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Oil reservoirs and soil can be homogeneously wet (water-wet, oil-wet, neutral-

wet) or heterogeneously wet (mixed wet or fractionally wet). The goal of this research is 

to model the detailed configuration of wetting and non-wetting phases within 

homogeneously and heterogeneously wet porous media. We use a dense random pack of 

equal spheres as a model porous medium. The geometry of the sphere pack is complex 

but it is known. 

In homogeneously wet porous media we quantify the effect of low saturations of 

the wetting phase on the non-wetting phase relative permeability by solving analytically 

the geometry of the wetting phase. At low saturations (at or near the drainage endpoint) 

the wetting phase exists largely in the form of pendular rings held at grain contacts. Pore 

throats correspond to the constriction between groups of three grains, each pair of which 

can be in contact. Thus the existence of these pendular rings decreases the void area 
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available for the flowing non-wetting phase. Consequently, the existence of the pendular 

rings decreases the permeability of non-wetting phase. Our model explains the significant 

permeability reduction of the non-wetting phase with a small change in the wetting phase 

in a low permeability porous medium. 

To model heterogeneously wet porous medium, we assume that the porous 

medium is fractionally wet where each grain is either oil-wet or water-wet. These water-

wet or oil-wet grains are distributed randomly within the porous medium. We calculate 

analytically the stable fluid configuration in individual pores and throats of a fractionally 

wet medium. The calculation is made tractable by idealizing the configurations as locally 

spherical (menisci) or toroidal (pendular rings.) Because the calculation of the interface 

position is entirely local and grain-based, it provides a single, generalized, geometric 

basis for computing pore-filling events during drainage as well as imbibition. This 

generality is essential for modeling displacements in fractionally wet media. Pore filling 

occurs when an interface becomes unstable in a pore throat (analogous to the Haines 

condition for drainage in a uniformly wet throat), when two or more interfaces come into 

contact and merge to form a single interface (analogous to the Melrose condition for 

imbibition in uniformly wet medium), or when a meniscus in a throat touches a nearby 

grain (a new stability criterion).  

The concept of tracking the fluid/fluid interfaces on each grain means that a 

traditional pore network is not used in the model. The calculation of phase saturation or 

other quantities that are conveniently computed in a network can be done with any 

approach for defining pore bodies and throats. The fluid/fluid interfaces are mapped from 

the grain-based model to the network as needed. Consequently, the model is robust as 

there is no difference in the model between drainage and imbibition, as all criteria are 

accounted for both increasing and decreasing capillary pressure.  
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(a) Curvature of the meniscus is smaller than the drainage critical curvature for the throat. 
(b) Curvature of the meniscus equals the drainage critical curvature. O (center of the 
meniscus) is located on line 
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Figure 4.8. Schematic of a meniscus (yellow cap in (a), brown cap in (b)) located on three grains 
(spheres) with zero contact angles (fully water-wet). O indicates the center of the meniscus 
and O1, O2, and O3 indicate the center of spheres constructing the throat. (a) Curvature of 
the meniscus is smaller than the drainage critical curvature for the throat. (b) Curvature of 
the meniscus equals the drainage critical curvature of the throat. O (center of meniscus) is 
located on plane
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Figure 4.9. Schematic of a meniscus (light brown cap in (a), brown hemisphere in (b)) located on a 
fractionally wet throat. O indicates the center of the meniscus and O1 and O3 is the center of 
water-wet grains (contact angle=0o) and O2 is the center of oil-wet grain (contact 
angle=180o). (a) Curvature of the meniscus is smaller than the drainage critical curvature 
for the throat. (b) Curvature of the meniscus equals the drainage critical curvature. O 
(center of meniscus) is located on the plane of
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Figure 4.10. Schematic of two menisci located on two adjacent throats. The red meniscus sits on 
throat 123 and the blue meniscus sits on throat 234. All grains make zero contact angles 
with the two menisci. The menisci are connected by a wedge of wetting phase between 
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Figure 4.11 (a) Schematic of merging of two menisci located on two adjacent throats. The red 
meniscus sits on throat 123 and the blue meniscus sits on throat 234. All grains make zero 
contact angles with the two menisci. Throat 123 and throat 234 share an edge composed of 
grain 2 and grain 3. (b) Plane A and plane B are on the same plane (the angle between plane 
A and plane B equal zero degree). The Haines imbibition critical curvature equals the 
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Figure 4.12. A meniscus (blue) does not touch a pendular ring (red) inside a pore; hence this is a 
stable configuration not satisfying the condition for a Melrose event. The pore is composed 
of four grains (1, 2, 3, and 4). The pendular ring (red) located on edge 13 composed of grain 
1 and grain 3. The meniscus is located on throat 234 which is composed of three grains (2, 
3, and 4).........................................................................................................................................109 

Figure 4.13. A 2D slice through the plane AON ,which A is the center of grain 3 in Fig. 4.12, D is 
the center of grain 1 in Fig. 4.12 and N is the point, equidistant from the grain centers of 
throat 234. The grain 3 is common between edge 13 and throat 234. ϕ  is the pendular ring 
filling angle and ψ is the meniscus filling angle. The meniscus and pendular ring do not 
touch, as a result the angle α is greater than summation of angle ϕ and ψ. This figure is 
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Figure 4.14. The edge holding pendular ring ( AD ) is not located on the AON  plane. Planes 
AON  (brown) and AOD  (green) are not in the same plane. They intersected with a 

nonzero angle with each other. A is the center of grain 3. Grain 3 is common between the 
edge holding a pendular ring (red) and the throat holding a meniscus (blue). D is the center 
of grain 1. O is the center of the meniscus. N is the point that is equidistant from the grain 
centers of the throat holding the meniscus. ...................................................................................111 

Figure 4.15. (a) A pendular ring (red) and a meniscus (blue) at the curvature of 2.85. The pendular 
ring and meniscus do not touch at this curvature. (b) A pendular ring (red) and a meniscus 
(blue) at curvature of 2.15. The pendular ring and meniscus touch at this curvature. The 
Gladkikh development of Melrose criterion predicts that the two interfaces touch at 
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Figure 4.16. (a) Fluid configuration when a meniscus (blue) touch a pendular ring (red) inside a 
pore. The gray plane is the plane AON  which connects the middle of throat 234 and the 
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line normal to the gray plane ( AON ). (b) Demonstrate development of new Melrose 

criterion. AD  is the edge holding a pendular ring (red). /AA  is the normal vector to plane 
AON , where A is the center of grain 3. D/ is the projection of the center of grain 1 (point 

D) on the plane AON . O is the center of the meniscus. N is the point, equidistant from 
the grain centers of the throat holding the meniscus. P is the point which the pendular ring 
and the meniscus touch each other on grain 3. ϕ  is the filling angle of the pendular ring and 
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Figure 4.17. A Melrose event occurs if the summation of ϕ ‘ and ψ  (see Fig. 4.16) is  bigger than α 

(the angle between line AN  and /AD ). D/ is the projection of the center of grain 1 (point 
D) on plane AON . O is the center of the meniscus. N is the point equidistant from the 
grain centers of throat holding the meniscus. P is the point at which the pendular ring and 
the meniscus touch each other on grain 3. Vector a  is indicated by a black vector, and 
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Figure 4.18. Stage of coalescence of pendular rings on a pore throat in 2D view. A 2D slice of a pore 
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to the critical curvature for coalescence to occur. Summation of pendular rings filling 
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Figure 4.19. The stages of coalescence of pendular rings on a pore throat in 3D view. (a) Curvature 
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coalescence to occur. Summation of pendular rings filling angles equals to angle α. (c) The 
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Figure 4.20. Fluid configuration within two pores (pore 1234, and pore 1256), before a meniscus–4th 
grain contact during imbibition. Throat 123 and throat 125 hold menisci which are colored 
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out by decreasing capillary pressure (primary imbibition), second the oil phase drains the 
water out of the porous medium by increasing capillary pressure (drainage), and finally the 
water phase pushes into the porous medium and replaces the oil phase (secondary 
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Figure 4.25. (a) The primary drainage (PD), imbibition (I) and secondary drainage (SD) curves for a 
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Figure 4.27. Comparison between secondary imbibition curves for the porous media with different 
fractions of oil-wet grains; the contact angles on water-wet and oil-wet grains are θww= 30o 
and θοw = 150o, respectively. The imbibition curves start from drainage endpoint of the 
curves in Fig. 4.26. The water phase pushes the oil phase out as the capillary pressure 
(curvature) decreases. As the fraction of oil-wet grains within porous medium increases the 
value for curvature which the water phase percolates through porous medium decreases............127 
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measured water saturation. The apparent water phase saturation is unity at the maximum 
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CHAPTER 1: INTRODUCTION 

1.1. INTRODUCTION 

Macroscopic multiphase fluid-rock properties (e.g. relative permeability) have a 

significant impact on processes within the agricultural and oil industries such as water 

infiltration and enhanced oil recovery. The macroscopic properties of porous media are 

affected by the physics of pore-scale displacement. Hence, numerous studies have been 

conducted to model the macroscopic properties of porous media based on pore level 

petrophysics [15, 26, 28, 29, 38, 40-43, 57, 58, 62, 67-69, 77, 79-82, 94, 95, 107, 108, 

126, 139, 140, 150, 158-161, 180, 181, 183, 187, 188, 195-199, 205-208]. Most of these 

studies on predicting macroscopic properties of a porous medium used a network model 

to upscale pore level displacements, whereas several other studies use a direct simulation 

[84, 137, 152, 157, 212]. 

In network models, the pore space is divided into pore bodies (sites) and pore 

throats (bonds). The pore throats connect the pore bodies to each other. In a traditional 

pore-based network model, a number of pore-level petrophysical properties are defined 

through ad hoc parameters such as the coordination number of pore bodies, and the 

distribution of pore and throat-sizes. Consequently, the predictive capability of these 

network models is limited by the presence of ad hoc parameters. In contrast, in a grain-

based network model, many features of the network model including the relation between 

pore bodies and pore throats are extracted from the geometry of the porous medium.  

In this study we use a grain-based network model extracted from a simple but 

physically representative model of a porous medium. Our model consists of a dense 

random packing of equal spheres in which the coordinates of the spheres center are 



 2

known. Such a sphere pack can be generated by computers [47] or measured 

experimentally [72]. 

The advantage of this approach lies in its flexibility and simplicity. For instance, 

the fluid rock interaction properties (i.e. wettability) may be assigned to the entire (or 

partial) surface of a grain. These options result in different models of heterogeneously 

wet porous media (i.e. fractionally wet and mixed wet porous media). In addition, we can 

create simple sedimentary rock models by simulating geological processes such as 

overgrowth cementation where we uniformly increase the size of spheres in the sphere 

pack without moving their centers.  

This model demonstrates predictive capability despite its simplicity. The pore-

level petrophysical features are extracted directly from the geometry of the model porous 

medium. As a result, there are no ad hoc parameters for this model. We test the model 

prediction directly against experimental results. An unsuccessful match between 

experimental results and the model prediction indicates that the model failed to consider 

some important pore level physics of the real porous media. In contrast, the successful 

prediction of the experimental results increases our confidence that the model can be used 

as a reliable approximation of real porous media. 

This chapter provides an overview of the history of wettability studies and pore-

scale modeling. First, we compare grain-based network modeling to both pore-based 

network modeling and direct simulation. Second, we review the physics of wettability 

and its effect on macroscopic properties of porous media.  
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1.2. SIGNIFICANT CONTRIBUTIONS 

By adopting a grain-based approach for modeling of fluid flow within the porous 

media, we: 
 

1. Extended the application of grain scale modeling to model fluid flow within low 

porosity and low permeability rocks at small wetting phase saturations. 

 

2. Calculated and demonstrated the importance of pendular rings in reduction of gas 

permeability at low water saturation in low permeability rocks. 

 

3. Explained the effect of CO2 injection into deep saline aquifers on the absolute 

permeability of the reservoir in the near wellbore region dried out by the CO2.  

 

4. Calculated and demonstrated the importance of pendular rings for imbibition within 

uniformly wet media. 

 

5. Obtained the first mechanistic model of capillary controlled displacement in a 

fractionally wet medium. 

 

6. Generalized Haines and Melrose criteria previously developed for uniformly wet 

media by solving analytically for the stability and position of menisci (fluid/fluid 

interfaces) within fractionally wet media. 

 

7. Proposed a new mechanistic criterion for movement of menisci (fluid/fluid 

interfaces) within uniformly and fractionally wet media. The "meniscus 4th grain" 

criterion explains the difference between primary and secondary imbibition within 

water-wet media. This criterion is general enough to be applied for drainage and 

imbibition of fractionally wet media. 
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8. Developed a grain-based and mechanistic model for the simulation of capillary 

controlled fluid displacement process (i.e. drainage and imbibition) by analytically 

solving for the stability and position of menisci within the porous media. Because 

the calculation of interface position is entirely local (grain-based), it provides 

generalized criteria that applies to drainage as well as to imbibition events within 

fractionally and uniformly wet media. Our grain-based model is in contrast with 

traditional pore network models which use different ad hoc criteria for modeling of 

drainage and imbibition. 

 

9. Unified drainage and imbibition algorithm by introducing concept of types of 

pore/throat filling events, applying to the grain-based model. 
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1.3. LITERATURE REVIEW AND METHODOLOGY 

1.3.1. Development of Pore-Based Network Modeling 

The motivation behind pore scale modeling is the ability to predict macroscopic 

properties by relating the macroscopic properties to pore level features. Leverett [126] 

was one of the first to link a macroscopic property of a porous medium to the pore scale 

properties of that medium. He unified capillary pressure curves using a single 

characteristic length scale (i.e. pore throat size). Although Leverett’s study did not 

provide a pore level mechanism for capillary displacement, he hypothesized that a 

relationship exists between macroscopic properties and pore level events. Hence, his 

work was the foundation for future study on pore level petrophysics.  

Bundle of tubes model 

Leverett’s hypothesis became the foundation of many future studies. One such 

study was by Purcell [165]. He simulated the capillary displacement in the pore space by 

using a bundle of tubes model. He used this model to relate the permeability of the 

porous medium to the porosity and capillary pressure curve of that medium and 

analytically solved the capillary displacement in the bundle of capillary tubes. The 

advantage of the bundle of tube model lies in its simplicity and its analytical tractability. 

Hence, this model has been used to study the effect of pore level physics on the 

macroscopic properties by several authors [44, 46, 56, 169, 190, 192, 193, 209]. 

The bundle of tubes model cannot explain a number of macroscopic properties of 

a porous medium observed by experiment. For instance, the bundle of tubes model does 

not show a hysteresis between drainage and imbibition for the capillary pressure curve. 

Hence, the bundle of tubes model failed to capture geometrical and physical features of a 

real porous medium. The major weakness of the bundle of tubes model is the lack of 
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interconnectivity between tubes (the pore space). In spite of this weakness, the bundle of 

tubes model had a huge impact on pore scale modeling as this model was the first to 

connect capillary displacement at the pore level to the macroscopic properties of a porous 

medium. 

To overcome this weakness, Fatt [67] constructed a network of tubes which 

interconnected. In Fatt’s network model [67-69], each tube represents a bond or a pore 

throat and the junction of tubes (node) represents a site or a pore body. Although Fatt’s 

network model did not capture all geometrical and physical features of a real porous 

medium, his work built a foundation for network models that were used in studies of 

numerous phenomena, such as interfacial area, dispersion, electrical properties, dynamic 

effect of multiphase flow, non-Darcy flow behavior, relative permeability, and three 

phase flow [6, 32, 48, 56, 71, 73, 93, 104, 132-136, 145, 166, 167, 189, 210, 211, 216]. 

Fatt identified several weaknesses in his network model. For instance, he stated that in his 

model the pore is either filled with the wetting or non-wetting fluid, whereas in a real 

porous media, two phases can co-exist in a pore during two phase flow through the 

porous medium. Moreover, Fatt selected regular networks for his study although he stated 

that “the photometric graphs of sandstone thin section shows the pores are connected in 

an irregular network”[67]. 

Site and bond percolation 

Fatt computed numerically the macroscopic properties of a porous medium by 

simulating the pore level events. As a result, the choice of regular and small networks 

was due to the limitation of numerical computation ability at that time (1957). To 

overcome this limitation many authors used percolation theory to upscale the transport 

phenomena from pore scales to core scales. Percolation theory was first introduced in 

1941-3 as an analytical tool to describe solution gel transition in polymer solutions [76, 



 7

186]. In 1957, Broadbent and Hammersley used percolation theory to describe the 

transport phenomena in randomly disordered media [33, 34]. Later, Larson [116] 

introduced the percolation theory to flow in porous media. The percolation theory applied 

to the network of bonds (pore throats) and sites (pore bodies). Berkowitz and Balberg 

[22] gave an excellent review on the application of percolation theory in modeling of 

fluid flow through porous media. 

Although the ability to find analytical solutions using percolation theory allowed 

researchers [49, 97-99, 103, 105, 114, 115, 117, 119, 129, 170, 171] to apply this theory 

to large network models and resolve one of limitation of Fatt’s network model, still 

percolation theory could not be applied to an irregular network model. More importantly, 

in the percolation theory, no spatial correlation exists between bonds or sites within the 

network model. 

Invasion percolation 

The application of percolation theory in transport through porous media concerns 

the displacement of one fluid by another in a porous medium. However, percolation 

theory fails to take in to account the essence of the two phase flow through porous media. 

In a porous medium, the invading fluid only occupies pores that are connected to the inlet 

of the porous medium. Yet, traditional percolation theory cannot differentiate between a 

pore connected to inlet and a pore disconnected from inlet: the criterion for invading or 

occupying a pore is purely stochastic. 

A new version of percolation called invasion percolation was introduced to 

resolve the lack of influence of neighboring pores in percolation theory. The invasion 

percolation initially was introduced to account for the dynamic properties of fluid flow 

through porous media [220]. 
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The general idea of invasion percolation is the same idea behind Fatt’s network 

model: Pores that are connected to the inlet through previously invaded pores are the only 

candidates for subsequent invasion, and the invading fluid can occupy a pore if that pore 

is connected to outlet through defending fluid. Hence the algorithm for invasion 

percolation can be solved only by numerical solution. The advancement of numerical 

computation ability has allowed researchers to use invasion percolation method to study 

dynamic or capillary controlled displacement within porous media [49, 62, 83, 120, 122-

125, 220]. In our study, we also adopt the invasion percolation approach to model the two 

phase flow through a porous medium. 

Development of triangular shape pore 

In Fatt’s network model, a pore or a pore throat is represented by a circular tube. 

Hence fluids cannot co-exist in a pore during multiphase flow through the porous 

medium. To overcome this weakness, tubes with angular cross sections can be used in the 

network model rather than circular tubes. This improvement allows simultaneous flow of 

more than one fluid in a tube (i.e. pore throat or pore body). For instance, the wetting 

fluid can flow in the corner, while the non-wetting fluid occupies the central portion of 

the tube. Initially, Singhal and Somerton [182] solved numerically for two phase flow 

through a tube with triangular cross-sections. Later on, tubes with angular cross-sections 

used in the study of the trapping of the oil phase and the study of flow through two 

dimensional media [12, 13, 118, 121]. The capability of two phase flow in a tube with 

single angular cross-section results in massive use of this configuration as an idealized 

pore throat in pore network models [3-5, 26, 28, 100, 158-162, 187, 188, 205-208].  

The usage of traditional pore network model with idealized pore throats and pore 

bodies reduces the problem of 3D fluid flow in pore space to 2D fluid flow though tubes. 

The benefit of using idealized pore shape is the simplicity of fluid flow calculation in 
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tubes compared to calculation of 3D fluid flow in pore space. One of the disadvantages of 

the traditional pore network model is its need to divide pore space to network of idealized 

pores and throats. The pore space in a sedimentary rock is simply space where grains do 

not exist. It can be difficult to define which part of pore space is a pore and which part of 

pore space is a throat. In addition, to convert the pore space into the idealized pore throats 

and pore bodies, the geometry of grains is sacrificed.  

1.3.2. Development of Direct Simulations 

Instead of network modeling, other approaches have been used to simulate fluid 

flow on the pore scale. The Stokes equations are a set of partial differential equation 

(PDE) which characterizes Newtonian fluid flow given the correct boundary conditions. 

The fluid flow within porous media can be simulated by solving the PDE (Stokes 

equation) within digitized image of the pore space extracted from image of the porous 

medium [1, 137]. Either finite element or finite difference methods can be used to solve 

the Stokes equation. But the use of finite element or finite difference method in highly 

complicated geometry inside a porous medium is hard. A relatively simpler approach is 

use of lattice Boltzmann method [91] to solve the Stokes equation. With the increase in 

numerical computation powers, lattice Boltzmann method recently become popular for 

simulation of single and multiphase flow within porous media [50, 84, 137, 152, 157, 

212]. However, this approach is still computationally expensive and in practice it can 

simulate fluid flow within of order 1000 pores (e.g. a porous medium with dimension 

much less than millimeter). The clear advantage of lattice Boltzmann method over pore 

network modeling is its independence from dividing the pore space into idealized pore 

bodies and pore throats. In direct simulation methods, there is no need to transform pore 

space to the network of pores and pore throats. 
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1.3.3. Extracting Pore Structure from Real Sediments 

For both direct simulation method and pore network method, a three dimensional 

description of the pore space is necessary. In direct simulation method the flow equation 

will be solve directly for the pore space and in pore network method, a network of pores 

and throats will be extracted from the pore space. Several authors [2, 21, 25, 101, 102, 

127, 128, 201, 214, 221] have used statistical information to generate the 3D image of 

pore space. The statistical information (i.e. porosity and two-point correlation function) 

can be measured from 2D thin-sections. The 3D image of pore obtained from this 

approach has the same statistical properties as thin-sections. The advantage of this 

approach is its ability to build wide varieties of porous media. Biswal et al. [24] 

compared the properties of pore structure derived from statistical approach using thin-

section obtains from Fontainebleau sandstone with properties of pore space obtained 

from microtomography of that sandstone. They find that the statistical approach cannot 

capture the long-range connectivity imposed by the geological processes that formed the 

porous media. Consequently, the pore space created by this approach has a different long-

range connectivity than the corresponding porous media.  

The other method for mapping the pore structure is using 3D imaging techniques 

such as nuclear magnetic resonance [109] or X-Ray microtomography [7, 54, 55, 64, 75, 

130, 131, 176]. The advantage of these methods are their ability to give the image of pore 

space and map the pore structure directly from real porous media, independent of 

statistical interpretation. As a result, several authors use this method to study the fluid 

flow within a porous material [8, 164, 174, 175, 203, 218, 219]. The disadvantage of this 

method is its expensive and laborious procedure for acquiring the image of porous media. 

A real porous medium (e.g. core) must be available in order to extract the pore space 

image out of it. Obtaining cores from the subsurface is hard and expensive. In addition, 



 11

this method is not general in that the pore space extracted from image of a real porous 

medium is only specific to that porous medium.  

In summary, in all of the above approaches, the map of pore space is obtained 

from either laborious experimental measurement (e.g. imaging technique) or statistical 

information gathered from a real porous medium. In the former case, the approach is 

expensive and specific to the medium that the image was taken from. In the latter case, 

the computer generated porous medium only represents the real porous medium in some 

statistical parameters.  

The fluid flow within these pore spaces is simulated either by direct simulation 

method or by using network of idealized pores and pore throats. The former approach is 

computationally expensive and currently can apply to very small porous medium. The 

latter approach uses several ad hoc parameters which should be defined before the 

simulation. 

1.3.4. Development of Grain-Based Network Modeling  

A different approach is the grain-based model. A physically representative 

network model of a porous medium can be built based on the geological process by 

which the sedimentary rock was made. The analytical solution for the stable interface 

locations within pore space of that medium can be calculated. In the grain-based model, 

the fluid flow (i.e. movement of interface) is simulated based on analytical solution for 

the stable position of interface on the grains. As a result, this model is independent of the 

approach of dividing pore space into the pore bodies and pore throats. Consequently, the 

network of pores and pore throats is an intermediate tool and the fluid flow simulation 

depends only on the geometry of the grains. 

Considering a random packing of equal spheres as a model of sediment was 

suggested first by Slichter [184] in 1899 and later by Hackett and Strettan [86] in 1928. 
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Spheres within a random packing of equal spheres simplify the geometry of grains within 

a real sediment, but the random packing of equal spheres captures many of the essential 

features of a real sediment (e.g. pore structure, pore connectivity). Although a random 

sphere pack is a simplified version of the real sediment, still it has complex geometry. 

Consequently, it was not used as a quantitative grain-scale model until 1971 when Mason 

[141] used a random packing of equal sphere as a model of a packed bed of particles. He 

extracted pores and pore throats from the pore space of this packing and quantified their 

sizes. The coordinates of the centers of the spheres within this packing were measured by 

Finney [72].  

Finney pack 

Finney constructed a spherical conglomerate of about 8000 equal size spheres. He 

determined geometry of grain space in his packing by measuring the spatial locations of 

spheres within the packing. These data allow a complete analytical description of both 

pore and grain space. This description provides the boundary conditions needed to 

calculate many macroscopic properties and transport coefficients of engineering interest 

[38, 194]. The Finney pack is often used as a form of validation for computer generated 

mono-dispersed spheres packing [47, 51, 138, 168].  

Computer generated spheres packing 

There are two main algorithms for generating a sphere pack by computers: 1. 

Sequential addition algorithm [168, 185, 213]. 2. Cooperative rearrangement algorithm 

[53, 138]. The former approach is based on the packing of spheres under influence of 

gravity force and it tends to create loose sphere packs. The latter approach distributes the 

centers of spheres randomly within the packing and allows the radii of spheres to vary in 

order to create denser sphere packs. If the growth of spheres causes overlaps between 
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spheres, the overlaps will be removed by moving the spheres or shrinking the spheres. 

The computer generated sphere packs can be mono dispersed or random packing of 

spherical particles with different sizes [168, 179]. The computer generated packing also 

can be a pack of non-spherical particles [106]. 

Oren and Bakke and co-workers [15, 24, 155, 156] developed a reconstruction 

algorithm to generate a packing of spheres of different size. They compute the grain size 

distribution from analysis of the thin-section of real sediment rock. 

Network models extracted from a random sphere pack  

Mellor [143] used Delaunay tessellation of the sphere centers in order to 

subdivide the pore space within Finney pack to network of pore bodies and pore throats. 

The extraction of a physically representative network model from a random spheres pack 

(Finney pack) gives an excellent tool to researchers to study fluid flow properties within 

the porous medium. The next major advance came with work of Bryant and co-workers 

[36-38, 42] who used Finney packs and simulated the geological process that form the 

real sedimentary rocks (e.g. cementation and compaction) to model broader groups of 

porous media. They showed that in contrast with traditional network models, a physically 

representative network model extracted from a real porous medium (Finney pack) has 

pore scale correlation of geometric features, and this correlation affects transport 

properties. They also simulate single phase flow within the porous media and predict the 

permeability of model rocks. The predicted permeability of rock models have good 

agreement with measured permeability of sandstone.  

Several other authors developed pore network models for uniformly wet porous 

media based on the grain geometry and location [39-41, 79-81, 140]. Bryant and Johnson 

[41] simulate drainage processes which allow trapping of wetting phase in the uniformly 

wet porous media. They concluded the Haines criterion and relatively simple, local 
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evaluation of trapping can yield physically representative wetting phase configuration. 

Gladkikh and Bryant [80] modeled imbibition for uniformly wet porous media in new 

way. For first time, they used dynamic criterion for the imbibition of a single pore 

originally suggested by Melrose [144]. Their pore network model is based directly on the 

location and geometry of the grains that construct the porous media. Their prediction of 

macroscopic properties is consistent with experimental data presented in the literature. 

The successful predications of fluid flow properties of the uniformly wet rock by using 

physically representative network model encourage us to extend the use of this approach 

to study the fluid flow within heterogeneously wet rocks.  

Toumelin [195] used a realistic pore network model extracted from Finney pack 

to predict macroscopic properties of a saturated rock with various wetting condition (e.g. 

heterogeneously wet rocks). However, the fluid configuration in his model is based on 

heuristic arguments rather than actual calculations. He showed the effects of the wetting 

condition on the macroscopic properties (e.g. NMR response, Electromagnetic 

Measurement) 

1.4. WETTABILITY 

In a sedimentary rock containing immiscible fluids, the grains are wetted by the 

fluid that has smaller energy of interaction with the grain surfaces [63]. Wettability of 

porous media is the subject of wide investigation as the water distribution in the pore 

space will vary with the wettability and thus alter the transport and availability of the 

water and the other phases co-existing in the pore space [10, 11]. Fluid distribution at the 

pore scale is important because this affects the macroscopic porous medium/fluid 

properties such as capillary pressure curves and relative permeability curves.  

Many minerals within sedimentary rocks have a tendency to be wetted by water, 

but if there is a layer of organic matter (e.g. asphaltene, carboxylic acids, and humic 
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acids) on the grain surface, the grain surface can become water-repellent [10, 11, 61, 

163]. In addition, some porous media (e.g. soils) can be a mixture of organic and 

inorganic material. The wettability of organic matter ranges from neutral-wet to water-

repellent [60, 66, 202] . Schematically we can understand the difference between a water-

wet and water-repellent grain by looking at the interfacial tensions between the solid, 

liquid, and gas phases on a flat surface. Fig. 1.1 depicts a freshly cleaved mineral surface, 

which is a high energy surface due to the ionic bonds that were broken [59]. The 

interfacial tension between the freshly cleaved mineral surface and air ( ASσ ) is very large 

(approximately 1000 mN/m, exact numbers are difficult when dealing with interfacial 

tensions between solids and fluids). With water being polar, the interfacial tension 

between water and solid ( WSσ ) is much less than both ASσ  and WAσ  (the surface tension 

of water). Using the balance of forces at the contact line to obtain Young’s relation shows 

that the water phase either spreads or has a very low contact angle with mineral surfaces 

in the presence of air (Fig. 1.1a) or (Fig. 1.1b) oil. 
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Figure 1.1. (a) Schematic of the water droplet on the freshly cleaved mineral surface in 
the presence of air. (b) Schematic of the water droplet on the freshly cleaved 
mineral surface in the presence of the oil phase. 

When the grain surface gets contaminated by organic matter, or if the grain 

consists entirely of organic matter, the surface is then non-polar or low energy, with only 

van der Waals forces between the surface molecules. This simplest way to envision this 
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surface is that it is covered by a thin solid layer of non-polar molecules, or equivalently, it 

is covered by a solid layer of oil (Fig. 1.2). Fig. 1.2a and 1.2b show the force balance and 

the contact angles measured through the water phase for the water in presence of air (Fig. 

1.2a) and oil (Fig. 1.2b).  
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Figure 1.2. (a) Schematic of the water droplet on the oil layer surface in the presence of 
air. (b) Schematic of the water droplet on the oil layer surface in the 
presence of the oil phase. 

From these simple descriptions, the contact angles for the different surfaces and 

fluid pairs are estimated in Table 1.1. Basically, mineral surfaces are water-wet in the 

presence of oil or air. The water-repellent surfaces are neutral-wet (or slightly gas wet) in 

the presence of air and they are oil-wet in the presence of oil. The contact angles are only 

rough estimates, surface roughness and pinning of the contact line will lead to contact 

angle hysteresis especially for contact angles near 90° [148]. Thus for simplicity we will 

call the water-repellent surfaces oil-wet. 
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Table 1. 1. Estimated value of interfacial tension and contact angle between, solid 

surface, oil layer surface, water phase, oil phase and air. 

Contact angle (degree) Interfacial tension (mN/m) Interfacial tension (mN/m) Interfacial tension (mN/m) Related Fig. 

0θ ≈  1000ASσ ≈  WS ASσ σ<  72WAσ =  Fig. 1.1a 

0θ ≈  1000OSσ ≈  WS OSσ σ<  50WOσ =  Fig. 1.1b 

90 115θ≤ <  20AOσ  50WOσ  72WAσ =  Fig. 1.2a 

180θ ≈  0OOσ  50WOσ  50WOσ =  Fig. 1.2b 

 

1.4.1. Heterogeneous Wettability 

Reservoirs can be partly oil-wet and partly water-wet due to wettability alteration, 

which occurs on the part of the reservoir rock that is exposed to the crude oil [172]. This 

is referred to in the literature variously as heterogeneous wettability [113], fractional 

wettability [200] and mixed wettability [5, 206, 209, 211]. Here, we identify two 

categories of heterogeneous wettability: fractional wettability and mixed wettability. 

Fractional wettability 

Fractionally wet porous media have been used as a model for water-repellent soil 

[30, 31, 204]. In terms of a soil or a porous medium, "fractionally wet" is taken to mean 

that each grain in the porous medium is either water-wet or oil-wet. The wettability may 

have a spatial structure (e.g., oil-wet grains may clump together), but for simplicity, it is 

usually taken that the water-wet and oil-wet grains are distributed randomly within the 

porous medium. This is depicted schematically in Fig. 1.3. 
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Figure 1.3. Schematic of a fractionally wet porous medium (grain level scale). 

 Fractionally wet porous media occur naturally in certain soils, and they are the 

simplest heterogeneously wet media that can be reliably reproduced experimentally. In 

field soils, the fractional wettability may come about as the humic acids may coat grains 

of different sizes and mineralogies differently. In the laboratory, fractionally wet porous 

media are easily prepared by mixing different fractions of oil-wet grains and water-wet 

grains. Because of this fractionally wet media has been the focus of most experimental 

measurements [19, 31, 90, 153, 178, 204].  

Brown and Fatt [35] were the first to construct fractionally wet porous media. 

They mixed different fraction of oil-wet and water-wet sand grains to build several 

fractionally wet porous media. The authors showed that “wettability” of the model rock 

could be measured by Nuclear Magnetic Relaxation method (NMR). 

In another study Fatt and Klikoff [70] investigated the effects of fractional 

wettability on the capillary pressure curves and relative water permeability curves. Their 

method involved sand packs composed of mixtures of water-wet and oil-wet (silicon-

treated) sands. They mixed different “fractions” of water-wet sands with the oil-wet 
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sands to build several fractionally wet porous media. They concluded that porous media 

with different fractional wettability have different macroscopic properties. 

Mixed wettability 

In a mixed wet porous medium, individual grains may have both water-wet and 

oil-wet patches. This can arise because different mineral surfaces on the grain (micas or 

quartz), or it may occur because different portions of a grain come into contact with the 

reservoir oil.  

Salathiel [172] performed several experiments on mixed wet porous media. He 

found that rocks with mixed wettability show low residual oil saturation. He proposed a 

model to explain low residual oil saturation of mixed wet porous media by the 

mechanism of surface film drainage. He postulated pore-level configuration of oil and 

water phase in the mixed wet porous media. He suggested that as crude oil displaces 

water from initially water-wet rocks (first migration), oil displaces water from larger 

pores but capillary force retains water in small pores and at grain contacts as rings. The 

asphaltic components of the crude oil are deposited onto those rock surfaces that are in 

direct contact with oil, making their surfaces oil-wet. As a result, the surfaces of the 

grains within the small pores, which were never filled with oil, remain water-wet. 

Similarly, the surfaces of the grains where the pendular ring forms remain water-wet 

(Fig. 1.4). This mechanism of wettability alteration causes a single grain to have both 

water-wet and oil-wet patches. The oil-wet surfaces make continuous paths that span 

from pore to pore, which allow oil to be drawn along the grain surfaces by the viscous 

force of the waterflood. Therefore, this model explains the low residual oil saturation in 

the mixed wet porous media. 
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Figure 1.4. Schematic of a mixed wet porous medium (grain level scale). 

Heiba et al. [92] studied the fluid (water and oil) distribution in the “mixed wet” 

porous media by applying a pore network model. They defined “mixed wet porous 

media” as a network of large and small pores. The large pores are oil-wet, and the small 

pores are water-wet. From our definition, which is based on grains rather than pores, 

different parts of a single pore in a mixed wet porous medium can be oil-wet or water-

wet. Hence their definition of “mixed wettability” does not correspond to our definition 

of “mixed wettability”. 

Mohanty and Salter [147] also used a pore network model to study multi-phase 

flow in mixed wet rocks. They described their model as “the pore space is a network of 

pore bodies interconnecting by pore throats”. They assumed that some of the pores and 

throats are water-wet and some are oil-wet, and distributed this wettability randomly. 

This random distribution of wetting surfaces fails to agree with the grain-based model 

proposed by Salathiel for mixed wettability.  

McDougall and Sorbie [142] investigated waterflood performance in 

heterogeneously wet porous media. They modeled mixed wet rock as porous media 

composed of small pores (water-wet) and big pores (oil-wet). They also modeled 
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fractionally wet porous media by choosing certain fractions of pores water-wet and oil-

wet, independent of the pore sizes. Their model also fails to represent the mixed 

wettability model suggested by Salathiel (1973).  

Kovscek et al. [112] were first to propose a pore network model that represents 

the mixed wet porous media which was suggested by Salathiel (1973). They used a 

bundle of star-shaped pores with different sizes (small, intermediate, and big). They 

hypothesize that the grain surface of small pores, big pores, and the corners of 

intermediate pores remain water-wet after first oil migration, while the remainder of the 

surface of the intermediate pore changes to oil-wet due to rupturing of the thin water film. 

They suggest that oil does not enter small pores, nor the corners of big and intermediate 

pores. They assume that the pore wall curvature of a big pore is so small that high 

capillary pressure is necessary to overcome critical disjoining pressure. “The disjoining 

pressure is the force that tends to disjoin or separate the two interfaces. A negative 

disjoining pressure attracts the two interfaces [96]”. When the capillary pressure exceeds 

the critical disjoining pressure the thin water film ruptures. The disjoining pressure 

depends on the mineralogy of the rock, salinity of the brine, etc [16-18]. Hence it is 

difficult to quantify the disjoining pressure at which the water film will be ruptured. 

Therefore several authors adapted this model to more convenient pore-network-models 

[5, 26, 27, 159]. 

Blunt [26] generalized the model suggested by Kovscek et al. He constructed a 

network of pores and throats with square cross-sections. He believed that after primary 

drainage (oil invading to the water-wet rock), oil drains water from the center of the pores 

while water remains in the corner of the pores due to capillary force. The wettability 

alteration changes the portion of the pore walls that directly contact oil. This model 

allows a single pore to contain both water-wet and oil-wet patches. He randomly changed 
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the wettability of the surface of the center part of the pores to the oil-wet. He suggested 

that the oil/water contact at the surface of pore’s corner is pinned until the differential 

pressure between water and oil is high enough to overcome the capillary force exerted 

from the oil-wet part of the pore. He [27] later modified his model by building a network 

of pores and throats with triangular cross-sections. 

Piri and Blunt [159] improved the pore network model proposed by Blunt. They 

built a random network of pores and throats with triangular, rectangular and circular 

cross-sections to represent the pore space observed in the sandstone.  

 All above pore network models are based on the random network of pores and 

throats with different shape (triangular, square, circular, star-shape, etc), and have failed 

to incorporate grain sizes and locations. One important concept that is not considered in 

the above models is that “pore is the space where grains do not exist”. Therefore, we base 

our network model on the locations of the grains instead of distributing pores and throats 

with the different shapes.  
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CHAPTER 2: EFFECT OF LOW WETTING PHASE SATURATION 
ON NON-WETTING PHASE PERMEABILITY IN A UNIFORMLY 

WET ROCK 

2.1. ABSTRACT 

Field experience in unconventional gas reservoirs indicates that well deliverability 

can vary dramatically, even between closely spaced wells. A possible explanation lies in 

laboratory experiments which show that a small increase in water saturation can decrease 

the gas phase permeability significantly. Conversely, drying out the water saturation 

during gas cycling in reservoirs or during injection of CO2 into deep saline aquifers 

affects petrophysical properties such as absolute permeability and capillary pressure. The 

precipitation of salts from the evaporating brine is one contributor to these effects.  

In this chapter, we use a grain-based network model to study the effect of low 

saturations of the wetting phase on non-wetting phase relative permeability. We also 

show how certain porosity-reducing processes magnify this effect. To compute phase 

geometry and permeability, we use a physically representative network model. The 

network is extracted from a model rock, built from a dense random packing of spheres 

modified geometrically to simulate various rock-forming processes. At low saturations 

(at or near the drainage endpoint) the wetting phase exists largely in the form of pendular 

rings held at grain contacts. Pore throats correspond to the constriction between groups of 

three grains, each pair of which can be in contact. Thus the existence of these pendular 

rings decreases the void area available for flowing non-wetting phase. Because the 

hydraulic conductance of the throat varies with the square of the void area, the effect on 

permeability is disproportionate to the volume occupied by the rings. The same approach 

quantifies the reduction in permeability by salt precipitation during drying. 
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Convention holds that connate water has little effect on oil or gas permeability 

because it occupies the smaller pores. Comparing predictions for unconsolidated model 

rocks with those for cemented model rocks allows one to reconcile this view with the 

sensitivity reported in the field and the laboratory. 

2.2. INTRODUCTION 

In tight gas sandstone the productivity of a well is sometimes quite different from 

that of a nearby well. Wells can also be very sensitive to small amounts of water, whether 

from an aquifer associated with the reservoir, from hydraulic fracturing or from other 

completion operations. Although the effect of water saturation on the effective 

permeability to gas has been the subject of numerous experiments [45, 52, 111, 173, 215, 

217], a fully mechanistic explanation has not yet been offered as to why the effect 

appears larger in tight gas reservoirs. A related phenomenon is the dehydration of near-

wellbore formation during gas injection. Gas cycling in reservoirs or injection of CO2 

into deep saline aquifers can lead to precipitation of salts as the resident water evaporates 

into the dry injected gas. The precipitation can reduce the permeability of the formation 

and thus reduce injectivity of the well [222]. This chapter provides insight into the 

reduction of permeability due to drying, because the spatial distribution of precipitated 

salts must be related to the geometric configuration of the wetting phase. Low wetting 

saturation is mainly irreducible wetting phase that exists in two morphologies [41]. One 

is volumes of water held in the smallest pores. The other is pendular rings held at grain 

contacts or liquid bridges held between two grains separated by a gap. The former forces 

gas to flow around the filled pores, decreasing the average connectivity of the gas phase. 

The latter reduces the area open to gas (the non-wetting phase) as it passes through a pore 
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throat. It is possible to quantify the effects of these topological and geometrical changes 

on gas phase permeability with the methods described below. 

2.3. METHOD 

2.3.1. Model of Pore Space 

The geometry of pore space in porous media is very complex, and a large number 

of pores must be modeled to obtain reasonable predictions of macroscopic behavior. 

Direct simulation of flow within pore space is now possible, but physically representative 

network models of pore space provide an inexpensive alternative. Bryant et al. [42] 

proposed a method for obtaining simple network models that are physically 

representative of clastic rocks. The approach was demonstrated with a network extracted 

from a model rock, built from a dense random packing of equal spheres constructed by 

Finney [72]. Finney determined geometry of grain space in his packing by measuring the 

spatial locations of several thousand spheres. These data allow a complete analytical 

description of both pore and grain space. This description provides the boundary 

conditions needed to calculate many macroscopic properties and transport coefficients of 

engineering interest [38, 194]. This approach has been further developed by several 

researchers, including Bakke and Øren [15], Jin et al. [107] and Al-Aroush et al. [9]. 
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Figure 2.1. Schematic of one pore (Delaunay cell) in a model unconsolidated sediment 
whose center is at point X. Arrows indicate gaps and point contacts that can 
support liquid bridges and pendular rings of the wetting phase after the pore 
has drained. Point W is the center of a pore throat. 

Delaunay tessellation of the sphere centers can be used to subdivide pore space by 

grouping four nearest sphere centers together. The tessellation yields tetrahedra, Fig. 2.1. 

Each face of a tetrahedron corresponds to a pore throat. The geometry of the throats is the 

primary control on permeability. Each edge of the tetrahedron corresponds to a grain-

grain contact (if the spheres touch) or a gap between grains (if the spheres do not touch). 

The contacts/gaps can support pendular rings/liquid bridges of wetting phase, depending 

on the capillary pressure. The geometry of these rings/bridges and the geometry of the 

throats provide the link between low water saturations and effective permeability to the 

gas phase.  
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Figure 2.2. (a) Schematic of a throat UVT (Fig. 2.1) before cementation. After the throat has 
drained the narrow gaps support liquid bridges of the wetting phase. The other 
gap is too wide to support a stable liquid bridge. (b) Schematic of same throat 
after cementation. The isopachous cement (gray) reduces the area of the throat. 
The pendular rings are smaller than in (a), because a larger capillary pressure is 
required to drain this throat. They may nevertheless occupy a larger fraction of 
the throat area, which is also smaller than in (a). Moreover the third gap UT is 
now narrow enough to support a liquid bridge. (c) Schematic of throat shows 
the definition of inscribed radius, rc and equivalent radius, re. (d) The presence 
of pendular rings and liquid bridges (blue) reduces the area open to flow of non-
wetting phase (red). This reduces the equivalent radius, but in this throat the 
inscribed radius is not changed. Note that Fig. 2.2a and 2.2d are schematic of 
throat UVT before cementation. As a result, the gap UT is not narrow enough to 
support a liquid bridge. 
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This model of rock can be modified geometrically to simulate various rock-

forming processes [38]. Here we consider only isopachous quartz cementation. The 

simplest model of this process treats the quartz cement as a coating of uniform thickness 

on all sediment grains. We implement this “onion-skin” model numerically by increasing 

the radius of each sphere in the packing, holding the centers of the spheres fixed. See Fig. 

2.2b. The morphology of wetting phase held in the crevices associated with cemented 

grain contacts is qualitatively similar to the morphology of pendular rings in the 

uncemented material. For convenience we will use the terms "pendular ring" or 

"ring/bridge" to refer to any of these morphologies. 

2.3.2. Terminology 

In this chapter, we study the fluid displacement within uniformly wet media. 

Hence we define capillary pressure to be the pressure of the non-wetting phase (e.g. gas 

phase) minus pressure of the wetting phase (e.g. water phase). 

  c nw wP P P= − .                                                                                       (2.1) 

This macroscopic capillary pressure is proportional to the curvature of the microscopic 

interfaces through the Young Laplace equation, 
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where r1, r2 are radii of curvature and C is defined as the mean curvature. The curvature 

is essentially a scaled capillary pressure. We report the value of the curvature as 

dimensionless curvature by normalizing the grains radii to be unity. 

2.3.3. Assumptions 

In this chapter, we assume that grains within rock models are strongly water-wet. 

Hence, we take in to account the existence of the thin water films on the surface of the 

grains. As a result, pendular rings or liquid bridges can grow even though they are 
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surrounded by non-wetting phase (i.e. gas phase). We also ignore the gas compressibility 

and gas slippage in this chapter. We treat the gas phase as incompressible non-wetting 

phase. 

2.3.4. Method for Computing Fluid Configurations in the Pore Space 

Physically representative network models are especially useful for computing 

geometry of multiple fluid phases, because each network element (throat, pore body) 

corresponds to a particular set of grains in the porous medium. The Delaunay tessellation 

defines a network of pore bodies and pore throats. With this network, it is possible to 

simulate drainage to irreducible wetting phase saturation [41] and imbibition from a 

drainage endpoint [80]. In this work, for evaluating the effect of rings/liquid bridges on 

the effective permeability of non-wetting phase, we do not explicitly model either 

process. Instead, we focus upon the consequences for hydraulic conductivity when low 

water saturations occur as pendular rings/liquid bridges. This morphology can account for 

wetting saturations in the range of 1% < Sw < 10%.  

At irreducible saturation the wetting phase also occupies (fills completely) small 

pores isolated during drainage [41]. We briefly consider the influence of this second 

morphology in low porosity sandstones below. The main result is that small changes in 

wetting phase saturation in this morphology do not affect significantly the relative 

permeability of non-wetting phase. Hence we simply compute the geometry of 

rings/bridges for several values of curvature (equivalently, applied capillary pressure) at 

all contacts/gaps in the packing.  

In this chapter, we do not consider the process that might lead to the presence of 

the rings and bridges. Many processes are possible. Different saturations might arise in 

different locations in a reservoir because different capillary pressures prevailed when gas 

emplacement was complete. This would correspond to different endpoints on a drainage 
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curve. On the other hand, small amounts of water may imbibe into part of a formation as 

a result of completion or production operations. This would correspond to imbibition 

from a drainage endpoint. Here, we simply vary the capillary pressure across a physically 

reasonable range, thereby causing the curvature and volume of each ring/bridge to vary. 

This in turn causes saturation to vary. We do not address the interesting question of 

whether a connected path exists through which wetting phase can move to accommodate 

these saturation changes (see Chapter 4). Rather, we frame the problem as follows: if 

changes in low wetting phase saturation occur in low permeability rocks, can they 

quantitatively explain disproportionately large changes in the gas phase permeability?  

2.3.5. Method for Computing Effective Permeability of Non-Wetting Phase 

The hydraulic conductance of each pore throat is computed from the geometry of 

the void area and the rings/bridges that obstruct the area. The geometry of throats 

controls the advancement of the non-wetting phase into the pore space (drainage). The 

wetting fluid forms pendular rings and liquid bridges after non-wetting phase pushes 

through a throats (Fig. 2.2a, b). The rings and bridges reduce the area available for flow 

of the non-wetting phase. In analogy with the Hagen-Poisueille equation (Eq. 2.1), the 

hydraulic conductance of an irregularly shaped pore throat is taken to be proportional to 

the fourth power of the effective radius of that throat (Eq. 2.2). 
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In the Eq. 2.1 and Eq. 2.2, q is the flow rate, μ is the viscosity of displaced fluid, L is the 

distance between center of two neighboring pores, PΔ  is the pressure difference between 

two neighboring pores, efr is the effective radius of the throat that connects two 

neighboring pores, and hydrg  is hydraulic conductance of that throat. 



 31

Bryant et al. [42] show that the effective radius of a throat can be estimated by the 

average of the inscribed radius and the equivalent radius, Fig. 2.2c, d. The inscribed 

radius is the radius of the biggest circle that can be inscribed into the throat. The 

equivalent radius is the radius of circle that has the same area as the throat. Therefore the 

equivalent radius is proportional to square root of the throat area. The presence of 

pendular rings decreases the void area of throat available for non-wetting to pass through 

and thus decreases the hydraulic conductance. 

We use the approach of Bryant and Blunt [40] and Bryant et al. [42] to compute 

permeability to the gas phase in the network. Briefly, a constant pressure drop is imposed 

across the phase of interest (here the non-wetting phase). We assume incompressible 

fluid and steady state flow. Hence, according to Kirchoff’s law, net flow rate into/out of 

any pore is zero (Eq. 2.3). 
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where z is the number of neighboring pores and kq  equals to 

  ( ) ( )( ), , ,k ii NBR i k NBR i kq g P P= − .                                                             (2.4) 

In Eq. 2.4, ( ), ,i NBR i kg is hydraulic conductance of the throat that connects pore i and its kth 

neighbor pore. iP  is the pressure value in the pore i and ( ),NBR i kP  is the pressure value in 

the kth neighbor of pore i. Substituting Eq. 2.4 in to Eq. 2.3 leads to 
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Eq. 2.5 can be written for all of pores within the medium which leads to a system of 

simultaneous equations for the pressures in each pore body. The overall flow rate is 

calculated from the value of pressures in pore bodies. The ratio of overall flow rate 

through the network to the imposed pressure drop yields permeability to the non-wetting 
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phase. We report this as a relative permeability by normalizing to the single-phase 

permeability of the model rock.  

2.3.6. Method for Computing Geometry of Pendular Rings 

The geometry of pendular rings and liquid bridges depends on the geometry of the 

grains supporting the ring/bridge and the curvature of the gas/water interface (Fig. 2.3). 

There are two approaches for calculation of the pendular ring (liquid bridge) volume and 

cross-sectional area: the toroid approximation and the exact nodoid calculation [74]. (See 

Appendix A for detail calculation of volume and cross-section area of the ring/bridge 

based on toroid approximation) 
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Figure 2.3. Schematic of a toroidal liquid bridge of wetting phase between two grains of 
radius R. The vertices O and O’ correspond to the sphere centers and line 
OO’ that joins the sphere centers is the axis of symmetry for the liquid 
bridge. For the toroid approximation, the surface of the liquid bridge has 
radii of curvature r1 and r2. The grain centers are separated by distance 2h. 

In the toroid approximation, the wetting phase is a volume of revolution about 

line OO’ joining the grain centers, with normal and tangential radii of curvature r1 and r2, 

respectively. At the midpoint of the toroid the mean curvature is C = 1/r1 – 1/r2. The 



 33

toroid does not have constant curvature, because the tangential radius of curvature varies 

with distance along line OO’. 

An interface controlled by capillary forces will have constant curvature 

everywhere, as prescribed by the Young-Laplace equation. For the case of wetting phase 

held between equal spheres, this condition produces a surface known as the nodoid. 

Gladkikh [78] shows that toroid model is a good approximation of the nodoid for 

calculating the properties of pendular rings relevant to our application (e.g. volume, cross 

section area). 

2.4. SIMULATION 

The porosity of the non-cemented Finney pack is 36%. Since we are interested in 

low porosity and permeability media, in our simulation we reduce porosity and 

permeability of the model medium by uniformly growing cement over grain spheres. For 

example, a cement thickness of 0.16 R, where R is the radius of the Finney spheres, yields 

a porosity of 11%.  

We start the imbibition simulation from an assumed (rather than directly 

simulated) drainage end point specified by a (large) value of mean curvature C. We 

assume that at drainage end point wetting phase exists only in the form of pendular rings 

and liquid bridges. At any value of applied curvature pendular rings exist at all grain 

contacts, but liquid bridges will be stable only at gaps narrower than a threshold that 

depends on the curvature. If the applied curvature exceeds the critical curvature of the 

gap, the liquid bridge cannot exist. The simulation proceeds by decreasing the applied 

curvature incrementally. The number of gaps which can support liquid bridges thus 

increases. In addition, the volumes of already existing pendular rings and liquid bridges 

increase. It is possible for the pendular rings or liquid bridges to grow big enough to 
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touch each other. This situation is thermodynamically unstable and coalescence of the 

rings/bridges will occur. This effect is important, because the coalescence corresponds to 

snap off (disconnection) of the non-wetting phase in the pore throat. This effect is 

included in the network model calculation of phase permeability by setting the throat 

conductivity to zero. 

Fig. 2.4 shows the trend of saturation increase with mean curvature decrease for 

model sandstones of different porosities. For each model rock, the range of curvatures 

shown is significantly larger than the drainage percolation threshold. At any particular 

curvature value, the models with lower porosity (higher cementation) have higher volume 

fraction occupied by pendular rings and liquid bridges. The range of saturations is smaller 

than typical irreducible wetting phase saturations in cemented porous media. This is 

because these calculations do not include the pore-filling morphology of wetting phase 

[41]. 
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Figure 2.4. Saturation of the wetting phase (contribution from pendular rings and liquid 
bridges only) at different curvatures. Each curve is the result of starting at a 
large value of curvature (drainage endpoint) and decrementing the curvature 
to a value somewhat larger than the percolation threshold for drainage. This 
is consistent with the early stages of imbibition from the drainage endpoint, 
well before the percolation threshold for imbibition. 

2.5. RESULTS AND DISCUSSION 

2.5.1. Influence of Pore-Filling Wetting Phase on Gas Phase Permeability in Low-
Porosity Rocks 

In this section we justify our emphasis on the pendular ring/liquid bridge 

morphology for low water saturations. Conventional wisdom has long held that the 

wetting phase occupies smaller pores and thus at low saturations it should have relatively 

little effect on non-wetting phase permeability. In the low porosity model sandstones 
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described above, the effect of wetting phase in pores is indeed small. Moreover, as shown 

in this section, the effect in these model rocks is smaller than the effect in moderate to 

high porosity model rocks. This counterintuitive conclusion is the consequence of the 

broader throat size distribution, which extends to much smaller pores, in the lower 

porosity rocks. Consequently any wetting liquid that fills pores is much more likely to 

occupy small pores which are accessed by very small throats. These small throats 

contribute very little to overall permeability. (In the calculations presented in this section, 

rings and bridges do not contribute to the saturation nor do they affect the gas phase 

permeability. Though not possible to arrange in nature, studying this situation in a model 

provides useful insight.) 

In our perfectly sorted model rocks with moderate to high porosity (greater than 

20%), there is a distinct lower limit in the throat size distribution, corresponding to the 

throat defined by three initially touching grains around which cement has grown. This 

lower limit is apparent for the moderate porosity sample in Fig. 2.5 and 2.6. In the low 

porosity model rock, the distribution of throat sizes extends much more broadly, 

including a significant fraction of closed throats (Fig. 2.5 and 2.6). In both samples, the 

smallest pore throats correspond to the smallest pores. In high porosity rocks, however, 

the smallest pore throats are not so much smaller than the average throat size (about one 

third the average throat size in the 22% porosity model rock, Fig. 2.5 and 2.6). Thus 

when these throats are drained, their addition to the connected paths open for flow of gas 

makes a small but measurable contribution to the gas phase relative permeability, Fig. 

2.7. Conversely, removing these throats when water imbibes into the smallest pores 

reduces the overall permeability of the gas phase by a small but noticeable amount.  
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Figure 2.5. Throat size distribution for model rocks of low porosity (φ =8%) and 
moderate porosity (φ =22%). The peak in the low porosity rock at zero radii 
corresponds to throats closed by cementation. Average throat inscribed 
radius for high porosity is 0.214 R and for low porosity (excluding closed 
throats) is 0.143 R. The radius of the spheres of the model sediment (before 
cement) is R. Approximately 23% of originally open throats are closed in 
the low porosity model rock due to overgrowth cementation. 
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Figure 2.6. Same distribution of throat sizes as Fig. 2.5, excluding throats closed by 
cement in the low porosity sample. The log scale shows that the distribution 
is much broader in the more heavily cemented sample. 

In low porosity rock at low wetting saturation the situation is different. The 

wetting phase occupies pores accessed through throats much smaller than average: the 

smallest open throats are one to two orders of magnitude smaller than average throat size 

in the 8% porosity model rock. Consequently draining these pores has much smaller 

effect on gas phase permeability than drainage at the corresponding saturation in the 

higher porosity model rocks. For the same reason, imbibition of water into these pores 

and occupation of the associated throats does not reduce effective gas phase permeability 

very much. From this discussion we conclude that the sensitivity of the effective gas 

permeability to the water saturation reported in the literature cannot be explained by 
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investigation of the pore-filling morphology of wetting phase. Hence our hypothesis is 

that the sensitivity of the effective gas permeability is due to the effect of geometry of 

pendular rings/liquid bridges on the gas permeability.  
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Figure 2.7. The reduction of effective gas permeability due to low water saturation 
occupying pores in the two model rocks. Filling pores with water has 
notably less effect on gas permeability in the low porosity rock. This 
permeability calculation does not account for pendular rings or liquid 
bridges. 

The calculation of effective permeability presented in Fig. 2.7 is done at drainage 

end point, considering only the effect of pores filled with water phase. That is, the effect 

of pendular rings and liquid bridges that we discuss below is deliberately excluded from 

these calculations. 

2.5.2. Influence of Pendular Rings and Liquid Bridges on Gas Phase Permeability in 
Low-Porosity Rocks 

Fig. 2.8 shows the trend of gas phase relative permeability as a function of water 

saturation for model rocks with different porosities. For porous media of porosity 29% 



 40

and higher, the trend is the same: the effective permeability to gas decreases linearly as 

saturation increases, and the trends have the same slope. A model rock with 22% porosity 

also follows this trend until saturation 0.04, at which point it exhibits a somewhat faster 

decrease in effective permeability. The model rock cemented to 16% porosity shows the 

same qualitative behavior as the sample with 22% porosity, but the saturation at which 

the slope changes is 0.01 (see also Fig. 2.9). With further porosity decrease, the trends 

show steeper slopes across the entire saturation range in Fig. 2.8. The smaller the 

porosity, the steeper the slope. 
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Figure 2.8. Effective gas (non-wetting) phase permeability vs. water (wetting) phase 
saturation. The saturation consists entirely of pendular rings and liquid 
bridges. The effect of the saturation is more pronounced for model rocks 
with smaller porosities. The narrow range of saturations is physically 
consistent with the restriction to rings/bridges. 
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Figure 2.9. Coalescence fraction (number of throats closed by coalescence at 
corresponding wetting saturation divided by total number of open throats in 
the absence of wetting phase) versus wetting saturation for model rocks of 
different porosities. Coalescence does not occur in this range of saturations 
for the high porosity model rocks (29%, 32%), so these curves coincide with 
the saturation axis. The smaller the porosity, the sooner coalescence starts as 
the water saturation increases from zero (except in the sample with 8% 
porosity). Consequently the gas phase connectivity decreases sooner with a 
small influx of water in the low porosity model rocks. 

These differences are the consequence of two simultaneous phenomena: growth 

of the rings/bridges as curvature decreases, and coalescence when neighboring 

rings/bridges come into contact. The thickness of cementation overgrowth for media with 

porosity above 29% is quite small, thus in these samples the dominant phenomenon that 

affects the non-wetting phase permeability is growth of the rings. In fact, the imbibition 

percolation threshold is reached in these model rocks before any coalescence occurs [80]. 

With increased cementation (lower porosity), grain contacts grow closer together, and 
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rings can coalesce at a higher curvature. With heavily cemented media (porosity 11% or 

less), a significant fraction of throats are closed to gas flow by coalescence. This is shown 

in Fig. 2.9. Note that the saturation at which coalescence starts for samples of 

intermediate porosities corresponds to the saturation at which the slope changes in Fig. 

2.8.  

Consequently, at small porosities, an increase in wetting phase saturation has two 

effects on gas permeability. It reduces the cross-sectional area available for gas flow in 

open throats (Fig. 2.2c, d), and it increases the number of throats completely blocked to 

gas flow. The cross-sectional area reduction affects the conductivity of both large throats 

and small throats, and therefore it reduces the overall hydraulic conductivity of the 

porous medium. The blockage of small throats by wetting phase reduces the connectivity 

of the porous medium. It is true that low water saturation is able to close only small 

throats, not large throats. But the large throats do not percolate in low porosity media. 

That is, a connected flow path for the gas phase involves a significant fraction of small 

throats. Hence, the blockage of small throats reduces the connectivity of adjacent pores 

and consequently makes the percolated path for gas flow appreciably more tortuous. 

Hence, in the low porosity media, the connectivity reduction, reducing effective gas 

permeability more significantly than in high porosity media. 

Fig. 2.8 suggests that the contribution of connectivity reduction is comparable in 

magnitude to the contribution of conductivity reduction. The slope of the krg vs. Sw curves 

changes as the contribution of throat disconnection increases, i.e. as porosity decreases or 

as Sw increases at moderate porosity. The change in slope is not extreme, so neither 

contribution dominates. 
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2.6. MODEL VALIDATION 

2.6.1. Comparison with Experimental Data for Tight Gas Sands 

Measurements of effective permeability to gas at low water saturation (less than 

0.05) are sparse. Nevertheless the model predictions provide insight into the reported 

trends. Ward and Morrow [217] plot effective permeability versus water saturation for 

tight sandstones (Fig. 2.10). Their plot is compiled from several sources and includes 

differences in permeability, porosities and applied confining pressure.  

We observe two different trends for the experimental data. For small confining 

pressure, the effective permeability decreases with slope of -0.5 at low water saturation 

(see blue curve interpolation on Fig. 2.10). At large confining pressure, the slope is 

steeper, about -2, the black curve on Fig. 2.10. We have included slopes from our 

simulation for comparison. The red line (slope -5) is the prediction for the model rock of 

8% porosity when only pendular rings/liquid bridges affect saturation and gas 

permeability. The green line is the trend when only pores filled with water affect 

saturation and gas permeability.  

The model is qualitatively consistent with the data, in that it bounds the observed 

sensitivity of the gas phase permeability to low water saturation. Quantitatively, the 

predicted trend for rings/bridges is considerably stronger than observed, while the trend 

for filled pores is weaker than observed.  
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Figure 2.10. Gas effective permeability for tight sandstones: experimental data [217] and 
trends of model predictions. Confining pressure increases the sensitivity of 
effective gas permeability to low water saturations. If water saturation 
increases exclusively by changing the number and size of pendular 
rings/liquid bridges (no pore-filling), the gas permeability (red line) 
decreases faster than observed. If water saturation increases exclusively by 
pore filling (no rings/bridges), the gas permeability decreases more slowly 
than observed. Rings and bridges are thus the main mechanism for water 
sensitivity at low saturations. 
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We also validate our simulation result with experimental data gathered by 

Shanley et al. [177]. Relative gas permeability was measured in low permeability rocks at 

insitu overburden pressure (Fig. 2.11). While the scatter in the data is large, the trend falls 

between the limits predicted by the rings/bridges-only model and the filled-pores-only 

model. 

Result of model for φ= 8%, 
only rings and bridges
Result of model for φ= 8%, 
only pore-filling wetting 
phase

Parallel to trend of Data
Set B
Set A

Result of model for φ= 8%, 
only rings and bridges
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only pore-filling wetting 
phase

Parallel to trend of Data
Set B
Set A

 

Figure 2.11. Experimental data [177] for gas effective permeability for low permeability 
rock. This graph has two data sets: gas relative permeability measured at 
irreducible water saturation at the overburden pressure (set A) and the gas 
relative permeability at 4000 psi confining pressure (set B). The trends and 
conclusions discussed in Fig. 8 are applicable to this data set as well. 

While both experimental data and simulation result for rings/bridges-only model 

show similar trend, the slopes are different. The simulation result shows greater 

sensitivity than is typically observed. This is consistent with three idealizations in the 
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model. First, some throat shapes may occur in real rocks which are not represented in our 

model. Our model accounts only for throat area reduction with one possible throat shape 

(Fig. 2.2b). Real rocks have varied throat shapes and some of them can be effectively 

closed by applying high confining pressure. One of such shapes is slit shape shown on 

Fig. 2.12, which may arise when extensive isopachous cementation occurs. Cement rims 

growing toward each other with different orientations form a rough aperture held open by 

asperities. When small confining stress is applied, the two thin gaps between the top 

sphere and the lower spheres will be open. At low wetting phase saturations, some of the 

wetting phase will be contained in these slots. However, the effect of that volume of 

wetting phase on gas phase permeability will be small, because little gas would flow 

through the slots even when completely dry. At larger stresses, the slots may close. At 

low Sw, a greater fraction of wetting phase will be in pendular rings and liquid bridges, 

leading to greater effect on permeability per unit volume wetting phase.  
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Figure 2.12. Extensive growth of isopachous cement from adjacent grains can lead to the 
formation of slot-like pores between grains. The slots are held open by 
asperities arising from different crystallographic orientation of the grains. 
Thus the slot aperture can change considerably with confining stress. 

Second, we use smooth spheres in our model, but the surfaces of grains in rocks 

are rough. Some wetting phase can reside in small cavities associated with rough surface 

grains, enough to comprise the dominant part of Sw at low water saturations. However, if 

gas were present in these cavities, it would also be present in pore throats, whose 

characteristic size is much larger than the cavities. Flow along and through these cavities 

would make a very small contribution to total flow rate. Hence the water saturation 

associated with roughness does not affect significantly the effective gas permeability. The 

fractal roughness model of Moulu et al. [151] confirms this analysis, as discussed in 

Appendix B. Accounting for surface roughness in our model would thus reduce the 

apparent sensitivity of gas phase permeability to small values of water saturation. This is 

consistent with the measurements in Fig. 2.10. We conclude that only pendular rings and 
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coalesced throats affect permeability, while these features combined with wetting phase 

associated with roughness, slot pores, etc., determine saturation.  

Third, our model for rings/bridges accounts only for wetting phase as pendular 

rings or liquid bridges. We ignore the pore-filling morphology which contributes to 

wetting saturation but has little effect on gas phase permeability at low Sw [150]. 

Therefore accounting for both morphologies (pore-filling and pendular ring) would 

decrease the sensitivity of gas phase permeability to wetting phase saturation. This is 

because over the saturation range of the experiments, the water phase exists in both the 

pore-filling and the pendular ring/liquid bridge morphologies. In a drainage simulation 

that fully accounts for the displacement physics, (see Chapter 4), it is possible to compute 

the relative amounts of water in the two morphologies. Bryant and Johnson [41] report 

roughly equal amounts in pores and in rings/bridges at the drainage endpoint in 

unconsolidated samples. If this ratio also applies in low porosity samples, then the slope 

of the model curves would be fall halfway between the two limits (red and green lines in 

Fig. 2.10). This would agree well with the experiments at high confining pressure. 

 

2.6.2. Comparison with Experimental Data for Vaporization of Water during Gas 
Injection 

We further compare our simulation results with the data from vaporization of 

water during dry gas injection. Zuluaga and Lake [222] report core flood experiments that 

show noticeable permeability reduction (of order 20%), which is attributed to 

precipitation of salt from irreducible water saturation. In a typical experiment, irreducible 

saturation was established with a solution of 5 volume % NaCl. The porosity of the core 

was 16%, and the irreducible water saturation was 0.19. The solid salt initially present 

thus occupies the equivalent of almost 1% of pore volume (0.05 × 0.19 ≈ 0.01). Hundreds 



 49

of pore volumes of dry methane were then injected, evaporating but not displacing the 

brine. After all the water was removed, an 18% permeability reduction was observed.  

As with the water saturation in low porosity sandstones, the permeability 

reduction is remarkably large considering the small volume of salt. For example, if the 

salt were precipitated uniformly in the pore space, the Kozeny-Carman equation might be 

expected to apply; but we find 
3 2
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. This underestimates the 

observed reduction. To explain the observation, we propose that the grain scale 

distribution of salt is not uniform, that it can be understood in terms of pendular rings and 

that causes the disproportionate permeability change, just as it does for low Sw in tight gas 

sandstones.  

As the wetting phase evaporates, the gas/water interface retreats toward grain 

contacts. The precipitated salt is thus presumably confined to the same part of pore space 

as the pendular rings and liquid bridges. Under this assumption, the volume occupied by 

salt would have the same effect on permeability as an equivalent volume of pendular 

rings. But according to our model, pendular rings and liquid bridges forming only 1% 

saturation, the minimum volume occupied by the salt, would cause only 3% permeability 

reduction (Fig. 2.8). To obtain the observed permeability reduction of 18%, salt would 

have to occupy the volume equivalent to a wetting phase saturation of about 5%.  
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1 cm

(a) (b)
 

Figure 2.13. (a) Picture of bead pack column (18 cm) used for the capillary controlled 
gravity drainage of high concentrate brine experiment. This picture was 
taken at the end of experiment and the bead pack column was exposed to 
heat (oven) for more than 48 hrs. The red indicator in the brine enhances 
visual contrast between grains and precipitated salts. (b) Enlarged view on 
the top part of the bead pack column. The white spots are the crust of salt 
that precipitated between the glass wall of the column and the grains 
(beads). The average bead size is 2 mm. 

Observations of evaporating brine (in bulk and in bead packs) help reconcile the 

difference between the theoretical minimum salt volume (1% of pore space) and the salt 

volume needed to explain the permeability reduction (5% of pore space). A column was 

packed with glass beads and filled with brine (Fig. 2.13a). The salt concentration of brine 

is 23% by weight, or 9% solid content by volume. We displaced brine with air at very 
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slow flow rate (capillary controlled gravity drainage process), then placed the column in 

an oven with temperature of 75°C for more than 48 hours. Evaporation of water results in 

the formation of salt crusts within the porous medium, which are visible through the wall 

of the glass column. Pictures of precipitated salt between beads and the wall of the glass 

column are shown in Fig. 2.13b. The precipitated salts at the point contacts look like 

rings (doughnut shape). Bernal and Mason [23] observed the same shape for dried ink at 

the point contacts between spheres in a packed column. Thus salt precipitates at the outer 

edge of the pendular rings, not the inner core.  
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Figure 2.14. Schematic of pendular ring held at point contact between grain and wall. We 
adapt the toroid approximation for rings between two spheres, so that r1 and 
r2 are taken to be the radii of curvature of the meniscus. This approximation 
is reasonable for large values of mean curvature, when 1 2r r . rh is radius 
(max) of the circle of projected pendular rings, and the calculated value is 
compared with observations (Fig. 2.13). 
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We measured the inner radius of the rings by an image processing technique and 

compared with calculated radius rh of the circle of projected pendular rings on the wall at 

the point contact between grains and the wall (Fig. 2.14). By knowing the diameter of the 

beads and applied curvature, we calculated the cross sectional area (and its corresponding 

radius) of brine that is held as pendular rings at the contact points between beads and wall 

of glass column. We use average diameter of beads as bead diameter (beads are assumed 

to be uniform in size). The applied capillary pressure and the corresponding curvature are 

calculated from the measured distance above free water level (bottom of the bead pack). 

The value of calculated rh is comparable to the value of the measured inner radius of the 

rings. For instance the average measured inner radius of rings at 12.5 cm from bottom of 

the column (free water level) is 0.61 mm, while the calculated rh for the applied curvature 

at this level is 0.65 mm (the bead size is 2 mm).  

Our observations show that salts precipitate from saturated brine solution outward 

from the pendular rings. The salt crust has small permeability and thus acts as seal for gas 

flow. Therefore the effect of these salt crusts on the reduction of area available for gas to 

flow is slightly more than the effect of the pendular rings themselves. Salt precipitation 

begins only after the brine becomes saturated. For the experiments reported by Zuluaga 

and Lake [222], this occurs when the wetting phase saturation is reduced to about 6%. At 

this point, much of the wetting phase will exist as pendular rings and liquid bridges. 

Evaporation from this point onward leaves a salt crust outwards toward the center of the 

pore throat. We hypothesize that capillarity draws brine into the crust, and as that brine 

evaporates, the crust grows. In this fashion, an accretion of porous salt is built in the same 

vicinity in pore throats as the rings and bridges. The reduction in effective permeability 

should therefore be comparable to that caused by a wetting phase saturation of 6%. The 

reduction predicted in this way (Fig. 2.8) is very close to the observed value. 
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2.7. CONCLUSIONS 

Low wetting saturation can have significant effect on effective permeability of 

porous media, especially as isopachous cement decreases the porosity below 20%. Using 

a physically representative network model to compute phase permeability, we quantified 

the effect in simple model rocks at very low saturations (less than 6% wetting phase) by 

considering the geometry of pendular rings and liquid bridges held at grain contacts and 

near-contacts. The rings/bridges reduce the area open to flow of gas phase. This reduces 

the effective radius of these throats and thus reduces the effective permeability to the gas 

phase. For small porosity, the rings/bridges can coalesce in throats as wetting phase 

saturation increases, causing snap off of the gas phase. This reduces the connectivity of 

the gas phase and thus amplifies the reduction in effective permeability. Coalescence 

occurs much less often in model rocks of larger porosity. This difference contributes to 

the greater sensitivity of tight gas sandstones to water saturation in low porosity-low 

permeability rocks. 

We contrasted this result with the effect when water only occupies pores in the 

model rocks. For this pore-filling wetting phase morphology, the model predicts that low 

porosity rocks exhibit less sensitivity of gas phase relative permeability to low water 

saturations than moderate or high porosity rocks. This is because the mechanism of 

porosity reduction, quartz overgrowth cementation, causes the pore throat size 

distribution to be much broader in low porosity samples than in moderate or high porosity 

samples. The entrance of water into the low porosity model rocks thus removes relatively 

much smaller throats from the network of connected gas phase. This finding reinforces 

the importance of rings/bridges as the primary mechanism for water sensitivity in tight 

gas sandstones. 
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The predicted trends of gas phase permeability vs. water saturation for the two 

morphologies, rings/bridges and filled pores, bracket the trends apparent in measurements 

reported in the literature. The predictions presented here thus provide bounds on the 

sensitivity of gas phase permeability. In practice, the net effect of increasing the water 

saturation from small values will depend on the relative amounts of water held in the two 

morphologies.  

The model suggests one mechanism for the sensitivity of gas effective 

permeability in tight gas sandstones to confining stress. At small stress, crack-like or slit-

like pore throats are open but contribute little to permeability. Thus when they contain 

wetting phase, the reduction in effective permeability is slight. At large stress, these slits 

are closed, and low wetting phase saturation exists only in the corners of triangular 

throats like those in our model. More generally, the wetting phase held in crevices 

associated with surface roughness contributes volume at small values, but does not affect 

gas phase permeability. Our rings/bridges-only model accounts only for wetting phase 

held in pendular rings and predicts greater sensitivity than observed. Incorporating 

surface roughness in the manner of Moulu et al. [151] would thus improve the 

predictions, indicating that pendular rings are the main pore-space feature affecting gas 

phase permeability but not the only feature affecting . 

The model also provides a quantitative explanation for the disproportionately 

large reduction in gas permeability caused by injection of dry gas into a brine-saturated 

core. The salt precipitated from the initial brine saturation builds porous obstructions 

corresponding to the locations of pendular rings/liquid bridges. In this manner, a small 

volume of solid salt can obstruct a large enough volume of pore space to reduce 

permeability. 
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CHAPTER 3: MECHANISMS OF MENISCUS MOTION IN 2D 
FRACTIONALLY WET POROUS MEDIA  

3.1. ABSTRACT 

Oil reservoirs and soil are often heterogeneously wet (mixed wettability or 

fractional wettability). In mixed wet reservoirs the mechanism of wettability alteration 

means that a single grain can have patches that are water-wet and patches that are oil-wet. 

In fractionally wet porous media, each grain is either oil-wet or water-wet. Here we 

develop a mechanistic model of capillary controlled fluid movement in fractionally wet 

media. The model calculates the position of stable interfaces between grains of arbitrary 

wettability. Pore filling occurs when the interface becomes unstable in a pore throat 

(Haines condition), or when two or more interfaces come into contact and merge to form 

a single interface (Melrose condition). The model is robust and general in the sense that 

both filling mechanisms are considered simultaneously during arbitrary sequences of 

changes in capillary pressure. The model is demonstrated on 2D porous media consisting 

of randomly distributed oil-wet and water-wet disks, and capillary pressure–saturation 

curves are obtained. The model results compare favorably with the drainage/imbibition 

experiments on fractionally wet media. Most notably, a distinctive shift in the 

drainage/imbibition curves occurs as the fraction of oil-wet grains increases beyond a 

threshold value.  

3.2. INTRODUCTION 

In a rock containing immiscible fluids, the rock is wetted by the fluid that has 

smaller surface energy of interaction with the rock [63].Wettability of reservoir rocks is 

the subject of wide investigation because understanding rock wettability helps 

petrophysicists to estimate fluid distribution within the pore space of the rock [10, 11]. 
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Fluid distribution at the pore scale is important because this affects the macroscopic 

rock/fluid properties such as capillary pressure curves and relative permeability curves.  

Many rock minerals have a tendency to be wetted by water and thus, reservoir 

rocks are typically water-wet before they are filled with oil. However, chemical species 

within the oil that are charged can change the wettability of the reservoir rocks to oil-wet 

during geological time [172]. Reservoirs can be partly oil-wet and partly water-wet due to 

wettability alteration, which occurs on the part of the reservoir rock that is exposed to the 

crude oil [172]. This is referred to in the literature collectively as heterogeneous 

wettability [113], fractional wettability [200] and mixed wettability [5, 206, 209, 211]. 

Here, we identify two categories of heterogeneous wettability: Fractional 

wettability and mixed wettability. In the case of fractional wettability the grains that 

construct the porous medium are either water-wet or oil-wet. The water-wet and oil-wet 

grains are distributed randomly within the porous medium. This is depicted schematically 

in Fig. 3.1. 
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Figure 3.1. Schematic of a fractionally wet porous medium (grain level scale). 
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In the laboratory, the fractionally wet porous media are prepared by mixing 

different fraction of the oil-wet grains and water-wet grains. Fractionally wet porous 

media occur naturally in certain soils, and they are the simplest heterogeneously wet 

media that can be reliably reproduced experimentally. Because of this, fractionally wet 

media has been the focus of most experimental measurements [19, 31, 90, 178, 204].  

In contrast for mixed wet porous media, the grains may have both water-wet and 

oil-wet patches. This can occur from different mineral surfaces on the grain (micas or 

quartz), or it may occur from different portion of the grains coming in contact with 

reservoir oil. In nature, oil invades the water-wet rock due to density differences between 

oil and water (first migration). During first migration water is displaced from large pores, 

and remains in both small pores and as rings at the grain contacts due to capillary force. It 

is theorized that wettability alteration occurs only on the surfaces of grains that directly 

contact the oil phase; therefore the surfaces of the grains within the small pores, which 

were never filled with oil, remain water-wet. Similarly, the surfaces of the grains where 

the pendular ring forms remain water-wet (Fig. 3.2). This mechanism of wettability 

alteration causes single grains to have both water-wet and oil-wet patches [172].  
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Figure 3.2. Schematic of a mixed wet porous medium (grain level scale). 
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Brown and Fatt [35] were the first to construct heterogeneously wet porous 

media. They mixed different fraction of oil-wet and water-wet sand grains to build 

several fractionally wet porous media. The authors showed that “wettability” of the 

model rock could be measured by Nuclear Magnetic Relaxation method (NMR). 

McDougall and Sorbie [142] investigated waterflood performance in 

heterogeneously wet porous media. They modeled mixed wet rock as porous media 

composed of small pores (water-wet) and big pores (oil-wet). They also modeled 

fractionally wet porous media by choosing certain fractions of pores water-wet and oil-

wet, independent of the pore sizes. They use the invasion percolation theory to model the 

capillary displacement of water and oil phase. Other researchers [26, 92, 147, 159, 204] 

have studied the mixed wet and fractionally wet porous medium using pore network 

modeling. Their pore network models are typically based on a lattice of random pores 

and throats with different shape (triangular, square, circular, star-shape, etc). The shapes 

are inspired by naturally occurring throats, which retain wetting phase at grain contacts 

after the throat has drained. In cylindrical throats, fluids cannot co-exist during 

multiphase flow through the porous medium. This weakness was overcome by 

considering angular cross section throats. The angular cross sections throats represent a 

useful advance over traditional cylindrical throats by retaining wetting phase in the 

corners of their throats. However, a concept not considered in the above models is that 

‘pore is the space where grains do not exist’. In other words, the pore shapes are not 

fundamental; rather, the grain shapes are the “primitives” from which pore shapes are 

derived. Moreover, wettability is strictly speaking a property of grains, not of pores. A 

grain-based approach to this class of fluid displacements therefore seems natural.  

This chapter is part of a broader effort to understand the mechanisms of meniscus 

movement in heterogeneously wet media, then to use that understanding to develop 
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purely mechanistic and geometric criteria for pore level events. We need to validate our 

simulation result (drainage and imbibition curves), and hence the geometric criteria on 

which the simulation relies, against experimental data. The criteria applied in fractionally 

wet porous media are not fundamentally different from criteria applied in mixed wet 

porous media. The experimental data for fractionally wet media are more readily 

available due to the simplicity of the experimental set up. The comparison between 

experimental data and simulation result is also easier in fractionally wet media because 

independent variable is simply the percentages of oil-wet and water-wet grains. In 

contrast in a mixed wet porous medium, the configuration of oil-wet and water-wet 

surfaces (wettability map) is very complicated, depending on pore geometry, the history 

of primary drainage, etc. For the purpose of validating mechanisms, then, the fractionally 

wet medium is preferred. 

To understand the physics of menisci motion within fractionally wet porous 

media, we restrict ourselves to two-dimensional media in this chapter. This greatly 

simplifies the presentation and implementation of the concepts. In addition, the 

development of a model in two-dimensional media gives us the advantage of 

visualization of the menisci motion within a fractionally wet medium (see Appendix D 

for more details). The extension to three dimensions is presented in Chapter 4. 

3.3. TERMINOLOGY 

Because the solid surfaces in a heterogeneously wet porous medium consist of 

surfaces with different wettability, discrimination between wetting and non-wetting phase 

is ambiguous. Hence we define capillary pressure to be the pressure of the non-aqueous 

phase (oil) minus pressure of the aqueous phase (water or brine). 
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  = −c o wP P P .                                                                                        (3.1) 

This macroscopic capillary pressure is proportional to the curvature of the microscopic 

interfaces through the Young Laplace equation, 
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1 1 2
⎛ ⎞

= + =⎜ ⎟
⎝ ⎠

c ow owP C
r r

σ σ ,                                                               (3.2) 

where r1, r2 are radii of curvature and C is defined as the mean curvature. The curvature 

is essentially a scaled capillary pressure. Thus when the pressure of oil phase exceeds the 

water phase pressure, the capillary pressure and curvature are positive and consequently 

the interface curves toward the oil phase, and when the capillary pressure and curvature 

are negative the interface curves toward the water phase. These curved interfaces are 

referred to as menisci. We report the value of the curvature as dimensionless curvature by 

normalizing the grains radii to be unity. 

Along these lines and following Morrow [149], we define drainage to be when the 

water saturation is decreasing, and imbibition to be when the water saturation is 

increasing. 

3.4. MODEL/SIMULATION 

3.4.1. Assumptions 

In this chapter, we do not take into account the existence of thin wetting films on 

the surface of grains. In addition, we assume that in a two-dimensional medium, the 

fluid/fluid interface (meniscus) with a constant curvature is represented by the arc of a 

circle, because this shape minimizes the surface free energy. We do not explicitly solve 

for the minimum surface energy. Instead, we developed our model based on the finding 

of studies regarding the stability of a fluid/fluid interface within the porous media [87, 88, 

144]. 
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3.4.2. Model of Pore Space 

To study the movement in menisci through fractionally wet porous media, we 

create 2D porous media made up of equally sized disks. The disks cannot overlap but 

otherwise are randomly located. Each disk can be made either water or oil-wet. 

To facilitate movement of water and oil through the network we also create an oil-

wet membrane made of smaller sized oil-wet disks on the right hand side, and a similar 

water-wet membrane on the left hand side of the model (Fig. 3.3a). 

We use the approach of Bryant et al. [42] to obtaining simple network models 

from 2D porous media. We use a Delaunay tessellation of the disks centers to subdivide 

the pore space into pore bodies and pore throats. The tessellation yields triangles, with 

each edge of the triangle corresponding to a pore throat. The space inside each triangle 

(excluding the disks) is the pore body (Fig. 3.3b). 
 

(a) (b)

Oil-wet 
membrane 

Water-wet 
membrane 

Delaunay 
tessellation

Pore bodyPore throat Pore bodyPore throat

 

Figure 3.3. (a) Schematic of a porous medium constructed with randomly distributed 
disks, the oil-wet membrane and water-wet membrane located at the left and 
right hand side of porous medium. (b) Schematic of network model 
extracted from porous medium (Fig. 3.3a). The pore space within porous 
medium can be divided to pore bodies and pore throats using Delaunay 
tessellation. 
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3.4.3. Grain-Based Mechanistic Criteria for Menisci Movement 

The essential features of a grain-based approach are (i) the locations of the grains 

and (ii) the wettability (contact angle) of each grain. The former data allow an 

unambiguous identification of pores and throats, without recourse to sampling a 

distribution or specifying a shape. The latter data lead to criteria for stable configurations 

of a meniscus (fluid /fluid interface). The fundamental event in a grain-based approach is 

the filling of an individual pore, just as in traditional pore network models. However we 

establish criteria for such events in terms of grain locations and contact angles, rather 

than in terms of the geometry of idealized throats. For invasion of a pore by a single 

meniscus passing through a throat, the grain-based and pore network models arrive at 

essentially the same result, namely the criterion for a Haines jump. For invasion of a pore 

by the merger of two or more menisci (Melrose mergers), the grain-based approach offers 

a significant advantage. The correct geometry and location of meniscus are readily 

determined in a grain-based model. We are unaware of any systematic way to account for 

these phenomena in a traditional pore network model. Haines jumps and Melrose mergers 

both occur during any cycle of drainage or imbibition in a fractionally wet medium. We 

conclude that a grain-based approach is essential for obtaining a mechanistic 

understanding of such displacements. This assertion is supported by the successful 

prediction of imbibition curves in uniformly wet media [80].  

Haines Events  

Pores can fill through two different mechanisms, Haines events [88] and Melrose 

events [144]. These can be most easily understood in uniformly water-wet media. Fig. 3.4 

shows a schematic of a Haines event. During drainage of a water-wet porous medium, as 

the capillary pressure increases, the curvature of the meniscus increases. In a 2D medium, 

the meniscus is an arc of a circle whose radius is set by the applied capillary pressure. As 
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a result of capillary increase, the meniscus gradually moves to the right into ever 

narrower parts of the throat (Fig. 3.4). At location 3, the throat can no longer hold the 

meniscus, and it jumps to displace the fluid from the pore behind the throat. The criterion 

for this 2D Haines event is given by the smallest circle that will fit in the throat; for 

curvatures greater than the curvature of this circle, the meniscus will pass through the 

throat. 

1 2 3
4

4

1 2 3
4

4

 

Figure 3.4. Schematic of a pore-filling under the Haines criterion. Originally the 
meniscus is located in the left hand throat (blue curve, location 1). The 
meniscus is an arc of a circle whose radius is set by the applied capillary 
pressure. Increasing the curvature causes the circle to become smaller, until 
it can pass through smallest opening of the throat (green curve, location 3). 
The green curve is unstable and the pore will be drained which results in 
locating two menisci at adjacent throats (purple curves, location 4). 

In other words, when the circle gets small enough to pass through the gap, then 

the throat cannot hold the meniscus and the Haines event occurs. In the water-wet 

medium, The Haines event only occurs during drainage, while the capillary pressure 

increases.  

Melrose Events 

A Melrose event [144] is the irreversible jump that occurs after two separate 

menisci come into contact and merge into a single meniscus. Fig. 3.5 shows a Melrose 
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event in a uniformly water-wet medium during imbibition (curvature decreasing). The 

details are as follows. The decrease in the curvature causes advancement of the menisci 

from the upper and lower throats on the right (location 1) toward the pore (locations 2 

and 3). Continued advancement results in the merging of menisci at location 3 to form a 

single meniscus. This configuration is not stable. Upon an infinitesimal decrease in 

curvature, the wetting phase fills the pore space completely and makes a new meniscus in 

the throat of neighboring pores, location 4. Thus, the criterion for a Melrose event is the 

touching of two separate interfaces. For a pore with multiple throats, several different 

Melrose events are theoretically possible, depending on which pairs of throats contain the 

merging menisci. In the water-wet medium, Melrose event only occur during imbibition, 

while the capillary pressure decreases. 
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Figure 3.5. Schematic of a pore-filling under the Melrose criterion. Two menisci are 
originally located at two adjacent throats (blue curve, location 1); by 
decreasing the curvature (capillary pressure), menisci move toward the pore. 
Different color curve shows the position of the menisci at different 
curvatures. Eventually these two menisci touch (green curve, location 3), the 
green curve is unstable and pore will be imbibed by wetting phase. The 
merged meniscus jumps to a new stable location, the purple curve (location 
4). 
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Fig. 3.4 and 3.5 also illustrate the geometric cause of hysteresis in a drainage and 

imbibition cycle. The critical location of the meniscus during drainage (location 3 in Fig. 

3.4) is quite different from the critical location during imbibition (location 3 in Fig. 3.5). 

Hence the curvature (and capillary pressure) at which each event occurs is quite different. 

Shape of Water/Oil Interface (Meniscus) on the Fractionally Wet Throat  

In the fractionally wet porous medium, the configuration of the oil-wet and water-

wet surface dictates the fluid distribution within porous medium. Within a two-

dimensional network of disks, three neighboring disks construct a pore. Each pore has 

three throats constructed from pairs of adjacent disks (Fig. 3.6). There are four 

configurations of grains defining a pore in the fractionally wet porous medium:  

• Three water-wet disks, in which all throats are water-wet. (Fig. 3.6a) 

• Three oil-wet disks, in which all throats are oil-wet. (Fig. 3.6b) 

• Two water-wet disks and one oil-wet disk, in which one water-wet and two 

fractionally wet throats. (Fig. 3.6c) 

• Two oil-wet disks and one water-wet disk, in which one oil-wet and two 

fractionally wet throats. (Fig. 3.6d) 

The task is to determine the Haines and Melrose events that can occur in each 

type of pore. This reduces to two more basic exercises: computing the critical curvature 

for a single meniscus in a throat, and computing the critical curvature for two menisci in 

adjacent throats. The solution to the first exercise, which we summarize next, is the 

foundation for the second. We treat curvature (or capillary pressure) as the independent 

variable. This is driven by the common experimental procedure of incrementing capillary 

pressure, waiting for equilibrium and repeating. To determine when Melrose and/or 

Haines criteria are met in the corresponding simulation, it is necessary to calculate the 

position of all of the menisci within the porous medium at a prescribed curvature. 
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(a)                             (b)                             (c)                               (d)  

Figure 3.6. Schematic of different configurations of a pore in the fractionally wet porous 
media. The throat is the void space (gap) within two pair of disks. In 
configuration a, and b the throats are uniformly wet, whereas in 
configurations c and d two of throats are fractionally wet and one of them is 
uniformly wet. 

Stability of Meniscus in Fractionally Wet Throat, Analogy to Haines Criterion  

We generalize the classical Haines criterion by solving for the stable interface in 

fractionally wet media. Here we demonstrate how the position of one meniscus is found 

between a pair of 2D disks of arbitrary and unequal contact angles and radii, separated by 

an arbitrary gap width (D) (Fig. 3.7). 

For a meniscus with constant curvature, the geometry of the meniscus is defined 

by the center of the meniscus (x0, y0), the radius of the meniscus, and the intersections 

with the solid surface. The intersections of the meniscus with the disks are forced to be at 

the contact angle of each surface. These constraints yield a trigonometry problem to be 

solved for the center of meniscus (for more details, see the Appendix C). Fig. 3.7 shows 

the schematic of menisci positioned on the two disks with different contact angles 

(θ1, θ2) . 
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Oil side

Water side
 

Figure 3.7. Schematic of a stable meniscus (blue) with a radius of r, located on two disks 
with different contact angle (θ1,θ2�). The disks have different radii (R1, R2) 
and are separated by a gap of width D. O is the center of meniscus, and O1 
and O2 are the center of two disks which hold the meniscus.  

In the configuration of Fig. 3.7, R1, R2 (radii of disk 1 and 2), contact angles 

(θ1, θ2) , the gap width (D), and the radius of the meniscus r are given. A solution for the 

center of the meniscus exists if the following condition is met. 

  
( ) ( )2 2
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1 2
2
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,                                                     (3.3) 

where L1 and L2 are the distances from the center of each disk to the center of the 

meniscus (i.e. O). In other words, L1 and L2 are length of 1OO and 2OO  respectively. The 

value of L1 and L2 are given by 

 ( )2 2
1 1 11 2 cos= + +L R r R r θ ,                                                               (3.4) 

 ( )2 2
2 2 22 2 cos= + +L R r R r θ ,                                                               (3.5) 

respectively. 
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If condition of Eq. 3.3 is met, the meniscus can exist between the grains, and the 

meniscus is stable. If this condition is not met, the meniscus cannot exist. Thus Eq. 3.3 

implies a critical value of curvature for the throat that holds the meniscus, namely the 

largest value for which the meniscus is stable on the throat. As shown above, this critical 

curvature is one for which the meniscus will first pass through the throat. The meniscus is 

stable when the curvature of meniscus is smaller than critical curvature of the throat. If 

the curvature of meniscus gets larger than the critical curvature, the condition of Eq. 3.3 

is no longer satisfied. As a result, the meniscus will pass through the throat and a Haines 

event will occur. 

We solve an inequality of Eq. 3.3 for fractionally wet throats at different 

curvature of meniscus, gap size, and contact angle of disk 2 (θ2) with meniscus. The 

fractionally wet throat composes of two equal size disks. The contact angle of disk 1 with 

the meniscus remains constant (θ1 = 0ο ) while the contact angle of disk 2 (θ2) varies. The 

gap sizes are normalized such that a value of 1 corresponds to the radius of the disks.  

As a result of above exercise, we map the region in which a meniscus is stable on 

a fractionally wet throat. Fig. 3.8 shows the relation between maximum curvature for a 

stable meniscus versus the gap size of the fractionally wet throat holding the meniscus, 

and the contact angle of disk 2. In Fig. 3.8, the region below the plotted surface is region 

of stable menisci and the region above the surface is the region of unstable menisci. For 

instance, a meniscus with dimensionless curvature of 5 is stable on the fractionally wet 

throat with normalized gap size of 0.2, when both disks make zero contact angle with the 

meniscus. However, a meniscus with the same curvature is not stable if contact angle of 

disk 2 change to 180◦. Fig. 3.8 also shows how fast the region of stable meniscus gets 

smaller as the gap size or contact angle of disk 2 increases. 
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Figure 3.8 Relation between maximum curvature for a stable meniscus versus the gap 
size of the fractionally wet throats holding the menisci, and the contact angle 
of disk 2. The region below the plotted surface is region of stable menisci 
and the region above the surface is the region of unstable menisci. 

Eq. 3.3 is a general criterion for any two disks with different contact angles and 

different radii. We illustrate this for two specific cases that occur frequently in the 

fractionally wet medium. Fig. 3.9 shows the schematic of a meniscus positioned on two 

disks of equal size with zero contact angles �θ1=θ2= 0ο. 
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Figure 3.9. Schematic of meniscus (blue) with radius of r, located on two disks with zero 
contact angles (θ1=θ2= 0ο ). The disks have same radius (R1=R2=R) and are 
separated by a gap of width D. 

In Fig. 3.9, the distances from center of each disk to the center of meniscus are 

equal: 

  1 2= = +L L r R .                                                                                  (3.6) 

Substituting Eq. 3.6 in Eq. 3.3 reduces the criterion of stable meniscus to 

  
2

≥
Dr .                                                                                                    (3.7) 

In Fig. 3.9, the meniscus will be stable if the radius of meniscus is bigger than half of the 

gap. Eq. 3.7 defines a minimum radius of curvature stable for given gap width (D). The 

radius of meniscus and the curvature of meniscus are inversely proportional. Hence, it is 

instructive to rewrite Eq. 3.7 in terms of curvature, yielding a criterion for the maximum 

curvature (capillary pressure) allowable for the meniscus to be stable:  

  
2

≤C
D

.                                                                                                  (3.8) 
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Thus as soon as the curvature of the meniscus exceeds the critical value of 
2
D , 

the radius of the meniscus becomes smaller than half the gap size, the meniscus becomes 

unstable, and a Haines’ jump occurs. In other words, this is exactly the same criterion for 

the Haines event during drainage of a water-wet medium. As mentioned before, when the 

circle, in which the meniscus is the arc part of that circle, gets small enough to pass 

through the gap, then throat is unable to hold the meniscus and the Haines event occurs. 

The curvature of this circle is the Haines criterion for this throat. 

The other specific case of interest is when two disks have the same radii and 

opposite wetting preference. Fig. 3.10 shows the schematic of a meniscus positioned on 

two disks of equal size with 0o and 180o contact angles (θ1 =0◦, θ2 =180° ). 

 

Water side

Oil side
L1

L2

 

Figure 3.10. Schematic of menisci (blue) with radius of r, located on two disks with zero 

and 180° contact angles (θ1=0, θ2=180◦) The disks have same radius 
(R1=R2=R). 
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Regarding Fig. 3.10, we can observe that 

  1 2,L r R L r R= + = − .                                                                     (3.9) 

Substituting Eq. 3.9 into Eq. 3.3 leads to 

  
2
Dr R≥ + .                                                                                          (3.10) 

Typical values of D are three to ten times smaller than R. Thus comparing Eq. 3.10 to Eq. 

3.6 shows that the minimum radius of a stable meniscus is much larger if one of disks is 

oil-wet (contact angle equals to 180ο). This means that the maximum value of curvature 

for a stable meniscus is much smaller when one of the disks is oil-wet. Therefore, the 

meniscus will become unstable in such a throat at a relatively small value of curvature, 

while menisci on water-wet throats remain stable. Thus, in a large collection of oil-wet 

and water-wet disks, the range of curvatures for which menisci are stable in all the throats 

in the domain is very small. This statement is true for positive applied curvature.  

Stability of Two Merging Menisci in Fractionally Wet Media, Analogy to Melrose 
Criterion  

The Haines criterion obtained above applies to a single meniscus between a pair 

of grains. We now consider two menisci at adjacent throats in a single pore. To 

understand the Melrose event geometrically, first consider a uniformly wet pore, shown 

in Fig. 3.11. The pore has three uniformly wet throats. Originally, two menisci are 

located at adjacent throats (Fig. 3.11a). Decreasing the curvature causes the menisci to 

move toward the pore (i.e. to the right) (Fig. 3.11b). The angle � subtended by the points 

of contact of the menisci on the center disk decreases as curvature decreases. The 

moment the menisci touch, they become unstable and merge into a single meniscus (see 

Appendix C for detail of numerical implication of this criterion). They leave the center 

disk so the pore will be filled with water (Fig. 3.11c). This series of events occurs during 

an imbibition as the curvature and capillary pressure are decreased (Fig. 3.11d). 
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Figure 3.11. Schematic of two menisci merging (Melrose event) in a uniformly wet 
porous medium. Three water-wet disks construct a pore and three throats, 
and originally the two menisci are located on the two adjacent throats. The 
angle � is defined by lines connecting the points of contact of the menisci on 
the center disk to the disk center. (a). Menisci move toward the pore by 
decreasing the curvature (b), until they touch (c) and the pore fills with 
water. This Melrose event happens during imbibition as the curvature is 
decreased (d). 

The same kind of event (merging two menisci) can occur by increasing curvature 

in a fractionally wet pore (Fig. 3.12). This is an important generalization of the Melrose 

event. In Fig. 3.12, we show a single pore made up of two water-wet disks and one oil-

wet disk. The pore has one uniformly wet throat and two fractionally wet throats. 

Originally two menisci are located at adjacent fractionally wet throats (Fig. 3.12a). This 

time they move toward the pore as curvature increases (Fig. 3.12b). The moment they 

touch, they get unstable and merge to a single meniscus, (Fig. 3.12c). These series of 

event occurs in drainage as the curvature and capillary pressure are increased (Fig. 

3.12d). 
 

α 
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Figure 3.12. Schematic of two menisci merging (Melrose event) in a fractionally wet 
porous medium, two water-wet disks and one oil-wet disk construct a pore 
and three throats where two of them are fractionally wet and one is 
uniformly wet. Originally two menisci located on the two adjacent throats 
which are fractionally wet (a). Menisci move toward the pore by increasing 
curvature (b), until they touch (c) and the pore fills with oil. This Melrose 
event happens during drainage as the curvature is increased (d). 

3.4.4. Simulation 

In order to simulate drainage and imbibition, we apply the criteria developed 

above to each pore throat and pore body in the domain. The network of pore throats and 

pore bodies is extracted from the geometry and position of the grains within the domain. 

The main difference between our grain-based simulation and traditional pore network 

simulation is the development of the grain-based and mechanistic criteria. As a result, our 

model is independent of the approach of dividing pore space into the pore bodies and 

pore throats. Pore space can be divided into a network of pore bodies and pore throats by 

any approach (e.g. Delaunay tessellation [38, 42], Voronoi tessellation [103, 105], and 

medial axis [130, 154] methods). The pore network in our model functions as a tool to 

track the position of the menisci within the pore space, but all pore-filling criteria are 
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based on the grains position and geometry. For instance, two menisci which are not 

located in the same pore (e.g. they are located in two neighboring pores), still can merge 

if they touch each other on a disk. The disk (grain) should be common between two 

throats that hold the two menisci. When the two menisci touch; Melrose event occurs and 

both pores will be filled by invading fluid.  

We simulate the menisci motion using the invasion percolation algorithm, 

changing curvature in small increments then computing the stable meniscus locations in 

all pores. At any given curvature (capillary pressure) all pores that are connected to the 

inlet (via invading fluid) will be in list of candidates for invasion. We check the candidate 

pores for criteria of invasion (Melrose or Haines criteria). If a candidate meets the criteria 

of invasion and it also connected to the outlet, we invade the candidate and add the 

neighboring pores to list of candidates. We continue until no candidate remains in the list. 

Candidates that are not connected to the outlet are labeled “trapped” and removed from 

further consideration of events. We increase or decrease the curvature incrementally and 

repeat the procedure above. 

3.5. RESULTS 

Result of simulating fluid configuration within a porous medium is discussed in 

detail in Appendix D. In this section, we focus on the result for drainage and imbibition 

for a fractionally wet porous medium. Fig. 3.13 shows the imbibition and drainage curves 

for a porous medium with 50% of disks are oil-wet. The porous medium is composed of 

500 equal size disks (excluding membrane disks). For this and subsequent figures, the 

curvature is dimensionless such that a curvature of 2 corresponds to the curvature of the 

disks surface. The radii of the disks are normalized to have value of unity. Initially the 

porous medium was filled with oil (Fig. 3.13, point P0), so the first process is primary 

imbibition where the water phase imbibes to the porous medium until residual oil phase 
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saturation. Then the drainage starts from imbibition end point (Fig. 3.13, point P1) with 

increasing capillary pressure and decreasing water saturation. Finally, the secondary 

imbibition starts from drainage endpoint (Fig. 3.13, point P2) and proceeds to a new value 

of residual oil phase saturation (Fig. 3.13, point P3). The model allows seamless 

movements of interfaces and filling events even through the zero capillary pressure level. 

Both Haines and Melrose events can occur with a change in the capillary pressure. All 

menisci are tested for both types of events depending on their local circumstances. Thus, 

the critical curvature for local events is dynamic and cannot be pre-calculated. This is 

unlike traditional invasion percolation models of capillary displacement. 
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Figure 3.13. Imbibition and drainage curves for a 2D porous medium when 50% of its 
disks are oil-wet. The porous medium was filled with oil phase initially; 
first, the water phase pushes the oil out by decreasing capillary pressure 
(primary imbibition), second the oil phase drains the water out of the porous 
medium by increasing capillary pressure (drainage), and finally the water 
phase pushes into the porous medium again and replaces the oil phase 
(secondary imbibition). In all of three curves presented in this figure, the 
curvature ranges from positive to negative value and crosses over the zero 
curvature. All of these three curves were produced from the same code. The 
difference is just starting and ending applied curvature. 



 77

Fig. 3.14 shows the fluid configuration corresponding to point (P2) at the drainage 

curve in Fig. 3.13. One can see the water trapped inside the porous medium in 

disconnected blobs. The region outlined in cyan shows a shell of water-wet grains in 

which a blob of water phase is trapped, the region outlined in dark red shows an outer 

shell of oil-wet grains around the water-wet shell. This pattern is characteristic of trapped 

water in this class of porous media. From the figure, it can be observed that the water 

phase trapped in the cluster of water-wet grains surrounded by oil-wet grains. 
 

 

Figure 3.14. Schematic of drainage end point for the porous medium with 50% of disks 
are oil-wet (the same porous medium as Fig. 3.13). The blue color represent 
the trapped water phase and the white color is the oil phase. The dark brown 
disks are oil-wet disks and the yellow disks are the water-wet disks. The 
region outlined in cyan shows a shell of water-wet grains in which a blob of 
water phase is trapped, the region outlined in dark red shows an outer shell 
of oil-wet grains around the water-wet shell. This pattern is characteristic of 
trapped water in this class of porous media. 

Our modeling approach considers both Haines and Melrose events on imbibition 

and drainage, as it is necessary for mixed wet or fractionally wet media. This gives the 
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model an inherent robustness in the sense that all grains, throats, and pore bodies are 

considered equivalent, just with a different contact angle for each grain. This robustness 

can be seen by considering a 25% oil-wet medium, and the equivalent 75% oil-wet 

medium in which all of the oil-wet grains are made water-wet and vice-versa. By 

reversing the wettability of each grain, the capillary pressure curve should also be 

reversed. Fig. 3.15a shows the 25% oil-wet capillary pressure curve obtained with the 

model, and Fig. 3.15b shows the 75% oil-wet capillary pressure curve. The symmetry is 

evident, as the drainage in the 25% oil-wet medium is identical to the imbibition in the 

75% water-wet medium. This shows that the model is performing as expected. Note that 

this symmetry is only seen if each grain’s wettability is reversed. If the position of the 

grains is different, or the pattern of the oil-wet grains is different, the model will show 

slightly different capillary pressure curves. 

We emphasize that by checking Haines and Melrose criteria for all pores, the 

algorithm has generalized the notion of simulating drainage and imbibition. The very 

same code is used for all paths shown in Fig. 3.15; the only difference inside the code 

between drainage and imbibition is the sign of the increment in curvature. In contrast, 

traditional pore network models have algorithms specific to drainage and different 

algorithms for imbibition; only the machinery of invasion percolation is common to both. 

Applied to uniformly wet media, our algorithm correctly finds only Haines events during 

drainage and only Melrose events during imbibition. 
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(a)                                                             (b)  

Figure 3.15. (a) Primary imbibition (PI), drainage (D) and secondary imbibition (SI) 
curves for a porous medium with 25% oil-wet disks. (b) Primary drainage 
(PD), imbibition (I) and secondary drainage (SD) curves for a porous 
medium with 75% oil-wet disks. The curves on the Figs. 3.15a and 3.15b are 
vertically symmetric, so if the Fig. 3.15b rotates 180°, the curve will be 
match with curves on Fig. 3.15a. 

We can now use the model to study how the drainage and imbibition curves vary 

with the change of oil-wet fraction. Fig. 3.16 shows the primary drainage curves for 

porous media with different fraction of oil-wet disks. As before, the oil-wet disks have a 

contact angle of 180° and the water-wet disks have a contact angle of 0o. As expected, 

with increasing oil-wet fraction in the media, the drainage curves move to lower capillary 

pressures. More interestingly, the movement is not linear. Small (10%, 20%) percentages 

of the oil-wet fraction do not significantly change the position of the drainage curve from 

the complete water-wet case. Large changes in the curve are only seen once a threshold 

of approximately 40% oil-wet grains is achieved. Likewise, when the medium is 

primarily oil-wet (> 80%), the changes in the drainage curve are minor.  
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Figure 3.16. Comparison between primary drainage curves for the porous media with 
different fractions of oil-wet (θοw = 180o) disks distributed randomly among 
water-wet (θww= 0o) disks. The porous media was originally filled with 
water. The oil phase pushes the water phase out as the capillary pressure 
(curvature) increases. As the fraction of oil-wet disks within the porous 
medium increases, the curvature which the oil phase percolates through the 
porous medium decreases. 

Fig. 3.17 shows the model results for the primary imbibition curves for porous 

media with different fraction of oil-wet disks. Again, the curves tend to lower capillary 

pressures with increasing oil-wet fraction. Also, the change in capillary pressure is minor 

for the first 20-30% of oil-wet grains. The change is large for oil-wet percentages around 

50%, and the change is small when the oil-wet fraction is greater than 70-80%. 
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Figure 3.17. Comparison between primary imbibition curves for the porous media with 
different fractions of oil-wet disks; the contact angles on water-wet and oil-
wet disks are θww= 0o and θοw = 180o, respectively. The porous media was 
originally filled with oil. The water phase pushes the oil phase out as the 
capillary pressure (curvature) decreases. As the fraction of oil-wet disks 
within porous medium increases, the curvature which the water phase 
percolates through porous medium decreases. 

3.6. MODEL VALIDATION 

Ashouripashaki [14] performed laboratory experiments to obtain air/water and 

octane/water pressure-saturation curves for primary drainage, and primary imbibition into 

fractionally wet sand packs. The primary imbibition was performed only on water/air 

system. Water-wet sands (grain size d50 = 0.35mm) was used as the water-wet grains; the 

oil-wet grains were made by tumbling the clean sand in a 5% OTS (octatrichlorosilane) in 

ethanol solution for 5 hours. After tumbling, the sand grains were rinsed in ethanol 5-6 
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times to remove the excess OTS, followed by air drying the sand. Fractionally wet packs 

were made by mixing prescribed proportions of the water-wet and oil-wet grains. 

The experiments were performed in 60 cm long columns (2.54 cm inner 

diameter), which were filled with the fractionally wet sand. The columns consisted of 

separate 3 and 1 cm long sections of polycarbonate tubing that were held together with 

polyolefin shrink tubing. For drainage, the column was filled from below with water and 

flushed for 1 hour to remove entrapped air. Primary drainage was then performed by 

attaching a constant head tank to the outlet at the bottom of the column, and air (or 

octane) was allowed to enter the top at atmospheric pressure. Primary imbibition starts 

with an air-dry column, and the attachment of the constant head tank at the bottom of the 

column. For imbibition, the height of the constant tank was chosen such that the water 

would rise roughly halfway through the column. Each column was allowed to equilibrate 

for 1 week. After this, the capillary pressure in each section was obtained assuming 

capillary gravity equilibrium. The water content was obtained by sectioning the column 

and obtaining the water saturation through the section’s wet and dry weight. 

Fig. 3.18a shows the measured P-S curves (pressure saturation curves) for 

primary drainage for 5 different sands of varying oil-wet fraction. The primary drainage 

measured for octane/water system. The drainage curves move monotonically lower with 

increasing oil-wet fraction. We simulate the primary drainage for a media with the same 

fraction of oil-wet grains as experimental data (e.g. 0, 25%, 50%, etc.). We multiply the 

dimensionless curvature by the known interfacial tension and divide by grain size to 

obtain the capillary pressure in Pascal for simulation results. Fig. 3.18b shows the 

simulation results for 2D fractionally wet porous media. The trend with increasing oil-

wet fraction and the overall capillary pressure match between experimental data and 

simulation results are very good. The simulation prediction tends to be flatter than the 
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experiments and this is likely due to the fact that it is a two-dimensional media in contrast 

with the 3D experimental media 
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Figure 3.18. (a) Measured octane/water drainage curve for the fractionally wet media. 
The primary drainage curves move monotonically lower with increasing oil-
wet fraction. (b) Shows the simulation result for drainage of fractionally wet 
media. The contact angles on water-wet and oil-wet disks are θww= 0o and 
θοw = 180o, respectively. For the model, we multiply the curvature by the 
known interfacial tension and divide by the grains radii to obtain the 
capillary pressure in Pascal. 

Fig. 3.19a shows the measured P-S curves for primary imbibition for 5 different 

sands of varying oil-wet fraction. The primary imbibition was measured for air/water 

system. The imbibition curves move monotonically lower with increasing oil-wet 

fraction. We simulate the imbibition for a medium with the same fraction of oil-wet 

grains as experimental data. We multiply the dimensionless curvature by the known 

interfacial tension and divide by grain radii to obtain the capillary pressure in Pascal for 

simulation results. Fig. 3.19b shows the simulation results for 2D fractionally wet porous 

media. 
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Figure 3.19. (a) Measured air/water imbibition curve for the fractionally wet media. The 
primary imbibition curves move monotonically lower with increasing oil-
wet fraction. (b) Shows the simulation result for imbibition of fractionally 
wet media. The contact angles on water-wet and oil-wet disks are θww= 0o 
and θοw = 180o, respectively. For the model, we multiply the curvature by 
the known interfacial tension and divide by the grain radii to obtain the 
capillary pressure in Pascal. 
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Figure 3.20. Water/air drainage curves for the fractionally wet media. Primary drainage 
curves do not show much change with changing oil-wet fraction. 

Fig. 3.20 shows the measured P-S curves for primary drainage for 5 different 

sands of varying oil-wet fraction. The primary drainage measured for air/water system. 

Unlike the primary drainage in octane/water system, the drainage curve is not sensitive to 

the fraction of oil-wet grain within the medium. In the drainage experiment data for 

air/water system, there is no distinct difference between applied capillary pressures in 

which the air breakthrough the porous medium. 

3.7. DISCUSSION 

The model developed in this paper consists of 2D disks as it is the simplest to 

observe the actual mechanics of the menisci movement. Clearly, the trapped phases will 

change in a 3D rather than a 2D model. Still there are many parallels between the P-S 

curves obtained from this 2D model and those obtained from experiments in 3D porous 

media.  
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The most obvious parallels are seen between the experimental data for drainage 

curves in octane/water system (Fig. 3.18a) and simulation results for primary drainage of 

fractionally wet media (Fig. 3.18b and Fig. 3.16). The capillary pressure corresponding to 

the percolation threshold decreases monotonically in all of those figures. When the 

capillary pressure is increased, the water saturations go from near saturated to near 

completely unsaturated at a specific capillary pressure; this capillary pressure correspond 

to the percolation threshold. The invading fluid breaks through the porous medium when 

the capillary pressure reaches percolation threshold value. The percolation threshold 

changes nonlinearly with fraction of oil-wet grains in both experimental data and 

simulation results. Looking at the model results (Fig. 3.16), starting from 0% oil-wet 

fraction, the transition capillary pressure (percolation threshold) decreases only slightly 

up to about 40% oil-wet fraction; between 40% and 60% oil-wet fraction there is a large 

decrease in the transition capillary pressure; finally between 60% and 100% the transition 

capillary pressure decreases only slightly. In experimental data (Fig. 3.18a), a moderate 

change of the transition capillary pressure between 0% and 25% oil-wet fraction; a 

moderate change of the transition capillary pressure between 25% and 50% oil-wet 

fraction; a slight change between 50% and 75%, and finally a moderate change between 

75% and 100%. 

Despite this difference between experimental data and simulation result, the 

overall match is satisfactory. For instance, in both experimental data and simulation 

result, all of drainage curve (except 100% oil-wet) located above zero capillary pressure. 

In both experimental measurement and simulation results, small portion of the drainage 

curves for the fully oil-wet (100% oil-wet) medium locate below zero capillary pressure 

and most of the curves locate above the zero capillary pressure. 
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In the imbibition curves, Figs. 3.17 (model) and 3.19a (experiment), the transition 

capillary pressure (percolation threshold) decreases monotonically with increasing oil-

wet fraction in both figures. More interestingly, the transition capillary pressure does not 

change linearly with oil-wet fraction in either figure. Looking at the model results (Fig. 

3.17), starting from 0% oil-wet fraction, the transition capillary pressure decreases only 

slightly up to about 40% oil-wet fraction; between 40% and 60% oil-wet fraction there is 

a large decrease in the transition capillary pressure; finally between 60% and 100% the 

transition capillary pressure decreases only slightly. Looking at the experimental results 

(Fig. 3.19a), the same pattern is observed: a slight change of the transition capillary 

pressure between 0% and 25% oil-wet fraction; a large change between 25% and 75%, 

and finally a slight change between 75% and 100%.  

The simplest explanation is in terms of percolating clusters of like wettability 

grains. The model suggests that the capillary pressure curve shows minor changes until 

40% of the grains are oil-wet. Above this threshold, there are enough oil-wet grains to 

percolate across the model, allowing a rapid change in the capillary pressure curve. The 

experimental data are not obtained for as many fractions as the model, so the exact 

percentage of oil-wet grains needed to percolate is unknown (it is somewhere between 

25% and 50%). It is likely that the 2D model and 3D experiments would lead to different 

percolating fractions, but the general nature of the curves would be similar.  
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Figure 3.21. Comparison between primary drainage curves for porous media with 
different fraction of oil-wet (θοw = 50o) disks distributed randomly among 
water-wet (θww= 0o) disks. If the oil-wet disks are not perfectly hydrophobic, 
as commonly occurs in experiments when the grains are treated chemically, 
the change in the capillary pressure curve is less dramatic. 

For the drainage curves of air/water system, the match between experimental data 

and model results is not as straightforward, mainly because there is no observed change 

in the transition capillary pressure for the experiments. Similar experimental behavior 

was observed for water/air systems with the oil-wet grains being silanized versions of the 

water-wet grains [19, 204]. In this case, it is most likely a result of the contact angle not 

being 180° for drainage from the oil-wet grains. Ustohal et al. [204] estimates a receding 

(draining) contact angle of 50° for silanized sand, far from the 180° that the model results 

in Fig. 3.16 show. The model is robust enough to handle different contact angles in 

calculating the movement of the menisci. Fig. 3.21 shows the model results for drainage 
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from fractionally wet media, where the contact angle of the water-wet grains is 0° and the 

contact angle of the oil-wet grains is 50°. As in Fig. 3.16, the transition capillary pressure 

decreases with increasing oil-wet fraction, but the change in capillary pressure is much 

less. The fit with the experiments in Fig. 3.20 is better, suggesting that careful, 

independent measurement of contact angle is necessary for evaluating behavior of 

fractionally wet media in air/water system. 

3.8. SUMMARY 

We developed a grain-based, mechanistic model for an oil/water displacement 

under capillary control in the fractionally wet media. The model invokes the two types of 

irreversible pore-level events: Haines jumps (single meniscus in a throat) and Melrose 

mergers (two menisci on adjacent throats merging). We implemented and illustrated the 

model in the two dimensional media, solving analytically for stable configuration of the 

meniscus held between pairs of grains of arbitrary and unequal contact angle. We carried 

out drainage and imbibition simulations that yield a priori predictions of the grain-scale 

configurations of water/oil interfaces (menisci) within the fractionally wet porous 

medium.  

We used this grain-based and mechanistic model to predict macroscopic 

properties (e.g. P-S curve for imbibition and drainage) of a fractionally wet porous 

medium that are qualitatively in agreement with experimental data. The experimental 

data and simulation results show a nonlinear behavior between the position of P-S curves 

and fraction of oil-wet grains.  
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CHAPTER 4: UNIFIED MODEL OF DRAINAGE AND IMBIBITION 
IN 3D FRACTIONALLY WET POROUS MEDIA 

4.1. ABSTRACT 

We develop a grain-based model for capillary controlled displacement within 3D 

fractionally wet porous media. The model is based on a novel local calculation of the 

position of stable interfaces in contact with multiple grains. Each grain can have a 

different, arbitrary contact angle with the interface. The interface is assumed to be locally 

spherical for menisci separating the non-wetting and wetting phases. The interfaces 

between pairs of grains (pendular rings) are assumed toroidal. Because the calculation of 

interface position is entirely local (grain-based), it provides a single, generalized criterion 

that applies to drainage as well as to imbibition events. This generality is essential for 

modeling displacements in fractionally wet media. Pore filling occurs when an interface 

becomes unstable in a pore throat (analogous to Haines condition for drainage in a 

uniformly wet throat), or when two or more interfaces come into contact and merge to 

form a single interface (the Melrose condition for imbibition). 

The concept of tracking the fluid/fluid interface on each grain (i.e. grain-based 

modeling) allows the model to be independent of the definition of pores. As a result, the 

pore space can be divided to pores and throats by any approach (e.g. Delaunay 

tessellation, Voronoi tessellation, and medial axis methods). 

The analytical solution for stable interface locations generalizes the Melrose and 

Haines criteria previously validated for pore-level imbibition and drainage events in 

uniformly wet media. The results yield a set of purely geometric, mechanistic criteria for 

interface movement in 3D porous media when each grain has arbitrary contact angle. 
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We validate our model by comparing the simulation result with experimental data 

on fractionally wet porous media prepared by mixing oil-wet grains with water-wet 

grains. In both experimental and simulation results, the drainage/imbibition curves shifts 

to lower capillary pressure with increasing fraction of oil-wet grains.  

4.2. INTRODUCTION 

The fundamental event in a grain-based approach to capillary controlled fluid 

displacement is the filling of an individual pore, just as in traditional pore network 

models. In this work, we establish criteria for such events in terms of grain locations and 

contact angles, rather than in terms of the geometry of idealized pores and throats. For 

invasion of a pore by a single meniscus passing through a throat, the grain-based and pore 

network models arrive at essentially the same result, namely the criterion for a Haines 

jump. For invasion of a pore by the merger of two (or more) interfaces, the grain-based 

approach offers a significant advantage. The correct geometry and location of pendular 

rings (at contacts between pairs of grains) and of menisci (between three or more grains) 

are readily determined in a grain-based model. We are unaware of any mechanistic way 

to account for these phenomena in a traditional pore network model. As a result, in 

traditional network models, ad hoc parameters and rules were used to describe invasion 

of a pore by the merger of two (or more) interfaces [27-29, 158, 159]. Haines jumps and 

mergers of two (or more) interfaces both occur during any cycle of drainage or imbibition 

in a fractionally wet medium. Consequently, using a grain-based approach for modeling 

of fluid flow within fractionally wet media seems natural. 

In our grain-based model we are looking for the stable position of menisci on the 

grains. As a result, our model is independent of the approach of dividing pore space into 

the pore bodies and pore throats. The pore space can be divided into a network of pore 
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bodies and pore throats by any approach (e.g. Delaunay tessellation [38, 42], Voronoi 

tessellation [103, 105], and medial axis [130, 154] methods). The pore network in our 

model functions as tool to track the position of the menisci within the pore space, but all 

pore-filling criteria are developed based on the grains. For instance, two menisci which 

are not located in the same pore (e.g. they are located in two neighboring pores), still can 

merge if they touch each other on a common grain. The common grain should be 

common between two throats that hold the two menisci. When the two menisci touch, 

both pores will be filled by invading fluid. 

We conclude that a grain-based approach is essential for obtaining a mechanistic 

understanding of fluid displacements in fractionally wet media. This assertion is 

supported by the successful prediction of imbibition curves in uniformly wet media [80]  

4.3. MODEL  

4.3.1. Model of Pore Space 

To study the movement in menisci through 3D fractionally wet porous media, we 

use a dense random packing of equal spheres generated by cooperative rearrangement 

algorithm (see Chapter 1 for more details; see also ref. [191]). The sphere pack is 

composed of 7000 equal size spheres (Fig. 4.1a). Each sphere can be made either water-

wet or oil-wet. 

We use the approach of Bryant et al. [42] to obtain simple network models from 

the sphere pack. We use a Delaunay tessellation of the spheres centers to subdivide the 

pore space into pore bodies and pore throats. The tessellation yields tetrahedra (Fig. 

4.1b). Each tetrahedron has four faces and each face is the narrowest local path between 

outside and inside of the tetrahedron. Each face of a tetrahedron therefore corresponds to 

a pore throat. The space inside each tetrahedron (excluding the grain’s portion) is the 



 93

pore body (Fig. 4.2). Each tetrahedron has four faces. Consequently, each pore has four 

throats and is connected to four neighboring pores through its throats. 
 

Delaunay 
tessellation

(a)                                         (b)

Face 1:Entry Face

Face 4

 

Figure 4.1. (a) Schematic of a dense random packing of equal spheres. The face 1 is used 
as the entry face during simulation. The exit face(s) can be only face 4 or all 
faces other than face 1. (b) Schematic of network of tetrahedra extracted 
from the sphere pack (Fig. 4.1a). The pore space within the sphere pack can 
be divided into pore bodies and pore throats using Delaunay tessellation. 
The network of pore bodies and pore throats is extracted from network of 
tetrahedra. 

4.3.2. Assumptions 

In this chapter, we do not take into account the existence of thin wetting films on 

the surface of grains. Also, the interface is assumed to be locally spherical for menisci 

separating the non-wetting and wetting phases. The surface of minimum energy 

corresponds to the surface with constant curvature, and sphere is the simplest surface 

with constant curvature. The interfaces between pairs of grains (pendular rings) are 
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assumed to be toroidal. Though the toroid does not have constant curvature, Gladkikh et. 

al [78] shows that the toroid model is a good approximation of the nodoid (model of 

fluid/fluid interface with surface of constant curvature) when calculating the properties of 

pendular rings relevant to our application (e.g. volume, filling angle). Here, we do not 

explicitly solve for the minimum surface energy, but developed our model based on the 

finding from studies regarding the stability of a fluid/fluid interface within the porous 

media [87, 88, 144]. However, Deng and Lake [62] used minimization of free energy to 

calculate fluid distribution of two immiscible phases in a porous medium. 

4.3.3. Terminology 

Pore: one pore (Delaunay cell) is constructed from four grains (spheres). In Fig. 

4.2, the pore body is the space inside tetrahedron O1O2O3O4 (exclude the grains portion). 

The centers of grains are the vertices of the tetrahedron (Delaunay cell). 

O2

O4

O3

O1

 

Figure 4.2. Schematic of a pore (Delaunay cell) in a random packing of equal spheres.  
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Throat: Three grains in a Delaunay cell define a pore throat. Thus each face of a 

Delaunay cell (pore) corresponds to a pore throat. A throat plane is a plane connecting the 

center of grains that define the throat. For instance, plane 1 2 3O O O  in Fig. 4.2 is a throat 

plane. 

Edge: Each edge of the tetrahedron (Fig. 4.2) corresponds to a grain-grain contact 

(if the spheres touch) or a gap between grains (if the spheres do not touch). Each edge 

connects the centers of two grains (spheres).For instance, line 1 3O O  and 1 2O O  are two 

edges of a pore. The grain 1 and grain 3 are in a grain-grain contact, while there is a gap 

between grain 1 and grain 2. 

Nomenclature: We use a grain-based nomenclature through the text for referring 

to pores, throats and edges. For instance, pore 1234 in Fig. 4.2 is defined by grain 1, grain 

2, grain 3 and grain 4. In the same way throat 123 is composed of grain 1, grain 2 and 

grain 3. 

There are two morphologies for fluid/fluid interfaces within a porous medium: 

menisci and pendular rings. 

Meniscus: we model a meniscus with the spherical cap. Fig. 4.3 shows a throat 

and a meniscus located on the throat. The throat is constructed by three grains (grain 1, 

grain 2, and grain 3). For a meniscus with the constant curvature, the geometry of the 

meniscus is defined by the center of the meniscus (O), the radius of meniscus, and the 

intersections with the solid surface. The intersections of the meniscus with the grains are 

forced to be at the contact angle of each surface. In Fig. 4.3, the meniscus is the cap part 

of yellow sphere. The radius and the center of the yellow sphere and the meniscus are the 

same. However, the meniscus is limited to inside of the tetrahedron OO1O2O3, where the 

vertices of the tetrahedron are the centers of the meniscus and the three grains, 

respectively. At zero contact angle, the meniscus is tangent to each of the three grains. 



 96

O2

O3

O1

O

 

Figure 4.3. Schematic of a meniscus (brown triangular patch) located on three grains 
(spheres) with zero contact angles (fully water-wet). O indicates the center 
of the meniscus and O1, O2, and O3 indicate centers of spheres constructing 
the throat. The meniscus is the cap part of the yellow sphere, limited to 
inside of the tetrahedron OO1O2O3, where the vertices of the tetrahedron are 
the centers of the meniscus and three grains. 

Filling angle of a meniscus: In Fig. 4.4, the filling angle of meniscus (ψ2) on 

grain 2 is the angle between the throat plane 1 2 3O O O  and the line connecting the center 

of grain 2 (O2) to the contact point (P2). Point P2 is the point where the meniscus touches 

grain 2. 
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O2

O3

O1

P2

ψ2  

Figure 4.4. Schematic of a meniscus (yellow cap) located on three grains (spheres) with 
zero contact angles. O1, O2, and O3 indicate centers of the grains 
constructing the throat. Point P2 is the point where the meniscus touches 
grain 2. The filling angle of meniscus (ψ2) on grain 2 is the angle between 
line 2 2O P  and plane 1 2 3O O O . 

Pendular ring/ liquid bridge: the edges of Delaunay tetrahedra within a sphere 

pack can hold pendular rings and liquid bridges of wetting phase, if both grains 

associated with the edge have the same wettability. If the edge has a grain-grain contact, 

it holds the wetting phase as a pendular ring. An edge with a gap between its grains holds 

the wetting phase as a liquid bridge. The main difference between pendular rings and 

liquid bridges is stability of the pendular rings and liquid bridges. For instance, the 

pendular rings are always stable on the water-wet edges at positive capillary pressure, 

while the liquid bridges could be ruptured at high capillary pressure (For more detail, see 

Appendix A). The morphology of pendular rings held in the crevices associated with 

grain-grain contacts is qualitatively similar to the morphology of liquid bridges held on 

the gap between two grains. In this chapter, for simplicity we will use the terms "pendular 

ring" to refer to any of these morphologies. 
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Fig. 4.5 shows the schematic of a water-wet edge holding a pendular ring of the 

water phase. The contact angles between the water phase and grains are zero degrees. 

Pendular rings between pairs of grains are assumed toroidal. Note, only edges with the 

same wettability grains can hold pendular rings. For instance, a water-wet edge composed 

of two water-wet grains can hold a pendular ring of the water phase, while a oil-wet edge 

composed of two oil-wet grains can hold a pendular ring of the oil phase. A fractionally 

wet edge, where one of the grains is oil-wet (contact angle above 90o) and the other grain 

is water-wet (contact angle below 90o) cannot hold any pendular ring. 
 

O2O1

ϕ1 ϕ2

P1P2

 

Figure 4.5. Schematic of a water-wet edge holding a pendular ring of the water phase. O1 
and O2 indicate centers of grains constructing the edge. Points P1 and P2 are 
the points where the pendular rings touches grain 1 and grain 2 respectively. 
The contact angle between the water phase and grains is zero degrees. ϕ1 
and ϕ 2 are the filling angles of the pendular ring on grain 1 and grain 2 
respectively. 

Filling angle of pendular ring: The pendular ring filling angle ϕ is the angle 

between the line connecting the centers of the two grains defining the edge (line 1 2O O  in 

Fig. 4.5) and the line connecting a grain center and any point at which the pendular ring 

touches the grain (line 1 1O P and 2 2O P  in Fig. 4.5). 

Capillary pressure/ curvature: Because the solid surfaces in a fractionally wet 

porous medium have different wettability, the terms "wetting" and "non-wetting" phase 
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are ambiguous. Hence we define capillary pressure to be the pressure of the non-aqueous 

phase (oil) minus pressure of the aqueous phase (water or brine). 

  = −c o wP P P .                                                                                         (4.1) 

This macroscopic capillary pressure is proportional to the curvature of the microscopic 

interfaces through the Young Laplace equation, 

  
1 2

1 1 2
⎛ ⎞

= + =⎜ ⎟
⎝ ⎠

c ow owP C
r r

σ σ ,                                                                   (4.2) 

where r1, r2 are radii of curvature and C is the mean curvature. The curvature is 

essentially a scaled capillary pressure. Thus, when the pressure of oil phase exceeds the 

water phase pressure, the capillary pressure and curvature are positive and consequently 

the interface curves toward the oil phase, and when the capillary pressure and curvature 

are negative the interface curves toward the water phase. These curved interfaces are 

referred to as menisci. We report the value of the curvature as dimensionless curvature by 

normalizing the grains radii to be unity. 

Drainage/ imbibition: Along these lines and following Morrow [149], we define 

drainage to be when the water saturation is decreasing, and imbibition to be when the 

water saturation is increasing. 

4.3.4. Grain-Based Mechanistic Criteria for Menisci Movement 

The essential features of a grain-based approach are (i) the locations of the grains 

and (ii) the wettability (contact angle) of each grain. The former data allow an 

unambiguous identification of pores and throats, without recourse to sampling a 

distribution or specifying a shape. The latter data lead to criteria for stable configurations 

of the fluid /fluid interfaces (i.e. menisci and pendular rings).  

In fractionally wet porous media, a fluid/fluid interface can become unstable if 

any of the criteria below is met. 
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1. The curvature of meniscus exceeds the critical curvature for the throat holding 

the meniscus (corresponds to Haines criterion for drainage in uniformly wet throat). 

2. Two menisci merge and become a single meniscus (analogous to Haines 

criterion for imbibition in uniformly wet pore). 

3. A meniscus touches a pendular ring inside a pore (analogous to Melrose 

criterion for imbibition in uniformly wet pore).  

4. Two pendular rings touch each other inside a pore (corresponds to Melrose 

criterion for coalescence of pendular rings).  

5. A meniscus associated with three grains touches a fourth grain located in front 

of the meniscus (meniscus-4th grain criterion).  

Generalized Haines Drainage Criterion 

Haines [87] defines the drainage critical curvature of a throat as the curvature of 

the biggest sphere that can pass through the opening of the throat. In the case of a 

strongly water-wet medium (i.e. contact angles of the grains equal to zero degrees), when 

the radius of the meniscus becomes smaller than the inscribed radius of the throat, the 

throat cannot hold the meniscus and the meniscus passes through the throat. However, 

when the contact angle between meniscus and grains which define the throat is non zero, 

the above rule cannot be applied. We develop a general rule for the drainage critical 

curvature of a throat with arbitrary contact angle on each grain defining the throat.  

For a throat composed of three grains with arbitrary contact angle, the drainage 

critical curvature is given by the curvature of the meniscus when the center of the 

meniscus (cf. Fig. 4.3) is located on the throat plane (cf. Fig. 4.2). As curvature increases, 

the center of the meniscus approaches the throat plane. When the center of the meniscus 

reaches the throat plane, the throat cannot hold the meniscus after any further increment 

in curvature. Thus, the curvature at which the meniscus center reaches the throat plane is 
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identified as the critical curvature for passing through the throat. This criterion reduces to 

the Haines criterion for drainage in the case that all three grains make contact angle of 

zero with the meniscus. Thus, we refer to a generalized Haines drainage criterion. We 

develop this criterion based on the analytical solution for the position and stability of a 

meniscus on a throat with arbitrary contact angle. 

Here, the focus is more concept and demonstration of how this criterion works. 

For illustration we examine the drainage critical curvature on a 2D throat. A 2D throat is 

composed of two disks, and the 2D meniscus is part of a circle (Fig. 4.6 and Fig. 4.7). 

Fig. 4.6a shows the meniscus (blue curve) located on a water-wet throat. The curvature of 

the meniscus is smaller than the drainage critical curvature for that throat. As a result, the 

center of the meniscus is located above line 
1 2O O , which connects the centers of two 

disks. In Fig. 4.6b, the curvature of meniscus equals the drainage critical curvature. At 

this curvature, the center of the meniscus is positioned on line 
1 2O O  at point O, and at 

any larger curvature there is no stable location for the meniscus. 

.
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(a)                                                             (b)
 

Figure 4.6. Schematic of meniscus (blue curve) located on two disks with zero contact 
angles (fully water-wet). O indicates the center of the meniscus and O1 and 
O2 indicate the center of disks constructing the throat. a) Curvature of the 
meniscus is smaller than the drainage critical curvature for the throat. (b) 
Curvature of the meniscus equals the drainage critical curvature. O (center 
of meniscus) is located on line 

1 2O O . 
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In Fig. 4.7, the throat which holds the meniscus is fractionally wet. In Fig. 4.7a, the 

curvature of meniscus is smaller than the drainage critical curvature for that throat. As a 

result, the center of meniscus is located above line 
1 2O O , which connects the centers of 

two disks. In the Fig. 4.7b, the center of the meniscus is positioned on line 
1 2O O . Thus 

the curvature of the meniscus equals the drainage critical curvature.  
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Figure 4.7. Schematic of meniscus (blue curve) located on a fractionally wet throat. O 
indicates the center of the meniscus and O1 is the center of water-wet disk 
(contact angle=0o) and O2 is the center of oil-wet disk (contact angle=180o) 
the center of disks constructing the throat. (a) Curvature of the meniscus is 
smaller than the drainage critical curvature for the throat. (b) Curvature of 
the meniscus equals the drainage critical curvature. O (center of the 
meniscus) is located on line 

1 2O O . 

Similar criteria will be applied to a 3D throat; if the center of the meniscus is 

positioned on the throat plane, then the curvature of the meniscus equals the drainage 

critical curvature for that throat. Fig. 4.8a shows the meniscus (yellow cap) located on a 

water-wet throat. The curvature of meniscus is smaller than the drainage critical 

curvature for that throat. As a result, the center of meniscus stands above plane 

1 2 3O O O (throat plane). However, in Fig. 4.8b, the curvature of meniscus equals the 
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drainage critical curvature of the throat. Thus, the center of the meniscus (brown cap) is 

positioned on the plane
1 2 3O O O . 
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Figure 4.8. Schematic of a meniscus (yellow cap in (a), brown cap in (b)) located on three 
grains (spheres) with zero contact angles (fully water-wet). O indicates the 
center of the meniscus and O1, O2, and O3 indicate the center of spheres 
constructing the throat. (a) Curvature of the meniscus is smaller than the 
drainage critical curvature for the throat. (b) Curvature of the meniscus 
equals the drainage critical curvature of the throat. O (center of meniscus) is 
located on plane

1 2 3O O O . 

In Fig. 4.9 the throat which holds the meniscus is fractionally wet. In Fig. 4.9a, 

the curvature of the meniscus is smaller than the drainage critical curvature for that 

throat. As a result, the center of meniscus stands above plane
1 2 3O O O  (throat plane). The 

O1, O3 are the centers of water-wet grains and O2 is center of the oil-wet grain. In Fig. 

4.9b, the curvature of meniscus equals the drainage critical curvature. Thus, the center of 

the meniscus is positioned on the plane
1 2 3O O O . 
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Figure 4.9. Schematic of a meniscus (light brown cap in (a), brown hemisphere in (b)) 
located on a fractionally wet throat. O indicates the center of the meniscus 
and O1 and O3 is the center of water-wet grains (contact angle=0o) and O2 is 
the center of oil-wet grain (contact angle=180o). (a) Curvature of the 
meniscus is smaller than the drainage critical curvature for the throat. (b) 
Curvature of the meniscus equals the drainage critical curvature. O (center 
of meniscus) is located on the plane of

1 2 3O O O . 

Generalized Haines Imbibition Criterion  

Haines [87] defines imbibition critical curvature of a pore as the curvature of the 

biggest sphere that can be held inside a pore. In the case of a strongly water-wet medium 

(i.e. contact angle equal to zero degree), the imbibition critical curvature of the pore equal 

to curvature of the sphere inscribed in the pore. However, when the contact angle 

between menisci and grains which define the pore is non zero, the above rule cannot be 

applied. We develop a general rule for the imbibition critical curvature of a pore with 

arbitrary contact angle. 

We define the imbibition critical curvature of a pore as the curvature of a 

meniscus that results from merging two menisci located on two adjacent throats in a pore. 

The merging of two menisci occurs when centers of two menisci merge to the same point. 
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This criterion reduces to the Haines criterion for imbibition in the case that all four grains 

of the pore make contact angle of zero with the menisci. Thus, we call this a generalized 

Haines imbibition criterion. No direct analogy for Haines imbibition criterion exists in 

2D media. However, there is similarity between merging two menisci within 2D media 

(Melrose event, see Chapter 3 for more details) and merging two menisci within 3D 

media (generalized Haines imbibition criterion). Two menisci in a 2D pore are distinct, 

disconnected interfaces, and ignoring sub-pore-scale features of wetting films, the merger 

of two (or more) menisci is geometrically well defined and corresponds to a Melrose 

event. In contrast, two menisci in a 3D pore are connected, e.g. by an interface where 

wetting phase is held at a grain-grain contact. In the example of Fig. 4.10, the red and 

blue menisci are connected by the interface in the crevice between grains 2 and 3. The 

connecting interface has a different shape (toroidal) from the menisci (spherical), but the 

situation does not correspond to the notion of merging two previously disconnected 

interfaces. Consequently, merging two (or more) menisci in 3D cannot properly be called 

Melrose event. Nevertheless, a closely analogous geometric criterion can be deduced.  
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Figure 4.10. Schematic of two menisci located on two adjacent throats. The red meniscus 
sits on throat 123 and the blue meniscus sits on throat 234. All grains make 
zero contact angles with the two menisci. The menisci are connected by a 
wedge of wetting phase between grains 2 and 3. 

Fig. 4.10 shows a pore composed of four grains (1, 2, 3, and 4). Two menisci 

(blue and red) are located in two adjacent throats (throat 123 and throat 234). Throat 123 

is defined by grains (1, 2, and 3) and throat 234 is defined by grains (2, 3, and 4). The red 

meniscus sits on throat 123 and the blue meniscus sits on throat 234. All grains make 

zero contact angles with the two menisci. During imbibition, as the curvature decreases, 

the centers of these two menisci become closer to each other. Hence, the angle between 

plane A and plane B get smaller. Plane A connects the center of red meniscus and centers 

of grain 2 and 3. Plane B connects the center of blue meniscus and centers of grain 2 and 

3. In Fig. 4.10, the blue meniscus and red meniscus have different centers. As a result, the 

angle between plane A and plane B is non zero. We regard this as a stable configuration, 

analogous to Fig. 4.6a and Fig. 4.8a. 
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Figure 4.11 (a) Schematic of merging of two menisci located on two adjacent throats. The 
red meniscus sits on throat 123 and the blue meniscus sits on throat 234. All 
grains make zero contact angles with the two menisci. Throat 123 and throat 
234 share an edge composed of grain 2 and grain 3. (b) Plane A and plane B 
are on the same plane (the angle between plane A and plane B equal zero 
degree). The Haines imbibition critical curvature equals the curvature of this 
merged meniscus. 

As curvature decreases, centers of these two menisci get closer together, until the 

centers of the two menisci are located at the same point. When this occurs, plane A and 

plane B are the same. In other words, the angle between plane A and plane B equals zero 

(Fig. 4.11). Hence two menisci become the part of a single, spherical surface. Since in 

this example the contact angles are zero, this sphere is the inscribed sphere of the pore. 

The moment the menisci touch, they become unstable and merge into one meniscus. As a 

result, a generalized Haines imbibition event occurs and the pore will be filled with the 

invading phase. 

The main difference between our criterion developed above and criterion for 

imbibition developed by Haines is that in Haines development, a pore will imbibe if the 
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applied curvature is smaller than the curvature of the inscribed sphere. This criterion can 

be computed a priori from the pore geometry, independent of the number of menisci 

within the pore during displacement. In contrast, our generalized Haines imbibition 

criterion requires the merger of two menisci centers. Thus, if a pore has only one 

meniscus, it will not imbibe even if the curvature of the meniscus becomes smaller than 

the curvature of inscribed sphere of the pore. In other words, a pore must have at least 

two menisci located in its throats before it can be imbibed. During drainage or imbibition, 

the existence of two menisci on two adjacent throats belonging to a given pore is 

contingent on the particular sequence of local filling events. Consequently, our criterion 

for imbibition cannot be calculated a priori to the drainage/imbibition simulation. 

Melrose Criterion for Imbibition 

A Melrose event occurs when two or more separated interfaces come into contact 

and merge to form a single interface [144]. As discussed in the previous section, when 

two menisci merge to a single meniscus, we call the event a generalized Haines 

imbibition (Fig. 4.11). Note that two menisci located on adjacent throats are not separated 

interfaces, even though we model them as two separated spherical caps. Here we operate 

under the understanding that the only separated interfaces are the pendular rings. As a 

result, when a pendular ring touches a meniscus, or when two pendular rings touch each 

other (coalescence in a pore throat), then a Melrose event occurs. 

A pendular ring and a meniscus touch (Melrose event): 

Fig. 4.12 shows a schematic of a pore that holds a meniscus in one of its pore 

throats (throat 234). In addition it holds a pendular ring in one of its edges (edge 13) 

which is not associated with throat 234. A Melrose event occurs, when a meniscus 

touches a pendular ring. Previously Gladkikh [78] developed numerical implementation 

for Melrose criterion. According to his development, when the meniscus and the pendular 
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ring touch, then the summation of filling angles of pendular rings and meniscus is bigger 

than or equal to angle between edge 13 and its projection on the plane of throat 234 

(angle α in Fig. 4.13).  
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Figure 4.12. A meniscus (blue) does not touch a pendular ring (red) inside a pore; hence 
this is a stable configuration not satisfying the condition for a Melrose event. 
The pore is composed of four grains (1, 2, 3, and 4). The pendular ring (red) 
located on edge 13 composed of grain 1 and grain 3. The meniscus is 
located on throat 234 which is composed of three grains (2, 3, and 4). 

Fig. 4.13 shows a 2D slice by the plane ADN , which A is the center of grain 3 in 

Fig. 4.12, D is the center of grain 1 in Fig. 4.12 and N is the point, equidistant from the 

grain centers of throat 234. The grain 3 is common between edge 13 and throat 234. The 

pendular ring filling angle ϕ, is the angle between the line connecting the two grain 

centers of the egde1 ( AD in Fig. 4.13) and line connecting a center of grain 3 and the 

contact point where the pendular ring touches grain 3 (Pr in Fig. 4.13). The meniscus 

filling angle ψ� is the angle between line AN  (in Fig. 4.13) and line mAP . mAP  is a line 

which connect center of grain 3 to the contact point where meniscus touch grain 3 (Pm in 

Fig. 4.13).  
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Figure 4.13. A 2D slice through the plane AON ,which A is the center of grain 3 in Fig. 
4.12, D is the center of grain 1 in Fig. 4.12 and N is the point, equidistant 
from the grain centers of throat 234. The grain 3 is common between edge 
13 and throat 234. ϕ  is the pendular ring filling angle and ψ is the meniscus 
filling angle. The meniscus and pendular ring do not touch, as a result the 
angle α is greater than summation of angle ϕ and ψ. This figure is modified 
from the figure presented in Ref. [78]. 

The above argument is true only if point D (center of grain 1) is located in 

plane AON . In other words, plane AON  and AOD are the same plane. As we show 

next, this statement is not always true. Plane AOD  is a plan connecting the center of 

grain 1, the center of grain 3, and the center of the meniscus. Plane AON  is a plane 

connecting the center of the meniscus, the middle point of throat holding meniscus, and 

the center of grains common between the edge holding a pendular ring and the throat 
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holding a meniscus. Fig. 4.14 shows that the planes AON  (brown) and AOD  (green) 

are not the same and they make a nonzero angle with each other.  
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Figure 4.14. The edge holding pendular ring ( AD ) is not located on the AON  plane. 
Planes AON  (brown) and AOD  (green) are not in the same plane. They 
intersected with a nonzero angle with each other. A is the center of grain 3. 
Grain 3 is common between the edge holding a pendular ring (red) and the 
throat holding a meniscus (blue). D is the center of grain 1. O is the center 
of the meniscus. N is the point that is equidistant from the grain centers of 
the throat holding the meniscus.  

The assumption that planes AON  (brown) and AOD  (green) are the same 

leads to overestimating the curvature in which the Melrose event occurs. For instance, for 

a pore in Fig. 4.15, the Gladkikh development of the Melrose criterion predicts that the 

meniscus and the pendular ring touch at dimensionless curvature of 2.85 (Fig. 4.15a). 

However, Fig. 4.15a shows that the meniscus and the pendular ring do not touch at the 
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curvature predicted by the Gladkikh development of Melrose criterion. The meniscus and 

the pendular ring touch at the dimensionless curvature of 2.15 which is lower than the 

predicted curvature (Fig. 4.15b)  
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Figure 4.15. (a) A pendular ring (red) and a meniscus (blue) at the curvature of 2.85. The 
pendular ring and meniscus do not touch at this curvature. (b) A pendular 
ring (red) and a meniscus (blue) at curvature of 2.15. The pendular ring and 
meniscus touch at this curvature. The Gladkikh development of Melrose 
criterion predicts that the two interfaces touch at curvature of 2.85 which is 
an overestimate of the real critical curvature for the Melrose event. 

In order to develop a correct Melrose criterion, the mathematical implementation 

should apply in a plane. We choose plane AON  as reference plane (gray plane in Fig. 

4.16). We project the center of grain 1 (point D) on to the plane AON . The projection 

of the center of grain 1 (point D) on the plane AON  is point D/.  
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Figure 4.16. (a) Fluid configuration when a meniscus (blue) touch a pendular ring (red) 
inside a pore. The gray plane is the plane AON  which connects the middle 
of throat 234 and the center of the meniscus and the center of grain common 
between throat 234 and edge 13. The blue line connect the center of grain 3 
to the center of meniscus. The blue line passes through the touching point 
between the pendular ring and meniscus. The green line is the line normal to 
the gray plane ( AON ). (b) Demonstrate development of new Melrose 
criterion. AD  is the edge holding a pendular ring (red). /AA is the normal 
vector to plane AON , where A is the center of grain 3. D/ is the projection 
of the center of grain 1 (point D) on the plane AON . O is the center of the 
meniscus. N is the point, equidistant from the grain centers of the throat 
holding the meniscus. P is the point which the pendular ring and the 
meniscus touch each other on grain 3. ϕ  is the filling angle of the pendular 
ring �and ψ is the filling angle of the meniscus.   

The gray plane in Fig. 4.16 shows the plane AON . In the plane AON , line AO  

connects the center of grain 3 to the center of the meniscus, this line pass through the 

contact point between the meniscus and grain 3 (point P). As a result, the filling angle of 

the meniscus (ψ) is equal to angle between line AN  and line AO . The angle between line 

AN  and /AD is angle α in Fig. 4.16 and it can be calculated based on the coordinate of 

points A, N, and D/. The angle α is the angle between throat 234 and the projection of 

edge 13 on the plane AON . Now it is important to calculate the angle between line 
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AO  and line /AD  (angle ϕ/  ). Because, when the meniscus and the pendular ring touch 

each other on the grain 3, the angle α equals to summation of angle between line AN  and 

AO  (angle ψ) and angle between line AO  and line /AD  (angle ϕ/ ). In other words, the 

Melrose event occurs if the summation of ϕ / and ψ  is equal to α (the angle between line 

AN  and /AD ). 

The angle between line AO  and line /AD can be calculated by knowing the 

filling angle of the pendular ring (angle ϕ).  First we choose an arbitrary vector a  on line 

AD  (it can be vector with size equal to 1). Then, we decompose the vector a  to three 

principle vectors ( 1a , 2a  and 3a ) which 1a  lay on line AO , 3a lay on line /AA  ( /AA is a 

normal to the plane AON ), and 2a  lay on the line perpendicular to both AO  and /AA . 

The detail is shown in Fig. 4.17. The vector a  is indicated by black vector in Fig. 4.17, 

and vectors 1a , 2a  and 3a  are indicated by white vector in Fig. 4.17. 

1 cos( )a a ϕ= × ,                                                                                                (4.3) 

3 cos( )a a γ= × ,                                                                                                (4.4) 

( )2 2 2
2 1 3a a a a= − + ,                                                                                  (4.5) 

21

1

tan
a
a

ϕ − ⎛ ⎞
′ = ⎜ ⎟⎜ ⎟

⎝ ⎠
.                                                                                                 (4.6) 

Where, angle γ is the angle between line /AA  and AD . The angle γ can be calculated 

from the angle between line AD  and plane AON . 
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Figure 4.17. A Melrose event occurs if the summation of ϕ ‘�and ψ  (see Fig. 4.16) is  
bigger than α (the angle between line AN  and /AD ). D/ is the projection of 
the center of grain 1 (point D) on plane AON . O is the center of the 
meniscus. N is the point equidistant from the grain centers of throat holding 
the meniscus. P is the point at which the pendular ring and the meniscus 
touch each other on grain 3. Vector a  is indicated by a black vector, and 
vectors 1a , 2a  and 3a  are indicated by the white vectors. 

In summary, a Melrose event occurs when a pendular ring touches a meniscus 

inside a pore. As a result, a pore will be filled with the invading phase and the critical 

curvature for imbibition of the pore equals to the curvature of the meniscus. For 

simplicity, we call this event a Melrose event. 

Two pendular rings touch (coalescences event): 

As curvature decreases, pendular rings grow inside pores and at some curvature 

two adjacent pendular rings will touch each other. As a result, the coalescence of two 

pendular rings occurs and results in closure of a pore throat to the non-wetting phase. Fig. 
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4.18 and Fig. 4.19 show the stage of coalescence of pendular rings on a pore throat. Fig. 

4.18 shows a 2D slice of a pore throat and pendular rings, while Fig. 4.19 shows 3D view 

of the pore throat and the pendular rings. The numerical implementation of pendular rings 

coalescences is as follows. First, we compute the filling angle of each pendular ring (ϕ1 

and ϕ2 in Fig. 4.18). If the summation of two pendular rings filling angles is bigger than 

the angle between the two edges holding pendular rings (α in Fig. 4.18), then the two 

pendular rings touch each other and as a result the coalescence occurs (Fig. 4.18c). For 

simplicity, we call this event a coalescence event. In the uniformly wet medium, the 

coalescence event can result in disconnecting of the non-wetting phase (snap off). As a 

result, this event called snap off in several literatures [25, 146]. 
 

(a)                                                           (b)                                                       (c)  

Figure 4.18. Stage of coalescence of pendular rings on a pore throat in 2D view. A 2D 
slice of a pore throat by the plane connecting center of grains (O1, O2, and 
O3). (a) Curvature of pendular rings is smaller than the critical curvature for 
coalescence to occur. Summation of pendular rings filling angle (ϕ1 and ϕ2 ) 
is smaller than angle α. (b) Curvature of pendular rings equal to the critical 
curvature for coalescence to occur. Summation of pendular rings filling 
angles (ϕ1 and ϕ2 ) equals to angle α. (c) The coalescence occurs and the 
pore throat is closed by the wetting phase. 
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Figure 4.19. The stages of coalescence of pendular rings on a pore throat in 3D view. (a) 
Curvature of pendular rings is smaller than the critical curvature for 
coalescence to occur. Summation of pendular rings filling angle is smaller 
than angle between two edges holding pendular rings (angle α). (b) 
Curvature of pendular rings equal to the critical curvature for coalescence to 
occur. Summation of pendular rings filling angles equals to angle α. (c) The 
coalescence occurs and the pore throat is closed by the wetting phase. 

From all four events described in this section (i.e. generalized Haines drainage, 

generalized Haines imbibition, Melrose, and coalescence), the first three events are pore-

filling events. However, coalescence is not a pore-filling event. Upon occurrence of 

coalescence only a pore throat will be filled by invading fluid.  

A Meniscus-4th Grain Contact  

Another event that causes instability of a meniscus is when the meniscus touches 

a fourth grain located in front of the meniscus. We develop a mechanistic criterion for the 

encounter of a meniscus with a fourth grain not involved in the throat holding the 

meniscus. To our knowledge this criterion has not been previously considered in pore-

scale modeling of fluid displacement. A Meniscus-4th grain event is not a pore-filling 

event per se, but it leads to several events that result in a pore-filling event. For better 

understanding of this event (a meniscus 4th grain contact), we use an example. 
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Figure 4.20. Fluid configuration within two pores (pore 1234, and pore 1256), before a 
meniscus–4th grain contact during imbibition. Throat 123 and throat 125 
hold menisci which are colored dark blue and red, respectively. A light blue 
interface connects the two menisci. All grains are water-wet and they make 
a contact angles of 30o with the menisci. The water phase is located below 
the menisci, and the oil phase is located above. The fourth grain of pore 
1234 (grain 4) which comes in contact with the meniscus in throat 123 is 
colored green. 

Fig. 4.20 shows a schematic of two pores (pore 1234 and pore 1256). Throat 123 

and Throat 125 hold menisci which are colored red and a dark blue, respectively. A light 

blue interface connects these two menisci. All grains are water-wet and they make 

contact angles of 30o with the menisci. During imbibition, the menisci advance farther 

into pore 1234 and pore 1256 as the curvature decreases. As a result of menisci 

movement, the dark blue meniscus in throat 123 eventually touches the fourth grain 

located in front of the meniscus (grain 4). This grain (grain 4) is one of four grains which 

construct pore 1234, but this grain does not belong to throat 123.  
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Figure 4.21. Reducing the curvature in Fig. 4.20 leads to this fluid configuration 
(different view point than Fig. 4.20) in which the meniscus (dark blue) 
touches the green fourth grain (grain 4). Grain 1 has been removed to 
expose the region of the meniscus and the fourth grain contact (this region is 
highlighted by red circle).  

Fig. 4.21 shows the evolution of the fluid configuration of Fig. 4.20 when the 

curvature is small enough for the meniscus (dark blue) to touch the 4th grain (grain 4). 

When this happens, the water phase which is located below the meniscus becomes in 

contact with water-wet grain 4. Consequently, the water phase rises along the surface of 

grain 4. As a result, two pendular rings form on edge 14 and edge 24 (Fig. 4.22). To 

generalize, when the meniscus touches a fourth grain (e.g. grain 4) near an edge joining 

two grains (e.g. grain 1 and grain 2), all three grains (e.g. grain 1, grain 2 and grain 4) 

must have the same wettability in order for the invading phase to rise on the touched 

grain.  
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Figure 4.22. Fluid configuration within two pores (pore 1234, and pore 1256), after the 
meniscus (dark blue) touches the 4th grain (grain 4) (cf. Fig. 4.21). (a) The 
water phase rises on the surface of grain 4, and as a result two pendular 
rings are formed on edge 14 and edge 24. (b) Grain 4 is removed in order to 
reveal rings (light blue) and meniscus (dark blue) contacts. 

The pendular rings which form on edge 14 and edge 24 are touched by the dark 

blue meniscus (Fig. 4.22b). Consequently, Melrose events occur, and pore 1234 will be 

filled with the water phase (Fig. 4.23). 
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Figure 4.23. The fluid configuration within two pores (pore 1234, and pore 1256), after 
the meniscus touches the 4th grain (grain 4) (final stage). Three new menisci 
(dark blue) are formed on the throat corresponding to pore 1234 (throat 124, 
throat 134, and throat 243). The light blue interface is not a pendular ring, 
but a surface that connects adjacent menisci. 

In summary, when a meniscus touches a nearby grain that is not one of the three 

grains holding the meniscus (4th grain), but has the same wettability as at least two grains 

holding the meniscus, then the invading fluid rises on the touched grain and forms two 

pendular rings on the edges composed of the touched grain and two other grains. 

Subsequently, the formed pendular rings touch the original meniscus, and a Melrose 

event occurs, causing the pore to be filled with invading fluid. A grain can touch a 

meniscus during imbibition or drainage. In the dense random packings of spheres studied 

here, this event occurs only when the absolute value of dimensionless curvature is small 

(approximately less than 1.5). 
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4.4. SIMULATION  

We simulate the menisci motion within fractionally wet media during drainage 

and imbibition using the invasion percolation algorithm. We change curvature in small 

increments then compute the stable meniscus locations in all pores. At any given 

curvature (capillary pressure), all pores that are connected to the inlet (via invading fluid) 

will be in a candidate list for invasion. We check the candidate pores for criteria of 

invasion (Melrose, generalized Haines and meniscus-4th grain criteria). If a candidate 

meets the criteria of invasion and it also connected to the outlet, we invade the candidate 

and add the neighboring pores to the list of candidates. We continue until no more 

candidates remain in the list. Candidates that are not connected to the outlet are labeled 

“trapped” and removed from further consideration of events. Then we increase or 

decrease the curvature incrementally and we repeat the procedure. 

We emphasize that by checking generalized Haines and Melrose criteria 

developed in Sec. 4.3 for all pores, the algorithm has generalized the notion of simulating 

drainage and imbibition. Indeed, the only difference inside the code between drainage 

and imbibition is the sign of the increment in curvature. In contrast, traditional pore 

network models have algorithms specific to drainage and different algorithms specific to 

imbibition; only the machinery of invasion percolation is common to both. 

4.5. RESULT 

In this section, we focus on the result for drainage and imbibition for a 

fractionally wet porous medium. In the next section, we compare the simulation results 

for both water-wet and fractionally wet media with experimental data. Fig. 4.24 shows 

the imbibition and drainage curves for a porous medium with 50% of its grains oil-wet. 

The porous medium is composed of 7000 equal size grains. For this and subsequent 

figures, the curvature is dimensionless such that a curvature of 2 corresponds to the 
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curvature of the grains surface. The radii of the grains are normalized to have value of 

unity.  
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Figure 4.24. Imbibition and drainage curves for a porous medium with 50% of grains oil-
wet. The porous medium was filled with the oil phase initially: first, the 
water phase pushes the oil out by decreasing capillary pressure (primary 
imbibition), second the oil phase drains the water out of the porous medium 
by increasing capillary pressure (drainage), and finally the water phase 
pushes into the porous medium and replaces the oil phase (secondary 
imbibition). In all three curves, the curvature ranges from positive to 
negative values and thus passes through zero curvature. All three curves are 
produced from the same code applying the same criteria for pore-filling 
events. The different behavior arises entirely from the different values of 
starting and ending applied curvature. 

Initially, the porous medium was filled with the oil phase (Fig. 4.24, point P0), so 

the first process is primary imbibition where the water phase imbibes to the porous 
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medium until residual oil phase saturation (imbibition end point). At the imbibition end 

point, the residual oil phase exists in two morphologies: The oil phase trapped inside the 

pores and the oil phase in the form of pendular rings at grain-grain contact of two oil-wet 

grains. Note that the calculation for water saturation reported in Fig. 4.24 does not 

account for the volume of the oil phase held by oil-wet grains nor the volume of the water 

phase hold by water-wet grains, as these are both very minimal. The drainage starts from 

imbibition endpoint (Fig. 4.24, point P1) with increasing applied curvature (capillary 

pressure) and decreasing water saturation. Finally, the secondary imbibition starts from 

drainage endpoint (Fig. 4.24, point P2) and the water phase imbibe to the porous medium 

to the new value of residual oil phase saturation (Fig. 4.24, point P3). The model allows 

seamless movements of interfaces and filling events even through the zero curvature 

level. Both generalized Haines and Melrose events can occur with a change in the applied 

curvature. All menisci are tested for all pore-filling events depending on their local 

circumstances. Thus the critical curvature for local events is dynamic and cannot be pre-

calculated. This is unlike traditional invasion percolation models. 

As we mention in the simulation section, our modeling approach considers both 

Haines and Melrose events on imbibition and drainage, as is necessary for fractionally 

wet media. This gives the model an inherent robustness in the sense that all grains, 

throats, and pore bodies are considered equivalent, just with a different contact angle for 

each grain. This robustness can be seen by considering a 25% oil-wet medium, and the 

equivalent 75% oil-wet medium in which all of the oil-wet grains are made water-wet and 

vice-versa. By reversing the wettability of each grain, the capillary pressure curve should 

also be reversed. Fig. 4.25a shows the 25% oil-wet capillary pressure curve obtained with 

the model, and Fig. 4.25b shows the 75% oil-wet capillary pressure curve. The symmetry 

is evident, as the drainage in the 25% oil-wet medium is identical to the imbibition in the 
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75% oil-wet medium. This shows that the model is performing as expected. Note that this 

symmetry is only seen if each grain’s wettability is reversed. If the position of the grains 

is different, or the pattern of the oil-wet grains is different, the model will show slightly 

different capillary pressure curves. 
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Figure 4.25. (a) The primary drainage (PD), imbibition (I) and secondary drainage (SD) 
curves for a porous medium with 25% oil-wet grains. (b) The primary 
imbibition (PI), drainage (D) and secondary imbibition (SI) curves for a 
porous medium with 75% oil-wet grains. The curves on the Figs. 4.21a and 
4.21b are vertically symmetric, so if the Fig. 4.25b rotates 180°, the curves 
will overlies the curves on Fig. 4.25a. 

We can now use the model to study how the drainage and imbibition curves vary 

with the change in the fraction of oil-wet grains. Fig. 4.26 shows the primary drainage 

curves for porous media with different fraction of oil-wet grains. The oil-wet grains have 

a contact angle of 150° and the water-wet grains have a contact angle of 30o. For 

simplicity, we ignore the trapping of the receding phase for the results presented in the 

Fig. 4.26. As a result, the advancing phase can displace receding phase even though the 

receding phase is not connected to exit pores through the bulk phase. Consequently, the 

curves in Fig. 4.26 show no residual saturation for the receding phase.  
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Figure 4.26. Comparison between primary drainage curves for the porous media with 
different fractions of oil-wet (θοw = 150o) grains distributed randomly among 
water-wet (θww= 30o) grains. The porous media was originally filled with 
water. The oil phase pushes the water phase out as the capillary pressure 
(curvature) increases.  

Generally, the drainage curves move to lower capillary pressures (curvatures) as 

fraction of oil-wet grains in the media increases. In other words, the curvature 

corresponds to the percolation threshold decreases monotonically in all curves. When the 

applied curvature is increased, the water saturations go from near 100% saturated to less 

than 50% saturated at a specific curvature, this curvature correspond to the percolation 

threshold. The invading fluid breaks through the porous medium when the curvature 

reaches percolation threshold value. What is interesting is in the fact, that the movement 

of P-S curves is not linear function of fraction of oil-wet grains. The significant change in 

the position of the drainage curve occurs from the fully water-wet case to the 25% oil-wet 

case. The second significant change in the position of the drainage curve occurs from of 
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the drainage curve for the 25% oil-wet case to the drainage curve for the 50% oil-wet 

case. The position of drainage curve for the 75% oil-wet case is slightly lower compared 

to the position of drainage curve for the 50% oil-wet case. The percolation threshold 

value for the drainage curves of fully oil-wet case is negative. For all other cases (i.e. 

fully water-wet, 25% oil-wet, 50% oil-wet, 75% oil-wet), the invading fluid percolate 

through the porous medium at positive curvature. 
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Figure 4.27. Comparison between secondary imbibition curves for the porous media with 
different fractions of oil-wet grains; the contact angles on water-wet and oil-
wet grains are θww= 30o and θοw = 150o, respectively. The imbibition curves 
start from drainage endpoint of the curves in Fig. 4.26. The water phase 
pushes the oil phase out as the capillary pressure (curvature) decreases. As 
the fraction of oil-wet grains within porous medium increases the value for 
curvature which the water phase percolates through porous medium 
decreases. 

Fig. 4.27 shows the model results for the secondary imbibition curves for porous 

media with different fraction of oil-wet grains. The imbibition curves move to lower 

capillary pressures (curvatures) with increasing fraction of oil-wet grains in the media. 
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Again, the change in the position of the curves is not linear. The change in position of 

imbibition curves is minor from the fully water-wet case to the 25% oil-wet case and 

from the 25% oil-wet case to the 50% oil-wet case. A moderate change in the position of 

imbibition curves from the 50% oil-wet case to the 75% oil-wet case. Finally, the position 

of curve in the fully oil-wet case move lower significantly compared to the 75% oil-wet 

case.  

4.6. MODEL VALIDATION 

In this section, first we compare the simulation results for the fully water-wet case 

with the experimental data by Haines [89].Second, we compare the simulation results for 

the fractional wet cases with the experimental data by Ashouripashaki [14], Ustohal et al. 

[204] and O’Carroll et al. [153]. 

4.6.1. Water-Wet Case 

Haines [89] performed a series of drainage experiments followed by imbibition 

experiments in a packing of 0.038 cm glass beads. The imbibition experiments were 

started from the endpoints of the drainage experiments. Haines used water as the wetting 

phase and air as the non-wetting phase. His capillary pressure data were reported in terms 

of the as dimensionless curvature by normalizing the glass beads radii to be unity. He 

also reported existence of thin films of water phase on grains during experiments. As a 

result, we assume the contact angle of zero degrees for water-wet grains. However, we 

assume that the thin film of water is not thick enough to be hydraulically conductive. 

Consequently, we do not simulate the growing of pendular ring and coalescence of the 

pendular rings during imbibition. During drainage, a pendular ring gets frozen after all of 

its neighboring pores are drained. During imbibition, this pendular ring remains frozen 
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until one of its neighboring pores is imbibed. In the discussion section, we will assess the 

effect of coalescence on the P-S curves for a fully water-wet medium. 
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Figure 4.28. Comparison between simulation results for a fully water-wet medium and 
Haines experimental data for packing of glass beads. The contact angles on 
water-wet grains are θww= 0o. The imbibition curve starts from the drainage 
endpoint of the drainage curves. The drainage curve is a primary drainage 
curve. 

In order to simulate primary drainage, the oil phase enters to the sphere pack from 

entrance face (face 1 in the Fig. 4.1) as the curvature increases. The displaced water 

phase can exit from all faces except the entrance face (face 1). In the discussion section, 

we will elaborate on the effect of number of exit faces on the residual oil and water 

phases. The secondary imbibition starts from the drainage end point. During secondary 

imbibition, we decrease the applied curvature. As a result, the water phase invades the 

porous medium and pushes the oil phase out of the porous medium through all faces 

except face 4 (opposite side of face 1, see Fig. 4.1). 
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The overall capillary pressure match between experimental data and simulation 

results are very good, but the simulation results for drainage curve overestimate the value 

of curvature corresponding to the percolation threshold for the primary drainage. This 

over estimation is due to use of Haines drainage criterion. According to Haines drainage 

criterion, we assume a meniscus that passes through a throat plane is cap part of sphere 

that is inscribed to the grains forming the throat. Other researchers also report the over 

estimation in value of capillary pressure corresponding to the percolation threshold for 

primary drainage, when they use Haines drainage criterion in their model [110, 140]. The 

spherical approximation is easily calculated and provides semi-quantitative agreement in 

the P-S curve; the essential point here is that it correctly captures the sequence of throat 

filling events, and this is the main objective of the modeling. The model also 

underestimates the curvature in which the water phase breaks through the porous medium 

during imbibition. We hypothesize, the assumption of menisci being part of spheres 

results in this under estimation, in the same way that the spherical approximation 

overestimates the drainage critical curvature in a throat. The spherical approximations 

thus degrade the quantitative prediction, but the overall agreement between experimental 

data and simulation results is satisfactory. The agreement between simulation results (our 

a priori prediction) and experimental data shows that our model captures the essential of 

the fluid flow within the uniformly wet media. 

4.6.2. Fractional-Wet Case 

Ashouripashaki [14] performed laboratory experiments to obtain octane/water 

pressure-saturation curves for primary drainage, and primary imbibition within 

fractionally wet sand packs (see Chapter 3 for more detail about the experimental 

procedure). 
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Drainage 

Fig. 4.29a shows the measured P-S curves for primary drainage for 5 different 

sands of varying oil-wet fraction. The primary drainage measured for octane/water 

system. The drainage curves move monotonically lower with increasing oil-wet fraction. 

We simulate the primary drainage for the media with the same fraction of oil-wet grains 

as experimental data (e.g. 0, 25%, 50%, etc.). We multiply the dimensionless curvature 

by the known interfacial tension and divide by grains radii to obtain the capillary pressure 

in Pascal for simulation results. Fig. 4.29b shows the simulation results for 3D 

fractionally wet porous media. In the model, the contact angles on water-wet and oil-wet 

grains are θww= 30o and θοw = 150o, respectively.  
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Figure 4.29. (a) Measured octane/water drainage curve for the fractionally wet media. 
The primary drainage curves move monotonically lower with increasing oil-
wet fraction. (b) Simulation results for drainage of fractionally wet media. 
The contact angles on water-wet and oil-wet grains are θww= 30o and θοw = 
150o, respectively. For the model, we multiply the curvature by the known 
interfacial tension and divide by the grains radii to obtain the capillary 
pressure in Pascal 

The similarity of the trend with increasing oil-wet fraction between experimental 

data and simulation results is very good. The capillary pressure corresponding to the 
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percolation threshold decreases monotonically in both figures (Fig. 4.29a and Fig. 4.29b). 

The percolation threshold changes nonlinearly with fraction of oil-wet grains in both 

experimental data and simulation results. Looking at the model results (Fig. 4.29b), 

starting from 0% oil-wet fraction (fully water-wet), the transition capillary pressure 

(percolation threshold) decreases significantly up to about 50% oil-wet fraction; between 

50% and 75% oil-wet fraction there is a small decrease in the transition capillary 

pressure; finally, a moderate change of the transition capillary pressure between 75% and 

100% oil-wet fraction. The transition capillary pressure for 100% oil-wet case occurs at 

negative capillary pressure. In experimental data (Fig. 4.29a), a moderate change of the 

transition capillary pressure between 0% and 25% oil-wet fraction; a moderate change of 

the transition capillary pressure between 25% and 50% oil-wet fraction; a slight change 

between 50% and 75%, and finally a moderate change between 75% and 100%. In both 

experimental data and simulation results, the transition capillary pressure for all of 

drainage curves (except 100% oil-wet) located above zero capillary pressure. In 

experimental measurement, half of the drainage curves for the fully oil-wet (100% oil-

wet) medium locate below zero capillary pressure. However, in simulation results, most 

of the drainage curves for the fully oil-wet (100% oil-wet) medium curves are located 

below the zero capillary pressure. 

Despite the similarity between experimental data and simulation results, the 

drainage curves in simulation results are located at lower capillary pressures compared to 

the experimental measurements. The model is robust enough to handle the different 

contact angles in calculating the movement of the menisci. If we change the contact angle 

for the water-wet and oil-wet grains within the model, the overall match between 

experimental data and simulation results will be improved. Fig. 4.30b shows the 

simulation results for fractionally wet porous media in which the contact angles on its 
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water-wet and oil-wet grains are θww= 0o and θοw = 120o, respectively. Because no 

independent measurement of the contact angles on the sand is available, we conclude that 

the model captures the overall behavior reasonably well. 
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Figure 4.30. (a) Measured octane/water drainage curve for the fractionally wet media. 
The primary drainage curves move monotonically lower with increasing oil-
wet fraction. (b) Simulation results for drainage of fractionally wet media. 
The contact angles on water-wet and oil-wet grains are θww= 0o and θοw = 
120o, respectively. For the model, we multiply the curvature by the known 
interfacial tension and divide by the grains radii to obtain the capillary 
pressure in Pascal 

The primary drainage curves in experimental data from other sources [153, 204] 

qualitatively show the same behavior as Fig. 4.29a. O’Carroll et al. [153] present primary 

drainage of PCE/water for fractional water-wet and oil-wet sands (Fig. 4.31). PCE 

(tetrachloroethene) was used as the representative of the oil phase. The value of water 

saturation in Fig. 4.31 are normalized. The minimum measured water saturation equate to 

value of zero for the apparent water phase saturation. The maximum measured water 

saturation equate to the value of one for the apparent water phase saturation. 
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Figure 4.31. Measured PCE/water drainage curve for the fractionally wet media [153]. 
The primary drainage curves move monotonically lower with increasing oil-
wet fraction. The value of water saturation is normalized. The apparent 
water phase saturation is zero at the minimum measured water saturation. 
The apparent water phase saturation is unity at the maximum measured 
water saturation.  

The trend of the experimental data in Fig. 4.29a and Fig. 4.31 with increasing oil-

wet fraction is very similar. In addition, in both sets of experiments half of the drainage 

curve for the fully oil-wet (100% oil-wet) medium locate below zero capillary pressure. 
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Imbibition 
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Figure 4.32. (a) Measured octane/water imbibition curve for the fractionally wet media. 
The primary imbibition curves move monotonically lower with increasing 
oil-wet fraction. (b) Simulation results for imbibition of fractionally wet 
media. The contact angles on water-wet and oil-wet grains are θww= 30o and 
θοw = 150o, respectively. For the model, we multiply the curvature by the 
known interfacial tension and divide by the grains radii to obtain the 
capillary pressure in Pascal. 

Fig. 4.32a shows the measured P-S curves for primary imbibition for 5 different 

sands of varying oil-wet fraction. The primary imbibition was measured for octane/water 

system. The imbibition curves move monotonically lower with increasing oil-wet 

fraction. We simulate the imbibition with the same fraction of oil-wet grains as 

experimental data. We multiply the dimensionless curvature by the known interfacial 

tension and divide by grains radii to obtain the capillary pressure in Pascal for simulation 

results. Fig. 4.32b shows the simulation results for fractionally wet porous media in 

which the contact angles on its water-wet and oil-wet grains are θww= 30o and θοw = 150o, 

respectively. 
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In the imbibition curves, Fig. 4.32a (experiment) and Fig. 4.31b (model), the 

transition capillary pressure (percolation threshold) decreases monotonically with 

increasing oil-wet fraction in both figures. More interestingly, the transition capillary 

pressure does not change linearly with oil-wet fraction in either figure. Looking at the 

model results (Fig. 4.32b), starting from 0% oil-wet fraction, the transition capillary 

pressure decreases only slightly up to about 50% oil-wet fraction; between 50% and 75% 

oil-wet fraction, there is a moderate decrease in the transition capillary pressure; finally 

between 75% and 100% the transition capillary pressure decreases significantly. Looking 

at the experimental results (Fig. 4.32a), different patterns are observed: a slight change of 

the transition capillary pressure between 0% and 25% oil-wet fraction; a large change 

between 25% and 75%, and finally a slight change between 75% and 100%. In addition, 

the imbibition curves in simulation results located at lower capillary pressure compared 

to the experimental measurements. 

To examine the sensitivity of the model to contact angles, which are not reported 

for the experiments, we repeated the simulation with the contact angles for water-wet and 

oil-wet grains θww= 0o and θοw = 120o, respectively. The results are shown in Fig. 4.33.  
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Figure 4.33. (a) Measured octane/water imbibition curve for the fractionally wet media. 
The primary imbibition curves move monotonically lower with increasing 
oil-wet fraction. (b) Simulation results for imbibition of fractionally wet 
media. The contact angles on water-wet and oil-wet grains are θww= 0o and 
θοw = 120o, respectively. For the model, we multiply the curvature by the 
known interfacial tension and divide by the grains radii to obtain the 
capillary pressure in Pascal. 

Despite the overall match between experimental data (Fig. 4.33a) and simulation 

results (Fig. 4.33b), several trends in the data are not captured by the simulation. For 

instance, in experimental data (Fig. 4.33a), the entire imbibition curve for 50% oil-wet 

fraction is positioned at negative capillary pressure. However, in simulation results (Fig. 

4.33b), half of the imbibition curve for 50% oil-wet fraction located above zero capillary 

pressure line. In addition, in experimental data, the position of imbibition curve for the 

fully oil-wet case is slightly lower than the position of imbibition curve for the 75% oil-

wet case. In contrast, in the simulation results, the position of imbibition curve for the 

fully oil-wet case is significantly lower compared to the position of imbibition curve for 

the 75% oil-wet case. 
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We hypothesize that the difference between experimental data and simulation 

results for imbibition can be contributed from the spatial correlation (clustering) of oil-

wet grains. There is no spatial correlation between oil-wet grains in our model (i.e. the 

grains are randomly made oil-wet). However, in fractionally wet media built in 

laboratory, the mixing of oil-wet grains and water-wet grains can result in nonrandom 

distribution of oil-wet grains. The oil-wet grains have the similar weight and surface 

energy, while the surface properties of oil-wet grains and water-wet grains are different. 

Consequently, the oil-wet grains can bundle together and make a layer of oil-wet grains 

during the creation of the packing. This oil-wet layer prevents the water phase from 

imbibing to the porous medium at the positive capillary pressure. As a result, the entire 

imbibition curve will be located at the negative capillary pressure (see Fig. 4.33a, 50%, 

75% and 100% oil-wet fraction cases). 

In addition, there are discrepancies between experimental data reported for 

imbibition experiments of fractionally wet media, while the measurements reported for 

drainage experiments of fractionally wet are qualitatively similar [14, 153]. For instance, 

Ustohal et al. [204] performed imbibition experiments on fractionally wet porous media. 

They constructed fractionally wet media by mixing different fraction of silanized quartz 

sand and pure quartz sand. The silanized quartz grains were oil-wet grains and the pure 

quartz grains were water-wet grains. Fig. 4.34a shows measured air/water imbibition 

curve for fractionally wet media made by Ustohal et al. They reported the contact angle 

of 0o for the pure quartz sand grains (water-wet grains) and contact angle of 110o for 

silanized quartz grains (oil-wet grains). There are several qualitative differences between 

experimental data presented by Ashouripashaki [14] and Ustohal et al. [204]. For 

instance, in experimental data presented by Ashouripashaki (Fig. 4.33a), the entire 

imbibition curve for 50% oil-wet fraction is positioned at negative capillary pressure. 
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However, in experimental data presented by Ustohal et al. (Fig. 4.34a), half of the 

imbibition curve for 50% oil-wet fraction located above zero capillary pressure line. In 

addition, in experimental data presented in Fig. 4.33a, the position of imbibition curve for 

the fully oil-wet case is slightly lower than the position of imbibition curve for the 50% 

oil-wet case. In contrast, in experimental data presented in Fig. 4.34a, the position of 

imbibition curve for the fully oil-wet case is lower significantly compare to the position 

of imbibition curve for the 50% oil-wet case. 
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Figure 4.34. (a) Measured air/water imbibition curve for the fractionally wet media [204]. 
The primary imbibition curves move monotonically lower with increasing 
oil-wet fraction. The value of water saturation is normalized. The minimum 
measured water saturation equate to a value of zero for the apparent water 
phase saturation. The maximum measured water saturation equate to the 
value of one for the apparent water phase saturation. (b) Simulation result 
for imbibition of the fractionally wet media. The contact angles on water-
wet and oil-wet grains are θww= 0o and θοw = 110o, respectively. For the 
model, we multiply the curvature by the known interfacial tension and 
divide by the grains radii to obtain the capillary pressure in Pascal. 

We simulated the imbibition for fractionally wet media, where the fluid/fluid 

interfaces make 0o contact angle with the water-wet grains and 110o contact angle with 

oil-wet grains. As shown in Fig. 4.34, the overall match between experimental data and 
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simulation results are satisfactory. However, several trends within the experiments are 

not captured by the simulations. For instance, in experimental data, the imbibition curves 

for 50% oil-wet case and 66% oil-wet case are located at higher capillary pressure 

compared to corresponding imbibition curves in simulation results.  

4.7. DISCUSSION 

In this section, the main goal is to understand which of the five pore and throat 

filling processes dominate as a function of wettability and capillary pressure. We also 

study the effect of wettability on the fluid configuration during drainage and imbibition. 

We vary the wettability of a medium by changing the fraction of oil-wet grains within the 

medium. The first step is to analyze the effect of individual pore or throat filling event on 

drainage and imbibition of a fully water-wet medium.  

4.7.1. Effect of Each Event Type on Drainage/ Imbibition within a Water-Wet 
Medium 

The Haines drainage event is the only pore-filling event occurs during the 

drainage of water-wet medium. However, several events (i.e. Melrose, generalized 

Haines imbibition, ring coalescence, meniscus-4th grain) could occur during imbibition 

within a water-wet medium. In this section we study effect of each event on the 

imbibition of a fully water-wet medium. For research purposes, the drainage/imbibition 

simulation code allows us to turn off a particular type of pore or throat filling event 

during the drainage/imbibition simulation (see Fig. 4.35).  

Effect of Melrose Events versus Generalized Haines Imbibition Events  

First, we study the effect of generalized Haines imbibition events by simulating 

imbibition with other events turned off in the code. At least two menisci must merge in 

order for a generalized Haines imbibition event to occur. However, at the beginning of 
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imbibition (drainage end point), very few pores have at least two menisci on their pore 

throats. As a result, if we ignore pendular rings and consider only the occurrence of 

generalized Haines imbibition (i.e. no Melrose events), very little imbibition occurs, even 

when the curvature is reduced to zero. As a result, the water phase does not percolate 

across the medium (Fig. 4.35, light blue curve).  

Next we study the effect of Melrose events. If we only allow the occurrence of the 

Melrose events and turn off all other events in the drainage/imbibition simulation code, 

the water phase does percolate through the porous medium and fill all the pores. (Here we 

ignore the trapping of the oil phase). During imbibition, Melrose events are essential for 

initially establishing enough pores with at least two menisci located in their pore throats 

for generalized Haines imbibition to occur subsequently. Fig. 4.35 compares the 

imbibition curve for the case that only Melrose event occurs (red curve) with the case that 

both Melrose and generalized Haines imbibition events occur (green curve). The 

occurrence of generalized Haines imbibition moves the imbibition curve to a higher value 

of the curvature.  
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Figure 4.35. Compares the simulation results for imbibition of a water-wet medium when 
only generalized Haines imbibition events occur (light blue curve), only 
Melrose events (red curve) occur, both generalized Haines imbibition and 
Melrose events occur (green curve). The imbibition starts from the drainage 
end point. Here we ignore the trapping of the oil phase. 

Fig. 4.36a plots the fraction of each type of event (i.e. Melrose and generalized 

Haines imbibition) versus water phase saturation during imbibition. Fig. 4.36b plots the 

number of total events during imbibition versus water phase saturation. Fig. 4.36 shows 

that more than 20% of the events occur during imbibition are Haines imbibition events. 

In addition, it shows when most of events occur (Sw=0.4), more than 30% of the events 

are Haines imbibition events. In conclusion, even though the generalized Haines 

imbibition events are not dominate during imbibition of a water-wet medium, the 

occurrence of these events affect the imbibition. As a result, the occurrence of 

generalized Haines imbibition cannot be ignored. 
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Figure 4.36. (a) Fraction of each event (i.e. Melrose and generalized Haines imbibition) 
during imbibition of a water-wet medium. (b) Total events during imbibition 
versus the water phase saturation. 

Fig. 4.35 and Fig. 4.36 show the importance of the occurrence of Melrose events 

for imbibition of a water-wet medium. The occurrence of the Melrose events is necessary 

to initiate a chain of events which results in percolating the water phase through the 

porous medium. In addition, more than 60% of the events occur during imbibition are 

Melrose events. 

Effect of Melrose Events versus Meniscus-4th Grain Events 

The existence of pendular rings is necessary for the occurrence of Melrose events. 

Consequently, the existence of pendular rings is necessary for the imbibition within a 

water-wet medium. However, at the beginning of the primary imbibition, the medium is 

completely filled with the oil (or gas) phase. As a result, no water phase pendular ring 

exists initially. Hence, the only possible event at high values of dimensionless curvature 

(above 2) is a generalized Haines imbibition event. In the absence of Melrose events, the 

water phase does not percolate through the medium until the applied curvature reaches a 
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small value. At lower dimensionless curvature (smaller than 2), some of menisci touch 4th 

grains (meniscus-4th grain event), and these events lead to pore-filling events (i.e. 

generalized Haines imbibition events). These pore-filling events initiate a chain of events 

that results in percolating the water phase through the porous medium. In conclusion, the 

occurrence of meniscus-4th grain events results in percolating the water phase through the 

porous medium at a lower curvature compare to occurrence of Melrose events.  

Fig. 4.37 compares the P-S curve for primary imbibition (purple curve) and 

secondary imbibition (green curve). The main events occur in secondary imbibition are 

Melrose events. During secondary imbibition, the water phase percolates through porous 

medium at the curvature much higher than two due to the occurrence of the Melrose 

events at the high value of curvature. As a result, there is no chance for occurrence of 

meniscus-4th grain events. In contrast, in the absence of the pendular ring, the main 

events that occur in the primary imbibition are meniscus-4th grain. The meniscus-4th grain 

event occurs at lower value of the dimensionless curvature compared to the Melrose 

events. As a result, the primary imbibition curve is positioned at lower value of the 

curvature compared to the secondary imbibition curve. The difference between the 

primary and secondary imbibition curves in Fig. 4.37 show the importance of the 

pendular rings and its role during imbibition.  

 



 145

0

2

4

6

8

10

12

0 0.2 0.4 0.6 0.8 1
Water Phase Saturation

D
im

en
si

on
le

ss
 C

ur
va

tu
re

Drainage
Generalized Haines imbibition and Melrose (secondary imbibition)
Generalized Haines imbibition and meniscus_4th grain (primary imbibition)

 

Figure 4.37. Compares the simulation results for primary imbibition of a water-wet 
medium (purple curve) with secondary imbibition of a water-wet medium 
(green curve). Haines imbibition event can occur in both primary and 
secondary imbibition. During secondary imbibition, pendular ring exist. 
Consequently, the Melrose events can occur. In contrast, in primary 
imbibition, no Melrose event occurs due to the lack of existence of pendular 
rings. During primary imbibition, the meniscus-4th grain event occurs at a 
small value of dimensionless curvature. 

For the purpose of comparison between experimental data and simulation results, 

we assume that the pendular ring exist in front of the advancing menisci, even though the 

experimental data was measured for primary imbibition. The moisture within the porous 

media allows the formation of thin films. These thin films can carry small amounts of 

water through the roughness of the grains surfaces and build pendular rings in front of the 

advancing menisci. As a result, Melrose events can occur during primary imbibition 

experiments.  
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Effect of Coalescence Events 

Another type of event that can occur during imbibition within a water-wet 

medium is the pendular ring coalescence. In the water-wet medium, the coalescences 

event results in disconnecting of the oil (or gas) phase. As a result, this event called snap 

off in several literatures [25, 146]. Fig. 4.38 shows the effect of coalescence on the 

imbibition curves of the water-wet medium. The simulation results in Fig. 4.38a ignore 

the trapping of oil and water phase, while the simulation results in Fig. 4.38b accounts for 

the trapping of receding phase (oil or water). The imbibition curves with and without 

accounting for the coalescence events are the same in Fig. 4.38a. Hence the coalescence 

event does not change the position of imbibition curves. However, the coalescence event 

affects the saturation of the trapped water phase at the end of imbibition (Fig. 4.38b).  
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Figure 4.38. Compares the simulation results for the primary imbibition of a water-wet 
medium with and without accounting for the coalescence of pendular rings. 
(a) We ignore the trapping of the oil and water phases. (b) We take into 
account the trapping of the oil and water phases. 

Fig. 4.38 shows that we can ignore the effect of coalescence events on the 

imbibition curves for the unconsolidated water-wet medium. Note that the porous 
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medium we use as a model rock has porosity of 36%. The coalescence of pendular rings 

affects imbibition in consolidated rocks (see Chapter 2 for more details). The occurrence 

of pendular rings coalescence during drainage and imbibition within fractionally wet 

media is less probable compared to the water-wet case. In fractionally wet media, not all 

edges can hold a pendular ring, because some edges join two grains with different 

wettability.  

4.7.2. Compare Occurrence of Each Event during Drainage /Imbibition within a 
Fractionally Wet Medium 

In a water-wet medium, the Haines drainage is the only event that occurs during 

the drainage. The generalized Haines imbibition and the Melrose events only occur 

during the imbibition. The Haines drainage event does not occur during imbibition within 

the water-wet medium. However, all pore-filling events (i.e. generalized Haines drainage, 

generalized Haines imbibition and Melrose events) can occur during both drainage and 

imbibition of a fractionally wet medium. Fig. 4.39b shows the fraction of each event 

during drainage of a fractionally wet medium with 25 % oil-wet grains. Fig. 4.39a shows 

the corresponding P-S curve for drainage of that medium. Fig. 4.39b shows that majority 

of events occur during drainage of the medium with 25% oil-wet grains are generalized 

Haines drainage events. Fig. 4.39b also shows some generalized Haines imbibition and 

meniscus-4th grain events also occur during drainage of that medium. In contrast, in a 

water-wet medium, the only event occur during drainage is Haines drainage event. The 

Melrose event hardly occurs during drainage of the medium with 25% oil-wet grains. In 

contrast the Melrose event is important for drainage of the medium with 75% oil-wet 

grains. Fig. 4.40b shows the fraction of each event during drainage of fractionally wet 

medium with 75 % oil-wet grains. The main events at negative curvature are the Melrose 

and generalized Haines imbibition. The saturation of the water phase at zero curvature is 
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0.6. At positive curvature, the main events are generalized Haines drainage and 

meniscus-4th grain. Hardly any Melrose or generalized Haines imbibition events occur at 

positive capillary pressure. 
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Figure 4.39. (a) P-S curve for drainage of a fractionally wet medium with 25% oil-wet 
grains. The contact angles on water-wet and oil-wet grains are θww= 30o and 
θοw = 150o, respectively. (b) Fraction of each events occur during drainage 
of the fractionally wet medium with 25% oil-wet grains. 
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75% oil-wet grains
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Figure 4.40. (a) P-S curve for drainage of a fractionally wet medium with 75% oil-wet 
grains. The contact angles on water-wet and oil-wet grains are θww= 30o and 
θοw = 150o, respectively. (b) Fraction of each event during drainage of the 
fractionally wet medium with 75% oil-wet grains. 
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The distribution of the event for imbibition of the medium with 25% oil-wet 

grains is approximately the mirror image of the distribution of the events for drainage of 

the medium with 75% oil-wet grains. Fig. 4.41b shows the fraction of each event during 

imbibition of the fractionally wet medium with 25% oil-wet grains. Fig. 4.41a shows the 

corresponding P-S curve for imbibition of that medium. During the imbibition within the 

fractionally wet medium with 25% oil-wet grains, Melrose and generalized Haines 

imbibition are the main events at positive curvature. At negative curvature, the main 

events are generalized Haines drainage and meniscus-4th grain. The saturation of the 

water phase at zero curvature is 0.4. The main events at positive curvature are Melrose 

and generalized Haines imbibition. 

The distribution of the event for the imbibition of the medium with 75% oil-wet 

grains is approximately the mirror image of the distribution of the events for the drainage 

of the medium with 25% oil-wet grains. Fig. 4.42b shows the fraction of each events 

occur during imbibition of the fractionally wet medium with 75 % oil-wet grains. Fig. 

4.42a shows the corresponding P-S curve for imbibition of that medium. Fig. 4.42b 

shows that majority of events occur during imbibition of the medium with 75% oil-wet 

grains are generalized Haines drainage events. Fig. 4.42b also show some generalized 

Haines imbibition and meniscus-4th grain events also occur during imbibition of the 

medium with 75% oil-wet grains. The Melrose event hardly occurs during imbibition of 

the medium with 75% oil-wet grains. 
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Figure 4.41. (a) P-S curve for imbibition of a fractionally wet medium with 25% oil-wet 
grains. The contact angles on water-wet and oil-wet grains are θww= 30o and 
θοw = 150o, respectively. (b) Fraction of each events occur during imbibition 
of the fractionally wet medium with 25% oil-wet grains. 
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Figure 4.42. (a) P-S curve for imbibition of a fractionally wet medium with 75% oil-wet 
grains. The contact angles on water-wet and oil-wet grains are θww= 30o and 
θοw = 150o, respectively. (b) Fraction of each events occur during imbibition 
of the fractionally wet medium with 75% oil-wet grains. 
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4.7.3. Effect of Oil-Wet Grain Positions on Drainage/Imbibition Curves 

The drainage and imbibition curves presented in previous sections are only 

corresponding to one realization of the fractionally wet media. For instance, for modeling 

a fractionally wet medium with 25% oil-wet grains, we randomly choose 25% of grains 

and assign the oil-wet wettability to them. As result of randomness in choosing which 

grain to be oil-wet, the position of oil-wet grains will change in each realization of the 

fractionally wet medium with 25% oil-wet grains. Fig. 4.43 shows the simulation results 

of primary drainage within different realization of fractionally wet media with 25% oil-

wet grains. 
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Figure 4.43. P-S curve for the primary drainage of different realization of the fractionally 
wet media with 25% oil-wet grains. The contact angles on water-wet and 
oil-wet grains are θww= 30o and θοw = 150o, respectively. 
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In Fig. 4.43, the positions of drainage curves for different realization of the 

fractionally wet media are almost the same. To investigate the effect of oil-wet grain 

positions on drainage/imbibition curves, we study the effect of oil-wet grain positions on 

the criteria for pore-filling events. Among all the criteria for pore-filling events, only 

generalized Haines drainage criterion is an a priori criterion. Such a criterion can be 

calculated prior to and independent from the drainage/imbibition simulation. In other 

words, a priori criterion is independent of the position of menisci within the medium 

during drainage/imbibition simulation. Therefore, we focus our discussion on the effect 

of oil-wet grain position on the critical curvature for generalized Haines drainage event. 

The positions of oil-wet grains within two different realizations of media with 

same fraction of oil-wet grains are different. Consequently, the critical curvature for each 

individual throat is different. However, the overall distribution (e.g. CDF, PDF) for the 

critical curvature of both realizations is almost the same (Fig. 4.44). As a result, the 

drainage curve for both realizations is quite similar. Fig. 4.44 shows the CDF (cumulative 

distribution function) and histograms for Haines critical curvature of two realizations of 

media with 25% oil-wet grains. The CDF of those realization are similar, consequently 

the drainage curve for those realization will be similar. Note that generalized Haines 

drainage event is the main pore-filling event occur during primary drainage of the 

medium with 25% oil-wet grains.  
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Figure 4.44. (a) CDF and (b) histograms for Haines critical curvature for drainage of two 
realizations of the media with 25% oil-wet grains. The CDF and histogram 
for the realization 1 and realization 2 are similar. The contact angles on 
water-wet and oil-wet grains are θww= 30o and θοw = 150o, respectively. 

Although the position of the oil-wet grains does not affect the distribution of 

Haines critical curvature, the fraction of oil-wet grains affects the distribution of Haines 

critical curvature and consequently affects the drainage process within the fractionally 

wet media. Fig. 4.45 compares the histogram of Haines critical curvature for the medium 

with all water-wet grains and the medium with 25% oil-wet grains. The peak in the 

histogram of Haines critical curvature for the fully water-wet medium is related to the 

throats with three point contacts between its grains. These throats have the smallest 

inscribed radius and highest value of Haines critical curvature. For convenience, we call 

them smallest throats. In the fractionally wet medium (e.g. medium with 25 % oil-wet 

grains), some of these smallest throats remain fully water-wet (i.e. three water-wet 

grains) and some of them become fractionally wet throat. A fractionally wet throat has 

either one or two oil-wet grains.  
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Figure 4.45. (a) Histograms for Haines critical curvature for drainage in a fully water-wet 
medium. The peak at the value of 11.5 is corresponding to the throats that 
have three point contacts between its grains. (b) Histograms for Haines 
critical curvature of the medium with 25% oil-wet grains. The peak at 
critical curvature of 11.5 associates with the throats defined by three water-
wet grains that touch each other. The peak at critical curvature of 3.5 
associates with throat composed of two water-wet grains and one oil-wet 
grain that touch each other. The peak at critical curvature of zero associates 
with throat composed of two oil-wet grains and one water-wet grain that 
touch each other. The contact angles on water-wet and oil-wet grains are 
θww= 30o and θοw = 150o, respectively. 

There are three peaks in Fig. 4.45b associated with these three configurations of 

throats in the medium with 25% oil-wet grains. The first peak is at critical curvature of 

11.5. This peak associates with the throat composed of three water-wet grains that touch 

each other. The second peak is at critical curvature of 3.5. This peak associates with a 

throat composed of two water-wet grains and one oil-wet grain that touch each other. The 

third peak is at critical curvature of zero. This peak associates with a throat composed of 

two oil-wet grains and one water-wet grain that touch each other. The smallest throats 

with two oil-wet grains cannot hold menisci at positive curvature. As a result, the CDF of 
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Haines critical curvature for medium with 25% oil-wet grains shifts toward smaller value 

of critical curvature. 
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Figure 4.46. CDF of Haines critical curvature of a fully water-wet medium (blue curve) 
and the medium with 25% oil-wet grains (red curve). 50% of throats within 
the medium with 25% oil-wet grains have Haines critical curvature smaller 
than 3.5. 50% of throats within the fully water-wet medium have Haines 
critical curvature smaller than 6.5. The value of 50% corresponds to the 
bond percolation threshold of the random sphere pack [143] 

Fig. 4.46 compares the CDF of Haines critical curvature for the fully water-wet 

medium with the fractionally wet medium with 25% oil-wet grains. 50% of throats within 

the medium with 25% oil-wet grains have Haines critical curvature smaller than 3.5. The 

value of 50% corresponds to the bond percolation threshold of the random sphere pack 

[143]. During primary drainage of the medium with 25% oil-wet grains, when the applied 

curvature is increased above bond percolation threshold for Haines critical curvature 

(3.5), then the oil phase percolates through the medium (Fig. 4.26). As a result, the oil 
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phase accesses almost all the pores. Therefore, the drainage curve for the curvature above 

3.5 looks like the drainage curve obtained from the bundle of tubes model. Note that in 

bundle of tubes model, all pores are accessible and the critical curvature for drainage of 

the pore is inversely proportional to the radius of the tubes. In the fully water-wet 

medium, 50% of throats have Haines critical curvature smaller than 6.5 (Fig. 4.46). 

Consequently, the oil phase percolates through the medium at applied curvature above 

6.5 (Fig. 4.26). 

In conclusion, the position of oil-wet grains does not affect the P-S curve of 

fractionally wet media. However, the fraction of oil-wet grain affects the P-S curve of 

fractionally wet media. Note that, the positions of oil-wet grains within the fractionally 

wet media are randomly chosen. Effect of spatial correlation for oil-wet grains on the 

drainage/imbibition is not within the scope of this study.  

4.7.4. Effect of Meniscus-4th Grain Criterion on the Primary Drainage Curves of 
Fractionally Wet Media 

In Section 4.4.3.4, we develop a novel and mechanistic criterion for the menisci 

motion within a porous medium. When a meniscus touches a grain located in front of the 

meniscus, pore-filling events occur and the meniscus advances. To our knowledge, this 

criterion was not considered in other study of fluid flow within a porous medium. Fig. 

4.47 compares the primary drainage simulation results without considering this criterion 

(Fig. 4.47a) with the primary drainage simulation results including this criterion (Fig. 

4.47b). Fig. 4.47a shows that primary drainage curves for the fully oil-wet medium, the 

medium with 75% oil-wet grains, and the medium with 50% oil-wet grains are positioned 

at the same curvature. In other words, the curvature corresponding to the percolation 

threshold of their primary drainage curves are the same.  
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Figure 4.47. (a) Primary drainage curves for the porous media with different fractions of 
oil-wet (θοw = 150o) grains distributed randomly among water-wet (θww= 
30o) grains. The meniscus-4th grain event is not considered. (b) Primary 
drainage curves for the porous media with different fractions of oil-wet (θοw 

= 150o) grains distributed randomly among water-wet (θww= 30o) grains. The 
meniscus-4th grain event is considered. 

During drainage, the oil phase invades to the porous medium and when a 

meniscus touches an oil-wet grain, the oil phase then climbs through the rough surface of 

the grain and creates pendular rings on the edges, which results in pore-filling events. 

However, if the meniscus touches a water-wet grain, the oil phase does not climb the 

grain and does not create pendular rings. Consequently, no pore-filling event occurs. As a 

result, the effect of meniscus-4th grain events on primary drainage curve decreases as the 

fraction of oil-wet grains decreases. We can observe this trend in the Fig. 4.47. The 

position of primary drainage curve for the fully-water-wet medium, the medium with 

25% oil-wet grains, and the medium with 50% oil-wet grains are the same in both Fig. 

4.47a and Fig. 4.47b. The position of primary drainage curve for the fully oil-wet 

medium and the medium with 75% oil-wet grains are different in Fig. 4.47a and Fig. 

4.47b.  
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During the primary drainage of the fully oil-wet medium, the oil phase percolates 

at negative curvature if the menisci touch grain criterion is considered, while the oil 

phase does not percolate until the curvature increase to positive value as shown in Fig. 

4.47a. The primary imbibition of the fully water-wet medium is mirror image of primary 

drainage of the fully oil-wet medium. Therefore, the meniscus-4th grain criterion is 

important to be considered for simulation of primary imbibition of the fully water-wet 

medium. Without this consideration, the water phase does not percolate through the 

medium at positive capillary pressure.  

4.7.5. Residual Phase Saturation 

In this section, we study the effect of wettability on the residual phase saturation. 

The residual phase saturation exists in two morphologies: trapped phase inside pores and 

trapped phase as isolated pendular rings. The saturation of later morphology (pendular 

rings) is small and negligible compare to the saturation of trapped phase inside pores. 

Hence, we study the effect of wettability on the saturation of trapped phase inside pores. 

Wettability is one of the phenomena that affect the trapped phase saturation, but it 

is not the only phenomenon. For instance, the boundary conditions (e.g. number of pores 

available for the receding phase to exit the porous medium) also affect the trapped phase 

saturation. 

Effect of Number of Exit Pores on Trapped Phase Saturation 

We use a spherical pack with cube dimension to study the fluid flow through 

fractionally wet media. If more sides of the cube are open as exits, more pores are 

available for receding phase to exit. This must affect the trapped phase saturation. For 

instance, in our simulations of primary drainage, the oil phase enters from one side (side 
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1 Fig. 4.1) to the porous medium. The water phase can either exit from one side (side 4 

Fig. 4.1) or exits from five sides (all side except side 1, Fig. 4.1).  

Fig. 4.48 compares the drainage and imbibition curves for the fully water-wet 

medium which only one of its side open as exit side for the receding phase (red curve) 

with the fully water-wet medium which has five exit sides (blue curve). 
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Figure 4.48. Shows the difference in the trapped phase saturation at the end of drainage 
and imbibition for a water-wet medium with two different boundary 
conditions. The red curve shows the result for drainage/imbibition when 
only one side of the medium is open as an exit side. The blue curve shows 
the result for drainage/imbibition when five sides of the medium are open as 
the exit sides. 

Fig. 4.48 shows that as the number of sides open for exiting phase increases, the 

residual saturation for the water phase decreases. The same trend was observed by 

Behseresht et al. [20]. 
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Effect of Wettability on Trapped Phase Saturation 

In this section, we study the effect of wettability on the residual phase saturation. 

Hence, we keep the boundary condition consistence. In all simulation results below, only 

one side of the porous medium is available as the exit side. Fig. 4.49 shows the primary 

drainage curves for porous media with different fraction of oil-wet grains. The oil-wet 

grains have a contact angle of 150° and the water-wet grains have a contact angle of 30o. 

The water phase gets trapped when disconnected from the bulk phase. 
 

-2

0

2

4

6

8

10

12

0 0.2 0.4 0.6 0.8 1
Water Phase Saturation

C
ur

va
tu

re
 N

or
m

al
iz

ed
 b

y 
gr

ai
n 

ra
di

us

fully water-wet 12% oil-wet 25% oil-wet
37% oil-wet 50% oil-wet 62% oil-wet
75% oil-wet 87% oil-wet fully oil-wet

Increase in fraction of oil-wet grains

D
im

en
si

on
le

ss
 C

ur
va

tu
re

Water Phase Saturation

Fully water-wet 25% oil-wet
50% oil-wet

Fully oil-wet75% oil-wet
37% oil-wet

12% oil-wet

87% oil-wet
62% oil-wet

 

Figure 4.49. Comparison between primary drainage curves for the porous media with 
different fractions of oil-wet (θοw = 150o) grains distributed randomly among 
water-wet (θww= 30o) grains. The water phase gets trapped when 
disconnected from the bulk phase. 

Initially, the residual water saturation decreases when the fraction of oil-wet 

grains increases from 0% to 25%. Further increase in the fraction of oil-wet grains (i.e. 

from 25% to 100%) increases the residual water saturation. 
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The primary drainage curves shown in Fig. 4.49 correspond to only one 

realization of each fractionally wet medium. The position of the oil-wet grains affects the 

residual saturation of receding phase. As a result, the value of the residual receding phase 

saturation for a medium with specific fraction of oil-wet grains is a range, not an exact 

number. Fig. 4.50 compares the residual water phase saturation at the end of primary 

drainage for porous media with different fraction of oil-wet grains. 
 

R
es

id
ua

l W
at

er
 P

ha
se

 S
at

ur
at

io
n

Percentage of Oil-Wet Grains
 

Figure 4.50. Compares the residual water phase saturation at the end of primary drainage 
for porous media with different fraction of oil-wet (θοw = 150o) grains 
distributed randomly among water-wet (θww= 30o) grains. The marker 
' '○ shows the average value of the residual water saturation for primary 
drainage of different realization of fractionally wet media. The bar shows 
the maximum and minimum values for residual water saturation achieved 
for simulation of 10 realizations. 
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4.8. CONCLUSIONS 

We developed a grain-based and mechanistic model for oil/water displacement 

under capillary control in the fractionally wet media. This is done by generalizing the 

grain-based criteria previously developed for fully water-wet media (i.e. the Haines and 

Melrose criteria) to be used for fractionally wet media. A novel criterion (i.e. meniscus-

4th grain criterion) is proposed for the instability of a meniscus when the meniscus 

touches a grain located in front of it. We implemented and illustrated the model in a 

dense disordered packing of spheres, solving analytically for stable configuration of the 

meniscus held between grains of arbitrary and unequal contact angle. Using the model, 

we carried out drainage and imbibition simulations that yield a priori predictions of the 

grain-scale configurations of water/oil interfaces (menisci) within the fractionally wet 

porous medium. The predictions of macroscopic properties (e.g. P-S curve for imbibition 

and drainage) agree semi-quantitatively with experimental data. The experimental data 

and simulation result both show a nonlinear behavior between the position of P-S curves 

and fraction of oil-wet grains.  

The model allows an understanding and prediction of how pore-filling processes 

change as a function of the initial wetting state, the wettability of each grain and the 

fraction of each type of grain. We found that for a water-wet medium, the difference 

between P-S curves of primary and secondary imbibition is due to the existence of 

pendular rings during secondary imbibition which allows Melrose events to take place. In 

contrast, for primary imbibition, the meniscus-4th grain events are necessary to initiate 

imbibition, causing the imbibition to take place at a lower capillary pressure.  

For fractional wettability, the grain-based model of displacement has no criteria 

developed specifically for drainage or for imbibition. Instead, we developed generalized 

grain-based criteria for five types of pore/throat filling events. As a result, our model 
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unifies the simulation of drainage and imbibition processes. In this approach, the familiar 

hysteresis of the P-S curves between drainage and imbibition in uniformly wet media is 

due to the difference in the type of pore/throat filling events that occur during each part of 

the cycle. The only event that occurs during drainage of a fully water-wet medium is the 

generalized Haines drainage event. The main events that occur during imbibition of a 

fully water-wet medium are the generalized Haines imbibition and Melrose events. In 

contrast, all types of pore/throat filling events can occur during drainage and imbibition 

of fractionally wet media. Consequently, the unified grain-based model is the only 

mechanistic way to simulate capillary controlled displacement (i.e. drainage and 

imbibition) in fractionally wet media. 



 166

CHAPTER 5: CONCLUDING REMARKS 

We used a dense random sphere packing as a model of sediment. We 

geometrically modified this model sediment to simulate a rock forming process (i.e. 

isopachous quartz cementation). By simulating thick cement layers, we obtained a simple 

model for low porosity-low permeability rocks. We extracted a physically representative 

network from this rock model. Using this network to compute phase permeability, we 

quantified the effect in this simple model rock at very low saturations (less than 6% 

wetting phase) by considering the geometry of pendular rings and liquid bridges held at 

grain contacts and near-contacts. The rings/bridges reduce the area open to flow of gas 

phase. This reduces the effective radius of these throats and thus reduces the effective 

permeability to the gas phase. For small porosity, the rings/bridges can coalesce in throats 

as the wetting phase saturation increases, causing snap off of the gas phase. This reduces 

the connectivity of the gas phase and thus amplifies the reduction in effective 

permeability. Coalescence occurs much less often in model rocks of larger porosity. This 

difference contributes to the greater sensitivity of tight gas sandstones to water saturation. 

The model also provides a quantitative explanation for the disproportionately 

large reduction in gas permeability caused by injection of dry gas into a brine-saturated 

core. The salt precipitated from the initial brine saturation; builds porous obstructions 

corresponding to the locations of pendular rings/liquid bridges. In this manner a small 

volume of solid salt can obstruct a large enough volume of pore space to reduce 

permeability disproportionately. 

We also developed a grain-based, mechanistic model for oil/water displacement 

under capillary control in 2D and 3D fractionally wet media. We implemented and 

illustrated the model by solving analytically for the stable configuration of the meniscus 
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held between grains of arbitrary and unequal contact angle. We generalized the grain-

based criteria previously developed for fully water-wet media (i.e. Haines and Melrose 

criteria) to be used for fractionally wet media. We also developed a previously 

unrecognized criterion (i.e. meniscus-4th grain criterion) for instability of a meniscus 

when the meniscus touches a grain located in front of it. 

Our model of displacement has no criteria developed specifically for drainage 

events or for imbibition events. Instead, we developed generalized grain-based criteria for 

five types of pore/throat filling events. In any simulation of capillary controlled 

displacement, we simply check for the occurrence of each of the five pore/throat filling 

events. As a result, our model unified the algorithm for simulation of drainage and 

imbibition. That is, we have established a single modeling approach within which 

drainage and imbibition are special cases. In this approach, the familiar hysteresis of P-S 

curves between drainage and imbibition in uniformly wet media is due to difference in 

the type of pore/throat filling events that occur during each part of the displacement 

cycle. The only event that occurs during drainage of a fully water-wet medium is the 

generalized Haines drainage event and the main events that occur during imbibition of a 

fully water-wet medium are both generalized Haines imbibition and Melrose events. 

However, all types of pore/throat filling events can occur during drainage and imbibition 

of fractionally wet media. Consequently, use of the unified grain-based model is the only 

mechanistic way to simulate capillary controlled displacement (i.e. drainage and 

imbibition) in fractionally wet media. The criteria applied in fractionally wet porous 

media are not fundamentally different from criteria applied in mixed wet porous media. 

As a result, we expect that the grain-based approach should be well suite for modeling of 

capillary controlled displacement within mixed wet media, which are of great practical 

interest in petroleum engineering.
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APPENDIX A: TOROID APPROXIMATION FOR CALCULATING 

VOLUME AND CROSS-SECTION AREA OF PENDULAR 

RINGS/LIQUID BRIDGES 

In this section, we develop the numerical implication of toroid approximation for 

the calculation of volume and cross-section area of pendular rings. Fig. A.1 shows the 

schematic of a pendular ring that makes non-zero contact angle (θ) with grains. The radii 

of both grains equal R.  

r1

r2
θ

L

R R

h

wetting phase

grain

O’O

Op

μϕ
γ

N

 

Figure A.1. Schematic of a toroidal liquid bridge of the wetting phase between two grains 
with radius R. The contact angle between the pendular ring and grains is θ. 
The vertices O and O’ correspond to the sphere centers. Line /OO  that joins 
the sphere centers is the axis of symmetry for the liquid bridge. For the 
toroid approximation, the surface of the liquid bridge has radii of curvature 
r1 and r2. The grain centers are separated by distance 2h. Point N is the 
equidistance from grain centers. 
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Geometry of pendular rings/liquid bridges depends on the geometry of grains (e.g. 

radii of grain, R, distance between the grains center, (2h), and the wettability of grains 

(contact angle, θ). The geometry of pendular rings/liquid bridges will be known if the 

values of radii of curvature (r1 and r2) are calculated. From definition of mean curvature, 

we can write 

 
1 2

1 1 C
r r

− = .                                                                                        (A.1) 

We also write cosine rule for triangle POO N  

 ( ) ( )2 2 2 2 2
1 1 1 12 cos 2 cosL R r Rr R r Rr= + − π − θ = + + θ .                (A.2) 

Another form of Eq. A.2 can be express as 

 ( )2 2
1 12 cosL R r Rr= + + θ .                                                                (A.3) 

From trigonometry of triangle POO N , we can write 

  ( )22 2
1 2h r r L+ + = .                                                                            (A.4) 

Substituting Eq. A.1 and A.3 in Eq. A.4 results in a cubic equation. 

 3
2 2 0r pr q+ + = .                                                                             (A.5) 

Eq. A.5 has three real roots if 0
3 2
p q⎛ ⎞ ⎛ ⎞+ <⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
, where 

 
23

3
n mp −

= , 

 
32

27 3
m mnq t= + − , 

 
( ) ( )2 2 2 cosC h R R

n
C

θ− −
= , 

 
3m
C

= , 

 
2 2h Rt

C
−

= . 

When two grains touch, then the value of h (half length between grains center) and the 

value of R (radii of grains) are equal. As a result, r2 has only one positive root which it 
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exists for all value of curvature. In contrast, r2 has two positive roots, when there is gap 

between grains constructing the edge holding the liquid bridge. In addition, for each gap 

size, there is maximum value of curvature in which r2 has at least one positive root. The 

liquid bridge at curvature higher than this critical curvature is not stable and will be 

ruptured. When r2 has two positive roots, we choose larger value of r2. Larger value of r2 

yields to smaller surface area to volume ratio and is favorable thermodynamically.  

In summary, we calculate value of r2 from Eq. A.5, value of r1 from Eq. A.1, and 

value of L from Eq. A.3. From these values, we can calculate the value of filing (ϕ) angle 

of the rings/bridges. The rings/bridges filling angle ϕ, is the angle between the line 

connecting the two grains centers of the edge (line /OO  in Fig. A.1) and line connecting 

a center of grains and the point that pendular ring touch the grains. From trigonometry of 

triangle POO N , the rings/bridges filling angle ϕ equals to 

 ϕ μ γ= − , 

where 

 1 1 2sin r r
L

μ − +⎛ ⎞= ⎜ ⎟
⎝ ⎠

, 

 
2 2 2

1 1cos
2

R L r
RL

γ − ⎛ ⎞+ −
= ⎜ ⎟

⎝ ⎠
. 

These values define the geometry of the pendular rings/liquid bridges. Now, we can 

calculate the cross-section area and volume of the rings/ bridges from their geometry.   

A.1.CROSS-SECTION AREA 

The cross-section area of rings/bridges is calculated based on the value of 

rings/bridges filling angle, radii of curvature (r1 and r2), grain radius (R), and the distance 

between two grains center (2h). 

 ( ) 2 2
1 2 1 2

Area r r h R r πϕ ϕ⎡ ⎤⎛ ⎞= + − − −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
. 



 171

A.2.VOLUME 

In order to calculate the volume of a pendular ring, we calculate volume of a solid 

revolution of surface of the rings/bridges around axis of /OO . We calculate this volume 

by integration using method of cylindrical shells [65]. Gvirtzman and Roberts [85] use 

this method to calculate volume and surface area of pendular rings (i.e. h=R). We 

extended this method to calculate the volume of the pendular rings/liquid bridges when 

there is gap between grains holding the liquid bride (i.e. h>R) or when two grains overlap 

(i.e. h<R). The volume of pendular rings/liquid bridges is calculated from Eq. A.6 if 

h R≥  and it is calculated from Eq. A.7 if h<R. 

If h R≥ : 

( ) ( ) ( )( )
33 2

3 2 2
1

cos
4 1 cos sin sin cos ,

3 2 3 2 2
h RR R h avolume R a h R r

ϕ ππ ϕ ϕ ϕ ϕ ϕ
⎡ ⎤− ⎛ ⎞⎛ ⎞= − + + − − − + −⎢ ⎥⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎢ ⎥⎣ ⎦

                                                                                                                                       (A.6) 

if h R< : 

( ) ( )( )
33

2 2 2
1

coscos4 cos sin cos ,
6 2 3 3 2 2

h Rh h R avolume R R a h R r
ϕϕ ππ ϕ ϕ ϕ ϕ

⎡ ⎤− ⎛ ⎞⎛ ⎞ ⎛ ⎞= + − + − − − + −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎢ ⎥⎣ ⎦

                                                                                                                                       (A.7) 

where 1 2a r r= + , r1 and r2 are radii of curvature, j is the filling angle of the ring/bridge, 

and h is half length between grains center. 
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APPENDIX B: EFFECT OF GRAIN SURFACE ROUGHNESS 

In this appendix, we study the effect of grain surface roughness on the effect of 

low wetting phase saturation held in the rings/bridges on the non-wetting phase 

permeability (see Chapter 2). 

The grain surface in real rocks is rough, creating nooks and crannies that can be 

occupied by wetting phase. In our model (see Chapter 2) grains are smooth spheres and 

thus we neglect the contribution of this wetting phase morphology. In this appendix, we 

evaluate the contribution of this form of wetting phase, combining our model with the 

ideas of Moulu et al. [151]. We anticipate that the small cavities on the rough surface 

contribute little to gas flow, so filling them with wetting phase affects saturation but not 

gas phase permeability.  

Moulu et al. [151] present a fractal model for the roughness of pore walls (grain 

surfaces). The fractal dimension DL is a measure of roughness. During a drainage 

experiment the effect of roughness on the wetting phase becomes most pronounced near 

the drainage endpoint. Thus the fractal dimension can be estimated from the drainage 

curve at low Sw (Moulu et al.): 

 
1

2LD
c wP S

⎛ ⎞
⎜ ⎟

−⎝ ⎠∝ .                                                                                                       (B.1) 

Our simulated capillary pressure curve for low Sw, Fig. 2.8, is re-plotted as 

curvature versus wetting phase saturation on log-log scales in Fig. B.1. All the curves 

have slopes smaller than 0.6.  
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Figure B.1. Capillary pressure (divided by interfacial tension to yield curvature) exhibits 
a power law dependence on wetting phase saturation in our model rocks. 
The exponents have magnitudes between 0.53 and 0.6, corresponding to 
fractal dimension DL between 0.1 and 0.34. 

We use Eq. B.1 to estimate the DL for our simulation result. The maximum value 

for DL for our model rocks is small, about 0.34. Small values would be expected since the 

models have smooth grains.  

Moulu et al. [151] also calculate the effective gas permeability using fractal 

dimension of medium, DL:  
4

1
2

max 1 LD
rg rg Lk k S

⎛ ⎞
⎜ ⎟

−⎝ ⎠
⎛ ⎞
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

.                                                                                (B.2) 
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Figure B.2. As fractal dimension increases corresponding to increasingly rough grain 
surfaces, Eq. B.2 predicts that gas relative permeability is less sensitive to 
small saturations of water. We assume krg,max = 1 for all curves. At a fractal 
dimension of 1.7, which corresponds to a strongly water-wet rock [151], the 
gas phase permeability is almost independent of water saturation for Sw<0.1. 
This indicates that the pore space associated with surface roughness in this 
rock makes a negligible contribution to the gas phase permeability. Thus, 
when water occupies that pore space, it contributes to Sw but does not 
change krg. For comparison, a fractal dimension 0.334 corresponds to our 
high porosity model rock; Eq. B.2 predicts greater sensitivity to low Sw than 
observed in experiments or predicted by our model.  

Fig. B.2 compares the gas relative permeability curves computed from Eq. B.2 for 

porous media with different fractal dimension. Moulu et al. [151] report DL of 1.7 for a 

strongly water-wet rock. The weak dependence of krg / krgmax on Sw at low Sw for this value 

of fractal dimension makes intuitive sense. Very rough surfaces can have a substantial 

volume of pore space associated with the surface, even though the characteristic length 

scale for the surface roughness is too small to make a substantial contribution to flow. 

Thus, filling the associated pore space with the wetting phase increases Sw without 
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altering krg. This treatment of surface roughness supports our conclusion that the volume 

of wetting phase held as pendular rings and liquid bridges is the cause of reduced gas 

phase permeability at low Sw. 

As indicated in Fig. 2.10, our model predicts greater sensitivity to low Sw than 

observed in tight gas sandstones. Accounting for surface roughness would improve the 

prediction. At any given curvature the value of Sw would be greater than in our model, 

because the volume associated with “nooks and crannies” would be added to the volume 

of pendular rings. But only the pendular rings affect pore throat hydraulic conductance 

and thus gas phase permeability. Thus the slope of krg vs. Sw would be less steep. 
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APPENDIX C: STABILITY AND POSITION OF MENISCI WITHIN 

FRACTIONALLY WET POROUS MEDIA 

C.1. STABILITY OF A MENISCUS (HAINES CRITERION) 

In this appendix, we find an analytical solution for the position of the stable 

meniscus on a two-dimensional fractionally wet throat. The fractionally wet throat is 

composed of two disks with arbitrary radii. The intersections of the meniscus with the 

disks are forced to be at the contact angle of each surface. The contact angles can be 

varied from 0o to 180o. For a meniscus with constant curvature, the geometry of the 

meniscus is defined by the center of the meniscus (x0, y0), the radius of meniscus, and the 

intersections with the solid surface. The geometry of meniscus is calculated based on the 

geometry of disks forming the fractionally wet throat. Since the geometry of these disks 

is known, the position of center of each disks (e.g. x1, y1), the radius of each disks (R1, 

R2), and the gap width (D) between two disks are also known. In addition, the contact 

angle between each disk and the meniscus (θ1,θ2) is also pre-defined. Thus, we assume in 

the two dimensional media, the meniscus with constant curvature is the arc of circle with 

radius equal to reciprocal of mean curvature. Together, these constraints yield a 

trigonometry problem to be solved for the center of meniscus. 

Fig. C.1. shows the schematic of a meniscus positioned on the fractionally wet 

throat. The point O is the center of the meniscus, and the center of disk 1 and disk 2 are 

O1 and O2 respectively. r is the radius of the meniscus. L1 and L2 are the distance of the 

center of meniscus from the center of disk 1 and disk 2 respectively. P1 and P2 are the 

contact point of the meniscus with the disk 1 and disk 2 respectively.  
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Figure C.1. Schematic of a meniscus (blue) with radius of r, located on two disks with 
different contact angle (θ1,θ2). The disks have different radii (R1, R2). L1 and 
L2 are distance of center of meniscus from center of disk 1 and disk 2 
respectively. P1 and P2 are the contact point of the meniscus with the disk 1 
and disk 2 respectively.  

The first step is to find the criteria for the stability of the meniscus. We write 

cosine rule for triangle 1 1O PO  

  ( ) ( )2 2 2 2 2
1 1 1 1 1 1 12 cos 2 cosL R r R r R r R r= + − π − θ = + + θ ,                (C.1) 

another form of Eq. C.1 can be expressed as 

  ( )2 2
1 1 1 12 cosL R r R r= + + θ .                                                    (C.2) 

Now we write cosine rule for triangle 2 2O P O  

  ( ) ( )2 2 2 2 2
2 2 2 2 2 2 22 cos 2 cosL R r R r R r R r= + − π − θ = + + θ ,                (C.3)  

  ( )2 2
2 2 2 22 cosL R r R r= + + θ .                                                    (C.4) 

Eq. C.2 and C.1 express the distance between centers of meniscus to the center of the 

disks based on the radii of the disks, radius of meniscus, and the contact angle each disk 
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makes with the meniscus. If the meniscus is stable on the fractionally wet throat, there 

exists a center for a meniscus. As a result, the triangle 1 2O O O  which connecting center 

of disks to the center of meniscus exists. The cosine rule for triangle 1 2O O O  leads to 

  ( )2 2 2
1 2 1 2 1 22 cosD R R L L L L+ + = + − ϕ ,                                                 (C.5) 

where ϕ is the angle between line 1OO and 2OO . L1 and L2 are the length of lines 

1OO and 2OO  respectively. Re-working of the right-hand side of Eq. C.5 leads to  

  ( ) ( ) ( )22 2
1 2 1 2 1 2 1 2 1 22 2 1 cos 2 1 cosL L L L L L L L L L+ − + − ϕ = − + − ϕ .       (C.6) 

As a result the Eq. C.5 can be written as 

  
( ) ( )2 2

1 2 1 2

1 2

1 cos
2

D R R L L
L L

+ + − −
− ϕ = .                                                 (C.7) 

The Eq. C.7 leads to criterion for stability of the meniscus located on the fractionally wet 

throat. Since cosϕ  is bounded between -1 and 1, therefore 1 cos− ϕ  is bounded between 

0 and 2. As a result the Eq. C.7 leads to the inequality of  

  
( ) ( )2 2

1 2 1 2

1 2

0 2
2

D R R L L
L L

+ + − −
≤ ≤ .                                                      (C.8) 

Inequality C.8 can be simplified by taking into account the trigonometry of triangle 

1 2O O O . In triangle 1 2O O O , the length of one side, 1 2O O , is bigger or equal to the 

difference between the length of two other sides ( 1OO  and 2OO ). In other words, 

( ) ( )1 2 1 2D R R L L+ + ≥ − . In addition the length of each side is positive 

(i.e. 1 20, 0L L≥ ≥ ). This consideration leads to  

  
( ) ( )2 2

1 2 1 2

1 2

0
2

D R R L L
L L

+ + − −
≥ .                                                            (C.9)  

The lower limit of Eq. C.9 occurs when value of ϕ equals to zero. This situation occurs 

when the curvature of the meniscus equals to zero. As a result, the center of the meniscus 

has a distance of infinity relative to the center of disk 1 and disk 2. Consideration of Eq 

C.9 simplifies the inequality of C.8 to  
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( ) ( )2 2

1 2 1 2

1 2

2
2

D R R L L
L L

+ + − −
≤ .                                                          (C.10) 

If the criterion of Eq. C.10 is satisfied, then the meniscus is stable on the fractionally wet 

throat. The upper limit of Eq. C.10 occurs when value of ϕ equals to 180o, and arises 

when the center of the meniscus (O) is located on the line 1 2O O . In this situation, the 

meniscus is unstable and the Haines’ jump occurs. Fig. 4.6b and Fig. 4.7b are example of 

this situation. 

In the next step, we calculate an important geometrical parameter, such as filling 

angles for the meniscus (i.e. β1, β2 ). The filling angle is the angle between the line 

connecting the contact point of a meniscus and a disk to the center of the disk and the line 

connecting two centers of the disks composing the throat holding the meniscus. The line 

connecting two disks center refers to throat line in this text 

  1 1 1β = μ − γ , 

  2 2 2β = μ − γ ,                                                                                         

where 

( ) ( )
( )

2 2 2
1 2 2 1

1
1 2 1

cos
2

D R R L L
D R R L

+ + − +
μ =

+ +
, ( ) ( )

( )

2 2 2
1 2 1 2

2
1 2 2

cos
2

D R R L L
D R R L

+ + − +
μ =

+ +
,    

 ( )
2 2 2

1 1
1

1 1

cos
2

R r L
R L

− +
γ = ,         ( )

2 2 2
2 2

2
2 2

cos
2

R r L
R L

− +
γ = .              

Eq. C.10 is a general criterion for any two disks with different contact angles and 

different radii. We illustrate it for two specific cases that are frequently observed in the 

fractionally wet medium. First, we study the stability of a meniscus located on a water-

wet throat. Fig. C.2 shows the schematic of a meniscus positioned on two disks of equal 

size (R1=R2=R) with zero contact angles θ1=θ2=0 ◦. 
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Figure C.2. Schematic of a meniscus (blue) with radii of r, located on two disks with zero 
contact angles (θ1=θ2= 0). The disks have same radius (R1=R2=R) and are 
separated by a gap of width D. 

The main difference between Fig. C.2 and Fig. C.1 is the position of the contact 

point between the meniscus and disks (points p1, and p2). In the Fig. C.2, the point p1 and 

p2 located on line 1OO and 2OO  respectively. As a result, all triangles merge to only one 

triangle ( 1 2O O O ). In Fig. C.2, the distances from center of each disk to the center of 

meniscus are equal: 

  1 2= = +L L r R ,                                                                             (C.11) 

and substituting Eq. C.11 in the Eq. C.10 simplifies the criterion for a meniscus to be 

stable on the water-wet throat. The Eq. C.12 is the criterion for stability of a meniscus on 

the water-wet throat. 

  ( ) ( )2 22 4D R R r+ ≤ + ,                                                                       (C.12) 

The Eq. C.12, can be simplified more to Eq. C.13.   

  
2
Dr ≥ .                                                                                                 (C.13) 
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Eq. C.13 defines a minimum radius of the stable meniscus for a given gap width D. In 

Fig. C.2 the meniscus will be stable if the radius of meniscus is bigger than half of the 

gap. Thus, as soon as the radius of the meniscus becomes smaller than half of the gap 

width, the meniscus becomes unstable, and a Haines’ jump occurs. 

Fig. C.3 shows the stable and unstable value for the radius of meniscus located on 

the water-wet throat composed of two equal size disks. In the Fig. C.3, the minimum radii 

of the stable menisci are plotted versus half the gap size of water-wet throats. The radii of 

menisci and gap size are normalized to the radii of the disks. The data points in the Fig. 

C.3 are computed from Eq. C.10. These data points create a straight line with slope of 1 

and intercept of zero. As a result, this line represents the Eq. C.13. 

slope=1

Unstable Region

Stable Region

 

Figure C.3. Stable and unstable values for radii of menisci located on the water-wet throat 
composed of two equal size disks. The area above the blue line is the region 
of stable menisci. The area below the blue line is the region of unstable 
menisci. The slope of blue line is one and its intercept is zero. 
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The other specific case of interest is when two disks have the same radii and 

opposite wetting preference. These two disks form a fractionally wet throat. Fig. C.4 

shows the schematic of a meniscus positioned on two disks of equal size with 0ο and 

180◦ contact angles (θ1 =0◦, θ2 =180° ). 

 

Figure C.4. Schematic of a meniscus (blue) with radii of r, located on two disks with zero 

and 180° contact angles (θ1 =0, θ2 =180◦). The disks have same radius 
(R1=R2=R). 

In Fig. C.4, the distances from the center of the meniscus to the center of disk 1 and disk 

2 are L1 and L2, where 

 1 2,L r R L r R= + = − .                                                                        (C.14) 

Substituting Eq. C.14 in to Eq. C.10 leads to  

 2 2D R r+ ≤ .                                                                                        (C.15) 

Eq. C.15 can be re-arranged to  

 
2
Dr R≥ + .                                                                                           (C.16) 

Eq. C.16 defines a minimum radius of the stable meniscus for a given gap width D. In 

Fig. C.4 the meniscus will be stable if the radius of the meniscus is bigger than the 
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summation of half of the gap size and the radius of the disk. Comparing the inequality of 

C.16 and C.13 shows that the minimum radius of the stable meniscus located on the 

fractionally wet throat is bigger than the minimum radius of the stable meniscus located 

on the water-wet throat. Both throats have the same size gap of D. In addition, the radius 

of meniscus and the curvature of meniscus are inversely proportional. Therefore, the 

meniscus located on fractionally wet throat will be unstable at lower curvature compare 

to the meniscus located on water-wet throat. 

slope=1

Unstable 
Region

Stable 
Region

 

Figure C.5. Stable and unstable values for radii of menisci located on the fractionally wet 
throat composed of two equal size disks with zero and 180° contact angles 
(θ1=0, θ2=180o). The area above the blue line is the region of stable menisci. 
The area below the blue line is the region of unstable menisci. The slope of 
blue line is one and its intercept is one. 

Fig. C.5 shows the stable and unstable value for the radius of meniscus located on 

the fractionally wet throat composed of two equal size disks with zero and 180° contact 

angles (θ1= 0, θ2=180◦). In Fig. C.5, the minimum radii of stable menisci are plotted 
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versus half the gap size of fractionally wet throats. The radii of menisci and the gap size 

are normalized to the radius of disk. The data points in the Fig. C.5 are computed from 

Eq. C.10. These data points create a straight line with slope of one and intercept of one. 

As a result, this line represents the Eq. C.16. Comparing Fig. C.5 and Fig. C.3 shows that 

the region of stable menisci located on the fractionally wet throats is much smaller than 

the region of stable menisci located on water-wet throats. 

 

Figure. C.6. Surface of minimum radii of stable menisci at different gap size of 
fractionally wet throats. The fractionally wet throats are composed of two 
equal size disks, where the contact angle of disk 1 and menisci remains 
constant at zero degree (θ1= 0 ο) and the contact angle of disk 2 and menisci 
varies between 0 and 180o ( 20 180θ≤ ≤ ). The region above the plotted 
surface is the region of stable menisci. The region below the plotted surface 
is the region of unstable menisci.  
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To generalize Fig. C.3 and Fig. C.5, we calculate the minimum radii of stable 

menisci for throats composed of two equal size disks, where the contact angle of disk 1 

and menisci remains constant at zero degree (θ1= 0 ο) and the contact angle of disk 2 and 

menisci varies between 0 and 180o ( 20 180θ≤ ≤ ). Fig. C.6 shows the surface of 

minimum radii of stable menisci at different gap size of throats described above. The 

radii of menisci and the gap size are normalized by the radius of disk. The data points in 

the Fig. C.6 are computed from Eq. C.10. In the Fig. C.6, the region above the plotted 

surface is the region of the stable menisci. The region below the plotted surface is the 

region of the unstable menisci.  

C.2. POSITION OF A MENISCUS 

In two dimensional media, we represent the meniscus with the arc part of a circle. 

The geometry and position of a meniscus is defined by the radius of the meniscus and the 

coordination of center of the meniscus. In the Fig. C.1, the point O is the center of the 

stable meniscus located on a fractionally wet throat. The coordination of point O is (x0, 

y0). The equation for the length of line 1OO and 2OO is represent by Eq. C.17 and C.18 

respectively.  

  ( ) ( )2 2 2
1 0 1 0 1x x y y L− + − = ,                                                           (C.17) 

  ( ) ( )2 2 2
2 0 2 0 2x x y y L− + − = .                                                           (C.18) 

In the Eq. C.17 and C.18, L1 and L2 are the length of line 1OO and 2OO  respectively. The 

(x1, y1) and (x2, y2) are the coordinate of center of disk 1 (O1) and center of disk 2 (O2) 

respectively. The values of L1 and L2 are calculated from Eq. C.2 and C.4. Since, the 

position of two disks is known, the value of (x1, y1) and (x2, y2) are known. Therefore, in 

order to find the coordinate of center of the meniscus, we solve system of Eq. C.17 and 

C.18. As a result, the coordinate of the center of meniscus equals to: 
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2

0 2 2
p px q⎛ ⎞= − ± −⎜ ⎟

⎝ ⎠
,                                                                    (C.19) 

  0 0y B Ax= − .                                                                                   (C.20) 

The parameters p, q, A and B used in Eq. C.19 and C.20, are defined as below 
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C.3. STABILITY OF TWO ADJACENT MENISCI (MELROSE CRITERION) 

In this section, we develop the numerical implementation of Melrose event 

described in Chapter 3. We consider two menisci at adjacent throats in a single pore. To 

develop the numerical implementation of the Melrose event, we consider a uniformly wet 

pore, shown in Fig. C.7. The pore has three uniformly wet throats. In Fig. C.7, originally 

two menisci are located at adjacent throats (throat 1 and throat 2). The throat 1 is 

composed of disk 1 and disk 2, and represent by line 1 2O O  in the Fig. C.7. The throat 2 is 

composed of disk 1 and disk 3, and represent by line 1 3O O  in the Fig. C.7. In the Fig. 

C.7a, the points p1 and p2 are point contact between meniscus 1 and meniscus 2 with disk 

1. β1 and β2 are the filling angle of meniscus 1 and meniscus 2 respectively. The value of 

the filling angle of a meniscus is calculated based on the geometry of disks and the 

geometry of meniscus (see section C.1 for more details) 
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Figure C.7. Two menisci are located at adjacent throats (throat 1 ( 1 2O O ) and throat 2 

( 1 3O O )). The menisci and grains make zero contact angles. β1 and β2 are the 
filling angle of meniscus 1 and meniscus 2 respectively. (a) The points p1 
and p2, contact points between meniscus 1 and meniscus 2 with disk 1, are 
distinct. As a result, two menisci are separated by angle α. (b) Points p is the 
contact point between meniscus 1, meniscus 2 and disk 1. The angle α equal 
zero. Two menisci merge and become a single meniscus. This situation 
results in occurrence of the Melrose event. 

 In order to develop Melrose criterion, we calculate the angle α. Angle α is the 

angle between lines connecting center of disk 1 to the contacting points (p1 and p2). The 

value of angle α equal to  

 ( )1 2 3 1 2o o oα β β= − + .                                                                      (C.21) 

The angle 1 2 3o o o is the angle between line 1 2O O  and line 1 3O O . We calculate this 

angle based on the coordinate of center of disk 1, disk 2, and disk 3. If the value of angle 

α is bigger than zero, then two menisci are two separated interfaces. When value of angle 

α reaches to zero, then two menisci merge to a single meniscus. This situation is unstable 

and the meniscus leave disk 1. As a result of this instability the Melrose event occurs and 

a pore will be filled with invading fluid. 
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The same principles developed in this section also apply to fractionally wet 

throats. Fig. C.8. shows the stage of a Melrose event within a fractionally wet pore. In 

Fig. C.8, two menisci are located at adjacent throats (throat 1 and throat 2). The throat 1 

is composed of disk 1 and disk 2, and represent by line 1 2O O  in the Fig. C.8. The throat 2 

is composed of disk 1 and disk 3, and represent by line 1 3O O  in the Fig. C.8. In the Fig. 

C.8a, the points p1 and p2 are point of contact between meniscus 1 and meniscus 2 with 

disk 1. β1 and β2 are the filling angle of meniscus 1 and meniscus 2 respectively. In Fig. 

C.8b, the point contacts between menisci and grains are merged to the one point (p). As a 

result, the angle α equal zero. Two menisci merge and become a single meniscus. This 

situation is unstable and the meniscus leave disk 1. 

water

Oil

Oil

O3

O2

p1β1

β2 p2αO1 water

Oil

Oil

O3

O2

p1β1

β2 p2αO1 water

Oil

Oil

O3

O2

p
β1

β2

O1 water

Oil

Oil

O3

O2

p
β1

β2

O1

(a)                                      (b)  

Figure C.8. Two menisci are located at adjacent throats (throat 1 ( 1 2O O ) and throat 2 

( 1 3O O )). The menisci and water-wet grains make zero contact angles and 

the menisci and oil-wet grains make 180o contact angles. β1 and β2 are the 
filling angle of meniscus 1 and meniscus 2 respectively. (a) The points p1 
and p2 (contact points between meniscus 1 and meniscus 2 with disk 1) are 
distinct. As a result, two menisci are separated by angle α. (b) Points p is the 
contact point between meniscus 1, meniscus 2 and disk 1. The angle α equal 
zero. Two menisci merge and become a meniscus. This situation results in 
occurrence of the Melrose event. 
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APPENDIX D: VISUALIZATION OF MENISCI MOTION WITHIN 

FRACTIONALLY WET POROUS MEDIA 

In this appendix, we illustrate the menisci motion within the uniformly wet and 

fractionally wet porous media. For visualization purposes, we use a small porous medium 

composed of twelve equal size disks (Fig. D.1 and Fig. D.10). The disks cannot overlap 

but otherwise are randomly located. To facilitate the movement of water and oil through 

the network, we create an oil-wet membrane made of smaller sized oil-wet disks on the 

right hand side, and a similar water-wet membrane on the left hand side of the porous 

medium (Fig. D.1 and Fig. D.10). We use a Delaunay tessellation of the disks centers to 

subdivide the pore space into pores and throats. In the Fig. D.1, the pores are represented 

by the space in each triangle, where the disks do not exist. The throats are represented by 

a line connecting two disks.  
     

 oil-wet membranewater-wet membrane 

 

Figure D.1. Schematic of a water-wet porous medium at the beginning of primary 
drainage. The porous medium is filled with the water phase (blue). The oil 
phase (white) is connected to the oil-wet membrane. 
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D. 1. MENISCI MOTION IN A WATER-WET POROUS MEDIUM 

First, we present the menisci motion during primary drainage and secondary 

imbibition of a water-wet porous medium. During primary drainage, we increase the 

applied curvature (dimensionless capillary pressure). As a result, the oil phase invades to 

the porous medium from the right hand side and pushes the water out of the porous 

medium from the left hand side. Consequently, the fluid/fluid interfaces (menisci) move 

from right to left. We simulate the menisci motion using the invasion percolation 

algorithm (see the Chapter 3 for more details). At beginning of primary drainage, the 

porous medium is filled with the water phase (Fig. D.1) and the oil phase is connected to 

the oil-wet membrane. Moreover, the curvature is smaller than zero. As a result, the oil-

wet membrane is filled with water phase. During primary drainage, we increase the 

curvature in small increments then computing the stable menisci locations in all pores 

(Fig. D.2a). 
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Figure D.2. (a) Schematic of a water-wet porous medium and fluid/fluid interfaces 
(menisci) during primary drainage. The dimensionless curvature of the 
interface equals 2.6. (b) Change of the water phase saturation versus change 
of applied curvature from value of -2 to 2.6. 
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Fig. D.2a shows the location of fluid/fluid interfaces (menisci) within the porous 

medium, when the applied curvature equal to 2.6. Fig. D.2b shows change of water phase 

saturation versus change of applied curvature from value of -2 to 2.6. In Fig. D.2b, the 

value of water phase saturation (Sw) equal to the volume of pores completely filled with 

water phase divided by the total volume of the porous medium. As a result, Sw does not 

change until a pore-filling event (e.g. Haines event) occurs. Hence, the movement of a 

meniscus on a throat does not change the Sw in the Fig. D.2b until a pore-filling event 

occurs. 
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Figure D.3. (a) Schematic of a water-wet porous medium and fluid/fluid interfaces 
(menisci) during primary drainage. The dimensionless curvature of the 
interface equals 7.8. The value of curvature is normalized by radius of disks 
composing the porous medium. The pores highlighted by red triangles are 
filled by the oil phase, whereas they were filled with water phase in the Fig. 
D.2a. (b) Change in the water phase saturation with change in the applied 
curvature from value of -2 to 7.8. Two red circle highlight the Sw change 
correspond to filling event of two pores highlighted in Fig. D.3a. 

During drainage, as the applied dimensionless capillary pressure increases, the 

curvature of menisci increases. The oil phase advances toward the center of pores 

candidate for invasion, but no pore-filling event (i.e. Haines event) occurs until menisci 

passes through the biggest throats available. The candidate pores for invasion are pores in 
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which at least one of their throats holds a meniscus. Fig. D.3a, highlight the only two 

pores filled by the oil phase (red triangles), while the applied curvature increase from 2.6 

to 7.8. In the Fig. D.3b, two red circles highlight the Sw change which corresponds to 

filling events of two pores highlighted in Fig. D.3a.  

The drainage process can continue until the drainage end point where most of the 

water phase exists in the form of trapping phase (Fig. D.4). The trapped water phase 

exists in two morphologies: water phase trapped in a cluster of pores, or water phase 

trapped in a throat. After the water phase is trapped in a throat (box A and B in the Fig. 

D.4a) or cluster of pores, the trapped water phase gets disconnected from the bulk fluids 

and its corresponding menisci become frozen. As a result, the curvatures of menisci 

remain constant throughout the rest of primary drainage. 
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Figure D.4. (a) Schematic of a water-wet porous medium and fluid configuration at 
drainage end point. The dimensionless curvature of the interface equals 
13.8. The red boxes (box A and B) highlight the trapped water phase in a 
throat. The trapped water phase in the pores is indicated by red arrows. (b) 
Change in the water phase saturation with change in the applied curvature 
from value of -2 to 13.8.  
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The secondary imbibition starts from the drainage end point. During secondary 

imbibition, we decrease the applied curvature (dimensionless capillary pressure). As a 

result, the water phase invades to the porous medium from the left hand side and pushes 

the oil phase out of the porous medium from the right hand side. Consequently, the 

fluid/fluid interfaces (menisci) move from left to right.  

During imbibition of a water-wet medium, the pore-filling events occur only 

when two or more menisci come into contact and merge to form a single meniscus 

(Melrose event). Fig. D.5a and Fig. D.5b shows the fluid configuration before and after a 

Melrose event occurs. The red box A highlights the pore in which the Melrose event 

occur within. As the two menisci touch (Fig. D.5a), they become unstable and merge into 

a single meniscus. As a result, the corresponding pore is filled with the water phase and 

the meniscus locates on a new pore throat (Fig. D.5b). 
 

AAAA

(a)                                         (b)  

Figure D.5. Schematic of a water-wet porous medium and fluid/fluid interface (menisci) 
during secondary imbibition. (a) The fluid configuration before the Melrose 
event: Two menisci touch inside a pore highlighted by the red box. (b) The 
fluid configuration after the Melrose event: a pore highlighted by the red 
box is filled with a water phase and a meniscus locates on a new pore throat. 
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During secondary imbibition, the trapped water phase can be reconnected to the 

bulk water phase. As a result, the menisci which correspond to the trapped water phase 

get unfrozen, and their curvatures adjust to the applied curvature. Fig. D.6a and Fig. D.7a 

show configuration and location of menisci before and after reconnection of the trapped 

water phase to the bulk water phase. In Fig. D.6a, the red box A highlights two pores in 

which a Melrose event occurs within. The two pores fill with water phase consequent of 

Melrose event. As a result of this pore-filling event, the trapped water phase connects to 

the bulk water phase. The red box B in Fig. D.6a highlights a frozen meniscus 

corresponded to trapped water phase. The curvature of this frozen meniscus is higher than 

applied curvature. The curvature of the meniscus adjusts to applied curvature after the 

trapped phase reconnects to the bulk water phase (Fig. D.7a red box B).  
 

A
B

(a)                                         (b)

D
im

en
si

on
le

ss
 C

ur
va

tu
re

Water Phase Saturation

 

Figure D.6. (a) Schematic of a water-wet porous medium and fluid/fluid interfaces 
(menisci) during secondary imbibition. The dimensionless curvature of the 
interface equals 3.6. The red box A highlights two pores in which a Melrose 
event occur within. The red box B highlights a frozen meniscus 
corresponded to the trapped water phase (b) Change of water phase 
saturation versus change of applied curvature for the primary drainage and 
the secondary imbibition. In the secondary imbibition the value of the 
curvature changed from 13.8 to 3.6. 
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The red circle in Fig. D.6b shows the value of Sw before reconnection of the 

trapped phase to the bulk water phase occur, while the red circle in Fig. D.7b shows the 

value of Sw after the trapped phase reconnects to the bulk water phase. 
 

BB

(a)                                         (b)
D

im
en

si
on

le
ss

 C
ur

va
tu

re
Water Phase Saturation

 

Figure D.7. (a) Schematic of a water-wet porous medium and fluid/fluid interfaces 
(menisci) during secondary imbibition. The dimensionless curvature of the 
interface equals 3.4. The red box B highlights a meniscus in which get 
unfrozen after reconnection of trapped water phase to bulk water phase (b) 
Change in the water phase saturation with change in the applied curvature 
for primary drainage and secondary imbibition. In the secondary imbibition 
the value of the curvature changed from 13.8 to 3.4. 

As we decrease the applied curvature (from 3.4 to 0.8), the menisci advance 

towards the candidate pores for invasion, however no pore-filling event occurs. At the 

curvature of 3.4, three menisci merge and become unstable (Fig. D.8a). As a result, 

Melrose events occur and porous medium (exclude oil-wet membrane) is completely 

filled with the water phase (Fig. D.9a). The red box in the Fig. D.8b shows that the water 

phase saturation (Sw) does not change while the applied curvature decreases from 3.4 to 

0.8. The unchanged Sw shows that no pore-filling event occurs. The red circles in the Fig. 

D.9b shows the value of Sw after the Melrose events occur and the porous medium is 

completely filled with the water phase. 
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Figure D.8. (a) Schematic of a water-wet porous medium and fluid/fluid interfaces 
(menisci) during secondary imbibition. The dimensionless curvature of the 
interface equals 0.8. (b) Change in the water phase saturation with change in 
the applied curvature for primary drainage and secondary imbibition. In the 
secondary imbibition the value of the curvature changed from 13.8 to 0.8. 
The red box shows that the water phase saturation (Sw) does not change 
while the applied curvature decreases from 3.4 to 0.8. 
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Figure D.9. (a) Schematic of a water-wet porous medium and fluid/fluid interfaces 
(menisci) during secondary imbibition. The dimensionless curvature of the 
interface equals 0.6. (b) Change in the water phase saturation with change in 
the applied curvature for primary drainage and secondary imbibition. In the 
secondary imbibition the value of the curvature changed from 13.8 to 0.4. 
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D. 2. MENISCI MOTION IN A FRACTIONALLY WET POROUS MEDIUM 

Second, we present the menisci motion during primary drainage and secondary 

imbibition of a fractionally wet porous medium. In order to make the porous medium 

fractionally wet, we replace one of the water-wet disks with an oil-wet disk (Fig. D.10). 

Similar to the water-wet porous medium, during primary drainage we increase the 

applied curvature (dimensionless capillary pressure). As a result, the oil phase invades to 

the porous medium from the right hand side and pushes water out of the porous medium 

from the left hand side. Hence, the fluid/fluid interfaces (menisci) move from right to left. 

At the beginning of primary drainage, the porous medium is filled with the water phase 

(Fig. D.10) and the oil phase is connected to the oil-wet membrane. In addition, the 

curvature is smaller than zero. As a result, the oil-wet membrane is filled with the water 

phase. We increase the curvature in small increments then computing the stable menisci 

locations in all pores (Fig. D.11a). 

 

oil-wet grain
 

Figure D.10. Schematic of a fractionally wet porous medium at the beginning of primary 
drainage. The porous medium is filled the with the water phase (blue). The 
oil phase (white) is connected to the oil-wet membrane. 
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Fig. D.11a shows the location of fluid/fluid interfaces (menisci) within the porous 

medium, when the applied curvature equal to 2.4. Fig. D.11b shows change of the water 

phase saturation versus change of applied curvature from value of -2 to 2.4. At this 

curvature, the oil phase push the water phase out of oil-wet membrane but the porous 

medium is filled with the water phase. Until this stage there is no difference between 

fluid configuration in the water-wet medium and the fractionally wet medium. 
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Figure D.11. (a) Schematic of a fractionally wet porous medium and fluid/fluid interfaces 
(menisci) during primary drainage. The dimensionless curvature of the 
interface equals 2.4. (b) Change of the water phase saturation versus change 
of applied curvature from value of -2 to 2.4. 

Fig. D.12a show the location of fluid/fluid interfaces (menisci) within the 

fractionally wet porous media, when the applied curvature equal to 2.6. Fig. D.12b shows 

change of the water phase saturation versus change of the applied curvature from value of 

-2 to 2.6. At this curvature, the menisci reach to the oil-wet disk, and the menisci are not 

stable on the fractional-wet throats at this curvature. As a result, the Haines events occur 

and menisci pass the fractional-wet throats. Comparing Fig. D.2a and Fig. D. 12a, we 

observe that an oil-wet disk causes the oil phase to push more water out of the 
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fractionally wet porous medium. Note that both Fig. D.2a and Fig. D.12a show the 

menisci location, when the applied curvature equal 2.6. In addition, the comparison of 

Fig. D.2a and Fig. D.12a shows that the existence of oil-wet disks can change the 

topology of the trapped water phase.  
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Figure D.12. (a) Schematic of a fractionally wet porous medium and fluid/fluid interfaces 
(menisci) during primary drainage. The dimensionless curvature of the 
interface equals 2.6. (b) Change of the water phase saturation versus change 
of applied curvature from value of -2 to 2.6. 

The drainage process can continue until the drainage end point, where most of the 

water phase exists in the form of trapping phase (Fig. D.13). At the drainage end point of 

this fractionally wet porous medium, the trapped phase occupies different pores compare 

to the drainage end point of the water-wet porous medium. The curvatures of the frozen 

menisci correspond to the trapped water phase (inside Red box, Fig. D.13a) are smaller 

compared to the curvatures of the trapped water phase at the drainage end point of the 

water-wet porous medium (Fig. D.4a). The above observation shows that the water phase 

trapped at the lower applied curvature in the fractionally wet porous medium compared to 

the water-wet porous medium. 
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Fig. D.13b plots the dimensionless curvature versus water phase saturation for a 

primary drainage of the fractionally wet porous medium. 
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Figure D.13. (a) Schematic of a fractionally wet porous medium and fluid configuration 
at drainage end point. The dimensionless curvature of the interface equals 
13.8. (b) Change of the water phase saturation versus change of applied 
curvature from value of -2 to 13.8. 

The secondary imbibition starts from the drainage end point. During secondary 

imbibition, we decrease the applied curvature (dimensionless capillary pressure). As a 

result, the water phase invades the porous medium from the left hand side and pushes the 

oil phase out of the porous medium from the right hand side. Thus, the fluid/fluid 

interfaces (menisci) move from left to right.  

The movement of menisci in the fractionally wet porous medium is no different 

than the menisci movement in the water-wet medium until the menisci (fluid/fluid 

interfaces) touch the oil-wet disk. In the water-wet medium, after the Melrose events 

occur at the curvature of 0.8, the porous medium is completely filled with the water 

phase. In contrast, the oil-wet disk in the fractional-wet medium prevents the 
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advancement of the menisci (fluid/fluid interfaces) after the Melrose events occur at the 

curvature of 0.8 (Fig. D.14a). 
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Figure D.14. (a) Schematic of a fractionally wet porous medium and fluid/fluid interfaces 
(menisci) during secondary imbibition. The dimensionless curvature of the 
interface equals 0.2. (b) Change in the water phase saturation with change in 
the applied curvature for primary drainage and secondary imbibition. In the 
secondary imbibition the value of the curvature changed from 13.8 to 0.2. 

Fig. D.14a shows the location of fluid/fluid interfaces (menisci) within the 

fractionally wet porous media, when the applied curvature equals to 0.2. The menisci are 

stable at the fractionally wet throats at this curvature. The red circles in Fig. D.14.b 

shows the water phase saturation (Sw) before and after the Melrose events.  

The further decrease of applied curvature causes a switching sign of curvature. 

The change from a positive curvature to a negative curvature causes the menisci 

(fluid/fluid interfaces) to curve towards the water phase (Fig. D.15a). In this situation, the 

pressure inside the water phase is higher than pressure of the oil phase. As a result, the 

capillary pressure is negative (see Chapter 3 for definition of capillary pressure). Fig. 

D.15a shows that the oil-wet disk holds the two menisci and prevents any pore-filling 

event. Consequently, the oil-wet disk prevents the porous media to be filled with the 
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water phase at applied curvature of -0.8. The red box in the Fig. D.15b shows that the 

saturation of water phase remains constant while the applied curvature decrease from a 

positive value to a negative value. 
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Figure D.15. (a) Schematic of a fractionally wet porous medium and fluid/fluid interfaces 
(menisci) during secondary imbibition. The dimensionless curvature of the 
interface equals -0.8. (b) Change in the water phase saturation with change 
in the applied curvature for primary drainage and secondary imbibition. In 
the secondary imbibition the value of the curvature changed from 13.8 to -
0.8. 

Further decrease of applied curvature causes instability of the meniscus located on 

the fractionally wet throat (highlighted with red box in the Fig. D.16a). As a result, the 

Haines event occurs, which leads to series of pore-filling events (i.e. Haines events). 

Consequently, the water phase fills the porous medium except a part which remains as 

trapped oil phase (Fig. D.16a). The red circle in the Fig. D.16b shows the value of Sw 

after series of Haines events occur and porous medium is filled with the water phase. 
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Figure D.16. (a) Schematic of a fractionally wet porous medium and fluid/fluid interfaces 
(menisci) during secondary imbibition. The dimensionless curvature of the 
interface equals -1.2. (b) Change in the water phase saturation with change 
in the applied curvature for primary drainage and secondary imbibition. In 
the secondary imbibition the value of the curvature changed from 13.8 to -
1.2. 

In conclusion, comparison of movement of menisci within fractionally wet and 

water-wet media during primary drainage shows that the oil-wet disks open a path for the 

oil phase to invade the fractionally wet medium. Consequently, the oil phase can 

breakthrough the fractionally wet medium at lower applied curvature (dimensionless 

capillary pressure). In addition, comparison of movement of menisci within fractionally 

wet and water-wet media during secondary imbibition shows that the oil-wet disks 

prevent the water phase from advancing towards the oil phase. As a result, the water 

phase breakthrough the fractionally wet medium at lower applied curvature. 
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NOMENCLATURE 

C = curvature of fluid/fluid interface 

D = gap size 

DL = fractal dimension 

hydrg  = hydraulic conductance of throat  

h = half length between two grain centers 

krg = gas relative permeability 

krgmax = maximum gas relative permeability  

P = pressure 

Pc = capillary pressure 

Po = pressure of the oil phase 

Pw = pressure of the water phase 

Pnw = pressure of the non-wetting phase 

P-S = pressure saturation curve 

q = flow rate 

r1 = normal radius of the curvature 

r2 = tangential radius of the curvature 

rc = inscribed radius of a throat 

re = equivalent radius of a throat 

ref =effective radius 

R = grain radius 

Sw = water phase saturation 

θ = contact angle 

θww= contact angles between water-wet grains and fluid/fluid interfaces 

θοw = contact angles between oil-wet grains and fluid/fluid interfaces 

PΔ  = pressure difference 

μ  = viscosity of fluid 

ϕ = filling angle of pendular rings 
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ψ = filling angle of menisci 

σAS = interfacial tension between solid surface and air 

σWS = interfacial tension between solid surface and water 

σΟS = interfacial tension between solid surface and oil 

σWA = the surface tension of water 

σWO = interfacial tension between water and oil 

σAO = the surface tension of oil 
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