the average travel distance in kilometers from each SHG 

cell within the sub-basin to the sub-basin outlet, and the area of each SHG cell which 

resides in the sub-basin in square kilometers.  The following text shows a piece of the 

parameter file used in this model: 

 
SUBBASIN:  86 
GRIDCELL:  25   761   0.13176   0.00454754 
GRIDCELL:  26   761   0.25619   0.0250194 
GRIDCELL:  24   762   5.25758   0.00559098 
<clip> 
GRIDCELL:  22   765   7.74665   0.964091 
GRIDCELL:  23   765   6.52171   0.994009 
GRIDCELL:  24   765   5.4878   0.743663 
<clip> 
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GRIDCELL:  23   767   7.36279   0.165136 
GRIDCELL:  24   767   7.03907   0.196063 
GRIDCELL:  25   767   6.96628   0.00252854 
END: 
SUBBASIN:  87 
GRIDCELL:  28   760   4.31344   0.0163324 
GRIDCELL:  29   760   3.70745   0.273056 
GRIDCELL:  30   760   2.70715   0.552455 
<clip> 
GRIDCELL:  33   766   6.40111   0.0675318 
GRIDCELL:  31   767   8.31459   0.0024277 
GRIDCELL:  32   767   8.04311   0.0761606 
END: 
 
 Notice that the largest value in the area column is 0.994009 km2, which is 

derived from the cell size of 997 meters. 

 The HEC offers a block of AML scripts collectively called GridParm which 

allows a user of the HMS system to develop the ModClark parameter file using 

Arc/Info.  A general outline of the procedure used within GridParm resides below: 

 
• Collect DEM 
• Remove pits from DEM 
• Calculate flow direction, flow accumulation, and stream grids 
• Delineate watersheds from terrain grids and basin outlet locations 
• Combine watersheds and parameter data with grid cells to create 

ModClark file   
  
 Since the HEC wrote these programs before Avenue for ArcView existed, 

GridParm generates its terrain grids from the DEM using Arc/Info AMLs.  In this 

case, however, the first few steps may be skipped since GridParm may use the terrain 

grids created within the CRWR-PrePro environment.  GridParm then delineates the 

watersheds using the terrain grids and a basin-outlet-locations file.  This input file 
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lists all of the sub-basin outlet locations by latitude and longitude.  For this process, 

GridParm was slightly modified to accept sub-basin locations as points in meters on 

the SHG since the sub-basin outlets locations were readily available on the SHG from 

the CRWR-PrePro environment.  Having finished the watershed delineation, 

GridParm then created the ModClark parameter file.  Again, a slight modification of 

GridParm occurred to accommodate the unorthodox 997-meter cell size of the rainfall 

grids. 

 Except for the merging of the sub-watersheds with the SHG, almost all of the 

calculations performed by GridParm also take place within the CRWR-PrePro 

environment.  Therefore, it seemed logical that writing a GridParm procedure for 

inclusion in CRWR-PrePro would be wise.  Hence, the next chapter discusses the 

creation of a GridParm process for CRWR-PrePro using Avenue. 

 
5.2.3 Creation of ModClark Parameter File in ArcView Using Avenue 
 
 Several aspects of the GridParm code suggested that the creation of the 

ModClark parameter file within CRWR-PrePro would save time and effort.  The most 

obvious of these is that both systems derive the majority of their information from the 

same data set—the DEM.  Additionally, learning how to run GridParm in UNIX 

requires learning how to use an entirely new set of programs on a different platform.  

Furthermore, not all CRWR-PrePro users have access to a UNIX machine, so if they 

want to use grid-based rainfall, they will have to create the ModClark parameter file 

some other way.  Finally, getting GridParm to generate a ModClark parameter file 
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compatible with a HMS basin model created in CRWR-PrePro requires altering some 

of the GridParm code.  Therefore, because of all these reasons, inclusion of the 

GridParm procedure in CRWR-PrePro seemed natural.   

 Because CRWR-PrePro creates a variety of data sets which do not exist in the 

GridParm procedure, the CRWR-PrePro version of GridParm attacks the ModClark 

procedure differently from the way GridParm does.  Consider, for instance, how both 

methodologies determine the average flow length from a given SHG cell to the sub-

basin outlet.  In the GridParm technique, flow lengths are calculated by following the 

flow-direction grid to the sub-basin outlet from each point in the sub-basin.  In 

CRWR-PrePro, however, there exists the FLDStoWO, or Flow Length DownStream 

to Watershed Outlet, grid.  This grid contains the distance from each cell downstream 

to the sub-basin outlet.  Therefore, to determine the average distance of all of the 

points in each SHG cell to the exit of the sub-basin, one needs to determine which 

cells are in a given SHG cell and then average these distances. 

Below resides the pseudocode for creating the ModClark parameter file with 

Avenue in the CRWR-PrePro environment. 

• Ask for watershed shapefile theme 
• Ask for sympoint theme, which may be used to link the name of a  

sub-basin in ArcView with the name of the same sub-basin in 
HMS.  

• Ask for flow-length-downstream-to-watershed-outlet grid 
• Ask for watershed grid 
• Ask for SHG cell size 
• Ask for name/location of output file 
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• Take HEC id values from sympoint and assign them to watersheds 

in vector theme 
 

• Determine extent of view 
• Create and draw SHG shapefile over the watersheds 

 
• Intersect SHG shapefile with watershed shapefile 

 
• For each watershed 

o Note which parts of which SHG cells fall in that watershed 
o Convert these SHG cells into a grid 
o Using watershed grid and FLDStoWO grid, compute mean 

travel distance 
• End 

 
• Write all results to output parameter file 

 
To understand better this pseudocode, consider Figure 5.2. 
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Figure 5.2: Visual representation of ModClark code 
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The first image represents an arbitrarily delineated watershed area.  The 

ModClark code sizes this watershed basin and then creates a grid of SHG cells which 

are a user-specified size.  This grid is large enough to cover the area of interest.  From 

there, the ModClark routine combines these two data sets to create a third set, which 

shows how the SHG cells themselves fall within each of the sub-watersheds.  From 

here, the program may then calculate the necessary parameters for the ModClark 

parameter file.   

Once the program was completed, a button, , was placed on the ArcView 

toolbar which allows the user to execute the program by depressing this button.  

Clearly, this method provides an easier option for creation of the ModClark parameter 

file.  In fact, besides being easier, the Avenue code outperformed its UNIX 

counterpart, completing the parameter file as much as 50% faster. 
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Chapter 6:  Model Calibration Within HEC-HMS 
 
 Once CRWR-PrePro had finished generating the basin model for the HMS, 

the creation of the Buffalo Bayou model moved out of the ArcView environment and 

solely into the HMS package.  Getting the basin file from CRWR-PrePro into the 

HMS required using the ’Import’ function from the ’Edit’ menu.  The image below 

shows what this basin model looked like upon import. 

 

 
 

Figure 6.1: Basin model as imported into HEC-HMS 
  
 Before it could run the model, HMS required several additional sets of 

information.  These included the location of the file created by the ModClark Avenue 

code, the initial loss of rainfall via absorption into the ground at the beginning of the 

event, the Tc and R values for each sub-watershed for creating unit hydrographs, base 
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flow data, creation of the Precipitation model, establishment of the Control 

Specifications, and gauge discharge data for comparison purposes.  The following 

section describes each of these requirements individually. 

 
6.1 Additional Data for the HMS Model  
 
 Some of the additional data for the model entailed merely a quick step or two 

in the HMS.  For example, informing the HMS as to the location of the grid-cell file 

from the ModClark program meant going to the ’Basin Model Attributes’ section 

under the ’File’ menu in the basin editor and browsing to the proper file location.  In 

addition, establishment of the Control Specifications took only a minute or two since 

that section merely needed to know the model start and end times.  In this case, 

modeling began at 1520 hrs on 16 October right before the rainfall for this event 

began.  A conclusion time of midnight on 25 October was chosen for two reasons.  

First, this allowed for the rainfall to run off the flat, Houston-area terrain.  Next, a 

second rain storm, which this model does not consider, commenced in the early hours 

of 25 October.  Additionally, this attribute section required a modeling time-step, 

which had already been established in PrePro as ten minutes.  Finally, completing the 

Precipitation Model within the HMS, which uses the grid-based precipitation method, 

entailed specifying the location of the DSS file of gridded rainfall and listing the 

pathname parts in this file (A = bayou, B=buff, F = radar).   

 Other aspects of the additional information, however, required either more 

time to enter, more time to consider what to enter, or both.  Entering the gauge 
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discharge data, for instance, requires little more than entering the data by hand for 

each time step and letting the HMS know which element within the Basin model is 

associated with that particular gauge.  Since the USGS flow data had already been 

processed, these data were readily available.  The base flow in each sub-watershed 

was set to zero since this model considered a single, large event with flows that well 

exceeded any base flows by a substantial margin.  Initial losses for runoff calculations 

were also set to zero since the area received enough rain in the day or two before the 

event to consider the soil saturated.  Furthermore, as mentioned in Chapter 3.6, most 

of the soil in this region is in Hydrologic Group D, which means that it drains poorly.  

Finally, one must also consider the impervious cover of a given area when 

constructing a rainfall-runoff model such as this.  Consider the following figure, 

which shows the Anderson land use-land cover for the modeled region. 
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Figure 6.2: Land use over the modeled region 
 
 Except for the red block (urban), which occupies the eastern edge of the area 

of concern, agriculture (yellow) dominates the land use in the region.  A tour of the 

area by the author confirmed that this is the case although some blocks of suburbia 

have developed in the area, particularly in the upper-central region of the model.  

Other small regions of forest (green) and wetlands (light blue), both with very low 

impervious cover, reside in the region.  In fact, except for minor areas of urban 

development in areas outside of the eastern edge, little urbanization of the watershed 

exists upstream of the reservoirs.  In addition, every sub-watershed upstream of the 

reservoirs possesses at minimum a majority of non-urban use.  Therefore, for the 

practical purposes of this model, especially for parameter estimation, one may assume 
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that a level of about five per cent imperviousness is acceptable for the region 

upstream of the reservoirs.  For the region downstream of the reservoirs, 85% 

imperviousness levels may be used.   This selection is based on information from the 

United States Department of Agriculture TR-55 manual on urban hydrology, which 

states that commercial areas average 85% imperviousness.   

 The HMS requires one final set of information to complete the model.  The 

two primary parameters associated with the creation of a unit hydrograph using the 

ModClark method, time of concentration (Tc) and storage (R), had to be entered for 

each of the sub-basins.  Calculating these parameters involved trying several different 

techniques before the most acceptable solution made itself apparent.  Originally, data 

taken from a study of the Buffalo Bayou region completed in a 1977 USACE-

Galveston study were used.  This study listed for each of its sub-basins the area, Tc, 

and R.  Tc and R values were calculated using many storms over several years. These 

data provided a starting point for determining modern Tc and R values.  Using the 

data from this 1977 study, a chart of Tc vs. area shows a linear relationship between 

these two sub-basin parameters.   
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Figure 6.3: Tc vs. area for the modeling region 

 
 A perusal of these data revealed that the R value of a given sub-basin 

approximately equaled twice the Tc value for the same basin.  In fact, the average Tc 

value of all of the sub-basins equals 1.10 hrs while the R values average 2.14 hrs; 

therefore, an initial guess of the R values for a given sub-basin of two times the Tc 

value seemed acceptable.   

 Unfortunately, reservoir release data could be located for this study.  Many 

efforts to obtain these data from the USACE-Galveston office resulted in nothing 

more than a computer program which calculated exit flows from the reservoirs if one 

knew how many of the release gates had been opened and to what heights these gates 

had been raised.  Without these crucial data, it was impossible to accurately predict 

the flow moving downstream of the reservoirs.  Since the version of HMS used in this 
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study can only work with uncontrolled reservoirs, this made modeling anything 

downstream of the reservoirs next to impossible.  More in-depth studies in the future 

would require adequate reservoir release schedules to generate acceptable results 

downstream of the reservoirs. 

 
6.2 Execution of the HMS Model 
 
 Initial runs using these parameters were not encouraging.  Consider the 

hydrograph below for the Buffalo Bayou gauge near Katy, TX, which was chosen 

since the modeled and actual drainage areas for this gauge compare the most 

favorably of all of the gauges considered. 

 
Figure 6.4: Hydrograph of Buffalo Bayou near Katy, TX gauge  

using original parameters 
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 In this image, as with all hydrographs displayed in this thesis, the red line 

represents the observed runoff while the blue line represents the modeled flow.  

Clearly, a limitation exists in the parameters used for this model, especially since 

other gauges in the area exhibited similar disparities between the two curves.  

Inspection of this plot reveals that while the magnitudes of the two sets of flows differ 

substantially, the timing of the hydrograph peaks matches well.  For instance, the 

calculated peak flow occurs at 2350 hrs on 18 October, which compares favorably 

with the observed time of 2300 hrs on 18 October.  In addition, the observed volume 

equals 3.6 inches while the calculated volume equals 3.2 inches.  This difference is 

well within the range of potential error for NEXRAD rainfall data.  Based on these 

reasons, the inaccuracies in the above image probably stem from incorrect R values.  

Higher R values, which are related to longer storage times in a watershed, would 

attenuate the calculated hydrograph.  

 In an attempt to construct a better match between observed and calculated 

flows, a series of equations was used to generate new Tc and R values for the 

watershed.  Using an equation from The Handbook of Hydrology (1993), Tc was 

calculated according to 
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Tc =    Eqn. 6-1 

 
 where  Tc = time of concentration in minutes 
  L = length of the longest open channel in feet 
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  n = Manning’s coefficient 
  S = dimensional slope 
 
 Since CRWR-PrePro calculated L and S earlier in the modeling process, 

Manning’s coefficient remained the sole unknown variable for this equation.  

Considering that straight streams have a coefficient of 0.03 and winding streams have 

a coefficient of 0.04, 0.035 appeared to be a valid estimation of the streams in the 

area. 

 Calculation of the R values for each of the sub-basins employed an equation 

developed in Hydrology and Floodplain Analysis (Bedient and Huber, 1992) which 

had been developed for watersheds in the Houston area. 

 

706.0)(*
S

L
CRTc =+

 Eqn. 6-2 

 
 where  Tc = time of concentration in hours 
  R = R in hours 
  C = 7.25 if per cent development is under eighteen per cent 
  L = length of longest open channel in miles 
  S = slope in feet/mile 
 
 Using these new equations to determine the Tc and R values for the Buffalo 

Bayou at Katy, TX gauge resulted in the following hydrograph. 
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Figure 6.5: Hydrograph of Buffalo Bayou near Katy, TX  
using Tc and R equations 

 
 While this is an improvement, problems persist.  As before, the peaks of the 

curves match up well with a calculated peak time of 0100 hrs on 19 October.  Note 

that this is two hours later than the peak using the previous set of Tc and R values.  

Furthermore, while the peaks better resemble each other in this scenario, the R values 

remain too low for a good match to be achieved. 

 In an effort to match better the two curves, the R values for the Katy gauge 

were systematically doubled and then tripled.  While this is a crude technique for 

generating a more accurate calculated hydrograph, the lack of an additional technique 

for determining R values necessitated this procedure.  Furthermore, one could 



 96

postulate that varying the R values is an acceptable form of model calibration since its 

technique of generation is the among the defensible of all of the parameters.  Using R 

values which equaled three times the R values generated by the Bedient R equation 

yielded the following hydrograph. 

 

 
 

Figure 6.6: Hydrograph of Buffalo Bayou near Katy, TX  
using 3*Bedient R values 

 
 Using these parameters creates a good match between the two hydrographs.  

In addition to the peak times differing by two hours, the peak flows themselves vary 

by thirty cfs (2350 cfs observed vs. 2380 cfs calculated).  A downfall to these new 

results, however, is the volumetric difference between the two curves with the 
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observed curve still containing 3.6 inches of runoff while the calculated curve moves 

3.1 inches of runoff.  This is most likely attributed to errors in the NEXRAD data the 

abstraction losses were set to zero based on assumed antecedent conditions.  One final 

note about this hydrograph is that it is disconcerting that an arbitrary technique was 

used to adjust the R values so that the peaks would better agree.    

 At this point, considering the match achieved at the Katy gauge, the Langham 

Creek and the Bear Creek gauges should each be acknowledged.  Using parameters 

generated similarly to those created for the Katy gauge (i.e. multiplying R by a factor 

of three), HMS calculated the following hydrographs for the Bear Creek and 

Langham Creek gauges respectively. 
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Figure 6.7: Hydrograph of the Bear Creek gauge 
 using 3*Bedient R values 

 
Without a doubt, a fundamental error in the model prohibits a good match for 

this gauge.  While Figure 6.7 shows the results when R is multiplied by three, other 

multipliers were tried as well, and each one resulted in hydrographs which did not 

agree very well with each other.  In addition, the effective rainfall for this gauge 

equals 8.7 inches of runoff, while the calculated value totaled 3.0 inches for an error 

of -66%.  This differs substantially from the -24% error between the observed (55.7 

km2) and calculated (42.5 km2) areas. 

 Along the same vein, consider the Langham Creek hydrograph. 
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Figure 6.8: Hydrograph of the Langham Creek gauge using 3*Bedient R values 

 
 Here again significant disparities occur between the observed and calculated 

values for this plot.  For instance, the peak flow, while similar in magnitude for each 

hydrograph, varies by over a day.  In addition, the shapes themselves do not agree 

well.  Interestingly, however, the calculated runoff volume of 3.8 inches agrees 

favorably with the observed 3.9 inches.  This could be attributed to levels of 

development that have occurred in this watershed according to the aerial photography 

of the region, though the likely culprit is the error between the modeled and official 

drainage areas.  In addition, as with the Bear gauge, other R multipliers were tried.  
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This indicates that while multiplying the R values for the Katy gauge by three 

provided a good match, it appears that that multiplier is unique to that watershed.   

In conclusion, consider the following table, which summarizes the results at 

the three flow gauges addressed. 

 
Gauge Obs Peak 

Time 
Calc 
Peak 
Time 

Obs 
Runoff 
(in) 

Calc 
Runoff 
(in) 

Obs 
Peak 
Flow 
(cfs) 

Calc 
Peak 
Flow 
(cfs) 

Obs 
Drainag
e Area 
(km2) 

Calc 
Drainag
e Area 
(km2) 

Katy 18th @ 
23:00 

19th @ 
01:00 

3.6 3.1 2350 2380 164 162 

Bear 20th @ 
01:00 

19th @ 
02:00 

8.7 3.0 760 540 55.7 42.5 

Langham 18th @ 
05:00 

19th @ 
02:00 

3.9 3.8 1540 1510 63.7 92.8 

 
Table 6.1: Summary of data at flow gauges in the HMS model 

 
While the model successfully duplicated the observed results at the Katy gauge, 

significant problems exist at the other two gauges.  In response to the problems 

present at the Bear and Langham gauges, some potential reasons for the results are 

presented in the next chapter. 
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Chapter 7:  Conclusions and Future Work 
 
 The application of CRWR-PrePro in conjunction with the HMS to create a 

rainfall-runoff model of the Addicks/Barker Reservoir area provided a unique 

experience and generated valuable insights, particularly into modeling an area as flat 

as the terrain around western Houston.  The rest of this chapter addresses conclusions 

of the results generated from the CRWR-PrePro/HMS tandem; in addition, some 

comments on potential future work are presented. 

 
7.1 Modeling Conclusions   
 

The peculiarities of the results of the rainfall-runoff model require some 

additional discussion.  On one hand, the Katy gauge exhibits acceptable matches in 

hydrograph peak magnitudes, peak times, general curvature, total runoff volume, and 

drainage area after an arbitrary adjustment of the R values.  On the other, the Bear 

and Langham gauges possess glaring discrepancies in many of these parameters. 

 Clearly, the differences between the actual and calculated drainage areas for 

the problematic gauges play a primary role in producing such conflicting results.  

Apparently, the delineation of the watersheds themselves must have played a part in 

fomenting the errors.  However, a point to ponder is why the HMS had the most 

success modeling the Katy gauge.  A possible explanation follows.  The 

aforementioned 1977 report performed on the Addicks and Barker Reservoir region 

noted that on occasion flow from Cypress Creek overflows into the northern portion 

of the Addicks Reservoir watershed.  As part of this observation, the report provided 
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a series of rating tables which, for subdivided portions along the Addicks/Cypress 

watersheds, indicated how much flow Cypress Creek could handle before overflow 

occurred.  In fact, consider the following map, which provides a close up of the 

region pertinent to this discussion. 

 

Figure 7.1: Distribution of rainfall depths in inches 
 

The 1977 report mentioned that Cypress Creek at Katy-Hockley could sustain 

flows of at least 9500 cfs before overflowing.  Moreover, the report also determined 

that no water would flow into the Addicks Reservoir at the Cypress Creek at House-

Hahl gauge location.  In fact, the minimum flow which would cause Cypress Creek to 

flood into the Addicks reservoir at any location was 4500 cfs.  According to the flow 

data supplied by the USGS for this project, the maximum flow at either location on 

Cypress Creek was 2400 cfs.  Interestingly enough, however, oral communication 

with James Doan at the HEC indicated that eyewitnesses did report overflow from the 

Cypress Creek watershed to the Addicks watershed during this particular rain event.  
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In addition, oral communication with Fred Liscum of the USGS, Houston Office 

revealed that the area in this particular region of the study zone is so flat that the 

direction of the wind can sometimes cause water to flow between the two watersheds.  

The Katy sub-basin, however, resides far enough away from the Cypress Creek such 

that no crossover flow occurs. 

 Some other differences exist between the drainage area of the Katy gauge and 

the drainage areas of the Bear and Langham gauges.  The average slope as calculated 

in CRWR-PrePro equals 0.00091 for the entire modeling region, 0.00082 for the Katy 

gauge, 0.00056 for the Langham gauge, and 0.00078 for the Bear gauge.  In addition, 

the error between actual and calculated drainage areas for the entire region was     -

3.5%, 1.2% for the Katy gauge, -24% for the Bear gauge, and 45% for the Langham 

gauge.  Thus, in this case, a sub-basin’s average slope directly relates to how 

accurately the area of a delineated watershed will be.  One should realize, however, 

that while the Katy and Bear regions had similar overall slopes, significant 

differences in their errors appeared.  Overall, while this model does not establish a 

definitive cutoff for modeling with thirty-meter DEMs, one should be leery of using 

DEMs at this resolution if the slope is under 0.0008.   

 If there exists a critical slope that sends a warning flag when dealing with 

thirty-meter DEMs then perhaps another critical parameter may be established as 

well.  In this case, one could consider the average stream length per a given area in a 

potential modeling area.  Using the ModClark parameter file, one may perform such 

calculations and determine if there indeed exists a cutoff value.   Clearly, the less the 
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average stream length per area, the straighter the stream.  Calculations were 

performed to determine this value for the entire watershed and for each of the three 

gauges considered earlier.  The following table holds the results from these 

calculations. 

 
Location of Interest Location Area (km2) Average Stream  

Length (km/km2) 
All of modeling area 883 5.86 

Bear gauge 42.5 5.55 
Langham gauge 92.8 5.63 

Katy gauge 162 4.68 
   

Table 7.1: Average stream length per unit area 
 

 As the table indicates, the area which owned the best modeling success, 

namely the Katy region, exhibits a substantially lower stream length per square 

kilometer.  Apparently, an additional reason for the success in the Katy area resides 

within this parameter.  While this chart does not give a definitive cutoff value, one 

should be leery of stream lengths per area larger than five km/km2 when using thirty-

meter DEMs.  Finally, one should take into account that finer-resolution DEMs 

should generate higher stream lengths per area since a stream would have a greater 

opportunity to meander in such a grid, so caution should be used when considering 

this parameter for other grid resolutions.   

 Finally a brief note about the NEXRAD rainfall data.  While the NEXRAD 

data more than likely contributed somewhat to the differences between observed and 

calculated results, significant discussion was not spent on why this may be the case 
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since it appears that the resolution issues in the DEM data dominated the error 

propagation.  The poor resolution of these data, in retrospect, indicates that they were 

not suitable for use in this study.  However, in the case of the NEXRAD data, there is 

no reason to believe that were not applicable to this project, especially considering 

that the data had been quality controlled with local rainfall information at the 

Princeton Environmental Institute before they were made available. 

 
7.2 Recommendations for Future Work 
 
 Essentially, the combination of low slopes within a thirty-meter DEM worked 

together to make modeling the Buffalo Bayou region difficult.  Future efforts to 

develop more reliable models could employ several different tools.  First and most 

obvious, terrain models of higher resolution would prove invaluable.  While Texas 

has recently completed thirty-meter DEMs of the entire state, which many thought 

would be accurate to model even exceptionally flat regions such as the southeastern 

Texas coast, finer resolution terrain maps have begun to appear.  The Houston 

Advanced Research Center (HARC), located in The Woodlands, TX, has generated 

DEMs on the order of ten-foot resolution using airborne light detection and ranging 

(LIDAR) technology.  By measuring the time it takes for a pulse of light to travel 

from an airplane to the ground and back, HARC has developed LIDAR-based maps 

of all of Harris County.  While certain issues persist in the use of this technology, 

such as filtering out noise and management of such large quantities of data, these data 

will undoubtedly assist greatly in future modeling attempts. 
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 Future improvements could also be achieved via the use of high-resolution 

DOQQs.  These aerial photographs could provide excellent insight into the actual 

stream network in a given region.  Used in conjunction with terrain data, one could 

generate a high-quality stream network by burning in streams based on information 

gleaned from DOQQs data sets.  Furthermore, aerial photography provide more 

modern land use information than the Anderson data sets do. 

 A more general suggestion for improving the rainfall-runoff models involves 

better parameter data sets.  For example, although the curve number varied only 

slightly over most of the region considered for this study, those data were nonetheless 

derived from 500-meter grids.  Completion of a national SSURGO data set would 

allow the generation of higher-quality curve number grids.  In addition, better 

techniques for determining abstractions would assist in modeling.  Convenient 

techniques for developing Green & Ampt parameters would prove useful.  

Fortunately, for this model of a single event, a rainstorm in the days before 

established level III antecedent moisture conditions.  At best, this was a fortuitous 

situation.  Finally, if one employs the ModClark method, a more accurate technique 

for calculating Tc and R values needs to be developed.  In fact, perhaps the ModClark 

parameter file could include Tc and R values for each of the SHG cells within a given 

sub-basin.  As far as parameter determination is concerned, this project probably 

would have benefited most greatly from better equations for calculating Tc and R.   
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APPENDIX A 
COMPUTER CODE OF INTEREST 

 
This Appendix contains the various blocks of computer used for this thesis.   
 
Avenue program defgage -- This program converts a set of points from a geographic  

map projection to an Albers map projection.  User sets 
parameters of Albers map projection.  

 
’--------------------------------------------------------
------ 
’--------------------------------------------------------
------ 
’ Name: swbp.definegages 
’ Written by Seann Reed    
’ Headline:  
’ Self: 
’ Returns: 
’ Description: Create a point shape file from  
’ locations specified 
’ in a table.  
’ 
’ Topics: 
’ Search Keys: 
’ Requires: 
’ History: 
’ 
’--------------------------------------------------------
--’------------------------------------------------------
---- 
theProject=av.GetProject 
theView=av.GetActiveDoc 
theDocs=theProject.GetDocs 
tabList=List.Make 
for each d in theDocs 
  if (d.Is(Table)) then 
    tabList.Add(d.getname) 
  end 
end 
’--- IDENTIFY INPUT TABLE 
intablename=msgbox.choiceasstring(tabList,"Choose table 
with Lat/Lon Values","Table") 
if (intablename=nil) then 
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  exit 
end 
intable=theproject.finddoc(intablename) 
invtab=intable.getvtab 
infields=invtab.getfields 
’--- IDENTIFY INPUT FIELDS 
latfield=msgbox.choiceasstring(inFields,"Choose the 
latitude field.","Latitude") 
if (latfield=nil) then 
  exit 
end 
lonfield=msgbox.choiceasstring(inFields,"Choose the 
longitude field.","Longitude") 
if (lonfield=nil) then 
  exit 
end 
idfield=msgbox.choiceasstring(inFields,"Choose id 
field.","ID") 
if (idfield=nil) then 
  exit 
end 
’--- 
’define output map projection if desired 
’--- 
projpoints=true 
labels={"central meridian","lower standard 
parallel","upper standard parallel","reference 
latitude","false easting","false northing","spheroid"} 
defaults={"-
100","27.4167","34.9167","31.1667","1000000","1000000","#
spheroid_grs80"} 
inlist=msgbox.multiinput("Input Albers parameters.  
Cancel to get ouput in geographic 
coordinates.","Projection Parameters",labels,defaults) 
if (inlist.count=0) then 
  projpoints=false 
else 
  albprj=albers.make(rect.makenull) 
  albprj.setcentralmeridian(inlist.get(0).asnumber) 
  albprj.setlowerstandardparallel(inlist.get(1).asnumber) 
  albprj.setupperstandardparallel(inlist.get(2).asnumber) 
  albprj.setreferencelatitude(inlist.get(3).asnumber) 
  albprj.setfalseeasting(inlist.get(4).asnumber) 
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  albprj.setfalsenorthing(inlist.get(5).asnumber) 
  albprj.setspheroid(inlist.get(6).asenum) 
end 
   
’--- READ AND PROCESS DATA 
OutFileName=FileDialog.Put("Albstat".asfilename,"*.shp","
Output Shape File" ) 
if(OutFileName=Nil)then 
  exit 
end 
OutFileName.SetExtension("shp") 
OutFTab=FTab.MakeNew(OutFileName,point) 
outTheme=Ftheme.make(outftab) 
’CREATE FIELDS FOR THE NEW POINT TABLE 
outFields=List.Make 
outfields.Add(Field.Make("Albstat#",#field_long,9,0)) 
outFields.Add(Field.Make("Latitude",#field_decimal,8,6)) 
outFields.Add(Field.Make("Longitude",#field_decimal,8,6)) 
outFieldsc=outFields.DeepClone 
outftab.addfields(outfieldsc) 
theView.addtheme(outTheme) 
if(outFtab.CanEdit)then 
  outFtab.SetEditable(true) 
else 
  msgbox.info("Can’t edit the output theme.","Error") 
  exit 
end 
’IDENTIFY FIELDS FOR WRITING 
shpField=outFtab.findfield("shape") 
oidfield=outftab.findfield("Albstat#") 
olatfield=outftab.findfield("Latitude") 
olonfield=outftab.findfield("Longitude") 
for each rec in invtab 
  id=invtab.returnvalue(idfield,rec) 
  lat=invtab.returnvalue(latfield,rec) 
    if ((id>0) and (lat>0)) then 
    ’lat=invtab.returnvalue(latfield,rec).asstring 
    ’lon=invtab.returnvalue(lonfield,rec).asstring 
    lat=invtab.returnvalue(latfield,rec) 
    lon=invtab.returnvalue(lonfield,rec) 
    ’latdeg = lat.left(2).asnumber + 
(lat.middle(2,2).asnumber/60) + 
(lat.right(2).asnumber/3600) 
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    ’londeg = lon.left(2).asnumber + 
(lon.middle(2,2).asnumber/60) + 
(lon.right(2).asnumber/3600) 
    newrec=outFtab.AddRecord 
     
    ’pt=point.make(londeg*(-1),latdeg) 
    pt=point.make(lon,lat) 
     
    if (projpoints) then 
      ptp=pt.returnprojected(albprj) 
      outFtab.Setvalue(shpField,newrec,ptp) 
    else 
      outFtab.Setvalue(shpField,newrec,pt) 
    end       
    outftab.setvalue(oidfield,newrec,id) 
    outftab.setvalue(olatfield,newrec,lat) 
    outftab.setvalue(olonfield,newrec,lon) 
  end 
end 
outftab.seteditable(false)      
 
 
Avenue program txdot.modclark --  This program creates the ModClark parameter 
file  

for use with grid-based rainfall in the HEC-
HMS 

 
’********************************************************
************************** 
’Name:  modclark 
’ 
’Description:  Avenue version of the Hydrologic 
Engineering 
’              Center’s GridParm program, which creates 
the  
’              ModClark parameter file to be used in HEC-
HMS. 
’ 
’Author:  Seth Ahrens and Ximing Cai 
’ 
’History:  Modified for CRWRPre-Pro by Brian Adams 
’          Modified by Francisco Olivera for CRWR-PrePro 
(prepro04.apr) on 5/17/99 
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’********************************************************
************************** 
’ 
’get the view and working directory  
’ 
’ 
theview=av.GetActiveDoc 
thedisplay = theview.getdisplay 
theDir=av.GetProject.GetWorkDir 
 
 
’ ask user for watershed shapefile theme; make sure 
choice is plausible 
 
iptheme = MsgBox.List(theview.GetThemes,"Select 
’Watershed’ polygon theme","ModClark") 
theftab = iptheme.getftab 
theshapef = theftab.findfield("shape") 
theshape = theftab.returnvalue(theshapef,0) 
    
if (theshape.getclass.getclassname = "polygon") then 
   ipfound = true 
end 
 
if (not ipfound) then 
    msgbox.error("Watershed theme has to be a polygon 
theme.", "ModClark") 
    exit 
end 
 
 
’ ask user to choose appropriate sym point shapefile 
’ this theme contains the hec id numbers which will be 
assigned to the  
’ watershed theme selected above.  also make sure user 
chooses valid file. 
 
pttheme=MsgBox.List(theview.GetThemes,"Select ’SymPoint’ 
point theme","ModClark") 
ptftab = pttheme.getftab 
pthecf = ptftab.FindField("hecid") 
 
if (pthecf = nil) then 
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    MsgBox.Warning("SymPoint theme does not have’hecid’ 
field -- Exiting Program","ModClark") 
    exit 
end 
 
 
’ get flow downstream to outlet grid 
 
flowdist=MsgBox.List(theview.GetThemes,"Select ’Flow 
Length to Watershed Outlet’ grid theme","ModClark") 
flowgrid = flowdist.GetGrid 
 
 
’ get watershed grid 
 
wtshdthm=MsgBox.List(theview.GetThemes,"Select 
’Watershed’ grid theme","ModClark") 
watgrid = wtshdthm.GetGrid 
aFN=av.GetProject.GetWorkDir.MakeTmp("wshgrd", "")  ’ 
rename data set 
watgrid.Rename(aFN) 
 
 
’ask user for the cell size. 
 
cellsize=Msgbox.input("Enter cell size in meters for the 
precipitation mesh.", "ModClark", "2000").AsNumber 
 
 
’ ask user for name of output file 
cellfname=Msgbox.input("Enter the path and nameof the 
grid-parameter output file", "ModClark-- 

OUTPUT FILE", thedir.asstring).AsFileName 
cellfile= linefile.make(cellfname, #FILE_PERM_WRITE) 
 
 
’ take original watershed shapefile theme.  find all 
fields and 
’ add hec id values from sym point shapefile if not done 
already. 
 
wshed=iptheme 
wshdftab=wshed.GetFtab 
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wshpf=wshdftab.Findfield("Shape") 
widf=wshdftab.Findfield("Id") 
wgridcodef=wshdftab.Findfield("Gridcode") 
wlngflowf=wshdftab.Findfield("Lngflwpth") 
wslopef=wshdftab.Findfield("Slope") 
wshvelf=wshdftab.Findfield("Wshvel") 
wlagtimef=wshdftab.Findfield("Lagtime") 
 
wshdftab.seteditable(true) 
 
hecidf = wshdftab.FindField("hecid") 
 
if (hecidf = nil) then 
  hecidf = field.make("hecid",#FIELD_DECIMAL,16,0) 
  wshdftab.addfields({hecidf}) 
  hecidf = wshdftab.FindField("hecid") 
end 
 
 
’----take hec id values from sym point shapefile.  add 
these 
’----values to the watershed ftable. 
 
ptgridf = ptftab.FindField("gridcode") 
 
for each rec in ptftab 
  ptid = ptftab.ReturnValue(pthecf,rec) 
  ptgrid = ptftab.ReturnValue(ptgridf,rec)  
  for each x in wshdftab 
    wgridcode = wshdftab.ReturnValue(wgridcodef,x) 
    if (wgridcode = ptgrid) then 
      wshdftab.setvalue(hecidf,x,ptid) 
    end 
  end 
end 
 
wshdftab.seteditable(false) 
 
 
’ find total area of watersheds. 
 
tarea=0 
for each w in wshdftab 
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   wshp=wshdftab.ReturnValue(wshpf, w) 
   tarea=tarea+wshp.ReturnArea 
end  
 
’   
’ set area tolerance, a ratio of the total area.  if a 
watershed 
’ is smaller than this area, then the script ignores it. 
atol=0.000001 
 
’------------create precipitation mesh shapefile.--------
------ 
 
’ first calculate the range for the mesh based on the 
extent of the watershed polygon theme 
 
arect=wshed.ReturnExtent  
theheight=arect.GetHeight 
thewidth=arect.GetWidth 
xcenter=arect.ReturnCenter.Getx 
ycenter=arect.ReturnCenter.Gety 
 
xminf=xcenter-(thewidth/2.0)    
yminf=ycenter-(theheight/2.0)    
xmaxf=xcenter+(thewidth/2.0)    
ymaxf=ycenter+(theheight/2.0)   
 
 
’calculate grid boundaries in even cells 
 
cmin=(xminf/cellsize).Truncate  
rmin=(yminf/cellsize).Truncate  
 
xmin=cellsize*cmin - cellsize 
ymin=cellsize*rmin - cellsize 
xmax=cellsize*  ( ( xmaxf/cellsize).Truncate ) + cellsize 
ymax=cellsize*  ( ( ymaxf/cellsize).Truncate ) + cellsize 
 
 
’ calculate grid size in rows 
 
ncol=(xmax-xmin)/cellsize 
nrow=(ymax-ymin)/cellsize 
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’ generate a polygon shapefile of the shg cells. 
 
av.showmsg("generate a polygon shape of the cells") 
polycell=FN.merge(thedir.asstring,"shg") 
pcftab=FTab.MakeNew(polycell, polygon) 
pcshpf=pcftab.FindField("shape") 
pcftab.Seteditable(true) 
idfld = field.make("cell_id", #FIELD_DECIMAL, 16, 0) 
areafld=field.make("area", #FIELD_DECIMAL, 36, 6) 
xfld=field.make("shg_x", #FIELD_DECIMAL, 24, 0) 
yfld=field.make("shg_y", #FIELD_DECIMAL, 24, 0) 
 
pcftab.addfields( {idfld, areafld, xfld, yfld} ) 
 
id=0 
for each r in 0 .. (nrow-1) 
   keepgoing = av.setstatus((r/nrow)*100) 
 
   row=ymin+ (r*cellsize) 
   col=xmin 
    
   numrow=rmin+r  
   numcol=cmin   
 
   for each c in 0 .. (ncol-1) 
       pt1=point.make(col, row) 
       pt2=point.make(col,(row+cellsize) ) 
       pt3=point.make((col+cellsize),(row+cellsize) ) 
       pt4=point.make((col+cellsize), row) 
       theshape=polygon.make( { {pt1, pt2, pt3, pt4} } )  
       therec = pcftab.addrecord 
       id=id+1 
       pcftab.setvalue(pcshpf, therec, theshape) 
       pcftab.setvalue(idfld, therec, id) 
       pcftab.setvalue(areafld, therec, 
theshape.ReturnArea)  
       pcftab.setvalue(xfld, therec, numcol) 
       pcftab.setvalue(yfld, therec, numrow) 
       numcol=numcol+1 
       col=col+cellsize   
   end 
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end                  
 
pcthm=Ftheme.Make(pcftab)     
theview.AddTheme(pcthm) 
pcthm.Setvisible(true) 
pcftab.seteditable(false) 
 
 
 
’ 
’ create a shapefile of shg cells dropped over watershed 
theme.  
’ 
 
overlayfn=FN.merge(thedir.asstring,"wshshg") 
 
wgftab=FTab.MakeNew(overlayfn, polygon) 
wgshpf=wgftab.FindField("shape") 
wgftab.Seteditable(true) 
 
 
wgshpf=wgftab.Findfield("Shape") 
 
wgidf=field.make("wshd_id", #FIELD_DECIMAL, 20, 0) 
cgidf=field.make("cellid", #FIELD_DECIMAL, 20, 0) 
wggridf=field.make("gridcode", #FIELD_DECIMAL, 20, 0) 
wglngflowf=field.make("lngflwpth", #FIELD_DECIMAL,20, 4) 
wgslopef=field.make("slope", #FIELD_DECIMAL, 16, 4) 
wgshvelf=field.make("wshvel", #FIELD_DECIMAL, 36, 4) 
wglagtf=field.make("Lagtime", #FIELD_DECIMAL, 36, 4) 
wgareaf=field.make("area", #FIELD_DECIMAL, 36, 6) 
wshgxf=field.make("shgx",#FIELD_DECIMAL,10,0) 
wshgyf=field.make("shgy",#FIELD_DECIMAL,10,0) 
 
 
wgftab.addfields({ wgidf, cgidf, wggridf, wglngflowf, 
wgslopef, wgshvelf, wglagtf, 

wgareaf,wshgxf,wshgyf} ) 
 
 
’ actually drop shg cells over watersheds in this block. 
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av.showmsg("Overlay the cell shape on the watershed 
shape") 
 
rec=0 
for each c in pcftab   
  keepgoing = 
av.setstatus((rec/pcftab.GetNumRecords)*100) 
  cshp=pcftab.ReturnValue(pcshpf, c) 
  cid=pcftab.ReturnValue(idfld, c) 
  xval=pcftab.ReturnValue(xfld,c) 
  yval=pcftab.ReturnValue(yfld,c) 
   
  for each p in wshdftab 
 
    wshp=wshdftab.ReturnValue(wshpf, p) 
    wid=wshdftab.ReturnValue(widf, p)      
    wgridcode=wshdftab.ReturnValue(wgridcodef, p) 
    wlngflw=wshdftab.ReturnValue(wlngflowf, p) 
    wslope=wshdftab.ReturnValue(wslopef, p) 
    wshvel=wshdftab.ReturnValue(wshvelf, p) 
    wlagtime=wshdftab.ReturnValue(wlagtimef, p) 
     
    wgshp=cshp.ReturnIntersection(wshp)     
   
    if(wgshp.ReturnArea> (atol*tarea)  ) then 
         therec = wgftab.addrecord 
 
         wgftab.SetValue(wgshpf,therec,wgshp) 
         wgftab.SetValue(wgidf, therec, wid) 
         wgftab.SetValue(cgidf, therec, cid) 
         wgftab.SetValue(wggridf, therec, wgridcode) 
         wgftab.SetValue(wglngflowf, therec, wlngflw) 
         wgftab.SetValue(wgslopef, therec, wslope) 
         wgftab.SetValue(wgshvelf, therec, wshvel) 
         wgftab.SetValue(wglagtf, therec, wlagtime) 
         wgftab.SetValue(wgareaf, therec, 
wgshp.ReturnArea) 
         wgftab.SetValue(wshgxf,therec,xval) 
         wgftab.SetValue(wshgyf,therec,yval)     
    end   
  end        
  rec=rec+1 
end 
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wgthm=Ftheme.Make(wgftab)     
theview.AddTheme(wgthm) 
wgthm.Setvisible(true) 
wgftab.seteditable(false) 
 
av.showmsg("write parameter output file") 
 
 
 
’ for each watershed in the original watershed shapefile 
theme: 
’  - from overlay, take portions of shg cells which fall 
in that watershed. 
’  - these extracted shg cells will be in their own 
shapefile. 
’  - convert this shapefile to a grid 
’  - for each cell id, use a zonalstat to determine mean 
travel distance. 
’  - use zonalstatstable to link each cell id with its 
proper travel distance 
’  - add these data to ftable associated with shg cells 
overlapped onto watershed shapefile. 
’  - output data for the given watershed to the modclark 
file for hms. 
’ 
 
num = 0 
 
wgbitmap=wgftab.getselection 
tempVtabFN=FN.merge(thedir.asstring,"tmpstat.dbf") 
 
for each rec in wshdftab 
   
    
   ’pull out the shg cells associated with one watershed. 
   ’use bitmap to select cells and then convert directly 
to a grid    
    
   ’ this stores the shg cellid/gridnumber/shape of each 
   ’ shg cell in the watershed of interest 
    
   shedgrid = wshdftab.ReturnValue(wgridcodef,rec) 
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   wgbitmap.clearall 
   wgftab.updateselection 
 
   for each x in wgftab 
      gridnum = wgftab.ReturnValue(wggridf,x) 
       
      if (gridnum = shedgrid) then 
        wgbitmap.set(x) 
        wgftab.updateselection 
      end 
   end 
 
 
   ’ convert celltemp to a grid using the ftable 
    
   cellidgrid = 
grid.makefromftab(wgftab,prj.makenull,wgftab.findfield("c
ellid"),nil) 
 
   afn=FN.merge(thedir.asstring,"subwsh.dbf") 
   theftab = wgftab.export(afn,shape,TRUE) 
   theftab.seteditable(true) 
 
   aFN=av.GetProject.GetWorkDir.MakeTmp("cellid", "")  ’ 
rename data set 
   cellidgrid.Rename(aFN) 
   outtheme=gtheme.make(cellidgrid) 
   outtheme.setname("cellid") 
 
   ’ for each cellid in the watershed, compute mean 
travel distance 
 
   zonefield = theftab.findfield("cellid") 
   distgrid = 
flowgrid.zonalstats(#GRID_STATYPE_MEAN,theftab,Prj.MakeNu
ll,zonefield,False) 
 
   trunkdistgrid=distgrid.int 
   
trunkdistgrid=trunkdistgrid.combine({cellidgrid,watgrid}) 
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   outtheme=gtheme.make(trunkdistgrid) 
   tempvtab=trunkdistgrid.getvtab 
   table.make(tempvtab) 
   
     
   fieldlist=tempvtab.getfields 
   
   ’ add mean cell travel distances to theftab 
   cellvaluef = fieldlist.get(3) 
   wcellf = theftab.findfield("cellid") 
   wcellgf = theftab.findfield("gridcode") 
   thedistf = fieldlist.get(2) 
   dfield = theftab.findfield("cell dist") 
      
   theftab.join(wcellf,tempvtab,cellvaluef) 
   outtheme=ftheme.make(theftab.clone) 
’   theview.addtheme(outtheme) 
   
   
   
      
  ’ add a field to the overlay theme for storing the mean 
cell travel dist. 
     
  keepgoing = av.setstatus(( 
(num+2)/wshdftab.GetNumRecords)*100) 
   
  ’ hec id from original 
  whecidf = wshdftab.Findfield("hecid") 
  whecid=wshdftab.ReturnValue(whecidf, rec) 
 
   
  ’ output data to modclark file starting here 
   
  outstring="SUBBASIN:  "+whecid.AsString 
  cellfile.writeelt(outstring) 
 
  fieldlist=theftab.getfields 
  shgxf = fieldlist.get(9) 
  shgyf = fieldlist.get(10) 
  distf = fieldlist.get(13) 
  areaf = fieldlist.get(8) 
  



 121 

  for each g in theftab 
      
     dist = theftab.returnvalue(distf,g) 
      
     if (dist.isnull) then 
       continue 
     end 
      
      
     shg_x = theftab.returnvalue(shgxf,g) 
     shg_y = theftab.returnvalue(shgyf,g) 
     area = theftab.returnvalue(areaf,g) 
      
        
     str1="GRIDCELL:  " 
     str2=shg_x.asstring 
     str3=shg_y.asstring 
     str4=(dist/1000).asstring   
     str5=(area/1000000).asstring 
      
     outstring=str1+ str2+"   "+str3+"   "+str4 +"   
"+str5 
     cellfile.writeelt(outstring) 
 end 
  
 outstring="END:" 
 cellfile.writeelt(outstring) 
 num=num+1 
 
     
 theftab.unjoinall    
      
end 
 
wgftab.seteditable(false) 
cellfile.close 
 
’ 
’ end of the program 
’ 
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MATLAB program adjuster.m --  This program converts adjusted gauge 
elevations to  

flow values using data available in USGS rating 
tables. 

 
% load all height data for the gauges 
% heights has 8 colums 
load heights -ascii 
 
% load all data from the usgs rating tables 
 
 
% each rating has two colums  
% first column is for elevation 
% second column is for flow 
 
load ratings1 -ascii 
 
 
% lenheight is number of flow values to be calculated 
lenheight = length(heights(:,1));   
 
 
for x = 1:lenheight 
 value = heights(x,1); 
 notfound = 1; 
 pos = 1; 
 while notfound > 0 
  if value > ratings(pos,1) 
   pos = pos + 1; 
  else 
   notfound = -1; 
  end 
  end 
 interp = (value - ratings(pos-1,1) ) / 0.01; 
 flow(x) = ratings(pos-1,2) + (ratings(pos,2) -  

ratings(pos-1,2))*interp; 
end 
  
flow = flow’;   
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MATLAB program convert.m –  This program is the exact code used to analyze 
the  

first batch of data from the first day of the 
storm. 

To analyze other pieces of the storm, the same 
general code was used, but the data sets were 
different. 

 
clear all; 
 
 
% load data 
load zero.dat; 
load aout001.dat;  % aout files represent original data 
sets. 
load aout002.dat;  % each aout file is at a different 
time. 
load aout003.dat; 
load aout004.dat; 
load aout005.dat; 
load aout006.dat; 
load aout007.dat; 
load aout008.dat; 
load aout009.dat; 
load aout010.dat; 
load aout011.dat; 
load aout012.dat; 
load aout013.dat; 
load aout014.dat; 
load aout015.dat; 
load aout016.dat; 
load aout017.dat; 
load aout018.dat; 
load aout019.dat; 
load aout020.dat; 
load aout021.dat; 
load aout022.dat; 
load aout023.dat; 
load aout024.dat; 
load aout025.dat; 
load aout026.dat; 
load aout027.dat; 
load aout028.dat; 
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load aout029.dat; 
 
 
load times.txt; % load file which contains times 
associated with 
      % all of the aout files. 
times = times(1:30) %only need first thirty times since 
only first  
     %data sets are considered for this run. 
 
times = times’;  
 
% grab intensity values from each file 
 
aout001=aout001(:,3); 
aout002=aout002(:,3); 
aout003=aout003(:,3); 
aout004=aout004(:,3); 
aout005=aout005(:,3); 
aout006=aout006(:,3); 
aout007=aout007(:,3); 
aout008=aout008(:,3); 
aout009=aout009(:,3); 
aout010=aout010(:,3); 
aout011=aout011(:,3); 
aout012=aout012(:,3); 
aout013=aout013(:,3); 
aout014=aout014(:,3); 
aout015=aout015(:,3); 
aout016=aout016(:,3); 
aout017=aout017(:,3); 
aout018=aout018(:,3); 
aout019=aout019(:,3); 
aout020=aout020(:,3); 
aout021=aout021(:,3); 
aout022=aout022(:,3); 
aout023=aout023(:,3); 
aout024=aout024(:,3); 
aout025=aout025(:,3); 
aout026=aout026(:,3); 
aout027=aout027(:,3); 
aout028=aout028(:,3); 
aout029=aout029(:,3); 
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% make grid of all rainfall grids 
% keep time data separate 
 
% the zero data set was entered because inspection of the 
data 
% revealed that at some point during the storm, no rain 
was  
% falling.  hence, to properly block the data into 
constant 
% ten minute intervals, these zero data sets were 
required.  
 
newgrid = [aout001,aout002,aout003,aout004,aout005,aout006,aout007]; 
newgrid = [newgrid,aout008,aout009,aout010]; 
newgrid = [newgrid,aout011,aout012,aout013,aout014,aout015,aout016]; 
newgrid = [newgrid,aout017,aout018,aout019,aout020]; 
newgrid = 
[newgrid,aout021,aout022,aout023,aout024,aout025,zero]; 
newgrid = [newgrid,aout026,aout027,aout028,aout028]; 
 
% take time array and convert into 
% decimal time in minutes from the 
% start of the storm 
 
% first determine nearest ten-minte value 
% before storm began 
% i.e. 21:42:39 yields 1340 since 9.40 pm 
% is 1340 min past midnight 
 
rawtime = times(1); 
hours = floor(rawtime/10000); 
mins = floor((rawtime - hours*10000) / 100); 
secs = rawtime - hours*10000 - mins*100; 
inittime = hours*60 + floor(mins/10)*10; 
 
 
 
outputt = [’inittime for this run is ’ num2str(hours) ’.’ 
num2str(floor(mins/10)*10)] 
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% calculate first value of decimal time in minutes 
% to keep the next loop simpler. 
dectime(1) = mins + secs/60 - floor(mins/10)*10; 
 
 
 
 
%need to make sure time calcs are not messed 
%up if storm carries over to other days 
daynum = 1; 
 
% this loop converts times into minutes past time of 
first data set. 
 
for i = 2:length(times) 
  rawtime = times(i); 
  if ( times(i) < times(i-1) )  
    daynum = daynum + 1; 
  end 
  hours = floor(rawtime/10000); 
  mins = floor((rawtime - hours*10000) / 100); 
  secs = rawtime - hours*10000 - mins * 100; 
  dectime(i) = (daynum-1)*24*60 + hours*60 + mins + 
secs/60 - inittime; 
end  
 
% now regroup rainfall data into ten-minute grids 
 
colout = 1; 
sizenew = size(newgrid); 
highcolin = sizenew(2); 
 
 
colin = 1; 
colout = 1; 
resid = 0; 
 
for colin = 1:length(dectime) 
 
 if (colin == 1) 
  rainval = 1; 
  totime = dectime(colin); 
            resid = totime; 
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            colin = colin + 1; 
  rainval = 2; 
      else 
  totime = dectime(colin) - 10*(colout-1); 
  rainval = rainval + 1; 
  colin = colin + 1; 
 end 
 
 % NOTE: USING RAINVAL CONCEPT FAILS IF TOTIME > 20 
 
 if (totime > 10)  % not while since totime < 20  
  rainval = rainval -1; 
  if (colout == 1) 
   % don’t want to call dectime(0) 
   totime = totime - 10; 
   outtime(colout) = colout * 10;  
   rainfall = newgrid(:,(colin-1)- 

rainval+1)/60*dectime((colin-1)-
rainval+1); 

    
   for x = 2:(rainval-1) 
    timeinter = dectime((colin-1)-
rainval+x) –  

dectime((colin-1)-rainval+x-1); 
    rainfall = rainfall + 
newgrid(:,(colin-1)- 

rainval+x)/60*timeinter;  
   end 
   resid = dectime(colin-1) - colout*10; 
   timeinter = dectime((colin-1)) - 
dectime((colin-2)) –  

resid; 
   rainfall = rainfall + newgrid(:,(colin – 

1))/60*timeinter; 
   outgrid(:,colout) = rainfall; 
   colout = colout + 1; 
  else  
   totime = totime - 10; 
   outtime(1,colout) = colout * 10; 
   rainfall = resid/60*newgrid(:,(colin-1)-
rainval); 
   for x = 1:rainval   
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    timeinter = dectime((colin-1)-
rainval+x) –  

dectime((colin-1)-rainval+x-1); 
    rainfall = rainfall + 
newgrid(:,(colin-1)- 

rainval+x)/60*timeinter;  
   end 
   resid = dectime(colin-1) - colout * 10; 
   rainfall = rainfall - 
resid/60*newgrid(:,(colin-1)); 
   outgrid(:,colout) = rainfall; 
   colout = colout + 1; 
  end 
       rainval = 1; 
 end 
end 
 
if (rainval == 1)  
 outtime(1,colout) = colout * 10; 
 rainfall = resid/60*newgrid(:,(colin-1)); 
 outgrid(:,colout) = rainfall; 
else 
 outtime(1,colout) = colout * 10; 
 rainfall = resid/60*newgrid(:,(colin-2)); 
 timeint = dectime(colin-1) - dectime(colin-2); 
 rainfall = rainfall + timeint/60*newgrid(:,(colin-
1)); 
 outgrid(:,colout) = rainfall; 
end 
  
finalout = [outtime;outgrid]; 
 
newval = size(finalout); 
maxi = newval(2); 
 
% write output to a temporary text file. 
 
% got this info from 'help fprintf' 
fid = fopen('biggrid.txt','w'); 
midstr = blanks(1); 
for i = 1:maxi 
 midstr = str2mat(midstr,'%'); 
      midstr = str2mat(midstr,'8'); 
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 midstr = str2mat(midstr,’.’); 
 midstr = str2mat(midstr,’3’); 
 midstr = str2mat(midstr,’f’); 
 midstr = str2mat(midstr,blanks(1)); 
end 
midstr = str2mat(midstr,’\’); 
midstr = str2mat(midstr,’n’); 
 
begstr = str2mat(’f’); 
begstr = str2mat(begstr,’p’); 
begstr = str2mat(begstr,’r’); 
begstr = str2mat(begstr,’i’); 
begstr = str2mat(begstr,’n’); 
begstr = str2mat(begstr,’t’); 
begstr = str2mat(begstr,’f’); 
begstr = str2mat(begstr,’(’); 
begstr = str2mat(begstr,’f’); 
begstr = str2mat(begstr,’i’); 
begstr = str2mat(begstr,’d’); 
begstr = str2mat(begstr,’,’); 
 
endstr = str2mat(’,’); 
endstr = str2mat(endstr,’f’); 
endstr = str2mat(endstr,’i’); 
endstr = str2mat(endstr,’n’); 
endstr = str2mat(endstr,’a’); 
endstr = str2mat(endstr,’l’); 
endstr = str2mat(endstr,’o’); 
endstr = str2mat(endstr,’u’); 
endstr = str2mat(endstr,’t’); 
endstr = str2mat(endstr,setstr(39)); 
endstr = str2mat(endstr,’)’); 
endstr = str2mat(endstr,’;’); 
 
outstr = 
str2mat(begstr,setstr(39),midstr,setstr(39),endstr)’ 
eval(outstr) 
 
MATLAB program findflow.m --  This program converts adjusted gauge 
elevations to  

flow values using data available in USGS rating 
tables. 
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% load all height data for the gauges 
% heights has 8 colums 
load heights -ascii 
 
% load all data from the usgs rating tables 
 
 
% each rating has two colums  
% first column is for elevation 
% second column is for flow 
 
load ratings1 -ascii 
 
 
% lenheight is number of flow values to be calculated 
lenheight = length(heights(:,1));   
 
 
for x = 1:lenheight 
 value = heights(x,1); 
 notfound = 1; 
 pos = 1; 
 while notfound > 0 
  if value > ratings(pos,1) 
   pos = pos + 1; 
  else 
   notfound = -1; 
  end 
  end 
 interp = (value - ratings(pos-1,1) ) / 0.01; 
 flow(x) = ratings(pos-1,2) + (ratings(pos,2) -  

ratings(pos-1,2))*interp; 
end 
  
flow = flow’;   
 
 
 
 
 
AML for developing DLG data –  This program was used to process raw  
     hydrography data of the Houston area. 
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dlgarc optional ho3hyf01 anghyd1 
dlgarc optional ho3hyf02 anghyd2 
dlgarc optional ho3hyf03 anghyd3 
dlgarc optional ho3hyf04 anghyd4 
dlgarc optional ho3hyf05 anghyd5 
dlgarc optional ho3hyf06 anghyd6 
dlgarc optional ho3hyf07 anghyd7 
dlgarc optional ho3hyf08 anghyd8 
 
build anghyd1 line 
build anghyd2 line 
build anghyd3 line 
build anghyd4 line 
build anghyd5 line 
build anghyd6 line 
build anghyd7 line 
build anghyd8 line 
 
reselect anghyd1 angwatr1 line # line 
res rpoly# > 1 
<return> 
N 
Y 
res lpoly# > 1  
<return> 
N  
N 
 
reselect anghyd2 angwatr2 line # line 
res rpoly# > 1 
<return> 
N 
Y 
res lpoly# > 1  
<return> 
N  
N 
 
reselect anghyd3 angwatr3 line # line 
res rpoly# > 1 
<return> 
N 
Y 
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res lpoly# > 1  
<return> 
N  
N 
 
reselect anghyd4 angwatr4 line # line 
res rpoly# > 1 
<return> 
N 
Y 
res lpoly# > 1  
<return> 
N  
N 
 
reselect anghyd5 angwatr5 line # line 
res rpoly# > 1 
<return> 
N 
Y 
res lpoly# > 1  
<return> 
N  
N 
 
reselect anghyd6 angwatr6 line # line 
res rpoly# > 1 
<return> 
N 
Y 
res lpoly# > 1  
<return> 
N  
N 
 
reselect anghyd7 angwatr7 line # line 
res rpoly# > 1 
<return> 
N 
Y 
res lpoly# > 1  
<return> 
N  
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N 
 
reselect anghyd8 angwatr8 line # line 
res rpoly# > 1 
<return> 
N 
Y 
res lpoly# > 1  
<return> 
N  
N 
 
append hydromap 
 
angwatr1 
angwatr2 
angwatr3 
angwatr4 
angwatr5 
angwatr6 
angwatr7 
angwatr8 
<return> 
 
project cover hydromap areahyd utmalb.prj 
 
build areahyd line 
 
clip areahyd border hydarcs line 
 
&return 
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APPENDIX B 
SUPPLEMENTAL DATA 

 
Tc and R values from the USACE-Galveston hydrologic study of the Addicks and 
Barker Reservoir regions. 
 
Addicks Reservoir 
 
Sub-watershed Area (mi2)  Tc (hr)  R (hr) 
10.19     1.67  3.25 
3.19     1.00  1.94 
3.22     1.04  2.02 
2.80     1.02  1.98 
3.10     1.00  1.94 
2.43     0.93  1.81 
2.14     0.93  1.81 
2.46     0.93  1.81 
2.42     0.98  1.90 
1.39     0.81  1.57 
4.20     1.06  2.05 
2.34     0.96  1.86 
2.81     0.96  1.86 
2.61     0.96  1.86 
2.02     0.93  1.81 
1.99     0.91  1.77 
2.15     0.93  1.81 
2.60     0.98  1.90 
2.79     0.98  1.90 
2.52     0.98  1.90 
1.87     0.96  1.86 
1.47     0.89  1.72 
3.16     1.26  2.44 
1.69     0.89  1.72 
1.15     0.78  1.52 
1.31     0.65  1.26 
5.48     1.36  2.63 
2.97     1.00  1.94 
1.98     0.39  1.81 
1.87     0.86  1.67 
1.21     0.78  1.52 
3.24     1.08  2.09 
2.21     0.91  1.77 
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1.54     0.81  1.57 
0.72     0.72  1.40 
0.98     1.00  1.94 
3.91     0.98  1.90 
3.25     0.98  1.90 
2.43     0.96  1.86 
2.54     0.91  1.77 
1.38     0.81  1.57 
1.49     0.84  1.62 
2.00     1.18  2.29 
0.93     0.72  1.40 
0.67     0.72  1.40 
21.89     6.05  11.75 
3.27     1.00  1.94 
 
 
Barker Reservoir 
 
Sub-watershed Area (mi2)  Tc (hr)  R (hr) 
19.03     1.77  3.43 
2.34     0.91  1.77 
1.95     0.89  1.72 
0.94     0.75  1.46 
3.49     0.96  1.86 
3.69     1.26  2.44 
1.54     0.84  1.62 
1.50     0.84  1.62 
1.37     0.75  1.46 
6.94     1.46  2.83 
3.30     1.04  2.02 
4.24     1.08  2.09 
2.80     0.98  1.90 
4.06     0.84  1.62 
4.53     1.15  2.23 
2.91     1.02  1.98 
2.64     1.06  2.05 
1.71     0.86  1.67 
3.19     0.75  1.46 
5.48     1.26  2.44 
2.52     0.96  1.86 
2.34     0.93  1.81 
1.42     0.81  1.57 
1.23     0.81  1.57 
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0.47     0.75  1.46 
11.14     1.48  2.81 
2.03     0.91  1.77 
1.53     0.78  1.52 
1.14     0.78  1.52 
1.68     1.08  2.09 
0.50     0.75  1.46 
25.20     7.40  14.40 
2.10     1.10  2.13 
1.24     0.81  1.57 
0.36     0.75  1.46 
0.39     0.78  1.52 
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