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One approach to examining the stability of a fluid flow is to linearize the

evolution equation at an equilibrium and determine (if possible) the stability

of the resulting linear evolution equation. In this dissertation, the space of

perturbations of the equilibrium flow is split into two classes and growth of

the linear evolution operator on each class is analyzed. Our classification of

perturbations is most naturally described in V.I. Arnold’s geometric view of

fluid dynamics. The first class of perturbations we examine are those that

preserve the topology of vortex lines and the second class is the factor space

corresponding to the first class. In this dissertation we establish lower bounds

for the essential spectral radius of the linear evolution operator restricted to

each class of perturbations.
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Chapter 1

Introduction

To examine the stability of a fluid flow, one can examine the evolution of lin-

ear perturbations of the flow. The spectral radius of the evolution operator

associated with the linearized flow indicates how much these perturbations

are stretching. The criteria for linear instability can be reduced to condi-

tions on the spectral radius of the linear evolution operator. More specifically,

we can demonstrate the instability of some flow if we find that the spectral

radius of the associated linear evolution operator to be greater than 1 for

some positive time, t. The approach here involves computing the radius of

a subset of the spectrum known as the essential spectrum. This quantity is

equal to a Lyapunov-type exponent associated with the equilibrium flow, see

[16, 5, 6, 7, 13] for example.

The results here establish criteria for the instability of an equilibrium

incompressible, inviscid fluid flow subject to a restricted class of perturbations.

The first class we will examine are those perturbations that preserve the topol-

ogy of vortex lines. This class is the closure of the image of an operator B

defined in Section 2.3, so we will refer to these perturbations as belonging to

ImB. We will also consider the growth of perturbations in the canonical factor
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space, F := L2
sol/ImB.

For a given steady fluid flow u ∈ C∞(Tn), we establish lower bounds for

the radius of the essential spectrum of the linear evolution operator, G(t), on

each class of perturbations for 2- and 3-dimensional flows in terms of a series

of Lyapunov-type exponents based on the following bicharacteristic amplitude

system:

(BAS)































ẋ = u(x),

ξ̇ = −
(

∂u
∂x

)T

ξ,

ḃ = −
(

∂u
∂x

)

b+ 2
(

∂u
∂x
b, ξ

)

ξ
|ξ|2 ,

(

x(0), ξ(0), b(0)
)

= (x0, ξ0, b0) ∈ A,

(1.1)

where the set of admissible initial conditions A is defined by

A := {(x0, ξ0, b0) ∈ Tn × Rn × Rn| ξ0 ⊥ b0, |ξ0| = |b0| = 1}.

For a 3-dimensional fluid flow u, let ω := curlu be the vorticity of our steady

flow and define the following Lyapunov-type exponents:

µ3I = lim
t→∞

1

t
log sup

(x0,ξ0,b0)∈A

x0∈supp(ω)

|b(x0, ξ0, b0; t)|

µ3F = lim
t→∞

1

t
log sup

(x0,ξ0,b0)∈A

x0 /∈supp(ω)

|b(x0, ξ0, b0; t)|,

where b(x0, ξ0, b0; t) denotes a solution to (BAS) at time t > 0 with initial

conditions (x0, ξ0, b0). Then we have the following lower bound for the es-

sential spectral radius of the linear evolution operator restricted to ImB:

ress(G(t)|ImB) ≥ eµ3I t. And we have another lower bound for the essential

spectral radius of the linear evolution acting on the factor space: ress(GF (t)) ≥

eµ3F t.
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For a two dimensional incompressible, inviscid fluid flow, vorticity is

represented as a scalar function (ω is the third and only nonzero component

of the three dimensional curl of u). It is well known that the scalar vorticity,

ω, is constant along flow lines. As a result, our classes of perturbations are

described differently in 2-dimensions and the resulting exponents depend on

the gradient of vorticity, ∇ω, instead of the vorticity. Define the Lyapunov-

type exponent µ2I by

µ2I = lim
t→∞

1

t
log sup

(x0,ξ0,b0)∈A

x0∈supp(∇ω)

|b(x0, ξ0, b0; t)|.

And define µ2F by

µ2F = lim
t→∞

1

t
log sup

(x0,ξ0,b0)∈A1∪A2

|b(x0, ξ0, b0; t)|,

where

A1 :={(x0, ξ0, b0) ∈ A : x0 /∈ supp(∇ω)},

A2 :={(x0, ξ0, b0) ∈ A : ∇ω(x0) 6= 0, b0 ⊥ ∇ω(x0)}.

Then we have similar lower bounds for the essential spectral radius of the

linear evolution on each class of perturbations: ress(G(t)|ImB) ≥ eµ2I t and

ress(GF (t)) ≥ eµ2F t.

1.1 Chapter summaries

Chapter 2 This chapter covers preliminary information necessary for

the proofs of the main theorems in Chapters 3 and 4. In Section 2.1 we

define our notion of linear instability and connect it to criteria on the

3



spectral radius of the linear evolution operator associated with the flow.

In Section 2.2 we discuss the essential spectrum and the main result from

[16] which gives a method for computing the essential spectral radius

of the linear evolution operator . Then we define our two classes of

perturbations in Section 2.3. The last section of this chapter introduces

concepts related to psuedodifferential operators that we will need.

Chapter 3 This chapter contains the main results concerning 3-dimensional

flows. In Section 3.1 we introduce our high frequency vector fields and

then estimate their linear evolution in Lemma 3.1.2. We also estab-

lish criteria for these vector fields to approximate our first class of per-

turbations. In Section 3.2 we prove the main theorem concerning 3-

dimensional flows, Theorem 3.2.1. Through Corollaries 3.2.3 and 3.2.4

we relate the essential spectral radius of the linear evolution to the es-

sential spectral radius of the linear evolution restricted to each class of

perturbations. Section 3.3 gives a specific example of a flow with insta-

bility from the first class of perturbations.

Chapter 4 This chapter parallels Chapter 3, only here we deal with

2-dimensional flows. In Section 4.1 we introduce our 2-dimensional high

frequency perturbations and, in Lemma 4.1.3, estimate their linear evo-

lution. We also establish when such a perturbations is approximately

in the factor space and when one is approximately in ImB, our first

class of perturbations. In Section 4.2.3 we state and prove the main

theorem for 2-dimensional flows. In Section 4.3 we demonstrate that
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any 2-dimensional flow with a hyperbolic stagnation point has instabil-

ity from both classes of perturbations. We also give an example of a

flow that indicates that our 3-dimensional lower bound for growth in the

factor space may not be sharp.

1.2 Notation conventions

• Our results are for flows on Tn := Rn/2πZn for n = 2, 3. If the domain

of a space of functions or vector fields is not specified, it is Tn.

• Throughout this paper u will denote a C∞ vector field solution to steady-

state Euler’s equation, (2.1) from Section 2.1, on the 2- or 3-dimensional

torus. We let ω denote the vorticity, ω := curlu. For 3-dimensional

flows, ω is a vector field on T3. For 2-dimensional flows, ω is treated as a

scalar function on T2 defined to be the 3rd and only non-zero component

of curlu.

• We will denote a space of vector fields by the space that contains its

components. For example, C∞ is used as shorthand for (C∞)2 or (C∞)3

whenever the dimension of the vector field is clear from context.

• Whenever v and w are vector fields on Tn, v ·∇w is a vector field defined

by (v · ∇w)j =
∑n

i=1 v
i∂iw

j in components.

• We denote the subspace of divergence free, or solenoidal, vector fields

in a vector space by adding the subscript sol. For example, L2
sol(T

n) :=

{v ∈ L2(Tn)|divv = 0}.
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• Throughout this paper projections on L2 will be labeled π with some

appropriate subscript. For example πsol is the orthogonal projection

onto solenoidal vector fields, L2
sol and πξ⊥

0
is the orthogonal projection

onto the space of vector fields perpendicular to a fixed vector ξ0.

• We use the standard “big-O” and “little-o” notation for infinitesimal

asymptotics. If g(δ) = O(δ) we mean |g(δ)| < Cδ for some constant C.

If g(δ) = o(1) we mean g(δ) → 0 as δ → 0.
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Chapter 2

Preliminaries

This chapter covers some preliminary information necessary for the proofs of

the main theorems in Chapters 3 and 4. First we introduce linear instability for

steady incompressible inviscid fluid flow and develop linear instability criteria

based on the spectral raduis of the linear evolution of perturbations. In Section

2.2 we give an overview of Vishik’s result concerning the connection between

the essential spectral radius and a Lyapunov-exponent related to (BAS). Some

of the constructions and proofs from that result are required for the main result

of this paper and these objects and theorems are as such. In Section 2.3 we

define our two classes of perturbations and prove that the first class is invariant

under the linearized flow. In Section 2.4 we introduce our definitions relating

to ε-pseudodifferential operators and prove some important lemmas used to

prove the main theorems.

2.1 Linear instability for incompressible inviscid fluid

flow

First we define linear instability for equilibrium solutions to Euler’s equa-

tion for incompressible fluid motion on the 2- or 3-dimensional torus, Tn :=
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Rn/2πZn. Our equilibrium solutions are vector field solutions to time-independent

Euler’s equation in C∞(Tn):

(SE)







u · ∇u = −∇p,
divu = 0,

(2.1)

where the pressure p is a scalar function in C∞(Tn) and is determined up to

a constant.

If we linearize Euler’s equation about the equilibrium solution u we get

the following equation for the linear evolution of a perturbation w0(x):

(LE)







∂tw = −u · ∇w − w · ∇u−∇q,
w(x, 0) = w0(x),

(2.2)

where ∇q ∈ L2(Tn) is the gradient of a scalar pressure determined by the

requirement that the solution w(x, t) remain divergence free for all time. For

our purposes, the initial perturbation w0 is a divergence free vector field in

L2(Tn). W will need the following fact:

Remark 1. The Hodge Decomposition Theorem gives us that the space of

square integrable vector fields on Tn is the orthogonal sum of divergence free

vector fields, denoted L2
sol := {v ∈ L2(Tn)| divv = 0}, and the subspace of

gradient vector fields, denoted L2
grad := {v ∈ L2(Tn)| v = ∇α for some α ∈

H1(Tn)}. Thus we may write L2(Tn) = L2
sol(T

n) ⊕ L2
grad(T

n). This fact guar-

antees the uniqueness of the pressure gradient in (SE) and (LE) above.

Define G(t) : L2
sol(T

n) → L2
sol(T

n) to be the solution operator to the

linearized system; that is, w(x, t) := G(t)w0(x) is the unique solution to (LE)
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above. It is well known that the operators G(t) form a strongly continuous

group of bounded linear operators on Hk
sol(T

n) for each k ∈ Z+.

These next two definitions give criteria for a solution to (SE), u ∈

C∞(Tn) with associated linear evolution operator G(t), to be linearly unstable.

Definition 1. The growth bound ω0 for an evolution equation with solution

operator G(t) is defined by

ω0 = lim
t→∞

1

t
log ‖G(t)‖L2.

Definition 2. We say that a steady state solution to Euler’s equation (SE) is

hydrodynamically unstable if the growth bound associated with the linearization

about u is positive.

We may connect the growth bound to the spectral radius of the linear evolution

operator, r(G(t)), as follows: Fix t0 > 0 and compute

ω0 = lim
N→∞

1

Nt0
log ‖G(Nt0)‖L2

= lim
N→∞

1

t0
log ‖G(Nt0)‖1/N

L2

=
1

t0
log r(G(t0)).

Functionally, this is the criteria we will use to determine linear instability:

Remark 2. If r(G(t0)) > 1 for any t0 > 0, then we have linear instability.

2.2 Determining the essential spectral radius

In this section we present a result of Vishik [16] which provides a method

of determining the radius of the essential spectrum of G(t). From Remark 2
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above, we see that if the essential spectral radius of G(t0) is greater than one

at any time t0 > 0, then we have linear instability. Thus, Vishik’s result gives

us criteria for linear instability.

To begin, we define the essential spectrum for a bounded linear operator

in an indirect way. We may introduce following classification of points in the

spectrum of a bounded linear operator T :

σ(T ) = σdisc(T ) ∪ σess(T ),

where we define σdisc and σess below.

Definition 3. For any bounded linear operator T on a separable Hilbert space

H we define the discrete spectrum of T, σdisc(T ), to be the set of λ ∈ σ(T )

such that following conditions holds:

• λ is isolated in σ(T ),

• The Riesz projector P = 1
2πi

∮

γ
dz

z−T
, where γ is a small circle around λ,

has finite rank,

• λ− T is invertible on the invariant subspace KerP = Im(I-P),

The essential spectrum of T is defined by σess(T ) := σ(T ) \ σdisc(T ).

We denote the essential spectral radius of an bounded linear operator

T by ress(T ) := sup{|λ| : λ ∈ σess(T )}.

In [16], Vishik developes a method for computing the essential spectral

radius of the evolution operator G(t) in terms of a Lyapunov-type exponent

10



based on the bicharacteristic amplitude system, (1.1), which we repeat here:

(BAS)























ẋ = u(x), x(0) = x0;

ξ̇ = −
(

∂u
∂x

)T

ξ, ξ(0) = ξ0;

ḃ = −
(

∂u
∂x

)

b+ 2
(

∂u
∂x
b, ξ

)

ξ
|ξ|2 , b(0) = b0.

Theorem 2.2.1 (Vishik). Let A := {(x0, ξ0, b0) : |ξ0| = |b0| = 1, b0 ⊥ ξ0} and

define the following Lyapunov-type exponent:

µ := lim
t→∞

1

t
log sup

(x0,ξ0,b0)∈A

|b(x0, ξ0, b0; t)|,

where b(x0, ξ0, b0; t) is a solution to (BAS) above with intial conditions (x0, ξ0, b0).

Then ress(G(t)) = eµt.

The approach to proving the main theorems of this dissertation is very

much in the spirit of Vishik’s work in [16]. As a result, we use much of the same

machinery. Just as in Vishik’s paper, we make a high-frequency ansatz on our

perturbations, which leads to an approximation of G(t) on high-frequencies by

a pseudodifferential operator composed with parallel transport along the flow.

We then estimate lower bounds for the norm of G(t) by looking at the size of

the symbol of our pseudodifferential operator (computed from a0, a solution

to (2.4) below).

We introduce an ε-psuedodifferential operator to separate vector fields

into their high- and low-frequency parts. Let ε > 0, for any amplitude σ ∈

C∞(Tn × Rn) (satisfying appropriate conditions to be specified later) define

(opε[σ]w)(x) :=
1

(2πε)3

∫

σ(x, ξ)eiξ·(x−y)/εw(y) dydξ.

11



Let χ(ξ) ∈ C∞(Rn) be a function of |ξ| only, with 0 ≤ χ(ξ) ≤ 1, and

χ(ξ) =

{

1 if |ξ| ≤ 1
2
,

0 if |ξ| ≥ 2
3
.

Then

G(t) = G(t) ◦ opε

[

1 − χ
( ξ√

ε

)

]

+G(t) ◦ opε

[

χ
( ξ√

ε

)

]

.

To approximate the linear evolution operator acting on high frequency vector

fields, G(t) ◦ opε

[

1 − χ
(

ξ√
ε

)

]

, we introduce the parallel transport operator.

Let gt : Tn → Tn denote the flow map defined by trajectories of the following

ODE:

d

dt
gtx = u(gtx), g0 = Id.

Define gu(t) to be the evolution operator for the equation

{

Ẏ = −u · ∇Y,
Y (x, 0) = Y0(x) ∈ L2(Tn).

(2.3)

Solutions to (2.3) are parallel transport of the initial data Y0 along the flow

trajectories:

gu(t)Y0(x) = Y0(g
−tx).

Let a0(x, ξ, t) ∈ Mn×n, for (x, ξ, t) ∈ Tn × Rn\{0} × R where n = 2, 3,

be a solution to






ȧ0 = −∇ua0 − ∂u
∂x
a0 + 2 ξ⊗ξ

|ξ|2
(

∂u
∂x
a0

)

,

a0(x, ξ, 0) =
(

1 − ξ⊗ξ
|ξ|2

)

·
(

1 − χ
(

ξ√
ε

))

,
(2.4)

where ∇u is the Lie derivative computed in the cotangent bundle T ∗(Tn) along

flow trajectories:

∇u :=
d

dt
|t=0(g

t, (g−t
∗ )∗).
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In coordinates ∇u = (u,−∂u
∂x

T
ξ). The matrix-valued function a0 is used to

compute the symbol of a pseudodifferential operator that, when composed

with parallel transport along the flow, approximates G(t) on high frequencies:

Definition 4. Let Gs
ε(t) : L2

sol → L2
sol be defined by

Gs
ε(t)w0 = ops

ε[a0] ◦ gu(t)w0,

where in R3,

(ops
ε[a0]w)(x) = ∇× ε

(2πε)3

∫

iξ

|ξ|2 × a0(x, ξ, t)e
iξ x−y

ε w(y)d3yd3ξ.

In [16], Vishik proves that Gs
ε(t) approximates G(t) on high frequencies in the

following sense:

Theorem 2.2.2. Let G(t) be the evolution operator associated with Euler’s

equation linearized at u. Then for all t ≥ 0, Gs
ε(t) is a bounded operator in

L2
sol and for any fixed T > 0

‖G(t) ◦ opε

[

1 − χ
( ξ√

ε

)

]

−Gs
ε(t)‖L(L2

sol
,L2) = O(

√
ε), 0 ≤ t ≤ T, (2.5)

with the constant in O uniform over the interval [0, T ].

In order to explain the connection between solutions a0 to (2.4) and

solutions to (BAS), we must introduce a decomposition of our symbol a0:

a0(x, ξ, t) = A0(x, ξ, t)
(

1 −X
(

x,
ξ√
ε
, t

))

, (2.6)

where A0 is a solution to the following system:










∂tA0 = −∇uA0 − ∂u
∂x
A0 + 2 ξ⊗ξ

|ξ|2
∂u
∂x
A0,

A0(x, ξ, 0) = 1 − ξ⊗ξ
|ξ|2 .

(2.7)
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And X satisfies










∂tX = −∇uX,

X(x, ξ, 0) = χ(ξ).
(2.8)

The matrix symbol a0(x, ξ, t) forms a strongly continuous cocycle over the flow

(gt·, (g−t
∗ (x))∗·) on the cotangent bundle T ∗(Tn). Similarly, A0(x, ξ, t) forms a

strongly continuous cocyle on Tn ×RP n−1. An important consequence of this

fact is that the Lyapunove-type exponent in Theorem 2.2.1 is well defined.

See [3] for a detailed discussion of cocycles and their properties. Solutions

to (BAS) are solutions to (2.7) for A0(·, ·, t) along characteristics which are

the flow lines (gt·, (g−t
∗ (x))∗·) in Tn × RP n−1. Thus it follows that for any

(x0, ξ0, b0) ∈ T ∗(Tn) × Rn we have

b(x0, ξ0, b0; t) = A0(g
tx0, (g

−t
∗ (x))∗ξ0, t)b0. (2.9)

There is one more fact about solutions to (BAS) that we will need. If we let

b(t) := b(x0, ξ0, ξ
⊥
0 ; t) and ξ(t) := (g−t

∗ (x0))
∗ξ0 then we have

ḃ = −
(∂u

∂x

)

b+ 2
(∂u

∂x
b, ξ

) ξ

|ξ|2 = −πξ⊥

(∂u

∂x
b
)

+ πξ

(∂u

∂x
b
)

.

Hence we may compute

d

dt

(

b(t), ξ(t)
)

=
(

ḃ(t), ξ(t)
)

+
(

b(t), ξ̇(t)
)

=
(∂u

∂x
b(t), ξ(t)

)

+
(

b(t),−
(∂u

∂x

)T
ξ(t)

)

= 0.

Thus, whenever b0 ⊥ ξ0 we have

(b(x0, ξ0, b0; t), (g
−t
∗ (x0))

∗ξ0) = 0. (2.10)
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Nussbaum’s formula for computing the essential spectral radius of a

bounded linear operator is last key piece of machinery we carry over from

[16]. A proof can be found in Nussbaum’s original paper, [11]. Let X be a

separable Hilbert space. We define an appropriate norm on the quotient space

L(X)/S∞ where S∞ is the ideal of compact operators.

Definition 5. For any T ∈ L(X)

‖T‖K = inf
K∈S∞

‖T +K‖L(X). (2.11)

The seminorm ‖ · ‖K on L(X) is the canonic norm on the quotient space

L(X)/S∞. We can compute the essential spectral radius of a bounded oper-

ator with this norm:

Theorem 2.2.3 (Nussbaum). For any T ∈ L(X)

ress(T ) = lim
n→∞

(‖T n‖K)
1

n . (2.12)

Since G(t) ◦ opε

[

χ
(

ξ√
ε

)

]

is a compact operator,

ress(G(t)) = ress

(

G(t) ◦ opε

[

1 − χ
( ξ√

ε

)

])

.

Thus, it suffices to consider linear evolution on high frequencies to determine

the essential spectral radius.

2.3 Two classes of perturbations

In his book, Mathematical Methods of Classical Mechanics, V.I. Arnold char-

acterizes the dynamics of an incompressible, inviscid fluid in a geometric way.
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We may think of the motion of a fluid as a family of volume preserving dif-

feomorphisms of the fluid domain indexed by time. These diffeomorphisms

form an infinite-dimensional Lie group. If we let kinetic energy be the right-

invariant metric for our Lie group, then geodesics will correspond to flows

that minimize kinetic energy. Thus we may view fluid dynamics as motion

along geodesics in our group of volume preserving diffeomorphisms with the

kinetic energy metric. The two classes of perturbations that are studied in

this dissertation are most naturally described in this geometric view of fluid

dynamics.

Let SDiff(Ω) denote the space of C∞ volume preserving diffeomor-

phisms of a compact fluid domain, Ω. The corresponding Lie algebra, g, is the

collection of C∞, divergence free vector fields on Ω. The Lie commutator is

defined by the bracket:

[v1, v2] := (v2 · ∇)v1 − (v1 · ∇)v2.

The metric here is the L2-inner product of vector fields. Through this metric,

we can identify g and its dual, denoted g∗. One of the essential differences

between 2-dimesional and 3-dimensional hydrodynamics is the difference in

the geometry of orbits of the co-adjoint representation in the two cases, see [1].

Formally, we may compute the co-adjoint representation of SDiff(Ω), denoted

Ad∗ : SDiff(Ω) → End(g∗) to be defined by

Ad∗gv = curl−1g∗curlv g ∈ SDiff(Ω), v ∈ g∗.

Two vector fields v1 and v2 are isovorticial if there exists some g ∈ SDiff(Ω)
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such that

g∗curlv1 = curlv2,

where g∗ denotes the pushforward by the diffeomorphism g. It follows that

the orbit of our steady solution u under the co-adjoint action is the collection

of vector fields isovorticial to u.

The first space of perturbations we study is the tangent space to the

co-adjoint orbit of u. The derivative of Ad∗g with respect to g evaluated at the

identity gives an operator ad∗ : g → End(g∗). Elements in the tangent space

to the co-adjoint orbit of u at u are of the form ad∗wu, for some w ∈ g. This

leads to the mapping B : L2
sol → L2

sol defined by

Bw := curlu× w −∇α,

where the pressure term ∇α is uniquely defined by the requirement that B

map into divergence free vector fields. Notice that whenever w ∈ C∞
sol, we have

Bw = ad∗wu. Thus ImB forms our first class of perturbations.

Since B is skew adjoint, we have

L2
sol = ImB ⊕ KerB.

We also observe that ImB is invariant under the linearized flow G(t):

Proposition 2.3.1. Let u ∈ C∞
sol(T

3) be a steady solution to Euler’s equation

and G(t) the evolution operator for linear perturbations of u. Then for any

w ∈ L2
sol(T

3),

G(t)Bw = BG(−t)∗w.
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Proof. First we endow the space C∞
sol(T

3) with a Lie algebra structure via the

Poisson bracket on vector fields, define [·, ·] : C∞
sol(T

3) × C∞
sol(T

3) → C∞
sol(T

3)

by

[v1, v2] := (v2 · ∇)v1 − (v1 · ∇)v2.

Since v1 and v2 are divergence free,

[v1, v2] = curl(v1 × v2).

Hence [v1, v2] is always divergence free. Now define the bilinear form B :

C∞
sol(T

3) × L2
sol(T

3) → L2
sol(T

3) by

B(a, b) := curla× b−∇α,

where ∇α is uniquely defined by the requirement that B(a, b) be divergence

free. If we denote by 〈, 〉 the L2-inner product on T3, then for any a, b, c ∈

C∞
sol(T

3),

〈[a, b], c〉 = 〈B(c, a), b〉.

To see this, compute

〈[a, b], c〉 − 〈B(c, a), b〉 =

∫

T3

(

curl(a× b)
)

· c− (curlc× a) · b+ b · ∇α dV.

Since b is divergence free,
∫

T 3 b · ∇α dV = 0, so we have

〈[a, b], c〉 − 〈B(c, a), b〉 =

∫

T3

(

curl(a× b)
)

· c− (a× b) · curlc dV

=

∫

T3

∇ ·
(

(a× b) × c
)

dV.

Then if we apply Stokes’ Theorem to the RHS of our equation, we have

〈[a, b], c〉 − 〈B(c, a), b〉 =

∫

∂T3

(

(a× b) × c
)

dS = 0,
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where the last equality follows from the assumption that a, b and c are periodic.

Notice that for any v ∈ C∞
sol(T

3),

curl
(

(−v · ∇)v + ∇p
)

= curl
(

v × (curlv)) = curl
(

−B(v, v)
)

.

Since both (−v · ∇)v + ∇p and −B(v, v) are divergence free, it follows that

our solution to steady Euler’s equation, u, satisfies

−B(u, u) = 0.

It follows that we can also write linearized Euler’s equation (LE) as

{

∂tw = −B(u, w) − B(w, u),
w(x, 0) = w0(x),

(2.13)

where u is our solution to steady Euler’s and w0, w ∈ L2
sol(T

3). We define the

operator L by

L = −(u · ∇)w − (w · ∇)u−∇q = −B(u, w) − B(w, u).

The unbounded operator L is the generator for the strongly continuous group,

or C0 group of bounded operators that define the evolution of linear pertur-

bations: G(t). It is straightforward to compute the adjoint operator L∗:

〈Lw, v〉 = 〈−B(u, w), v〉+ 〈−B(w, u), v〉

= 〈B(u, v), w〉 − 〈[u, v], w〉 v, w ∈ C∞
sol(T

3).

Which implies that for any vector field v ∈ C∞(T3),

L∗v := B(u, v) − [u, v].
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It follows that L∗ generates a C0 group, G(t)∗ on L2
sol(T

3). In fact, for all t ∈ R,

G(t)∗ is the adjoint operator of G(t). We also have that G(t)∗ is a C0 group

on Hk
sol(T

3) for any k ∈ Z+. This implies G(t)∗ : C∞
sol(T

3) → C∞
sol(T

3). Let

v0 ∈ C∞
sol(T

3). We must show that w(t) = B(u,G(−t)∗w0) ∈ C∞
sol(T

3) satisfies

(LE). Since images of L are divergence free vector fields, it is equivalent for

w(t) to satisfy the following system of equations:

∇× (LE)







∂tcurlw = −[curlu, w] − [curlw, u],

curlw(x, 0) = curlB(u, v0).

Compute

∂tcurlw =
d

dt
curlB(u,G(−t)∗v0).

Let v(t) := G(−t)∗v0. Since L∗ is the generator of the C0 group G(t)∗, taking

the derivative gives

∂tcurlw = [curlu,−L∗v(t)]

=
[

curlu, [u, v(t)] − B(u, v(t))
]

.

If we apply the Jacobi identity, noting that [curlu, u] = 0, we have

∂tcurlw = −
[

[curlu, v(t)], u
]

−
[

curlu,B(u, v(t))
]

.

Since curlB(u, v(t)) = [curlu, v(t)], we have

d

dt
curlB(u,G(−t)∗v0) = −

[

curlB(u, v(t)), u
]

−
[

curlu,B(u, v(t))
]

.

Hence B(u,G(−t)∗v0) satisfies (LE) with initial condition w0 = B(u, v0).

Therefore, we have for any v ∈ C∞
sol(T

3),

G(t)Bv = BG(−t)∗v.
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For any t ∈ R both G(t)B and BG(−t)∗ are bounded operators on L2
sol(T

3), so

we may extend the result to any v ∈ L2
sol(T

3). This completes the proof.

Remark 3. This proposition holds for 2-dimensional vector fields as well.

That is, if the vector field u ∈ C∞(T2) is a solution to steady Euler’s equation,

then for any w ∈ L2
sol(T

3), we have G(t)Bw = BG(−t)∗w. To see this, just

consider u and w to be 3-dimensional planar vector fields and the proof of

Proposition 2.3.1 holds.

It follows from Proposition 2.3.1 that ImB is an invariant subspace

under the linearized flow. Now it makes sense to consider the essential spectral

radius of the evolution of perturbations in ImB under the linear flow about

our steady equilibrium u.

We also consider the linearized flow on the factor space F := L2
sol/ImB

with the canonical factor space norm:

‖v‖F := inf
w∈ImB

‖v + w‖L2
sol
.

This factor space forms our second class of perturbations.

2.4 ε-pseudodifferential operators

In this section we define our ε-pseudodifferential operators and prove several

technical lemmas that will be necessary for the main results of this dissertation.

Definition 6. For Tn = Rn/2πZn the class of symbols Sm
ρ,δ(T

n) denotes the

space of functions σ ∈ C∞(Tn × Rn) such that for all α, β ∈ Zn there is a
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constant Cα,β such that for any (x, ξ) ∈ Tn × Rn

|∂α
x∂

β
ξ σ(x, ξ)| ≤ Cα,β(1 + |ξ|)m−ρ|β|+δ|α|.

We often write Sm
ρ,δ(T

n) or Sm
ρ,δ to denote the same class of symbols.

Remark 4. It follows directly from the definition above that if σ ∈ C∞(Tn ×

Rn) is positively homogeneous of degree m in the region |ξ| ≥ R for some

R > 0 (that is, σ(x, λξ) = λmσ(x, ξ), λ ≥ 1, |ξ| ≥ R), then σ ∈ Sm
1,0(T

n).

Definition 7. For any ε > 0 and σ ∈ S0
ρ,δ(T

n) where 0 ≤ δ < ρ ≤ 1 define

opε[σ(x, ξ)] : D(Tn) → D(Tn) by

(opε[σ(x, ξ)]w)(x) :=
1

(2πε)n

∫

σ(x, ξ)eiξ·(x−y)/εw(y)dnydnξ.

Remark 5. If σ ∈ Sm
1,0(T

n) for m ≤ 0, the psuedodifferential operator opε[σ(x, ξ)]

is a bounded linear operator on L2
sol(T

n). A proof for periodic operators is given

in [14] for example.

We will need the following variant of the Calderon and Vaillancourt the-

orem [2] for x-periodic amplitudes to estimate the norms of some ε-pseudodifferential

operators (see also [4]).

Theorem 2.4.1 (Calderon-Vaillancourt). Let σ(x, ξ) ∈ C∞(Tn ×Rn) for 0 ≤

ρ < 1, satisfy the following inequalities.

∣

∣∂α
x∂

β
ξ σ(x, ξ)

∣

∣ ≤ Cαβ(1 + |ξ|)ρ(|α|−|β|),

for all (x, ξ) ∈ Tn ×Rn, and (α, β) ∈ Zn. Then the pseudodifferential operator

op1[σ(x, ξ)] extends from Schwartz space D(Tn) = C∞(Tn) to L2(Tn) and
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defines a bounded operator there, moreover:

‖op1[σ]‖L(L2) ≤ C(n)
∑

|α|≤2((n/2)+1)
|β|≤2((n/(1−ρ))+1)

Cαβ .

Lemma 2.4.2. Let σε(x, ξ) ∈ S−m
1,0 (Tn) for m > 0. Suppose σε(x, ξ) = 0

whenever |ξ| < c0√
ε
. Then ‖op1[σε]‖L(L2) = O(

√
ε

m
).

Proof. We will use the Calderon-Vaillancourt inequality to estimate the L2-

operator norm of op1[σε(x, ξ)]. Let β, γ ∈ Zn. Since σε(x, ξ) ∈ S−m
1,0 , there is

some constant Cβ,γ such that for any x ∈ Tn

|∂β
x∂

γ
ξ σε(x, ξ)| ≤ Cβ,γ(1 + |ξ|)−m−|γ|.

Multiply this inequality by (1 + |ξ|)1/2(|γ|−|β|) to get

|∂β
x∂

γ
ξ σε(x, ξ)|(1 + |ξ|)1/2(|γ|−|β|) ≤Cβ,γ(1 + |ξ|)−(m+1/2(|β|+|γ|))

≤Cβ,γ(c0
√
ε)m+1/2(|β|+|γ|).

This last inequality follows from the fact that the symbol σε(x, ξ) = 0 for

|ξ| < c0√
εm . So for any (x, ξ) ∈ Tn × Rn we have

|∂β
x∂

γ
ξ σε(x, ξ)| ≤ Cβ,γ(c0

√
ε)m+1/2(|β|+|γ|)(1 + |ξ|)1/2(|β|−|γ|).

Thus, we may use the Calderon-Vaillancourt inequality for ρ = 1/2 to estimate

the norm of our operator. The most substantial contribution to the norm is

the β = γ = 0 summand. Therefore we have

‖op1[σε(x, ξ)]‖L(L2
sol

) = O(
√
ε

m
).
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Next we give the proofs for two lemmas originally proved in [16]. For the

first lemma we will need the following formula, proved in Grigis and Sjostrand,

[8].

Lemma 2.4.3 (Stationary Phase Formula). Let Q be a symmetric nondegen-

erate matrix, then for g ∈ C∞
0 (RN )

∫

eix· Qx/δg(x) dx = g(0) +R1(g, δ), (2.14)

where for Dα
x := (−i∂x1

)α1 ...(−i∂xN
)αN ,

|R1(g, δ)| ≤ CQδ
n/2

∑

|α|≤2[n/2]+2

‖Dα
x

(1

4
(Dx, Q

−1Dx)
)

g‖L1(RN ).

Lemma 2.4.4 (Vishik). Suppose S ∈ C∞(Rn) and for any m ∈ Zn, there

exists some ξ0 ∈ Zn such that

S(x+ 2πm) = S(x) + 2πmξ0. (2.15)

Let σ ∈ S0
0,0(T

n) and δ−1 ∈ Z+. Then there exists a constant C(n, σ, S)

depending only on n, σ and S and an index k ∈ Z+ depending only on the

dimension n such that for any f0 ∈ C∞(Tn) and any x ∈ Tn,

∣

∣

(

opδ[σ]f0e
iS/δ

)

(x) − σ(x,∇S)f0(x)e
iS(x)/δ

∣

∣ ≤ Cδ
∑

|α|≤k

sup
x∈Tn

|∂α
x f0(x)|.

Remark 6. Notice that S and ∇S are well defined and smooth on Tn, so

eiS(x)/δ and σ(x,∇S(x)) are both functions in C∞(Tn).

Proof. Define

I(x) :=
(

opδ[σ]f0e
iS/δ

)

(x) =
1

(2πδ)n

∫

σ(x, ξ)ei[ξ·(x−y)+S(y)]/δf0(y) dydξ.
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Let ∆ξ :=
∑

i≤n ∂
2
ξi
. We will use the fact that for any M ∈ Z+

(1 + δ2M (−∆ξ)
M)eiξ(x−y)/δ = (1 + |x− y|2M)eiξ·(x−y)/δ, (2.16)

and integrate by parts to get

I(x) =
1

(2πδ)n

∫

(1 + δ2M(−∆ξ)
M)σ(x, ξ)

1 + |x− y|2M
ei[ξ·(x−y)+S(y)]/δf0(y) dydξ.

Let σ̃(x, ξ) := (1 + δ2M (−∆ξ)
M)σ(x, ξ). Then we have

I(x) =
1

(2πδ)n

∫

σ̃(x, ξ)

1 + |x− y|2M
eiΨx(y,ξ)/δf0(y) dydξ, (2.17)

where the phase Ψx depends on x as a parameter:

Ψx(y, ξ) := ξ(x− y) + S(y).

The goal here is to use the Stationary Phase Formula (2.14), so we first remark

that the only critical point of Ψx with respect to (y, ξ) is (y, ξ) = (x,∇S(x)).

We make a change of variables in the integral (2.17) to move the critical point

to the origin in Tn × Rn:

z = y − x, θ = ξ −∇S(x).

This gives us

I(x) =
1

(2πδ)n

∫

σ̃(x, θ + ∇S(x))

1 + |z|2M
ei[S(x+z)−(θ+∇S(x))·z]/δf0(x+ z) dzdθ. (2.18)

To use the Stationary Phase Formula, we must have a quadratic phase func-

tion, so we now transform the phase in (2.18). We begin using the Taylor
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expansion about x:

S(x+ z) − (∇S(x), z) − (θ, z)

=S(x) +

∫ 1

0

(1 − τ)
d2

dτ 2
S(x+ τz) dτ − (θ, z)

=S(x) +
(

∫ 1

0

(1 − τ)
d

dτ
∇S(x+ τz) dτ, z

)

− (θ, z)

Let

ρ(z) :=

∫ 1

0

(1 − τ)
d

dτ
∇S(x+ τz) dτ, (2.19)

and we make another change of variables:

η := θ − ρ(z).

Then we have

I(x) =
1

(2πδ)n

∫

σ̃(x, η + ρ(z) + ∇S(x))

1 + |z|2M
ei[S(x)−η]·z/δf0(x+ z) dηdz.

Now we integrate by parts again using the same type of identity as in (2.16),

only here J ∈ Z+ is our index. We have

I(x) =
eiS(x)/δ

(2πδ)n

∫

(1 + δ2J(−∆η)
J)σ̃(x, η + ρ(z) + ∇S(x))

(1 + |η|2J)(1 + |z|2M )
e−iη·z/δf0(x+ z) dηdz.

Let

σ(z, η) :=
(1 + δ2J (−∆η)

J)σ̃(x, η + ρ(z) + ∇S(x))

(1 + |η|2J)(1 + |z|2M)
f0(x+ z),

and we get

I(x) =
eiS(x)/δ

(2πδ)n

∫

σ(z, η)e−iη·z/δ dηdz.

We need a compactly supported integrand to use the Stationary Phase For-

mula, so we introduce the cutoff function κ ∈ C∞
0 (R2n) such that

κ(z, η) :=

{

1, if
√

|z|2 + |η|2 ≤ 1,

0, if
√

|z|2 + |η|2 ≥ 2.
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Then we have

I(x) =
eiS(x)/δ

(2πδ)n

[

∫

κ(z, η)σ(z, η)e−iη·z/δ dηdz (2.20)

+

∫

(1 − κ(z, η))σ(z, η)e−iη·z/δ dηdz
]

.

First we will deal with the non-compact integrand. Using the following iden-

tity:
(

z∂η + η∂z

)

e−iη·z/δ =
−i
δ

(|z|2 + |η|2
)

e−iη·z/δ,

we integrate by parts

1

(2πδ)n

∫

(1 − κ(z, η))σ(z, η)e−iη·z/δ dηdz

=
1

(2πδ)n

∫

(1 − κ(z, η))σ(z, η)
[ iδ

|z|2 + |η|2
(

z∂η + η∂z

)

]n+1

e−iη·z/δ dηdz

=
−(i)n+1δ

(2π)n

∫

e−iη·z/δ
(

z∂η + η∂z

)n+1 (1 − κ)σ(z, η)

(|z|2 + |η|2)n+1
dηdz

Thus we have a bound on the second term of (2.20)

∣

∣

∣

1

(2πδ)n

∫

(1 − κ)σe−iη·z/δ dηdz
∣

∣

∣
≤ δ

C

(2π)n
‖σ‖W n+1,1, (2.21)

where ‖ · ‖W n+1,1 denotes the norm in the Sobolev space W n+1,1(R2n). Now we

use the Stationary Phase Formula (2.14) on the first term of (2.20). We inte-

grate in coordinates (η1, ..ηn, z1, .., zn) and the matrix Q ∈ M2n×2n is defined

by

Q :=
1

2

(

0 I

−I 0

)

,

where I denotes the n×n identity matrix. Thus (2.14) and the estimate (2.21)

implies

I(x) = eiS(x)/δ
[

σ(0, 0) +R1(κσ, δ) +O(δ‖σ‖W n+1,1)
]

. (2.22)
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It remains to bound |R1(κσ, δ)| and ‖σ‖W n+1,1. From (2.14)

|R1(κσ, δ)| ≤ CQδ
n

∑

|α+β|≤2n+2

‖∂α
z ∂

β
η

(

n
∑

j=1

∂zj
∂ηj
κσ

)

‖L1(R2n)

≤
∑

|α+β|≤2n+4

‖∂α
z ∂

β
η κσ‖L1(R2n).

Then because we may choose the M and J from our definition of σ we have

|R1(κσ, δ)| ≤ C sup
|α+β|≤2n+4+2J
x∈T

n,(z,η)∈R
2n

∣

∣∂α
z ∂

β
η σ̃(x, η + ρ(z) + ∇S(x))

∣

∣ (2.23)

·
∑

|α|≤2n+4+2J

sup
x∈Tn

∣

∣∂α
z f0(x+ z)

∣

∣,

and

‖σ‖W n+1,1 ≤ C sup
|α+β|≤n+1+2J
x∈T

n,(z,η)∈R
2n

∣

∣∂α
z ∂

β
η σ̃(x, η + ρ(z) + ∇S(x))

∣

∣ (2.24)

·
∑

|α|≤n+1+2J

sup
x∈Tn

∣

∣∂α
z f0(x+ z)

∣

∣

Here we use that since the original symbol σ ∈ S0
0,0(T

n), so is σ̃ ∈

S0
0,0(T

n). Also, ∇S(x) ∈ C∞(Tn). In order to estimate the constant in (2.23)

we use that all the derivatives ∂α
z ρ(z) (defined in (2.19))are bounded:

sup
z∈Rn

∣

∣∂α
z ρ(z)

∣

∣ ≤ Cα,

where again we use ∇S(x) ∈ C∞(Tn). From (2.22), (2.23) and (2.24) we have

|I(x) − σ(0, 0)| ≤ δC(n, σ, S)
∑

|α|≤2n+2[n/2]+6

sup
z∈Tn

∣

∣∂α
z f0(z)

∣

∣, (2.25)

and

σ(0, 0) = σ(x,∇S(x))f0(x) +O
(

δ2J
∑

|α|≤2J

sup
z∈Tn

∣

∣∂α
z f0(z)

∣

∣

)

. (2.26)

Thus (2.25) and (2.26) prove the lemma.
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Lemma 2.4.5 (Vishik). Let f0 ∈ C∞(Tn) and let S ∈ C∞(Rn) satisfy (2.15)

such that for some cS > 0,

|∇S(x)| ≥ cS for all x ∈ supp(f0).

Suppose δ−1 ∈ Z+ and let σ ∈ S0
0,0(T

n) and κ ∈ C∞(Tn × Rn) such that

κ = 0 for |ξ| > cκ. Then for any 0 < c0 < cS

cκ
, there exists a constant

C = C(n, σ, S) > 0 such that

∣

∣

(

op
[

κ(x,
δ

c0
ξ)σ(x, ξ)

]

f0e
iS/δ

)

(x)
∣

∣ ≤ Cδ
∑

|α|≤1

sup
x∈Tn

∣

∣∂α
x f0(x)

∣

∣.

Proof. Let

I(x) :=
(

op[κ(x,
δ

c0
ξ)σ(x, ξ)]f0e

iS/δ
)

(x)

=
1

(2π)n

∫

κ(x,
δ

c0
ξ)σ(x, ξ)f0(y)e

iξ(x−y)+iS(y)/δdydξ (2.27)

=
1

(2π)n

∫

Rn

∫

supp(f0)

κ(x,
δ

c0
ξ)σ(x, ξ)f0(y)e

iξ(x−y)+iS(y)/δdydξ (2.28)

Notice that

∂yj
eiξ(x−y)+iS(y)/δ = −

(

iξj −
i

δ
∂yj
S(y)

)

eiξ(x−y)+iS(y)/δ ,

and
n

∑

j=1

(

iξj +
i

δ
∂yj
S(y)

)(

iξj −
i

δ
∂yj
S(y)

)

= −
∣

∣ξ − 1

δ
∇S(y)

∣

∣

2
.

Then it follows that for the operator Ly defined by

Ly :=
n

∑

j=1

(iξj − i
δ
∂yj
S(y))

|ξ − 1/δ∇S(y)|2 ,

we have

eiξ(x−y)+iS(y)/δ = Lye
iξ(x−y)+iS(y)/δ.
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Observe that the coefficients of Ly are small where κ(x, δ
c0
ξ) 6= 0. For any

1 < j < n, y ∈ supp(f0) and ξ such that |ξ| ≤ c0cκ

δ
, we have

iξj − i
δ
∂yj
S(y)

|ξ − 1/δ∇S(y)|2 ≤ 1

|ξ − 1/δ∇S(y)| ≤
1

cS/δ − cκc0/δ
=

δ

cS − cκc0
.

Now from (2.27) we have for any M ∈ Z+,

I(x) :=
1

(2π)n

∫

1 + (−∆ξ)
M

1 + |x− y|2M
κ(x,

δ

c0
ξ)σ(x, ξ)f0(y)Ly{eiξ(x−y)+iS(y)/δ}dydξ.

Integrate by parts using Ly and take M = [n/2] + 1 to get

|I(x)| ≤ δC

cS − cκc0

(

∑

|β|≤2M

sup
x∈T

n

ξ∈R
n

∂β
ξ

(

κ(x,
δ

c0
ξ)σ(x, ξ)

)

)(

∑

|α|≤1

sup
y∈Tn

|∂α
y f0(y)|

)

.
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Chapter 3

Lower bounds for growth of perturbations in

3-Dimensions

This chapter contains the main result for 3-dimensional fluid flows. The proof

requires that we approximate our evolution operator on high frequencies by a

psuedodifferential operator composed with parallel transport: opε[a0] ◦ gu(t).

We then examine the evolution of carefully constructed high frequency pertur-

bations under the action of opε[a0] ◦ gu(t) to compute a lower bound for the

growth of perturbations in each class.

3.1 Classifying 3-dimensional fast oscillating vector fields

This section contains several lemmas regarding fast oscillating vector fields to

be used in computing the lower bound. The goal is to establish criteria for

these perturbations so they approximate perturbations in ImB or that we may

estimate their growth in the factor space F := L2
sol/ImB.

Lemma 3.1.1. Let v be a vector field in H1(Tn) for n = 2, 3. Then

‖πsol(v(x)e
ix·ξ0/δ) − πξ⊥

0
(v(x))eix·ξ0/δ‖L2 ≤ δ

C

|ξ0|
‖v‖H1,

where πsol denotes the orthogonal projection of L2 onto L2
sol.
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Proof. First we will prove the lemma for a 3-dimensional vector field, then

consider the special case of planar vector fields to take care of the 2-dimensional

case.

Assume v ∈
(

H1(T3)
)3

. Define a vector field, α ∈ L2
sol(T

3), that ap-

proximates the projection of v(x)eix·ξ0/δ onto ξ⊥0 :

α(x) :=δ∇×
( iξ0 × v(x)

|ξ0|2
eix·ξ0/δ

)

=δ∇×
( iξ0 × πξ⊥o

(v(x))

|ξ0|2
eix·ξ0/δ

)

=δ
[

−
iξ0 × πξ⊥o

(v(x))

|ξ0|2
×∇(eix·ξ0/δ) +

(

∇×
iξ0 × πξ⊥o

(v(x))

|ξ0|2
)

eix·ξ0/δ
]

.

Since (ξ0 × πξ⊥o
(v)) × ξ0 = πξ⊥o

(v) we have

α(x) = πξ⊥o
(v(x))eix·ξ0/δ + δ

[(

∇× iξ0 × πξ⊥o
(v(x))

|ξ0|2
)

eix·ξ0/δ
]

.

It follows that ‖α− πξ⊥o
(v)ei(·)·ξ0/δ‖L2 ≤ δ 1

|ξ0|‖v‖H1.

Now we define an gradient vector field, β ∈ L2
grad(T

3), that approxi-

mates the projection of v(x)eix·ξ0/δ in the direction of ξ0:

β(x) := − iδ

|ξ0|2
∇((ξ0, v(x))e

ix·ξ0/δ)

= − iδ

|ξ0|2
[

(ξ0, v(x))
iξ0
δ
eix·ξ0/δ + ∇(ξ0, v(x))e

ix·ξ0/δ
]

=πξ0(v(x))e
ix·ξ0/δ − iδ

|ξ0|2
∇(ξ0, v(x))e

ix·ξ0/δ.

Thus, ‖β − πξ0(v)e
i(·)·ξ0/δ‖L2 ≤ δ 1

|ξ0|‖v‖H1. From the Hodge decomposition

(see Remark 1) we know L2(T3) = L2
sol(T

3)⊕L2
grad(T

3) and, from the compu-

tations above, πξ⊥o
(v)ei(·)·ξ0/δ is approximately soleniodal and πξ0(v)e

i(·)·ξ0/δ is
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approximately a gradient, it follows that

‖πsol(v(x)e
ix·ξ0/δ) − πξ⊥

0
(v(x))eix·ξ0/δ‖L2(T3) ≤ δ

C

|ξ0|
‖v‖H1(T3). (3.1)

Next we consider the 2-dimensional case. Let v ∈
(

H1(T2)
)2

and

assume ξ0 ∈ Z2. Then v(x)eix·ξ0/δ can be viewed as a planar vector field

on T3 and the estimate (3.1) above applies. Note that πsol(v(x)e
ix·ξ0/δ) and

πξ⊥
0
(v(x))eix·ξ0/δ in 3-dimensions have 0 third component. Hence they are

still planar in the same sense that v(x)eix·ξ0/δ is planar. It follows that as

2-dimensional vector fields on T2,

‖πsol(v(x)e
ix·ξ0/δ) − πξ⊥

0
(v(x))eix·ξ0/δ‖L2(T2) ≤ δ

C

|ξ0|
‖v‖H1(T2).

Recall from Section 2.3, B : L2
sol → L2

sol is defined by

Bv := ω × v −∇α,

where u ∈ C∞
sol(T

n) is a stationary solution to Euler’s equation, ω := curlu

is the vorticity and the pressure gradient ∇α is uniquely determined by the

requirement that Bv is divergence free. Hence, from Remark 1 in Section 2.1,

we have an equivalent formulation for B:

Bv = πsol(ω × v),

where πsol is the projection onto L2
sol.
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Here we define the basic structure of our fast oscillating vector fields. In

Chapter 4 we will discuss the special case of 2-dimensional fast oscillating vec-

tor fields, but for now we are working in 3-dimensions. Define ψδ ∈
(

L2
sol(T

3)
)3

by

ψδ(x) = δ∇×
(

iξ0 × P

|ξ0|2
h0(x)e

ix·ξ0/δ

)

, (3.2)

where ξ0 ∈ Z3, δ−1 ∈ Z+, P ⊥ ξ0 is a constant vector and h0 ∈ C∞(T3) is an

arbitrary smooth scalar function. Notice that we can expand the expression

for ψδ to get

ψδ(x) = h0(x)Pe
ix·ξ0/δ + δ

[

∇h0(x)×
( iξ0 × P

|ξ0|2
)

eix·ξ0/δ
]

. (3.3)

The advantage of looking at vector fields such as ψδ is that we can

estimate Gε(t)ψδ explicitly, which we will see in this next lemma. We omit

the proof, which can be found in Vishik’s paper, [16]. A similar statement is

made for slightly less general fast oscillating vector fields in Section 4.1 and

the proof given in Section 4.1 uses the same techniques as Vishik’s original

proof.

Lemma 3.1.2. Let ψδ be defined as in line (3.2) above. Then for any fixed t >

0, we have the following approximation for Gε(t)ψδ(x) := (opε[a0]◦gu(t)ψδ)(x):

(opε[a0] ◦ gu(t)ψδ)(x) = h0(g
−tx)A0(x, (g

−t
∗ (x))∗ξ0, t)Pe

ig−tx·ξ0/δ + rδ(x),

where A0 is the homogeneous part of a0 defined by (2.7) and ‖rδ‖L2 = O(δ).

Remark 7. From equation (2.9) we have

h0(g
−tx)A0(x, (g

−t
∗ (x))∗ξ0, t)Pe

ig−tx·ξ0/δ = h0(g
−tx)b(g−tx, ξ0, P ; t)eig−tx·ξ0/δ,
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where b(g−tx, ξ0, P ; t) is the solution to our (BAS) with initial conditions

(g−tx, ξ0, P ).

This next lemma gives criteria for these fast oscillating vector fields to

be close to ImB in 3-dimensions. The criteria requires that we introduce a

parameter ζ that localizes the support of the fast oscillating vector field.

Lemma 3.1.3. Let x0 ∈ T3, ξ0 ∈ Z3 such that (ω(x0), ξ0) 6= 0. Let h0 ∈

C∞(T3) such that supph0 ⊂ B1(0), the ball centered at 0 of radius 1. Let

0 < ζ < 1 and define hζ by

hζ := h0

(x− x0

ζ

)

.

And let

ψζ,δ(x) := δ∇×
(

iξ0 × P

|ξ0|2
hζ(x)e

ix·ξ0/δ

)

,

where P ⊥ ξ0 is a constant vector and δ−1 ∈ Z+. Then there exists ψζ,δ ∈ L2
sol

such that

ψζ,δ − B(ψζ,δ) = rζ + rδ,

where ‖rζ‖L2 ≤ c0ζ
5/2 for some constant c0 > 0 that does not depend on δ and

‖rδ‖L2 = O(δ).

Proof. First we find an appropriate constant vector Q ⊥ ξ0 to play the role of

P in our preimage ψζ,δ. Let T : πξ⊥o
(R3) → πξ⊥o

(R3) be defined by

Tv := πξ⊥o
(ω(x0) × v).

Our assumption that (ω(x0), ξ0) 6= 0 implies that T is a bijection on πξ⊥o
(R3).

To see this suppose v ∈ πξ⊥o
(R3) such that v 6= 0 and Tv = 0. Then, since
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ω(x0) 6⊥ ξ0, it is impossible for ω(x0) and v to be parallel. Hence, the nonzero

vector (ω(x0)× v) must be parallel to ξ0. This implies that ω(x0) ⊥ ξ0, which

contradicts our assuption. Thus, T is a bijection and there is a constant vector

Q ⊥ ξ0 such that P = πξ⊥o
(ω(x0) ×Q).

Define the vector field ψζ,δ ∈ C∞
sol(T

3) by

ψζ,δ(x) := δ∇×
(

iξ0 ×Q

|ξ0|2
hζ(x)e

ix·ξ0/δ

)

.

Then from the expansion (3.3) and the linearity of B we have

B(ψζ,δ) = B(hζQe
i(·)·ξ0) + δB

[

∇hζ×
( iξ0 ×Q

|ξ0|2
)

eix·ξ0/δ
]

.

We may also expand ψζ,δ as in (3.3) to get

ψζ,δ −B(ψζ,δ) = hζPe
i(·)·ξ0/δ − B(hζQe

i(·)·ξ0) + δR1, (3.4)

where

R1 =
[

∇hζ×
( iξ0 × P

|ξ0|2
)

]

−B
[

∇hζ×
( iξ0 ×Q

|ξ0|2
)

eix·ξ0/δ
]

. (3.5)

Hence, ‖R1‖L2 ≤
(

|P |
|ξ0|‖hζ‖H1 + |Q|

|ξ0|‖B‖L(L2)‖hζ‖H1

)

. Notice that ‖B‖L(L2) ≤

‖ω‖L∞, so

‖R1‖L2 ≤
( |P |
|ξ0|

+
|Q|
|ξ0|

‖ω‖L∞

)

‖hζ‖H1 . (3.6)

To get a bound on the main term of the RHS of (3.4) we first use

Lemma 3.1.1 to compute

B(hζQe
i(·)·ξ0/δ) := πsol(ω × hζQe

i(·)·ξ0/δ)

= hζπξ⊥o
(ω ×Q)ei(·)·ξ0/δ +Rδ,
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where

‖Rδ‖L2 ≤ δ
C

|ξ0|
‖hζω‖H1. (3.7)

Define

rζ := hζPe
i(·)·ξ0/δ − hζπξ⊥o

(ω ×Q)ei(·)·ξ0/δ.

Then we may write the main term from the RHS of (3.4) as

hζPe
i(·)·ξ0/δ − B(hζQe

i(·)·ξ0/δ) = rζ +Rδ. (3.8)

We will demonstrate that ‖rζ‖L2 ≤ c0ζ
5/2 where the constant c0 is positive

and does not depend on δ. Since P = πξ⊥o
(ω(x0)×Q) and supphζ is contained

in the ball of radius ζ centered at x0, Bζ(x0), we have

‖rζ‖L2 = ‖hζPe
i(·)·ξ0/δ − hζπξ⊥o

(ω ×Q)ei(·)·ξ0/δ‖L2

≤ ‖hζ‖L2‖πξ⊥o
(ω(x0) ×Q) − πξ⊥o

(ω ×Q)‖L∞(Bζ(x0))

≤ ‖hζ‖L2‖πξ⊥o

(

ω(x0) − ω(·))×Q)
)

‖L∞(Bζ(x0)). (3.9)

Since ω(x) is Lipschitz and for any x ∈ supphζ , |x− x0| ≤ ζ , it follows that

|ω(x0) − ω(x)| ≤ ζ‖ω‖Lip for any x ∈ supphζ .

This implies

‖πξ⊥o

(

ω(x0) − ω(·)) ×Q)
)

‖L∞(Bζ(x0)) ≤ ζ‖ω‖Lip|Q|.

And since ‖hζ‖L2 = ζ3/2‖h0‖L2 , we have from estimate (3.9) that

‖rζ‖L2 ≤ ζ5/2‖h0‖L2‖ω‖Lip|Q|.
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Let c0 = ‖h0‖L2‖ω‖Lip|Q|, which is independent of δ. Now define rδ := δR1 +

Rδ. Therefore, from (3.4) and (3.8) we have

ψζ,δ − B(ψζ,δ) = rζ + rδ.

From (3.6) and (3.7) we have ‖rδ‖L2 = O(δ).

Remark 8. For fast oscillating vector fields like ψδ in 2-dimensions, (ω, ξ0) ≡

0, so this lemma does not give us any information about ImB in 2-dimensions.

3.2 Main theorem for 3-dimensional flows

In this section we prove the main theorem concerning 3-dimensional flows,

Theorem 3.2.1. Through Corollaries 3.2.3 and 3.2.4 we relate the essential

spectral radius of the linear evolution to the essential spectral radius of the

linear evolution restricted to each class of perturbations.

Theorem 3.2.1. Let u ∈ C∞
sol(T

3) be a solution to steady Euler’s equation (SE)

in 3-dimensions with vorticity, ω := curlu and let G(t) denote the solution

operator to Euler’s equation linearized about u. Define

A := {(x0, ξ0, b0) ∈ T3 × R3 × R3| ξ0 ⊥ b0, |ξ0| = |b0| = 1}.

Then the following statements hold:

(i) Let µ3I ∈ R be defined by

µ3I = lim
t→∞

1

t
log sup

(x0.ξ0,b0)∈A

x0∈supp(ω)

|b(x0, ξ0, b0; t)|,
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where b(x0, ξ0, b0; t) denotes a solution to (BAS) with initial conditions

(x0, ξ0, b0). Then we have the following lower bound for the essential

spectral radius of our evolution operator restricted to ImB:

eµ3I t ≤ ress(G(t)|ImB).

(ii) If supp(ω) is a proper subset of the fluid domain T3, let µ3F ∈ R be

defined by

µ3F = lim
t→∞

1

t
log sup

(x0,ξ0,b0)∈A

x0 /∈supp(ω)

|b(x0, ξ0, b0; t)|,

where b(x0, ξ0, b0; t) denotes a solution to (BAS) with initial conditions

(x0, ξ0, b0). Then we have another lower bound for the essential spec-

tral radius of the evolution operator acting on the factor space, F :=

L2
sol/ImB:

eµ3F t ≤ ress(GF (t))

where GF (t) denotes G(t) on the factor space and ‖ · ‖F denotes the

canonical factor space norm.

To prove Theorem 3.2.1 we first prove the following proposition:

Proposition 3.2.2. Let u ∈ C∞(T3) be a steady solution to Euler’s equation

with vorticity ω := curlu. Define

A := {(x0, ξ0, b0) ∈ T3 × R3 × R3| ξ0 ⊥ b0, |ξ0| = |b0| = 1}.

Fix T > 0.
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(i) Let ΘI(t) denote the following quantitity:

ΘI(t) = sup
(x0,ξ0,b0)∈A

x0∈supp(ω)

|b(x0, ξ0, b0; t)|,

where b(x0, ξ0, b0; t) is a solution to (BAS) corresponding to u. Then for

any ε > 0 and t ∈ [0, T ]

‖Gs
ε(t)‖L(ImB,L2) +O(

√
ε) ≥ ΘI(t),

where the constant in O is uniform for t ∈ [0, T ].

(ii) Whenever supp(ω) is a proper subset of the fluid domain, T3, define

ΘF (t) by

ΘF (t) = sup
(x0,ξ0,b0)∈A

x0 /∈supp(ω)

|b(x0, ξ0, b0; t)|,

where b(x0, ξ0, b0; t) is a solution to (BAS) corresponding to u. Then for

any ε > 0 and t ∈ [0, T ]

‖Gs
ε(t)‖L(F ) +O(

√
ε) ≥ ΘF (t).

where the constant in O is uniform for t ∈ [0, T ].

Proof of Proposition 3.2.2. To prove this proposition we will choose appropri-

ate sequences of fast oscillating vector fields (one that is almost in ImB and one

that is in KerB) and show that the sizes of their images under Gs
ε(t) approach

ΘI(t) and ΘF (t), respectfully, from below.

The Image: Now we will consider a fast oscillating vector field that

is almost in ImB: Choose x0 ∈ T3 and ξ0 ∈ Z3 such that (ω(x0), ξ0) 6= 0 and
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h0 ∈ C∞(T3) with supph0 ⊂ B0(1) and h0(0) = 1. Let 0 < ζ < 1 and define

hζ ∈ C∞(T3) by

hζ := h0

(x− x0

ζ

)

.

Then by Lemma 3.1.3 there exists ψζ,δ ∈ L2
sol such that

B(ψζ,δ)(x) = ψζ,δ(s) + rζ + rδ, (3.10)

where the ‖rζ‖L2 ≤ c0ζ
5/2 for c0 independent of δ and ‖rδ‖L2 = O(δ). Then if

we expand ψζ,δ as in line (3.3), we have

B(ψζ,δ)(x) = hζ(x)Pe
ix·ξ0/δ + rζ + rδ, (3.11)

where

rδ = rδ + δ
[

∇hζ(x)×
( iξ0 × P

|ξ0|2
)

eix·ξ0/δ
]

.

It follows that ‖rδ‖L2 = O(δ). Apply Lemma 3.1.2 to the main order term in

the expansion (3.10) for B(ψζ,δ) to estimate

(opε[a0] ◦ gu(t)B(ψζ,δ))(x)

= hζ(g
−tx)b(g−tx, ξ0, P ; t)eig−tx·ξ0/δ + r̃ζ(x) + r̃δ(x),

where r̃δ = opε[a0] ◦ gu(t)rδ and r̃ζ = opε[a0] ◦ gu(t)rζ . Hence ‖r̃δ‖L2 = O(δ)

and ‖r̃ζ‖L2 ≤ c̃0ζ
5/2 where c̃0 := c0‖opε[a0]‖L(L2) does not depend on δ. It

follows that

lim
δ→0

‖(opε[a0] ◦ gu(t)B(ψζ,δ))(x)‖L2 = ‖hζ(g
−tx)b(g−tx, ξ0, P ; t)‖L2 +O(ζ5/2).
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Then from line (3.11) we have ‖B(ψζ,δ)‖L2 = ‖hζP‖L2, thus we may estimate

‖opε[a0] ◦ gu(t)‖L(ImB,L2) +O(ζ5/2)

≥ sup
x0∈T

3,ξ0∈Z
3

(ω(x0),ξ0)6=0
P⊥ξ0

‖hζ(g
−tx)b(g−tx, ξ0, P ; t)‖L2

‖hζP‖L2

(3.12)

= sup
x0∈supp(ω),ξ0∈Z

3

P⊥ξ0

‖hζ(g
−tx)b(g−tx, ξ0, P ; t)‖L2

‖hζP‖L2

(3.13)

where the equality in the second line comes from taking the closure of the

pairs (x0, ξ0) ∈ T2 × Z3 such that (ω(x0), ξ0) 6= 0. Next we take the limit as

ζ → 0. The flow map gt is measure preserving, so composition with it will not

affect the norm in L2. Also hζ(x0) = 1 and b(·, ·, P ; t) depends linearly on P ,

so if we take the limit in ζ of the expression in (3.13) we have

lim
ζ→0

‖hζ(g
−tx)b(g−tx, ξ0, P ; t)‖L2

‖hζP‖L2

= |b(x0, ξ0,
P

|P | ; t)|.

We can approximate any ξ ∈ R3 by ξ0 ∈ Z3 and b is homogeneous of degree

0 in ξ0, so it suffices to take the supremum in the RHS of (3.13) over ξ0 ∈ R3

with |ξ0| = 1. Hence

‖opε[a0] ◦ gu(t)‖L(ImB,L2) ≥ sup
|ξ0|=|b0|=1

b0⊥ξ0
x0∈supp(ω)

|b(x0, ξ0, b0; t)| = Θ(t).

Therefore,

‖opε[a0] ◦ gu(t)‖L(ImB,L2) ≥ ΘI(t).

The Factor Space: Recall, the factor space F := L2
sol/ImB. Consider

a vector field ψδ ∈ C∞
sol(T

3), defined as in (3.2) with the extra condition that
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ensures it will be in KerB:

ψδ(x) = δ∇×
(

iξ0 × P

|ξ0|2
h0(x)e

ix·ξ0/δ

)

, (3.14)

where ξ0 ∈ Z3, δ−1 ∈ Z+, P ⊥ ξ0 is a constant vector and h0 ∈ C∞(T3) is

an arbitrary smooth scalar function with supph0 disjoint from supp(ω). This

implies that supp(ψδ) is disjoint from supp(ω). We may write the action of B

as

Bψδ := πsol(ω × ψδ).

It follows that ψδ ∈ KerB. If we apply Lemma 3.1.2 to ψδ we have

‖opε[a0] ◦ gu(t)ψδ − h0(g
−t·)b(g−t·, ξ0, P ; t)ei(·)·ξt/δ‖L2 = O(δ).

Which implies

‖opε[a0] ◦ gu(t)ψδ‖F = ‖h0(g
−t·)b(g−t·, ξ0, P ; t)ei(·)·ξt/δ‖F +O(δ), (3.15)

where ‖ · ‖F denotes the canonical factor space norm. The complement of

supp(ω) is invariant under the flow gt. Since supph0 is disjoint from supp(ω),

we have supp(h ◦ g−t) is also disjoint from supp(ω). Hence

h0(g
−tx)b(g−tx, ξ0, P ; t)eig−tx·ξ0/δ ∈ KerB.

It follows that

‖h0(g
−tx)b(g−tx, ξ0, P ; t)eig−tx·ξ0/δ‖F

‖ψδ‖F
=

‖h0(g
−tx)b(g−tx, ξ0, P ; t)eig−tx·ξ0/δ‖L2

‖ψδ‖L2

.

Now consider equation (3.15) and take the limit as δ → 0 and we have

‖opε[a0] ◦ gu(t)‖L(F ) ≥ sup
h0∈C∞(T3),ξ0∈Z

3\{0}
supp h0∩supp(ω)=∅

P⊥ξ0

‖h0(g
−tx)b(g−tx, ξ0, P ; t)‖L2

‖h0P‖L2

. (3.16)
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We are taking a supremum over all h0 ∈ C∞(T3) with supph0 disjoint from

supp(ω) and T3 \ supp(ω) is invariant under the flow map, so we can restrict

our consideration to x0 /∈ supp(ω). The flow map g−t is measure preserving,

so that change of coordinates will not affect the L2-norm. Also, since b is

homogeneous of degree 0 in ξ0 and linear in P we have

‖opε[a0] ◦ gu(t)‖L(F ) ≥ sup
|ξ0|=|b0|=1

b0⊥ξ0
x0 /∈supp(ω)

|b(x0, ξ0, b0; t)| = ΘF (t).

To finish the proof we must estimate the difference:

‖
(

Gs
ε(t) − opε[a0] ◦ gu(t)

)

ψδ‖L2 .

Recall that for any vector field v ∈ L2
sol

(Gs
ε(t)v)(x) = ∇x ×

ε

(2πε)3

∫

iξ

|ξ|2 × a0(x, ξ, t)gu(t)v(y)e
i(x−y)·ξ/εdydξ.

Notice that the matrix a0(x, ξ, t) maps into ξ⊥ for all t. Since iξ×(iξ×w) = w

whenever w ⊥ ξ, this implies

∇x(e
ix·ξ/ε) × ε

(2πε)3

∫

iξ

|ξ|2 × a0(x, ξ, t)gu(t)v(y)e
−iy·ξ/εdydξ

=
eix·ξ/ε

(2πε)3

∫

iξ×
( iξ

|ξ|2 × a0(x, ξ, t)gu(t)v(y)
)

e−iy·ξ/εdydξ

= opε[a0] ◦ gu(t)v.

Hence,

Gs
ε(t) − opε[a0] ◦ gu(t) =εopε

[

∇x ×
( iξ

|ξ|2 × a0

)]

◦ gu(t)

=op1

[

∇x ×
( iξ

|ξ|2 × a0(x, εξ, t)
)]

◦ gu(t). (3.17)
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Consider the symbol D(x, ξ, t) defined by

D(x, ξ, t) = ∇x ×
( iξ

|ξ|2 × a0(x, εξ, t)
)

.

For large |ξ|we see thatD(x, ξ, t) has homogeneity of order −1. Since a0(x, εξ, t) =
(

1−X(x,
√
εξ, t)

)

A0(x, ξ, t), we see that there is some constant c(T ) that de-

pends on T only such that for any t ∈ [0, T ], D(x, ξ, t) = 0 whenever |ξ| < c(T )√
ε

.

We also note that for any β, γ ∈ Z3, there exists a constant Cβ,γ(T ) such that

|∂β
x∂

γ
ξD(x, ξ, t)| ≤ Cβ,γ(T )(1 + |ξ|)−1−|γ| for any t ∈ [0, T ].

Now we may apply Lemma 2.4.2 to get

‖op1[D(x, ξ, t)]‖L2 = O(
√
ε).

We remark that in the proof of Lemma 2.4.2 the constant in O depends only

on the constants Cβ,γ(T ) and c(T ), so O(
√
ε) is uniform for t ∈ [0, T ]. Then

from equation (3.17) we have

‖Gs
ε(t) − opε[a0] ◦ gu(t)‖L(L2) = O(

√
ε), (3.18)

and

‖Gs
ε(t) − opε[a0] ◦ gu(t)‖L(F ) = O(

√
ε),

where in both estimates, the constants in O are uniform for t ∈ [0, T ]. This

completes the proof.

Now we prove the main theorem of this Chapter:
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Proof of Theorem 3.2.1. Let C ∈ L(L2) be an arbitrary operator of finite rank.

Then we get the following inequality for any ε > 0.

‖G(t) + C‖L(L2) ≥ ‖(G(t) + C) ◦ opε

[

1 − χ
( ξ√

ε

)]

‖L(L2). (3.19)

Since C has finite rank, we may write

C =

M
∑

j=1

gj(fj , ·),

for some {gj}M
j=1, {fj}M

j=1 ⊂ L2. Since opε

[

1− χ
(

ξ√
ε

)]

is self-adjoint, it follows

that

‖C ◦ opε

[

1 − χ
( ξ√

ε

)]

‖L(L2) =‖
M

∑

j=1

gj(opε

[

1 − χ
( ξ√

ε

)]

fj, ·)‖L(L2)

=o(1) as ε→ 0,

since for each j = 1, 2...M ,

‖opε

[

1 − χ
( ξ√

ε

)]

fj‖L(L2) = o(1) as ε → 0.

This implies

‖C ◦ opε

[

1 − χ
( ξ√

ε

)]

‖
L(ImB,L2) = o(1) as ε→ 0. (3.20)

Let N ∈ N and Replace t with Nt in inequality (3.19). Then by equation

(3.20) above

‖G(Nt) + C‖
L(ImB,L2) ≥ ‖G(Nt) ◦ opε

[

1 − χ
( ξ√

ε

)]

‖
L(ImB,L2) − o(1) as ε→ 0.

From Theorem 2.2.2 we have

‖G(Nt) + C‖
L(ImB,L2) ≥ ‖Gs

ε(Nt)‖L(ImB,L2) − O(
√
ε) − o(1) as ε→ 0.
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And Proposition 3.2.2 implies

‖G(Nt) + C‖
L(ImB,L2) ≥ ΘI(Nt) − O(

√
ε) − o(1) as ε→ 0.

Letting ε→ 0,

‖G(Nt) + C‖
L(ImB,L2) ≥ ΘI(Nt). (3.21)

Since C was arbitrary, we have

‖G(Nt) |ImB ‖K ≥ ΘI(Nt),

where ‖ · ‖K denotes Nussbaum’s seminorm, introduced in Section 2.2. Take

the Nth root of both sides of the equation and use properties of the logarithm

to get

‖G(Nt) |ImB ‖1/N
K

≥ et 1

Nt
log(ΘI (Nt)).

If we take the limits as N → ∞, for 3-dimensional flows we have

ress(G(t) |Im B) ≥ eµ3I t.

Thus we have the lower bound for Im B.

To compute a lower bound for the factor space, we assume supp(ω) is

a proper subset of the fluid domain, T3. In this case we may use Proposition

3.2.2.

We remark that for any T ∈ L(L2
sol) such that T leaves ImB invariant,

we may consider TF ∈ L(F ) where TF denotes T acting on the factor space.

For any x ∈ L2
sol, we let [x] ∈ F denote the equivalence class in F := L2

sol/ImB
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represented by x. Let π denote the orthogonal projection of L2
sol onto KerB.

Since L2
sol = ImB ⊕ KerB, we have [x] = [πx]. It follows that

‖TF‖L(F ) := sup
[x]∈F
[x] 6=[0]

‖T [x]‖F

‖[x]‖F

= sup
x∈L2

sol
πx 6=0

‖TF [πx]‖F

‖[πx]‖F

.

Because T leaves ImB invariant, we may say

‖TF‖L(F ) = sup
x∈L2

sol
πx 6=0

‖πTπx‖L2
sol

‖πx‖L2
sol

= ‖πTπ‖L(L2
sol

). (3.22)

Whenever we have an operator S ∈ L(L2
sol) that does not leave ImB invariant,

the notation ‖S‖L(F ) denotes ‖πSπ‖L(L2
sol

).

We also remark that any operator K ∈ S∞(F ) can be lifted to an

operator K ∈ S∞ as follows: Let {f̃j}∞j=1 be a Schauder basis for KerB. In

the canonical sense, {[f̃j ]}∞j=1 is also a Schauder basis for the factor space, F .

We may write

K =
∞

∑

j=1

[g̃j ]([f̃j], ·),

where g̃j ∈ KerB for each j = 1, 2.... Then we define

K :=

∞
∑

j=1

g̃j(f̃j, ·). (3.23)

Notice that K leaves ImB invariant and KF = K.

Let ‖ · ‖K(F ) be the Nussbaum seminorm on F . Then

‖TF‖K(F ) := inf
K∈ S∞(F )

‖TF +K‖L(F ).
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So we have

‖GF (t)‖K(F ) = inf
K∈ S∞(F )

‖GF (t) +K‖L(F )

= inf
K∈ S∞(F )

‖π
(

G(t) +K
)

π‖L(L2
sol

)

≥ inf
C∈ S∞(L2

sol
)
‖π

(

G(t) + C
)

π‖L(L2
sol

), (3.24)

where K is the lift of an operator K ∈ S∞(F ) in the sense of (3.23).

Again we begin with equation (3.19) in the factor space norm: For any

finite rank C ∈ L(L2
sol) we have

‖GF (t) + C‖L(F ) := ‖π
(

G(t) + C
)

π‖L(L2
sol

).

Hence,

‖GF (t) + C‖L(F ) ≥ ‖(G(t) + C) ◦ opε

[

1 − χ
( ξ√

ε

)]

‖L(F ).

From equation (3.20) we have

‖C ◦ opε

[

1 − χ
( ξ√

ε

)]

‖L(F ) = o(1) as ε → 0.

And from Theorem 2.2.2 we have

‖G(t) ◦ opε

[

1 − χ
( ξ√

ε

)

]

−Gs
ε(t)‖L(F ) = O(

√
ε). (3.25)

If we apply Theorem 2.2.2 and Proposition 3.2.2, it follows that for any C ∈

L(L2
sol) of finite rank

‖GF (Nt) + C‖L(F ) ≥ ‖Gs
ε(t)‖L(F ) − O(

√
ε) − o(1)

≥ ΘF (Nt) − O(
√
ε) − o(1).
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Now take the limit as ε → 0 as above. Since C is an arbitrary finite rank

operator, from (3.24) we have

‖GF (Nt)‖K(F ) ≥ ΘF (Nt).

Take the Nth root of both sides of the equation, exponentiate the RHS as

we did for the image case and then take the limit as N → ∞. Thus for

3-dimensional flows where supp(ω) is a proper subset of T3 we have

ress(GF (t)) ≥ eµ3F t.

Remark 9. The proof of Theorem 3.2.1 did not depend on our flow being

3-dimensional. In Section 4.2 we will introduce 2-dimensional propositions

similar to Proposition 3.2.2 and reference the proof of 3.2.1 to prove a similar

theorem for 2-dimensional flows, Theorem 4.2.3.

We have the following corollaries to Theorem 3.2.1:

Corollary 3.2.3. For a 3-dimensional flow with vorticity ω, if supp(ω) is a

proper subset of T3, then

ress(G(t)) = max{ress(GF (t)), ress(G(t) |Im B)}.

Corollary 3.2.4. If the support of ω is the entire fluid domain, T 3, then

ress(G(t) |ImB) = ress(G(t)).

Before proving these corollaries, we need the following proposition:
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Proposition 3.2.5. For 2- or 3-dimensional flows and for any t > 0,

ress(G(t)|ImB) ≤ ress(G(t)),

and

ress(G|F (t)) ≤ ress(G(t)).

Proof. Clearly,

‖G(t)|ImB‖K ≤ ‖G(t)‖K.

Then it follows that

lim
N→∞

‖G(Nt)|ImB‖
1/N
K

≤ lim
N→∞

‖G(Nt)‖1/N
K

.

Then by semigroup properties for G(t) and G(t)|ImB and Nussbaum’s Theorem

2.2.3, we have

ress(G(t)|ImB) ≤ ress(G(t)).

Now we prove the second statement. Recall from the proof of Theorem

3.2.1 that for any T ∈ L(L2
sol) such that T leaves ImB invariant, we may

consider TF ∈ L(F ) where TF denotes T acting on the factor space and we

have

‖TF‖L(F ) = ‖πTπ‖L(L2
sol

). (3.26)

In the proof of Theorem 3.2.1 we also showed that any operator K ∈ S∞(F )

can be lifted to an operator K ∈ S∞ such that K leaves ImB invariant and

KF = K.

Let ‖ · ‖K(F ) be the Nussbaum seminorm on F . Then

‖TF‖K(F ) := inf
K∈ S∞(F )

‖TF +K‖L(F ).
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Then from (3.26) we have

inf
K∈ S∞(F )

‖TF +K‖L(F ) = inf
K∈ S∞(F )

‖π(T +K)π‖L(L2
sol

),

where K ∈ S∞ is the lift of K ∈ S∞ defined by (3.23).

Notice that for C ∈ S∞, there is some KC ∈ S∞(F ) such that KC =

πCπ, where KC denotes the lift of KC in the sense of (3.23). Since KC =

πKCπ, we have

inf
K∈ S∞(F )

‖π(T +K)π‖L(L2
sol

) ≤ inf
C∈S∞

‖π(T +KC)π‖L(L2
sol

)

= inf
C∈S∞

‖π(T + C)π‖L(L2
sol

)

≤ inf
C∈S∞

‖T + C‖L(L2
sol

).

Thus, for any T ∈ L(L2
sol) which leaves ImB invariant,

‖TF‖K(F ) ≤ ‖T‖K(L2
sol

).

Then we have

‖GF (Nt)‖K(F ) ≤ ‖G(Nt)‖K,

for any N ∈ N. The mapping T 7→ TF is a vector space homomorphism from

{T ∈ L(L2
sol)| T →֒ ImB} to L(F ). Hence, GF (Nt) =

(

G(Nt)
)

F
. Then we

may repeat the computations above and apply Nussbaum’s Theorem again to

get

ress(G|F (t)) ≤ ress(G(t)).
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Proof of Corollary 3.2.3. From the definitions of ΘI(t) and ΘF (t) we have

sup
x0,|b0|=|ξ0|=1

ξ0⊥b0

|b(x0, ξ0, b0; t)| = max{ΘI(t),ΘF (t)}.

Hence,

µ := lim
t→∞

1

t
log sup

x0,|b0|=|ξ0|=1
ξ0⊥b0

|b(x0, ξ0, b0; t)| = lim
t→∞

1

t
log max{ΘI(t),ΘF (t)},

where µ is the Lyapunov-type exponent defined in Theorem 2.2.1. Thus µ =

max{µ3I , µ3F}. By Theorem 2.2.1 and Theorem 3.2.1 we have

ress(G(t)) = eµt = max{eµ3I , eµ3F } ≤ max{ress(GF (t)), ress(G(t) |Im B)}.

Then by Proposition 3.2.5

ress(G(t)) = max{ress(GF (t)), ress(G(t) |Im B)}.

Proof of Corollary 3.2.4. If we assume supp(ω) = T3, then µ = µ3I , where µ

is the Lyapunov-type exponent from Theorem 2.2.1. Then by Theorem 2.2.1

and Theorem 3.2.1 ress(G(t)) = eµt ≤ ress(G(t)|ImB). Hence, by Proposition

3.2.5 we have

ress(G(t)) = ress(G(t)|ImB).
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3.3 3-dimensional hyperbolic stagnation point example

In this section we give a specific example of a flow with instability from the

first class of perturbations. Our instability comes from a hyperbolic stagnation

point, so we first prove some facts about hyperbolic stagnation points in fluid

flows that are independent of the dimension of the flow.

Consider a 3-dimensional example of a steady flow with a hyperbolic

stagnation point. In general, a point xs is a hyperbolic stagnation point when

the spectrum of the matrix ∂u
∂x

(xs) does not intersect the imaginary axis.

Proposition 3.3.1. Let u be a steady solution to Euler’s equation on Tn, n =

2, 3, and xs a hyperbolic stagnation point of the flow associated with u. Then

∂u
∂x

(xs) is a symmetric matrix with n real, non-zero eigenvalues corresponding

to orthogonal eigenvectors.

Proof. From Euler’s equation, we have:

∂ui

∂xj
uj = −∂ip 1 ≤ i, j ≤ n, (3.27)

where p is the scalar pressure. Take the partial derivative with respect to the

kth coordinate direction and consider 3.27 evaluated at the stagnation point:

(∂u

∂x

)2

i,k
(xs) = −∂k∂ip(xs). (3.28)

This implies
(

∂u
∂x

)2
(xs) is a symmetric matrix, hence it has n real positive eigen-

values (by the hyperbolic assumption none are zero) and orthogonal eigenvec-

tors. The eigenvalues of ∂u
∂x

(xs) are the square roots of the eigenvalues of
(

∂u
∂x

)2
(xs) and they correspond to the same eigenvectors. This proves the

proposition.
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Corollary 3.3.2. Let u be a steady solution to Euler’s equation on Tn, n =

2, 3 and xs a hyperbolic stagnation point of the flow associated with u. Then

ω(xs) = 0.

Proof. For any vector v ∈ Rn, ω(x) × v =
(

∂u
∂x

(x) − ∂u
∂x

T
(x)

)

v. Since ∂u
∂x

(xs) is

symmetric, it follows that ω(xs) × v ≡ 0 for all v ∈ Rn. Thus, ω(xs) = 0.

Now consider the more specific example:

u1 = cosx2 − sin x3, u2 = cosx3 − sin x1, u3 = cosx1 − sin x2,

at the stagnation point xs = (π
4
, π

4
, π

4
).

(∂u

∂x

)T
(xs) =

∂u

∂x
(xs) =





0 1 1
1 0 1
1 1 0



 .

The eigenvalues and associated eigenvectors of ∂u
∂x

(xs):

λ1 = −2 ↔ v1 = (0, 1√
2
,− 1√

2
),

λ2 = 1 ↔ v2 = ( 1√
3
, 1√

3
, 1√

3
),

λ3 = 1 ↔ v3 = (− 2√
6
, 1√

6
, 1√

6
).

Consider the BAS system of ODEs:

(BAS)























ẋ = u(x), x(0) = x0;

ξ̇ = −
(

∂u
∂x

)T

ξ, ξ(0) = ξ0;

ḃ = −
(

∂u
∂x

)

b+ 2
(

∂u
∂x
b, ξ

)

ξ
|ξ|2 , b(0) = b0.

At the stagnation point, we get the solution ξ(t) = v2e
−λ2t, b(t) = v1e

−λ1t.

Since −λ1 = 2, |b(t)| grows exponentially. This instability can be caused by a
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vector field in ImB. To see this, we will carefully construct a sequence of vec-

tor fields approaching ImB whose linear evolution approches this exponential

growth.

We must use the continuous dependence of b(t) := b(x0, ξ0, b0; t) on x0.

We want to choose x0 such that (ω(x0), v2) 6= 0 and

|b(x0, v2, v1; t) − b(t)| < α, (3.29)

for some α > 0 and b(xs, v2, v1; t) = v1e
−λ1t Then let h0 ∈ C∞(T3) such that

h0 is supported in the ball of radius 1 centered at 0. Just as in Lemma 3.1.3

for any 0 < ζ < 1 define

hζ(x) = h0

(x− x0

ζ

)

.

Now define ψζ,δ

ψζ,δ(x) = δ∇×
(

(iv2 × v1)hζ(x)e
ix·ξ/δ

)

, (3.30)

where δ−1 ∈ Z+, v1 and v2 are defined above. From Lemma 3.1.3 we can adjust

the parameters δ and ζ to get ψζ,δ as close to ImB as we like. From Lemma

3.1.2 we have

lim
δ→0

‖(Gε(t)ψζ,δ)(x)‖L2 =
‖hζ(g

−tx)b(g−tx, v2, v1; t)‖L2

‖hζ‖L2

.

Taking the limit in ζ gives,

lim
ζ→0

‖hζ(g
−tx)b(g−tx, v2, v1; t)‖L2

‖hζ‖L2

= |b(x0, v2, v1; t)|.

From (3.29) we have constructed a sequence of fast oscillating vector fields ψζ,δ

whose image under G(t) approaches exponential growth if we take the limit

first in δ, then in ζ .
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Chapter 4

Lower bounds for growth in 2-dimensions

This chapter parallels Chapter 3, only here we deal with 2-dimensional flows.

The main differences in the results stem from the fact that the scalar vorticity

of a 2-dimensional inviscid, incompressible fluid flow is constant along flow

lines.

4.1 Classifying 2-dimesional fast oscillating vector fields

In this section we introduce our 2-dimensional high frequency perturbations

and, in Lemma 4.1.3, estimate their linear evolution. We also establish when

such a perturbation is approximately in the factor space and when one is

approximately in ImB, our first class of perturbations. To begin, we more

closely investigate the operator B for a 2-dimensional flow u acting on 2-

dimensional perturbations.

The operator B takes on a simplified form in 2-dimensions. The vor-

ticity, ω, of our steady flow u is ususally treated as a scalar function when u

is 2-dimensional. However, when we define the operator B for 2-dimensional

flows, we treat ω as a 3-dimensional vector field with first two components
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zero and third componenet the scalar vorticity. Thus

Bv := ω × v −∇α,

can be simplified:

Bv = ω · v⊥ −∇α = πsol(ω · v⊥), (4.1)

where the pressure ∇α ∈ (L2(T2))2 is determined by the requirement that Bv

be divergence free and πsol is the orthogonal projection onto divergence free

vector fields.

Let φδ ∈ (L2
sol(T

2))2 be defined by,

φδ(x) := −iδ∇⊥(h0(x)e
ix·ξ0/δ), (4.2)

where ξ0 ∈ Z2, δ−1 ∈ Z+, P ⊥ ξ0 is constant and h0 ∈ C∞(T2) is an arbitrary

smooth scalar function. We can expand φδ as follows:

φδ(x) = h0(x)ξ
⊥
0 e

ix·ξ0/δ − iδ
[

eix·ξ0/δ∇⊥h0(x)
]

. (4.3)

In this next Lemma we establish criteria for φδ to be near ImB. Our

criteria is based on ∇ω, the gradient of the scalar vorticity of our steady

solution u ∈ C∞
sol.

Lemma 4.1.1. Define φδ as in (4.2) above. If there is a constant c0 such that

|(ξ⊥0 ,∇ω(x))| > c0 on supph0, then there exists a remainder rδ ∈ L2 such that

φδ + rδ ∈ ImB and ‖rδ‖L2 = O(δ).

Proof. Assume there exists a constant c0 such that |(ξ⊥0 ,∇ω(x))| > c0 on

supph0. Then we can define a function g0 ∈ C∞(T2) by

g0(x) :=
|ξ0|2h0(x)

(ξ⊥0 ,∇ω(x))
, (4.4)
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and define a vector field v ∈ C∞
sol(T

2) by,

v(x) := ∇⊥(g0(x)e
ix·ξ0/δ).

From (4.1) the operator B on ∇⊥(g0(x)e
ix·ξ0/δ) takes this simplified form:

Bv = πsol

(

ω∇(g0(x)e
ix·ξ0/δ)

)

= πsol

(

∇(ωg0e
ix·ξ0/δ)

)

− πsol

(

g0(x)e
ix·ξ0/δ∇ω

)

= −πsol(g0(x)e
ix·ξ0/δ∇ω),

since the gradient of a function is irrotational and, hence, orthogonal to the

space of divergence free vector fields. If we apply Lemma 3.1.1 we have

Bv = −g0(x)πξ⊥
0
(∇ω)eix·ξ0/δ + r̃δ,

where ‖rδ‖L2 = O(δ). Substitute our definition for g0 from (4.4) to get

Bv = ξ⊥0 h0(x)e
ix·ξ0/δ + r̃δ.

Then the expansion (4.3) for φδ implies

Bv = −iδ∇⊥(h0(x)e
ix·ξ0/δ) + rδ =: φδ + rδ,

where rδ := r̃δ − iδ
[

eix·ξ0/δ∇⊥h0(x)
]

∈ L2 and ‖rδ‖L2 = O(δ). Thus we have

φδ + rδ ∈ ImB.

This lemma establishes criteria for measuring the factor space norm of

a slightly generalized version of our fast oscillating vector fields. Recall that

our factor space F := L2
sol(T

2)/ImB, with the canonical factor space norm we

denote ‖ · ‖F .
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Lemma 4.1.2. Let x0 ∈ Tn, ξ0 ∈ Rn such that ∇ω(x0) 6= 0 and (ξ⊥0 ,∇ω(x0)) =

0. Let h0 ∈ C∞(Tn) be supported on B1(0), the ball of radius 1 centered at 0

such that h0(0) = 1. For 0 < ζ << 1 define hζ by

hζ(x) := h0

(x− x0

ζ

)

,

and let δ−1 ∈ Z+. For any x ∈ [0, 1) × [0, 1) define

φζ,δ(x) := −iδ∇⊥(hζ(x)e
ix·ξ0/δ),

and extend φζ,δ periodically. Then we have

‖φζ,δ‖F = ‖φζ,δ‖L2 +O(ζ) +O(δ),

where O(ζ) is independent of δ and O(δ) is independent of ζ.

Remark 10. The conditions on x0 and ξ0 imply that ξ0 is a scalar multiple

of ∇ω(x0), so we cannot require ξ0 ∈ Z2 here. To ensure that φζ,δ is periodic,

we define the vector field on Bζ(x0) and, since ζ << 1, we may extend it

periodically.

Proof. A key idea in this proof is the fact that if a vector field, w, is divergence

free, then w = 0 if and only if curlw = 0. This fact follows from the Hodge

decomposition of vector fields on the torus: L2(Tn) = L2
sol(T

n) ⊕ L2
irr(T

n)

discussed in Section 2.1. It follows that since B maps into L2
sol, we can say

v ∈ KerB if and only if v ∈ KerT where T : (L2
sol(T

2))2 → (L2
sol(T

2))2 is

defined by

Tv := curlBv = v · ∇ω.
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For any x ∈ supp(hζ), |x− x0| ≤ ζ , so

|∇ω(x) −∇ω(x0)| ≤ ζK,

where K := ‖∇ω‖Lip is the Lipschitz norm of ∇ω. We may assume ζ <<

|∇ω(x0)|, so for any x ∈ supphζ , |∇ω(x)| ≥ |∇ω(x0)| − ζK > 0 and we may

write

ξ⊥0 = ξ⊥0 − (ξ⊥0 ,∇ω(x))

|∇ω(x)|2 ∇ω(x) +
(ξ⊥0 ,∇ω(x))

|∇ω(x)|2 ∇ω(x).

We assume (ξ⊥0 ,∇ω(x0)) = 0, so we have

|(ξ⊥0 ,∇ω(x))|
|∇ω(x)| =

|(ξ⊥0 ,∇ω(x)) − (ξ⊥0 ,∇ω(x0))|
|∇ω(x)|

≤ ζ |ξ⊥0 |
|∇ω(x0)| − ζK

.

Hence

ξ⊥0 = ξ⊥0 − (ξ⊥0 ,∇ω(x))

|∇ω(x)|2 ∇ω(x) +O(ζ)
∇ω(x)

|∇ω(x)|.

For any x ∈ supphζ , let

η(x) := ξ⊥0 − (ξ⊥0 ,∇ω(x))

|∇ω(x)|2 ∇ω(x) (4.5)

= ξ⊥0 − O(ζ)
∇ω(x)

|∇ω(x)|.

We can expand φζ,δ as in (4.3) and compute

φζ,δ(x) = hζ(x)ξ
⊥
0 e

ix·ξ0/δ + rδ,

where ‖rδ‖L2 ≤ δC‖∇hζ‖L2. Notice that in 2-dimensions, ‖∇hζ‖L2 = ‖∇h0‖L2 ,

so ‖rδ‖L2 ≤ δC‖∇h0‖L2 , which is independent of ζ . We also have from the

definition of η in (4.5) that

φζ,δ(x) = hζ(x)η(x)e
ix·ξ0/δ + rζ + rδ,
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where ‖rζ‖L2 = O(ζ) independent of δ. Since (Tη)(x) := η(x) ·∇ω(x) ≡ 0, we

have φζ,δ − rζ − rδ ∈ KerB. Therefore, ‖φζ,δ‖F = ‖φζ,δ‖L2 +O(ζ) +O(δ).

Now we prove a slightly generalized 2-dimensional version of Lemma

3.1.2 to approximate the linear evolution of our φζ,δ vector fields, where it is

no longer assumed that the frequency vector ξ0 ∈ Z2.

Lemma 4.1.3. Let h0 ∈ C∞(T2) be supported on B1(0), the ball centered at

0 of radius 1. For 0 < ζ < 1 and fixed x0 ∈ T2, define hζ by

hζ(x) := h0

(x− x0

ζ

)

.

Let ξ0 ∈ Rn, δ−1 ∈ Z+ and define φζ,δ(x) := −iδ∇⊥(hζe
ix·ξ0/δ). Then for

any fixed t > 0 we can approximate Gε(t)φζ,δ(x) := (opε[a0] ◦ gu(t)φζ,δ)(x) as

follows:

(opε[a0] ◦ gu(t)φζ,δ)(x) = hζ(g
−tx)b(g−tx, ξ0, ξ

⊥
0 ; t)eig−tx·ξ0/δ + rδ(x),

where b(g−tx, ξ0, ξ
⊥
0 ; t) is the solution of (BAS) at time t with initial conditions

(g−tx, ξ0, ξ
⊥
0 ), ‖rδ‖L2 = O(δ).

Before we begin the proof, recall from Section 2.2 that we decompose

the symbol a0 into two parts: A0 the part homogeneous of degree 0 in ξ and

1 −X, the evolution of the smooth function 1 − χ that cuts out the origin in

ξ-space.

a0(x, ξ, t) = A0(x, ξ, t)
(

1 −X
(

x,
ξ√
ε
, t

))

,
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where A0 and X are solutions to the following system:






















∂tA0 = −∇uA0 − ∂u
∂x
A0 + 2 ξ⊗ξ

|ξ|2
∂u
∂x
A0,

A0(x, ξ, 0) = 1 − ξ⊗ξ
|ξ|2 ,

∂tX = −∇uX, where X(x, ξ, 0) = χ(ξ),

(4.6)

where

χ(ξ) =

{

1 if |ξ| ≤ 1
2
,

0 if |ξ| ≥ 2
3
.

Remark 11. It follows that for C̃ := ‖∂u
∂x
‖L∞(T2), if |ξ| ≤ 1

2
e−C̃t

√
ε then

a0(x, ξ, t) = 0. Also, if |ξ| ≥ 2
3
eC̃t

√
ε, then a0(x, ξ, t) = A0(x, ξ, t) which

is homogeneous of degree 0 in ξ. Thus by Remark 4 in Section 2.4, a0 ∈

S0
1,0(T

2) ⊂ S0
0,0(T

2).

We also have that for any (x0, ξ0, b0) ∈ T ∗(Tn) × Rn,

b(x0, ξ0, b0; t) = A0(g
tx0, (g

−t
∗ (x))∗ξ0, t)b0. (4.7)

Proof of Lemma 4.1.3. From the expansion of φζ,δ as in (4.3) we have

φζ,δ(x) = hζ(x)ξ
⊥
0 e

ix·ξ0/δ + rδ(x),

where ‖rδ‖L2 = O(δ). Let t > 0 and since gu(t) is a unitary operator on

L2(Tn), we have

(

gu(t)φζ,δ

)

(x) = hζ(g
−tx)ξ⊥0 e

ig−tx·ξ0/δ + r̃δ(x),

where r̃δ := gu(t)rδ, thus ‖r̃δ‖L2 = O(δ). And since opε[a0] is bounded on

L2(T2), we have

(opε[a0]◦gu(t)φζ,δ)(x) = (opε[a0]◦gu(t)hζ ◦g−tξ⊥0 e
ig−t(·)·ξ0/δ)(x)+rδ(x), (4.8)
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where rδ = opε[a0]r̃δ, hence ‖rδ‖L2 = O(δ).

We will apply Lemma 2.4.4 and Lemma 2.4.5 to the main order term of

φζ,δ in (4.8), so we must carefully define our exponent function S ∈ C∞(R2).

Let κ ∈ C∞(

g−t(B4ζ(x0))
)

such that

κ(x) =

{

1 if g−tx ∈ B2ζ(x0),
0 if g−tx /∈ B3ζ(x0).

Now extend κ periodically so κ ∈ C∞(T2) (this is not a problem since we

assume ζ << 1). Define S ∈ C∞(R2) by

S(x) := κ(x)g−tx · ξ0.

Then hζ(g
−tx)ξ⊥0 e

ig−tx·ξ0/δ = hζ(g
−tx)ξ⊥0 e

iS(x)/δ. Also both S and ∇S are well

defined in C∞(T2). Hence S satisfies the hypothesis of Lemma 2.4.4. Now for

a γ > 0 to be specified later, we may define σ ∈ S0
0,0(T

n) as follows:

σ(x, ξ) :=
(

1 −X(x, γξ, t)A0(x, ξ, t)
)

.

And if we apply Lemma 2.4.4 we have

(

opδ[σ]hζ ◦ g−tξ⊥0 e
iS/δ

)

(x) = σ(x,∇S(x))hζ(g
−tx)ξ⊥0 e

iS(x)/δ +Rδ, (4.9)

where ‖Rδ‖L∞ = O(δ).

Notice that since opε[a0] = op1[a0(x, εξ, t)] and opδ[σ] = op1[σ(x, δξ, t)],

we have

opε[a0]hζ(g
−tx)ξ⊥0 e

iS(x)/δ =
(

opδ[σ]hζ ◦ g−tξ⊥0 e
iS/δ

)

(x) (4.10)

+ op1

[(

X(x, γδξ, t) −X(x,
√
εξ, t)

)

A0(x, ξ, t)
]

hζ(g
−tx)ξ⊥0 e

iS(x)/δ.
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We will use Lemma 2.4.5 twice to estimate the second term on the RHS of

(4.10). Define

cS := inf
x∈supp(hζ◦g−t)

∣

∣∇S(x)
∣

∣ = inf
x∈supp(hζ◦g−t)

∣

∣(g−t
∗ (x))∗ξ0

∣

∣.

The constant cS > 0 since (g−t
∗ (x))∗ξ0 is a solution to the cotangent flow

equation

ξ̇ = −
(∂u

∂x

)T
ξ.

Since the cotangent flow is reversible, we may use negative time Gronwall

estimates to show that given a fixed t, there is a constant C̃(t) such that

|ξ(ξ0, t)| > C̃(t)|ξ0| for all initial conditions ξ0.

Since X is the evolution of our cutoff function χ along the cotangent

flow, we have that there is another constant C(t) such that X(x, ξ, t) = 0 for

|ξ| > C(t) . Let γ := 2C(t)
cS

, so we have 0 < 1
γ
< cS

C(t)
. Also the homogeneity of

A0 in ξ implies σ ∈ S0
0,0(T

2) (see Remark 11), so by Lemma 2.4.5 we have

∥

∥op1

[

X(x, γδξ, t)A0(x, ξ, t)
]

hζ(g
−tx)ξ⊥0 e

iS(x)/δ
∥

∥

L∞
= O(δ).

Also, we assume δ << ε, so 0 < δ√
ε
< cS

C(t)
and by Lemma 2.4.5 we have

∥

∥op1

[

X(x,
√
εξ, t)A0(x, ξ, t)

]

hζ(g
−tx)ξ⊥0 e

iS(x)/δ
∥

∥

L∞
= O(δ).

Hence, from (4.9) and (4.10) we have

∥

∥opε[a0]hζ(g
−tx)ξ⊥0 e

iS(x)/δ − σ(x,∇S(x))hζ(g
−tx)ξ⊥0 e

iS(x)/δ‖L∞ = O(δ).

(4.11)
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For any x ∈ supp(hζ ◦ g−t), we have ∇S(x) ≥ cS > C(t)
γ

. It follows that

X(x, γ∇S(x), t) = 1 and

hζ(g
−tx)σ(x,∇S(x))ξ⊥0 =hζ(g

−tx)(1 −X(x, γ∇S(x), t))A0(x,∇S(x), t)ξ⊥0

=hζ(g
−tx)A0(x, (g

−t
∗ (x))∗ξ0, t)ξ

⊥
0 .

Since A0(x, (g
−t
∗ (x))∗ξ0, t)ξ⊥0 solves (BAS) with initial conditions (g−tx, ξ0, ξ

⊥
0 ),

we have

hζ(g
−tx)σ(x,∇S(x))ξ⊥0 = hζ(g

−tx)b(g−tx, ξ0, ξ
⊥
0 ; t).

Then from (4.8) and (4.11) we have

‖(opε[a0] ◦ gu(t)φζ,δ)(x) − hζ(g
−tx)b(g−tx, ξ0, ξ

⊥
0 ; t)eig−tx·ξ0‖L2 = O(δ),

since for any f ∈ L2(T2), ‖f‖L2 ≤ (2π)2‖f‖L∞. This completes the proof.

4.2 Main theorem for 2-dimensional flows

The approach for finding lower bounds for the essential spectral radius of

the linear evolution of 2-dimensional perturbations in each class is completely

similar to that taken in Chapter 3. Before stating our main theorem, we prove

the following propositions similar to Proposition 3.2.2.

Proposition 4.2.1. Let u ∈ (C∞(T2))2 be a solution to steady Euler’s equa-

tion (SE) with scalar vorticity ω := curlu and fix T > 0. Let

A := {(x0, ξ0, b0) ∈ T2 × R2 × R2| ξ0 ⊥ b0, |ξ0| = |b0| = 1}.

Define ΘI(t) by

ΘI(t) = sup
(x0,ξ0,b0)∈A

x0∈supp(∇ω)

|b(x0, ξ0, b0; t)|,
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where b(x0, ξ0, b0; t) is a solution to (BAS) with initial conditions (x0, ξ0, b0).

Then for any ε > 0 and t ∈ [0, T ] we have

‖Gs
ε(t)‖L(ImB,L2

sol
) +O(

√
ε) ≥ ΘI(t),

where the constant in O is uniform for t ∈ [0, T ].

Proposition 4.2.2. Let u ∈ (C∞(T2))2 be a solution to steady Euler’s equa-

tion (SE) with scalar vorticity ω := curlu and fix T > 0. Let

A := {(x0, ξ0, b0) ∈ T2 × R2 × R2| ξ0 ⊥ b0, |ξ0| = |b0| = 1}.

(i) If we define Θ̃F (t) by

Θ̃F (t) := sup
(x0,ξ0,b0)∈A

x0 /∈supp∇ω

|b(x0, ξ0, b0; t)|,

where b(x0, ξ0, b0; t) is a solution to (BAS) with initial conditions (x0, ξ0, b0).

Then for any ε > 0 and t ∈ [0, T ] we have

‖Gs
ε(t)‖L(F ) +O(

√
ε) ≥ Θ̃F (t),

where the constant in O is uniform for t ∈ [0, T ].

(ii) If we define ΘF (t) by

ΘF (t) := sup
{x0∈T

2| |∇ω(x0)|>0}
|b0|=1

b0⊥∇ω(x0)

|b(x0,∇ω(x0), b0; t)|,

where b(x0,∇ω(x0), b0; t) is a solution to (BAS) with initial conditions

(x0,∇ω(x0), b0). Then for any ε > 0 and t ∈ [0, T ] we have

‖Gs
ε(t)‖L(F ) +O(

√
ε) ≥ ΘF (t),

where the constant in O is uniform for t ∈ [0, T ].
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The proofs of these propositions are very similar to the proof of Propo-

sition 3.2.2. We begin by looking at sequences of fast oscillating vector fields

and showing that the appropriate norms of their images under Gs
ε(t) approach

the appropriate Θ-function. First we approximate the evolution of our gen-

eral 2-dimensional fast oscillating perturbations. Consider the vector field

φδ ∈ C∞(T2) defined by

φδ(x) := δ∇⊥(h0(x)e
iξ0·x/δ), (4.12)

where δ−1 ∈ Z+, δ < 1, ξ0 ∈ Z2 and h0 ∈ C∞(T2) is an arbitrary smooth scalar

function. If we consider φδ as a 3-dimensional planar vector field on T3, then

φδ = δ∇×
(

iξ0 × ξ⊥0
|ξ0|2

h0(x)e
ix·ξ0/δ

)

. (4.13)

Thus, by Lemma 3.1.2 and Remark 7 from Section 3.1 we have

‖opε[a0] ◦ gu(t)φδ‖L2 = ‖h0(g
−t·)A0(·, (g−t

∗ (·))∗ξ0, t)ξ⊥0 eig−t(·)·ξ0/δ‖L2 +O(δ)

= ‖h0(g
−t·)b(·, (g−t

∗ (·))∗ξ0, ξ⊥0 , t)‖L2 +O(δ). (4.14)

We also remark that in the proof of Proposition 3.2.2 we showed

‖Gs
ε(t) − opε[a0] ◦ gu(t)‖L(L2

sol
(T3)) = O(

√
ε).

It follows that we have the same estimate in 2-dimensions:

‖Gs
ε(t) − opε[a0] ◦ gu(t)‖L(L2

sol
(T2)) = O(

√
ε). (4.15)

Proof of Proposition 4.2.1. Let x0 ∈ T2, ξ0 ∈ Z2 such that (ξ⊥0 ,∇ω(x0)) 6= 0.

We can choose h0 ∈ C∞(T2) supported such that there is some constant c0
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where |(ξ⊥0 ,∇ω(x))| > c0 for all x ∈ supph0. We will call any function h0

that satisfies these properties, localized at x0. Then for δ−1 ∈ Z+, let φδ :=

−iδ∇⊥(h0e
ix·ξ0/δ). Then from Lemma 4.1.1, φδ is approximately in the image

of B. More specifically, there is some remainder rδ such that ‖rδ‖L2
sol

= O(δ)

and φδ + rδ ∈ ImB. Take the limit of the estimate 4.14 as δ → 0, to get

‖opε[a0] ◦ gu(t)‖L(ImB,L2) ≥ sup
x0∈T

2,ξ0∈Z
2

(ξ⊥
0

,∇ω(x0))6=0
h0 localized at x0

‖h0(g
−tx)b(g−tx, ξ0, ξ

⊥
0 ; t)‖L2

sol

‖h0ξ
⊥
0 ‖L2

sol

.

The flow map g−t is measure preserving, so as a change of variables it will not

affect the L2-norm. We are taking the supremum over all functions h0 localized

at x0 for some x0 such that ∇ω(x0) 6= 0. This is the same as taking the

supremum over all functions h0 ∈ C∞(T2) with supp(h0) ⊂ {x : ∇ω(x) 6= 0}.

Also, b(x0, ξ0, b0; t) depends linearly on the initial condition b0. Thus if we take

into account that b is also homogeneous of degree 0 in ξ0, depends continuously

on ξ0 and any ξ ∈ R2 can be approximated by a vector ξ0 ∈ Q2, we have

‖opε[a0] ◦ gu(t)‖L(ImB,L2) ≥ sup
x0∈T

2,ξ0∈R
2

|ξ0|=1

(ξ⊥
0

,∇ω(x0))6=0

|b(x0, ξ0, b0; t)|. (4.16)

Take the closure of the condition (ξ⊥0 ,∇ω(x0)) 6= 0 on the supremum in line

4.16 and, since b(x0, ξ0, ξ
⊥
0 ; t) depends continuously on the initial conditions,

we have

‖opε[a0] ◦ gu(t)‖L(ImB,L2
sol

) ≥ sup
|ξ0|=|b0|=1

b0⊥ξ0
x0∈supp∇ω

|b(x0, ξ0, b0; t)| =: ΘI(t).

Hence, from (4.15), we have ‖Gs
ε(t)‖L(ImB,L2

sol
) + O(

√
ε) ≥ ΘI(t). This con-

cludes the proof of Proposition 4.2.1.
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To prove Proposition 4.2.2, it will be important to examine the evolu-

tion of ∇ω along a path of flow. Let u ∈ C∞(T2) be our steady solution to

Euler’s equation and let the scalar function ω := curlu in the 2-dimensional

sense. Consider the vorticity equation for steady flows in 2-dimensions:

ui∂iω = 0. (4.17)

Take the jth partial derivative of 4.17 to get

∂ju
i∂iω + ui∂j∂iω = 0.

Which implies
(∂u

∂x

)T∇ω + (u · ∇)∇ω = 0.

It follows that

d

dt
∇ω(gtx) = −

(∂u

∂x

)T∇ω.

Hence, ∇ω evolves like a covector along the flow gt and we have

∇ω(gtx0) = (g−t
∗ (x0))

∗∇ω(x0). (4.18)

Proof of Proposition 4.2.2 (i). Let h0 ∈ C∞ such that ∇ω(x) = 0 for any

x ∈ supph0. Now let δ−1 ∈ Z+ and choose any ξ0 ∈ Z2 and consider the

resulting fast oscillating vector field, φδ := −iδ∇⊥(h0e
ix·ξ0/δ). Just as in the

proof of Lemma 4.1.2 we consider the operator T = curlB defined by

Tv := v · ∇ω v ∈ (C∞(T2))2.

Since Bv is divergence free, Bv = 0 if and only if Tv = 0. Since ∇ω ≡ 0 on

supp(φδ), it is clear that φδ ∈ KerT = KerB. Hence, if recall the expansion
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(4.3) we have

‖φδ‖F = ‖φδ‖L2 = ‖h0ξ
⊥
0 ‖L2 +O(δ). (4.19)

The evolution of ∇ω (4.18) along the flow implies ∇ω(gtx) ≡ 0 for all x ∈

supph0. It follows that ∇ω ≡ 0 on supp(h0 ◦ g−t) and

h0(g
−tx)b(g−tx, ξ0, ξ

⊥
0 ; t)eig−tx·ξ0/δ ∈ KerT.

Hence, from the estimate (4.14) we have

‖opε[a0] ◦ gt
uφδ‖F =‖h0(g

−tx)b(g−tx, ξ0, ξ
⊥
0 ; t)eig−tx·ξ0/δ‖F +O(δ)

= ‖h0(g
−tx)b(g−tx, ξ0, ξ

⊥
0 ; t)eig−tx·ξ0/δ‖L2 +O(δ). (4.20)

Consider (4.19) and (4.20) and take the limit as δ → 0 to get

‖opε[a0] ◦ gt
u‖L(F ) ≥ sup

ξ∈Z
2,x∈T

2

supp(h0)⊂{x:∇ω(x)=0}

‖h0(g
−tx)b(g−tx, ξ0, ξ

⊥
0 ; t)eig−tx·ξ0/δ‖L2

‖h0ξ⊥0 ‖L2

.

We simplify the supremum on the RHS using that (i) g−t is measure preserv-

ing so the corresponding coordinate change does not affect the L2 norm, (ii)

b(g−tx, ξ0, ξ
⊥
0 ; t) homogeneous of degree zero in ξ0 and any vector in R2 can be

approximated by a vector in Q2, so we can take our supremum over ξ0 ∈ Rn

such that |ξ0| = 1, and (iii) b(g−tx, ξ0, ξ
⊥
0 ; t) depends linearly on ξ⊥0 and ξ0 is a

2-dimensional vector, so it is equivalent to consider all b0 ⊥ ξ0 such that |b0| = 1

in our supremum. We also note that (iv) if supp(h0) ⊂ {x : ∇ω(x) = 0}, then

supp(h0 ◦ g−t) ⊂ {x : ∇ω(x) = 0},

so we may take the supremum over x0 = g−tx ∈ T2 \ supp∇ω:

‖opε[a0] ◦ gt
u‖L(F ) ≥ sup

|b0|=|ξ0|=
ξ0⊥b01

x0 /∈supp∇ω(x0)

|b(x0, ξ0, b0; t)| =: Θ̃F (t).
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Therefore, from the estimate (4.15) we have

‖Gs
ε(t)‖L(F ) +O(

√
ε) ≥ Θ̃F (t).

Proof of Proposition 4.2.2 (ii). Let x0 ∈ Tn such that ∇ω(x0) 6= 0 and define

ξ0 := ∇ω(x0)
|∇ω(x0)| . Let h0 ∈ C∞(Tn) be supported on B1(0), the ball of radius 1

centered at 0 such that h0(0) = 1. For 0 < ζ << 1 define hζ by

hζ(x) := h0

(x− x0

ζ

)

and let δ−1 ∈ Z+. For any x ∈ [0, 1) × [0, 1) define

φζ,δ(x) := −iδ∇⊥(hζ(x)e
ix·ξ0/δ),

and extend φζ,δ periodically. It follows from Lemma 4.1.2 and the expansion

(4.3) of φζ,δ that

‖φζ,δ‖F = ‖φζ,δ‖L2 +O(ζ) +O(δ) = ‖hζξ
⊥
0 ‖L2 +O(ζ) +O(δ). (4.21)

Now we must estimate ‖opε[a0] ◦ gt
uφζ,δ‖F for our fixed time t > 0. The

approach is similar to the proof of Lemma 4.1.2. Here we will also need the

operator T : L2
sol(T

2) → L2
sol(T

2) defined by

Tv = curlBv = v · ∇ω. (4.22)

For any v ∈ L2
sol(T

2), the image Bv is divergence free. Then from Remark 1

in Section 2.1 Bv = 0 if and only if Tv = 0 and KerB = KerT . Lemma 4.1.3

gives that

(

opε[a0] ◦ gt
uφζ,δ

)

(x) = hζ(g
−tx)b(g−tx, ξ0, ξ

⊥
0 ; t)eig−tx·ξ0/δ + rδ(x), (4.23)
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where ‖rδ‖L2 = O(δ). Let y ∈ supp(hζ ◦g−t). Then g−ty ∈ supp(hζ) ⊂ Bζ(x0).

We wish to estimate |∇ω(y)−∇ω(gtx0)|. From the evolution of ∇ω along flow

lines, described by (4.18), we have

∇ω(y) −∇ω(gtx0) =(g−t
∗ (y0))

∗∇ω(y0) − (g−t
∗ (x0))

∗∇ω(x0)

= (g−t
∗ (y0))

∗∇ω(y0) − (g−t
∗ (y0))

∗∇ω(x0)

+ (g−t
∗ (y0))

∗∇ω(x0) − (g−t
∗ (x0))

∗∇ω(x0),

where y0 = g−ty. If we let

c(t) := sup
(x,ξ)∈T ∗(T2),|ξ|=1

|(g−t
∗ (x))∗ξ|.

Then we have

|(g−t
∗ (y0))

∗∇ω(y0) − (g−t
∗ (y0))

∗∇ω(x0)| ≤ c(t)|∇ω(y0) −∇ω(x0)|

≤ ζc(t)K1,

where K1 := ‖∇ω‖Lip, the Lipschitz norm of ∇ω. The matrix valued function

x 7→ (g−t
∗ (x))∗ is also Lipschitz, so if we let K2 denote its Lipschitz norm, we

have

|(g−t
∗ (y0))

∗∇ω(x0) − (g−t
∗ (x0))

∗∇ω(x0)| ≤ ζ |∇ω(x0)|K2.

Thus for any y ∈ supp(hζ ◦ g−t) we have

|∇ω(y) −∇ω(gtx0)| ≤ ζc(t)K1 + ζ |∇ω(x0)|K2 = ζK, (4.24)

where K := c(t)K1 + |∇ω(x0)|K2.
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Let y ∈ supp(hζ ◦ g−t) ⊂ Bζ(x0). We may assume ζ << 1, which

implies |∇ω(y)| ≥ |∇ω(gtx0)| − ζK > 0. Let b(y) := b(g−ty, ξ0, ξ
⊥
0 ; t) (Note:

the parameters ξ0 and t are fixed). Then we have

b(y) = b(y) − (b(y),∇ω(y))

|∇ω(y)|2 ∇ω(y) +
(b(y),∇ω(y))

|∇ω(y)|2 ∇ω(y).

From the estimate (4.24) we have

|(b(y),∇ω(y))| ≤ |(b(y),∇ω(y))− (b(y),∇ω(gtx0))| + |(b(y),∇ω(gtx0))|

≤ ζK‖b(·)‖L∞(T2) + |(b(y),∇ω(gtx0))|, (4.25)

Let L denote the Lipschitz norm of the function x 7→ b(gtx). From our choice

of y it follows that

|b(y) − b(gtx0)| = |b(gt(g−ty)) − b(gtx0)| ≤ ζL. (4.26)

Since ξ0 := ∇ω(x0)
|∇ω(x0)| we have

(b(gtx0),∇ω(gtx0)) = (b(x0, ξ0, ξ
⊥
0 ; t), (g−t

∗ (x0))
∗ξ0) = 0,

which follows from the construction of (BAS), see equation (2.10). Then from

estimate (4.26) we have

|(b(y),∇ω(gtx0))| =|(b(y),∇ω(gtx0)) − (b(gtx0),∇ω(gtx0))|

≤ζL‖∇ω‖L∞(T2). (4.27)

Thus from (4.25) and (4.27) we have

|(b(y),∇ω(y))|
|∇ω(y)| ≤ ζK‖b(·)‖L∞(T2) + ζL‖∇ω‖L∞(T2)

|∇ω(y)|

≤ ζK‖b(·)‖L∞(T2) + ζL‖∇ω‖L∞(T2)

|∇ω(gtx0)| − ζK
.
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For any x ∈ supp(hζ ◦ g−t) we define η(x) by

η(y) := b(x) − (b(x),∇ω(x))

|∇ω(x)| , (4.28)

Then hζ(g
−t·)η(·) ∈ C∞(Tn) and

hζ(g
−tx)b(x) = hζ ◦ g−tη(x) + O(ζ)

hζ(g
−tx)∇ω(x)

|∇ω(x)| ,

where O(ζ) is uniform in x and is independent of δ. Since ‖hζ‖L2 = ζ‖h0‖L2

on T2, we have

‖hζ(g
−t·)b(g−t·, ξ0, ξ⊥0 ; t)eig−t(·)·ξ0/δ − hζ(g

−t·)ηeig−t(·)·ξ0/δ‖L2 = O(ζ2). (4.29)

Which implies

‖hζ(g
−t·)b(g−t·, ξ0, ξ⊥0 ; t)eig−t(·)·ξ0/δ − hζ(g

−t·)ηeig−t(·)·ξ0/δ‖F = O(ζ2). (4.30)

From the definition of η, it is clear that

T
(

hζ(g
−t·)ηeig−t(·)·ξ0)(x) = hζ(g

−tx)eig−tx·ξ0(η · ∇ω
)

(x) ≡ 0. (4.31)

Hence hζ(g
−t·)ηeig−t(·)·ξ0 ∈ KerB and we have

‖hζ(g
−t·)ηeig−t(·)·ξ0‖F = ‖hζ(g

−t·)ηeig−t(·)·ξ0‖L2.

Then (4.29) and (4.30) imply that

‖hζ(g
−t·)b(g−t·, ξ0, ξ⊥0 ; t)eig−t(·)·ξ0/δ‖F (4.32)

= ‖hζ(g
−t·)b(g−t·, ξ0, ξ⊥0 ; t)eig−t(·)·ξ0/δ‖L2 +O(ζ2)
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Then from (4.23) we have

‖opε[a0] ◦ gt
uφζ,δ‖F =‖hζ(g

−tx)b(g−tx, ξ0, ξ
⊥
0 ; t)eig−tx·ξ0/δ‖F +O(δ)

= ‖hζ(g
−tx)b(g−tx, ξ0, ξ

⊥
0 ; t)eig−tx·ξ0/δ‖L2 +O(ζ2) +O(δ)

= ‖opε[a0] ◦ gt
uφζ,δ‖L2 +O(ζ2) +O(δ), (4.33)

where the O(ζ2) does not depend on δ. Consider the quotient (4.33) over

(4.21) and take the limit as δ → 0 to get,

‖opε[a0] ◦ gu(t)‖L(F ) +O(ζ2) ≥ sup
x, x0∈T

2

|∇ω(x0)|>0
ξ0=∇ω(x0)/|∇ω(x0)|

‖hζ(g
−tx)b(g−tx, ξ0, ξ

⊥
0 ; t)‖L2

‖hζξ
⊥
0 ‖L2

.

(4.34)

For any value of 0 < ζ < 1, hζ(x0) = 1, so for fixed |ξ0| = 1 we have

lim
ζ→0

‖hζ(g
−tx)b(g−tx, ξ0, ξ

⊥
0 ; t)‖L2

‖hζξ⊥0 ‖L2

= |b(x0, ξ0, ξ
⊥
0 ; t)|.

Hence, we can take the limit as ζ → 0 of (4.34) (and use the fact that b is

homogeneous of degree 0 in ξ0) to get

‖opε[a0] ◦ gu(t)‖L(F ) ≥ sup
|∇ω(x0)|>0, |b0|=1

b0⊥∇ω(x0)

|b(x0,∇ω(x0), b0; t)| =: ΘF (t).

From (4.15) we have

‖Gs
ε(t) − opε[a0] ◦ gu(t)‖L(F ) = O(

√
ε).

Therefore, ‖Gs
ε(t)‖L(F ) +O(

√
ε) ≥ ΘF (t).

Definition 8. Let ΘF (t) := max{Θ̃F (t),ΘF (t)} and define µ2I , µ2F ∈ R by

µ2I = limt→∞
1

t
log ΘI(t),

µ2F = limt→∞
1

t
log ΘF (t).
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Remark 12. Because {A0(x, ξ, t) : (x, ξ) ∈ T ∗(Tn), t ≥ 0} is a strongly con-

tinuous cocyle over the flow {gt}t∈R, we have that log ΘI(t)and log ΘF (t) are

subadditive, which implies that both limits exists.

Theorem 4.2.3. For 2-dimensional flows, we have the following lower bound

for the essential spectral radius of our evolution operator restricted to ImB:

eµ2I t ≤ ress(G(t)|ImB).

And for 2-dimensional flows we have another lower bound for the essential

spectral radius of the evolution operator acting on the factor space:

eµ2F t ≤ ress(GF (t)),

where GF (t) denotes G(t) on the factor space.

Proof. The proof for Theorem 4.2.3 is the same as that for Theorem 3.2.1 ex-

cept that we will use the 2-dimensional propositions from the current section

instead of Proposition 3.2.2 (see Remark 9 following the proof of Theorem

3.2.1). To prove eµ2I t ≤ ress(G(t)|ImB) replace Proposition 3.2.2 with Proposi-

tion 4.2.1 in the proof of Theorem 3.2.1 for ImB. For the factor space estimate,

notice that Proposition 4.2.2 implies

‖Gs
ε(t)‖L(F ) +O(

√
ε) ≥ ΘF (t), (4.35)

where ΘF (t) := max{Θ̃F (t),ΘF (t)}. To prove eµ2F t ≤ ress(GF (t)), replace

Proposition 3.2.2 with the estimate (4.35) above in the proof of Theorem 3.2.1

for the factor space.
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Corollary 4.2.4. For flows in 2D

ress(G(t)) = max{ress(GF (t)), ress(G(t) |Im B)}.

Proof. By Proposition 3.2.5 we have

max{ress(GF (t)), ress(G(t) |Im B)} ≤ ress(G(t)).

For the other inequality, notice

sup
x0, |b0|=|ξ0|=1

ξ0⊥b0

|b(x0, ξ0, b0; t)| = max{ΘI(t), Θ̃F (t)}.

Hence

lim
t→∞

1

t
log sup

x0, |b0|=|ξ0|=1
ξ0⊥b0

|b(x0, ξ0, b0; t)| ≤ lim
t→∞

1

t
log max{ΘI(t), Θ̃F (t)}. (4.36)

But the LHS of (4.36) is the Lyapunov-type exponent µ from Theorem 2.2.1,

thus we have

ress(G(t)) = eµt ≤ max{eµ2I t, eµ2F t} ≤ max{ress(GF (t)), ress(G(t) |Im B)}.

4.3 Hyperbolic stagnation points in 2-dimensions

In [6] Friedlander and Vishik demonstrate that for any flow with a hyperbolic

stagnation point, there is instability in the essential spectrum. In fact, any

instability in the essential spectrum for a 2-dimensional flow is caused by

a hyperbolic stagnation point, see [13]. Here we see that for two-dimensional
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flows where the hyperbolic stagnation point xs is in the support of the gradient

of vorticity, this instability is caused by perturbations in Im B as well as by

perturbations in the factor space. At the end of this section we use this idea

to demonstrate through an example that our lower bound for ress(GF (t)) in

3-dimensions may not be sharp.

Suppose the two-dimensional steady flow u has a hyperbolic stagnation

point, xs and that xs ∈ supp∇ω. We proved in Proposition 3.3.1 that ∂u
∂x

(xs)

is symmetric. Since we are in 2-dimensional space, it follow that ∂u
∂x

(xs) has

two real eigenvalues and the divergence free condition gives us that the sum

of these eigenvalues is 0. Let λ and −λ be the eigenvalues of ∂u
∂x

(xs) associated

with the eigenvectors a+ and a−, respectively. In [6], the authors demonstrate

that (BAS) has a simple solution at the hyperbolic stagnation point:

x(t) = xs

ξ(t) = a+e
−λt

b(t) = a−e
λt.

Hence, the Lyapunov-type exponent from Theorem 2.2.1, µ, is positive. Thus

from Definitions 1 and 2, we have linear instability.

First we demonstrate that there is a perturbation in ImB that grows

exponentially under the linear evolution. Solutions to (BAS), b(x0, ξ0, b0; t)

are continuous functions of initial conditions x0, ξ0 and b0, and the continuity

is uniform in t on [0, T ]. So for any ε > 0 there is an α > 0 such that if

|x0 − xs|, |ξ0 − a+|, |b0 − a−| ≤ α, then

‖b(x0, ξ0, b0; ·) − b(xs, a+, a−; ·)‖L∞(0,T ) ≤ ε. (4.37)
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Since we know xs ∈ supp∇ω, we can choose (x0, ξ0, b0) within α
2

of (xs, a+, a−)

such that (b0,∇ω(x0)) 6= 0. Now define h0 ∈ C∞(T2) so that h0(x0) = 1,

supph0 is contained in a ball of radius α
2

centered at x0 and there is a constant

c0 > 0 such that |(b0,∇ω(x))| > c0 on supph0. Then by Lemma 4.1.1 we have

that for

φδ := δ∇⊥(h0e
x·ξ0/δ),

φδ + rδ ∈ Im B where ‖rδ‖L2
sol

= O(δ). Proposition 3.1.2 along with estimate

(4.15) implies

Gs
ε(t)φδ(x) = h0(g

−tx)b(g−tx, ξ0, b0; t)e
ig−tx·ξ0 + rε + rδ,

where ‖r(ε)‖L2 = O(
√
ε) and ‖r(δ)‖L2 = O(δ). Hence, by the inequality 4.37

above we have that φδ corresponds to exponential stretching.

The approach to finding exponential growth in the factor space is a bit

more delicate because we have to deal with the canonical factor space norm,

‖ · ‖F . We first examine the dynamics of the flow near a stagnation point

more closely. A detailed discussion of the dynamics of nonlinear systems near

hyperbolic stagnation points (along with the following theorem) can be found

in Guckenheimer and Holmes [9].

Theorem 4.3.1 (Stable Manifold Theorem). Suppose that ẋ = u(x) has a

hyperbolic fixed point xs. Then there exists and neighborhood U of xs with

local stable and unstable manifolds,

W s
loc(xs) := {x ∈ U | gtx→ xs as t→ ∞, and gtx ∈ U for all t ≥ 0}

W u
loc(xs) := {x ∈ U | gtx→ xs as t→ −∞, and gtx ∈ U for all t ≤ 0}.
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W s
loc(xs),W

u
loc(xs) are of the same dimensions as the eigenspaces Es, Eu of the

linearized system and tangent to Es, Eu at the stagnation point xs. W
s
loc(xs),W

u
loc(xs)

are as smooth as the function u.

Notice that W s
loc(xs) and W u

loc(xs) coincide with the paths of the flow through

xs.

First we introduce a notation convention: for any vector v, let v :=

v
|v| . Using the continuity of b(x0, ξ0, b0; t) (uniform in t on (0, T )) as above,

we will choose an point y0 ∈ W s
loc(xs) sufficiently close to xs to give that

b(y0,∇ω(y0),∇⊥ω(y0); t) grows exponentially. To justify the existence of such

a y0 we need to begin with x0 ∈W s
loc(xs) and show that as s→ ∞,

gsx0 → xs, ∇ω(gsx0) → a+ and ∇⊥ω(gsx0) → a−.

The first convergence follows from the assumption that x0 ∈ W s
loc(xs). To

see the second convergence notice that since vorticity is constant along flow

lines, ∇ω(gtx0) is a unit vector perpendicular to W s
loc(xs) at the point x0 .

Since W s
loc(xs) is tangent to the eigenspace Es at the stagnation point, which

is spanned by a−, it follows that a+ is perpendicular to W s
loc(xs) at the point

xs. This give us the convergence ∇ω(gsx) → a+. The last convergence follows

from a similar argument. See Figure 4.1

Next we must demonstrate that this exponential growth corresponds

to growth in the factor space norm. Let ξ0 := ∇ω(x0). Define h0 ∈ C∞(T2)

be supported in B1(0) with h0(x0) = 1. For 0 < ζ < 1 let

hζ(x) = h0(
x− x0

ζ
).

81



W s
loc(xs)

W u
loc(xs)

a+

a−

Es

Euxs

x0 ∇ω(x0)

Figure 4.1: Flow dynamics near a 2-dimensional hyperbolic stagnation point.

It follows from Lemma 4.1.2 that for

φζ,δ(x) := δ∇⊥(hζe
x·ξ0/δ),

we have

‖φζ,δ‖F = ‖φζ,δ‖L2
sol

+O(ζ) +O(δ).

We also showed in the proof of Proposition 4.2.2 that

‖opε[a0] ◦ gt
uφζ,δ‖F = ‖opε[a0] ◦ gt

uφζ,δ‖L2 +O(δ) +O(ζ).

We demonstrated in the proof of Proposition 4.2.2 (ii) that

lim
ζ→0

lim
δ→0

‖opε[a0] ◦ gt
uφζ,δ‖L2 = |b(x0,∇ω(x0),∇⊥ω(x0); t)|.

Thus we have that the evolution of φζ,δ under the linearized flow grows expo-

nentially in the factor space norm.
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Finally, we look at an example of a flow that indicates our 3-dimensional

lower bound for ress(GF (t)) is not sharp. Consider the planar 3-dimensional

steady flow given by

u1(x) := sin x1 cosx2 u2(x) := − cosx1 sin x2 u3(x) = 0.

The point xs = (0, 0, 0) is a hyperbolic stagnation point since

∂u

∂x
(xs) =





1 0 0
0 −1 0
0 0 0



 .

Clearly, the eigenvalues of ∂u
∂x

(xs) are ±1 with corresponding eigenvectors in

the first two coordinate directions. This implies that we have some linear

instability in the essential spectrum. Theorem 3.2.1 (and Corollary 3.2.4) gives

us that this instability corresponds to a perturbation in ImB, since supp(ω) =

T3 in this example. We remark that if we consider any planar vector field in

3-dimensions, its factor space norm is the same as if we considered the vector

field to be in 2-dimensional space. To see this, notice that ImB for the 3-

dimensional planar flow is the same as ImB for the 2-dimensional flow: if a is

a 3-dimensional vector field, then we have

Ba := πsol

(

ω × a
)

.

Since u is planar, ω is zero in the first two components and is constant in

the 3rd coordinate direction. Hence, Ba is a planar vector field with zero 3rd

component and ImB consists only of planar flows corresponding to elements

of 2-dimensional ImB. Recall

‖v‖F := inf
w∈ImB

‖v + w‖L2
sol
.
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Thus, the factor space norm does not depend on the dimension of our vector

fields. If we construct a sequence of planar 3-dimensional perturbations just

as we constructed φζ,δ above, then we can demonstrate the same exponential

growth in the factor space subject to the linear evolution associated with u

as we would in 2-dimensions. Thus, it is possible for a flow to have vorticity

supported in all of T3 and still have instability in the factor space.
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