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The development of improved numerical methods for computer simula-

tion of high velocity impact dynamics is of importance in a variety of science

and engineering fields. The growth of computing capabilities has created a

demand for improved parallel algorithms for high velocity impact modeling.

In addition, there are selected impact applications where experimentation is

very costly, or even impossible (e.g. when certain bioimpact or space debris

problems are of interest). This dissertation extends significantly the class of

problems where particle-element based impact simulation techniques may be

effectively applied in engineering design.

This dissertation develops a hybrid particle-finite element method for a

general hexahedral mesh. This work included the formulation of a numerical

algorithm for the generation of an ellisoidal particle set for an unstructured
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hex mesh, and a new interpolation kernel for the density. The discrete model

is constructed using thermomechanical Lagrange equations. The formulation

is validated via simulation of published impact experiments.
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Chapter 1

Introduction

1.1 Background and motivation

Simulation of high velocity impact dynamics calls for numerical meth-

ods capable of modeling a wide array of physical effects, including general

contact-impact, strong shocks, adiabatic heating, large strain elastic-plastic

deformation, fragmentation, and melting. Three numerical methods are cur-

rently in general use for this class of problems, they are Eulerian finite volume

methods [45], Lagrangian finite element methods [28], and smooth particle hy-

drodynamics (SPH) methods [61]. Each method has advantages and disadvan-

tages. Eulerian hydrocodes model general contact-impact, but difficulties with

interface tracking algorithms can lead to numerical diffusion and inaccurate

modeling of strength effects. As a result they are best suited to extremely high

velocity impact applications where phase changes and multi-material thermo-

dynamics are important. Lagrangian finite element codes offer very accurate

models of material strength effects. However they are affected by mesh dis-

tortion problems and incorporate slideline based contact-impact algorithms,

which require an explicit adaptive description of all contact-impact surfaces.

SPH methods model general contact-impact, but they exhibit numerical frac-

ture and suffer from tensile instabilities. As a result they are not well suited
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to applications where material strength effects are important.

Recent efforts to combine the advantages of particle and finite element

methods have led to the development of both coupled particle-element [35, 36]

and hybrid particle-element [33, 50, 56] methods. The coupled particle-element

methods employ particles to represent part of the interacting material and fi-

nite elements to represent the remaining material. An advantage of this tech-

nique, of particular relevance in the present context, is that material blocks

represented by the finite elements can have a complex geometry. Disadvan-

tages are that the aforementioned limitations of pure particle and pure finite

element methods may not be entirely eliminated, and that additional particle-

to-element contact-impact algorithms and/or particle-to-element mapping al-

gorithms must be introduced. The result can be a numerical method very

difficult to parallelize.

The hybrid particle-element technique described by Shivarama and

Fahrenthold [56], Park and Fahrenthold [50], and Horban and Fahrenthold [33]

employs particles and elements in tandem, to represent all interacting materi-

als. It provides a true Lagrangian description of all material strength effects,

including large strain elastic-plastic deformation and fracture. It incorporates

a general description of all contact-impact effects, without the introduction of

slidelines or interface tracking algorithms. However to date the method has

been limited to simple projectile and target geometries.
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1.2 Objectives and methodology

This dissertation generalizes the hybrid particle-finite element method

described in previous work [33, 50, 56]. It develops a numerical method suit-

able for high velocity impact simulation in applications involving complex

structural geometries. Specifically, the improved method models high velocity

impact dynamics for projectiles and targets described by a general hexahedral

mesh. This objective is accomplished for gradual transitions in hex element

dimensions and for limited hex aspect ratios, restrictions which do allow the

modeling of complex parts and structures. This chapter outlines the major

subtasks accomplished in this research.

1.2.1 Translation and model generation

The first task is translation of a general hex input mesh, produced

for example by commercial mesh generation software, into a particle-element

model. Previous work employs a body centered cubic packing scheme. To re-

duce the overall particle count (in the interest of computational efficiency) and

to avoid the possibility of poorly shaped tetrahedral subelements (previously

employed in tension calculations) the improved method introduces particles

only at the hex vertices. The translation algorithm specifies particle masses,

particle aspect ratios, and particle Euler parameters based on the element ge-

ometry. Although the use of ellipsoidal particles complicates considerably the

translation algorithm, accurate representation of a general hex mesh using a

spherical particle set (used by all alternative particle-based impact simulation

3



methods) would appear to be quite difficult.

1.2.2 Density and rate of dilatation interpolations

The second task is the development of interpolation kernels for both the

density and the rate of dilatation, suitable for application under the nonuni-

form particle mass, particle spacing, and particle orientation distributions

which characterize a general hex mesh. Tests on one dimensional shock prob-

lems have indicated that good solutions can be obtained using inconsistent

interpolations of the density and rate of dilatation. A long range interpola-

tion of the density is desirable for smooth variations in the field properties,

while a short range interpolation of the rate of dilatation is desirable to reflect

the correct contact-impact physics, that is to allow for only near neighbor in-

teraction. Normalization of the interaction distances specified in the kernel

functions is required, to account for nonuniform particle spacing. The normal-

ization is based on particle separation distances in the reference configuration

for the hex mesh. In addition, an appropriate and particle-specific definition

of what constitutes a full neighbor set is established. It is also computed in

the reference configuration.

1.2.3 Thermomechanical Lagrange equations

The stored energy functions, constraint equations, and virtual work ex-

pressions for the system are combined with the canonical Lagrange equations,

to obtain an ODE model for the particle-element system. The formulation in
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the current work involves a synthesis of holonomic and nonholonomic formu-

lations applied separately in previous work [33, 50, 56]. Degenerate Lagrange

equations for the particle internal energies and the damage and plastic vari-

ables make it possible to determine in closed form the Lagrange multipliers

associated with the nonholonomic constraints. This process defines the gener-

alized nonconservative forces in the canonical Lagrange equations and thereby

leads to an explicit state space model for the thermomechanical system. The

developed formulation has been validated via simulations of published three

dimensional impact experiments.

1.3 Summary

The development of improved numerical methods for computer simula-

tion of high velocity impact dynamics is of importance in a variety of science

and engineering fields. The growth of computing capabilities has created a

demand for improved parallel algorithms for high velocity impact modeling.

In addition, there are selected impact applications where experimentation is

very costly, or even impossible (e.g. when certain bioimpact or space debris

problems are of interest). This dissertation extends significantly the class of

problems where particle-element based impact simulation techniques may be

effectively applied in engineering design.
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Chapter 2

Kinematics and Interpolation

2.1 Introduction

This chapter describes the kinematics of the particles and elements used

to formulate the hybrid numerical model, and an algorithm which defines the

ellipsoidal particle set used to represent a general hexahedral mesh.

2.2 Particle Kinematics

The position and orientation of the particles i = 1, ..., n are defined

by a center of mass position vector and an Euler parameter vector for each

particle

c(i) = [ c
(i)
1 c

(i)
2 c

(i)
3 ]T , e(i) = [ e

(i)
0 e

(i)
1 e

(i)
2 e

(i)
3 ]T (2.1)

where a superscript T denotes the transpose, and n is the number of particles.

A general rotation of a body with one point fixed can be expressed as a

single rotation about an axis through that point [2], and the Euler parameters

could be used to describe this rotation as is shown in Figure 2.1. The Euler

Parameters define a rotation matrix for the particle

R(i) = A(i) G(i)T (2.2)

6



where

A(i) =

 −e
(i)
1 e

(i)
0 −e(i)3 e

(i)
2

−e(i)2 e
(i)
3 e

(i)
0 −e(i)1

−e(i)3 −e(i)2 e
(i)
1 e

(i)
0

 (2.3)

and

G(i) =

 −e
(i)
1 e

(i)
0 e

(i)
3 −e(i)2

−e(i)2 −e(i)3 e
(i)
0 e

(i)
1

−e(i)3 e
(i)
2 −e(i)1 e

(i)
0

 (2.4)

The rotation matrix relates Cartesian coordinates defined in fixed and coro-

tating systems

v = R(i) v̂ (2.5)

where v is a vector defined in a fixed system and v̂ is the same vector defined

in a corotating system.

The time derivatives of the Euler parameters are related to the body-

fixed angular velocity components by

ė(i) =
1

2
G(i)T ω(i) (2.6)

The Euler parameters and their time derivatives define the antisym-

metric matrix Ω(i) whose axial vector is the particle angular velocity using

Ω(i)v = ω(i) × v (2.7)

This antisymmetric matrix Ω(i) is related to the Euler parameters and

their time derivatives by the equations

Ω(i) = 2 G(i) Ġ(i)T = −2 Ġ(i)G(i)T = R(i)T Ṙ(i) (2.8)
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2.3 Density interpolation

The hybrid particle-element formulations described in previous work

employ a density interpolation suitable for use on a structured hexahedral

mesh. This work introduces a new density interpolation, suitable for use on a

general hexahedral mesh. The density interpolation is expressed as a function

of the ellipsoidal coordinate

ζ(i,j) =
[ (

c(i) − c(j)
)T

Ĥ(j)
(
c(i) − c(j)

) ] 1
2

(2.9)

where |c(i) − c(j)| is the separation distance of the mass centers of particles i

and j, and

Ĥ(j) = R(j)H(j)R(j)T (2.10)

with

H(j) =

 2βh
(j)
1 0 0

0 2βh
(j)
2 0

0 0 2βh
(j)
3


−2

(2.11)

which is a function of the jth particle semi-major axes (indicated by hk
(j)), and

the positive parameter β allows for close packing of particles at the reference

density. The exponent in equation 2.11 represents in a compact form the

square of the corrected semi-major axes in the denominator of the ellipsoidal

coordinate. Figure 2.2 shows the effect of β for a structured mesh (cubic

elements with side length L = 2). Assuming spherical particles the radius is

1.241, which means that overlapping occurs among particles. To avoid this

overlapping β is computed as 0.806 and the radius is scaled using β (it is now

1) so the particles just touch each other.
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The density interpolation is

ρ(i)

ρ
(i)
o

= 1 +
1

N (i)

n∑
j = 1

[(
ζR(i,j)

ζ(i,j)

)3

− 1

]
W (i,j) (2.12)

where

W (i,j) =


0 if i = j
0 if i 6= j and ζ(i,j) ≥ 1
1 if i 6= j and ζ(i,j) < 1

W (i,j) = (1− δij) û
(
1− ζ(i,j)

)
(2.13)

with δij the Kronecker delta and û the unit step function.

The density in the current configuration is ρ(i), and the density in the

reference configuration is ρ
(i)
o . The term ζR(i,j) in the numerator of equation

2.12 is an ellipsoidal coordinate for the neighbor particle in the reference con-

figuration. This parameter, set to a maximum value of one, normalizes the

interpolation and thereby allows for the density to be computed on a general

hexahedral mesh. The neighbor set count is represented by N (i), and takes

the value of 26 for a structured mesh. In general, this number is computed for

each particle, in the reference configuration, at the start of a simulation.

To illustrate how this density interpolation works, suppose we have a

cube that experiences a uniform compression in such a way that the length

of each side in the current configuration is 1/2 of the length of each side in

the reference configuration. The density has to increase, and is 8 times the

reference density as we can see in Figure 2.3. Now, in the case of a uniform

compression in a general hexahedral mesh the particles move in, as is shown

in figure 2.4; under this uniform compression we can compute the density
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in the current configuration, which is 8 times the density in the reference

configuration as illustrated in Figure 2.5.

It is also important to note the orientation effect of the particles, as can

be see it in Figures 2.6 and 2.7; the number of interacting particles changes

with orientation.

In the case of a consistent interpolation of the density and rate of

dilatation, differentiation of the density interpolation yields

ρ̇(i)

ρo(i)
= − 3

N (i)

n∑
j = 1

ζR(i,j)3

ζ(i,j)3

ζ̇(i,j)

ζ(i,j)
W (i,j) (2.14)

where

ζ̇(i,j) =
1

ζ(i,j)

[ (
Ĥ(j)r(i,j)

)T
ṙ(i,j) + 2

(
H(j)r̂(i,j) × r̂(i,j)

)T
G(j)ė(j)

]
(2.15)

and

r(i,j) = c(i) − c(j), r̂(i,j) = R(j)T r(i,j) (2.16)

Combining these results

ρ̇(i) = − 3

N (i)

n∑
j = 1

ρo
(i) ζ

R(i,j)3 W (i,j)

ζ(i,j)5

[ (
Ĥ(j)r(i,j)

)T
ṙ(i,j)

+
(
H(j)r̂(i,j) × r̂(i,j)

)T
G(j)ė(j)

]
(2.17)

which form will be used in the next chapter to define generalized noncon-

servative forces in the discrete Langrange equations for the particle-element

system.
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2.4 Finite Element Kinematics

The element kinematics take a large strain Lagrangian form. The strain

tensor is

E(j) =
1

2

(
C(j) − I

)
(2.18)

where the right Cauchy-Green strain tensor and deformation gradient are

C(j) = F(j)TF(j), F(j) =
∂x(j)

∂X(j)
(2.19)

and x(j) and X(j) are the position vectors of particle j in the current and

reference configuration respectively.

The elastic strain tensor is defined as

Ee(j) = E(j) − Ep(j) (2.20)

where Ep(j) is the plastic strain tensor. For imcompressible plastic flow the

evolution equations for the plastic strain satisfy

tr
(
Cp(j)−T Ċp(j)

)
= 0, Ep(j) =

1

2

(
Cp(j) − I

)
(2.21)

where Cp(j) is the right Cauchy-Green plastic deformation tensor, and the

superscript −T denotes the transpose of the inverse.

2.5 Generation of the particle model

This section describes an algorithm for the generation of an ellipsoidal

particle model on a general hexahedral mesh. The particles are located at the
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hex nodes; hence this algorithm determines their mass, volume, and orien-

tation. Note that mass and volume are determined independently, to ensure

proper compressive stiffness of the element array, even in the case of a highly

unstructured mesh.

The algorithm proceeds as follows (in this algorithm the index i is for

nodes and index j is for elements):

1. Compute a deformation gradient F(j) for each element, mapping

each element in the reference configuration to a single master element.

2. Compute a normalized deformation gradient F
(j)

for each element

F
(j)

=
(
J(j)
)− 1

3 F(j), J(j) = det F(j) (2.22)

3. Compute a left Cauchy-Green strain tensor B
(j)

for each element

B
(j)

= F
(j)

F
(j)T

(2.23)

4. Compute the mass m(j) for each element

m(j) = V (j)ρ0, V (j) = | det F(j)|V0 (2.24)

where V (j) and Vo are the element volume in the reference configuration and

the master element volume respectively.

12



5. Compute the mass mn(i) for each particle

mn(i) =
1

8

ne∑
j=1

m(j)fij (2.25)

where fij is 1 if node i is in element j, and 0 otherwise.

6. Compute a left Cauchy-Green strain tensor B(i) for each particle

B(i) =
0.125

mn(i)

ne∑
j=1

m(j)B
(j)
fij (2.26)

where i and j are indices for nodes and elements respectively.

7. Compute a normalized left Cauchy-Green strain tensor B
(i)

for each

particle

B
(i)

=
(
J(i)
)− 1

3 B(i), J(i) = det B(i) (2.27)

8. Compute the eigenvalues λ
(i)
k and eigenvectors of B

(i)

9. Compute the semimajor axes for each particle, as follows. First

compute the radius of the mass equivalent sphere

r(i) =

(
3

4π

mn(i)

ρ

) 1
3

(2.28)

Next compute a scaling factor α(i)

α(i) = max

1,

(
m

(i)
r

mn(i)

) 1
3

 (2.29)
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where m
(i)
r is the mass of the largest volume element associated with node i,

this is important in general hex meshes, as shown in Figure 2.8. The semimajor

axes of the ellipsoid are then

hk
(i) = α(i)

(
λ

(i)
k

) 1
2
r(i), k = 1, 2, 3 (2.30)

10. Assemble the direction cosine matrix, with components c
(i)
ij . The

direction cosine matrix is composed of the eigenvectors of B
(i)

.

11. Compute Euler parameters e(i) for the particles [2].

The Euler parameters are computed in two steps. First the Euler pa-

rameter of largest magnitude is determined, using the following equations

4(e0
(i))2 = c

(i)
11 + c

(i)
22 + c

(i)
33 + 1 (2.31a)

4(e1
(i))2 = c

(i)
11 − c

(i)
22 − c

(i)
33 + 1 (2.31b)

4(e2
(i))2 = −c(i)11 + c

(i)
22 − c

(i)
33 + 1 (2.31c)

4(e3
(i))2 = −c(i)11 − c

(i)
22 + c

(i)
33 + 1 (2.31d)

where cij are the elements of the direction cosine matrix.

Once the Euler parameter of largest magnitude is determined, compute

the Euler parameters using the equations

c21 = 2(e
(i)
1 e

(i)
2 + e

(i)
0 e

(i)
3 ) (2.32a)

c12 = 2(e
(i)
1 e

(i)
2 − e

(i)
0 e

(i)
3 ) (2.32b)
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c31 = 2(e
(i)
1 e

(i)
3 − e

(i)
0 e

(i)
2 ) (2.32c)

c13 = 2(e
(i)
1 e

(i)
3 + e

(i)
0 e

(i)
2 ) (2.32d)

c32 = 2(e
(i)
2 e

(i)
3 + e

(i)
0 e

(i)
1 ) (2.32e)

c23 = 2(e
(i)
2 e

(i)
3 − e

(i)
0 e

(i)
1 ) (2.32f)

For example, if e0 is the largest in magnitude, compute the Euler pa-

rameters from

e0 =
1

2
(c11 + c22 + c33 + 1)

1
2 (2.33a)

e1 =
c32 − c23

4e0
(2.33b)

e2 =
c13 − c31

4e0
(2.33c)

e3 =
c21 − c12

4e0
(2.33d)

2.6 Examples

This section describes six examples used to illustrate how a general

hexahedral mesh is translated into a particle model. The first example is a

cylinder with a mesh generated using commercial software. The top face of

the cylinder is shown in Figure 2.9. The particle model for this example is

shown in Figure 2.10.

The second example is a cylindrical projectile for one of the simula-

tions used to validate the formulation presented in this work. The projectile

diameter is 4.36 cm and its length is 5.16 cm. Figure 2.11 shows a four way
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symmetric mesh for the cylinder; this mesh has 1,152 elements and 1,469 nodes.

The minimum edge ratio is 1.0, the maximum edge ratio (the edge ratio is the

ratio of the longest edge length to the shortest edge length) is 1.70 and the

ratio of maximum to minimum element volumes is 2.3. Figure 2.12 illustrates

the particle model for the projectile.

The third example is a plate with a non-uniform mesh; Figure 2.13

shows how the aspect ratio and size of the elements vary throughout the plate.

Figure 2.14 illustrates the particle model for this example; note that ellipsoidal

particles can represent this type of mesh very effectively.

The fourth example is a plate with a gradual transition of the size

and aspect ratio of the elements. In the radial direction the element length

is increasing, with the ratio of outer element to inner element length being

2. Figure 2.15 shows a two dimensional view of the mesh and Figure 2.16

shows the corresponding particle model. Figures 2.17 and 2.18 show a three

dimensional view of the mesh and the particle model respectively.

The fifth example is a spherical projectile used in one of the validation

simulations. The sphere diameter is 1.0 cm, and the finite element model

consists of 1,600 elements and 1,933 nodes. The minimum edge ratio is 1.0,

the maximum edge ratio is 1.5, and the maximum volume ratio is 14.5. Figure

2.19 and Figure 2.20 illustrate the mesh and the particle model respectively.

The last example is the representation of a rod formed by a cylinder

and hemispherical cap. This model is similar to the projectile used in one

16



of the validation simulations. Figure 2.21 shows the mesh, which has 2,368

elements and 2,938 nodes. The minimum edge ratio is 1.0, the maximum edge

ratio is 1.7 and the maximum volume ratio is 11.5. Figure 2.22 depicts the

particle model.
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Figure 2.1: Euler parameters related to a general rotation about a point.
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Figure 2.2: Effect of parameter β in packing of particles.
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Figure 2.3: Uniform compression in a cube.
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Figure 2.4: Uniform compression in a mesh.

21



Figure 2.5: Density increase due to uniform compression in a general mesh
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Figure 2.6: Orientation effect, particle in a reference configuration

Figure 2.7: Orientation effect, particle in a current configuration
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Figure 2.8: Effect of different element sizes associated with a particle
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Figure 2.9: Example 1, cylinder mesh.

Figure 2.10: Example 1, particle model.
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Figure 2.11: Example 2, cylindrical projectile mesh.

Figure 2.12: Example 2, cylindrical projectile particle model.
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Figure 2.13: Example 3, plate mesh.

Figure 2.14: Example 3, particle model.
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Figure 2.15: Example 4, plate mesh.

Figure 2.16: Example 4, particle model.
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Figure 2.17: Example 4, plate mesh three dimensional view.

Figure 2.18: Example 4, particle model three dimensional view.
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Figure 2.19: Example 5, spherical projectile mesh.

Figure 2.20: Example 5, spherical projectile particle model.
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Figure 2.21: Example 6, rod mesh.

Figure 2.22: Example 6, rod particle model.
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Chapter 3

Discrete Lagrange Equations

3.1 Introduction

This chapter develops discrete Lagrange equations for the particle-

element system. It incorporates stored energy functions and dissipative con-

stitutive relations for very general thermomechanical materials. The nonholo-

nomic model developed here is well suited for extension to additional energy

domains. The formulation is validated by comparing simulation results to data

from several published three dimensional impact experiments.

3.2 Kinetic Co-Energy

The system kinetic co-energy is

T ∗ =
n∑

i= 1

T ∗(i) (3.1)

where the total kinetic co-energy (translational and rotational) for particle i

is

T ∗(i) =
1

2
m(i) ċ(i) T ċ(i) +

1

2
ω(i) T J(i) ω(i) (3.2)
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and all inertial effects are modeled with the particles. The system generalized

momenta are

p(i) =
∂T ∗

∂ċ(i)
= m(i) ċ(i) , h(i) =

∂T ∗

∂ω(i)
= J(i) ω(i) (3.3)

where the center of mass velocities are described in a fixed Cartesian frame and

the angular velocities are described in a body-fixed co-rotating frame aligned

with the principal axes of inertia of the particles.

3.3 Potential Energy

The system potential energy depends on both the particles and the

elements. The particle total internal energies U (i) are taken as generalized

coordinates (not the total set of generalized coordinates), while strength effects

are modeled using a strain energy density function for the elements:

V =
n∑

i= 1

U (i) +
ne∑
j = 1

V e(j)
o ψ(j) (3.4)

where n is the number of particles, ne is the number of elements, V
e(j)
o is

the reference volume of element j, and ψ(j) a strain energy density function.

Assuming a linear elasticity model for the elements,

ψ(j) = (1− d(j)) µ(j) tr
(
Ee(j)TEe(j)

)
(3.5)

where µ(j) is a shear modulus, d(j) is a shear damage variable, and Ee(j) is the

elastic strain tensor for element j. As noted in the chapter on kinematics, the

elastic strain tensor depends on the nodal coordinates and the plastic strain

Ee(j) = Ee(j)
(
c(i),Ep(j)

)
(3.6)
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so that the final functional form for the stored energy is

V = V
(
U (i), c(i), d(j),Ep(j)

)
(3.7)

where the particle internal energies U (i), particle center of mass position vectors

c(i), the element shear damage variables d(j), and element plastic strain tensors

Ep(j) are the entire set of generalized coordinates.

The generalized conservative forces for particle i are therefore

1 =
∂V

∂U (i)
, f (i) =

∂V

∂c(i)
(3.8)

Note that the derivative with respect to internal energy is one.

The elastic stress tensor and the damage strain energy release rate are

S(j) = − 1

V
e(j)
o

∂V

∂Ep(j)
, Γd(j) = − ∂V

∂d(j)
(3.9)

This formulation admits equations of state in general thermomechanical

form, and may be generalized, for example to anisotropic materials.

3.4 Plasticity and Damage Models

The dissipative material models used here incorporate large strain kine-

matics and a general thermomechancial dependence. The models are adapted

from references [21, 49], and the plastic flow rule is

Ėp(j) =
λ̇(j)

||Sp(j)||
Np(j) N Sp(j) (3.10)
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where λ̇(j) is a positive coefficient, Sp(j) is an effective deviatoric stress, the

stress tensor used in the yield function.

Sp(j) = NT Np(j)T S(j) (3.11)

with S(j) a deviatoric stress tensor. The moduli in the flow rule are

Np(j) T =
1

2 ||Cp(j)||
(Cp(j) T + T Cp(j)) (3.12)

where T is any second order tensor, Cp(j) is the right Cauchy-Green plastic

deformation tensor, and

N T = T− 1

3
tr(T) I (3.13)

with I the identity tensor and

||T|| =
[

1

2
tr
(
TTT

)]1/2

(3.14)

Note that Np(j) is used to enforce the plastic incompressibility constraint. The

yield function is

f (j) = ||Sp(j)|| − Y (j) (3.15)

where Y (j) is the yield stress

Y (j) = Y (j)
o (1− d(j)) (1 + κ(j)εp(j))α

(j) (
1− η(j)θH(j)

)
(3.16)

In the last equation Y
(j)
o is the reference yield stress, κ(j) is a strain harden-

ing coefficient, εp(j) is the effective plastic strain, α(j) is a strain hardening

exponent, η(j) is a thermal softening coefficient, and θH(j) is the homologous

temperature, defined by

θH(j) =
θ − θo
θm − θo

(3.17)
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with θ the temperature, θo the reference temperature, and θm the melting

temperature. The accumulated plastic strain is obtained by integrating the

rate equation

ε̇p(j) = ||Ėp(j)|| (3.18)

This rate independent plasticity model is implemented in incremental form,

with

∆λ(j) =
< ||Sp(j)|| − Y (j) >

(1− d(j)) 2 µ(j)
(3.19)

determining the scalar multiplier for the plastic strain increment. Here <>

are the Mcauley brackets (i.e. < x >= x if x > 0 and x = 0 otherwise).

A simple damage evolution relation

ḋ(j) =
Λ(j)

∆t
û(1− d(j)) (3.20)

is used here for the sole purpose of modeling the transition from an intact to

a comminuted medium. The parameter Λ(j) is the damage increment in one

time step, taken in the example simulations to be one half.

3.5 Artificial Viscosity

The artificial viscosity formulation used here is typical of shock physics

codes, except that the use here of ellipsoidal particles requires the introduction

of a damping torque. The damping force acting at the particle centers of mass

is

fv(i) =
n∑

j = 1

ν(i,j) max
(
0, v(i,j)

) ( c(i) − c(j)
)

| c(i) − c(j) |
û(1− ζ(i,j)) (3.21)
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where v(i,j) is the relative normal velocity

v(i,j) = −
(

ċ(i) − ċ(j)
)
·
(

c(i) − c(j)
)

| c(i) − c(j) |
(3.22)

and ν(i,j) the numerical viscosity

ν(i,j) =
co
2

(
ρ(i)
o c(i)s V

(i)
o

2
3 + ρ(j)

o c(j)s V (j)
o

2
3

)[
1 +

2 c1|v(i,j)|
(c

(i)
s + c

(j)
s )

]
(3.23)

and contains both linear and quadratic terms, where co and c1 are nondimen-

sional numerical viscosity coefficients, cs is the soundspeed for particle i, and

V
(i)
o is the reference volume for the particle. The damping torque is

Mv(i) =
n∑

j = 1

σ(i,j) R(i)T
(

R(i)ω(i) −R(j)ω(j)
)
û(1− ζ(i,j)) (3.24)

where the torsional damping coefficient define between particles i and j is

σ(i,j) =
co
2

(
ρ(i)
o c(i)s V

(i)
o

4
3 + ρ(j)

o c(j)s V (j)
o

4
3

)
(3.25)

3.6 Internal Energy Evolution Equations

In the thermomechanical Lagrange equation formulation used here, the

particle internal energies are generalized coordinates. Their evolution relations

are

U̇ (i) = U̇ com(i) + U̇ irr(i) − U̇ con(i) (3.26)

where the three terms represent work done in particle compression U̇ com(i),

irreversiblle entropy production U̇ irr(i), and numerical heat diffusion U̇ con(i).

The compression term is simply

U̇ com(i) = −m
(i) P (i)

ρ(i)2
ρ̇(i) (3.27)
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where P (i) is the pressure. The irreversible entropy production is associated

with viscous forces and torques, as well as conduction (to the particles) of

energy dissipated in the elements

U̇ irr(i) = fv(i)
T
ċ(i) + Mv(i)Tω(i) +

n∑
j = 1

φ(i,j) Q̇irr(j) (3.28)

with fv(i) a viscous force, Mv(i) a viscous torque, φ(i,j) the fraction of the

dissipation in element j transmitted to particle i, and Q̇irr(j) the power flow

due to shear damage evolution and plastic deformation in element j

Q̇irr(j) = Γd(j)ḋ(j) + V e(j)
o tr

(
S(j)T Ėp(j)

)
(3.29)

Finally the numerical heat diffusion is

U̇ con(i) = R(i,j) ( θ(i) − θ(j) ) (3.30)

where the numerical heat transfer coefficient is

R(i,j) =
ko
2

(
ρ(i)
o c(i)s c

(i)
v V

(i)
o

2
3 + ρ(j)

o c(j)s c(j)v V (j)
o

2
3

)
(3.31)

with ko a numerical heat diffusion coefficient and cv
(i) the specific heat at

constant volume.

3.7 Lagrange’s Equations

The canonical Lagrange equations for the particle element system are

ṗ(i) = −f (i) + qc(i), ċ(i) = m(i)−1 p(i) (3.32)
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ḣ(i) = −Ω(i)h(i) + Qc(i), ė(i) =
1

2
G(i)TJ(i)−1h(i) (3.33)

where

∂V

∂d(j)
= Qd(j),

∂V

∂U (j)
= QU(j),

∂V

∂Ep(j)
= Qp(j) (3.34)

with qc(i), Qc(i), QU(i), Qd(i), and Qp(j) the generalized forces determined by

the nonholonomic constraints. Introducing Lagrange multipliers γU(i), γd(j),

and Xp(j) for the constraints, which are the evolution equations for internal

energy, damage, and plastic strain, yields

qc(i) = −γU(i) fv(i) +
3

N (i)

n∑
j = 1

[
γU(i) ζR(i,j)3 ρ(i)

o

W (i,j)

ζ(i,j)5
Ĥ(j)r(i,j)

−γU(j) ζR(j,i)3 ρ(j)
o

W (j,i)

ζ(j,i)5
Ĥ(i)r(j,i)

]
(3.35)

Qc(i) = −γU(i) Mv(i)

+
3

N (i)

n∑
j = 1

γU(j) ζR(j,i)3 ρ(j)
o

W (j,i)

ζ(j,i)5

(
H(i)r̂(j,i) × r̂(j,i)

)
(3.36)

QU(i) = γU(i) (3.37)

Qd(j) = γd(j) −
n∑

i= 1

γU(i) φ(i,j) Γd(j) (3.38)

Qp(j) = Xp(j) −
n∑

i= 1

γU(i) φ(i,j) V (j)
o S(j) (3.39)

The unknown Lagrange multipliers may be determined in closed form,

using the degenerate Lagrange equations for internal energy, damage, and

plastic strain. The last terms in equations 3.35 and 3.36 arise from the work
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done in particle compression. The final Lagrange equations are

ṗ(i) = −f (i) − fv(i) + q(i) (3.40)

ḣ(i) = −Ω(i)h(i) −Mv(i) + Q(i) (3.41)

ċ(i) = m(i)−1 p(i) (3.42)

ė(i) =
1

2
G(i)TJ(i)−1h(i) (3.43)

where the generalized forces and torques due to particle interactions are

q(i) =
3

N (i)

n∑
j = 1

(
V (i)
o ζR(i,j)3 P

(i)

ρ(i)2

W (i,j)

ζ(i,j)5
Ĥ(j)

+V (j)
o ζR(j,i)3 P

(j)

ρ(j)2

W (j,i)

ζ(j,i)5
Ĥ(i)

)
r(i,j) (3.44)

Q(i) =
3

N (i)

n∑
j = 1

V (j)
o ζR(j,i)3 P

(j)

ρ(j)2

W (j,i)

ζ(j,i)5

(
H(i)r̂(j,i) × r̂(j,i)

)
(3.45)

3.8 Example Simulations

This section describes three example problems used to validate the

model developed in this work. In these simulations chemical reactions were

not modeled. The first example involves the impact of an aluminum sphere

on an aluminum plate. The experiment is described in references [52] and

[53]. The thickness of the plate is 0.25 cm and the diameter of the projectile

is 1.0 cm. This is a normal impact problem. The velocity of the projectile

is 6.7 km/s and the target is fixed. The model employed 162,380 particles.
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The material properties used for the simulation are listed in Table 3.1 and the

simulation parameters are listed in Table 3.2.

The meshes for both the target and the projectile are shown in Figure

3.1. The spherical projectile mesh has a mimimum edge ratio of 1.0 and

a maximum edge ratio of 1.57; the volume ratio is 14.5. The target has a

graded mesh with aspect ratios of 1.5:1.5:1.0 for the elements at the center and

3.0:3.0:1.0 for the elements at the corners; the volume ratio is 4.0. Figures 3.2

and 3.3 plot the maximum aspect ratio for the plate and projectile respectively.

The initial configuration for this impact problem is shown in Figure

3.4. The physical time for the simulation was 25 microseconds. Figures 3.5

(front view) and 3.7 (back view) show the results at 25 microseconds after

impact. Figures 3.6 (front view) and 3.8 (back view) show the element plots.

The comparison of the hole diameter with experiment shows good agreement;

the simulation result is 2.157 cm and the experimental value 2.125 cm [52], an

error of 1.5%.

The second example problem is the oblique impact of a depleted ura-

nium, 0.75% titanium rod on a steel plate, an experiment described by Hertel

[30]. The target thickness is 0.64 cm, and the projectile has a diameter of 0.767

cm and a length to diameter ratio of 10. The obliquity is 73.5 degrees; the

projectile velocity is 1.21 km/s. The velocity of the plate is 0.217 km/s. The

model employed 240,958 particles. The material properties for this example

are in Table 3.3 and the simulation parameters are in Table 3.4.
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The meshes for the projectile and the target are shown in Figure 3.9.

The rod projectile mesh has a minimum edge ratio of 1.0 and a maximum edge

ratio of 1.53; the volume ratio is 6.1. The target plate has a graded mesh with

aspect ratios of 1.5:1.5:1.0 for the elements at the center and 3.0:3.0:1.0 for the

elements at the corners; the volume ratio is 4.0. The mesh quality (measured

using the maximum aspect ratio) for the target is shown in Figure 3.10 and

for the projectile in Figure 3.11.

Figure 3.12 shows the initial configuration for this example problem.

The physical time for this simulation is 150 microseconds; the simulation re-

sults at this time are shown in Figures 3.13 (front view) and 3.15 (back view).

The intact element plots at 150 microseconds are shown in Figures 3.14 (front

view) and 3.16 (back view). The simulation results show good agreement for

residual projectile length and residual projectile velocity. The simulation re-

sult for the residual length is 4.78 cm and the experimental value is 5.55 cm

[30], an error of 13.8%. For the residual velocity the simulation result is 0.98

km/s and the experimental value is 1.07 km/s [30], an error of 8.0 %.

The third example models the impact of an aluminum cylinder projec-

tile on an aluminum target plate, an experiment described in reference [59].

The projectile has a diameter of 4.36 cm, a length of 5.16 cm and a yaw of 1.44

degrees. The target thickness is 5.04 cm. The velocity of the projectile is 2.137

km/s while the target is free. The model has 254,544 particles. The material

properties for this case are listed in Table 3.5 and the simulation parameters

are in Table 3.6.
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Figure 3.17 shows the target and projectile meshes. The cylindrical

projectile mesh has a minimum edge ratio of 1.0 and a maximum edge ratio

of 1.70, the volume ratio is 2.3. The target plate has a graded mesh with

aspect ratios of 1.5:1.5:1.0 for the elements at the center and 3.0:3.0:1.0 for

the elements at the corners; the volume ratio is 4.0. Figures 3.18 and 3.19

show the mesh quality (measured using the maximum aspect ratio) for the

target and the projectile respectively.

The initial configuration for this example problem is illustrated in Fig-

ure 3.20. The physical time for this simulation was 500 microseconds. Figures

3.21 (front view) and 3.23 (back view) show particle plots for this time. Intact

element plots are illustrated in Figures 3.22 (front view) and 3.24 (back view).

Comparison of the results of this simulation with the experimental results [59]

are mixed. The hole diameter for the simulation is 10.4 cm; the experimental

value is 9.80 cm, an error of 6.1%. The mass removed in the simulation is

1.47 kg; the experimental value is 1.81 kg, an error of 18.6%. Note that spall

effects were not considered in the simulation.
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Table 3.1: Material properties for aluminum sphere impact problem

Reference density (g/cc) 2.70
Reference speed of sound (cm/µsec) 0.524

Reference shear modulus (Mbar) 0.276
Reference yield stress (Mbar) 0.00276

Plastic failure strain 0.25
Plastic hardening exponent 0.10
Plastic hardening modulus 125

Maximum tensile strain 1.0
Specific heat (Mbar cm3/ g K) 0.885e-5

Melt temperature (K) 1,220
Thermal softening modulus 1.0

Table 3.2: Simulation parameters for aluminum sphere impact problem

Projectile diameter (cm) 1.00
Projectile velocity (km/s) 6.7

Plate thickness (cm) 0.25
Number of particles 162,380

Simulation time (µsec) 25
Wall clock time (hrs) 7.77
Number of proccesors 64
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Table 3.3: Material properties for uranium alloy rod impact problem

Property Projectile Target
Reference density (g/cc) 18.62 7.81

Reference speed of sound (cm/µsec) 0.2567 0.4578
Reference shear modulus (Mbar) 0.740 0.801

Reference yield stress (Mbar) 0.0095 0.0120
Plastic failure strain 0.25 0.10

Plastic hardening exponent 0.095 0.50
Plastic hardening modulus 1000 2

Maximum tensile strain 1.0 1.0
Specific heat (Mbar cm3/ g K) 0.111e-5 0.448e-5

Melt temperature (K) 1,710 2,310
Thermal softening modulus 1.0 1.0

Table 3.4: Simulation parameters for uranium alloy rod impact problem

Projectile material Uranium alloy
Projectile diameter (cm) 0.767
Projectile length (cm) 7.67

Projectile velocity (km/s) 1.21
Obliquity (deg) 73.5
Plate material Steel

Plate thickness (cm) 0.64
Plate velocity (km/s) 0.217
Number of particles 240,958
Simulation time (µs) 150
Wall clock time (hrs) 13.58
Number of proccesors 64
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Table 3.5: Material properties for cylinder impact problem

Reference density (g/cc) 2.70
Reference speed of sound (cm/µsec) 0.524

Reference shear modulus (Mbar) 0.276
Reference yield stress (Mbar) 0.00276

Plastic failure strain 0.25
Plastic hardening exponent 0.10
Plastic hardening modulus 125

Maximum tensile strain 1.0
Specific heat (Mbar cm3/ g K) 0.885e-5

Melt temperature (K) 1,220
Thermal softening modulus 1.0

Table 3.6: Simulation parameters for cylinder impact problem

Projectile diameter (cm) 4.36
Projectile length (cm) 5.16

Projectile velocity (km/s) 2.137
Total yaw (deg) 1.44

Plate thickness (cm) 5.04
Number of particles 254,544
Simulation time (µs) 500
Wall clock time (hrs) 19.62
Number of proccesors 64
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Figure 3.1: Aluminum sphere impact problem mesh.
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Figure 3.2: Aluminum sphere impact problem, maximum aspect ratio for the
target mesh.Blue and red colors indicate the zones with the lowest and highest
aspect ratio respectively.
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Figure 3.3: Aluminum sphere impact problem, maximum aspect ratio for the
projectile mesh.Blue color indicates the zone with the lowest aspect ratio.
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Figure 3.4: Aluminum sphere impact problem, element plot of the initial con-
figuration.

50



Figure 3.5: Aluminum sphere impact problem, particle plot of the simulation
results at 25 microseconds (front view).
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Figure 3.6: Aluminum sphere impact problem, element plot of the simulation
results at 25 microseconds (front view).
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Figure 3.7: Aluminum sphere impact problem, particle plot of the simulation
results at 25 microseconds (back view).
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Figure 3.8: Aluminum sphere impact problem, element plot of the simulation
results at 25 microseconds (back view).
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Figure 3.9: Uranium alloy rod impact problem mesh.
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Figure 3.10: Uranium alloy rod impact problem, maximum aspect ratio for
the target mesh.Blue and red colors indicate the zones with the lowest and
highest aspect ratio respectively.
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Figure 3.11: Uranium alloy rod impact problem, maximum aspect ratio for
the projectile mesh.Blue color indicates the zones with the lowest aspect ratio.
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Figure 3.12: Uranium alloy rod impact problem, element plot of the initial
configuration.
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Figure 3.13: Uranium alloy rod impact problem, particle plot of the simulation
results at 150 microseconds (front view).
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Figure 3.14: Uranium alloy rod impact problem, element plot of the simulation
results at 150 microseconds (front view).
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Figure 3.15: Uranium alloy rod impact problem, particle plot of the simulation
results at 150 microseconds (back view).
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Figure 3.16: Uranium alloy rod impact problem, element plot of the simulation
results at 150 microseconds (back view).
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Figure 3.17: Cylinder impact problem mesh.
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Figure 3.18: Cylinder impact problem, maximum aspect ratio for the target
mesh.Blue and red colors indicate the zones with the lowest and highest aspect
ratio respectively.
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Figure 3.19: Cylinder impact problem, maximum aspect ratio for the projectile
mesh.Blue color indicates the zones with the lowest aspect ratio.
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Figure 3.20: Cylinder impact problem, element plot of the initial configuration.
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Figure 3.21: Cylinder impact problem, particle plot of the simulation results
at 500 microseconds (front view).
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Figure 3.22: Cylinder impact problem, element plot of the simulation results
at 500 microseconds (front view).
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Figure 3.23: Cylinder impact problem, particle plot of the simulation results
at 500 microseconds (back view).
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Figure 3.24: Cylinder impact problem, element plot of the simulation results
at 500 microseconds (back view).
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Chapter 4

Simulation of Orbital Debris Impact on the

Space Shuttle Wing Leading Edge

4.1 Introduction

The debris environment in low earth orbit represents a significant haz-

ard for manned spacecraft. The International Space Station (ISS) was designed

with this environment in mind, and its habitable modules incorporate shielding

for centimeter-size aluminum particles impacting at relative velocities of 5-15

km/s. The Space Shuttle, developed in the 1970’s and subject to the severe

design constraints of a reusable launch vehicle, is less well protected from de-

bris impact effects. Fortunately the limited duration of shuttle flights and the

orbiter’s small cross section (as compared to ISS) mean that the probability of

significant orbital debris impact damage is low. In addition, shuttle operating

practices take careful account of the debris hazard. Vehicle orbit can be ad-

justed to give wide berth to objects detected on radar, and vehicle orientation

is selected to minimize the exposure of vulnerable structural components to a

high debris flux.

NASA closely monitors orbital debris impact effects on the shuttle fleet,

since the vehicles are routinely damaged by very small particle impacts. In
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addition NASA has performed hypervelocity impact tests [10] on critical com-

ponents of the orbiter, to asses their vulnerability. However the current imi-

tations of light gas gun technology and other hypervelocity testing techniques

mean that experiments cannot be performed over the entire debris mass and

velocity range of interest. Hence considerable attention has focused on the

use of numerical simulation, as an adjunct to experiment, to estimate the ef-

fects of orbital debris impacts at velocities and kinetic energies outside the

experimental range.

The recent loss of the shuttle Columbia [55], the result of launch de-

bris impact, has highlighted long standing concerns over possible orbital de-

bris impact damage to the spacecraft thermal protection system (TPS). Al-

though both ceramic tile and reinforced carbon-carbon components of the TPS

have been tested [13, 39] to quantify the effects of hypervelocity impact, the

aforementioned limitations of current experimental methods motivate comple-

mentary numerical simulation work, to extrapolate the available experimental

results into a higher velocity regime. The present chapter describes a series

of simulations performed to study the effects of impact obliquity, projectile

shape, and projectile orientation on hypervelocity impact damage to a critical

component of the shuttle TPS. The simulations model impact effects on re-

inforced carbon-carbon, used to fabricate the orbiter wing leading edge, and

include velocities and projectile shapes representative of the on-orbit debris

environment but difficult or impossible to test in the laboratory. The results

of the simulations are compared to the available experimental data base, and
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scaling of the experimental and simulation data to describe other impact con-

ditions is suggested. The analytical methodology applied here has application

in other hypervelocity impact research where a purely experimental approach

is impractical or where high material costs and long test article fabrication

times suggest that a coordinated experimental and computational study is

appropriate.

The present research extends the work of Park and Fahrenthold [51],

who developed a new orthotropic elastic-plastic constitutive model for rein-

forced carbon-carbon (RCC), validated the model in simulations of published

hypervelocity impact experiments, and applied the model to study RCC per-

foration at velocities as high as 13 km/s. In particular they quantified the

dependence of RCC perforation diameter on projectile mass, for spherical pro-

jectiles at an impact obliquity of 45 degrees, and scaled the simulation results

with normal impact momentum. The simulation work described here assumes

a fixed projectile mass, but varies the impact obliquity, projectile shape, and

projectile orientation in order to study impact conditions representative of

on-orbit debris but not realized in published experiments.

As previously noted, the present work takes as a starting point the val-

idated RCC material model of Park and Fahrenthold [51]. To provide appro-

priate context, the next section briefly outlines the latter work, and provides

basic references on RCC properties, material testing, and composite material

constitutive modeling employed in the development of the orthotropic elastic-

plastic formulation. In addition, the next section briefly outlines the numerical
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method applied in the present chapter, including recent improvements intro-

duced by Park and Fahrenthold [50]. Details on the RCC material model and

the improved numerical method not included here are provided in the last two

cited references as well as the dissertation of Park [49].

4.2 Numerical Method and Material Model

The simulations described in the present work employed the hybrid

particle-finite element method of Shivarama and Fahrenthold [56], along with

recent improvements in the method introduced by Park and Fahrenthold [50].

The improved formulation introduces density and internal energy as state vari-

ables, whose evolution is described by explicit first order rate equations, which

are nonholonomic constraints on the general thermomechanical Lagrange equa-

tion formulation. These changes improve the numerical method in three re-

spects: its algebraic form is simplified, its computational cost is reduced, and

it now directly admits equations of state in standard density-internal energy

form. The revised formulation avoids the introduction of any kernel functions,

for either the density or rate of dilatation. A penalty repulsion potential may

be used, to insure that no two particle centers of mass ever overlap; however,

numerical tests show that the stored energy associated with this repulsion po-

tential is negligible. As compared to the kernel based formulation of Shivarama

and Fahrenthold [56], computational costs are reduced by approximately one

third.

The simulations discussed in the sections which follow apply an or-
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thotropic elastic-plastic constitutive model for reinforced carbon-carbon, de-

veloped and validated by Park and Fahrenthold [51]. The formulation is based

on a general Lagrangian measure of the deviatoric strain and its additive de-

composition into elastic and plastic parts. The finite strain kinematics account

for all large deformation effects, including material reference frame dependence

of the mechanical response. The elasticity model incorporates differences in

elastic moduli in tension and compression. The non-associated plastic flow

rule includes strain hardening, strain rate hardening, and thermal softening

effects and an effective stress description of strength anisotropy. The general

elastic-plastic formulation satisfies all first and second law thermodynamic

constraints. This constitutive model is an extension of the formulation of

Fahrenthold and Horban [21] to an orthotropic case commonly of interest for

hypervelocity impact simulation in composite materials [1, 29]. Material prop-

erties used here were obtained from published experimental data [9], including

recent experiments performed by Lu et al. [40] on RCC in support of the

Columbia accident investigation. Some reference properties for the materials

of interest in the present paper are provided in Table 4.1. References [51]

and [49] include a complete listing of all material properties and a detailed de-

scription of the rate dependent anisotropic RCC model used in the simulations

reported in this paper.

In addition to the aforementioned work directed at improving the hy-

brid particle-element method and the associated material modeling framework,

its parallel implementation has been recently improved. In previous work

75



Fahrenthold and Shivarama [23] described an OpenMP [11] implementation

and presented speedup data on its parallel performance. This parallel imple-

mentation has recently been extended, by introducing message passing routines

which allow for execution on distributed memory systems. The current parallel

implementation is hybrid OpenMP-MPI [48], which allows for shared memory

parallelism on large nodes, with message passing between nodes. Alternately

the implementation may be run in pure OpenMP mode on a single node or in

pure MPI mode on clusters. Tables 4.2 and 4.3 provide speedup data for fixed

size problems run on 1 to 16 processors in pure OpenMP mode and on 16 to 64

processors in hybrid OpenMP-MPI mode (in the latter case using 8-processor

nodes). Experience to date indicates that the best performance is obtained

by maximizing the use of shared memory. This result is not surprising, since

particle methods must track a time varying neighbor set for each particle, and

the computational cost of the associated message passing can be substantial.

4.3 Space Shuttle Wing Leading Edge

The Space Shuttle wing leading edge is constructed of silicon carbide

coated carbon-carbon composite panels, nominally 0.63 cm in thickness, in-

cluding coating layers 0.08 cm in thickness located on both exterior and in-

terior panel surfaces. These panels are a critical component of the spacecraft

thermal protection system, protecting the aluminum wing structure from the

very high temperatures which develop at the wing leading edge during re-

entry. Although carbon-carbon maintains its strength at high temperatures,
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it is subject to oxidation during re-entry. To prevent oxidation a silicon car-

bide coating is applied, and the resulting RCC composite offers a solution to

a difficult thermal protection problem for reusable space vehicles.

Possible perforation of the RCC panels under orbital debris impact is

clearly a concern, and has been studied by NASA in previous experiments.

Christiansen and Friesen [13] and Lyons et al. [39] performed light gas experi-

ments to investigate the hypervelocity impact response of RCC, and measured

perforation diameters and the extent of coating spall for a number of different

projectile masses and impact obliquities, for spherical projectiles at velocities

below 8 km/s. The extent of coating spall is of interest, since carbon-carbon

material exposed by coating spallation is subject to oxidation under re-entry

conditions, as demonstrated in experiments performed by Curry et al. [15].

The simulation work discussed here is focused on the potential vehicle failure

mode just outlined, in particular predicting the size of RCC perforations and

the extent of coating spall for orbital debris impact problems which cannot

be studied experimentally. Hence all of the impact simulations described here

involved combinations of projectile mass, velocity, and obliquity expected to

perforate an RCC panel with the aforementioned nominal dimensions. Lesser

impact-induced damage, such as spall or delamination without perforation, is

also of interest but is not considered in the present paper. In all of the simula-

tions discussed in the present paper, eccentricity of the modeled perforations

and spalled regions and differences between the front and back surface target

damage were modest; hence the sections which follow describe impact damage
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in terms of average diameters. In the case of near-ballistic-limit impacts, de-

lamination without perforation, or other complex impact problems, accurately

quantifying the simulation results will likely be much more difficult.

4.4 Disc Impact Simulations

The first set of simulations assumed a disc shaped aluminum projectile

with a diameter of 0.628 cm, a mass of 0.35 g, and a length-to-diameter ratio

of 2/3. The modest deviation from a spherical geometry allows for an approxi-

mate comparison of the simulation results with light gas gun data for spherical

projectiles at 7 km/s. Simulations were performed for three different impact

velocities (7, 10, and 13 km/s) and four different impact obliquities (15, 45, 60,

and 75 degrees, with zero degrees a normal impact). Figures 4.1 through 4.4

show simulation results at an obliquity of 45 degrees and an impact velocity of

7 km/s, depicting perforation and coating spall similar to that observed in light

gas gun experiments. Parameters of all the simulations are listed in Tables

4.4 and 4.5, including wall clock (WC) time required for execution on shared

memory systems (IBM p655 and p690) and an Intel (Cray-Dell) cluster. In

Table 4.4, the parameters W and Ne represent the width of the square target

plate and the number of elements used to span the target plate thickness.

An initial set of simulations was performed at an impact obliquity of 45

degrees, for various mesh densities, in order to evaluate numerical convergence

of the results. Figures 4.5 and 4.6 plot numerical convergence of the simulation

results for average perforation diameter and average coating spall diameter
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at three different impact velocities. The latter diameters were obtained by

averaging results for the width of the perforation and width of the spalled

region, measured parallel to and perpendicular to the shot line on projection

plots of the simulation results. The data in Figure 4.5 show that the results for

average perforation diameter are converged at Ne = 8, for which six elements

span the carbon-carbon while only one element spans the coating. The data

in Figure 4.6 indicate that converged results for the average coating spall

diameter require a much finer mesh, with Ne = 24, for which three elements

span the coating. Only the 7 km/s case was run at the highest mesh density

(Ne = 32), since such simulations are quite expensive, requiring (see Table

4.5) approximately 53 wall clock days on 32 processors. In the case of the

production calculations, a mesh density corresponding to Ne = 16 was selected,

since computer resource requirements precluded extensive simulations at a

mesh density sufficient to fully converge the results for coating spall. At Ne

= 16 the simulation results provide a fully converged estimate of perforation

diameters, however there is some convergence error for coating spall.

Figures 4.7 and 4.8 plot the results of the production calculations for

perforation diameter and coating spall diameter, as a function of impact obliq-

uity and impact velocity. At a given obliquity, the perforation and spall diam-

eters increase with impact velocity, in an approximately linear fashion. Given

the rate dependence and high temperature strength of carbon-carbon materi-

als, this result is not unexpected. By contrast the dependence of perforation

and spall diameter on impact obliquity is highly nonlinear, with the results
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at 15 and 45 degree obliquities very close. This suggests a dependence of the

damage on the normal component of impact velocity. In an attempt to scale

the simulation results, and to provide an approximate comparison with exper-

imental data for spherical projectiles, Figures 4.9 and 4.10 plot the variation

of perforation diameter and spall diameter with normal impact momentum.

Note that Christiansen and Friesen [13] have previously scaled experimental

RCC impact data with normal impact momentum. In the case of the perfora-

tion data, Figure 4.9 shows that the simulations (disc projectile, L/D = 2/3)

and the experiments (spherical projectile, references [13] and [39]) scale with

normal impact momentum, overlapping in a significant portion of the momen-

tum regime considered. In the case of the spall data, Figure 4.10 suggests that

at impact velocities well above the ballistic limit, the simulations and experi-

ments [13] again scale with normal impact momentum. In this case however

the momentum overlap with the experimental data is limited. In summary, the

preceding analysis offers a partial validation of the simulations and suggests

that momentum scaling may be used to extrapolate experimental data outside

the velocity regime currently accessible using light gas gun technology.

4.5 Plate Impact Simulations

It appears that all of the published experimental data on hypervelocity

impact in RCC involves spherical projectiles. However much of the debris in

low earth orbit is believed to have a flat plate geometry. A second series of

simulations was therefore performed for flat plate projectiles, to investigate
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projectile shape and orientation effects on impact damage to RCC. The sim-

ulations assumed a square plate projectile with a width to thickness ratio of

10.6 and a projectile mass (0.35 g) the same as the disc projectiles discussed

in the last section. Velocities of 7, 10 and 13 km/s were again modeled, and all

of the simulations assumed an impact obliquity of 45 degrees. Three different

(orthogonal) projectile orientations were considered, here referred to as flat

surface, long edge, and short edge impacts. In each case the velocity vector

was aligned with a principal axis of the projectile. Figures 4.11 through 4.14

show a representative short edge impact at 13 km/s, depicting perforation and

coating spall similar to that shown in the disc impact case. Table 4.6 lists the

simulation parameters for all nine cases, run on 32 processors of an IBM p690

at the resolution level Ne = 16.

The simulation results are plotted in Figures 4.15 and 4.16, and show a

near linear variation of perforation diameter and coating spall diameter with

impact velocity, for a given projectile orientation. The short edge impacts are

the most damaging, while the results for the flat surface and long edge impacts

are similar. Table 4.7 compares the results of the short edge impact cases with

those for a disc projectile of the same mass and impact obliquity, at all three

velocities modeled in the present paper. The tabulated data is the ratio by

which the perforation diameter and coating spall diameter increase due to a

change in projectile shape from disc to flat plate, for the most damaging plate

impact orientation. The projectile shape effect ranges from 8 to 17 percent,

and is most pronounced at the lowest impact velocity. The modest increase in
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damage is likely due to the fact that the simulations consider impact conditions

well above the ballistic limit.

4.6 Conclusion

The present work has described a series of three dimensional hyperve-

locity impact simulations performed to investigate the effects of orbital debris

impact on the Space Shuttle wing leading edge, including velocities outside the

experimental range. It extends the work of Park and Fahrenthold [51], who

developed and validated an orthotropic elastic-plastic model for reinforced

carbon-carbon and applied it to study the effect of projectile mass on RCC

impact damage. The simulations described here quantify the effects of impact

obliquity, projectile shape, and projectile orientation on perforation diameter

and spalled region diameter under impact conditions representative of the on-

orbit environment. The computational cost of these simulations was found to

be considerable. Consistent with previous experimental work [13], the simula-

tion results suggest the use of momentum scaling to extrapolate the available

experimental data base. They also indicate that projectile shape and orien-

tation effects are modest in the case of flat plate impacts above the ballistic

limit.

Several areas are suggested for future work. The simulations presented

here employed the best material property data available to the author; how-

ever, the complex nature of the RCC material suggests that additional material

property testing is needed, perhaps to provide tabulated equations of state for
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use in the high velocity impact regime. Higher resolution models are needed

for further study of coating spall effects, in particular for near ballistic limit

impacts. Finally additional impact experiments are needed, at higher impact

velocities, to validate proposed extrapolations outside the existing experimen-

tal data base. Inhibited shaped charge launchers [62] or multi-stage gas guns

[12] may provide a means for validation of proposed extrapolations.
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Table 4.1: Material properties

Material property Aluminum Silicon Carbon-
Carbide Carbon

Reference density (g/cc) 2.70 3.21 1.58
Reference speed of sound (cm/µsec) 0.539 0.829 0.191

Mie-Gruneisen gamma 1.97 0.95 0.24
Mie-Gruneisen slope 1.34 1.21 1.33

Reference shear modulus (Mbar) 0.271 0.240 0.0718
Reference yield stress (kbar) 2.90 0.771 0.771

Plastic failure strain 1.00 0.10 0.50

Table 4.2: OpenMP speedup for a 1.22 million particle test problem

Number of Particles per processor Wall clock time Speedup
processors (thousands) (hours)

1 1220 4.657 1.00
4 305 1.168 3.99
16 76 0.308 15.12
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Table 4.3: Hybrid OpenMP-MPI speedup for a 0.85 million particle test case

Number of Particles per processor Wall clock time Relative
processors (thousands) (hours) efficiency

16 53.1 0.598 1.000
32 26.6 0.360 0.831
64 13.3 0.264 0.566

Table 4.4: Simulation parameters for the disc impact problems

Velocity Obliquity W Ne Particles
(km/s) (deg) (cm) (millions)

7 45 10 8 0.078
7 45 10 16 0.573
7 45 10 24 1.861
7 45 10 32 4.359
10 45 12 8 0.113
10 45 12 16 0.821
10 45 12 24 2.679
13 45 14 8 0.152
13 45 14 16 1.114
13 45 14 24 3.646
7 15 12 16 0.821
10 15 14 16 1.114
13 15 16 16 1.465
7 60 12 16 0.821
10 60 12 16 0.821
13 60 12 16 0.821
7 75 12 16 0.821
10 75 12 16 0.821
13 75 12 16 0.821
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Table 4.5: Computational cost for the disc impact problems

Velocity Obliquity System Processors WC Time
(km/s) (deg) (hours)

7 45 Cray-Dell cluster 8 46
7 45 IBM p690 32 189
7 45 IBM p690 32 371
7 45 IBM p690 32 1279
10 45 IBM p655 8 54
10 45 IBM p690 32 145
10 45 IBM p690 32 619
13 45 IBM p655 16 53
13 45 IBM p690 32 219
13 45 IBM p690 32 965
7 15 Cray-Dell cluster 32 305
10 15 IBM p690 32 159
13 15 IBM p690 32 230
7 60 IBM p690 32 99
10 60 IBM p690 32 151
13 60 IBM p690 32 172
7 75 Cray-Dell cluster 32 310
10 75 Cray-Dell cluster 32 365
13 75 Cray-Dell cluster 32 386
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Table 4.6: Simulation parameters for the plate impact problems

Velocity Orientation of W Particles WC Time
(km/s) projectile (cm) (millions) (hours)

7 flat surface 12 0.820 93
7 long edge 12 0.820 112
7 short edge 12 0.820 91
10 flat surface 14 1.113 146
10 long edge 14 1.113 172
10 short edge 14 1.113 150
13 flat surface 16 1.464 216
13 long edge 16 1.464 263
13 Short edge 16 1.464 236

Table 4.7: Comparison of impact damage due to disc and flat plate projectiles

Velocity Ratio of perforation Ratio of spalled region
(km/s) diameters(plate to disc) diameters(plate to disc)

7 1.14 1.17
10 1.12 1.11
13 1.08 1.11
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Figure 4.1: Initial configuration, disc impact simulation.
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Figure 4.2: Disc impact simulation at 50 microseconds.
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Figure 4.3: Element plot, disc impact simulation.
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Figure 4.4: Sectioned element plot, disc impact simulation.
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Figure 4.5: Convergence data for perforation diameter.
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Figure 4.6: Convergence data for coating spall diameter.

93



Figure 4.7: Perforation diameter data, disc impact cases.
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Figure 4.8: Coating spall diameter data, disc impact cases.
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Figure 4.9: Perforation diameter versus impact momentum.
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Figure 4.10: Coating spall diameter versus impact momentum.

97



Figure 4.11: Initial configuration, plate impact simulation.
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Figure 4.12: Plate impact simulation at 50 microseconds.

99



Figure 4.13: Element plot, plate impact simulation.
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Figure 4.14: Sectioned element plot, plate impact simulation.
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Figure 4.15: Perforation diameter data, plate impact cases.
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Figure 4.16: Coating spall diameter data, plate impact cases.
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Chapter 5

Conclusions

This chapter summarizes the work performed in this research, and pro-

vides recommendations for future work.

This dissertation extends the hybrid particle-finite element method de-

scribed in previous work, allowing for problems incorporating more complex

geometries, described by a general hexahedral mesh. In order to generate the

particle-element model a translation algorithm was developed. The model in-

troduces particles only at the element vertices, in order to gain computational

efficiency. The translation algorithm takes mesh information from commercial

software as an input and computes the masses, aspect ratios, and orientations

of the particles in the particle-element model.

A new density interpolation was developed for use with a general hexa-

hedral mesh. Normalization of the particle separation distances is performed,

by taking into account the separation distance in the reference configuration.

In addition, a full neighbor set for each particle is defined by a computation

in the reference configuration.

To obtain the ODE system for the particle-element model, the sys-

tem stored energy functions are combined with constraint equations to obtain
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thermomechanical Lagrange equations. The formulation shows good results in

several validation simulations.

The improved hybrid numerical method developed in this work will

make possible simulations of impacts on more complex structures, as illus-

trated by the generic model of spacecraft structures depicted in Figures 5.1

through 5.8. These figures depict projectile and target models broadly repre-

sentative of spacecraft structures. The target is a cylindrical body (green) with

an internal tank (red), whereas the projectile is a cylinder with a thick end

cap (blue). The graphics in Figures 5.9 and 5.10 depict an impact sequence,

at a velocity of 3.5 km/s, performed over a period of 100 microseconds. As

the sequence illustrates, the modeled breakup includes large fragments, such

as the back end of the target and sphere, as well as numerous small fragments

(individual particles) ejected at or near the point of collision. In future work

it is suggested that geometrically complex impact problems of this type be

simulated and compared with experimental results.
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Figure 5.1: Generic model for spacecraft structures, element plot of the initial
configuration.

Figure 5.2: Generic model for spacecraft structures, sectioned element plot.
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Figure 5.3: Generic model for spacecraft structures, projectile mesh.

Figure 5.4: Generic model for spacecraft structures, sectioned projectile mesh.
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Figure 5.5: Generic model for spacecraft structures, target mesh (cylinder).

Figure 5.6: Generic model for spacecfraft structures, sectioned target mesh
(cylinder).
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Figure 5.7: Generic model for spacecraft structures, target mesh (sphere).

Figure 5.8: Generic model for spacecraft structures, sectioned target mesh
(sphere).
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Figure 5.9: Generic model for spacecraft structures, initial impact sequence.
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Figure 5.10: Generic model for spacecraft structures, final impact sequence.
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