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Research on spintronics has galvanized the design of new devices that

exploit the electronic spin in order to augment the performance of current

microelectronic technologies. The sucessful implementation of these devices

is largely contingent on a quantitative understanding of nonequilibrium mag-

netism in conducting ferromagnets. This thesis is largely devoted to expanding

the microscopic theory of magnetization relaxation and current-induced spin

torques in transition metals ferromagnets as well as in (III,Mn)V dilute mag-

netic semiconductors.

We start with two theoretical studies of the Gilbert damping in elec-

tric equilibrium, which treat disorder exactly and include atomic-scale spatial

inhomogeneities of the exchange field. These studies enable us to critically re-

view the accuracy of the conventional expressions used to evaluate the Gilbert

damping in transition metals.
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We follow by generalizing the calculation of the Gilbert damping to

current-carrying steady states. We find that the magnetization relaxation

changes in presence of an electric current. We connect this change with the

non-adiabatic spin transfer torque parameter, which is an elusive yet poten-

tially important quantity of nonequilibrium magnetism. This connection cul-

minates in a concise analytical expression that will lead to the first ab initio

estimates of the non-adiabatic spin transfer torque in real materials.

Subsequently we predict that in gyrotropic ferromagnets the magnetic

anisotropy can be altered by a dc current. In these systems spin-orbit coupling,

broken inversion symmetry and chirality conspire to yield current-induced spin

torques even for uniform magnetic textures. We thus demonstrate that a

transport current can switch the magnetization of strained (Ga,Mn)As.

This thesis concludes with the transfer of some fundamental ideas from

nonequilibrium magnetism into the realm of superconductors, which may be

viewed as easy-plane ferromagnets in the particle-hole space. We emphasize

on the analogies between nonequilibrium magnetism and superconductivity,

which have thus far been studied as completely separate disciplines. Our

approach foreshadows potentially new effects in superconductors.
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Chapter 1

Introduction

In principle, all physical properties of solids are determined by the be-

havior of their fundamental constituents, namely ions 1 and valence electrons.

2 This reductionist viewpoint has been vindicated by the fruitful character-

ization of condensed matter systems gained from studying the correlations

3 between the elementary constituents. In crystalline solids, ions optimize

Coulomb interactions by arranging themselves in predictable periodic arrays.

Their small but inevitable excursions away from equilibrium positions are like-

wise readily described in terms of spinless harmonic modes (phonons). 4 In

contrast, valence electrons are organized in relatively intricate patterns that

are sensitive to their spins by virtue of Pauli’s exclusion principle. 5 In fact,

understanding the behavior of these electrons along with the exotic phenomena

they give rise to is the most challenging quest of quantum condensed matter

1Ions consist of atomic nuclei plus some tightly bound core electrons that do not change
appreciably when atoms are brought together to form a solid

2These electrons are relatively delocalized and not attached to any particular ion. Unless
otherwise stated valence electrons will be referred to simply as electrons

3The sources of the correlations are the charge and spin of the ions and electrons.
4Provided that the temperature is low compared to the melting temperature of the

crystal.
5Ions too may have half-integer spins; however, the Pauli exclusion principle plays no

role in determining their equilibrium configuration because the wavefunctions of different
ions do not overlap significantly.

1



physics.

The quantum mechanical equation of motion for 1023 interacting elec-

trons in a periodic lattice of ions is simple to write, yet impossible to solve

exactly. Fortunately, insofar as low-temperature electronic properties are con-

cerned, 6 it is often possible[1] to map the insoluble problem of interacting

electrons into a soluble problem of nearly-independent elementary excitations.

Elementary excitations are grouped into quasiparticles and collective modes.

A quasiparticle can be viewed as a fictitious particle which consists of an elec-

tron coupled to a cloud of other electrons or ions; this cloud renormalizes the

effective mass of the original electron and makes its lifetime finite. Collective

modes such as plasmons (charge oscillations) and magnons (spin precession)

describe the synchronized motion or dynamics of a group of quasiparticles.

7 The description of an interacting electron system in terms of elementary

excitations requires that the latter be sufficiently long-lived. Landau’s Fermi

liquid theory guarantees the fulfillment of this requirement for most common

materials. Nevertheless, there exist interesting systems[2] where the concept of

elementary excitation is altogether ill-defined; these strongly correlated systems

lie beyond the scope of this thesis.

The residual interactions between elementary excitations can be treated

6The low-temperature requirement is normally not stringent because the characteristic
electronic energy scale (the Fermi energy) is typically about 104K. Hence even at room
temperature only the few energy levels closest to the ground state matter.

7The harmonic vibrations of the lattice are also collective modes, yet they do not have
an electronic origin.

2



perturbatively borrowing methods from quantum many-body physics, which

have revolutionized the predictive power of condensed matter theorists in the

past 50 years. While unimportant for most non-magnetic metals and semicon-

ductors, these residual interactions are crucial for systems that exhibit mag-

netism or superconductivity. In magnets and superconductors perturbative

calculations diverge, thus revealing the emergence of ground states that differ

qualitatively from the ground state of a non-interacting system. For instance,

an infinite spin susceptibility is a signature of incipient ferromagnetism: the

interacting electron system develops a macroscopic magnetic moment even

under an infinitesimal external field. Similarly, the divergence of the two-

particle scattering amplitude indicates an instability of electrons towards the

formation of bound pairs, which subsequently lead to superconductivity. The

magnetization of a ferromagnet and the binding energy of the electron pairs

in superconductors are examples of physical quantities that become nonzero

under certain environmental conditions; they are called order parameters. The

simplest way to characterize the order parameter of these interacting systems

involves the use of a mean-field approximation. In this approximation, each

quasiparticle interacts with a self-consistent average potential involving ev-

ery other quasiparticle. As a result, the interacting quasiparticle problem is

cast into a single-particle problem. 8 Standard (time-independent) as well

8Note that there is a hierarchy of transformations. First, we mapped the original electron
system into a collection of weakly interacting elementary excitations. Afterwards, we invoked
mean-field theory in order to transform the system of weakly interacting quasiparticles into
a new set of non-interacting quasiparticles.
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as generalized (time-dependent) mean-field theories form the backbone of this

thesis.

1.1 Equilibrium Magnetism and Superconductivity

Ferromagnetism[3] constitutes the core subject of this thesis. In a fer-

romagnet, the vector sum of the electrons’ spin is nonzero and points in a

direction determined by the shape of the sample as well as the spin-orbit in-

teractions. 9 A precondition for ferromagnetism is the existence of permanent

magnetic moments, which most often originate from incompletely filled 3d and

4f atomic orbitals in transition metals and rare earth metals, respectively.

On one hand, the f -electrons in rare earths are tightly bound to their

ions and form localized magnetic moments. Mn-doped GaAs is another impor-

tant example where the local moment picture is accurate to a good approxi-

mation. In these systems the ferromagnetic alignment between local moments

is mediated by the itinerant s or p electrons, which are coupled to the local

moments through Coulomb interactions. Due to this exchange coupling, the

Fermi surface constructed from itinerant bands is split into a spin-up and a

spin-down surface; however, the difference in volume between these two Fermi

surfaces accounts for only a fraction of the total magnetic moment per atom.

Consequently, the magnetism of these systems may be studied by concentrat-

ing solely on the local moments. 10

9See chapter 5 and references therein.
10Heisenberg Hamiltonians are especially popular in studies of local-moment ferromag-
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On the other hand, the d electrons responsible for magnetism in tran-

sition metals such as Co, Ni, or Fe are partially mobile because the width

of the d-like bands is comparable to the characteristic strength of Coulomb

interactions. In this case the splitting betweeen spin-up and spin-down Fermi

surfaces acounts for a significant portion of the magnetization, and one may no

longer ignore translational degrees of freedom. Conventional wisdom portrays

the ferromagnetism in transition metals as the outcome of various competing

tendencies. Certainly, electrons with parallel spin experience less Coulomb

repulsion than electrons with antiparallel spin as they are kept further apart

from each other due to Pauli’s exclusion principle. Nevertheless, keeping elec-

trons further from each other incurs in a larger relative angular momentum

and hence a higher kinetic energy for the parallel spin configuration. Ferro-

magnetism follows when the gain in Coulomb correlations exceeds the cost in

kinetic energy.

From a quantitative standpoint, the most successful theory for the

ground state of transition metals[4] has been based on the Kohn-Sham equa-

tions of spin-density functional theory. Solving these equations is tantamount

to diagonalizing a mean-field Hamiltonian of non interacting quasiparticles

placed in an effective, self-consistent potential. The spin-dependent part of

such potential is called the exchange field, which acts as a magnetic field on

the quasiparticles’ spins. Provided that the effective potential is chosen appro-

priately, the solution of the Kohn-Sham equations leads to the ground state

netism.
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charge- and spin-density of the original interacting problem.

Another striking manifestation of electron-electron interactions is su-

perconductivity,[5] which will be the subject of the last part of this thesis.

Whenever the effective electron-electron interaction is attractive 11 the Fermi

sea becomes unstable under the formation of Cooper pairs. At sufficiently

low temperatures these pairs Bose condense into a macroscopic quantum state

whose phase breaks the gauge symmetry. 12 The low energy elementary exci-

tations of bulk superconductors are quasiparticles that arise as a consequence

of breaking Cooper pairs. 13 Since the binding energy of the Cooper pairs is

finite, the quasiparticle spectrum is gapped near the Fermi surface. This en-

ergy gap is due to electron-electron interactions and has profound implications,

such as perfect diamagnetism (Meissner effect), superfluidity (zero electrical

resistance), flux quantization and the Josephson effect (quantum interference).

The microscopic physics of conventional superconductors is described by the

mean field theory 14 of Bardeen, Cooper and Schrieffer.[6] The BCS theory ex-

plains the thermodynamic properties[5] of low-temperature superconductors

11In conventional superconductors the attractive interaction originates from the electron-
phonon coupling.

12Unlike in a ferromagnet, where weak but nonzero relativistic effects (spin-orbit inter-
actions) favor a particular direction for the equilibrium magnetization, in a superconductor
the phase of the Cooper pairs’ wave function is a true example of a spontaneously broken
symmetry.

13Collective modes in bulk superconductors involve high energies (except in the immediate
vicinity of the transition temperature) and thus they are irrelevant for thermodynamic
properties. We shall revisit this topic in chapter 6.

14The mean field theory works very well in bulk samples, where the energy barriers for
fluctuations are large.
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with remarkable success. 15 Another widely employed theory[7] is that of

Ginzburg and Landau, where a complex-valued order parameter is introduced

along with various phenomenological parameters. Gorkov showed that the

Ginzburg-Landau equations may be derived from the BCS theory and further-

more identified the Ginzburg-Landau order parameter with the wavefunction

of the Bose-condensed Cooper pairs.

1.2 Nonequilibrium Magnetism and Superconductivity

Much of the modern research conducted in magnetism concentrates

on ferromagnets that are perturbed away from thermodynamic equilibrium.

The blossoming of nonequilibrium magnetism has been partly stimulated by

the advent of spintronics, a new technology 16 that exploits the spin of the

electron in order to store and process information. 17

In metals, the landmark spintronics phenomena arise from the quantum

mechanical interplay 18 between transport currents and the magnetization. An

iconic example of this interplay is the giant magnetoresistance (GMR), 19 i.e.

the high sensitivity of the electrical resistance with respect to the magnetic

15The microscopic aspects of non-conventional superconductors such as cuprates or iron
pnictides are not fully understood yet.

16For a recent overview see e.g. Ref. [8].
17“Traditional” electronics harnesses only the charge degree of freedom of electrons.
18Ampere’s law and Biot-Savart’s law also describe the relationship between currents and

magnetic fields. However, spintronics focuses on the electronic spin, which is a quantum
mechanical attribute that lies beyond Maxwell’s equations.

19GMR is exploited in all modern computer hard drives and its discoverers have been
awarded the 2007 Nobel Prize in physics.

7



configuration in ferromagnet/paramagnet/ferromagnet heterostructures. This

phenomenon occurs because in a ferromagnet the density of states (and thereby

the electrical conductivity) is spin-dependent.

Another emblematic example of the interplay between transport cur-

rents and the magnetic order parameter is the spin transfer torque (STT). STT

arises when a spin polarized current is applied along a non-collinear magnetic

configuration. The exchange coupling aligns the spins of the injected quasi-

particles with the local magnetization, which translates into a torque on the

carriers’ spins as they traverse the inhomogeneous magnetic landscape. Con-

versely, the carriers produce a reciprocal torque (STT) 20 on the underlying

magnetic texture, leading to current-induced magnetization dynamics. STTs

are important in prototypes such as the magnetic random access memory and

the magnetic race track memory.

The optimal implementation of STT devices requires a detailed under-

standing of magnetization relaxation,[9] namely of dissipative processes that

bring the magnetization back to equilibrium. From a microscopic standpoint,

damping may be understood in terms of the decay of magnons. In conducting

ferromagnets magnons are exchange-coupled to particle-hole excitations, which

in turn scatter off phonons and/or impurities. 21 Throughout this process the

spin information of the quasiparticles is lost by way of spin-orbit interactions,

20In absence of spin-orbit interactions and magnetic impurities, the counter-torque is
equal in magnitude and opposite in sign to the original torque.

21The relevant quasiparticles are those located in the vicinity of the Fermi surface. The
Pauli principle limits the scattering phase space for states away from the Fermi energy.
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which results in an overall magnetization relaxation.

In superconductors, nonequilibrium states[10, 11] are achieved by ap-

plying electromagnetic fields as well as by injecting phonons or quasiparticles.

These states are characterized by the departures from equilibrium of any (or

all) components of superconductors: the order parameter, the quasiparticle

excitations and the phonons. Problems of nonequilibrium superconductivity

are interesting from both theoretical and experimental perspectives. On the

theoretical front, the remarkable success of the BCS theory makes of super-

conductors an ideal testbed for ideas concerning nonequilibrium many-body

systems. On the experimental side, integrated circuits made from Joseph-

son junctions are a leading candidate[12] for scalable quantum information

processing. The control of these systems with voltages and magnetic fluxes

involves perturbing the order parameter out of equilibrium. Other phenomena

of longstanding interest include the microwave-induced enhancement of the

superconducting gap and thermoelectric effects.

Notwithstanding their common challenges and objectives, nonequilib-

rium superconductivity and nonequilibrium magnetism have developed inde-

pendently. In the last chapter of this thesis we shall advocate for a theoretical

approach that cross-fertilizes these two fields.

1.3 Outline

This thesis is organized in two blocks. The first block (chapters 2-

5) focuses on nonequilibrium magnetism, while the second block (chapter 6)
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concentrates on nonequilibrium superconductivity from the vantage point of

nonequilibrium magnetism.

Chapters 2 and 3 describe the microscopic theory of magnetic relaxation

in monodomain, conducting ferromagnets. In chapter 2 we allow for spatial

inhomogeneities in the magnitude of the exchange-field at the atomic scale. We

subsequently derive expressions for damping that are closely related to the ones

used in contemporary electronic structure calculations. In chapter 3 we present

an exact treatment of disorder, which is a key ingredient of the magnetization

relaxation. While our exact results are derived for simple models, they are

able to shed light on the reliability of state-of-the-art spin-density functional

theory calculations.

Chapter 4 explores the magnetization relaxation in a inhomogeneous

ferromagnet under the flow of an electric current. We identify the change in

damping induced by the current with the non-adiabatic spin transfer torque, a

potentially important yet little understood parameter in spintronics. We then

construct an analytical expression for the non-adiabatic spin transfer torque

that will enable its first realistic estimate in transition metal ferromagnets.

Chapter 5 unveils a novel nonequilibrium effect in ferromagnets. We

find that by applying a current in a special kind of ferromagnet with a single

magnetic domain, the magnetization may be reoriented by 180◦. We relate

this effect to the change in anisotropy field due to a transport current, and

estimate its importance in technologically important materials.
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In chapter 6 we translate the knowledge acquired in the previous chap-

ters to the realm of superconductivity. Interpreting superconductivity as easy-

plane ferromagnetism in the particle-hole space, we compute superconducting

counterparts of magnetization relaxation and STTs. We suggest a number of

potentially novel thermal effects that may be experimentally verified.

Chapter 7 summarizes this thesis and presents the conclusions.
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Chapter 2

Theory of Gilbert Damping in Conducting

Ferromagnets I: Kohn-Sham Theory.

In this chapter we derive an approximate expression for the Gilbert

damping coefficient αG of itinerant electron ferromagnets which is based on

their description in terms of spin-density-functional-theory (SDFT) and Kohn-

Sham quasiparticle orbitals. We argue for an expression in which the coupling

of magnetization fluctuations to particle-hole transitions is weighted by the

spin-dependent part of the theory’s exchange-correlation potential, a quantity

which has large spatial variations on an atomic length scale. Our SDFT result

for αG is closely related to the previously proposed spin-torque correlation-

function expression.1

This is the first of three chapters related to damping of collective mag-

netization dynamics in metallic ferromagnets. Chapter 3 will report on exact

calculations for two different toy model systems, with and without intrinsic

spin-orbit interactions and with various spin-independent and spin-dependent

disorder models. These model calculations shed light on the the absolute and

1The contents of this chapter are based on the article: Ion Garate and A.H. MacDon-
ald, Gilbert Damping in Conducting Ferromagnets I: Kohn-Sham Theory and Atomic-Scale

Inhomogeneity, Phys. Rev. B 79, 064403 (2009).
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relative reliability of the two different formulas for αG discussed in the present

chapter. Chapter 3 will additionally highlight the importance of higher or-

der diffusive particle-hole correlations in strongly spin-orbit coupled systems

like(Ga,Mn)As. On the other hand, chapter 4 will concentrate on how the

Gilbert damping coefficient changes when a current traverses a inhomoge-

neously magnetized ferromagnet.

2.1 Introduction

The Gilbert parameter αG characterizes the damping of collective mag-

netization dynamics.[13] The key role of αG in current-driven[14] and preces-

sional[9] magnetization reversal has renewed interest in the microscopic physics

of this important material parameter. It is generally accepted that in metals

the damping of magnetization dynamics is dominated[9] by particle-hole pair

excitation processes. The main ideas which arise in the theory of Gilbert

damping have been in place for some time.[15, 16] It has however been diffi-

cult to apply them to real materials with the precision required for confident

predictions which would allow theory to play a larger role in designing mate-

rials with desired damping strengths. Progress has recently been achieved in

various directions, both through studies[17–23] of simple models for which the

damping can be evaluated exactly and through analyses[24–27] of transition

metal ferromagnets that are based on realistic electronic structure calculations.

Evaluation of the torque correlation formula[26, 27] for αG used in the later

calculations requires knowledge only of a ferromagnet’s mean-field electronic
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structure and of its Bloch state lifetime, which makes this approach practical.

Realistic ab initio theories normally employ spin-density-functional the-

ory[28] which has a mean-field theory structure. In this chapter we use time-

dependent spin-density functional theory[29, 30] to derive an explicit expres-

sion for the Gilbert damping coefficient in terms of Kohn-Sham theory eigen-

values and eigenvectors. Our final result is essentially equivalent to the torque-

correlation formula[16] for αG, but has the advantages that its derivation is

fully consistent with density functional theory, that it allows for a consis-

tent microscopic treatments of both dissipative and reactive coefficients in the

Landau-Liftshitz Gilbert (LLG) equations, and that it helps establish rela-

tionships between different theoretical approaches to the microscopic theory

of magnetization damping.

This chapter is organized as follows. In Section II we relate the Gilbert

damping parameter αG of a ferromagnet to the low-frequency limit of its trans-

verse spin response function. Since ferromagnetism is due to electron-electron

interactions, theories of magnetism are always many-electron theories, and it is

necessary to evaluate the many-electron response function. In time-dependent

spin-density functional theory the transverse response function is calculated

using a time-dependent self- consistent-field calculation in which quasiparti-

cles respond both to external potentials and to changes in the interaction-

induced effective potential. In Section III we use perturbation theory and

time-dependent mean-field theory to express the coefficients which appear in

the LLG equations in terms of the Kohn-Sham eigenstates and eigenvalues
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of the ferromagnet’s ground state. These formal expressions are valid for ar-

bitrary spin-orbit coupling, arbitrary atomic length scale spin-dependent and

scalar potentials, and arbitrary disorder. By treating disorder approximately,

in Section IV we derive and compare two commonly used formulas for Gilbert

damping. Finally, in Section V we summarize our results.

2.2 Many-Body Transverse Response Function and the
Gilbert Damping Parameter

The Gilbert damping parameter αG appears in the Landau-Liftshitz-

Gilbert expression for the collective magnetization dynamics of a ferromagnet:

∂Ω̂

∂t
= Ω̂ × Heff − αGΩ̂ × ∂Ω̂

∂t
. (2.1)

In Eq.( 2.1) Heff is an effective magnetic field which we comment on further

below and Ω̂ ≃ (Ωx,Ωy, 1− (Ω2
x +Ω2

y)/2) is the direction of the magnetization.

2 This equation describes the slow dynamics of smooth magnetization textures

and is formally the first term in an expansion in time-derivatives.

The damping parameter αG can be measured by performing ferro-

magnetic resonance (FMR) experiments in which the magnetization direc-

2Here we assume that the dependence of energy on magnetization direction which de-
termines Heff is specified as a function of Ωx and Ωy only with Ωz implicitly fixed by
the constraint Ωz = [1 − Ω2

x − Ω2
y]1/2. If the free energy was expressed in a form with

explicit Ωz dependence we would find Heff,x = −∂F/∂Ωx − (∂F/∂Ωz)(∂Ωz/∂Ωx) =
−∂F/∂Ωx + (∂F/∂Ωz)Ωx, where F is the free energy of the ferromagnet. Similarly we
would find Heff,y = −∂F/∂Ωy + (∂F/∂Ωz)Ωy. The terms which arise from the Ωz depen-
dence of the free energy would more commonly be regarded as contributions to Heff,z . The
difference is purely a matter of convention since both results would give the same value for
Ω̂ × Heff .
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tion is driven weakly away from an easy direction (which we take to be the

ẑ-direction.). To relate this phenomenological expression formally to micro-

scopic theory we consider a system in which external magnetic fields couple

only [31, 32] to the electronic spin degree of freedom3 and associate the mag-

netization direction Ω̂ with the direction of the total electron spin. For small

deviations from the easy direction, Eq.( 2.1) reads

Heff,x = +
∂Ω̂y

∂t
+ αG

∂Ω̂x

∂t

Heff,y = −∂Ω̂x

∂t
+ αG

∂Ω̂y

∂t
. (2.2)

The gyromagnetic ratio has been absorbed into the units of the field Heff

so that this quantity has energy units and we set ~ = 1 throughout. The

corresponding formal linear response theory expression is an expansion of the

long wavelength transverse total spin response function to first order 4 in

frequency ω:

S0Ω̂α =
∑

β

[χst
α,β + ωχ′

α,β] Hext,β (2.3)

where α, β ∈ {x, y}, ω ≡ i∂t is the frequency, S0 is the total spin of the

ferromagnet, Hext is the external magnetic field and χ is the transverse spin-

3In doing so we dodge the subtle difficulties which complicate theories of orbital mag-
netism in bulk metals. This simplification should have little influence on the theory of
damping because the orbital contribution to the magnetization is relatively small in systems
of interest and because it in any event tends to be collinear with the spin magnetization.

4For most materials the FMR frequency is by far the smallest energy scale in the problem.
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spin response function:

χα,β(ω) = i

∫ ∞

0

dt exp(iωt) 〈[Sα(t), Sβ(0)]〉

=
∑

n

[〈Ψ0|Sα|Ψn〉〈Ψn|Sβ|Ψ0〉
ωn,0 − ω − iη

+
〈Ψ0|Sβ|Ψn〉〈Ψn|Sα|Ψ0〉

ωn,0 + ω + iη

]

(2.4)

Here |Ψn〉 is an exact eigenstate of the many-body Hamiltonian and ωn,0 is the

excitation energy for state n. We use this formal expression below to make

some general comments about the microscopic theory of αG. In Eq.( 2.3)

χst
α,β is the static (ω = 0) limit of the response function, and χ′

α,β is the first

derivative with respect to ω evaluated at ω = 0. Notice that we have chosen

the normalization in which χ is the total spin response to a transverse field; χ

is therefore extensive.

The key step in obtaining the Landau-Liftshitz-Gilbert form for the

magnetization dynamics is to recognize that in the static limit the transverse

magnetization responds to an external magnetic field by adjusting orientation

to minimize the total energy including the internal energy Eint and the energy

due to coupling with the external magnetic field,

Eext = −S0Ω̂ · Hext. (2.5)

It follows that

χst
α,β = S2

0

[

∂2Eint

∂Ω̂α ∂Ω̂β

]−1

. (2.6)

We obtain a formal equation forHeff corresponding to Eq.( 2.2) by multiplying

Eq.( 2.3) on the left by [χst
α,β]−1 and recognizing

Hint,α = − 1

S0

∑

β

∂2Eint

∂Ω̂α ∂Ω̂β

Ω̂β = − 1

S0

∂Eint

∂Ω̂α

(2.7)
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as the internal energy contribution to the effective magnetic field Heff =

Hint + Hext. With this identification Eq.( 2.3) can be written in the form

Heff,α =
∑

β

Lα,β ∂tΩ̂β (2.8)

where

Lα,β = −S0[i(χ
st)−1 χ′ (χst)−1]α,β = iS0∂ωχ

−1
α,β. (2.9)

According to the Landau-Liftshitz Gilbert equation then Lx,y = −Ly,x = 1

and

Lx,x = Ly,y = αG. (2.10)

Explicit evaluation of the off-diagonal components of L will in general yield

very small deviation from the unit result assumed by the Landau-Liftshitz-

Gilbert formula. The deviation reflects mainly the fact that the magnetization

magnitude varies slightly with orientation. We do not comment further on

this point because it is of little consequence. Similarly Lx,x is not in general

identical to Ly,y, although the difference is rarely large or important when

the magnetization is aligned with a high symmetry direction of a hexagonal

or cubic crystal.[24, 25] Eq.( 2.10) is the starting point we use later to derive

approximate expressions for αG.

In Eq.( 2.9) χα,β(ω) is the correlation function for an interacting elec-

tron system with arbitrary disorder and arbitrary spin-orbit coupling. In the

absence of spin-orbit coupling, but still with arbitrary spin-independent peri-

odic and disorder potentials, the ground state of a ferromagnet is coupled by
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the total spin-operator only to states in the same total spin multiplet. In this

case it follows from Eq.( 2.4) that

χst
α,β = 2

∑

n

Re〈Ψ0|Sα|Ψn〉〈Ψn|Sβ|Ψ0〉]
ωn,0

= δα,β
S0

H0

(2.11)

where H0 is a static external field, which is necessary in the absence of spin-

orbit coupling to pin the magnetization to the ẑ direction and splits the fer-

romagnet’s ground state many-body spin multiplet. Similarly

χ′
α,β = 2i

∑

n

Im[〈Ψ0|Sα|Ψn〉〈Ψn|Sβ|Ψ0〉]
ω2

n,0

= iǫα,β
S0

H2
0

. (2.12)

where ǫx,x = ǫy,y = 0 and ǫx,y = −ǫy,x = 1, yielding Lx,y = −Ly,x = 1 and

Lx,x = Ly,y = 0. Spin-orbit coupling is required for magnetization damping. 5

2.3 SDF-Stoner Theory Expression for Gilbert Damp-

ing

Approximate formulas for αG in metals are inevitably based on on a self-

consistent mean-field theory (Stoner) description of the magnetic state. Our

goal is to derive an approximate expression for αG when the adiabatic local

spin-density approximation[28] is used for the exchange correlation potential

in spin-density-functional theory. The effective Hamiltonian which describes

the Kohn-Sham quasiparticle dynamics therefore has the form

HKS = HP − ∆(n(~r), |~s(~r)|) Ω̂(~r) · ~s, (2.13)

5For zero spin-orbit coupling αG vanishes even in presence of magnetic impurities, pro-
vided that their spins follow the dynamics of the magnetization adiabatically.
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where HP is the Kohn-Sham Hamiltonian of a paramagnetic state in which

|~s(~r)|(the local spin density) is set to zero, ~s is the spin-operator, and

∆(n, s) = −d [nǫxc(n, s)]

ds
(2.14)

is the magnitude of the spin-dependent part of the exchange-correlation po-

tential. In Eq.( 2.14) ǫxc(n, s) is the exchange-correlation energy per par-

ticle in a uniform electron gas with density n and spin-density s. We as-

sume that the ferromagnet is described using some semi-relativistic approxi-

mation to the Dirac equation like those commonly used[33] to describe mag-

netic anisotropy or X-ray magnetic circular dichroism, even though these ap-

proximations are not strictly consistent with spin-density-functional theory.

Within this framework electrons carry only a two-component spin-1/2 de-

gree of freedom and spin-orbit coupling terms are included in HP . Since

nǫxc(n, s) ∼ [(n/2 + s)4/3 + (n/2 − s)4/3],

∆(n, s) ∼ n1/3 is larger closer to atomic centers and far from spatially

uniform on atomic length scales. 6 This property figures prominently in the

considerations explained below.

In SDFT the transverse spin-response function is expressed in terms

of Kohn-Sham quasiparticle response to both external and induced magnetic

fields:

s0(~r) Ωα(~r) =

∫

d~r′

V
χQP

α,β(~r, ~r′) [Hext,β(~r′) + ∆(~r′) Ωβ(~r′)]. (2.15)

6While ∆(n, s) ∼ n1/3 is no longer valid when correlation is included, even in this case
∆ is inhomogeneous at the atomic lengthscale.
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In Eq.( 2.15) V is the system volume, s0(~r) is the magnitude of the ground

state spin density, ∆(~r) is the magnitude of the spin-dependent part of the

ground state exchange-correlation potential and

χQP
α,β(~r, ~r′) =

∑

i,j

fj − fi

ωi,j − ω − iη
〈i|~r〉sα〈~r|j〉〈j|~r′〉sβ〈~r′|i〉, (2.16)

where fi is the ground state Kohn-Sham occupation factor for eigenspinor |i〉

and ωij ≡ ǫi − ǫj is a Kohn-Sham eigenvalue difference. χQP (~r, ~r′) has been

normalized so that it returns the spin-density rather than total spin. Like

the Landau-Liftshitz-Gilbert equation itself, Eq.( 2.15) assumes that only the

direction of the magnetization, and not the magnitudes of the charge and spin-

densities, varies in the course of smooth collective magnetization dynamics. 7

This property should hold accurately as long as magnetic anisotropies and

external fields are weak compared to ∆. We are able to use this property

to avoid solving the position-space integral equation implied by Eq.( 2.15).

Multiplying by ∆(~r) on both sides and integrating over position we find 8 that

S0Ωα =
∑

β

1

∆̄
χ̃QP

α,β(ω)
[

Ωβ +
Hext,β

∆̄

]

(2.17)

where we have taken advantage of the fact that in FMR experiments Hext,β

and Ω̂ are uniform. ∆̄ is a spin-density weighted average of ∆(~r),

∆̄ =

∫

d~r∆(~r)s0(~r)
∫

d~rs0(~r)
, (2.18)

7This approximation does not preclude strong spatial variations of |s0(~r)| and |∆(~r)| at
atomic lenghtscales; rather it is assumed that such spatial profiles will remain unchanged in
the course of the magnetization dynamics.

8For notational simplicity we assume that all magnetic atoms are identical. Generaliza-
tions to magnetic compounds are straight forward.
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and

χ̃QP
α,β(ω) =

∑

ij

fj − fi

ωij − ω − iη
〈j|sα∆(~r)|i〉 〈i|sβ∆(~r)|j〉 (2.19)

is the transverse-part of the quasiparticle exchange-correlation effective field re-

sponse function, not the transverse-part of the quasiparticle spin response func-

tion. In Eq.( 2.19), 〈i|O(~r)|j〉 =
∫

d~r〈i|~r〉O(~r)〈~r|j〉 denotes a single-particle

matrix element. Solving Eq.( 2.17) for the many-particle transverse suscepti-

bility (the ratio of S0Ω̂α to Hext,β) and inserting the result in Eq.( 2.9) yields

Lα,β = iS0∂ωχ
−1
α,β = −S0∆̄

2∂ωIm[χ̃QP −1
α,β ]. (2.20)

Our microscopic theory of the LLG damping parameter helps explain

the relationship between a variety of similar but distinct formulas which ap-

pear in the literature in either ab initio theory or model calculations. As we

have explained, αG is fundamentally related to the full many-body transverse-

spin response function to smooth external magnetic fields. In SDFT and

other theories with a similar mean-field structure, this translates not into the

transverse-spin response function of quasiparticles but instead into the quasi-

particle response function for changes in the orientation of the spin-dependent

part of the exchange-correlation potential. Spin-flip operators in this response

function are therefore weighted by the local spin-splitting which varies con-

siderably within each unit cell of a magnetic metal. In our formulation, as

in some others[24, 25] both reactive and dissipative terms in the LLG equa-

tion are understood in a consistent fashion. In addition, as we discuss in
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greater detail later, our approach treats the breathing Fermi surface contribu-

tion to damping[16, 24, 25] and the inter-band spin-relaxation contribution on

the same footing. Using our formulation we are able below to address the re-

lationship between torque-correlation formulas for the magnetization damping

and other spin-oriented formulas which arise more naturally in Kubo response

function theories for model systems.

Comparing Eq.( 2.15) and Eq.( 2.7) we find that the internal anisotropy

field can also be expressed in terms of χ̃QP :

Hint,α = −∆̄2 S0

∑

β

[

χ̃QP −1
α,β (ω = 0) − δα,β

S0∆̄

]

Ωβ . (2.21)

Eq.( 2.20) and Eq.( 2.21) provide microscopic expressions for all ingredients

that appear in the LLG equations linearized for small transverse excursions.

It is generally assumed that the damping coefficient αG is independent of

orientation; if so, the present derivation is sufficient. The anisotropy-field

at large transverse excursions normally requires additional information about

magnetic anisotropy. We remark that if the Hamiltonian does not include

a spin-dependent mean-field dipole interaction term, as is usually the case,

the above quantity will return only the magnetocrystalline anisotropy field.

Since the magnetostatic contribution to anisotropy is always well described by

mean-field-theory it can be added separately.

We conclude this section by demonstrating that the Stoner theory equa-

tions proposed here recover the exact results mentioned at the end of the

previous section for the limit in which spin-orbit coupling is neglected. We
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consider a SDF theory ferromagnet with arbitrary scalar and spin-dependent

effective potentials. Since the spin-dependent part of the exchange correlation

potential is then the only spin-dependent term in the Hamiltonian it follows

that

[HKS, sα] = −i ǫα,β ∆(~r)sβ (2.22)

and hence that

〈i|sα∆(~r)|j〉 = −iǫα,β ωij〈i|sβ|j〉. (2.23)

Inserting Eq.( 2.23) in one of the matrix elements of Eq.( 2.19) yields for the

no-spin-orbit-scattering case

χ̃QP
α,β(ω = 0) = δα,β S0∆̄. (2.24)

The internal magnetic field Hint,α is therefore identically zero in the absence

of spin-orbit coupling and only external magnetic fields will yield a finite col-

lective precession frequency. Inserting Eq.( 2.23) in both matrix elements of

Eq.( 2.19) yields

∂ωIm[χ̃QP
α,β ] = ǫα,βS0. (2.25)

Using both Eq.( 2.24) and Eq.( 2.25) to invert χ̃QP we recover the results

proved previously for the no-spin-orbit case using a many-body argument:

Lx,y = −Ly,x = 1 and Lx,x = Ly,y = 0. The Stoner-theory equations derived

here allow spin-orbit interactions, and hence magnetic anisotropy and Gilbert

damping, to be calculated consistently from the same quasiparticle response

function χ̃QP .

24



2.4 Discussion

As long as magnetic anisotropy and external magnetic fields are weak

compared to the exchange-correlation splitting in the ferromagnet we can use

Eq.( 2.24) to approximate χ̃QP
α,β(ω = 0). Using this approximation and assum-

ing that damping is isotropic we obtain the following explicit expression for

temperature T → 0:

αG = Lx,x

= −S0∆̄
2∂ωIm[χ̃QP −1

x,x ]

=
π

S0

∑

ij

δ(ǫj − ǫF ) δ(ǫi − ǫF ) 〈j|sx∆(~r)|i〉 〈i|sx∆(~r)|j〉

=
π

S0

∑

ij

δ(ǫj − ǫF ) δ(ǫi − ǫF ) 〈j|[HP , sy]|i〉 〈i|[HP , sy]|j〉. (2.26)

The second form for αG is equivalent to the first and follows from the obser-

vation that for matrix elements between states that have the same energy

〈i|[HKS, sα]|j〉 = −i ǫα,β 〈i|∆(~r)sβ|j〉+〈i|[HP , sα]|j〉 = 0 (for ωij = 0). (2.27)

Eq. ( 2.26) is valid for any scalar and any spin-dependent potential. It is

clear however that the numerical value of αG in a metal is very sensitive to the

degree of disorder in its lattice. To see this we observe that for a perfect crystal

the Kohn-Sham eigenstates are Bloch states. Since the operator ∆(~r)sα has

the periodicity of the crystal its matrix elements are non-zero only between

states with the same Bloch wavevector label ~k. For the case of a perfect crystal
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then

αG =
π

s0

∫

BZ

d~k

(2π)3

∑

nn′

δ(ǫ~kn′ − ǫF ) δ(ǫ~kn − ǫF ) |〈~kn′|sx∆(~r)|~kn〉|2

=
π

s0

∫

BZ

d~k

(2π)3

∑

nn′

δ(ǫ~kn′ − ǫF ) δ(ǫ~kn − ǫF ) |〈~kn′|[HP , sy]|~kn〉|2 (2.28)

where nn′ are band labels and s0 is the ground state spin per unit volume and

the integral over ~k is over the Brillouin-zone (BZ).

Clearly αG diverges9 in a perfect crystal since 〈~kn|sx∆(~r)|~kn〉 is generi-

cally non-zero. A theory of αG must therefore always account for disorder in a

crystal. 10 The easiest way to account for disorder is to replace the δ(ǫ~kn− ǫF )

spectral function of a Bloch state by a broadened spectral function evaluated

at the Fermi energy A~kn(ǫF ). If disorder is treated perturbatively this sim-

ple ansatz can be augmented[34] by introducing impurity vertex corrections in

Eq. ( 2.28). Provided that the quasiparticle lifetime is computed via Fermi’s

golden rule, these vertex corrections restore Ward identities and yield an exact

treatment of disorder in the limit of dilute impurities. Nevertheless, this ap-

proach is rarely practical outside the realm of toy models, because the sources

of disorder are rarely known with sufficient precision.

Although appealing in its simplicity, the δ(ǫ~kn − ǫF ) → A~kn(ǫF ) sub-

stitution is prone to ambiguity because it gives rise to qualitatively different

9Eq. ( 2.26) is valid provided that ωτ << 1, where τ is the quasiparticle lifetime. While
this condition is normally satisfied in cases of practical interest, it invariably breaks down
as τ → ∞. Hence the divergence of Eq. ( 2.26) in perfect crystals is spurious.

10In most systems of interest the main contribution to damping originates from a combi-
nation of intrinsic spin-orbit interactions and spin-independent disorder.
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outcomes depending on whether it is applied to the first or second line of Eq.

( 2.28):

α
(TC)
G =

π

s0

∫

BZ

d~k

(2π)3

∑

nn′

A~k,n(ǫF )A~k,n′(ǫF )〈~kn′|[HP , sy]|~kn〉 〈~kn|[HP , sy]|~kn′〉,

α
(SF )
G =

π

s0

∫

BZ

d~k

(2π)3

∑

nn′

A~k,n(ǫF )A~k,n′(ǫF )〈~kn′|sx∆(~r)|~kn〉 〈~kn|sx∆(~r)|~kn′〉.

(2.29)

α
(TC)
G is the torque-correlation (TC) formula used in realistic electronic struc-

ture calculations[26, 27] and α
(SF )
G is the spin-flip (SF) formula used in certain

toy model calculations[35]. The discrepancy between TC and SF expressions

stems from inter-band (n 6= n′) contributions to damping, which may now con-

nect states with different band energies due to the disorder broadening of the

spectral functions. Therefore, 〈~kn|[HKS, sα]|~kn′〉 no longer vanishes for n 6= n′

and Eq. ( 2.27) indicates that α
(TC)
G ≃ α

(SF )
G only if the Gilbert damping is

dominated by intra-band contributions and/or if the energy difference between

the states connected by inter-band transitions is small compared to ∆. When

α
(TC)
G 6= α

(SF )
G , it is a priori unclear which approach is the most accurate.

One obvious flaw of the SF formula is that it produces a spurious damping in

absence of spin-orbit interactions; this unphysical contribution originates from

inter-band transitions and may be cancelled out by adding the leading order

impurity vertex correction.[21] In contrast, [HP , sy] = 0 in absence of spin-

orbit interaction and hence the TC formula vanishes identically, even without

vertex corrections. From this analysis, TC appears to have a pragmatic edge

over SF in materials with weak spin-orbit interaction. However, insofar as
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it allows inter-band transitions that connect states with ωi,j > ∆, TC is not

quantitatively reliable. Furthermore, it can be shown[34] that when the in-

trinsic spin-orbit coupling is significant (e.g. in ferromagnetic semiconductors),

the advantage of TC over SF (or vice versa) is marginal, and impurity vertex

corrections play a significant role.

2.5 Conclusions

Using spin-density functional theory we have derived a Stoner model

expression for the Gilbert damping coefficient in itinerant ferromagnets. This

expression accounts for atomic scale variations of the exchange self energy, as

well as for arbitrary disorder and spin-orbit interaction. By treating disorder

approximately, we have derived the spin-flip and torque-correlation formulas

previously used in toy-model and ab-initio calculations, respectively. We have

traced the discrepancy between these equations to the treatment of inter-band

transitions that connect states which are not close in energy. A better treat-

ment of disorder, which requires the inclusion of impurity vertex corrections,

will be the ultimate judge on the relative reliability of either approach. When

damping is dominated by intra-band transitions, a circumstance which we be-

lieve is common, the two formulas are identical and both are likely to provide

reliable estimates.
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Chapter 3

Theory of Gilbert Damping in Conducting

Ferromagnets II: Disorder Vertex Corrections

In this chapter we report on a study of Gilbert damping due to particle-

hole pair excitations in conducting ferromagnets. We focus on a toy two-band

model and on a four-band spherical model which provides an approximate de-

scription of ferromagnetic (Ga,Mn)As. These models are sufficiently simple

that disorder-ladder-sum vertex corrections to the long-wavelength spin-spin

response function can be summed to all orders. An important objective of

this study is to assess the reliability of practical approximate expressions in-

troduced in chapter 2 which can be combined with electronic structure calcu-

lations to estimate Gilbert damping in more complex systems.1

3.1 Introduction

The key role of the Gilbert parameter αG in current-driven[14] and pre-

cessional[9] magnetization reversal has led to a renewed interest in this impor-

tant magnetic material parameter. The theoretical foundations which relate

1The contents of this chapter are based on the article: Ion Garate and A.H. MacDonald,
Gilbert Damping in Conducting Ferromagnets II: Model Tests of the Torque-Correlation

Formula, Phys. Rev. B 79, 064404 (2009).
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Gilbert damping to the transverse spin-spin response function of the ferromag-

net have been in place for some time.[15, 16] It has nevertheless been difficult

to predict trends as a function of temperature and across materials systems,

partly because damping depends on the strength and nature of the disorder

in a manner that requires a more detailed characterization than is normally

available. Two groups have recently[26, 27] reported successful applications to

transition metal ferromagets of the torque-correlation formula[16, 26, 27, 36] for

αG. This formula has the important advantage that its application requires

knowledge only of the band structure, including its spin-orbit coupling, and of

Bloch state lifetimes. The torque-correlation formula is physically transpar-

ent and can be applied with relative ease in combination with modern spin-

density-functional-theory[28] (SDFT) electronic structure calculations. In this

chapter we compare the predictions of the torque correlation formula with

Kubo-formula self-consistent-Born-approximation results for two different rel-

atively simple model systems, an artificial two-band model of a ferromagnet

with Rashba spin-orbit interactions and a four-band model which captures

the essential physics of (III,Mn)V ferromagnetic semiconductors.[37, 38] The

self-consistent Born approximation theory for αG requires that ladder-diagram

vertex corrections be included in the transverse spin-spin response function.

Since the Born approximation is exact2 for weak scattering, we can use this

comparison to assess the reliability of the simpler and more practical torque-

2The Born approximation is no longer accurate at high impurity concentrations in which
electron localization plays a role; however, localization effects are weak in transition metal
ferromagnets and metallic (Ga,Mn)As .
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correlation formula. We conclude that the torque-correlation formula is accu-

rate when the Gilbert damping is dominated by intra-band excitations of the

transition metal Fermi sea, but that it can be inaccurate when it is dominated

by inter-band excitations.

This chapter is organized as follows. In Section II we explain how

we evaluate the transverse spin-spin response function for simple model fer-

romagnets. Section III discusses our result for the two-band Rashba model

while Section IV summarizes our findings for the four-band (III,Mn)V model.

We conclude in Section V with a summary of our results and recommended

best practices for the use of the torque-correlation formula.

3.2 Gilbert Damping and Transverse Spin Response Func-

tion

3.2.1 Realistic SDFT vs. s-d and p-d models

We view the two-band s−d and four band p−d models studied in this

paper as toy models which capture the essential features of metallic magnetism

in systems that are, at least in principle, 3 more realistically described using

SDFT. The s− d and p− d models correspond to the limit of ab initio SDFT

in which i) the majority spin d-bands are completely full and the minority

3These simplified models sometimes have the advantage that their parameters can be
adjusted phenomenologically to fit experiments, compensating for inevitable inaccuracies in
ab initio electronic structure calculations. This advantage makes p− d models of (III,Mn)V
ferromagnets particularly useful. s − d models of transition elements are less realistic from
the start because they do not account for the minority-spin hybridized s − d bands which
are present at the Fermi energy.
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spin d-bands completely empty, ii) hybridization between s or p and d-bands

is relatively weak, and iii) there is exchange coupling between d and s or p

moments. In chapter 2 we have proposed the following expression for the

Gilbert-damping contribution from particle-hole excitations in SDFT bands:

αG =
1

S0
∂ωIm[χ̃QP

x,x ] (3.1)

where χ̃QP
x,x is a response-function which describes how the quasiparticle bands

change in response to a spatially smooth variation in magnetization orientation

and S0 is the total spin. Specifically,

χ̃QP
α,β(ω) =

∑

ij

fj − fi

ωij − ω − iη
〈j|sα∆0(~r)|i〉 〈i|sβ∆0(~r)|j〉. (3.2)

where α and β label the x and y transverse spin directions and the easy di-

rection for the magnetization is assummed to be the ẑ direction. In Eq.( 3.2)

|i〉, fi and ωij are Kohn-Sham eigenspinors, Fermi factors, and eigenenergy

differences respectively, sα is a spin operator, and ∆0(~r) is the difference be-

tween the majority spin and minority spin exchange-correlation potential. In

the s− d and p− d models ∆0(~r) is replaced by a phenomenological constant,

which we denote by ∆0 below. With ∆0(~r) replaced by a constant χ̃QP
x,x re-

duces to a standard spin-response function for non-interacting quasiparticles

in a possibly spin-dependent random static external potential. The evaluation

of this quantity, and in particular the low-frequency limit in which we are

interested, is non-trivial only because disorder plays an essential role.
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3.2.2 Disorder Perturbation Theory

We start by writing the transverse spin response function of a disordered

metallic ferromagnet in the Matsubara formalism,

χ̃QP
xx (iω) = −V ∆2

0

β

∑

ωn

P (iωn, iωn + iω) (3.3)

where the minus sign originates from fermionic statistics, V is the volume of

the system and

P (iωn, iωn+iω) ≡
∫

dDk

(2π)D
Λα,β(iωn, iωn+iω;k)Gβ(iωn+iω,k)sx

β,α(k)Gα(iωn,k).

(3.4)

In Eq. ( 3.4) |αk〉 is a band eigenstate at momentum k, D is the dimensionality

of the system, sx
α,β(k) = 〈αk|sx|βk〉 is the spin-flip matrix element, Λα,β(k) is

its vertex-corrected counterpart (see below), and

Gα(iωn,k) =

[

iωn + EF − Ek,α + i
1

2τk,α
sign(ωn)

]−1

. (3.5)

We have included disorder within the Born approximation by incorporating a

finite lifetime τ for the quasiparticles and by allowing for vertex corrections at

one of the spin vertices.

The vertex function in Eq.( 3.4) obeys the Dyson equation (Fig. ( 3.1)):

Λα,β(iωn, iωn + iω;k) = sx
α,β(k) +

+

∫

dDk′

(2π)D
ua(k − k′)sa

α,α′(k,k′)Gα′(iωn,k
′)Λα′,β′(iωn, iωn + iω;k′)

×Gβ′(iωn + iω,k′)sa
β′,β(k′,k), (3.6)
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Figure 3.1: Dyson equation for the renormalized vertex of the transverse spin-
spin response function. The dotted line denotes impurity scattering.

where ua(q) ≡ naV 2
a (q)(a = 0, x, y, z), na is the density of scatterers, Va(q)

is the scattering potential (dimensions: (energy)× (volume)) and the overline

stands for disorder[21] averaging.4 Ward’s identity requires that ua(q) and

τk,α be related via the Fermi’s golden rule:

1

ταk

= 2π

∫

k′

ua(k − k′)
∑

α′

sa
α,α′sa

α′,αδ(Ekα − Ek′α′), (3.7)

where
∫

k
≡
∫

dDk/(2π)D. In this paper we restrict ourselves to spin-independent

(a = 0) disorder and spin-dependent disorder oriented along the equilibrium-

exchange-field direction(a = z). 5 Performing the conventional[39] integration

around the branch cuts of P , we obtain

χ̃QP
xx (iω) = V∆2

0

∫ ∞

−∞

dǫ

2πi
f(ǫ) [P (ǫ+ iδ, ǫ+ iω) − P (ǫ− iδ, ǫ+ iω)]

+ V∆2
0

∫ ∞

−∞

dǫ

2πi
f(ǫ) [P (ǫ− iω, ǫ+ iδ) − P (ǫ− iω, ǫ− iδ)](3.8)

4This is not the most general type of disorder for quasiparticles with spin > 1/2, but it
will be sufficient for the purpose of this work.

5We assume that the spins of magnetic impurities are frozen along the static part of the
exchange field. In reality, the direction of the impurity spins is a dynamical variable that is
influenced by the magnetization precession.
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where f(ǫ) is the Fermi function. Next, we perform an analytical continuation

iω → ω + iη and take the imaginary part of the resulting retarded response

function. Assuming low temperatures, this yields

αG =
∆2

0

2πs0

{Re [P (−iδ, iδ)] − Re [P (iδ,+iδ)]}

=
∆2

0

2πs0
Re(PA,R − PR,R) (3.9)

where s0 = S0/V ,

PR(A),R =

∫

k

Λ
R(A),R
α,β (k)GR

β (0,k)sx
β,α(k)GR(A)

α (0,k) (3.10)

and GR(A)(0,k) is the retarded (advanced) Green’s function at the Fermi en-

ergy. The principal difficulty of Eq.( 3.9) resides in solving the Dyson equation

for the vertex function. We first discuss our method of solution in general terms

before turning in Sections III and IV to its application to the s− d and p− d

models.

3.2.3 Evaluation of Impurity Vertex Corrections for Multi-Band
Models

Eq.( 6.20) encodes disorder-induced diffusive correlations between itin-

erant carriers, and is an integral equation of considerable complexity. Fortu-

nately, it is possible to transform it into a relatively simple algebraic equation,

provided that the impurity potentials are short-ranged in real space.

Referring back at Eq.( 6.20) it is clear that the solution of the Dyson

equation would be trivial if the vertex function was independent of momentum.

That is certainly not the case in general, because the matrix elements of the
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spin operators may be momentum dependent. Yet, for short-range scatterers

the entire momentum dependence of the vertex matrix elements comes from

the eigenstates alone:

sa
α,α′(k,k′) =

∑

m,m′

〈αk|m〉〈m′|α′k′〉sa
m,m′ (3.11)

This property motivates our solution strategy which characterizes the mo-

mentum dependence of the vertex function by expanding it in terms of the

eigenstates of sz (sx or sy bases would work equally well):

Λα,β(k) = 〈αk|Λ|βk〉

=
∑

m,m′

〈αk|m〉Λm,m′〈m′|βk〉 (3.12)

where |m〉 is an eigenstate of sz, with eigenvalue m. Plugging Eqs.( 3.11) and

( 3.12) into Eq.( 6.20) demonstrates that, as expected, Λm,m′ is independent of

momentum. After cancelling common factors from both sides of the resulting

expression and using ∂qu
a(q) = 0 (a = 0, z) we arrive at

Λ
R(A),R
m,m′ = sx

m,m′ +
∑

l,l′

U
R(A),R
m,m′:l,l′Λ

R(A),R
l,l′ (3.13)

where

U
R(A),R
m,m′:l,l′ ≡

(

u0 + uzmm′
)

∫

k

〈m|αk〉GR(A)
α (0,k)〈αk|l〉〈l′|βk〉GR

β (0,k)〈βk|m′〉

(3.14)

Eqs. ( 3.12),( 3.13) and ( 3.14) provide a solution for the vertex function that

is significantly easier to analyse than the original Dyson equation.
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3.3 Gilbert Damping for a Magnetic 2DEG

The first model we consider is a two-dimensional electron gas (2DEG)

model with ferromagnetism and Rashba spin-orbit interactions. We refer to

this as the magnetic 2DEG (M2DEG) model. This toy model is almost never

even approximately realistic,[40] but a theoretical study of its properties will

prove useful in a number of ways. First, it is conducive to a fully analytical

evaluation of the Gilbert damping, which will allow us to precisely understand

the role of different actors. Second, it enables us to explain in simple terms

why higher order vertex corrections are significant when there is spin-orbit

interaction in the band structure. Third, as we demonstrate below the Gilbert

damping of a M2DEG has qualitative features similar to those of (Ga,Mn)As.

The band Hamiltonian of the M2DEG model is

H =
k2

2m
+ bk · σ (3.15)

where bk = (−λky, λkx,∆0), ∆0 is the difference between majority and mi-

nority spin exchange-correlation potentials, λ is the strength of the Rashba

SO coupling and ~σ = 2~s is a vector of Pauli matrices. The corresponding

eigenvalues and eigenstates are

E±,k =
k2

2m
±
√

∆2
0 + λ2k2 (3.16)

|αk〉 = e−iszφe−isyθ|α〉 (3.17)

where φ = −tan−1(kx/ky) and θ = cos−1(∆0/
√

∆2
0 + λ2k2) are the spinor
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angles and α = ± is the band index. It follows that

〈m|α,k〉 = 〈m|e−iszφe−isyθ|α〉

= e−imφdm,α(θ) (3.18)

where dm,α = 〈m|e−isyθ|α〉 is a Wigner function for J=1/2 angular momen-

tum[41]. With these simple spinors, the azimuthal integral in Eq.( 3.14) can

be performed analytically to obtain

U
R(A),R
m,m′:l,l′ = δm−m′,l−l′(u

0+uzmm′)
∑

α,β

∫

dkk

2π
dmαG

R(A)
α (k)dlα(θ)dm′β(θ)GR

β (k)dl′β(θ),

(3.19)

where the Kronecker delta reflects the conservation of the angular momentum

along z, owing to the azimuthal symmetry of the problem. In Eq.( 3.19)

dm,m′ =

(

cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

)

, (3.20)

and the retarded and advanced Green’s functions are

G
R(A)
+ =

1

−ξk − bk + (−)iγ+

G
R(A)
− =

1

−ξk + bk + (−)iγ−
, (3.21)

where ξk =
k2−k2

F

2m
, bk =

√

∆2
0 + λ2k2, and γ± is (half) the golden-rule scatter-

ing rate of the band quasiparticles. In addition, Eq. ( 3.13) is readily inverted

to yield

Λ
R(A),R
+,+ = Λ

R(A),R
−,− = 0

Λ
R(A),R
+,− =

1

2

1

1 − U
R(A),R
+,−:+,−

Λ
R(A),R
−,+ =

1

2

1

1 − U
R(A),R
−,+:−,+

(3.22)
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In order to make further progress analytically we assume that (∆0, λkF , γ) <<

EF = k2
F/2m. It then follows that γ+ ≃ γ− ≡ γ and that γ = πN2Du

0 +

πN2D
uz

4
≡ γ0 + γz. Eqs. ( 3.19) and ( 3.20) combine to give

UR,R
−,+:−,+ = UR,R

+,−:+,− = 0

UA,R
−,+:−,+ = (γ0 − γz)

[

i

−b+ iγ
cos4

(

θ

2

)

+
i

b+ iγ
sin4

(

θ

2

)

+
2

γ
cos2

(

θ

2

)

sin2

(

θ

2

)]

UA,R
+,−:+,− = (UA,R

−,+:−,+)⋆ (3.23)

where b ≃
√

λ2k2
F + ∆2

0 and cos θ ≃ ∆0/b. The first and second terms in

square brackets in Eq.( 3.23) emerge from inter-band transitions (α 6= β in

Eq. ( 3.19)), while the last term stems from intra-band transitions (α = β).

Amusingly, U vanishes when the spin-dependent scattering rate equals the

Coulomb scattering rate (γz = γ0); in this particular instance vertex correc-

tions are completely absent. On the other hand, when γz = 0 and b << γ we

have UA,R
−,+:−,+ ≃ UA,R

+,−:+,− ≃ 1, implying that vertex corrections strongly en-

hance Gilbert damping (recall Eq. ( 3.22)). We will discuss the role of vertex

corrections more fully below.

After evaluating Λ(k) from Eqs. ( 3.12),( 3.22)and ( 3.23), the last step

is to compute

PR(A),R =

∫

k

Λ
R(A),R
α,β (k)sx

β,α(k)GR(A)
α (k)GR

β (k). (3.24)

Since we are assuming that the Fermi energy is the largest energy scale, the

integrand in Eq. ( 3.24) is sharply peaked at the Fermi surface, leading to

PR,R ≃ 0. In the case of spin-independent scatterers (γz = 0 → γ = γ0),
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Figure 3.2: M2DEG: Gilbert damping in the absence of spin-orbit coupling.
When the intrinsic spin-orbit interaction is small, the 1st vertex correction is
sufficient for the evaluation of Gilbert damping, provided that the ferromag-
net’s exchange splitting is large compared to the lifetime-broadening of the
quasiparticle energies. For more disordered ferromagnets (EF τ0 < 5 in this
figure) higher order vertex corrections begin to matter. In either case vertex
corrections are significant. In this figure 1/τ0 stands for the scattering rate
off spin-independent impurities, defined as a two-band average at the Fermi
energy, and the spin-dependent and spin-independent impurity strengths are
chosen to satisfy u0 = 3uz.

tedious but straightforward algebra takes us to

αG(uz = 0) =
N2D∆2

0

4s0γ0

(λ2k2
F )(b2 + ∆2

0 + 2γ2
0)

(b2 + ∆2
0)

2 + 4∆2
0γ

2
0

. (3.25)

Eq. (29) agrees6 with results published in the recent literature.[18] We note

that αG(uz = 0) vanishes in the absence of SO interactions, as expected. It is

6In Ref.[18] the inter-band splitting in the Green’s function is Ω, while in our case it is
2b. In addition, we neglect interactions between band quasiparticles.
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Figure 3.3: M2DEG: Gilbert damping for strong SO interactions (λkF =
1.2EF ≃ 4∆0). In this case higher order vertex corrections matter (up to 20
%) even at low disorder. This suggests that higher order vertex corrections
will be important in real ferromagnetic semiconductors because their intrinsic
SO interactions are generally stronger than their exchange splittings.

illustrative to expand Eq. ( 3.25) in the b >> γ0 regime:

αG(uz = 0) ≃ N2D∆2
0

2s0

[

λ2k2
F

2(b2 + ∆2
0)

1

γ0
+

λ4k4
F

(b2 + ∆2
0)

3
γ0

]

(3.26)

which displays intra-band (∼ γ−1
0 ) and inter-band (∼ γ0) contributions sepa-

rately. The intra-band damping is due to the dependence of band eigenener-

gies on magnetization orientation, the breathing Fermi surface effect[16] which

produces more damping when the band-quasiparticles scatter infrequently be-

cause the population distribution moves further from equilibrium. The intra-

band contribution to damping therefore tends to scale with the conductivity.
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Figure 3.4: M2DEG: Gilbert damping for moderate SO interactions (λkF =
0.2∆0). In this case there is a crossover between the intra-band dominated
and the inter-band dominated regimes, which gives rise to a non-monotonic
dependence of Gilbert damping on disorder strength. The stronger the intrinsic
SO relative to the exchange field, the higher the value of disorder at which the
crossover occurs. This is why the damping is monotonically increasing with
disorder in Fig. ( 3.2) and monotonically decreasing in Fig. ( 3.3).

For stronger disorder, the inter-band term in which scattering relaxes spin-

orientations takes over and αG is proportional to the resistivity. Insofar as

phonon-scattering can be treated as elastic, the Gilbert damping will often

show a non-monotonic temperature dependence with the intra-band mecha-

nism dominating at low-temperatures when the conductivity is large and the

inter-band mechanism dominating at high-temperatures when the resistivity

is large.
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For completeness, we also present analytic results for the case γ = γz

in the b >> γz regime:

αG(u0 = 0) ≃ N2D∆2
0

2s0

[

1

γz

λ2k2
F

6b2 − 2∆2
0

+ γz
3b4 + 6b2∆2

0 − ∆4
0

(3b2 − ∆2
0)

3

]

(3.27)

This expression illustrates that spin-orbit (SO) interactions in the band struc-

ture are a necessary condition for the intra-band transition contribution to

αG. The interband contribution survives in absence of SO as long as the

disorder potential is spin-dependent. Interband scattering is possible for spin-

dependent disorder because majority and minority spin states on the Fermi

surface are not orthogonal when their potentials are not identical. Note inci-

dentally the contrast between Eq.( 3.26) and Eq. ( 3.27): in the former the

inter-band coefficient is most suppressed at weak intrinsic SO interaction while

in the latter it is the intra-band coefficient which gets weakest for small λkF .

More general cases relaxing the (∆0, λkF , γ) << EF assumption must

be studied numerically; the results are collected in Figs. ( 3.2), ( 3.3) and

( 3.4). Fig ( 3.2) highlights the inadequacy of completely neglecting vertex

corrections in the limit of weak spin-orbit interaction; the inclusion of the the

leading order vertex correction largely solves the problem. However, Fig. ( 3.2)

and ( 3.3) together indicate that higher order vertex corrections are noticeable

when disorder or spin-orbit coupling is strong. In the light of the preceding

discussion the monotonic decay in Fig.( 3.3) may appear surprising because

the inter-band contribution presumably increases with γ. Yet, this argument is

strictly correct only for weakly spin-orbit coupled systems, where the crossover
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betwen inter-band and intra-band dominated regimes occurs at low disorder.

For strongly spin-orbit coupled systems the crossover may take place at a

scattering rate that is (i) beyond experimental relevance and/or (ii) larger

than the band-splitting, in which case the inter-band contribution behaves

much like its intra-band partner, i.e. O(1/γ). Non-monotonic behavior is

restored when the spin-orbit splitting is weaker, as shown in Fig. ( 3.4).

Finally, our analysis opens an opportunity to quantify the importance

of higher order impurity vertex-corrections. Kohno, Shibata and Tatara [21]

claim that the bare vertex along with the first vertex correction fully captures

the Gilbert damping of a ferromagnet, provided that ∆0τ >> 1. To first order

in U the vertex function is

Λ
R(A),R
m,m′ = sx

m,m′ +
∑

ll′

U
R(A),R
m,m′:l,l′s

x
l,l′ (3.28)

Taking γ = γz for simplicity, we indeed get

lim
λ→0

αG ≃ Aγ +O(γ2)

A(1)

A(∞)
= 1 (3.29)

where A(1) contains the first vertex correction only, and A(∞) includes all

vertex corrections. However, the state of affairs changes after turning on the

intrinsic SO interaction, whereupon Eq. ( 3.29) transforms into

αG(λ 6= 0) ≃ Bγ + C
1

γ

B(1)

B(∞)
=

∆2
0(3b

2 − ∆2
0)

3(3b2 + ∆2
0)

4b6(3b4 + 6b2∆2
0 − ∆4

0)

C(1)

C(∞)
=

(b2 + ∆2
0)(3b

2 − ∆2
0)

4b4
(3.30)
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When ∆0 << λkF , both intra-band and inter-band ratios show a significant

deviation from unity, 7 to which they converge as λ → 0. In order to under-

stand this behavior, let us look back at Eq. ( 3.22). There, we can formally

expand the vertex function as Λ = 1
2

∑∞
n=0 U

n, where the n-th order term

stems from the n-th vertex correction. From Eq. ( 3.23) we find that when

λ = 0, Un ∼ O(γn) and thus n ≥ 2 vertex corrections will not matter for the

Gilbert damping, which is O(γ)8 when EF >> γ. In contrast, when λ 6= 0 the

intra-band term in Eq. ( 3.23) is no longer zero, and consequently all powers

of U contain O(γ0) and O(γ1) terms. In other words, all vertices contribute to

O(1/γ) and O(γ) in the Gilbert damping, especially if λkF/∆0 is not small.

This conclusion should prove valid beyond the realm of the M2DEG because

it relies only on the mantra “intra-band∼ O(1/γ); inter-band ∼ O(γ)”. Our

expectation that higher order vertex corrections be important in (Ga,Mn)As

will be confirmed numerically in the next section.

3.4 Gilbert Damping for (Ga,Mn)As

(Ga,Mn)As and other (III,Mn)V ferromagnets are like transition metals

in that their magnetism is carried mainly by d-orbitals, but unlike transition

metals in that neither majority nor minority spin d-orbitals are present at the

7C(1) and C(∞) differ by as much as 25%; the disparity between B(1) and B(∞) may
be even larger.

8The disorder dependence in αG originates not only from the vertex part, but from
the Green’s functions as well. It is useful to recall that

∫

GσG−σ ∝ 1/(b + isg(σ)γ) and
∫

GσGσ ∝ 1/γ.
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Fermi energy. The orbitals at the Fermi energy are very similar to the states

near the top of the valence band of the host (III,V) semiconductor, although

they are of course weakly hybridized with the minority and majority spin d-

orbitals. For this reason the electronic structure of (III,Mn)V ferromagnets

is extremely simple and can be described reasonably accurately with the phe-

nomenological model which we employ in this section. Because the top of

the valence band in (III,V) semiconductors is split by spin-orbit interactions,

spin-orbit coupling plays a dominant role in the bands of these ferromagnets.

An important consequence of the strong SO interaction in the band structure

is that diffusive vertex corrections influence αG significantly at all orders; this

is the central idea of this section.

Using a p-d mean-field theory model[37, 38] for the ferromagnetic ground

state and a four-band spherical model[42] for the host semiconductor band

structure, Ga1−xMnxAs may be described by

H =
1

2m

[(

γ1 +
5

2
γ2

)

k2 − 2γ3(k · s)2

]

+ ∆0s
z, (3.31)

where s is the spin operator projected onto the J=3/2 total angular momentum

subspace at the top of the valence band and {γ1 = 6.98, γ2 = γ3 = 2.5} are

the Luttinger parameters for the spherical-band approximation to GaAs. In

addition, ∆0 = JpdSNMn is the exchange field, Jpd = 55meVnm3 is the p-d

exchange coupling, S = 5/2 is the spin of the Mn ions, NMn = 4x/a3 is the

density of Mn ions, and a = 0.565nm is the lattice constant of GaAs.
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Figure 3.5: GaMnAs: Higher order vertex corrections make a significant con-
tribution to Gilbert damping, due to the prominent spin-orbit interaction in
the band structure of GaAs. x is the Mn fraction, and p is the hole concentra-
tion that determines the Fermi energy EF . In this figure, the spin-independent
impurity strength u0 was taken to be 3 times larger than the magnetic impurity
strength uz. 1/τ0 corresponds to the scattering rate off Coulomb impurities
and is evaluated as a four-band average at the Fermi energy.

The ∆0 = 0 eigenstates of this model are

|α̃,k〉 = e−iszφe−isyθ|α̃〉 (3.32)

where |α̃〉 is an eigenstate of sz with eigenvalue α̃. Unfortunately, the analytical

form of the ∆0 6= 0 eigenstates is unknown. Nevertheless, since the exchange

field preserves the azimuthal symmetry of the problem, the φ-dependence of

the full eigenstates |αk〉 will be identical to that of Eq. ( 3.32). This obser-

vation leads to Um,m′:l,l′ ∝ δm−m′,l−l′, which simplifies Eq. ( 3.14). αG can be
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Figure 3.6: GaMnAs: When the spin-orbit splitting is reduced (in this case
by reducing the hole density to 0.2nm−3 and artificially taking γ3 = 0.5), the
crossover between inter- and intra-band dominated regimes produces a non-
monotonic shape of the Gilbert damping, much like in Fig. ( 3.4). When
either γ2 or p is made larger or x is reduced, we recover the monotonic decay
of Fig.( 3.5).

calculated numerically following the steps detailed in the previous sections; the

results are summarized in Figs. ( 3.5) and ( 3.6). Note that vertex corrections

moderately increase the damping rate, as in the case of a M2DEG model with

strong spin-orbit interactions. Fig. ( 3.5) underlines both the importance of

higher order vertex corrections in (Ga,Mn)As and the monotonic decay of the

damping as a function of scattering rate. The latter signals the supremacy

of the intra-band contribution to damping, accentuated at larger hole concen-
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trations. Had the intrinsic spin-orbit interaction been substantially weaker, 9

αG would have traced a non-monotonic curve as shown in Fig. ( 3.6). The

degree to which the intraband breathing Fermi surface model effect dominates

depends on the details of the band-structure and can be influenced by cor-

rections to the spherical model which we have adopted here to simplify the

vertex-correction calculation. The close correspondence between Figs. ( 3.5)-

( 3.6) and Figs. ( 3.3)-( 3.4) reveals the success of the M2DEG as a versatile

gateway for realistic models and justifies the extensive attention devoted to it

in this paper and elsewhere.

3.5 Assessment of the torque-correlation formula

Thus far we have evaluated the Gilbert damping for a M2DEG model

and a (Ga,Mn)As model using the (bare) spin-flip vertex 〈α,k|sx|β,k〉 and

its renormalized counterpart 〈α,k|Λ|β,k〉. The vertex corrected results are

expected to be exact for 1/τ small compared to the Fermi energy. For practi-

cal reasons, state-of-the-art band-structure calculations[26, 27] forgo impurity

vertex corrections altogether and instead employ the torque-correlation ma-

trix element, which we shall denote as 〈α,k|K|β,k〉 (see below for an explicit

expression). In this section we compare damping rates calculated using sx
α,β

vertices with those calculated using Kα,β vertices. We also compare both

results with the exact damping rates obtained by using Λα,β. The ensuing

9Notwithstanding that the four-band model is a SO → ∞ limit of the more general six-
band model, we shall tune the effective spin-orbit strength via p (hole concentration) and
γ3.
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discussion overlaps with and extends chapter 2.

We shall begin by introducing the following identity:[16]

〈α,k|sx|β,k〉 = i〈α,k| [sz, sy] |β,k〉

=
i

∆0
(Ek,α −Ek,β)〈α,k|sy|β,k〉

− i

∆0

〈α,k| [Hso, s
y] |β,k〉. (3.33)

In Eq. ( 4.36) we have decomposed the mean-field quasiparticle Hamilto-

nian into a sum of spin-independent, exchange spin-splitting, and other spin-

dependent terms: H = Hkin + Hso + Hex, where Hkin is the kinetic (spin-

independent) part, Hex = ∆0s
z is the exchange spin-splitting term and Hso

is the piece that contains the intrinsic spin-orbit interaction. The last term

on the right hand side of Eq. ( 4.36) is the torque-correlation matrix element

used in band structure computations:

〈α,k|K|β,k〉 ≡ − i

∆0
〈α,k| [Hso, s

y] |β,k〉. (3.34)

Eq. ( 4.36) allows us to make a few general remarks on the relation between

the spin-flip and torque-correlation matrix elements. For intra-band matrix el-

ements, one immediately finds that sx
α,α = Kα,α and hence the two approaches

agree. For inter-band matrix elements the agreement between sx
α,β and Kα,β

should be nearly identical when the first term in the final form of Eq.( 4.36)

is small, i.e. when10 (Ek,α − Ek,β) << ∆0. Since this requirement cannot

10Strictly speaking, it is |sx
α,β|2 ≃ |Kα,β |2 what is needed, rather than sx

α,β ≃ Kα,β. The
former condition is less demanding, and can occasionally be satisfied when Eα − Eβ is of
the order of the exchange splitting.
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be satisfied in the M2DEG, we expect that the inter-band contributions from

K and sx will always differ significantly in this model. More typical models,

like the four-band model for (Ga,Mn)As, have band crossings at a discrete set

of k-points, in the neighborhood of which Kα,β ≃ sx
α,β. The relative weight

of these crossing points in the overall Gilbert damping depends on a variety

of factors. First, in order to make an impact they must be located within

a shell of thickness 1/τ around the Fermi surface. Second, the contribution

to damping from those special points must outweigh that from the remaining

k-points in the shell; this might be the case for instance in materials with

weak spin-orbit interaction and weak disorder, where the contribution from

the crossing points would go like τ (large) while the contribution from points

far from the crossings would be ∼ 1/τ (small). Only if these two conditions are

fulfilled should one expect good agreement between the inter-band contribu-

tion from spin-flip and torque-correlation formulas. When vertex corrections

are included, of course, the same result should be obtained using either form

for the matrix element, since all matrix elements are between essentially de-

generate electronic states when disorder is treated non-perturbatively.[18, 36]

In the remining part of this section we shall focus on a more quantitative

comparison between the different formulas. For the M2DEG it is straightfor-

ward to evaluate αG analytically using K instead of sx and neglecting vertex
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Figure 3.7: M2DEG: Comparison of Gilbert damping predicted using spin-
flip and torque matrix element formulas, as well as the exact vertex corrected
result. In this figure the intrinsic spin-orbit interaction is relatively weak
(λkF = 0.05EF ≃ 0.06∆0) and we have taken uz = 0. The torque correlation
formula does not distinguish between spin-dependent and spin-independent
disorder.

corrections; we obtain

αK
G =

N2D∆0

8s0

[

λ2k2
F

b2
∆0

γ
+

(

λ2k2
F

∆0b

)2
γ∆0

γ2 + b2

]

(3.35)

where we assumed (γ, λkF ,∆0) << ǫF . By comparing Eq. ( 3.35) with the

exact expression Eq. ( 3.25), we find that the intra-band parts are in excellent

agreement when ∆0 << λkF , i.e. when vertex corrections are relatively unim-

portant. In contrast, the inter-band parts differ markedly regardless of the

vertex corrections. These trends are captured by Figs. ( 3.7) and ( 3.8), which

compare the Gilbert damping obtained from sx, K and Λ matrix elements.
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Figure 3.8: M2DEG: Comparison of Gilbert damping predicted using spin-
flip and torque matrix element formulas, as well as the exact vertex corrected
result. In this figure the intrinsic spin-orbit interaction is relatively strong
(λkF = 0.5EF = 5∆0) and we have taken uz = 0

Fig. ( 3.7) corresponds to the weak spin-orbit limit, where it is found that in

disordered ferromagnets sx may grossly overestimate the Gilbert damping be-

cause its inter-band contribution does not vanish even as SO tends to zero. As

explained in Section III, this flaw may be repaired by adding the leading order

impurity vertex correction. The torque-correlation formula is free from such

problem because K vanishes identically in absence of SO interaction. Thus

the main practical advantage of K is that it yields a physically sensible result

without having to resort to vertex corrections. Continuing with Fig.( 3.7), at

weak disorder the intra-band contributions dominate and therefore sx and K
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coincide; even Λ agrees, because for intra-band transitions at weak spin-orbit

interaction the vertex corrections are unimportant. Fig. ( 3.8) corresponds to

the strong spin-orbit case. In this case, at low disorder sx andK agree well with

each other, but differ from the exact result because higher order vertex correc-

tions alter the intra-band part substantially. For a similar reason, neither sx

nor K agree with the exact Λ at higher disorder. Based on these model calcu-

lations, we do not believe that there are any objective grounds to prefer either

the K torque-correlation or the sx spin-flip formula estimate of αG when spin-

orbit interactions are strong and αG is dominated by inter-band relaxation. A

precise estimation of αG under these circumstances appears to require that the

character of disorder, incuding its spin-dependence, be accounted for reliably

and that the vertex-correction Dyson equation be accurately solved. Carrying

out this program remains a challenge both because of technical complications

in performing the calculation for general band structures and because disorder

may not be sufficiently well characterized.

Analogous considerations apply for Figs. ( 3.9) and ( 3.10), which show

results for the four-band model related to (Ga,Mn)As. These figures show re-

sults similar to those obtained in the strong spin-orbit limit of the M2DEG

(Fig. 3.8). Overall, our study indicates that the torque-correlation formula

captures the intra-band contributions accurately when the vertex corrections

are unimportant, while it is less reliable for inter-band contributions unless

the predominant inter-band transitions connect states that are close in energy.

The torque-correlation formula has the practical advantage that it correctly
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Figure 3.9: GaMnAs: Comparison of Gilbert damping predicted using spin-
flip and torque matrix element formulas, as well as the exact vertex corrected
result. p is the hole concentration that determines the Fermi energy EF and
x is the Mn fraction. Due to the strong intrinsic SO, this figure shows similar
features as Fig.( 3.8).

gives a zero spin relaxation rate when there is no spin-orbit coupling in the

band structure and spin-independent disorder. The damping it captures de-

rives entirely from spin-orbit coupling in the bands. It therefore incorrectly

predicts, for example, that the damping rate vanishes when spin-orbit coupling

is absent in the bands and the disorder potential is spin-dependent. Never-

theless, assuming that the dominant disorder is normally spin-independent,

the K-formula may have a pragmatic edge over the sx-formula in weakly spin-

orbit coupled systems. In strongly spin-orbit coupled systems there appears

to be little advantage of one formula over the other. We recommend that
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Figure 3.10: GaMnAs: Comparison of Gilbert damping predicted using spin-
flip and torque matrix element formulas, as well as the exact vertex corrected
result. In relation to Fig. ( 3.9) the effective spin-orbit interaction is stronger,
due to a larger p and a smaller x.

inter-band and intra-band contributions be evaluated separately when αG is

evaluated using the torque-correlation formula. For the intra-band contribu-

tion the sx and K life-time formulas are identical. The model calculations

reported here suggest that vertex corrections to the intra-band contribution

do not normally have an overwhelming importance. We conclude that αG can

be evaluated relatively reliably when the intra-band contribution dominates.

When the inter-band contribution dominates it is important to assess whether

or not the dominant contributions are coming from bands that are nearby in

momentum space, or equivalently whether or not the matrix elements which

contribute originate from pairs of bands that are energetically spaced by much
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less than the exchange spin-splitting at the same wavevector. If the dominant

contributions are from nearby bands, the damping estimate should have the

same reliability as the intra-band contribution. If not, we conclude that the

αG estimate should be regarded with caution.

3.6 Conclusions

To summarize, this chapter has described an evaluation of Gilbert

damping for two simple models, a two-dimensional electron-gas ferromagnet

model with Rashba spin-orbit interactions and a four-band model which pro-

vides an approximate description of (III, Mn)V of ferromagnetic semiconduc-

tors. Our results are exact in the sense that they combine time-dependent

mean field theory[36] with an impurity ladder-sum to all orders, hence giv-

ing us leverage to make the following statements. First, previously neglected

higher order vertex corrections become quantitatively significant when the

intrinsic spin-orbit interaction is larger than the exchange splitting. Second,

strong intrinsic spin-orbit interaction leads to the the supremacy of intra-band

contributions in (Ga,Mn)As, with the corresponding monotonic decay of the

Gilbert damping as a function of disorder. Third, the spin-torque formalism

used in ab-initio calculations of the Gilbert damping is quantitatively reliable

as long as the intra-band contributions dominate and the exchange field is

weaker than the spin-orbit splitting; if these conditions are not met, the use

of the spin-torque matrix element in a life-time approximation formula offers

no significant improvement over the original spin-flip matrix element.
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Chapter 4

Non-Adiabatic Spin Transfer Torque in Real

Materials

This chapter completes our studies of magnetization relaxation in con-

ducting ferromagnets. It differs from and complements with the previous chap-

ters by analyzing an inhomogeneously magnetized ferromagnet which is con-

nected to a source and a drain. The motion of simple domain walls and of more

complex magnetic textures in the presence of a transport current is described

by the Landau-Lifshitz-Slonczewski (LLS) equations. Predictions of the LLS

equations depend sensitively on the ratio between the dimensionless material

parameter β which characterizes non-adiabatic spin-transfer torques and the

Gilbert damping parameter1 α. This ratio has been variously estimated to

be close to zero, close to one, and large compared to one. By identifying

β as the influence of a transport current on α, we derive a concise, explicit

and relatively simple expression which relates β to the band structure and

Bloch state lifetimes of a magnetic metal. Using this expression we demon-

strate that intrinsic spin-orbit interactions lead to intra-band contributions to

β which are often dominant and can be (i) estimated with some confidence

1For ease of notation, in this chapter we denote the Gilbert damping as α rather than
as αG.
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and (ii) interpreted using the “breathing Fermi surface” model.2

4.1 Introduction

An electric current can influence the magnetic state of a ferromagnet by

exerting a spin transfer torque(STT) on the magnetization.[43–46] This effect

occurs whenever currents travel through non-collinear magnetic systems and

is therefore promising for magnetoelectronic applications. Indeed, STT’s have

already been exploited in a number of technological devices.[47–49] Partly for

this reason and partly because the quantitative description of order parame-

ter manipulation by out-of-equilibrium quasiparticles poses great theoretical

challenges, the study of the STT effect has developed into a major research

subfield of spintronics.

Spin transfer torques are important in both magnetic multilayers, where

the magnetization changes abruptly,[14, 50] and in magnetic nanowires, where

the magnetization changes smoothly.[23, 51, 52] Theories of the STT in systems

with smooth magnetic textures identify two different types of spin transfer. On

one hand, the adiabatic or Slonczewski[46] torque results when quasiparticle

spins follow the underlying magnetic landscape adiabatically. It can be math-

ematically expressed as (vs · ∇)s0, where s0 stands for the magnetization and

vs is the “spin velocity”, which is proportional to the charge drift velocity, and

2The contents of this chapter are based on the article: Ion Garate, K. Gilmore, M.D.
Stiles and A.H. MacDonald, Non-Adiabatic Spin Transfer Torque in Real Materials, Phys.
Rev. B 79, 104416 (2009).
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hence to the current and the applied electric field. The microscopic physics

of the Slonczewski spin-torque is thought to be well understood[23, 50–56], at

least[57] in systems with weak spin-orbit coupling. A simple angular momen-

tum conservation argument argues that in the absence of spin-orbit coupling

vs = σsE/es0, where s0 is the magnetization, σs is the spin conductivity and

E is the electric field. However, spin-orbit coupling plays an essential role in

real magnetic materials and hence the validity of this simple expression for vs

needs to be tested by more rigorous calculations.

The second spin transfer torque in continuous media, βs0 × (vs · ∇)s0,

acts in the perpendicular direction and is frequently referred to as the non-

adiabatic torque.[58] Unfortunately, the name is a misnomer in the present

context. There are two contributions that have the preceeding form. The first

is truly non-adiabatic and occurs in systems in which the magnetization varies

too rapidly in space for the spins of the transport electrons to follow the local

magnetization direction as they traverse the magnetization texture. For wide

domain walls, these effects are expected to be small.[59] The contribution of

interest in this paper is a dissipative contribution that occurs in the adiabatic

limit. The adiabatic torque discussed above is the reactive contribution in this

limit. As we discuss below, processes that contribute to magnetic damping,

whether they derive from spin-orbit coupling or spin-dependent scattering,

also give a spin-transfer torque parameterized by β as above. In this paper,

we follow the common convention and refer to this torque as non-adiabatic.

However, it should be understood that it is a dissipative spin transfer torque
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that is present in the adiabatic limit.

The non-adiabatic torque plays a key role in current-driven domain wall

dynamics, where the ratio between β and the Gilbert parameter α can deter-

mine the velocity of domain walls under the influence of a transport current.

There is no consensus on the magnitude of the parameter β.[23, 60] Although

there have a few theoretical studies[19, 21, 22] of the STT in toy models, the

relationship between toy model STT’s and STT’s in either transition metal

ferromagnets or ferromagnetic semiconductors is far from clear. As we will

discuss the toy models most often studied neglect spin-orbit interactions in

the band-structure of the perfect crystal, namely intrinsic spin-orbit interac-

tions, which can alter STT physics qualitatively.

The main objectives of this chapter are (i) to shed new light on the

physical meaning of the non-adiabatic STT by relating it to the change in

magnetization damping due to a transport current, (ii) to derive a concise

formula that can be used to evaluate β in real materials from first principles

and (iii) to demonstrate that α and β have the same qualitative dependence

on disorder (or temperature), even though their ratio depends on the details of

the band structure. As a byproduct of our theoretical study, we find that the

expression for vs in terms of the spin conductivity may not always be accurate

in materials with strong spin-orbit coupling.

We begin in Sec. II by reviewing and expanding on microscopic the-

ories of α, β and vs. In short, our microscopic approach quantifies how the

micromagnetic energy of an inhomogeneous ferromagnet is altered in response
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to external rf fields and dc transport currents which drive the magnetization

direction away from local equilibrium. These effects are captured by the spin

transfer torques, damping torques, and effective magnetic fields that appear

in the LLS equation. By relating magnetization dynamics to effective mag-

netic fields, we derive explicit expressions for α,β and vs in terms of microscopic

parameters. Important contributions to these materials parameters can be un-

derstood in clear physical terms using the breathing Fermi surface model.[61]

Readers mainly interested in a qualitative explanation for our findings may

skip directly to Sec. VIII where we discuss of our main results in that frame-

work. Regardless of the approach, the non-adiabatic STT can be understood

as the change in the Gilbert damping contribution to magnetization dynamics

when the Fermi sea quasiparticle distribution function is altered by the trans-

port electric field. The outcome of this insight is a concise analytical formula

for β which is simple enough that it can be conveniently combined with first-

principles electronic structure calculations to predict β-values in particular

materials.3

In Secs. III-V we apply our expression for β to model ferromagnets. In

Sec. III we perform a necessary reality check by applying our theory of β to the

parabolic band Stoner ferromagnet, the only model for which more rigorous

fully microscopic calculations[22, 52] of β have been completed. Sec. IV is de-

voted to the study of a two-dimensional electron-gas ferromagnet with Rashba

spin-orbit interactions. Studies of this model provide a qualitative indication

3K. Gilmore, I. Garate, P.M. Haney, A.H. MacDonald and M.D. Stiles, in preparation
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of the influence of intrinsic spin-orbit interactions on the non-adiabatic STT.

We find that, as in the microscopic theory[34, 36] for α, spin-orbit interactions

induce intra-band contributions to β which are proportional to the quasiparti-

cle lifetimes. These considerations carry over to the more sophisticated 4-band

spherical model that we analyze in Sec. V; there our calculation is tailored

to (Ga,Mn)As. We show that intra-band (conductivity like) contributions are

prominent in the 4-band model for experimentally relevant scattering rates.

Sec. VI discusses the phenomenologically important α/β ratio for real

materials. Using our analytical results derived in Sec. II (or Sec. VIII)

we are able to reproduce and extrapolate trends expected from toy models

which indicate that α/β should vary across materials in approximately the

same way as the ratio between the itinerant spin density and the total spin

density. We also suggest that α and β may have the opposite signs in systems

with both hole-like and electron-like carriers. We present concrete results for

(Ga,Mn)As, where we obtain α/β ≃ 0.1. This is reasonable in view of the weak

spin polarization and the strong spin-orbit coupling of valence band holes in

this material.

Sec. VII describes the generalization of the torque-correlation formula

employed in ab-initio calculations of the Gilbert damping to the case of the

non-adiabatic spin-transfer torque. The torque correlation formula incorpo-

rates scattering of quasiparticles simply by introducing a phenomenological

lifetime for the Bloch states and assumes that the most important electronic

transitions occur between states near the Fermi surface in the same band.
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Our ability to make quantitative predictions based on this formula is limited

mainly by an incomplete understanding of Bloch state scattering processes

in real ferromagnetic materials. These simplifications give rise to ambiguities

and inaccuracies that we dissect in Sec. VII. Our assessment indicates that the

torque correlation formula for β is most accurate at low disorder and relatively

weak spin-orbit interactions.

Sec. VIII restates and complements the effective field calculation ex-

plained in Sec. II. Within the adiabatic approximation, the instantaneous

energy of a ferromagnet may be written in terms of the instantaneous occu-

pation factors of quasiparticle states. We determine the effect of the external

perturbations on the occupation factors by combining the relaxation time ap-

proximation and the master equation. In this way we recover the results of

Sec. II and are able to interpret the intra-band contributions to β in terms of

a generalized breathing Fermi surface picture.

Sec. IX contains a brief summary which concludes this chapter.

4.2 Microscopic Theory of α, β and vs

The Gilbert damping parameter α, the non-adiabatic spin transfer

torque coefficient β and the “spin velocity” vs appear in the generalized

Landau-Lifshitz-Gilbert expression for collective magnetization dynamics of

a ferromagnet under the influence of an electric current:

(∂t + vs · ∇) Ω̂ − Ω̂ × Heff = −αΩ̂ × ∂tΩ̂ − βΩ̂ × (vs · ∇)Ω̂. (4.1)
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In Eq. (4.1) Heff is an effective magnetic field which we elaborate on below and

Ω̂ = s0/s0 ≃ (Ωx,Ωy, 1 − (Ω2
x + Ω2

y)/2) is the direction of the magnetization.

Eq. (4.1) describes the slow dynamics of smooth magnetization textures in the

presence of a weak electric field which induces transport currents. It explic-

itly neglects the dynamics of the magnetization magnitude which is implicitly

assumed to be negligible. For small deviations from the easy direction (which

we take to be the ẑ-direction), it reads

Heff,x = (∂t + vs · ∇) Ωy + (α∂t + βvs · ∇) Ωx

Heff,y = − (∂t + vs · ∇) Ωx + (α∂t + βvs · ∇) Ωy (4.2)

The gyromagnetic ratio has been absorbed into the units of the field Heff so

that this quantity has inverse time units. We set ~ = 1 throughout.

In this section we relate the α, β and vs parameters to microscopic

features of the ferromagnet by considering the transverse total spin response

function. For a technically more accessible (yet less rigorous) theory of α and

β we refer to Sec. VIII. The transverse spin response function studied here

describes the change in the micromagnetic energy due to the departure of

the magnetization away from its equilibrium direction, where equilibrium is

characterized by the absence of currents and external rf fields. This change in

energy defines an effective magnetic field which may then be identified with

Eq. (4.2), thereby allowing us to microscopically determine α,β and vs. To

first order in frequency ω, wave vector q and electric field, the transverse spin
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response function is given by

S0Ω̂a =
∑

b

χa,bHext,b ≃
∑

b

[

χ
(0)
a,b + ωχ

(1)
a,b + (vs · q)χ

(2)
a,b

]

Hext,b (4.3)

where a, b ∈ {x, y}, Hext is the external magnetic field with frequency ω and

wave vector q, S0 = s0V is the total spin of the ferromagnet (V is the sample

volume), and χ is the transverse spin-spin response function in the presence

of a uniform time-independent electric field:

χa,b(q, ω;vs) = i

∫ ∞

0

dt

∫

dr exp(iωt− iq · r)〈
[

Sa(r, t), Sb(0, 0)
]

〉. (4.4)

In Eq. (4.3), χ(0) = χ(q = 0, ω = 0;E = 0) describes the spin response to

a constant, uniform external magnetic field in absence of a current, χ(1) =

limω→0 χ(q = 0, ω;E = 0)/ω characterizes the spin response to a time-dependent,

uniform external magnetic field in absence of a current, and χ(2) = limq,vs→0 χ(q, ω =

0;E)/q · vs represents the spin response to a constant, non-uniform external

magnetic field combined with a constant, uniform electric field E . Note that

first order terms in q are allowed by symmetry in presence of an electric field.

In addition, 〈〉 is a thermal and quantum mechanical average over states that

describe a uniformly magnetized, current carrying ferromagnet.

The approach underlying Eq. (4.3) comprises a linear response theory

with respect to an inhomogeneous magnetic field followed by a linear response

theory with respect to an electric field. Alternatively, one may treat the elec-

tric and magnetic perturbations on an equal footing without predetermined

ordering; for further considerations on this matter we refer to Appendix A.
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In the following we emulate and appropriately generalize a procedure

outlined elsewhere.[36] First, we recognize that in the static limit and in ab-

sence of a current the transverse magnetization responds to the external mag-

netic field by adjusting its orientation to minimize the total energy including

the internal energy Eint and the energy due to coupling with the external mag-

netic field, Eext = −S0Ω̂ ·Hext. It follows that χ
(0)
a,b = S2

0 [∂
2Eint/∂Ω̂a∂Ω̂b]

−1 and

thus Hint,a = −(1/S0)∂Eint/∂Ω̂a = −S0[χ
(0)]−1

a,bΩ̂b, where Hint is the internal

energy contribution to the effective magnetic field. Multiplying Eq. (4.3) on

the left by [χ(0)]−1 and using Heff = Hint + Hext we obtain a formal equation

for Heff :

Heff,a =
∑

b

[

L
(1)
a,b∂t + L

(2)
a,b(vs · ∇)

]

Ω̂b, (4.5)

where

L
(1) = −iS0[χ

(0)]−1χ(1)[χ(0)]−1

L
(2) = iS0[χ

(0)]−1χ(2)[χ(0)]−1. (4.6)

Identifying Eqs. (4.5) and (4.2) results in concise microscopic expressions for

α and β and vs:

α = L
(1)
x,x = L

(1)
y,y

β = L
(2)
x,x = L

(2)
y,y

1 = L
(2)
x,y =⇒ vs · q = iS0

[

(χ(0))−1χ(χ(0))−1
]

x,y
. (4.7)

In the third line of Eq. (4.7) we have combined the second line of Eq. (4.6)

with χ(2) = χ/(vs · q).
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When applying Eq. (4.7) to realistic conducting ferromagnets, one must

invariably adopt a self-consistent mean-field (Stoner) theory description of

the magnetic state derived within a spin-density-functional theory (SDFT)

framework.[28, 29] In SDFT the transverse spin response function is expressed

in terms of Kohn-Sham quasiparticle response to both external and induced

magnetic fields; this allows us to transform[36] Eq. (4.7) into

α =
1

S0
lim
ω→0

Im[χ̃QP
+,−(q = 0, ω,E = 0)]

ω

β = − 1

S0

lim
vs,q→0

Im[χ̃QP
+,−(q, ω = 0,E)]

q · vs

vs · q = − 1

S0
Re[χ̃QP

+,−(q, ω = 0,E)], (4.8)

where we have used4 χ
(0)
a,b = δa,bS0/∆̄ and

χ̃QP
+,−(q, ω;E) =

1

2

∑

i,j

fj − fi

ǫi − ǫj − ω − iη

〈j|S+∆0(r)e
iq·r|i〉〈i|S−∆0(r)e

−iq·r|j〉

(4.9)

is the quasiparticle response to changes in the direction of the exchange-

correlation effective magnetic field.5 To estimate β this response function

should be evaluated in the presence of an electric current. In the derivation

of Eq. (4.8) we have made use of S± = Sx ± iSy. Physically, “Im” and “Re”

4We assume that magnetic anisotropy and the external magnetic fields are weak com-
pared to the exchange-correlation splitting of the ferromagnet. ∆̄ is the spin-density
weighted average of ∆(r) (see Ref.[36]).

5For convenience in Eq. (4.8) we use 〈S+S−〉 response functions instead of 〈SxSx〉 and
〈SySy〉. They are related via Sx = (S+ + S−)/2 and Sy = (S+ − S−)/2i.
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indicate that the Gilbert damping and the non-adiabatic STT are dissipative

while the adiabatic STT is reactive. Furthermore, in the third line it is implicit

that we expand Re[χ̃QP] to first order in q and E.

In Eq. (4.9), S± is the spin-rising/lowering operator, |i〉, ǫi and fi are the

Kohn-Sham eigenstates, eigenenergies and Fermi factors in presence of spin-

dependent disorder, and ∆0(r) is the difference in the magnetic ground state

between the majority spin and minority spin exchange-correlation potential -

the spin-splitting potential. This quantity is always spatially inhomogeneous

at the atomic scale and is typically larger in atomic regions than in interstitial

regions. Although the spatial dependence of ∆0(r) plays a crucial role in

realistic ferromagnets, we replace it by a phenomenological constant ∆0 in the

toy models we discuss below.

Our expression of vs in terms of the transverse spin response func-

tion may be unfamiliar to readers familiar with the argument given in the

introduction of this paper in which vs is determined by the divergence in spin

current. This argument is based on the assumption that the (transverse) angu-

lar momentum lost by spin polarized electrons traversing an inhomogeneous

ferromagnet is transferred to the magnetization. However, this assumption

fails when spin angular momentum is not conserved as it is not in the presence

of spin-orbit coupling. In general, part of the transverse spin polarization lost

by the current carrying quasiparticles is transferred to the lattice rather than

to collective magnetic degrees of freedom[57] when spin-orbit interactions are

present. It is often stated that the physics of spin non-conservation is captured
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by the non-adiabatic STT; however, the non-adiabatic STT per se is limited

to dissipative processes and cannot describe the changes in the reactive spin

torque due to spin-flip events. Our expression in terms of the transverse spin

response function does not rely on spin conservation, and while it agrees with

the conventional picture[62] in simplest cases (see below), it departs from it

when e.g. intrinsic spin-orbit interactions are strong.

In this paper we incorporate the influence of an electric field by simply

shifting the Kohn-Sham orbital occupation factors to account for the energy

deviation of the distribution function in a drifting Fermi sea:

fi ≃ f (0)(ǫi + Vi) ≃ f (0)(ǫi) + Vi∂f
(0)/∂ǫi (4.10)

where Vi is the effective energy shift for the i-th eigenenergy due to acceleration

between scattering events by an electric field and f (0) is the equilibrium Fermi

factor. This approximation to the steady-state induced by an external electric

field is known to be reasonably accurate in many circumstances, for example

in theories of electrical transport properties, and it can be used[62] to provide

a microscopic derivation of the adiabatic spin-transfer torque. As we discuss

below, this ansatz provides a result for β which is sufficiently simple that it

can be combined with realistic ab initio electronic structure calculations to

estimate β values in particular magnetic metals. We support this ansatz by

demonstrating that it agrees with full non-linear response calculations in the

case of toy models for which results are available.

Using the Cauchy identity, 1/(x− iη) = 1/x+ iπδ(x), and ∂f (0)/∂ǫ ≃
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−δ(ǫ) we obtain

Im[χ̃QP
+,−] ≃ π

2

∑

i,j

[ω − Vj,i] |〈j|S+∆0(r) e
iq·r|i〉|2δ(ǫi − ǫF) δ(ǫj − ǫF)

Re[χ̃QP
+,−] ≃ −1

2

∑

i,j

|〈j|S+∆0(r)e
iq·r|i〉|2 Vjδ(ǫj − ǫF) − Viδ(ǫi − ǫF)

ǫi − ǫj
(4.11)

where we have defined the difference in transport deviation energies by

Vj,i ≡ Vj − Vi. (4.12)

In the first line of Eq. (4.11), the two terms within the square brackets cor-

respond to the energy of particle-hole excitations induced by radio frequency

magnetic and static electric fields, respectively. The imaginary part selects

scattering processes that relax the spin of the particle-hole pairs mediated

either by phonons or by magnetic impurities.[9] Substituting Eq. (4.11) into

Eq. (4.8) we can readily extract α, β and vs:

α =
π

2S0

∑

i,j

|〈j|S+∆0(r)|i〉|2δ(ǫi − ǫF)δ(ǫj − ǫF)

β = lim
q,vs→0

π

2S0q · vs

∑

i,j

|〈j|S+ ∆0(r) e
iq·r|i〉|2 Vj,i δ(ǫi − ǫF)δ(ǫj − ǫF)

vs · q =
1

2S0

∑

i,j

|〈j|S+∆0(r)e
iq·r|i〉|2Vjδ(ǫj − ǫF) − Viδ(ǫi − ǫF)

ǫi − ǫj
(4.13)

where we have assumed a uniform precession mode for the Gilbert damping.

Eq. (4.13) and Eq. (4.11) identify the non-adiabatic STT as a correction

to the Gilbert damping in the presence of an electric current; in other words,

the magnetization damping at finite current is given by the sum of the Gilbert

damping and the non-adiabatic STT. We feel that this simple interpretation
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of the non-adiabatic spin-transfer torque has not received sufficient emphasis

in the literature.

Strictly speaking the influence of a transport current on magnetization

dynamics should be calculated by considering non-linear response of transverse

spin to both effective magnetic fields and the external electric field which drives

the transport current. Our approach, in which we simply alter the occupation

probabilities which appear in the transverse spin response function is admit-

tedly somewhat heuristic. We demonstrate below that it gives approximately

the same result as the complete calculation for the case of the very simplistic

model for which that complete calculation has been carried out.

In Eq. (4.13), the eigenstates indexed by i are not Bloch states of a peri-

odic potential but instead the eigenstates of the Hamiltonian that includes all

of the static disorder. Although Eq. (4.13) provides compact expressions valid

for arbitrary metallic ferromagnets, its practicality is hampered by the fact

that the characterization of disorder is normally not precise enough to permit

a reliable solution of the Kohn-Sham equations with arbitrary impurities. An

approximate yet more tractable treatment of disorder consists of the following

steps: (i) replace the actual eigenstates of the disordered system by Bloch

eigenstates corresponding to a pure crystal, e.g. |i〉 → |k, a〉, where k is the

crystal momentum and a is the band index of the perfect crystal; (ii) switch Vi

to Va = τk,avk,a · eE, where τ is the Bloch state lifetime and vk,a = ∂ǫk,a/∂k is

the quasiparticle group velocity, (iii) substitute the δ(ǫk,a − ǫF) spectral func-

tion of a Bloch state by a broadened spectral function evaluated at the Fermi
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energy: δ(ǫk,a − ǫF) → Aa(ǫF,k)/(2π), where

Aa(ǫF,k) =
Γk,a

(ǫF − ǫk,a)2 +
Γ2

k,a

4

(4.14)

and Γa,k = 1/τa,k is the inverse of the quasiparticle lifetime. This minimal

prescription can be augmented by introducing impurity vertex corrections in

one of the spin-flip operators, which restores an exact treatment of disorder in

the limit of dilute impurities. This task is for the most part beyond the scope

of this paper (see next section, however). The expression for α in Eq. (4.13)

has already been discussed in a previous paper;[36] hence from here on we shall

concentrate on the expression for β which now reads

β(0) = lim
q,vs→0

1

8πs0

∑

a,b

∫

k

|〈k + q, b|S+ ∆0(r)|k, a〉|2Aa(ǫF,k)Ab(ǫF,k + q)

× (vk+q,bτk+q,b − vk,aτk,a) · eE
q · vs

(4.15)

where we have used
∑

k → V
∫

dDk/(2π)D ≡ V
∫

k
with D as the dimension-

ality, V as the volume and

q·vs =
1

2s0

∑

a,b

∫

k

|〈k + q, b|S+ ∆0(r)|k, a〉|2
evk+q,bτk+q,bδ(ǫF − ǫk+q,b) − evk,aτk,aδ(ǫF − ǫk,a)

ǫk,a − ǫk+q,b

.

(4.16)

In Eq. (4.15) the superscript “0” is to remind of the absence of impurity vertex

corrections; . In addition, we recall that s0 = S0/V is the magnetization of the

ferromagnet and |ak〉 is a band eigenstate of the ferromagnet without disorder.

It is straightforward to show that Eq. (4.16) reduces to the usual expression

vs = σsE/(es0) for vanishing intrinsic spin-orbit coupling. However, we find
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that in presence of spin-orbit interaction Eq. (4.16) is no longer connected to

the spin conductivity. Determining the precise way in which Eq. (4.16) departs

from the conventional formula in real materials is an open problem that may

have fundamental and practical repercussions. Expanding the integrand in

Eq. (4.15) to first order in q and rearranging the result we arrive at

β(0) = − 1

8πs0q · vs

∑

a,b

∫

k

[

|〈a,k|S+∆0(r)|b,k〉|2 + |〈a,k|S−∆0(r)|b,k〉|2
]

×Aa(ǫF,k)A′
b(ǫF,k)(vk,a · eE)(vk,b · q)τa

− 1

4πs0q · vs

∑

a,b

∫

k

Re
[

〈b,k|S−∆0(r) |a,k〉〈a,k|S+∆0(r)q · ∂k|b,k〉

+ (S+ ↔ S−)
]

Aa(ǫF,k)Ab(ǫF,k)(vk,a · eE)τa

(4.17)

where A′(ǫF,k) ≡ 2(ǫF − ǫk,a)Γa/ [(ǫF − ǫk,a)
2 + Γ2

a/4]
2

stands for the deriva-

tive of the spectral function and we have neglected ∂Γ/∂k. Eq. (4.17) (or

Eq. (4.15)) is the central result of this work and it provides a gateway to eval-

uate the non-adiabatic STT in materials with complex band structures;[?] for

a diagrammatic interpretation see Fig. (4.1). An alternative formula with a

similar aspiration has been proposed recently,[63] yet that formula ignores in-

trinsic spin-orbit interactions and relies on a detailed knowledge of the disorder

scattering mechanisms. In the following three sections we apply Eq. (4.17) to

three different simplified models of ferromagnets. For a simpler-to-implement

approximate version of Eq. (4.15) or Eq. (4.17) we refer to Sec. VI.
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Figure 4.1: Feynman diagrams for (a) α and (b) β(q · vs), the latter with
a heuristic consideration of the electric field (for a more rigorous treatment
see Appendix A). Solid lines correspond to Green’s functions of the band
quasiparticles in the Born approximation, dashed lines stand for the magnon
of frequency ω and wavevector q, ωn is the Matsubara frequency and eVa,b is
the difference in the transport deviation energies.
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4.3 Non-Adiabatic STT for the Parabolic Two-Band
Ferromagnet

The model described in this section bears little resemblance to any real

ferromagnet. Yet, it is the only model in which rigorous microscopic results

for β are presently available, thus providing a valuable test bed for Eq. (4.17).

The mean-field Hamiltonian for itinerant carriers in a two-band Stoner model

with parabolic bands is simply

H(k) =
k2

2m
− ∆0S

z (4.18)

where ∆0 is the exchange field and Sz
a,b = δa,bsgn(a). In this model the eigen-

states have no momentum dependence and hence Eq. (4.17) simplifies to

(vs · q)β(0) = − ∆2
0

2πs0

∑

a

∫

k

Aa(ǫF,k)A′
−a(ǫF,k)

k · q
m

k · eE
m

τk,a, (4.19)

where a = +(−) for majority (minority) spins, vk,± = k/m, and S± = Sx±iSy

with Sx
a,b = δa,b. Also, from here on repeated indexes will imply a sum. Taking

∆0 ≤ EF and ∆0 >> 1/τ , the momentum integral in Eq. (4.19) is performed

in the complex energy plane using a keyhole contour around the branch cut

that stems from the 3D density of states:

(vs · q)β(0) = − ∆2
0

2πs0

2eE · q
3m

∫ ∞

0

ν(ǫ)Aa(ǫF,a − ǫ)A′
−a(ǫF,−a − ǫ)ǫτk,a

≃ eE · q
6m∆0s0

sgn(a)νaǫF,aτaΓ−a

=
eE · q

2m∆0s0
(n↑τ↑γ↓ − n↓τ↓γ↑) (4.20)
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where ǫF,a = ǫF + sgn(a)∆0, νa is the spin-dependent density of states at

the Fermi surface, na = 2νaǫF,a/3 is the corresponding number density, and

γa ≡ Γa/2. The factor 1/3 on the first line of Eq. (4.20) comes from the

angular integration. In the second line of Eq. (4.20) we have neglected a term

that is smaller than the one retained by a factor of ∆2
0/(12ǫ2F); such extra term

(which would have been absent in a two-dimensional version of the model)

appears to be missing in previous work.[21, 22]

The simplicity of this model enables a partial incorporation of impurity

vertex corrections. By adding to β(0) the contribution from the leading order

vertex correction (β(1)), we shall recover the results obtained previously for

this model by a full calculation of the transverse spin response function. As

it turns out, β(1) is qualitatively important because it ensures that only spin-

dependent impurities contribute to the non-adiabatic STT in the absence of an

intrinsic spin-orbit interaction. In Appendix B we derive the following result:

(vs · q)β(1) =
e∆2

0

4πs0

∫

k,k′

uiRe
[

S+
a,bS

i
b,b′S

−
b′,a′S

i
a′,a

] Aa(ǫF,k)

(ǫF − ǫk′,a′)

×
[

Ab(ǫF,k + q)

(ǫF − ǫk′+q,b′)
Vb,a +

Ab′(ǫF,k
′ + q)

(ǫF − ǫk+q,b)
Vb′,a

]

, (4.21)

where ui ≡ niw
2
i (i = 0, x, y, z), ni is the density of scatterers, wi is the Fourier

transform of the scattering potential and the overline denotes an average over

different disorder configurations.[21] Also, Va,b = (τbvk+q,b − τavk,a) · eE. Ex-

panding Eq. (4.21) to first order in q, we arrive at

(vs·q)β(1) = − ∆2
0

2πs0
(u0−uz)

∫

k,k′

Aa(ǫF,k)

ǫF − ǫk′,a

[

A′
−a(ǫF,k)

ǫF − ǫk′,−a

+
A−a(ǫF,k

′)

(ǫF − ǫk,−a)2

]

k · q
m

k · eE
m

τk,a

(4.22)
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In the derivation of Eq. (4.22) we have used S± = Sx ± iSy and assumed

that ux = uy ≡ ux,y, so that uiRe
[

Sx
a,bS

i
b,b′S

x
b′,a′Si

a′,a

]

= (u0 − uz) δa,a′δb,b′δa,−b.

In addition, we have used
∫

k,k′ F (|k|, |k′|)kik
′
j = 0. The first term inside

the square brackets of Eq. (4.22) can be ignored in the weak disorder regime

because its contribution is linear in the scattering rate, as opposed to the

second term, which contributes at zeroth order. Then,

(vs · q)β(1) = − ∆2
0

πs0
(u0 − uz)

∫

k,k′

Aa(ǫF,k)A−a(ǫF,k
′)

(ǫF − ǫk′,a)(ǫF − ǫk,−a)2

k · q
m

k · eE
m

τk,a

≃ − ∆2
0

πs0

(u0 − uz)
2eE · q

3m

∫ ∞

−∞

dǫdǫ′ν(ǫ)ν(ǫ′)
Aa(ǫF,a − ǫ)A−a(ǫF,−a − ǫ′)

(ǫF − ǫ′a)(ǫF − ǫ−a)2
ǫτa

≃ −π(u0 − uz)
eE · q

2m∆0s0
sign(a)naτaν−a (4.23)

Combining this with Eq. (4.20), we get

(vs · q)β ≃ (vs · q)β(0) + (vs · q)β(1)

=
eE · q

2ms0∆0

[

n↑τ↑γ↓ − n↓τ↓γ↑ − π(u0 − uz)(n↑τ↑ν↓ − n↓τ↓ν↑)
]

= π
eE · q
ms0∆0

[n↑τ↑ (uzν↓ + ux,yν↑) − n↓τ↓ (uzν↑ + ux,yν↓)] (4.24)

where we have used γa = π [(u0 + uz)νa + 2ux,yν−a]. In this model it is simple

to solve Eq. (4.16) for vs analytically, whereupon Eq. (4.24) agrees with the

results published by other authors in Refs.[21, 22] from full non-linear response

function calculations. However, we reiterate that in order to reach such agree-

ment we had to neglect a term of order ∆2
0/ǫ

2
F in Eq. (4.20). This extra term

is insignificant in all but nearly half metallic ferromagnets.
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4.4 Non-Adiabatic STT for a Magnetized Two-Dimensional
Electron Gas

The model studied in the previous section misses the intrinsic spin-orbit

interaction that is inevitably present in the band structure of actual ferromag-

nets. Furthermore, since intrinsic spin-orbit interaction is instrumental for the

Gilbert damping at low temperatures, a similarly prominent role may be ex-

pected in regards to the non-adiabatic spin transfer torque. Hence, the present

section is devoted to investigate the relatively unexplored[63, 64] effect of in-

trinsic spin-orbit interaction on β. The minimal model for this enterprise is the

two-dimensional electron-gas ferromagnet with Rashba spin-orbit interaction,

represented by

H(k) =
k2

2m
− b · S, (4.25)

where b = (λky,−λkx,∆0), λ is the Rashba spin-orbit coupling strength and

∆0 is the exchange field.

The eigenspinors of this model are |+,k〉 = (cos(θ/2),−i exp(iφ) sin(θ/2))

and |−,k〉 = (sin(θ/2), i exp(iφ) cos(θ/2)), where the spinor angles are de-

fined through cos θ = ∆0/
√

λ2k2 + ∆2
0 and tanφ = ky/kx. The corresponding

eigenenergies are Ek± = k2/(2m) ∓
√

∆2
0 + λ2k2. Therefore, the band veloc-

ities are given by vk± = k
(

1/m∓ λ2/
√

λ2k2 + ∆2
0

)

= k/m±. Disregarding

the vertex corrections, the non-adiabatic spin-torque of this model may be

evaluated analytically starting from Eq. (4.17). We find that (see Appendix
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C):

(vs · q)β(0) ≃ ∆2
0eE · q
8πs0

[

m2

4m+m−

(

1 +
∆2

0

b2

)

1

b2
+

1

4

λ2k2
F∆2

0

b6

]

+
∆2

0eE · q
8πs0

[

1

2

m2

m2
+

λ2k2
F

b2

(

1 − δm+

m

∆2
0

b2

)

τ 2

+
1

2

m2

m2
−

λ2k2
F

b2

(

1 − δm−

m

∆2
0

b2

)

τ 2

]

(4.26)

where b =
√

λ2k2
F + ∆2

0 (kF =
√

2mǫF), and δm± = m − m± . As we ex-

plain in Appendix C, Eq. (4.26) applies for λkF,∆0, 1/τ << ǫF; for a more

general analysis, Eq. (4.17) must be solved numerically (e.g. see Fig. (4.2)).

Eq. (4.26) reveals that intrinsic spin-orbit interaction enables intra-band con-

tributions to β, whose signature is the O(τ 2) dependence on the second line.

In contrast, the inter-band contributions appear as O(τ 0). Since vs itself is

linear in the scattering time, it follows that β is proportional to the electrical

conductivity in the clean regime and the resistivity in the disordered regime,

much like the Gilbert damping α. We expect this qualitative feature to be

model-independent and applicable to real ferromagnets.

4.5 Non-Adiabatic STT for (Ga,Mn)As

In this section we shall apply Eq. (4.17) to a more sophisticated model

which provides a reasonable description of (III,Mn)V magnetic semiconduc-

tors.[37, 38] Since the orbitals at the Fermi energy are very similar to the

states near the top of the valence band of the host (III,V) semiconductor, the

electronic structure of (III,Mn)V ferromagnets is remarkably simple. Using a
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Figure 4.2: M2DEG: inter-band contribution, intra-band contribution and
the total non-adiabatic STT for a magnetized two-dimensional electron gas
(M2DEG). In this figure the exchange field dominates over the spin-orbit split-
ting. At higher disorder the inter-band part (proportional to resistivity) domi-
nates, while at low disorder the inter-band part (proportional to conductivity)
overtakes. For simplicity, the scattering time τ is taken to be the same for all
sub-bands.
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p-d mean field theory model for the ferromagnetic ground state and a four-

band spherical model for the host semiconductor band structure, Ga1−xMnxAs

may be described by

H(k) =
1

2m

[(

γ1 +
5

2
γ2

)

k2 − 2γ3(k · S)2

]

+ ∆0Sz, (4.27)

where S is the spin operator projected onto the J=3/2 total angular momen-

tum subspace at the top of the valence band and {γ1 = 6.98, γ2 = γ3 = 2.5}

are the Luttinger parameters for the spherical approximation to the valence

bands of GaAs. In addition, ∆0 = JpdsNMn = Jpds0 is the exchange field,

Jpd = 55 meVnm3 is the p-d exchange coupling, s = 5/2 is the spin of Mn

ions, NMn = 4x/a3 is the density of Mn ions and a = 0.565 nm is the lattice

constant of GaAs. We solve Eq. (4.27) numerically and input the outcome in

Eqs. (4.16), (4.17).

The results are summarized in Fig. (4.3). We find that the intra-band

contribution dominates as a consequence of the strong intrinsic spin-orbit inter-

action, much like for the Gilbert damping;[34]. Incidentally, β barely changes

regardless of whether the applied electric field is along the easy axis of the

magnetization or perpendicular to it.

4.6 α/β in real materials

The preceding three sections have been focused on testing and analyz-

ing Eq. (4.17) for specific models of ferromagnets. In this section we return

to more general considerations and survey the phenomenologically important
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Figure 4.3: GaMnAs: β(0) for E perpendicular to the easy axis of magnetiza-
tion (ẑ). x and p are the Mn fraction and the hole density, respectively. The
intra-band contribution is considerably larger than the inter-band contribu-
tion, due to the strong intrinsic spin-orbit interaction. Since the 4-band model
typically overestimates the influence of intrinsic spin-orbit interaction, it is
likely that the dominion of intra-band contributions be reduced in the more
accurate 6-band model. By evaluating β for E||ẑ (not shown) we infer that it
does not depend significantly on the relative direction between the magnetic
easy axis and the electric field.

83



quantitative relationship between α and β in realistic ferromagnets, which

always have intrinsic spin-orbit interactions. We begin by recollecting the

expression for the Gilbert damping coefficient derived elsewhere:[36]

α =
1

8πs0

∑

a,b

∫

k

|〈b,k|S+∆0|a,k〉|2Aa(ǫF,k)Ab(ǫF,k) (4.28)

where we have ignored disorder vertex corrections. This expression is to be

compared with Eq. (4.15); for pedagogical purposes we discuss intra-band and

inter-band contributions separately.

Starting from Eq. (4.15) and expanding the integrand to first order in

q we obtain

βintra =
1

8πs0

∫

k

|〈a,k|S+∆0|a,k〉|2Aa(ǫF,k)2

eτaq
i∂ki

vj
k,aE

j

q · vs
(4.29)

where we have neglected the momentum dependence of the scattering lifetime

and a sum over repeated indices is implied. Remarkably, only matrix elements

that are diagonal in momentum space contribute to βintra ; the implications

of this will be highlighted in the next section. Recognizing that ∂kj
vi

k,a =

(1/m)i,j
a , where (1/m)a is the inverse effective mass tensor corresponding to

band a, Eq. (4.29) can be rewritten as

βintra =
1

8πs0

∫

k

|〈a,k|S+∆0|a,k〉|2Aa(ǫF,k)2 q · vd,a

q · vs
, (4.30)

where

vi
d,a = eτa(m

−1)i,j
a Ej (4.31)
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is the “drift velocity” corresponding to the quasiparticles in band a. For

Galilean invariant systems[65] vd,a = vs for any (k, a) and consequently βintra =

αintra. At first glance, it might appear that vs, which (at least in absence of

spin-orbit interaction) is determined by the spin current, must be different than

vd,a. However, recall that vs is determined by the ratio of the spin current to

the magnetization. If the same electrons contribute to the transport as to

the magnetization, vs = vd,a provided the scattering rates and the masses are

the same for all states. These conditions are the conditions for an electron

system to be Galilean invariant. The interband contribution can be simplified

by noting that

τbv
i
k+q,b − τav

i
k,a = (τbv

i
k+q,b − τav

i
k+q,a) + (τav

i
k+q,a − τav

i
k,a). (4.32)

The second term on the right hand side of Eq.( 4.32) can then be manipulated

exactly as in the intra-band case to arrive at

βinter =
1

8πs0

∑

a,b(a6=b)

∫

k

|〈b,k|S+∆0|a,k〉|2Aa(ǫF,k)Ab(ǫF,k)
q · vd,a

q · vs
+ δβinter

(4.33)

where

δβinter =
1

8πs0

∑

a,b(a6=b)

∫

k

|〈a,k−q|S+∆0|b,k〉|2Aa(ǫF,k−q)Ab(ǫF,k)
(τbvk,b − τavk,a) · E

q · vs

.

(4.34)

When Galilean invariance is preserved the quasiparticle velocity and scattering

times are the same for all bands, which implies that δβ = 0 and hence that

βinter = αinter. Although realistic materials are not Galilean invariant, δβ is
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nevertheless probably not significant because the term between parenthesis in

Eq. (4.34) has an oscillatory behavior prone to cancellation. The degree of

such cancellation must ultimately be determined by realistic calculations for

particular materials.

With this proviso, we estimate that

β ≃ 1

8πs0

∫

k

|〈b,k|S+∆0|a,k〉|2Aa(ǫF,k)Ab(ǫF,k)

q · vd,a

q · vs
. (4.35)

As long as δβ ≃ 0 is justified, the simplicity of Eq. (4.35) in comparison

to Eq. (4.15) or (4.17) makes of the former the preferred starting point for

electronic structure calculations. Even when δβ 6= 0 Eq. (4.35) may be an

adequate platform for ab-initio studies on weakly disordered transition metal

ferromagnets and strongly spin-orbit coupled ferromagnetic semiconductors,6

where β is largely determined by the intra-band contribution. Furthermore,

a direct comparison between Eq. (4.28) and Eq. (4.35) leads to the following

observations. First, for nearly parabolic bands with nearly identical curvature,

where the “drift velocity” is weakly dependent on momentum or the band

index, we obtain β ≃ (vd/vs)α and thus β/α is roughly proportional to the

ratio of the total spin density to the itinerant spin density, in concordance with

predictions from toy models.[19] Second, if α/β > 0 for a system with purely

6For actual ab-initio calculations it may be more convenient to substitute
|〈a,k|∆0S

+|b,k〉|2 in Eq. (4.35) by |〈a,k|K|b,k〉|2, where K is the spin-torque operator
discussed in Section VII. In either case we are disregarding impurity vertex corrections,
which may become significant in disordered and/or strongly spin-orbit coupled systems.
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Figure 4.4: Comparison of α and β in (Ga,Mn)As for x = 0.08 and p =
0.4nm−3. It follows that β/α ≃ 8, with a weak dependence on the scattering
rate off impurities. If we use the torque correlation formula (Section VII), we
obtain β/α ≃ 10.

electron-like carriers, then α/β > 0 for the same system with purely hole-like

carriers because for a fixed carrier polarization va
d and vs reverse their signs

under m→ −m. However, if both hole-like and electron-like carriers coexist at

the Fermi energy, then the integrand in Eq. (4.35) is positive for some values of

a and negative for others. In such situation it is conceivable that α/β be either

positive or negative. A negative value of β implies a decrease in magnetization

damping due to an applied current.

As an illustration of the foregoing discussion, in Fig. (4.4) we evaluate

α/β for (Ga,Mn)As. We find β to be about an order of magnitude larger than

α, which is reasonable because (i) the local moment magnetization is larger

than the valence band hole magnetization, and (ii) the spin-orbit coupling in
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the valence band decreases the transport spin polarization. Accordingly β is

of the order of unity, in qualitative agreement with recent theoretical work[66].

4.7 Torque-Correlation Formula for the Non-Adiabatic
STT

Thus far we have evaluated non-adiabatic STT using the bare vertex

〈a,k|S+|b,k+q〉. In this section, we shall analyze an alternative matrix el-

ement denoted 〈a,k|K|b,k+q〉 (see below for an explicit expression), which

may be better suited to realistic electronic structure calculations.[26, 27] We

begin by making the approximation that the exchange splitting can be written

as a constant spin-dependent shift Hex = ∆0S
z. Then, the mean-field quasi-

particle Hamiltonian H(k) = H
(k)
kin + H

(k)
so + Hex can be written as the sum of

a spin-independent part H
(k)
kin , the exchange term, and the spin-orbit coupling

H
(k)
so . With this approximation, we have the identity:

〈a,k|S+|b,k + q〉

=
1

∆0

〈a,k|
[

H(k), S+
]

|b,k + q〉

− 1

∆0
〈a,k|

[

H(k)
so , S

+
]

|b,k + q〉. (4.36)

The last term in the right hand side of Eq. (4.36) is the generalization of the

torque matrix element used in ab-initio calculations of the Gilbert damping:

〈a,k|K|b,k + q〉 ≡ 1

∆0
〈a,k|

[

H(k)
so , S

+
]

|b,k + q〉 (4.37)
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Figure 4.5: M2DEG: comparing S and K matrix element expressions for the
non-adiabatic STT formula in the weakly spin-orbit coupled regime. Both
formulations agree in the clean limit, where the intra-band contribution is
dominant. In more disordered samples inter-band contributions become more
visible and S and K begin to differ; the latter is known to be more accurate
in the weakly spin-orbit coupled regime.
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Figure 4.6: M2DEG: In the strongly spin-orbit coupled limit the intra-band
contribution reigns over the inter-band contribution and accordingly S and K
matrix element expressions display a good (excellent in this figure) agreement.
Nevertheless, this agreement does not guarantee quantitative reliability, be-
cause for strong spin-orbit interactions impurity vertex corrections may play
an important role.
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Eq. (4.36) implies that at q = 0 〈b,k|S+|a,k〉 ≃ 〈b,k|K|a,k〉 provided

that (Ek,a −Ek,b) << ∆0, which is trivially satisfied for intra-band transitions

but less so for inter-band transitions.[34] For q 6= 0 the agreement between

intra-band matrix elements is no longer obvious and is affected by the momen-

tum dependence of the band eigenstates. At any rate, Eq. (4.29) demonstrates

that only q = 0 matrix elements contribute to βintra; therefore βintra has the

same value for S and K matrix elements. The disparity between the two for-

mulations is restricted to βinter, and may be significant if the most prominent

inter-band matrix elements connect states that are not close in energy. When

they disagree, it is generally unclear7 whether S or K matrix elements will

yield a better estimate of βinter. The weak spin-orbit limit is a possible excep-

tion, in which the use of K appears to offer a practical advantage over S. In

this regime S generates a spurious inter-band contribution in the absence of

magnetic impurities (recall Section III) and it is only after the inclusion of the

leading order vertex correction that such deficiency gets remedied. In contrast,

K vanishes identically in absence of spin-orbit interactions, thus bypassing the

pertinent problem without having to introduce vertex corrections.

Figs. (4.5)- (4.7) display a quantitative comparison between the non-

adiabatic STT obtained from K and S, both for the M2DEG and (Ga,Mn)As.

Fig. (4.5) reflects the aforementioned overestimation of S in the inter-band

dominated regime of weakly spin-orbit coupled ferromagnets. In the strong

7In order to gauge the accuracy of either matrix element, one must obtain an exact
evaluation of the non-adiabatic STT, which entails a ladder-sum renormalization[34] of S±.
This is beyond the scope of the present work.
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Figure 4.7: GaMnAs: comparison between S and K matrix element expres-
sions for E ⊥ ẑ. The disagreement between both formulations stems from
inter-band transitions, which are less important as τ increases. Little changes
when E ‖ ẑ.

spin-orbit limit, where intra-band contributions dominate in the disorder range

of interest, K and S agree fairly well (Figs. (4.6) and (4.7)). Summing up,

insofar as impurity vertex corrections play a minor role and the dominant con-

tribution to β stems from intra-band transitions the torque-correlation formula

will provide a reliable estimate of β.

4.8 Connection to the Effective Field Model

As explained in Section II we view the non-adiabatic STT as the change

in magnetization damping due to a transport current. The present section is

designed to complement that understanding from a different perspective based

on an effective field formulation, which provides a simple physical interpreta-
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tion for both intra-band and inter-band contributions to β.

An effective field Heff may be expressed as the variation of the system

energy with respect to the magnetization direction Heff
i = −(1/s0)∂E/∂Ωi.

Here we approximate the energy with the Kohn-Sham eigenvalue sum

E =
∑

k,a

nk,aǫk,a . (4.38)

The variation of this energy with respect to the magnetization direction yields

H
eff
i = − 1

s0

∑

k,a

[

nk,a
∂ǫk,a

∂Ωi
+
∂nk,a

∂Ωi
ǫk,a

]

. (4.39)

It has previously been shown that, in the absence of current, the first term in

the sum leads to intra-band Gilbert damping[24, 25, 61] while the second term

produces inter-band damping.[67] In the following, we generalize these results

by allowing the flow of an electrical current. α and β may be extracted by

identifying the the dissipative part of the effective field with −α∂Ω̂/∂t− βvs ·

∇Ω̂ that appears in the LLS equation.

Intra-band terms: We begin by recognizing that as the direction of

magnetization changes in time, so does the shape of the Fermi surface, pro-

vided that there is an intrinsic spin-orbit interaction. Consequently, empty

(full) states appear below (above) the Fermi energy, giving rise to an out-of-

equilibrium quasiparticle distribution. This configuration tends to relax back

to equilibrium, but repopulation requires a time τ . Due to the time delay,

the quasiparticle distribution lags behind the dynamical configuration of the
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Fermi surface, effectively creating a friction (damping) force on the magneti-

zation. From a quantitative standpoint, the preceding discussion means that

the quasiparticle energies ǫk,a follow the magnetization adiabatically, whereas

the occupation numbers nk,a deviate from the instantaneous equilibrium dis-

tribution fk,a via

nk,a = fk,a − τk,a

(

∂fk,a

∂t
+ ṙa ·

∂fk,a

∂r
+ k̇ · ∂fk,a

∂k

)

, (4.40)

where we have used the relaxation time approximation. As we explain below,

the last two terms in Eq. (4.40) do not contribute to damping in the absence

of an electric field and have thus been ignored by prior applications of the

breathing Fermi surface model, which concentrate on Gilbert damping. It

is customary to associate intra-band magnetization damping with the torque

exerted by the part of the effective field

H
eff
intra = − 1

s0

∑

k,a

nk,a
∂ǫk,a

∂Ω̂
(4.41)

that is lagging behind the instantaneous magnetization. Plugging Eq. (4.40)

in Eq. (4.41) we obtain

H
eff
intra,i =

1

s0

∑

k,a

[

− fk,a
∂ǫk,a

∂Ωi
+ τa

∂fk,a

∂ǫk,a

∂ǫk,a

∂Ωi

∂ǫk,a

∂Ωj

∂Ωj

∂t
+ τaṙ

l
a

∂fk,a

∂ǫk,a

∂ǫk,a

∂Ωi

∂ǫk,a

∂Ωj

∂Ωj

∂rl

+ τak̇
j ∂fk,a

∂ǫk,a

∂ǫk,a

∂kj

∂ǫk,a

∂Ωi

]

(4.42)

where a sum is implied over repeated Latin indices. The first term in Eq. (4.42)

is a contribution to the anisotropy field; it evolves in synchrony with the
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dynamical Fermi surface and is thus the reactive component of the effective

field. The remaining terms, which describe the time lag of the effective field

due to a nonzero relaxation time, are responsible for intra-band damping. The

last term vanishes in crystals with inversion symmetry because k̇ = eE and

∂ǫ/∂k is an odd function of momentum. Similarly, if we take ṙ = ∂ǫ(k)/∂k

the second to last term ought to vanish as well. This leaves us with the first

two terms in Eq. ( 4.42), which capture the intra-band Gilbert damping but

not the non-adiabatic STT. This is not surprising as the latter involves the

coupled response to spatial variations of magnetization and a weak electric field,

rendering linear order in perturbation theory insufficient (see Appendix A). In

order to account for the relevant non-linearity we use ṙ = ∂ǫ(k − ev ·Eτ)/∂k

in Eq.( 4.42), where v = ∂ǫ(k)/∂k. The dissipative part of Heff
intra then reads

H
eff,damp
intra,i =

1

s0

∑

k,a

τk,a
∂fǫk,a

∂ǫk,a

∂ǫk,a

∂Ωi

∂ǫk,a

∂Ωj

[

∂Ωj

∂t
+ vl

d,a

∂Ωj

∂rl

]

, (4.43)

where vi
d,a = eτa(m

−1)i,j
a Ej is the “drift velocity” corresponding to band a.

Eq. (4.43) may now be identified with −αintra∂Ω̂/∂t−βintravs ·∇Ω̂ that appears

in the LLS equation. For an isotropic system this results in

αintra = − 1

s0

∑

k,a,i

τk,a
∂fk,a

∂ǫk,a

(

∂ǫk,a

∂Ωi

)2

βintra = − 1

s0

∑

k,a,i

τk,a
∂fk,a

∂ǫk,a

(

∂ǫk,a

∂Ωi

)2
q · vd,a

q · vs
. (4.44)

Since 〈[Sx, Hso]〉 = ∂φ〈exp(iSxφ)Hso exp(−iSxφ)〉 = ∂ǫ/∂φ for an infinitesimal

angle of rotation φ around the instantaneous magnetization, β in Eq. (4.44)
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may be rewritten as

βintra =
∆2

0

2s0

∑

k,a

τk,a
∂fk,a

∂ǫk,a

|〈k, a|K|k, a〉|2q · vd,a

q · vs

(4.45)

where K = [S+, Hso]/∆0 is the spin-torque operator introduced in Eq. ( 4.37)

and we have claimed spin rotational invariance via |〈[Sx, Hso]〉|2 = |〈[Sy, Hso]〉|2.

Using ∂f/∂ǫ ≃ −δ(ǫ − ǫF ) and recalling from Section VII that Ka,a = S+
a,a,

Eq. (4.45) is equivalent to Eq. (4.30); note that the product of spectral func-

tions in the latter yields a factor of 4πτ upon momentum integration. These

observations prove that βintra describes the contribution from a transport

current to the “breathing Fermi surface” type of damping. Furthermore,

Eq. (4.44) highlights the importance of the ratio between the two charac-

teristic velocities of a current carrying ferromagnet, namely vs and vd. As

explained in Section VI these two velocities coincide in models with Galilean

invariance. Only in these artificial models, which never apply to real materials,

does α = β hold.

Inter-band terms: The Kohn-Sham orbitals are effective eigenstates of

a mean-field Hamiltonian where the spins are aligned in the equilibrium di-

rection. As spins precess in response to external rf fields and dc transport

currents, the time-dependent part of the mean-field Hamiltonian drives tran-

sitions between the ground-state Kohn-Sham orbitals. These processes lead to

the second term in the effective field and produce the inter-band contribution

to damping.
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We thus concentrate on the second term in Eq. (4.39),

H
eff
inter = − 1

s0

∑

k,a

∂nk,a

∂Ω̂
ǫk,a. (4.46)

Multiplying Eq. (4.46) with ∂Ω̂/∂t we get

H
eff,damp
inter · ∂tΩ̂ = − 1

s0

∑

k,a

ǫk,a

[

∂na,k/∂Ω̂ · ∂Ω̂/∂t
]

= − 1

s0

∑

k,a

ǫk,a ∂na,k/∂t . (4.47)

The rate of change of the populations of the Kohn-Sham states can be

approximated by the following master equation:

∂na,k

∂t
= −

∑

b,k′

Wa,b(nk,a − nk′,b), (4.48)

where

Wa,b = 2π |〈b,k′|∆0S
x|a,k〉|2 δk′,k+qδ(ǫb,k′ − ǫa,k − ω) (4.49)

is the spin-flip inter-band transition probability as dictated by Fermi’s golden

rule. Eqs. (4.48) and (4.49) rely on the principle of microscopic reversibil-

ity8 and are rather ad hoc because they circumvent a rigorous analysis of

the quasiparticle-magnon scattering, which would for instance require keep-

ing track of magnon occupation numbers. Furthermore, quasiparticle-phonon

8This principle states that Wa,b = Wb,a exp((ǫa − ǫb)/T ). Since the magnon energy is
much smaller than the uncertainty in the quasiparticle energies, we approximate Wa,b ≃
Wb,a.
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and quasiparticle-impurity scattering are allowed for simply by broadening

the Kohn-Sham eigenenergies (see below). The right hand side of Eq. (4.48) is

now closely related to inter-band magnetization damping because it agrees[1]

with the net decay rate of magnons into particle-hole excitations, where the

particle and hole are in different bands. Combining Eq. (4.47) and (4.48) and

rearranging terms we arrive at

H
eff
inter · ∂tΩ̂ =

1

2s0

∑

k,k′,a,b

Wa,b(nk,a − nk′,b)(ǫk,a − ǫk′,b). (4.50)

For the derivation of αinter it is sufficient to approximate nk,a as a Fermi dis-

tribution in Eq. (4.50); here we account for a transport current by shifting the

Fermi seas as nk,a → nk,a − evk,a · Eτk,a∂nk,a/∂ǫk,a, which to leading order

yields

H
eff
inter · ∂tΩ̂ = −πω

2s0

∑

k,a,b

∣

∣〈b,k + q|∆0S
+|a,k〉

∣

∣

2
δ(ǫb,k+q − ǫa,k − ω)

∂nk,a

∂ǫk,a
(−ω + eVb,a)

=
ω

8πs0

∑

k,a,b

∣

∣〈b,k + q|∆0S
+|a,k〉

∣

∣

2
Aa(k, ǫF )Ab(k + q, ǫF )(−ω + eVb,a) (4.51)

where we have used Sx = (S+ + S−)/2 and defined Vb,a = evk+q,b · Eτk+q,b −

evk,a · Eτk,a . In the second line of Eq.( 4.51) we have assumed low tem-

peratures, and have introduced a finite quasiparticle lifetime by broadening

the spectral functions of the Bloch states into Lorentzians with the conven-

tion outlined in Eq. (4.14): δ(x) → A(x)/(2π). Identifying Eq.( 4.51) with
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(−αinter∂tΩ̂ − βinter(vs · ∇)Ω̂) · ∂tΩ̂ = −αinterω
2 + βinterω(q · vs) we arrive at

αinter =
1

8πs0

∑

a,b6=a

∑

k,a,b

∣

∣〈b,k + q|∆0S
+|a,k〉

∣

∣

2
Aa(k, ǫF )Ab(k + q, ǫF )

βinter =
1

8πs0q · vs

∑

a,b6=a

∑

k,a,b

∣

∣〈b,k + q|∆0S
+|a,k〉

∣

∣

2
Aa(k, ǫF )Ab(k + q, ǫF )Vb,a

in agreement with our results of Section II.

4.9 Summary and Conclusions

Starting from the Gilbert damping α and including the influence of

an electric field in the transport orbitals semiclassically, we have proposed a

concise formula for the non-adiabatic spin transfer torque coefficient β that

can be applied to real materials with arbitrary band structures. Our formula

for β reproduces results obtained by more rigorous non-linear response theory

calculations when applied to simple toy models. By applying this expression

to a two-dimensional electron-gas ferromagnet with Rashba spin-orbit inter-

action, we have found that it implies a conductivity-like contribution to β,

related to the corresponding contribution to the Gilbert damping α, which

is proportional to scattering time rather than scattering rate and arises from

intra-band transitions. Our subsequent calculations using a four-band model

have shown that intra-band contributions dominate in ferromagnetic semicon-

ductors such as (Ga,Mn)As. We have then discussed the α/β ratio in realistic

materials and have confirmed trends expected from toy models, in addition

to suggesting that α and β can have the opposite sign in systems where both

hole-like and electron-like bands coexist at the Fermi surface. Afterwards, we
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have analyzed the spin-torque formalism suitable to ab-initio calculations, and

have concluded that it may provide a reliable estimate of the intra-band con-

tribution to β; for the inter-band contribution the spin-torque formula offers

a physically sensible result in the weak spin-orbit limit but its quantitative

reliability is questionable unless the prominent inter-band transitions connect

states that are close in energy. Finally, we have extended the breathing Fermi

surface model for the Gilbert damping to current carrying ferromagnets and

have accordingly found a complementary physical interpretation for the intra-

band contribution to β; similarly, we have applied the master equation in order

to offer an alternative interpretation for the inter-band contribution to β. Pos-

sible avenues for future research consist of carefully analyzing the importance

of higher order vertex corrections in β, better understanding the disparities

between the different approaches to vs, and finding real materials where α/β

is negative.
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Chapter 5

Influence of a Transport Current on Magnetic

Anisotropy in Gyrotropic Ferromagnets

Current-induced torques are commonly used to manipulate non-collinear

magnetization configurations. In this chapter we discuss current-induced torques

present in a certain class of collinear magnetic systems, relating them to

current-induced changes in magnetic anisotropy energy. We present a quan-

titative estimate of their characteristics in uniform strained ferromagnetic

(Ga,Mn)As.

5.1 Introduction

The interplay between transport currents and magnetization dynam-

ics continues to be a major research topic in ferromagnetic metal spintron-

ics.[14, 23, 51] The current understanding of this class of phenomena has been

derived mainly from numerous studies of spin-transfer torques (STTs), which

arise when spin polarized currents traverse non-collinear magnetic systems.

STTs can be exploited to achieve current-induced magnetization reversal and

current-induced domain-wall motion, both of which have potentially important

technological applications.
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There have been comparatively few studies of the influence of transport

currents on magnetization in uniform ferromagnets, presumably because spin

transfer torques vanish in these systems. Yet, as pointed out independently

by several researchers,[68–71] current-induced reorientation of magnetization

does occur in some uniform ferromagnets. The first experimental fingerprint

of this phenomenon was uncovered by Chernyshov et al.[70] who demonstrated

that an electric current alters magnetization reversal characteristics in strained

(Ga,Mn)As films with a single magnetic domain.

STTs can be considered to be one member of a family of current-

induced torque (CIT) effects by which transport currents influence magne-

tization in ferromagnetic or antiferromagnetic[72, 73] systems. The aim of this

chapter is to contribute to the theoretical analysis of current-induced torques

in uniformly magnetized ferromagnets.

In Sec. II we study the effect responsible for this type of torque, which

we refer to as the ferromagnetic inverse spin-galvanic effect.[74–80] In non-

magnetic conductors the inverse spin-galvanic effect (ISGE) refers to current-

induced spin density. Since a non-zero spin-density already appears in the

equilibrium state of a ferromagnet, the ferromagnetic inverse spin-galvanic

effect has a distinct experimental signature. Specifically, we find that in gy-

rotropic ferromagnets the magnetization direction is altered by a steady-state

transport current. At a conceptual level, we associate this reorientation with

a change in magnetic anisotropy in the presence of a transport current. An

important implication of this connection is that the magnetic anisotropy en-
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ergy in the transport steady state of a ferromagnet which exhibits the ISGE

is not invariant under magnetization reversal, essentially because the applied

current breaks time reversal invariance. At a practical level, we provide a

concise analytical expression for the current-induced change in the magnetic

anisotropy. This expression is suitable for evaluation from first principles be-

cause it requires the knowledge of only the band structure of the ferromagnet

and the lifetime of the Bloch states. At a technical level, our theory allows

for the spatial inhomogeneities that inevitably occur in the magnitude of the

ferromagnet’s exchange field at atomic lenghtscales.

In Sec. III we carry out quantitative calculations for the ISGE of

strained (Ga,Mn)As using a 4-band Kohn-Luttinger model. This calculation

directly addresses the experiment by Chernyshov et al.[70] and corroborates

their interpretation of the data. By computing the anisotropy field both in

absence and in presence of an electric current, we find that in (Ga,Mn)As

magnetization reversal may in principle be achieved solely by electric means:

the required critical current densities are in the order of 106 − 107A/cm2 and

depend on the strain, Mn concentration and hole density. Sec. IV contains a

brief summary and presents our conclusions.

The main conclusions of our work coincide with those reached by Man-

chon and Zhang in their independent and previously published work described

in Refs.[68, 69]. Yet, our analysis highlights aspects that have not been empha-

sized previously. First, we assert that in ferromagnets with inversion symme-

try, the current-induced spin-density vanishes to all orders in the strength of
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the spin-orbit interaction. Second, when evaluating the current-induced spin

polarization we include a contribution from interband coherence which can be-

come quantitatively important in disordered ferromagnets such as (Ga,Mn)As.

Third, we identify the current-induced transverse spin-density associated with

the ISGE in ferromagnets as a consequence of a change in magnetic anisotropy

in the presence of an electric current. We thus promote transport currents to

the same status as temperature,[81] gate voltages,[82–84] strain[85, 86] and

chemical processes,[87] all of which are well-established control parameters for

the tuning of magnetic anisotropy.

5.2 Theory of the Ferromagnetic Inverse Spin-Galvanic
Effect

In non-magnetic metals or semiconductors that are gyrotropic, i.e. non-

centrosymmetric and chiral, 1 a DC charge current is generically accompanied

by a non-zero spin polarization.[74–80] This phenomenon is sometimes referred

to as the inverse spin galvanic effect (ISGE).[80] Because of the advent of

spintronics and subsequent attempts to control spin polarization by electric

means, even in paramagnetic materials, the ISGE has received widespread

experimental[88–92] and theoretical[93–96] attention. The ISGE is purely a

consequence of symmetry since i) current, which is odd under time reversal, is

the dissipative response of a conductor to a DC electric-field, ii) spin is also odd

1All gyrotropic crystals are non-centrosymmetric, but not all non-centrosymmetric crys-
tals are gyrotropic.
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under time reversal and therefore allowed as part of the dissipative response,

and iii) axial vectors (like spin) and polar vectors (like current) are coupled

in gyrotropic materials. 2 The direction of the carriers’ spin is determined by

the direction of the electric field as well as by the axis along which inversion

symmetry is broken. 3

The ISGE is sometimes viewed as a possible route toward the devel-

opment of spintronics effects in paramagnetic materials that are as robust as

effects like giant magnetoresistance that occur only in ferromagnetic materi-

als. Partly because spin-orbit interactions tend to be fairly weak, it appears

to be difficult to make spin-galvanic effects in normal metals useful. In this

section we turn the tables on this strategy by concentrating on the inverse

spin-galvanic effect in magnetic conductors.

In uniformly magnetized ferromagnets with inversion symmetry, the

transport current is spin polarized because the conductivities of majority and

2By definition, axial vectors and polar vectors transform in identical manner under op-
erations belonging to gyrotropic point groups. Consequently, gyrotropic crystals (which are
invariant under transformations from gyrotropic point groups) enable the coupling between
axial and polar vectors. As a simple example, consider a two dimensional electron gas
(2DEG) with Rashba spin-orbit coupling. Under a 90◦ rotation around the ẑ axis (per-
pendicular to the 2DEG), the current j = (jx, jy) changes to j′ = (jy,−jx) and the spin
operator S = (Sx, Sy) changes in the same manner, namely to S′ = (Sy,−Sx). Since the
90◦ rotation around ẑ is a symmetry of the Rashba Hamiltonian, a nonzero current-induced
spin polarization is allowed under such operation.

3For paramagnetic metals it is straightforward to d educe the relative orientation between
the applied electric field and the induced spin polarization from symmetry arguments. For
instance, the Hamiltonian for a 2DEG with Rashba spin-orbit interaction is invariant under a
90◦ rotation around the ẑ as well as under a reflection with respect to the plane perpendicular
to ŷ. According to Neumann’s principle, the tensor relating the electric field and the spin
polarization must be invariant under the above mentioned symmetry operations. From this
requirement it follows that the spin polarization must be perpendicular to the current.
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minority spin channels are different. This familiar fact is unrelated to the

ISGE. Since spin-polarization is already present in the thermodynamic equi-

librium state of a ferromagnet, the ferromagnetic ISGE is manifested not by

the presence of a non-zero spin-density but instead by a change in magnetiza-

tion direction in the non-equilibrium steady-state which is dependent on the

magnitude and direction of the electric field. In this paper we formulate a

theory of the ISGE in ferromagnets by evaluating the torque which acts on

the collective magnetization of a magnetic conductor due to spin-orbit inter-

actions in the presence of a transport current. When the current is set to

zero, the torque we evaluate vanishes along easy (and hard) magnetization

directions and is normally viewed[97] as a precessional torque due to mag-

netocrystalline anisotropy fields. These torques are in turn associated with

the magnetization-direction dependence of the magnetocrystalline anisotropy

energy. At zero current, the anisotropy torques must change sign when the

magnetization direction is reversed because time reversal symmetry requires

that the anisotropy energy be invariant under reversal. The ferromagnetic

ISGE in gyrotropic crystals may be viewed as a change in anisotropy torque

due to a transport current. Significantly, the ISGE torques are not odd under

magnetization reversal.

The ferromagnetic ISGE is reminiscent of the magnetoelectric phenom-

ena that have been extensively studied in multiferroic materials,[98, 99] i.e.

materials in which magnetism coexists with ferroelectricity. A common char-

acteristic of multiferroic perovskites is the presence of canted magnetism that
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S v.A(a)

a

b

Figure 5.1: Feynman diagram that encodes the transverse spin density in-
duced by a current (ferromagnetic ISGE effect) which results in a change in
the steady-state magnetization direction. a and b are band labels for the
quasiparticle and the quasihole.

stems from the Dzyaloshinskii-Moriya interaction. Since the direction of cant-

ing is determined by the symmetry of the crystal, one can envisage[100] scenar-

ios in which an electric-field-mediated reversal of the ferroelectric polarization

causes a simultaneous reversal of the canting angle or of the magnetization.

Another interesting property of multiferroic materials is the coupling between

ferroelectricity and antiferromagnetism.[101] This coupling makes it possible

to switch the magnetization of an exchange-biased ferromagnet by the appli-

cation of an electric field. In spite of the contextual similarities, there are

fundamental differences between the aforementioned phenomena and the fer-

romagnetic ISGE. For one thing, ferroelectricity occurs only in insulators while

the ISGE occurs only in conductors.

We evaluate the ferromagnetic ISGE microscopically within the frame-

work of linear response theory (Fig. ( 5.1a)):

δsi = χi,j
S,EE

j, (5.1)

where δsi is the current-induced spin density (i ∈ {x, y, z}), E is the applied
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electric field, and χ the dissipative spin-current response function:

χi,j
S,E =

1

2π
Re
∑

k,a,b

si
a,b(k)vj

b,a(k)
(

GR
k,aG

A
k,b −GR

k,aG
R
k,b

)

. (5.2)

This linear response theory expression applies for time-independent uniform

applied electric fields, and may be derived in the standard way[39] by analyt-

ically continuing the imaginary 4 part of limω→0 χ̃
i,j
S,E/ω, where

χ̃i,j
S,E = −T

∑

iωnk,a,b

si
a,b(k)vj

b,a(k)Gk,a(iωn)Gk,b(iωn + iω), (5.3)

ωn = (2n + 1)πT is the Matsubara frequency at temperature T and ω is

the frequency of the external field. In Eq.( 5.2) si
a,b(k) and vj

b,a(k) are the

k-dependent matrix-elements of the spin and velocity operators (Oa,b(k) ≡

〈a,k|O|b,k〉) between Bloch states (|a,k〉) in bands a and b. Note that the

Bloch states are in general spinors in which orbital and spin degrees of freedom

are entangled. G
R(A)
k,a = 1/(ǫF − ǫk,a + (−)i/2τk,a) is the retarded (advanced)

Green’s function evaluated at the Fermi energy ǫF , and τk,a is the quasiparticle

lifetime. For simplicity we have ignored disorder vertex corrections to both

velocity and spin operators. In the numerical calculations discussed in Sec.

III we will in addition take the quasiparticle lifetime to be a phenomenological

parameter which is independent of momentum and band labels.

As we discuss below, the transverse components of the spin-density are

directly related to the anisotropy field, which exerts a torque on the macrospin.

4In the zero frequency limit the real part of χ̃/ω is cancelled out by the diamagnetic
response. This reflects the fact that in non-superconducting metals the current induced
spin density is dissipative.
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On the same footing, the current-induced contribution to the transverse spin

density is directly related to the current-induced contribution to the anisotropy

field.

For a ferromagnet with inversion symmetry χS,E = 0 irrespective of

spin-orbit interaction strength, for essentially the same reasons as the ISGE

vanishes in normal conductors with inversion symmetry.[102] This property

can be verified by recognizing that in presence of inversion symmetry the

Hamiltonian of the ferromagnet is invariant under k → −k, which implies

that Gk = G−k, sa,b(k) = sa,b(−k) and va,b(k) = −va,b(−k). Consequently,

the right hand side of Eq. (5.2) vanishes after summing over all k. From a

crystal symmetry classification standpoint there are 21 non-centrosymmetric

crystal classes, among which three (Td, C3h and D3h) are not gyrotropic. The

occurence of the ISGE is therefore restricted to 18 crystal classes.[80]

The main objective of this section is to relate the ferromagnetic ISGE

to a current-induced change in the magnetic anisotropy field, yet before we

do so it is beneficial to pave the way by reviewing the nuances of mag-

netic anisotropy in electric equilibrium. In the absence of currents, magnetic

anisotropy describes the dependence of the free energy of a ferromagnet on the

direction of its magnetization.[103] Magnetic anisotropy originates from[104–

106] magnetic dipolar interactions and spin-orbit interactions. The former

lead to shape anisotropy in non-spherical samples while the latter produce

magnetocrystalline anisotropy by communicating the lack of rotational sym-

metry in the crystalline lattice to the spin degrees of freedom. In practice,
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magnetic anisotropy reveals itself in dynamical processes such as ferromag-

netic resonance through an anisotropy field that forces the magnetization to

precess unless it is along an easy or hard axis, i.e. along a direction in which

the anisotropy energy is minimized or maximized. This precessional magne-

tization dynamics is properly characterized by the Landau-Lifshitz equation,

∂tΩ̂ = Ω̂ × Heff , where Ω̂ is the direction of the ferromagnet’s collective dy-

namical variable (which may be chosen to be either the magnetization or the

ferromagnetic exchange field) and Heff is an effective magnetic field, taken here

to include reactive as well as dissipative processes.[25, 36] The anisotropy field

may then be defined as the contribution to the non-dissipative part of the

effective magnetic field which survives in the absence of true magnetic fields:

Han = − 1

S0

∂EGS

∂Ω̂
, (5.4)

where EGS is the ground state energy of the ferromagnet in equilibrium (we

take zero temperature throughout) and S0 is the total spin (magnetization×

volume) of the ferromagnet.

When we discuss (Ga,Mn)As in the following section, we will use spher-

ical coordinates (Fig. 5.2) in which the anisotropy field may be written as

Han = Hφφ̂+Hθθ̂, (5.5)

where φ̂ and θ̂ are the azimuthal and the polar unit vectors, respectively. The

longitudinal component of the anisotropy field is irrelevant because Ω̂×Ω̂ = 0.

In order to elaborate on the microscopic theory of the anisotropy field in

a concrete way we work within the spin-density-functional theory of a magnetic

110



����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������

θ

φ

∆

[010]

[100]

[001]

Figure 5.2: Cartoon of a magnetic thin film (shaded area). The exchange field
∆ is an effective magnetic field which is parallel to the magnetization only
when it points along easy or hard crystalline directions. The orientation of ∆
can be specified by the polar and azimuthal angles θ and φ. The relationship
between the direction of ∆ and the direction of magnetization is altered by
an electric current in gyrotropic ferromagnets.

material, in which the effective Hamiltonian that describes the theory’s Kohn-

Sham quasiparticles can be expressed as

H = Hkin + Hso − ∆ · s. (5.6)

In Eq. (5.6) ∆ = ∆0(r)Ω̂ is the exchange effective-magnetic-field of the

ferromagnet, Ω̂ is the direction of the exchange field, s is the quasiparticle

spin operator, Hso captures spin-orbit interactions, and Hkin collects all spin-

independent terms in the Kohn-Sham Hamiltonian. In this work we character-

ize the macrostate of a ferromagnet by specifying the direction of the exchange

field. Ω̂ is assumed to be uniform in space but the magnitude ∆0(r) of the

exchange field is allowed to have spatial dependence at the atomic length-

scale.[36] We neglect dipolar interactions since they are not directly influenced

by currents and can normally be cleanly separated from magnetocrystalline
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anisotropy.

It follows that the zero-temperature anisotropy field is given by

Han = − 1

S0

∑

k,a

∂ǫk,a

∂Ω̂
fk,a. (5.7)

In Eq. (5.7) we have used 5 EGS =
∑

k,a ǫk,afk,a, where ǫk,a is the energy

of the Bloch state quasiparticles and fk,a = Θ(ǫF − ǫk,a) is the equilibrium

occupation factor at zero temperature. Furthermore we have exploited the

fact that
∑

ǫk,a
∂fk,a

∂Ω̂
≃ ǫF

∑

k,a

∂fk,a

∂Ω̂
= 0, (5.8)

since the number of electrons in the ferromagnet is invariant under rotations of

the magnetization. This implies a Ω̂-dependence of the Fermi energy,[109, 111]

which is taken into account in the calculations of Sec. III.

Eq. (5.7) may be rewritten in a more informative manner using the

Feynman-Hellmann theorem, which implies that

∂ǫk,a

∂Ωi

= 〈a,k|∂H
∂Ωi

|a,k〉 = −〈a,k|∆0(r)si|a,k〉. (5.9)

Then,

Han =
1

S0

∑

k,a

〈a,k|∆0(r)s|a,k〉fk,a, (5.10)

5The sum of the single-particle Kohn-Sham eigenvalues does not account for the actual
ground state energy of the ferromagnet because it neglects the double-counted Hartree and
exchange-correlation contributions. However, we invoke the force theorem which states that
the extra terms will cancel when we one takes the difference in total energies between two
macrostates with non-collinear exchange fields. See for instance Refs.[107], [108] and [109];
see also the chapter by A.R. Mackintosh and O.K. Andersen in Ref. [110].
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where 〈a,k|∆0(r)s|a,k〉 ≡
∫

dr∆0(r)〈a,k|r〉s〈r|a,k〉.

For the envelope-function model we use in the next section, the magni-

tude of the exchange field is a spatially constant ∆0 and the torque exerted by

the anisotropy field is simply equal to the ∆0 times the transverse spin-density

divided by the total spin of the ferromagnet. In ab initio calculations, the mag-

nitude of the exchange field always varies substantially on an atomic scale and,

as we have emphasized previously,[36] this variation must be accounted for.

In this case the anisotropy field is evaluated by integrating the product of the

exchange field magnitude and transverse spin density over space.

Eq. (5.10) may be separated into azimuthal and polar components:

Hφ =
1

S0

∑

k,a

〈a,k|ẑ · (∆× s)|a,k〉

Hθ =
1

S0

∑

k,a

〈a,k|φ̂ · (∆× s)|a,k〉 (5.11)

If we neglect spatial variations of ∆0(r), Eqs. (5.10) and (5.11) indicate that

the torque created by the anisotropy field will vanish when the (spin) mag-

netization
∑

〈s〉f is parallel to the exchange field. Conversely, whenever the

direction of magnetization is misaligned with ∆, the anisotropy field will be

nonzero and will produce a torque on the magnetization. In transition metals

spin-orbit interactions produce a misalignment between the exchange field and

the magnetization, unless Ω̂ is pointing along some special crystalline direction

that corresponds (by definition) to an easy or hard axis. A similar picture ap-

plies to local-moment ferromagnets as well, where due to spin-orbit coupling
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the direction of the local moments is generally misaligned with the direction

of the itinerant spin density.

One of the targets of this section is to present formulae that are useful

for researchers working on both model systems as well as ab-initio electronic

structure calculations. Therefore, we digress to explain that Eq. (5.10) is

equivalent to the alternative expressions found in ab-initio studies. In first

principles magnetic anisotropy theory[109, 112] Eq. (5.9) has been approached

from a different perspective. In such approach it is customary to choose the

spin quantization axis along the direction of magnetization, so that ∆ · s ≡

∆0sz is independent of Ω̂. When this choice is made, the spin-orbit term in

the Hamiltonian becomes explicitly Ω̂-dependent. Consequently,

∂ǫk,a

∂Ω̂
= 〈a,k|∂Hso

∂Ω̂
|a,k〉. (5.12)

The anisotropy field is then evaluated combining Eq. (5.12) with the force

theorem and a full-potential electronic-structure calculation.[112] Of course,

the final result is invariant with respect to the choice of the spin quantization

axis. In order to prove the equivalence of Eqs. (5.9) and (5.12) it is convenient

to rewrite[26] Eq. (5.12) as ∂ǫ/∂φ = 〈∂φ[exp(is · ẑφ)Hso exp(−is · ẑφ)]〉|0 and

∂ǫ/∂θ = 〈∂θ[exp(is·φ̂θ)Hso exp(−is·φ̂θ)]〉|0. To see that these expressions agree

with Eq. (5.11) note that [Hso, s] = [H − Hkin + ∆ · s, s], that [Hkin, s] ≡ 0,

and that 〈a,k|[H, s]|a,k〉 = (ǫk,a − ǫk,a)〈a,k|s|a,k〉 = 0. In this way the

derivative of energy with respect to magnetization direction can be related to

the exchange term in the Kohn-Sham equation rather than to the spin-orbit
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coupling term. Eqs. (5.10) and (5.11) are recovered after using [si, sj] =

iǫijksk to simplify 〈[∆ · s, s]〉.

We now show that the Green’s function expression we use to evaluate

the ferromagnetic ISGE (Eq.( 5.3)) corresponds to the current-induced change

in Eq. (5.10). We begin by mentioning that the application of an electric cur-

rent can alter the magnetic anisotropy field, which leads to a current-induced

torque on the magnetization. For an arbitrary orientation of the exchange

field, the change is given by

δHan =
1

S0

∑

k,a

δ(〈a,k|∆0(r)s|a,k〉)fk,a +
1

S0

∑

k,a

〈a,k|∆0(r)s|a,k〉δfk,a.

(5.13)

Adopting the relaxation-time approximation, δf reads

δfk,a = E · va,a
∂fk,a

∂ǫk,a
τk,a, (5.14)

and for the change in the matrix elements we use

δ(〈a,k|∆0s|a,k〉) = 〈a,k|∆0sδ(|a,k〉) + c.c (5.15)

with

δ(|a,k〉) =
eiωt

iω

∑

b6=a

|b,k〉〈b,k|v · E|a,k〉
ǫk,a − ǫk,b + ω

+ (ω → −ω). (5.16)

In Eq. (5.16) we have once again appealed to linear response theory and have

used the fact that the electric field is uniform.

Eqs. (5.14) and (5.16) highlight the two ways in which a current alters

the magnetic anisotropy field. Eq. (5.14) captures the shift in the effective
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Figure 5.3: Spin response to a transverse magnetic field B⊥ in the presence
of a current: perturbation theory to all orders in B⊥. The quasiparticles
(quasiholes) in these diagrams diagonalize a Hamiltonian whose exchange field
is pointing along an easy direction and B⊥ is by definition perpendicular to
this easy direction. Provided that in Eq. (5.10) we take the exact eigenstates
of the mean field Hamiltonian (within which the exchange field need not be
pointing along an easy direction), all the diagrams of this figure are implicit
in the diagram of Fig. (5.1). In particular, the ferromagnetic ISGE captures
the influence of currents on ferromagnetic resonance.
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quasiparticle energies due to acceleration by an electric field, while Eq. (5.15)

describes the modification of the quasiparticle wavefunctions. As will be-

come clear below the former is associated with intraband contributions to the

anisotropy field whereas the latter may be traced to the interband contribu-

tions. Interband contributions are often neglected [69, 102] because they are

parametrically smaller by a factor of scattering rate τ−1 in good conductors.

However, as we show in the next section they may become quantitatively signif-

icant in disordered magnets like the (III,Mn)V materials.[37, 38] Admittedly,

other corrections with the same parametric dependence on disorder strength

could also be present - but the description of these would require a detailed

characterization of the disorder potential and a more sophisticated transport

theory. The effect we retain is analogous to the intrinsic contribution to the

anomalous Hall effect.[113] Substituting Eqs. (5.14), (5.15) and (5.16) in

Eq. (5.13) we obtain

δHan = δHintra
an + δHinter

an

where

δHintra
an =

1

S0

∑

k,a

[∆0(r)s]a,ava,a · E
∂fk,a

∂ǫk,a
τk,a

δHinter
an =

1

iω

1

S0

∑

k,a6=b

[∆0(r)s]a,bvb,a ·E

× fk,a − fk,b

ǫk,b − ǫk,a + ω + iη
(5.17)

In the expression for δHinter
an we have selected the coefficient of exp(iωt) in the

perturbation expansion, have neglected disorder scattering and have allowed

117



for a small positive imaginary part in the frequency.

Several remarks are pertinent in regards to our derivation of the inter-

band component. First, it should be noted that in the zero frequency limit

the imaginary part of δHinter
an gets cancelled by the diamagnetic contribution,

in such a way that the anisotropy field induced by a DC current is finite and

real. Second, it is instructive to elaborate on the real part of δHinter
an :

δHinter
an =

=
−π
S0ω

∑

k,a6=b

Re [(∆0s)a,bvb,a] · E(fk,a − fk,b)δ(ωb,a + ω)

+
1

S0ω

∑

k,a6=b

Im [(∆0s)a,bvb,a] · Efk,a
2ω

ω2 − ω2
b,a

, (5.18)

where ωb,a ≡ ǫk,b − ǫk,a. From Eq. (5.18) it is clear that δHinter
an remains finite

as ω → 0. When disorder is included in the above expressions, the contribu-

tion from the second line in Eq. (5.18) scales as τ−1 and thus is unimportant

when the broadening of the energy bands due to impurity scattering is small

compared to the energy difference between states connected by interband tran-

sitions. In contrast, the third line scales as τ 0, and therefore it supplies the

bulk of the interband contribution in weakly disordered ferromagnets.

Recognizing the fact that the integration of equal-band Green’s func-

tions gives rise to a factor of τ , δHintra
an yields the intraband piece of Eq. (5.2)

modulo a factor of ∆0/S0. Similarly, δHinter
an brings in the interband part of
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Eq. (5.2) modulo a factor of ∆0/S0; in order to verify this we recall 6 that

∑

k

fk,a − fk,b

ǫk,b − ǫk,a + iω
= −T

∑

ωn,k

Ga(iωn,k)Gb(iωn + iω,k). (5.19)

In sum, we find

∂δH i
an

∂Ej
=

1

2πS0
Re
∑

k,a,b

〈a,k|∆0(r)s
i|b,k〉〈b,k|vj|a,k〉

(

GR
k,aG

A
k,b −GR

k,aG
R
k,b

)

,

(5.20)

which agrees with the ISGE expression for the current-induced spin density

(Eq. (5.2)) except for an overall normalization factor (1/S0) and the fact that

the spin-operator is weighted by an spatially inhomogeneous magnitude of the

exchange field. With the aim of making Eq. (5.20) more manageable for first

principles calculations, we will ignore the interband contribution as well as the

GRGR term; both omissions are justified in most metallic ferromagnets. 7 In

this case Eq. (5.20) simplifies into

∂δH i
an

∂Ej
≃ 1

S0

∑

k,a

〈a,k|∂Hso

∂Ωi
|a,k〉〈a,k|vj|a,k〉∂fk,a(Ω̂)

∂ǫk,a
τk,a, (5.21)

where we have re-inserted 〈a|∆0(r)s|a〉 = 〈a|∂Hso/∂Ω̂|a〉. While approximate,

Eq. (5.21) may provide a valid platform to explore current induced magneti-

zation reversal in real gyrotropic ferromagnets with a single magnetic domain.

In the next section we will describe in detail how a large δHan can produce a

large reorientation of the magnetization.

6Strictly speaking Eqs. (5.16) and (5.19) are accurate only in absence of disorder.
Nevertheless, the connection between them remains intact in presence of impurities.

7The leading O(τ0) correction due to interband transitions would be captured by the
second line of Eq. (5.18).
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If the spatial dependence of ∆0(r) is negligible (as it will be in the

model studied in the next section), Eq. (5.20) may be rewritten in a more

compact way:

χi,j
S,E =

S0

∆0

∂δH i
an

∂Ej
. (5.22)

where χS,E is the spin-current susceptibility introduced in Eq. (5.2). Eq. (5.22)

proves that the ferromagnetic ISGE describes the change in the magnetic

anisotropy field due to a current. In other words, ferromagnetic ISGE de-

termines how an electric current changes the location of the extrema in the

micromagnetic energy functional. This is the central idea of this section.

As a final sidenote, we point out that this section has concentrated on

evaluating the change in magnetic anisotropy under a perturbation represented

by v · A, where A is the electromagnetic vector potential. The anisotropy is

evaluated by calculating the change in the expectation value of ∆0s, thus

leading to a rather standard linear response function calculation. We could in

the same way calculate the change in the transverse spin-spin response func-

tion due to an electric field as indicated in Fig.( 5.3), in order to determine

how small amplitude magnetic fluctuations are altered. If, however, we are

interested only in uniform magnetization dynamics no additional information

is obtained by doing this calculation. The key point is that the response to

a transverse field B⊥ is already built in our expression for the equilibrium

anisotropy field (Eq. (5.10)), to all orders in B⊥. In other words, the reference

(unperturbed) macrostate to which we apply a current contains a magnetiza-

tion that is “arbitrarily” misaligned with the exchange field. Hence, Eq. (5.22)
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along with Eq. (5.10) offers a complete account of the nonequilibrium magnetic

anisotropy of uniform magnetic states in the presence of a transport current.

5.3 Current-Driven Magnetization Reversal in Monodomain
(Ga,Mn)As

Magnetoelectric phenomena in dilute magnetic semiconductors[37, 38]

such as (Ga,Mn)As have attracted special attention because these materials

are more compatible with current microelectronics technology than metals. In

addition, electric field control of magnetism has turned out to be more feasi-

ble in (Ga,Mn)As than in conventional dense-moment metallic ferromagnets

because of their small magnetization, high carrier spin polarization, strong

spin-orbit interactions, and carrier-mediated ferromagnetism.[82, 114, 115] In

particular, the recent experiment[70] by Chernyshov et al. on (Ga,Mn)As

wafers under compressive strain has demonstrated the ability of transport cur-

rents to reversibly assist the reorientation of magnetization in single-domain

ferromagnets. As we demonstrate here this effect is dependent on having both

spin-orbit interactions and broken inversion symmetry. In this section we com-

pute the change in the magnetic anisotropy due to an electric current for a

realistic model of (Ga,Mn)As. Our calculation is directly relevant to the ex-

periment of Chernyshov et al.. Our results corroborate their interpretation

of the data and predict the possibility of all-electric magnetization switching

in (Ga,Mn)As. Our analysis is limited to zero temperature and neglects the

shape anisotropy, which for typical Mn doping concentrations is 10-100 times
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Figure 5.4: Equilibrium anisotropy field (meV per spin) in (Ga,Mn)As for
φ = 0, and θ ∈ (0, π). The parameters used for this calculation were: Mn
fraction x = 0.08, hole concentration p ≃ 0.15nm−3, ǫF τ = 3, and axial strain
ǫax = −0.5%. These anisotropy field results were evaluated using the model
explained in the text.

weaker than in conventional ferromagnets.

The dependence of the magnetic anisotropy of (Ga,Mn)As on doping,

external electric fields, temperature and strain has been successfully explained[116–

118] by combining (i) a mean-field theory of the exchange coupling between

localized Mn moments and valence band carriers with (ii) a phenomenological

four or six band envelope function model in which the valence band holes are

characterized by Luttinger, spin-orbit splitting and strain-energy parameters.

The results presented below predict the rate at which these fields change with

external electric field.
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Figure 5.5: Equilibrium anisotropy field (meV per spin) in (Ga,Mn)As for
θ = π/2 and φ ∈ (0, π). The parameters are: Mn fraction x = 0.08, hole
concentration p ≃ 0.15nm−3, ǫF τ = 3, and axial strain ǫax = −0.5%. These
results were evaluated using the model explained in the text. Due to strain,
the in-plane anisotropy is notably weaker than the out-of-plane anisotropy
represented in the previous figure.
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Figure 5.6: Change in the magnetic anisotropy field of (Ga,Mn)As (in meV per
spin) due to the inverse spin-galvanic effect, for an electric field of 1mV/nm
along [010]. The parameters are: Mn fraction x = 0.08, hole concentration
≃ 0.25nm−3, ǫF τ = 2, and axial strain ǫax = −1% We compare between
interband and intraband contributions: in contrast to the case of good metals,
the interband contributions are not negligible in (Ga,Mn)As. For the present
case, had we neglected the interband contribution the minimum electric field
needed to reorient the magnetization by 90◦ would be off by approximately 20
%. The sum of interband and intraband pieces gives rise to a smooth curve
that reflects the Dresselhaus symmetry of the axial strain. Reversing the sign
of the axial strain (i.e. making it tensile) leads to a sign reversal of δHφ.
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Figure 5.7: Reorientation of the magnetization due to an electric current. An
initial magnetization along [100] can be rotated (assisted by damping) into
[010] by applying a sufficiently strong electric field with a nonzero projection
along the [010] direction (a current along [100] would not destabilize the [100]
easy axis). For the parameters of this figure (x = 0.08, p ≃ 0.15nm−3, ǫF τ =
3, ǫax = −0.5%) the critical electric field is ≃ 5mV/nm, which corresponds
roughly to a critical current density of 5 × 107A/cm2.
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In line with this we adopt the following Hamiltonian for Ga1−xMnxAs:

H = HKL + Hstrain + S · ∆. (5.23)

HKL is the 4-band Kohn-Luttinger Hamiltonian[42] with Luttinger parameters

γ1 = 6.98, γ2 = 2.1 and γ3 = 2.9. S is the spin operator projected onto the

J=3/2 total angular momentum subspace at the top of the valence band.

∆ = ∆0Ω̂ = JpdSNMnΩ̂ is the exchange field, Ω̂ denotes the orientation of

the local moments, Jpd = 55 meV nm is the p-d exchange coupling parameter,

S = 5/2 is the spin of the Mn ions, and NMn = 4x/a3 is the Mn concentration

(a = 0.565nm is the lattice constant of GaAs). This four-band model is

expected to be adequate for small and intermediate Mn doping strengths.

Hstrain is the strain Hamiltonian[70, 119, 120] given by

Hstrain = −b
[(

J2
x − J2

3

)

ǫxx + c.p.

]

+ C4 [Jx (ǫyy − ǫzz) kx + c.p.] , (5.24)

where J is the total angular momentum (J = 3S by the Wigner-Eckart the-

orem), ǫi,i are diagonal elements of the stress tensor, b = −1.7 eV is the

axial deformation potential and the parameter C4 = 5 eV Å captures the

strain-induced linear in k spin-splitting of the valence bands in paramagnetic

GaAs. In Eq. (5.24) the notation c.p. stands for cyclic permutations and

ǫx,x = ǫy,y 6= ǫz,z for [001] growth lattice-matching strains. The term propor-

tional to C4 is crucial for the occurrence of the ferromagnetic ISGE because

it breaks inversion symmetry (we are neglecting the intrinsic lack of inversion
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symmetry of the zinc-blende structure, which is relatively inconsequential),

and it introduces chirality. (A bulk, unstrained zinc-blende crystal is not gy-

rotropic because it corresponds to the Td symmetry point group.) Eq. (5.24)

may be simplified to

Hstrain = −bǫax
(

J2
z − J2

3

)

+ C4ǫax (Jyky − Jxkx) , (5.25)

where ǫax = ǫzz − ǫxx is the purely axial strain component. In this paper we

take ǫax < 0 (compressive strain), which applies when (Ga,Mn)As is grown on

top of a GaAs substrate.

Using Eqs. (5.10) , (5.22) and (5.23) we evaluate the magnetic anisotropy

field both with and without electric current; the results are highlighted in

Figs. (5.4)- (5.8). Figs. (5.4) and (5.5) correspond to electrical equilib-

rium and illustrate Hθ = −1/S0

∑

k,a(∂ǫk,a/∂θ)fk,a for φ = 0 and Hφ =

−1/S0

∑

k,a(∂ǫk,a/∂φ)fk,a for θ = π/2, respectively. The extrema of the micro-

magnetic energy functional are characterized by Hφ = Hθ = 0 and by inspec-

tion we locate them at θ = 0 and (θ, φ) = (π/2, nπ/4) where n = 0, 1, 2.... For

our parameters (see figure captions) the energy minima that define metastable

magnetic configurations are found at (θ, φ) = (π/2, nπ/2). That is to say, the

easy directions correspond to [100], [010],[1̄00] and [01̄0], which are contained

in the plane of the (Ga,Mn)As wafer. For later reference, we consider an initial

condition in which the magnetization is pointing along [100]. If a small static

perturbation tilts it towards [110], the negative anisotropy field (Hφ < 0 for
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Figure 5.8: Dependence of the critical electric field (at which the magnetization
gets reoriented by 90◦) on (compressive) axial strain. The critical current is
(roughly) inversely proportional to ǫax. The reason behind this relationship
is that the equilibrium, azimuthal anisotropy is largely indiferent to ǫax. For
x = 0.04 and ǫax = −2% we find Ec ≃ 0.25mV/nm, which corresponds to a
critical current on the order of 106A/cm2. These results are for a (Ga,Mn)As
model with carrier density p ≃ 0.15nm−3 and ǫF τ = 3.

φ > 0) creates a torque that will, in conjunction with damping, 8 turn the

magnetization back to [100].

Fig. (5.6) illustrates how an electric current along [010] alters the az-

imuthal anisotropy field 9 for fixed θ = π/2. The cosine-like shape is consistent

with the Dresselhaus symmetry of the C4 term in the strain Hamiltonian. If the

8In absence of damping the magnetization would keep precessing indefinitely. The com-
bined action of the anisotropy field and damping is what ultimately drives the system to
the minimum energy state.

9Our discussion concentrates on Hφ. Although Hθ too generally changes in presence of
a current, it is not pertinent to the [100]→[010] or [100]→[1̄00] magnetization reorientations
that we are interested in.
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system had a perfect Dresselhaus symmetry the change in the micromagnetic

energy functional under an electric current j would read

δEGS ∝ C4ǫax(Ωyjy − Ωxjx), (5.26)

which means that a current along [010] ([100]) would tilt the steady-state

magnetization direction along [010] ([1̄00]). Using Ωx = sin θ cosφ and Ωy =

sin θ sin φ it follows that δHφ ∝ jy cosφ+jx sin φ, and hence a cosine-like depen-

dence in φ is indeed expected for a current along [010]. We have verified that a

current along x gives rise to a sine-like dependence with the appropriate sign.

Nevertheless, Eq. (5.26) is not exact because the magnetization vector intro-

duces another preferred direction; for instance, we find that an electric field

pointing along ẑ (i.e. [001]) can also alter the steady-state spin orientation.

This effect, which vanishes in the paramagnetic limit, highlights one instance

in which the ferromagnetic and paramagnetic ISGEs differ. Another attribute

of Fig. (5.6) is that it determines the quantitative importance of interband

contributions to the current-induced spin density in (Ga,Mn)As. Although

normally neglected, interband transitions become quantitatively significant in

strongly disordered ferromagnets. In particular, interband and intraband con-

tributions are largely indistinguishable in ferromagnets with ∆0τ < 1. We note

parenthetically that neither intraband nor interband contributions display the

smooth sinusoidal shape portrayed by their sum. In addition, we remark that

reversing the sign of the axial strain (i.e. making it tensile) leads to a sign
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reversal of δHφ without substantial changes in its magnitude. 10

Fig. (5.7) demonstrates that a sufficiently strong current is able to ro-

tate the magnetization by 90◦ or 180◦. We explain this property by considering

the case in which the equilibrium magnetization is pointing along [100]. If a

small current is applied along [010], then [100] is no longer an extremum of the

micromagnetic energy functional (because Hφ(φ = 0) ∝ Ey 6= 0). The mod-

ified easy direction remains in the neighborhood of [100] since the restoring

torque (Hφ < 0) again crosses zero at φ > 0. Once the applied electric field

exceeds a critical value (Ec ≃ 5.5mV/nm in the present figure) the Hφ < 0

region near [100] disappears completely and hence assisted by damping the

magnetization eventually points along [010]. In other words, at (and above)

the critical switching field the energy minimum that is nearest to [100] is lo-

cated at [010] (note that this direction remains stable when the current flows

along [010]). Once the magnetization is aligned with [010], an equally strong

electric current in the [100] direction will rotate it towards [1̄00]. In this fash-

ion it is possible to switch the direction of magnetization by 180◦ solely by

application of transport currents.

The procedure sketched above accomplishes magnetization switching

by application of two perpendicular current pulses, each of which forces a 90◦

rotation. Yet, it is also possible to achieve the [100] → [1̄00] switching with

10It is known that in GaAs quantum wells the strain-induced k-linear terms have negligible
impact if the strain is compressive, yet they matter if the strain is tensile (see e.g. [119]).
This observation does not apply to bulk (Ga,Mn)As.
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a single unidirectional pulse, provided the electric field along [100] is ramped

up sufficiently (Ec,2 ≃ 20mV/nm for the parameters of the present figure). In

order to understand this, recall that j||x̂ → δHan|| − x̂. Consequently, for a

strong electric current [1̄00] is the only easy direction ([100] becomes a hard

direction). The inequivalence between [100] and [1̄00] does not violate any

symmetry principles;[121] in effect, an electric current breaks time reversal

symmetry and can thus connect time-reversed magnetic states.

Using ρ = 10−3Ωcm as the typical resistivity for (Ga,Mn)As samples

we deduce that E = 1mV/nm corresponds approximately to a current density

of 107A/cm2, hence the critical switching current is on the order of 106 −

107A/cm2. It is plausible that a detailed exploration of the parameter space

comprised by the Mn concentration x, the hole density p and the axial strain

ǫax will enable lower critical currents, thereby diminishing the importance of

the Joule heating. As a word of caution, we note that the 4-band model

employed here typically overestimates the effect of spin-orbit interactions, thus

potentially leading to an underestimate of these critical currents. There is in

addition some uncertainty associated with the use of a life-time approximation

for Bloch state quasiparticles in these strongly disordered metallic conducting

ferromagnets.

Overall, the magnitude of the critical switching current depends on

(a) the size of the equilibrium anisotropy barrier, (b) the extent to which

inversion symmetry is broken and (c) the strength of spin-orbit interaction.

In (Ga,Mn)As the first two factors are tunable. On one hand, (a) may be
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optimized by choosing appropriate doping concentrations: in general lower

Mn density is beneficial (Fig. (5.8)), as it reduces the equilibrium anisotropy

without significantly affecting the magnitude of ISGE. However, for very low

Mn concentrations a metal-insulator transition is impending, which hampers

ISGE. On the other hand, (b) may be modified via strain engineering: as

shown in Fig. (5.8), the critical current is (roughly) inversely proportional to

the strength of the uniaxial strain that breaks inversion symmetry. The inverse

proportionality may be understood on the basis of Eq. (5.26) combined with

the fact that the equilibrium anisotropy does not change to first order in ǫax

(because k-linear terms vanish after summing over all momenta).

5.4 Summary and Conclusions

In this work we have presented a theory of the current-induced spin

torques in uniform ferromagnets. The torques can be viewed as due to a dif-

ference between the magnetic anisotropy energy of a ferromagnet which car-

ries no current and the magnetic anisotropy of a ferromagnet in the transport

steady state, which give rise to a corresponding change in anisotropy effective

magnetic fields. When the transport steady state is described using a relax-

ation time approximation, the current-induced contribution to the anisotropy

field of a strongly metallic ferromagnet is given in energy units by

δHan =
1

S0

∑

k,a

[∆0(r)s]a,ava,a · E
∂fk,a

∂ǫk,a
τk,a. (5.27)
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where [∆0(r)s]a,a is the spin-density weighted average of the exchange split-

ting of a particular state. We refer to the existence of this current-induced

anisotropy field as the ferromagnetic inverse spin-galvanic effect.

In bulk materials this current induced field is non-zero only in gy-

rotropic ferromagnets, i.e. only in ferromagnets that have broken inversion

symmetry and are chiral. Although uniform ferromagnetism may appear to be

incompatible with broken inversion symmetry because of the the Dzyaloshinskii-

Moriya interaction, the equilibrium magnetic anisotropy is often strong enough

(or at least can be engineered so that it is strong enough) to prevent the for-

mation of spiral magnetic states.

As an illustration of our theory, we have estimated current induced

torques in uniform (Ga,Mn)As, which is not gyrotropic when it has pseudo-

cubic symmetry but becomes gyrotropic when strained. Since substrate-dependent

strains are present in all (Ga,Mn)As thin films, the strength of the ferromag-

netic ISGE is expected to be strongly sample-dependent. We have concluded

that it should a priori be feasible to design (Ga,Mn)As samples in which it

is possible to switch the magnetization purely by electrical means. For typ-

ical sample parameters the necessary switching currents are on the order of

106 − 107A/cm2, but the value may be tuned by adjusting the doping con-

centration and the axial strain. At these critical currents the Joule heating is

not negligible; however, it is possible that further studies exploring the entire

parameter space of Mn concentration, hole density, and the axial strain will

identify circumstances under which the critical currents are smaller.
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Another possible avenue for further research consists of evaluating the

anisotropy fields which can be generated by electrical currents in strain engi-

neered samples of appropriate technologically useful ferromagnets. Since we

are not aware of room-temperature transition metal ferromagnets that are gy-

rotropic,[122] we propose arranging a room-temperature, non-gyrotropic ferro-

magnet (e.g. permalloy) in contact with a non-magnetic, gyrotropic material

(e.g. strained GaAs). In these artificial heterostructures room-temperature

magnetism and gyrotropic symmetry would coexist by virtue of the proximity

effect.

Finally, effects similar to those studied in this work would allow trans-

port currents to change spiral states, and possibly to induce or remove them.
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Chapter 6

Landau-Lifshitz-Slonczewski Equation

Approach to Nonequilibrium

Superconductivity

This chapter represents a study of nonequilibrium superconductivity

from the viewpoint of nonequilibrium magnetism, and stands out from pre-

vious chapters in both form and content. For one thing, the present chapter

contains a substantial amount of introductory material because nonequilibrium

superconductivity may be unfamiliar to the readers of this thesis. Moreover,

the new calculations and ideas developed in this chapter are unpublished and

preliminary.

Sections I and II present a somewhat lengthy albeit inevitably cur-

sory introduction to the conventional theory of nonequilibrium superconduc-

tivity. At first glance, these sections bear no relation to magnetism. Such

perception is abolished in Section III, where we bridge nonequilibrium su-

perconductivity and nonequilibrium magnetism by mediation of the Landau-

Lifshitz-Slonczewski equation. The motivation for this connection lies on the

particle-hole transformation, which portrays a superconductor as a pseudospin

ferromagnet. Sections IV, V, VI and VII explore the analogies of magnetic

relaxation and spin torques in superconductors, and culminate with some
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potentially new predictions that might be experimentally testable. Section

VIII hints at an unconventional magnetogalvanic effect in spiral ferromagnets,

which is inspired by its counterpart in superconductors.

This chapter constitutes work in progress and barely scratches the sur-

face of what might be a new subfield emerging at the interface of two venerable

disciplines.

6.1 Basics of Nonequilibrium Superconductivity

A superconductor can be regarded as a coupled system of three compo-

nents: a condensate, quasiparticles, and phonons. 1 The condensate of Cooper

pairs, which is characterized by a complex order parameter, is responsible for

the Meissner effect as well as superfluidity. Quasiparticles are excitations above

the condensate that appear at nonzero temperatures. The states occupied by

quasiparticles are described by a distribution function, which as we shall see

below plays a central role in nonequilibrium superconductivity. Quasiparticles

can exchange both charge and energy with the condensate and only energy

with phonons.

Any external perturbation that couples to either component can lead

to nonequilibrium superconducting states. Supercurrents and pair-tunneling

couple to the condensate, quasiparticle currents and tunneling affect the quasi-

particle distribution, electromagnetic fields couple to both electronic compo-

1The contents of this section are largely based on the chapter by A.M. Kadin and A.M.
Goldman in Ref. [11].
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nents, the phonon injection and external heating enter the superconductor via

the phonon system.

For a simple BCS superconductor in equilibrium, the condensate con-

sists of an assembly of time-reversed pairs of electron states with an occupation

probability for electron k-states given by

v2
k =

1

2

(

1 − ξk
Ek

)

, (6.1)

where ξk = k2/(2m)− µs is the kinetic energy of the electrons measured with

respect to the condensate chemical potential 2 µs, Ek =
√

ξ2
k + ∆2 is the energy

of the quasiparticle excitations and ∆ is the mean-field order parameter. The

latter obbeys the BCS gap equation:

1 = g
∑

k

1 − 2f0(Ek)

2Ek

≃ gN(0)

∫

|ξ|≤ωD

dξ
1 − 2f0(ξ)

2
√

ξ2 + ∆2
, (6.2)

where g is the electron-phonon coupling constant, f0 is the Fermi distribution

function, N(0) is the single-spin density of states at the Fermi energy (in the

normal state) and ωD is the cut-off (Debye) energy that removes logarithmic

divergences.

In presence of an external perturbation the quasiparticle population is

2In equilibrium, µs coincides with the Fermi energy, which we take as the zero of energy.
Out of equilibrium this need no longer be the case.
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driven out of equilibrium and the modified gap equation 3 reads

1 = g
∑

k

1 − 2f(Ek)

2Ek

, (6.3)

where f(Ek) = f0(Ek) + δfk is the nonequilibrium quasiparticle distribu-

tion. Eq. (6.3) indicates how δfk alters the superconducting order parameter.

Strictly speaking the distribution f(Ek) has as many degrees of freedom as

there are quasiparticles. However, only a small number of simple modes ap-

pear to be relevant in practice. These are classified into a “longitudinal” or

“energy” mode δfL and a “transverse” or “charge” mode δfT , so that

δf = δfL + δfT . (6.4)

By definition δfL(ξk) = δfL(−ξk)) and δfT (ξk) = −δfT (−ξk). Physically,

the energy mode is equivalent to introducing an effective temperature in the

Fermi distribution, which differs from the actual temperature of the system.

On the other hand, the charge mode is equivalent to having a net charge for

quasiparticles, commonly known as quasiparticle charge imbalance. 4 As it

turns out, the quasiparticle charge imbalance is one of the central quantities

in nonequilibrium superconductivity. It is defined as

Q⋆ = 2
∑

k

qkfk, (6.5)

3Besides quasiparticle occupation numbers, the coherence factors (quasiparticle eigen-
states) too change in presence of a perturbation. However, it can be shown that for slowly
varying perturbations the equation for the energy gap in the nonequilibrium state has the
same form as in equilibrium: see e.g. the chapter by A.G. Aronov et al. in Ref. [11].

4See e.g. chapter 11 of Ref. [5].
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where qk = eξk/Ek is the effective quasiparticle charge. Much like in a normal

metal, quasiparticles are electron-like (qk ≃ e) well above the Fermi energy

(ξk >> 0) and hole-like (qk ≃ −e) deep inside the Fermi sea (ξk << 0). The

peculiarity of the superconducting state becomes manifest in the close neigh-

borhood of the Fermi energy (|ξk| ≤ ∆), where quasiparticle states are neither

filled nor empty and instead constitute a quantum mechanical superposition

of electrons and holes with a non-integer charge given by qk.

In equilibrium f(ξk) = f(−ξk) and thus the electron-like and hole-like

branches of the quasiparticle spectrum are equally populated, yielding Q⋆ = 0.

5 This need not be the case for a nonequilibrium state. In any event, the total

electronic charge given by

Qtot = 2e
∑

k

v2
k|µs=0 (6.6)

remains approximately constant even out-of-equilibrium because charge neu-

trality holds over far shorter times and distances than those relevant to super-

conductivity. The excess charge of the quasiparticles must thus be compen-

sated by a change δQcond in the charge of the condensate, 6 with the concurrent

5Throughout this chapter we use
∑

k
≃ N(0)

∫∞

−∞
dξ, because states that are near the

Fermi energy matter the most for both equilibrium and nonequilibrium superconductivity.
Note that the particle and hole branches do not have a symmetric energy dispersion far
away from the Fermi energy.

6The change in the quasiparticle charge is associated with the deviation from equilibrium
of the quasiparticle occupation factors, whereas the change in the condensate charge is
related to the modification of the coherence factors. See e.g. C.J. Pethick and H. Smith in
Ref. [10].
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change in its chemical potential away from µs = 0. In sum,

Q⋆ = −δQcond

= 2e
∑

k

(v2
k|µs=0 − v2

k|µs 6=0)

≃ 2N(0)e

∫

dξ(v2|µs=0 − v2|µs 6=0)

≃ −2N(0)eµs, (6.7)

where in the last line we have performed an expansion to first order in µs.

Hence the quasiparticle charge imbalance is proportional to the deviation of

the condensate chemical potential from the Fermi energy. Identifying Eq. (6.7)

with Eq. (6.5), it follows that

−µs =

∫ ∞

−∞

dξf(ξ)q(ξ)/e, (6.8)

where

q(ξ) ≡ e
ξ − µs

√

(ξ − µs)2 + ∆2
(6.9)

is the effective charge of the quasiparticles. Remarkably, there is a charge

imbalance only when the quasiparticle distribution function has a component

that is odd around the chemical potential of the condensate. That is why

transverse modes lead to charge imbalance whereas longitudinal modes do

not. 7 This imbalance in the populations of electron and hole branches has

been measured 8 in normal-metal/insulator/superconductor junctions.

7The parity of the perturbation with respect to ξ will play a very important role in the
following sections.

8See e.g. the chapter by J. Clarke in Ref. [10].
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For latter reference, it is convenient to subdivide longitudinal and trans-

verse perturbations based on their parity on momentum: 9

(i) Even in ξk and odd in k.

This longitudinal mode induces an electric current, but not a quasipar-

ticle charge imbalance. For example,

δfk = qkvk ·E ∂fk
∂Ek

τk (6.10)

gives rise to a dissipative current. E is the applied electric field, vk = ∂Ek/∂k

is the quasiparticle group velocity, τk is the elastic scattering lifetime and

qk = eξk/Ek is the effective quasiparticle charge. Another important example

of the same class is

δfk = vF · Q ∂fk
∂Ek

, (6.11)

which produces a dissipationless current. vF is the Fermi velocity and Q is

the superfluid momentum proportional to the applied current.

(ii) Even in ξk and even in k.

This longitudinal mode generates neither a current nor a charge imbal-

ance, but instead alters the superconducting gap. A representative example

is the heating of quasiparticles by a microwave field or sound waves, which

remarkably leads to an enhancement of the superconducting gap. These per-

turbations relax through inelastic scattering, e.g. via phonons.

(iii) Odd in ξk and even in k.

9See the chapter by A.G. Aronov et al. in Ref. [11].
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This kind of transverse perturbation creates a charge imbalance, which

relaxes through scattering off phonons, magnetic impurities, or (in presence of

supercurrents or anisotropy of the gap) non-magnetic impurities.

(iv) Odd in ξk and odd in k.

This class of transverse perturbation gives rise to thermoelectric phe-

nomena, which we will analyze in latter sections. A typical case involves

δfk = vk · ∇T
Ek

T

∂fk
∂Ek

τk, (6.12)

where T is the temperature of the system.

6.2 Theories of Nonequilibrium Superconductivity

In this section we provide a bird’s-eye view of the principal theoretical

methods that have been developed for the study of nonequilibrium processes

in superconductors. In the next section we will introduce a new technique that

may complement the ones that are currently in use.

6.2.1 Time-Dependent Ginzburg-Landau Theory

Solving the BCS equations out of equilibrium is a complicated task

even in the limit of slow time and space variations of the field and the order

parameter. However, it is possible to write a relatively simple model equation

in the vicinity of the transition temperature Tc, which reflects the qualitative

aspects of the order parameter dynamics. This equation is the simplest gener-

alization of the equilibrium Ginzburg-Landau equations as it assumes that for
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small deviations from equilibrium the time derivative of the order parameter

is proportional to the variational derivative of the free energy ∂F/∂∆⋆. 10 The

free energy of the superconductor within the Ginzburg-Landau formalism is

given by

F =

∫

dr

[

α|∆|2 +
β

2
|∆|4 + γ|(−i∇− 2e

c
A)∆|2 +

(∇×A)2

8π

]

, (6.13)

which produces the well-known equilibrium Ginzburg-Landau equations via

δF/δ∆ = 0 and δF/δA = −js, where js is the supercurrent. The generalization

of these equations to time-dependent situations is realized as

δF

δ∆
= −Γ(∂t + 2ieV )∆

δF

δA
= −(j − jN) = −(j − σNE), (6.14)

where Γ is a positive constant and V is the electrostatic potential that ensures

the gauge-invariance of the time-derivative. The second line of Eq. (6.14) fol-

lows from the assumption that the total current j can be written as the sum of

a supercurrent and a quasiparticle current jN, where the latter is determined

by the normal-state conductivity σN . 11 Often the TDGL equations are aug-

mented with Langevin forces that model the thermodynamic fluctuations of

the order parameter.

Eqs. (6.14) can be derived microscopically; 12 it follows that they are

valid only in the vicinity of Tc, close to equilibrium and in the gapless regime.

10This is a relaxation-time approximation.
11This assumption is justifiable close to the critical temperature.
12For a careful treatment see e.g. Ref. [123].
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6.2.2 Kinetic Equation Approach

At the same time in which the TDGL equations were being conceived,

the resemblance between quasiparticles in superconductors and electrons in

normal metals ignited the search for a transport equation that could be ap-

plied to superconductors. Such an equation was indeed constructed 13 and

turned out to be closely related to the classical Boltzmann equation for nor-

mal conductors:

∂fk
∂t

+ vk · ∇fk + F · ∂fk
∂k

= I[fk], (6.15)

where fk is the nonequilibrium quasiparticle distribution function, F = −∂Ek/∂r+

vF ×B is the force acting on the quasiparticles (B is the magnetic field) and

I is the collision integral.

Despite formal similarities between Eq. (6.15) and the ordinary Boltz-

mann equation, the kinetic equation for superconductors is more convoluted.

For instance, superconductors have a condensate of Cooper pairs whose dy-

namics can alter the occupation numer of the quasiparticle states. In turn,

the normal excitation distribution may influence the energy gap, as evidenced

by Eq. (6.3). Consequently, Eq. (6.15) and Eq. (6.3) must be solved self-

consistently. Another essential difference between the kinetic equation for

normal metals and superconductors is that quantum effects are much more

pronounced in the latter because the coherence length ζ = vF/∆ of the super-

conducting wavefunction is typically two or three orders of magnitude larger

13For an extensive review see e.g. A.G. Aronov et al. in Ref. [11].
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than the Fermi wavelength.

The assets of the kinetic equation approach are twofold. First, it is an

intuitive method because its results may be interpreted in terms of the exci-

tation distribution function, which is a quantity with clear physical meaning.

Second, this method can handle low temperatures and large deviations from

equilibrium. On the other hand, the main drawback of the kinetic equation

approach is that it is applicable to superconductors that are nearly clean and

homogeneous.

6.2.3 Keldysh Green’s Function Method

The Boltzmann kinetic equation fails unless the mean free path and

the range in which the order parameter changes exceed the coherence length.

A more general quasiclassical equation can be derived, which is based on

the smallness of the electron wavelength compared to all other characteristic

lengths. This equation is a generalization of the static Eilenberger equations.

14

The fundamental quantities of this formalism are the retarded, ad-

14For a detailed exposition of the quasiclassical Green’s function method see e.g.

Ref. [124]. The present discussion is based on the chapter by A.I. Larkin and Y.N. Ovchin-
nikov in Ref. [11].
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vanced and Keldysh Green’s functions, which can be expressed as

GR(1, 2) = Θ(t1 − t2) [G>(1, 2) −G<(2, 1)] (6.16)

GA(1, 2) = −Θ(t2 − t1) [G>(1, 2) −G<(2, 1)] (6.17)

GK(1, 2) = G>(1, 2) +G<(1, 2), (6.18)

where

G>(1, 2) ≡ −i
(

〈ψ↑(1)ψ†
↑(2)〉 〈ψ↑(1)ψ↓(2)〉

−〈ψ†
↓(1)ψ†

↑(2)〉 −〈ψ†
↓(1)ψ↓(2)〉

)

G<(1, 2) ≡ i

(

〈ψ†
↑(2)ψ↑(1)〉 〈ψ↓(2)ψ↑(1)〉

−〈ψ†
↑(2)ψ†

↓(1)〉 −〈ψ↓(2)ψ†
↓(1)〉

)

, (6.19)

Θ is the step function and 〈〉 denotes the expectation value taken on the

nonequilibrium state. The matrices in Eq. (6.19) are written in the particle-

hole basis, which is also known as the Nambu-Gorkov representation. Su-

perconducting correlations, which mix particles and holes, appear in the off-

diagonal matrix elements. This representation forms the backbone of the rest

of the chapter.

As shown by Keldysh, the dynamical Green’s functions can in principle

be evaluated by solving the following Dyson’s equation:

(Ǧ−1
0 − Σ̌)Ǧ = 1̌, (6.20)

where

Ǧ =

(

GR GK

0 GA

)

(6.21)
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is the Green’s function matrix that completely describes the nonequilibrium

state of the system and

Σ̌ =

(

ΣR ΣK

0 ΣA

)

(6.22)

is the self-energy matrix that encodes the departures from the equilibrium

Green’s function G0.
15 1̌ stands for the 4×4 identity matrix. In addition, the

product in Eq. (6.20) means multiplication of matrices and convolution with

respect to the coordinates and time.

Solving Eq. (6.20) is as arduous a task as solving the full BCS equations.

Fortunately, it contains more information than is needed and can be replaced

with a simpler equation by virtue of the quasiclassical approximation. In

this approximation the rapid oscillations in relative spatial coordinates of the

Green’s functions are integrated out because they are physically irrelevant on

the important lengthscales for superconductivity, e.g. the coherence length. 16

Therefore one can integrate out the relative spatial coordinates in Eq. (6.20)

and arrive at an alternative Dyson equation for the quasiclassical Green’s

function

ǧ(p, r) ≡ i

π

∫

dξǦ(p, r). (6.23)

All observables of interest such as the current density and the superconducting

gap can then be expressed in terms of gK . While the quasiclassical equation is

15Note incidentally that the self-energy Σ̌ is in general a function of Ǧ.
16This statement is valid provided that the superconducting coherence length is much

larger than the Fermi wavelength. This requirement is easily satisfied in all low-temperature
superconductors, wherein ∆/EF << 1.
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more general than either the TDGL or kinetic equations, its solution is more

complicated and less transparent.

6.3 LLS Equation Approach to Superconductivty

The TDGL, kinetic and quasiclassical equations have been in place for

three decades. In this section we introduce a new point of view to describe

nonequilibrium superconductivity. Our approach is motivated by the math-

ematical mapping between magnetism and superconductivity first discussed

by Anderson,[125] and is based on a formalism put forward by Gorkov[126]

and Nambu.[127] We apply these ideas to posit a Landau-Lifshitz-Slonczewski

equation for the dynamics of the superconducting order parameter. 17 At

first glance, this equation is somewhat phenomenological and appears to offer

a limited leverage because it ignores the oft-important amplitude fluctuations

18 of the order parameter. Nevertheless, it inspires a number of potentially

interesting analogies between the seemingly unrelated fields of nonequilibrium

magnetism and nonequilibrium superconductivity, some of which we shall ex-

plore in the remaining sections of this chapter.

For pedagogical reasons, we begin by considering a ferromagnet whose

equilibrium magnetization is pointing along x̂. The LLS equations that de-

17For illuminating applications in other systems of see e.g. Ref. [128].
18Amplitude fluctuations are believed to be important even at low temperatures in su-

perconductors with reduced dimensionality. For a recent review see Ref. [129].
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scribe small departures from equilibrium can be written as

Ω̇x ≃ 0 ≃ ∇Ωx

Ω̇y + v · ∇Ωy = ΩzHx −Hz + αz,zΩ̇z + βz,zv · ∇Ωz

Ω̇z + v · ∇Ωz = Hy − ΩyHx − αy,yΩ̇y + βy,yv · ∇Ωy. (6.24)

Unlike in previous chapters, in Eq. (6.59) we allow anisotropies in the damping

coefficient by raising α and β to matrix status; 19 the motivation behind this

will become clear below.

As mentioned previously, α and β originate from microscopic processes

that break spin conservation, such as spin-orbit interactions and magnetic

impurities. Let us assume that the spin-orbit interaction is zero and that

there are spin-dependent impurities with their spins aligned along ẑ. The

misalignment between the impurity spins and the equilibrium magnetization

may seem unphysical, but once again its relevance will become clear below.

An important observation for this setup is that αy,y = 0 because

dΩz

dt

∣

∣

∣

imp
∝ [Himp, S

z] ∝ [Sz, Sz] = 0 (6.25)

and hence impurities magnetized along ẑ cannot relax Ωz. βy,y = 0 is less

obvious, because Eq. (6.25) does not apply for spatially varying magnetic

textures. We shall argue below that βy,y is unimportant in cases of interest.

The foregoing, seemingly artificial example becomes viable in the con-

text of superconductivity. In order to show this, we begin by introducing a

19αz,y and αy,z can be absorbed in the gyromagnetic factor.
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particle-hole transformation:[130]

ck,↑ → c̃k,↑

c†−k,↓ → c̃k,↓, (6.26)

where ck,σ (c̃k,σ) is the operator that annihilates a “real” (“pseudo”) electron

with momentum k and spin σ. The particle-hole transformation is a canonical

transformation because the pseudoelectrons obey fermionic anticommutation

relations. Eq. (6.26) maps charge operators into pseudospin operators:

S̃z
k ≡ c̃†k,↑c̃k,↑ − c̃†k,↓c̃k,↓ = c†k,↑ck,↑ − c−k,↓c

†
−k,↓

S̃x
k ≡ c̃†k,↑c̃k,↓ + c̃†k,↓c̃k,↑ = c†k,↑c

†
−k,↓ + c−k,↓ck,↑

S̃y
k ≡ −i(c̃†k,↑c̃k,↓ − c̃†k,↓c̃k,↑) = −i(c†k,↑c

†
−k,↓ − c−k,↓ck,↑). (6.27)

On one hand, S̃z
k is closely related to the charge density operator: one can

ascribe a pseudopsin along +ẑ (−ẑ) to electrons (holes). On the other hand,

S̃x
k and S̃y

k capture pairing correlations, which mix electrons and holes.

In this language, the BCS Hamiltonian for a superconductor in equi-

librium can be expressed as

HBCS =
∑

k

(c̃†k,↑, c̃
†
k,↓)

(

ξk ∆
∆⋆ −ξk

)(

c̃k,↑

c̃k,↓

)

, (6.28)

where we have thrown away an infinite term
∑

k ξk that is physically incon-

sequential.[6] Eq. (6.28) resembles the Hamiltonian of a parabolic-band fer-

romagnet with an exchange field ∆ = (Re(∆), Im(∆), 0), except for the fact

that the dispersion relation for the spin-down electrons is reversed. This dif-

ference results in a gapped, semiconductor-like quasiparticle dispersion (Ek =
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±
√

ξ2
k + ∆2) with the chemical potential in the middle of the gap. At zero

temperature the “valence band” is full 20 whereas the “conduction band” is

empty. The ground state of Eq. (6.28) may be written as an antisymmetrized

product of spinors that diagonalize the BCS Hamiltonian at each k:

|ΨBCS〉 =
∏

k

(

ukc̃
†
k,↑ + vkc̃

†
k,↓

)

|0〉, (6.29)

where |0〉 is the vacuum and

uk = cos
θk
2

vk = eiφ sin
θk
2

(6.30)

are the well-known BCS coherence factors, with cos θk = ξk/Ek and tanφ =

Im(∆)/Re(∆). Eq. (6.29) represents a domain wall in momentum space, where

the pseudospins deep inside (far above) the Fermi sea are pointing along +ẑ

(−ẑ). The wall is tilted by an angle φ with respect to the xz plane.

In order to further realize the magnetic representation of superconduc-

tivity is instructive to evaluate the net pseudospin magnetization

s̃ =
∑

k,a

S̃k,afk,a, (6.31)

where S̃k,a = 〈Ψk,a|S̃|Ψk,a〉 is the matrix element for the pseudospin operator

20Consequently the ground state energy of HBCS diverges. Of course, the actual ground
state energy of the superconductor becomes finite once we reinstate the infinite term ignored
in Eq. (6.28).
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and

Ψk,0 = (uk, vk)

Ψk,1 = (v⋆
k,−u⋆

k) (6.32)

are the eigenspinors at momentum k corresponding to the valence and con-

duction bands, respectively. It follows that

s̃x =
∑

k

ukv
⋆
k(fk,0 − fk,1) + c.c

s̃y = −
∑

k

iukv
⋆
k(fk,0 − fk,1) + c.c

s̃z =
∑

k

(|uk|2 − |vk|2)(fk,0 − fk,1), (6.33)

where fk,0 and fk,1 are the occupation numbers for the “valence band” and

“conduction band”, respectively.

s̃x and s̃y diverge logarithmically for an unrestricted momentum sum.

This pathology can be remedied by introducing a cut-off |ξk| ≤ ωD in the

momentum integral, a procedure that is customary in the BCS theory. In

fact, it can be readily shown that the first two lines of Eq. (6.33) are simply

the BCS gap equation for an order parameter given by

∆ ≡ (Re(∆), Im(∆)) = |∆|(cosφ, sinφ) = (gs̃x, gs̃y). (6.34)

Eq. (6.34) can be verified by plugging the expressions for the coherence factors

in Eq. (6.33), invoking particle-hole symmetry (fk,0 = 1 − fk,1 ≡ 1 − fk)

and comparing the outcome with Eq. (6.2). Moreover, for a homogeneous
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superconductor φ may be removed by a gauge transformation, which renders

s̃y = 0 in equilibrium.

The z-component of the pseudospin magnetization is related to the net

charge density. From the third line of Eq. (6.33), we find that it too diverges

in equilibrium. This is simply an artifice of the particle-hole transformation,

which can be handled in two ways. One way is to restrict the momentum

sum via |ξk| ≤ ωD; then s̃z = 0 in equilibrium because fk is even in ξk and

qk = e(|uk|2 − |vk|2) is odd in ξk (in other words in equilibrium there is no

excess of electron-like or hole-like quasiparticles). Another way is to define

the infinite s̃z as zero; at any rate in equilibrium the electronic charge must

be completely compensated by the ionic background at every point in time

and space. For the sake of pedagogy we write down the expression for charge

fluctuations, which is free of spurious divergences:

δs̃z =
∑

k

δqk(1 − 2fk) − 2
∑

k

qkδfk

≡ χz,zµs, (6.35)

where µs is the condensate chemical potential (recall that µs ≡ 0 in equilib-

rium) and

χz,z = −2
∑

k

∂(v2
k)

∂µs

(1 − 2fk) − 2
∑

k

qk
∂Ek

∂µs

∂fk
∂Ek

= −2
∑

k

∆2

2E3
k

(1 − 2fk) + 2
∑

k

q2
k

∂fk
∂Ek

. (6.36)

In the second line of Eq. (6.36) we have assumed that the amplitude of the

superconducting gap remains immutable. χz,z characterizes the charge density
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induced by a change in the chemical potential of the condensate and it agrees

with the expression of Pethick and Smith in Ref. [10]. The first term in

the expression for χz,z captures the changes in the coherence factors 21 and

is sometimes referred to as the superfluid charge: indeed it vanishes at and

above the critical temperature. The second term captures the changes in the

occupation numbers 22 and is often called the quasiparticle charge: indeed

it vanishes at zero temperature. If the external perturbation is static and

uniform it follows that χz,z = −2N(0). 23

The preceding discussion and digressions were designed to establish that

a homogeneous superconductor in equilibrium is equivalent to a pseudospin

ferromagnet magnetized along x̂. Because of this equivalence, it is natural to

propose a LLS equation for the low energy and long wavelength dynamics of the

superconducting order parameter. We shall substantiate this guess by making

contact with conventional microscopic theories of superconductivity.[133] The

starting point of these theories is the partition function

Z = Tre−H/T , (6.37)

21As such it arises entirely from interband transitions (recall chapter 5).
22Hence it originates from intraband transitions.
23There is a sublety here. If the external perturbation has a frequency ω and wavevector

q such that ω > qvF it follows that the intraband contribution to χz,z (the “quasiparticle
charge”) goes like q2v2

F /ω2 (see e.g. Ref.[131]), thus vanishing at q = 0. This observation is
important for the study of collective modes in superconductors.[132]
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where T is the temperature and

H =

∫

drψ†
σ(r)

(

− 1

2m
∇2 − µ

)

ψσ(r) − g

∫

drψ†
↑(r)ψ

†
↓(r)ψ↓(r)ψ↑(r)

+
1

2

∫

drdr′ψ†
σ(r)ψ†

σ′(r
′)

e2

|r− r′|ψσ′(r′)ψσ(r) (6.38)

is the full Hamiltonian for the interacting electrons. 24 Within the path in-

tegral formalism,[134] the quartic terms in Eq. (6.38) can be decoupled via

two separate Hubbard-Stratonovich transformations. These transformations

are accompanied by two auxiliary fields that may be identified with the com-

plex pairing potential ∆ = |∆|eiφ and the charge density n. In absence of

equilibrium supercurrents, amplitude fluctuations decouple from charge and

phase fluctuations.[132] In line with the LLS precepts we neglect amplitude

fluctuations (δ|∆| = 0) and adopt a Gaussian theory for phase and charge

fluctuations around φ = 0 and n = 0. Then, Eq. (6.37) may be expressed as

Z ≃
∫

DφDne−Seff , (6.39)

where D is the measure of the path integral and

Seff [φ, n] =
i

2

∫

drdτ (n∂τφ− φ∂τn) −
∫

drE[φ, n] (6.40)

is the low energy effective action in imaginary time τ . The first term in the

effective action is the Berry phase, which indicates that the phase of the order

parameter and the charge density are canonically conjugate variables. 25 The

24The electron-electron interaction has been divided into an attractive and a repulsive
channel. This is widespread practice, though it may raise concerns of overcounting.

25Often the Berry phase is written as SB = i
∫

drdτ n∂τφ. In Eq. (6.40) we have used
n∂τφ = 1

2
(n∂τφ − φ∂τn + ∂τ (nφ)) and have taken advantage of the fact that n and φ are

periodic in the imaginary time.
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second term in the effective action describes the energy cost associated with

phase and charge fluctuations. If as explained above we identify φ → s̃y and

n→ s̃z, the Berry phase may be rewritten as 26

SB =
i

2

∫

drdτ (s̃z∂τ s̃
y − s̃y∂τ s̃

z)

=
i

2
x̂ · (∂s̃

∂τ
× s̃). (6.41)

The first line of Eq. (6.41) is a reflection of the familiar spin commutation re-

lations. The second line too has a well-known geometrical interpretation:[130,

133] it denotes the area spanned by a pseudospin coherent state in the unit

sphere. The semiclassical equations of motion for the coupled charge and

phase fluctuations can be extracted from the saddle point solution of the ef-

fective action; a little algebra then results in the Landau-Lifshitz equation for

a pseudospin ferromagnet with an equilibrium orientation along x̂:

∂Ω̂

∂t
= x̂× ∂E

∂Ω̂
, (6.42)

where Ω̂ denotes the direction of the pseudospin. The derivation of Eq. (6.42)

offers a partial microscopic justification for the LLS approach to superconduc-

tivity. We stress that the LLS equation requires δs̃z, δs̃y << s̃x, i.e. Ωz << 1

and Ωy << 1. 27 Furthermore, by neglecting amplitude fluctuations of the

26Note that s̃z here is equivalent to δs̃z in Eq. (6.35). We can use both notations inter-
changeably because s̃z = 0 in equilibrium. The same applies for s̃y and δs̃y.

27We have chosen the equilibrium state to be uniform. We could have also started from a
spiral (current carrying) superconducting state, for which the LLS equation would have to
be slightly generalized.
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order parameter the LLS equation becomes oblivious of thermal and quantum

phase slips. 28

We now proceed with an evaluation of the effective magnetic field

∂E/∂Ω̂. As pointed out in chapter 5, this effective field includes the anisotropy

field. The energy functional for transverse pseudospin fluctuations is given by

E[Ωy,Ωz] =

∫

dr

[

1

2
K(Ωz)2 +

1

2
ρ|∇Ωy|2 − Ω̂ · Vext

]

(6.43)

and bears a clear physical interpretation. The first term describes the energy

cost of creating a net charge density. 29 The parameter K is directly related to

the density-density response function (K ∝ 〈s̃zs̃z〉 = χz,z), and plays the role

of an easy-plane anisotropy constant in the pseudospin language. The second

term in Eq. (6.43) captures the rigidity of the superconducting phase, or equiv-

alently the kinetic energy cost of supercurrents. ρ ∝ 〈s̃ys̃y〉 is proportional to

the superfluid density. Note that for an isolated and uniform superconductor

there is no anisotropy associated with the xy component of the order param-

eter because the global phase of the Cooper pair wave function is arbitrary

and can always be gauged away. The third term captures the coupling of an

external field Vext to the pseudospin operators. For an isolated superconduc-

tor there is no external (classical) perturbation that can couple directly to the

order parameter, which means that V ext
x = V ext

y = 0 in practice. 30 From Eq.

28Phase slips are fluctuation phenomena wherein the superconducting gap vanishes at a
given region in time and space. Phase slips give rise to resistive effects in superconductors.
See e.g. Refs. [129] and [135].

29Owing to the spatial non-locality of the Coulomb interaction, one should in principle
consider gradient terms in Ωz. However, we will ignore these for the moment.

30However, it is feasible to have V ext
x,y 6= 0 by bringing another superconductor nearby.

157



(6.43) we reach

Hy = −1

2
ρ∇2Ωy − V ext

y

Hz = KΩz − V ext
z . (6.44)

We now have all the necessary pieces to write a LLS equation for the su-

perconducting order parameter in the Nambu-Gorkov representation; it reads

Ωx ≃ const

Ω̇y + v · ∇Ωy = −KΩz + V ext
z + αz,zΩ̇z + βz,zv · ∇Ωz

Ω̇z + v · ∇Ωz = −1

2
ρ∇2Ωy. (6.45)

Eq. (6.45) is one of the most salient results of this chapter. In its derivation we

have allowed for charged but non-magnetic impurities, which implies αy,y =

0 because in the Nambu-Gorkov representation the potential due to those

impurities couples to the z-pseudospin. We have also neglected βy,y because

unlike βz,z it contains no intraband contributions, 31 which are dominant in

the cases of interest. We postpone the microscopic theory of the pseudospin

magnetization damping to a subsequent section.

Though the form of Eq. (6.45) may be familiar for researchers work-

ing on spintronics, it requires renewed physical interpretation in the context

of superconductivity. First, recall that Ωz is a density fluctuation, Ωy is the

phase of the order parameter and ρ∇Ωy describes the dissipationless flow of

31Recall Eq. (4.30) and use 〈a,k|S̃y |a,k〉 = 0 6= 〈a,k|S̃z|a,k〉.
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Cooper pairs. If we take αz,z = βz,z = v = 0, the second line of Eq. (6.45)

states that the rate of change in the superconducting angle is governed by

the applied electrostatic potential V ext
z as well as by the chemical potential of

the condensate KΩz .
32 This is nothing but the Josephson relation general-

ized[124] to account for quasiparticle charge imbalance. 33 Nonzero values of

v, α or β point at new kinds of departures from the Josephson relation. In

particular, the β term in the second line of Eq. (6.45) implies that in steady

steady the electric field inside a superconductor is not simply proportional

to the gradient of the superfluid chemical potential. On the other hand, the

third line of Eq. (6.45) may be interpreted as a continuity equation for charge.

It is for v = 0 only that this equation agrees with the orthodox microscopic

theory,[132] nothwithstanding the lack of a relaxation term. 34

In view of the aforementioned peculiarities, it is interesting to search

for new predictions of the LLS equations that may be experimentally testable

in nonequilibrium superconductors. This search is the subject of the upcoming

sections.

32According to Eq. (6.35) the induced charge density is directly related to the change in
the chemical potential of the condensate. In fact, KΩz corresponds to µs.

33In our theory Ωz stands for the total charge density rather than the quasiparticle charge
density, with which it agrees near the transition temperature only.

34In conventional theories, inelastic scattering (phonons) can relax the quasiparticle charge
imbalance in homogeneous superconductors with an isotropic gap (see e.g. Ref. [5]). Yet
our Ωz stands for fluctuations in the total charge density.
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6.4 Adiabatic Pseudospin Transfer Torques

Adiabatic spin transfer torques have important physical implications in

conducting ferromagnets. In this section we discuss their counterparts in su-

perconductors. Pseudospin transfer torques are characterized by a pseudospin

velocity v. The microscopic theory of v consists on evaluating the transverse

pseudospin response function under a perturbation that drives the quasipar-

ticle population away from equilibrium. Adapting the formalism outlined in

chapter 4, we write

v · q =
∆2

s̃

∑

k,a,b

fk,a − fk+q,b

Ek+q,b −Ek,a

Im
[

〈a,k|S̃y|b,k + q〉〈b,k + q|S̃z|a,k〉
]

, (6.46)

where fk = f0 + δfk denotes the nonequilibrium occupation number 35 of the

quasiparticles and q is the wavevector of the pseudospin magnons. Eq. (6.46)

may be manipulated as

v · q =
∆2

s̃

∑

k,a,b

fk,a







Im
[

〈a,k|S̃y|b,k + q〉〈b,k + q|S̃z|a,k〉
]

Ek+q,b − Ek,a
− (q → −q)







≃ − 1

2s̃

∑

k,a6=b

fk,avk,b · q Im
[

〈a,k|S̃y|b,k〉〈b,k|S̃z|a,k〉
]

. (6.47)

In the second line of Eq. (6.47) we have assumed that 〈a,k|S̃i|b,k + q〉 ≃

〈a,k|S̃i|b,k〉, which has lead us to ignore the contribution from intraband

transitions 36 (because 〈a,k|S̃y|a,k〉 = 0). In addition, we have substituted

35As in chapter 4, we incorporate the external perturbation simply by shifting the occu-
pation numbers of the BCS quasiparticles. We neglect the changes in the coherence factors
because they are presumably small in systems with long mean free paths.

36In general the intraband contributions to v need not be negligible: our approximation
sacrifices quantitative accuracy for analytical simplicity.
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Ek,1 − Ek,0 ≃ 2∆ because the most important contributions stem from near

the Fermi energy. Using Im[〈0,k|S̃y|1,k〉〈1,k|S̃z|0,k〉] = sin θk, we arrive at

v · q ≃ −∆

2s̃

∑

k

(

δfk,0vk,1 · q
Ek,1

+
δfk,1vk,0 · q

Ek,0

)

= −∆

2s̃

∑

k

vk · q
Ek

(δfk,0 + δfk,1) . (6.48)

In the first line of Eq. (6.48) we have taken advantage of the fact that v van-

ishes in equilibrium. In the second line of Eq. (6.48) we have used Ek,1 =
√

ξ2
k + ∆2 = −Ek,0 ≡ Ek and vk,1 = −vk,0 ≡ vk = ∂Ek/∂k. A crucial obser-

vation is that since vk is odd in ξk and Ek is even, only transverse perturba-

tions (with δfk,a(ξk) = −δfk,a(−ξk)) are able produce a pseudospin transfer

torque. 37 In particular, this indicates that neither a uniform electric field nor

a supercurrent can exert a pseudospin transfer torque.

In contrast, a uniform temperature gradient concerns

δfk,0 = δfk,1 = vk · ∇T Ek

T

∂fk
∂Ek

τk, (6.49)

which is odd in ξk and thus leads to a nonzero pseudospin velocity: 38

v ∝ ∇T
T
gv2

FN(0)τ

∫ +∞

−∞

dξ

(

ξ

E

)2
∂f

∂E
, (6.50)

where g = ∆/s̃ and we have omitted a factor of order one that arises from the

angular integration. Due to the spatial isotropy of the BCS Hamiltonian, the

37We have verified that this “symmetry argument” holds true even for intraband transi-
tions as well as for interband transitions involving the derivatives of the eigenspinors with
respect to momentum.

38In contrast, both electric and thermal currents can induce spin transfer torques in
ordinary ferromagnets.
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pseudospin velocity is parallel to the temperature gradient. The presence of

the coupling constant g proves that pseudospin torques disappear in normal

metals. Besides, the value of the integral in Eq. (6.50) is such that the pseu-

dospin transfer torque drops exponentially as the temperature goes to zero.

Likewise, short mean free paths deplete v.

We now comment on the physical significance of the thermally induced

torque. Let us first focus on the steady state of the LLS equations, where

v · ∇Ωz = −1

2
ρ∇2Ωy. (6.51)

Eq. (6.51) indicates that in absence of temperature gradients the supercur-

rent will be uniform in space. Moreover, it describes the conversion between

supercurrents and some kind of thermal quasiparticle currents. Admittedly,

Eq. (6.45) does not capture the conversion between supercurrents and quasi-

particle charge currents that takes place e.g. near superconductor-normal

metal interfaces. This apparent limitation of our theory may be overcome by

adding[136] a non-Gilbert type of damping term (∝ ∂2
xΩz) to the equation of

motion for Ωz.

Second, we look for a steady state solution with uniform supercurrent

(∇2Ωy = 0) and V ext
z = 0:

Ωz = − 1

K
v · ∇Ωy, (6.52)

which means that in a current-carrying superconductor (∇Ωy = const 6= 0)

a temperature gradient will induce a uniform charge density. This effect is
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hot

cold

I

Figure 6.1: Two superconducting wires are separated by a thin insulating layer.
One of the wires is placed under a uniform temperature gradient. According
to Eq. (6.53), biasing this wire with a current I is akin to applying an electro-
chemical potential difference between the two wires, which will spearhead ac
Josephson currents between them.

reminiscent to the one discovered by Pethick and Smith. 39

Third, let us seek solutions of the LLS equations in which the charge

fluctuations vanish everywhere in the superconductor (Ωz = 0 for ∀x, t). This

enforces ∇2Ωy = 0 and

Ω̇y = −v · ∇Ωy, (6.53)

which suggests that in presence of a temperature gradient the superconducting

phase changes in time (at the same rate in every point). This precession is of

course inconsequential in isolated superconductors, but could have experimen-

tal repercussions in Josephson junction[137] type geometries. For definiteness,

consider the setup displayed in Fig. (6.1). Two superconducting wires are

39See e.g. chapter 15 in Ref. [10].
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placed in close proximity and separated by an insulating layer, with one of the

wires having a uniform temperature gradient. In steady state, the supercon-

ducting phases of the two wires are locked to each other and consequently no

current flows between the wires. 40 If a current bias is applied to the wire with

the thermal gradient, the global superconducting phase of that wire will begin

to precess and an ac Josephson effect will ensue between the two supercon-

ductors. The frequency of the Josephson oscillations should be proportional

to the product of the current bias and the temperature gradient. To the best

of our knowledge this effect has not be experimentally measured. 41

Finally, pseudospin torques can modify the dispersion of collective modes

in superconductors; we defer this discussion until Sec. VII.

6.5 Pseudospin Relaxation in Superconductors

Attempts to determine the relaxation rate of the order parameter in

nonequilibrium superconductors date back to the first days of the time-dependent

Ginzburg-Landau theory.[139] Several subsequent studies[140, 141] have fo-

40There could be a time-independent supercurrent in the wire with temperature gradient,
which would cancel out the normal thermoelectric current. This phenomenon is known as
the fountain effect.[138] However, the electrochemical potential difference between the two
superconductors would still be zero.

41A potential challenge for the observation of this effect is that the superconductor with
the temperature gradient could develop a charge imbalance quantified by Eq. (6.52), thereby
reaching a steady state (Ω̇y = 0) without an interwire ac Josephson effect. Amusingly, one
might extend this concern to the traditional ac Josephson effect with a voltage difference
across the junction: should an appropriate charge imbalance develop on each superconduc-
tor, a steady steady would be achieved where the phase difference would be static even in
presence of an external voltage bias.

164



cused on the particle-hole (Landau) damping and have emphasized the fact

that Landau terms are singular at the origin of the energy-momentum space.

42 The origin of such singularities appears to reside on the neglect of im-

purities, which renders infinitely long-lived BCS quasiparticles. Nevertheless,

disorder should be expected to play a crucial role in the order parameter re-

laxation of a superconductor, much like it does in ordinary ferromagnets. In

this section we transfer our theory of the Gilbert damping from magnetism to

superconductivity. 43

In chapters 2-4 we learned that in conducting ferromagnets nonequilib-

rium magnons decay into particle-hole excitations at the Fermi energy. Since

pseudospin ferromagnets have no states available at the Fermi energy, the

Gilbert damping of pseudospin waves fades away at zero temperature. 44 An-

other consequence of the energy gap is that the analytical structure of the

disorder self energy is more complicated in superconductors than in ordinary

ferromagnets (Fig. (6.2b)).

With these caveats in mind, we evaluate the transverse pseudospin

42They are proportional to ω/q, where (ω,q) denotes the frequency and wavevector of
the external perturbation. For an evaluation of Landau damping in normal metals see e.g.

Ref. [131].
43We limit ourselves to temperatures well below the transition temperature. Consequently

our results may not be immediately comparable to recent work (see Ref.[142] and references
therein) on dissipation near superconductor-insulator or superconductor-normal metal quan-
tum critical points.

44From a band structure point of view, pseudospin ferromagnets are more akin to insulat-

ing ferromagnets. In insulating ferromagnets the particle-hole channel is often superseded
by other relaxation mechanisms such as two-magnon scattering (see e.g. Ref. [103]). It is
not unlikely that the latter be dominant in pseudospin ferromagnets at low temperatures.

165



ω−i
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Im[z]
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Figure 6.2: Integration contours in the complex plane for the Matsubara
summations required by the microscopic evaluation of transverse spin re-
sponse functions. In normal metals (a), the disorder self energy is given by
i/(2τ)Im[z], where z stand for the complex frequency. This leads to a branch
cut for Im[z] = 0 (there is an additional cut at Im[z] = −iω where ω is the
frequency of the external perturbation). In a superconductor (b), the disorder
self energy has an additional factor of 1/

√
z2 − ∆2, which alters the structure

of the branches.
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Figure 6.3: Gilbert damping for a pseudospin ferromagnet as a function of the
non-magnetic impurity scattering rate. We take a temperature that is a third
of the superconducting gap, and for simplicity we consider a one-dimensional
superconductor. For αz,z, we find breathing-Fermi-surface type behavior with
the damping decreasing monotonically as disorder becomes more pronounced.
While we expect αy,y = 0 on physical grounds, our numerical results show that
αy,y has a residual nonzero value that originates from interband transitions
(it is easy to see that intraband contributions vanish); these residual terms
remain even when we include impurity vertex corrections. We thus associate
the numerical value of αy,y with the uncertainty/error of our calculation.
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response function following the process outlined in chapter 3. We arrive at

αz,z =
∆2

2πs̃
Re(PA,R − PR,R), (6.54)

where

PA(R),R =

∫

|ǫ|>∆

dǫ
∂f

∂ǫ

∑

a,b

∫

k

Λ
A(R),R
a,b (k, ǫ)GR

b (k, ǫ)S̃z
b,a(k)GA(R)

a (k, ǫ). (6.55)

In Eq. (6.55) we have defined Λ = S̃z+ impurity vertex corrections, and the

retarded (advanced) Green’s functions for the BCS quasiparticles are

GR(A)
a (k, ǫ) =

1

ǫ−Ek,a + (−)Σimp,a

, (6.56)

where

Σimp,a =
i

2τk,a

1√
ǫ2 − ∆2

(

ǫ+
∆2

Ek,a

)

(6.57)

is the disorder self energy that reduces to the customary normal-metal expres-

sion in the ∆ → 0 limit. 45

As expected, Eq. (6.55) yields αz,z = 0 for a BCS superconductor 46 at

zero temperature. By virtue of Anderson’s theorem, this observation remains

true in presence of non-magnetic disorder. At low temperatures the Gilbert

damping coefficient scales as exp(−∆/T ).

In Fig. (6.5) we plot αz,z as a function of disorder. We find that damp-

ing is most noticeable in clean superconductors where the mean free path

45In the derivation of Eq. (6.57) we have made use of the chapter written by V. Ambe-
gaokar in Ref. [143].

46For a superconducting gap with nodes there could be damping even at zero temperature.
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exceeds the coherence length, i.e. ∆τ > 1. This indicates a prominence of

intraband transitions, which we now interpret within a pseudospin version of

the breathing Fermi surface model.

In a homogeneous superconductor the global phase Ωy of the Cooper

pairs is irrelevant, and hence the energy of the quasiparticles does not depend

on it. Indeed this is why αy,y vanishes within the breathing Fermi surface

model. 47 In contrast, ∂Ek,a/∂Ωz 6= 0. Therefore, out-of-plane excursions of

the pseudospin magnetization alter the band structure, leading to instanta-

neous quasiparticle populations that are out of equilibrium. 48 Interestingly,

nonequilibrium distributions occur at nonzero temperatures only: at zero tem-

perature the lower (upper) quasiparticle band is completely full (empty) and

the Pauli exclusion principle freezes their occupation numbers regardless of

band deformations. 49

Elastic and inelastic impurities provide a medium for the quasiparticles

to reorganize back into a Fermi distribution, but this process takes up a time

τ . Such time lag is responsible for damping, and accordingly αz,z ∝ τ 6= 0 at

47However, in our numerical calculations αy,y is not precisely zero. This error comes from
interband transitions, for which the breathing Fermi surface arguments presented above do
not apply. In any event, these interband contributions too ought to vanish after treating
disorder exactly, which means that our evaluation of impurity vertex corrections may not
be quantitatively precise.

48Changing Ωz is akin to horizontally shifting the quasiparticle bands in momentum space.
At nonzero temperatures this results in both longitudinal (energy) and transverse (charge
imbalance) perturbations of the quasiparticle population.

49We assume that fluctuations are small enough so that the magnitude of the supercon-
ducting gap remains nonzero.
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Figure 6.4: Non-adiabatic pseudospin transfer torque coefficient as a function
of disorder. We take T = ∆/3. The intraband contributions dominate over
interband contributions and accordingly β grows linearly with the quasiparticle
lifetime. We find that β is several orders of magnitude larger than α.

nonzero temperatures. 50

6.6 Non-Adiabatic Pseudospin Transfer Torque

The microscopic theory of the β term in superconductors parallels the

one exposed in chapter 4. Like in the case of the Gilbert damping, we find

that βz,z decays monotonically with disorder (Fig. (6.4)). Unlike the Gilbert

damping, the non-adiabatic pseudospin transfer torque alters the steady state

solution of the LLS equations. So as to gain some physical intuition, we con-

sider a one-dimensional superconductor under a uniform temperature gradient

and assume the applied electric field to be zero (V ext
z = 0). Under these con-

50In our numerical calculations αz,z appears to have a sublinear dependence on τ ; more
work is needed to elucidate this issue.
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ditions Eq. (6.45) yields the following steady state solution:

∂xΩz = −βv
K
∂2

xΩz . (6.58)

For β = 0 and/or v = 0, Ωz and accordingly the superfluid chemical potential

are uniform. In contrast, for β 6= 0, ∂xΩz and accordingly the supercurrent

vary exponentially in space with a characteristic lengthscale βv/K, which re-

markably depends on the magnitude of the temperature gradient. This result

may have observable implications at superconductor-normal metal interfaces.

The conventional lore[144, 145] states that when a uniform temperature gra-

dient is applied along such interface, mutually cancelling supercurrents and

quasiparticle currents will arise in the superconducting side. These currents

are uniform only deep into the superconductor; close to the interface they have

an exponential dependence in space and consequently a measurable voltage

difference appears there. Since conventional theories predict a characteris-

tic lenghtscale that is independent of the temperature gradient, they are in

apparent disagreement with our result.

6.7 Thermal Doppler Shift of Pseudospin Waves

The importance of collective oscillations in the theory of superconduc-

tivity became obvious soon after the inception of the BCS theory. The original

theory had given a correct account of the Meissner effect only in the Coulomb

gauge, where ∇ · A = 0. This insufficiency was found to arise from the fact

that only quasiparticle excitations had been included among the excited states.
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Thereafter Anderson[125] demonstrated that a vector potential with nonzero

divergence couples to a collective density fluctuation mode; the inclusion of

this mode leads to a gauge invariant, current conserving theory.

In spite of their theoretical importance, collective modes in supercon-

ductors tend to be experimentally irrelevant. 51 For instance, in an un-

charged fermionic superfluid a gapless (Goldstone) mode exists, known as the

Bogoliubov-Anderson mode, in which the phase of the order parameter varies

periodically in space and time. However, in charged superconductors phase

fluctuations couple to density fluctuations and subsequently the frequency of

the Bogoliubov-Anderson mode is shifted to the plasma frequency, which is

typically much higer than any superconducting energy scale (but see below).

52 Thus the change of the ordinary plasmon under a superfluid transition

is experimentally inappreciable. Similarly, the charged analogues of the first

and fourth sound in superfluid Helium-4 are driven to the plasma frequency

because they involve 53 density oscillations.

The first experimental demonstration 54 of the existence of a collective

mode with an acoustic dispersion in a superconductor was given by Carlson and

Goldman in 1973. The Carlson-Goldman mode exists only in a narrow window

51For an early account see e.g. chapter 7 of Ref. [143]. For a more modern review see e.g.

G. Schon’s chapter in Ref. [11].
52Goldstone’s theorem on the existence of gapless collective excitations is rendered incon-

clusive in presence of long-ranged Coulomb interactions.
53The counterpart of the second sound could in principle be observable in a superconduc-

tor, yet it turns out to be strongly damped for almost all cases of interest.
54For a review by one of the original authors see chapter 17 of Ref. [10].
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near the transition temperature and consists of oscillations of the quasiparticle

charge imbalance, which in turn trigger oscillations of the phase of the order

parameter. Throughout this process the quasiparticle and the condensate

currents cancel each other and since the total charge density does not oscillate

the Carlson-Goldman mode is not driven up to the plasma frequency. The

damping of this mode has its origins in the Ohmic losses of the normal current,

and is small only near the transition temperature. From a microscopic point of

view[132] the procedure to evaluate the Carlson-Goldman mode is no different

from that to evaluate the ordinary plasmon.

In reduced dimensions the Coulomb interaction is altered in such man-

ner that low-energy collective modes may arise even at low temperatures.

In thin superconducting films, gapless plasmons have been observed with a

square-root dispersion law.[146] Additionally, Mooij and Schon[147] proposed

a propagating and weakly-damped mode for one-dimensional superconductors,

which has been recently detected.[148]

These coupled phase and charge collective modes are readily accessible

within the LLS formalism. For this purpose it is convenient to write the LLS

equation in the momentum and frequency domain:

(

V ext
z

V ext
y

)

=

(

K + iωα− iq · vβ −iω + iq · v
iω − iq · v ρq2/2

)(

Ωz

Ωy

)

, (6.59)

where q and ω are the wavevector and frequency of the external potential V ext.

The dispersion relation of the pseudospin waves can be determined from the

zeros of the determinant of the response matrix in Eq. (6.59). For the sake of
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transparency we neglect damping terms and therefore

ω = q · v ±
√

Kρq2/2. (6.60)

Let us assume v = 0 for the moment. In bulk and at low temperatures

Coulomb interactions dictate K = 4πe2/q2, which leads to ω = ωP

√

ρs/ne. ωP

is the frequency of the ordinary plasmon, ρs = mρ/2 is the superfluid density

and ne is the total electron density. For conventional superconductors ρs ≃ ne

at low temperatures, unless the system is highly disordered or granular.[132]

Hence ωP

√

ρs/ne is often a large frequency, for which the LLS equation is

inapplicable to begin with. In contrast, near the critical temperatureK is given

by a different expression[132] and consequently the gapless Carlson-Goldman

mode emerges. 55 In reduced dimensions, low-frequency pseudospin waves

occur even at low temperatures. In two-dimensional superconductors K ∝ 1/q

and therefore ω ∝ q1/2. In one-dimensional superconductors K ∝ log(1/q) and

hence ω ∝ q
√

log(1/q).

When v 6= 0, these collective modes may be stiffened or softened de-

pending on the relative orientation between the temperature gradient and the

wavevector of the mode. This effect is akin to the Doppler shift realized in

the spin wave spectrum of metallic ferromagnets.[62] In one-dimensional wires,

there exists a critical pseudospin velocity vc =
√

Kρ/2 for which the collective

mode frequency becomes zero at all wavevectors. However, the accessibility of

55While the LLS equation ignores amplitude fluctuations, it can still describe the Carlson-
Goldman mode because the phase and charge oscillations are decoupled from amplitude
fluctuations.
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this critical velocity appears doubtful as in experiments conducted so far the

phase velocity of the Mooij-Schon mode is comparable to the Fermi velocity,

which is probably much larger than the characteristic pseudospin velocity. In

two-dimensional films, the thermal Doppler shift may manifest itself through

a crossover between square-root and linear dispersions. In bulk superconduc-

tors, the phase velocity of the Carlson-Goldman mode (which is typically much

smaller than that of the Mooij-Schon mode) is likewise expected to vary under

a thermal gradient.

In sum, we predict that a constant and uniform thermal gradient will

modify the phase velocity of the propagating collective modes in superconduc-

tors. This prediction awaits experimental verification (or falsification).

6.8 Thermal Pseudospin-Galvanic Effects

Hitherto we have been inspecting superconductors that have a uniform

order parameter in equilibrium. In this section we consider an equilibrium

pseudospin configuration that forms an spiral in the xy plane of the particle-

hole space:

∆(x) = ∆0e
iQ·x, (6.61)

where we take ∆0 to be a real number without loss of generality. This config-

uration sustains a uniform supercurrent

j ∝ −i∆⋆(x)∇∆(x) + c.c. = ∆2
0Q. (6.62)

175



Because the spiral order parameter breaks inversion symmetry, we anticipate

phenomena analogous to the inverse spin-galvanic effect analyzed in chap-

ter 5. As a preliminary, we write the Hamiltonian for this system in the

(ck+Q,↑, c
†
−k+Q,↓) representation:

H =

(

ξk+Q ∆0

∆0 −ξk−Q

)

, (6.63)

which exhibits the following quasiparticle spectrum:

Ek =
ξk+Q − ξk−Q

2
±

√

(

ξk+Q + ξk−Q

2

)2

+ ∆2
0

≃ Q · ∂ξk
∂k

±
√

ξ2
k + ∆2

0 +O(Q2). (6.64)

Notice that Ek 6= E−k for Q 6= 0; this is a consequence of broken inversion

symmetry. Moreover, the fact that Ek is an even function of ξk will play an

important role in our considerations below. 56 The eigenspinors at momentum

k are Ψk,0 = (cos(θk/2), sin(θk/2)) and Ψk,1 = (− sin(θk/2), cos(θk/2)), where

cos θk ≃ ξk/
√

ξ2
k + ∆2

0.

With the above information we can readily derive the equilibrium pseu-

dospin magnetization:

s̃x ≃
∑

k

∆0
√

ξ2
k + ∆2

0

(fk,0 − fk,1)

s̃y = 0

s̃z ≃
∑

k

ξk
√

ξ2
k + ∆2

0

(fk,0 − fk,1) ≃ 0. (6.65)

56While ξk is certainly odd around the Fermi energy, ∂ξk
∂k

is even.
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The equation for s̃x is simply the BCS gap equation for a current-carrying

superconductor. 57 s̃y = 0 because we have taken the global phase of the

spiral to be zero (it can always be gauged away). sz = 0 follows from the fact

that the term inside
∑

k is odd in ξk.

Next, we focus on the influence of a uniform temperature gradient on

the pseudospin density, encoded in 58

δs̃i = χi,j∇jT

T
, (6.66)

where

χi,j =
1

2π
Re

∫

|ǫ+kF ·Q|>∆0

∂f

∂ǫ

∫

k

S̃i
a,b

{H, vj}b,a

2

(

GR
a (k, ǫ)GA

b (k, ǫ) −GA
a (k, ǫ)GA

b (k, ǫ)
)

(6.67)

is the pseudospin-caloric response function, and {, } stands for an anticom-

mutator. 59 Unlike its spin counterpart, the pseudospin magnetization is

invariant under time-reversal. This can be verified by recalling that (i) the

order parameter of a (conventional) BCS superconductor does not break time-

reversal symmetry and (ii) the charge density is even under time reversal. This

57Since we are neglecting O(Q2) terms, the magnitude of the superconducting gap is
actually the same as for a uniform (Q = 0) superconductor.

58Unlike in chapter 5 we consider a thermal current rather than an electric current.
59We define the “thermal velocity” through an anticommutator between the Hamiltonian

and the velocity operator, which is partly inspired by the customary definition of “spin
velocities” in terms of anticommutators between the Hamiltonian and the spin operator.
Our definition converges with the conventional expression (see e.g. Ref. [39]) for thermal
currents in single-band models, and includes interband transitions on the same footing as
intraband transitions in multiband models. As it turns out[123] the definition of thermal
currents is altogether subtle; however, these uncertainties do not change the results of the
present section qualitatively.
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observation implies that χi,j must be even under time-reversal, because so is

∇T/T . As we shall demonstrate next, this symmetry requirement is fulfilled

via χi,j ∝ Qjτ .

We begin with δs̃x, which depicts the change in the magnitude of the

spiral order parameter. It is easy to verify that S̃x
a6=b is odd in ξk and that vi

a6=b

is even in ξk. Therefore, interband contributions vanish after integrating over

momenta. In contrast, intraband contributions are nonvanishing. In order to

see this, we note that Sx
a,a is even in ξk while vi

a,a has a piece that is even in ξk

and a piece that is odd. Since Ek is even in ξk, only the part of vi
a,a that is even

in ξk will survive the momentum integral. This part is Qi/m, which is already

linear in the spiral wavevector; consequently, we can set Q = 0 in the matrix

elements of the pseudospin operator as well as in the energy eigenvalues. As

a result, we write

δs̃x =
1

2π

∇iT

T

∫

|ǫ|>∆0

∂f

∂ǫ

∫

k

S̃x
a,a(k)vi

a,a(k,Q)Ek,aA
2
a(ǫ,k), (6.68)

where A is the spectral function defined in Eq. (4.14). Eq. (6.68) may be

unfolded as

δs̃x =
Q · ∇T
2πmT

∫

|ǫ|>∆0

∂f

∂ǫ

∫

k

∆0

Ek

(

A2
0Ek,0 −A2

1Ek,1

)

= −Q · ∇T
2πmT

∆0

∫

|ǫ|>∆0

∂f

∂ǫ

∫

k

(A2
0 + A2

1)

∼ −Q · ∇T
mT

∆0N(0)τ

∫

|ǫ|>∆0

∂f

∂ǫ

= −Q · ∇T
mT

∆0N(0)τ [f(−∆0) − f(∆0) − 1]

∝ Q · ∇T
mT

∆0N(0)τf(∆0). (6.69)
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In the derivation of the third line above we have performed the integrals over

the spectral functions as though they were those of a normal metal; other-

wise we would have not been able to present analytical results. 60 The cor-

rections due to pairing are likely to be small at larger temperatures and/or

dirtier samples. Likewise, we have ignored miscellaneous factors of order unity

throughout.

In sum, a thermal gradient can enhance or deplete the superconducting

gap of a current carrying superconductor, depending on the relative orienta-

tion between the supercurrent and the temperature gradient. This effect van-

ishes at zero temperature, and is most pronounced in clean superconductors.

While microwave absorption, phonon injection and tunneling currents are well-

established methods[10] to change the magnitude of the superconducting gap,

we are not aware of any discussions 61 concerning the influence of temperature

gradients. We can envisage an experiment which would consist of applying

a current-bias to a clean superconducting wire placed under a temperature

gradient. If our prediction is correct, the magnitude of the energy gap should

show an asymmetry with respect to the direction of the applied current.

Next, let us look at δs̃y. The global phase of a an isolated supercon-

ductor should have no preferred value regardless of the external perturbation,

which suggests that δs̃y = 0. Our calculation verifies this claim; the cancel-

60The disorder self energy for a superconductor is even more complicated in presence of
a nonzero pairing momentum.

61Modulo the superconducting fountain effect, which nonetheless cannot explain a thermal
enhancement of the gap.
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Figure 6.5: Quasiparticle charge imbalance induced by a temperature gradient
in a current-carrying superconductor, as a function of the scattering rate from
impurities.

lation between the contributions from ǫ > ∆0 and ǫ < −∆0 turns out to be

key.

Lastly, we turn our attention to δs̃z, which is the thermally-induced

charge density. We have already highlighted this phenomenon in Sec. IV;

here we complement it with a numerical calculation based on Eq. (6.66); see

Fig. (6.5). As expected, the induced charge imbalance grows monotonically

with the quasiparticle lifetime. 62

6.9 “Quasiparticle Spin Imbalance” in Spiral Magnets

Thus far we have drawn from the theory of magnetism in order to

propose potentially novel effects in nonequilibrium superconductivity. Here we

62However, the relationship appears to be superlinear. Further reality checks appear to
be necessary in order increase confidence in our numerical results.
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embark on the opposite enterprise: based on our knowledge of nonequilibrium

superconductivity, we shall prove that a spin-unpolarized transport current

can induce a nonequilibrium transverse spin density in a spiral ferromagnet.

This effect is the magnetic counterpart of the thermally-induced quasiparticle

charge discussed above.

In a xy spiral ferromagnet, the exchange field is given by

∆ = ∆0 (cos(Q · x), sin(Q · x), 0) , (6.70)

where Q is the spiral wavevector. The Hamiltonian of this system is

H ≃ ξk1 + Q · ∂ξk
∂k

Sz + ∆0S
x +O(Q2), (6.71)

written in the (ck+Q,↑, ck−Q,↓) basis. Correspondingly, the eigenstates at mo-

mentum k are Ψk,0 = (cos(θk/2), sin(θk/2)) and Ψk,1 = (− sin(θk/2), cos(θk/2)),

where cos θk ≃ (Q · ∂ξk/∂k)/∆0.

In equilibrium the magnetization along ẑ is zero. In presence of a

transport current, it changes into

δsz =
∑

k

Q · ∂ξk/∂k
∆0

(δfk,0 − δfk,1) , (6.72)

where as usual ′′0′′(′′1′′) labels the quasiparticle band that is lowest (highest) in

energy and δfk denotes the deviation of the quasiparticle occupation numbers

from equilibrium. If transport is driven by an electric current, we get

δsz = e
∑

k

Q · ∂ξk/∂k
∆0

(

vk,0 · Eτk,0
∂fk,0

∂Ek,0

− vk,1 · Eτk,1
∂fk,1

∂Ek,1

)

. (6.73)
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Without further calculations, Eq. (6.73) may be rewritten as

δsz ∝ Q · E
e∆0

(σ0 − σ1) +O(Q2), (6.74)

where σ0 and σ1 are the zero-frequency and zero-wavevector electrical conduc-

tivities corresponding to the two quasiparticle bands. For ∆0 6= 0 one finds

σ0 6= σ1 because the density of states of the two bands differ at the Fermi

surface. Therefore, an electric current induces a uniform out-of-plane mag-

netization in a ferromagnet with in-plane spiral order. This result agrees in

part with a recent prediction of Goto, Katsura and Nagaosa.[149] Goto et al.

further state that the sign of the current-spin density will depend on α/β and

that the spiral wavevector will be modified by an electric current.

In a similar fashion, a thermal gradient leads to sz 6= 0; in this case we

write

δsz ∝ Q · ∇T
T∆0

(κ0 − κ1), (6.75)

where κ = TαSσ/e and αS stands for the Seebeck coefficient.[150]

Finally, one can easily verify that neither electric nor thermal currents

change the in-plane components of the magnetization. This differs strikingly

from the result of the previous section, which showed that s̃x can be changed

by mediation of a thermal gradient. This lack of correspondence between the

pseudospin-spiral and spin-spiral orders originates from the distinct symmetry

of the respective Hamiltonians under the parity transformation: Ek 6= E−k in

a current-carrying superconductor whereas Ek = E−k in a spiral ferromagnet.
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6.10 Summary and Conclusions

In this chapter we have analyzed nonequilibrium superconductivity

borrowing techniques from nonequilibrium magnetism. Within the Nambu-

Gorkov representation, a superconductor may be described as an easy-plane

pseudospin ferromagnet with an out-of-plane anisotropy governed by repulsive

Coulomb interactions. In this representation the Landau-Lifshitz-Slonczewski

equation epitomizes the low-energy and long-wavelength transverse fluctua-

tions of the order parameter. What is more, the LLS equation embodies a

new way of looking at nonequilibrium superconductivity and suggests a num-

ber of interesting analogies with nonequilibrium magnetism. In fact, we have

predicted possibly new thermal effects that may be experimentally testable in

superconductors.

One drawback of the LLS approach is that it is unable to describe

amplitude fluctuations of the order parameter. These fluctuations fall into

thermal or quantum phase slips, and there is ample evidence to believe that

they may be responsible for the resistive effects that proliferate in low dimen-

sional superconductors. However, thermal phase slips are negligible at low

temperatures and quantum phase slips are supressed[129] in superconductors

with long mean free paths. It may thus be the case that the LLS approach

will be accurate in clean superconductors away from the critical temperature.

Future work will consist of consolidating the predictions made in this

chapter, building new ones, carrying out a much more exhaustive comparison

between the conventional and the novel approaches, and deriving the full LLS

183



equation from the microscopic BCS theory. Another potentially interesting

avenue to pursue is the simulation of superconducting wires using atomistic

LLS equations.[151]
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Chapter 7

Conclusions

Now this is not the end. It is not even the beginning of the end. But it

is, perhaps, the end of the beginning. (Winston Churchill)

The original work reported in this thesis has extended the microscopic

theory of the Landau-Lifshitz-Slonczewski equation in a number of ways.

First, we have carefully analyzed the role of disorder on magnetization

relaxation in electric equilibrium. Disorder is indeed a crucial ingredient, yet

present electronic structure calculations are able to include it only approxi-

mately. Our evaluation of impurity vertex corrections, carried out for simple

but physically relevant models, predicts that state-of-the-art ab-initio calcula-

tions of the Gilbert damping may not be quantitatively accurate in strongly

spin-orbit coupled ferromagnets such as (Ga,Mn)As.

Second, we have studied magnetization relaxation in presence of an

electric current. We have demonstrated that the change in magnetic damp-

ing due to the electric current is directly related to the non-adiabatic spin

transfer torque parameter, which plays an important role in the dynamics of

magnetic domain walls. Concurrently we have arrived at the first analytical

expression for the non-adiabatic torque that is valid for arbitrary band struc-
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tures. Calculations based on this formula will soon lead to reasonably accurate

predictions in real materials. In particular it may be interesting to find or de-

sign systems where the Gilbert damping coefficient and the non-adiabatic spin

transfer torque coefficient have the opposite sign.

Third, we have explored a new type of current-induced spin torque

that does not require inhomogeneous magnetization. We have referred to

this torque as the ferromagnetic inverse spin-galvanic effect (ISGE), and have

shown that it arises in bulk ferromagnets that are chiral and noncentrosym-

metric. Thereafter we have linked the ferromagnetic ISGE with the change in

magnetic anisotropy due to an electric current, and have derived a formula that

can be applied to real materials. Once again, computer calculations based on

our formula will determine the technological impact of this novel spin torque.

More generally, our work may provide a starting point for future research on

how electric currents influence the genesis and morphology of magnetic spirals

and domain walls.

Fourth, we have applied the Landau-Lifshitz-Slonczewski equation to

evaluate the low energy and long wavelength dynamics of the superconduct-

ing order parameter. Since superconductors are easy-plane ferromagnets in

the particle-hole space, they may in principle be approached from the view-

point of nonequilibrium magnetism. While nonequilibrium magnetism and

nonequilibrium superconductivity have traditionally been studied as separate

disciplines, we believe that many of their phenomena are connected. By ex-

ploting these analogies, we have suggested potentially new effects involving
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temperature gradients. A more careful theoretical effort will be instrumen-

tal in order to corroborate and expand our preliminary results; such effort is

currently underway.
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Appendix A

Quadratic Spin Response to an Electric and

Magnetic Field

Consider a system that is perturbed from equilibrium by a time-dependent

perturbation V(t). The change in the expectation value of an operator O(t)

under the influence of V(t) can be formally expressed as

δ〈O(t)〉 = 〈Ψ0|U †(t)O(t)U(t)|Ψ0〉 − 〈Ψ0|O(t)|Ψ0〉 (A.1)

where |Ψ0〉 is the unperturbed state of the system,

U(t) = T exp

[

−i
∫ t

−∞

V(t′)dt′
]

(A.2)

is the time-evolution operator in the interaction representation and T stands

for time ordering. Expanding the exponentials up to second order in V we

arrive at

δ〈O(t)〉 = i

∫ t

−∞

dt′〈[O(t),V(t′)]〉 − 1

2

∫ t

−∞

dt′dt′′〈[[O(t),V(t′)] ,V(t′′)]〉. (A.3)

For the present work, O(t) → Sa (a = x, y, z) and

V(t) = −
∫

drj · A(r, t) +

∫

drS · Hext(r, t), (A.4)

where A is the vector potential, Hext is the external magnetic field, and j

is the current operator. Plugging Eq. (A.4) into Eq. (A.3) and neglecting
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O(A2), O(H2
ext) terms we obtain

δSa(x) =
∑

b

∫

dx′χa,b
S,jA

b(x′)+
∑

b

∫

dx′χa,b
S,SH

b
ext(x

′)+
∑

b,c

∫

dx′dx′′χa,b,c
S,S,jA

b(x′)Hc
ext(x

′′),

(A.5)

where x ≡ (r, t) and
∫

dx′ ≡
∫∞

−∞
dt′
∫

dr′. The linear and quadratic response

functions introduced above are defined as

χa,b
S,j(x, x

′) = i〈
[

Sa(x), jb(x′)
]

Θ(t− t′)

χa,b
S,S(x, x′) = i〈

[

Sa(x), Sb(x′)
]

Θ(t− t′)

χa,b,c
S,S,j(x, x

′, x′′) = 〈
[[

Sa(x), jb(x′)
]

, Sc(x′′)
]

Θ(t− t′)Θ(t′ − t′′)

+〈
[[

Sa(x), Sb(x′′)
]

, jc(x′)
]

Θ(t− t′′)Θ(t′′ − t′) (A.6)

where we have used T [F (t)G(t′)] = F (t′)G(t′′)Θ(t′−t′′)+G(t′′)F (t′)Θ(t′′−t′),

Θ being the step function. χS,j is the spin density induced by an electric field

in a uniform ferromagnet, and it vanishes unless there is intrinsic spin-orbit

interaction. χS,S is the spin density induced by an external magnetic field.

χS,S,j is the spin density induced by the combined action of an electric and

magnetic field (see Fig. (A.1) for a diagrammatic representation); this quantity

is closely related to (vs · q)χ(2), introduced in Section II.
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S+ S−

v.A

Figure A.1: Feynman diagram for χS,S,j. The dashed lines correspond to
magnons, whereas the wavy line represents a photon.
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Appendix B

First order impurity vertex correction

The aim of this Appendix is to describe the derivation of Eq. (4.21).

We shall begin by evaluating the leading order vertex correction to the Gilbert

damping. From there, we shall obtain the counterpart quantity for the non-

adiabatic STT by shifting the Fermi occupation factors to first order in the

electric field. The analytical expression for the transverse spin response with

one vertex correction is (see Fig. (B.1))

χ̃
QP,(1)
+,− = −V ∆2

0

2
T
∑

ωn

∫

k,k′

uiGa(iωn,k)S+
a,bGb(iωn + iω,k + q)

× Si
a,b′Gb′(iωn + iω,k′ + q)S−

b′,a′Ga′(iωn,k
′)Si

a′,a.(B.1)

where V is the volume of the system and the minus sign originates from

fermionic statistics. Using the Lehmannn representation of the Green’s func-

S+ S−

Figure B.1: Feynman diagram for the first order vertex correction. The dotted
line with a cross represents the particle-hole correlation mediated by impurity
scattering.
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tions G and performing the Matsubara sum we get

χ̃
QP,(1)
+,− = −V ∆2

0

2

∫

k,k′

ui2 Re
[

S+
a,bS

i
b,b′S

−
b′,a′S

i
a′,a

]

∫ ∞

−∞

dǫ1dǫ
′
1dǫ2dǫ

′
2

(2π)4
Aa(ǫ1,k)Aa′(ǫ′1,k

′)

× Ab(ǫ2,k + q)Ab′(ǫ
′
2,k

′ + q)

[

f(ǫ1)

(ǫ1 − ǫ′1)(iω + ǫ1 − ǫ2)(iω + ǫ1 − ǫ′2)

+

(

ǫ1 ↔ ǫ2, ǫ
′
1 ↔ ǫ′2,

ω ↔ −ω

)]

(B.2)

where twice the real part arose after absorbing two of the terms coming from

the Matsubara sum. Next, we apply iω → ω + i0+ and take the imaginary

part:

χ̃
QP,(1)
+,− = V

∆2
0

2
2π

∫

k,k′

uiRe
[

S+
a,bS

i
b,b′S

−
b′,a′S

i
a′,a

]

×
∫ ∞

−∞

dǫ1dǫ
′
1dǫ2dǫ

′
2

(2π)4
Aa(ǫ1,k)Aa′(ǫ′1,k

′)Ab(ǫ2,k + q)Ab′(ǫ
′
2,k

′ + q)

× f(ǫ1)

ǫ1 − ǫ′1

[

δ(ω + ǫ1 − ǫ2)

ω + ǫ1 − ǫ′2
+
δ(ω + ǫ1 − ǫ′2)

ω + ǫ1 − ǫ2
−
(

ω → −ω,
q → −q

)]

(B.3)

where we used 1/(x − iη) = PV (1/x) + iπδ(x), and invoked spin-rotational

invariance to claim that terms with Sx
a,bS

i
b,b′S

y
b′,a′Si

a′,a will vanish. Integrating

the delta functions we arrive at

χ̃
QP,(1)
+,− = V

∆2
0

2

∫

k,k′

uiRe [...]

∫ ∞

−∞

dǫ′1dǫ2dǫ
′
2

(2π)3

f(ǫ2)Aa(ǫ2,k)Aa′(ǫ′1,k
′)

(ǫ2 − ǫ′2)(ǫ2 − ǫ′1)

× [Ab(ǫ2 + ω,k + q)Ab′(ǫ
′
2 + ω,k′ + q) + Ab(ǫ

′
2 + ω,k + q)Ab′(ǫ2 + ω,k′ + q)]

−
(

ω → −ω,
q → −q

)

(B.4)

The next step is to do the ǫ′1 and ǫ′2 integrals, taking advantage of

the fact that for weak disorder the spectral functions are sharply peaked
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Lorentzians ( in fact at the present order of approximation one can take regard

them as Dirac delta functions). The result reads

χ̃
QP,(1)
+,− = V

∆2
0

2

∫

k,k′

uiRe [...]

×
∫ ∞

−∞

dǫ2
2π

f(ǫ2)Aa(ǫ2,k)

ǫ2 − ǫk′,a′

[

Ab(ǫ2 + ω,k + q)

ǫ2 + ω − ǫk′+q,b′
+
Ab′(ǫ2 + ω,k′ + q)

ǫ2 + ω − ǫk+q,b

]

− (ω → −ω,q → −q) (B.5)

By making further changes of variables, this equation can be rewritten as

χ̃
QP,(1)
+,− = V

∆2
0

2

∫

k,k′

uiRe [...]

∫ ∞

−∞

dǫ2
2π

(f(ǫ2) − f(ǫ2 + ω))Aa(ǫ2,k)

ǫ2 − ǫk′,a′

×
[

Ab(ǫ2 + ω,k + q)

ǫ2 + ω − ǫk′+q,b′
+
Ab′(ǫ2 + ω,k′ + q)

ǫ2 + ω − ǫk+q,b

]

(B.6)

This is the first order vertex correction for the Gilbert damping. In order to

obtain an analogous correction for the non-adiabatic STT, it suffices to shift

the Fermi factors in Eq. (B.6) as indicated in the main text. This immediately

results in Eq. (4.21).
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Appendix C

Derivation of Eq. (4.26)

Let us first focus on the first term of Eq. (4.17), namely

Eiqj

∫

k

[

|〈a,k|S+|b,k〉|2 + |〈a,k|S−|b,k〉|2
]

AaA
′
bv

i
k,av

j
k,bτk,a (C.1)

We shall start with the azimuthal integral. It is easy to show that the entire

angle dependence comes from vivj ∝ kikj, from which the azimuthal integral

vanishes unless i = j.

Regarding the |k| integral, we assume that λkF,∆0, 1/τ << ǫF; otherwise the

analytical calculation is complicated and must be tackled numerically. Such

assumption allows us to use
∫

k
→ N2D

∫∞

−∞
dǫ. For inter-band transitions

(a 6= b), AaA
′
b contributes mainly thru the pole at ǫF,a, thus all the slowly

varying factors in the integrand may be set at the Fermi energy. For intra-

band transitions (a = b), AaA
′
a has no peak at the Fermi energy; hence it is

best to keep the slowly varying factors inside the integrand.

The above observations lead straightforwardly to the following result:

Eiqj

∫

k

[

|〈a,k|S+|b,k〉|2 + |〈a,k|S−|b,k〉|2
]

AaA
′
bv

i
k,av

j
k,bτk,a

≃ E · q m2

8m+m−

(

1 +
∆2

0

b2

)

(ǫF,−τ−Γ+ − ǫF,+τ+Γ−)

b3

− E · q
[

m2

m2
+

1

2

λ2k2
F

b2

(

1 +
∆2

0

b2

)

τ 2
+ +

m2

m2
−

1

2

λ2k2
F

b2

(

1 +
∆2

0

b2

)

τ 2
−

]

(C.2)
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The second and third line in Eq. (C.2) come from inter-band and intra-band

transitions, respectively. The latter vanishes in absence of spin-orbit interac-

tion, leading to a 2D version of Eq. (4.20). Since the band-splitting is much

smaller than the Fermi energy, one can further simplify the above equation via

τ+ ≃ τ− → τ .

Let us now move on the second term of Eq. (4.17), namely

Eiqj

∫

k

Re
[

〈b,k|S−|a,k〉〈a,k|S+∂kj
|b,k〉 + (S+ ↔ S−)

]

AaAbv
i
k,aτk,a (C.3)

Most of the observations made above apply for this case as well. For instance,

the azimuthal integral vanishes unless i = j. This follows from a careful

evaluation of the derivatives of the eigenstates with respect to momentum;

∂kj
θ = sin(θ) cos(θ)kj/k

2 (0 ≤ θ ≤ π/2) is a useful relation in this regards,

while ∂kj
φ plays no role. As for the |k| integral, we no longer have the derivative

of a spectral function, but rather a product of two spectral functions; the

resulting integrals may be easily evaluated using the method of residues. The

final result reads

Eiqj

∫

k

Re
[

〈b,k|S−|a,k〉〈a,k|S+∂kj
|b,k〉 + (S+ ↔ S−)

]

AaAbv
i
k,aτk,a

≃ −E · q
[

m

32m−

λ2k2
F∆2

0

b6

(

1 +
τ−
τ+

)

+
m

32m+

λ2k2
F∆2

0

b6

(

1 +
τ+
τ−

)]

+ E · q
[

m

4m+

λ2k2
F∆2

0

b4
τ 2
+ +

m

4m−

λ2k2
F∆2

0

b4
τ 2
−

]

(C.4)

The first line in Eq. (C.4) stems from inter-band transitions, whereas the

second comes from intra-band transitions; both vanish in absence of spin-orbit
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interaction. Once again we can take τ+ ≃ τ− → τ . Combining Eqs. (C.2)

and (C.4) one can immediately reach Eq. (4.26).

197



Bibliography

[1] D. Pines. Elementary Excitations in Solids. Benjamin (New York),

1963.

[2] G.R. Stewart. Rev. Mod. Phys., 73:79, 2001.

[3] G.T. Rado and H. Suhl (eds.). Magnetism. Academic Press (New

York), 1963.

[4] K. Baberschke, M.Donath, and W. Nolting (eds.). Band-Ferromagnetism.

Springer-Verlag (Berlin), 2001.

[5] M. Tinkham. Introduction to Superconductivity (2nd ed.). Dover Pub-

lications (New York), 1996.

[6] M. Tinkham. Theory of Superconductivity (revised printing). Perseus

Books (Reading, Massachusetts), 1999.

[7] P.G. de Gennes. Superconductivity of Metals and Alloys (3rd ed.).

Perseus Books (Reading, Massachusetts), 1999.

[8] S. Maekawa (ed.). Concepts in Spin Electronics. Oxford University

Press (New York), 2006.

[9] J.A.C. Bland and B. Heinrich (eds.). Ultrathin Magnetic Structures III:

Fundamentals of Nanomagnetism. Springer-Verlag (Berlin), 2005.

198



[10] K.E. Gray (ed.). Nonequilibrium Superconductivity, Phonons and Kapitza

Boundaries. Plenum Press (New York), 1981.

[11] D.N Langenberg and A.I. Larkin (eds.). Nonequilibrium Superconduc-

tivity. North Holland (New York), 1986.

[12] M.Devoret, A. Wallraff, and J.M. Martinis. arXiv, 0411174, 2004.

[13] T.L. Gilbert. IEEE Trans. Magn., 40:3443, 2004.

[14] D.C. Ralph and M.D. Stiles. J. Magn. Magn. Mater., 320:1190, 2008.

[15] V. Korenman and R.E. Prange. Phys. Rev. B, 6:2769, 1972.

[16] V. Kambersky. Czech J. Phys. B, 26:2769, 1976.

[17] Y. Tserkovnyak, G.A. Fiete, and B.I. Halperin. Appl. Phys. Lett.,

84:5234, 2004.

[18] E.M. Hankiewicz, G. Vignale, and Y. Tserkovnyak. Phys. Rev. B,

75:174434, 2007.

[19] Y. Tserkovnyak, H.J. Skadsem, A. Brataas, and G.E.W. Bauer. Phys.

Rev. B, 74:144405, 2006.

[20] H.J. Skadsem, Y. Tserkovnyak, A. Brataas, and G.E.W. Bauer. Phys.

Rev. B, 75:094416, 2007.

[21] H. Kohno, G. Tatara, and J. Shibata. J. Phys. Soc. Japan, 75:113706,

2006.

199



[22] R.A. Duine, A.S. Nunez, J. Sinova, and A.H. MacDonald. Phys. Rev.

B, 75:214420, 2007.

[23] Y. Tserkovnyak, A. Brataas, and G.E.W. Bauer. J. Magn. Magn.

Mater., 320:1282, 2008.

[24] D. Steiauf and M. Fahnle. Phys. Rev. B, 72:064450, 2005.

[25] D. Steiauf, J. Seib, and M. Fanhle. Phys. Rev. B, 78:020410, 2008.

[26] K. Gilmore, Y.U. Idzerda, and M.D. Stiles. Phys. Rev. Lett., 99:27204,

2007.

[27] V. Kambersky. Phys. Rev. B, 76:134416, 2007.

[28] O. Gunnarsson. J. Phys. F, 6:587, 1976.

[29] Z. Qian and G. Vignale. Phys. Rev. Lett., 88:056404, 2002.

[30] K. Capelle and B.L. Gyorffy. Europhys. Lett., 61:354, 2003.

[31] J. Shi, G. Vignale, D. Xiao, and Q. Niu. Phys. Rev. Lett., 99:197202,

2007.

[32] I. Souza and D. Vanderbilt. Phys. Rev. B, 77:054438, 2008.

[33] A.C. Jenkins and W.M. Temmerman. Phys. Rev. B, 60:10233, 1999.

[34] I. Garate and A.H. MacDonald. Phys. Rev. B, 79:064404, 2009.

200



[35] J. Sinova, T. Jungwirth, X. Liu, Y. Sasaki, J.K. Furdyna, W.A. Atkin-

son, and A.H. MacDonald. Phys. Rev. B, 69:85209, 2004.

[36] I. Garate and A.H. MacDonald. Phys. Rev. B, 79:064403, 2009.

[37] T. Jungwirth, J. Sinova, J. Masek, J. Kucera, and A.H. MacDonald.

Rev. Mod. Phys., 78:809, 2006.

[38] A.H. MacDonald, P. Schiffer, and N. Samarth. Nat. Materials, 4:195,

2005.

[39] G.D. Mahan. Many-Particle Physics (3rd ed.). Kluwer Academic/Plenum

Publishers (New York), 2000.

[40] For a possible exception see A. Bove, F.A. Altomare, N.B. Kundtz, A.M.

Chang, Y.J. Cho, X. Liu, and J. Furdyna. arXiv, 0802.3871, 2008.

[41] J.J. Sakurai (ed. S.F. Tuan). Modern Quantum Mechanics (revised

edition). Addison-Wesley (New York), 1994.

[42] P. Yu and M. Cardona. Fundamentals of Semiconductors (3rd ed.).

Springer (New York), 2005.

[43] L. Berger. J. Appl. Phys., 49:2156, 1978.

[44] L. Berger. J. Appl. Phys., 50:2137, 1979.

[45] L. Berger. Phys. Rev. B, 54:9353, 1996.

[46] J.C. Slonczewski. J. Magn. Magn. Mater., 159:L1, 1996.

201



[47] H. Kubota, A. Fukushima, Y. Ootani, S. Yuasa, K. Ando, H. Maehara,

K. Tsunekawa, D.D. Djayaprawira, N. Watanabe, and Y. Suzuki. Jap.

J. of Appl. Phys., 44:L1237, 2005.

[48] J. Hayakawa, S. Ikeda, Y.M. Lee, R. Sasaki, T. Meguro, F. Matsukura,

H. Takahashi, and H. Ohno. Jap. J. of Appl. Phys., 44:L1267, 2005.

[49] J.A. Katine and E.E. Fullerton. J. Magn. Magn. Mater., 320:1217,

2008.

[50] M.D. Stiles and J. Miltat. Top. Appl. Phys., 101:225, 2006.

[51] P.M. Haney, R.A. Duine, A.S. Nunez, and A.H. MacDonald. J. Magn.

Magn. Mater., 320:1300, 2008.

[52] G. Tatara, H. Ohno, and J. Shibata. Phys. Rep., 468:213, 2008.

[53] M.D. Stiles and A. Zangwill. Phys. Rev. B, 66:14407, 2002.

[54] A. Shapiro, P.M. Levy, and S. Zhang. Phys. Rev. B, 66:104430, 2003.

[55] J. Xiao, A. Zangwill, and M.D. Stiles. Phys. Rev. B, 70:172405, 2004.

[56] A. Brataas, G.E.W. Bauer, and P.J. Kelly. Phys. Rep., 427:157, 2006.

[57] A.S. Nunez and A.H. MacDonald. Solid State Comm., 139:31, 2006.

[58] S. Zhang and Z. Li. Phys. Rev. Lett., 93:127204, 2004.

[59] J. Xiao, A. Zangwill, and M.D. Stiles. Phys. Rev. B, 73:054428, 2006.

202



[60] M. Yamanouchi, D. Chiba, F. Matsukura, and H. Ohno. Phys. Rev.

Lett., 96:113706, 2006.

[61] See for instance J. Kunes and V. Kambersky. Phys. Rev. B, 65:212411,

2002.

[62] J. Fernandez-Rossier, M. Braun, A.S. Nunez, and A.H. MacDonald.

Phys. Rev. B, 69:174412, 2004.

[63] G. Tatara and P. Entel. Phys. Rev. B, 78:064429, 2008.

[64] K. Obata and G. Tatara. Phys. Rev. B, 77:214429, 2008.

[65] S.E. Barnes and S. Maekawa. Phys. Rev. Lett., 95:107204, 2005.

[66] K.M.D. Hals, A.K. Nguyen, and A. Brataas. arXiv, 0811.2235, 2008.

[67] K. Gilmore, Y.U. Idzerda, and M.D. Stiles. J. Appl. Phys., 103:07D303,

2008.

[68] A. Manchon and Zhang S. Phys. Rev. B, 78:212405, 2008.

[69] A. Manchon and S. Zhang. Phys. Rev. B, 79:094422, 2009.

[70] A. Chernyshov, M. Overby, X. Liu, J.K. Furdyna, and L.P. Rokhinson.

arXiv, 0812.3160, 2009.

[71] I. Garate and A.H. MacDonald. APS March Meeting, Pittsburgh, 2009.

[72] A.S. Nunez, R.A. Duine, P.M. Haney, and A.H. MacDonald. Phys. Rev.

B, 73:214426, 2006.

203



[73] Z. Wei, A. Sharma, A.S. Nunez, P.M. Haney, R.A. Duine, J. Bass, A.H.

MacDonald, and M. Tsoi. Phys. Rev. Lett., 98:116603, 2007.

[74] M.I. Dyakonov and V.I. Perel. Phys. Lett., 35A:459, 1971.

[75] E.L. Ivchenko and G.E. Pikus. JETP Lett., 27:604, 1978.

[76] E.L. Ivchenko, G.E. Pikus, I.I. Farbstein, V.A. Shalygin, and A.V. Sturbin.

JETP Lett., 29:441, 1979.

[77] A.G. Aronov and Y.B. Lyanda-Geller. JETP Lett., 50:431, 1989.

[78] V. Edelstein. Solid State Comm., 73:233, 1990.

[79] A.G. Aronov, Y.B. Lyanda-Geller, and G.E. Pikus. Sov. Phys. JETP,

73:537, 1991.

[80] E.L. Ivchenko and S. Ganichev. Spin Physics in Semiconductors (ed.

M.I. Dyakhonov). Springer, New York, 2008.

[81] M. Ranvah, Y. Melikhov, D.C. Jiles, J.E. Snyder, A.J. Moses, P.I.

Williams, and S.H. Song. J. Appl. Phys., 103:07E506, 2008.

[82] D. Chiba, M. Sawicki, Y. Nishitani, Y. Nakatani, F. Matsukura, and

H. Ohno. Nature, 455:515, 2009.

[83] T. Maruyama, Y. Shiota, T. Nozaki, K. Ohta, N. Toda, M. Mizuguchi,

A.A. Tulakurpar, and Y. Suzuki. Nature Nanotechnology, 4:158, 2009.

204



[84] M. Weiler, A. Brandlmaier, S. Gepraegs, M. Althammer, M. Opel, G. Bih-

ler, H. Huebl, M.S. Brandt, R. Gross, and S.T.B. Goennenwein. New J.

Phys., 11:013021, 2009.

[85] B. Botters, F. Giesen, J. Podbielski, P. Bach, G. Schmidt, L.W. Molenkamp,

and D. Grundler. Appl. Phys. Lett., 89:242505, 2006.

[86] A. Lemaitre, A. Miard, L. Travers, O. Mauguin, L. Largeau, C. Gourdon,

and V. Jeudy. Appl. Phys. Lett., 93:021123, 2009.

[87] P. Gambardella, S. Stepanow, A. Dmitriev, J. Honolka, F.M.F. de Groot,

M. Lingenfelder, S.S. Gupta, D.D. Sarma, P. Bencok, S. Stanescu, S. Clair,

S. Pons, N. Lin, A.P. Steitsonen, H. Brune, J.V. Barth, and K. Kern.

Nat. Materials, 8:189, 2009.

[88] A.Y. Silov, P.A. Blajnov, J.H. Wolter, R. Hey, K.H. Ploog, and N.S.

Averkiev. Appl. Phys. Lett., 85:5929, 2004.

[89] Y. Kato, R.C. Myers, A.C. Gossard, and D.D. Awschalom. Phys. Rev.

Lett., 93:176601, 2004.

[90] V. Shi, R.C. Myers, Y.K. Kato, W.H. Lau, A.C. Gossard, and D.D.

Awschalom. Nat. Phys., 1:31, 2005.

[91] C.L. Yang, H.T. He, L. Ding, L.J. Cui, Y.P Zeng, J.N. Wang, and W.K.

Ge. Phys. Rev. Lett., 96:186605, 2006.

205



[92] S.D. Ganichev, S.N. Danilov, P. Schneider, V.V. Belkov, L.E. Golub,

W. Wegscheider, D. Weiss, and W. Prettl. J. Magn. Magn. Mater.,

300:127, 2006.

[93] A.A. Burkov, A.S. Nunez, and A.H. MacDonald. Phys. Rev. B,

70:155308, 2004.

[94] O. Bleibaum. Phys. Rev. B, 73:035322, 2006.

[95] M. Trushin and J. Schliemann. Phys. Rev. B, 75:155323, 2007.

[96] H.A. Engel, E.I. Rashba, and B.I. Halperin. Phys. Rev. Lett., 98:036602,

2007.

[97] J. Stohr. Magnetism. Springer (Berlin), 2006.

[98] S.W. Cheong and M. Mostovoy. Nat. Materials, 6:13, 2007.

[99] R. Ramesh and N.A. Spalding. Nat. Materials, 6:21, 2007.

[100] C. Ederer and N.A. Spalding. Phys. Rev. B, 71:060401, 2005.

[101] T. Zhao, A. Choll, F. Zavaliche, K. Lee, M. Barry, A. Doran, M.P. Cruz,

Y.H. Chu, C. Ederer, N.A. Spaldin, R.R. Das, D.M. Kim, S.H. Baek,

C.B. Eom, and R. Ramesh. Nat. Materials, 5:823, 2006.

[102] C.X. Liu, B. Zhou, S.Q. Shen, and B.F. Zhu. Phys. Rev. B, 77:125345,

2008.

206



[103] S.V. Vonsovskii (ed.). Ferromagnetic Resonance. Pergamon Press

(Oxford), 1966.

[104] P. Bruno. Physical Origins and Theoretical Models of Magnetic Anisotropy.

Frerienkurse des Forschungzentrums Julich (Julich), 1993.

[105] M.T. Johnson, P.J.H. Bloemen, F.J.A. den Broeder, and J.J. de Vries.

Rep. Prog. Phys., 59:1409, 1996.

[106] J. Stohr. J. Magn. Magn. Mater., 200:470, 1999.

[107] A.I. Liechtenstein, M.I. Katsnelson, and V.A. Gubanov. J. Phys. F,

14:L125, 1984.

[108] M. Weinert, R.E. Watson, and J.W. Davenport. Phys. Rev. B, 32:2115,

1985.

[109] G.H.O. Daalderop, P.J. Kelly, and M.F.H. Schuurmans. Phys. Rev. B,

41:11919, 1990.

[110] M. Springford (ed.). Electrons at the Fermi Surface. Cambridge Uni-

versity Press (Cambridge), 1980.

[111] J. Wunderlich, T. Jungwirth, B. Kaestner, A.C. Irvine, K.Y. Wang,

N. Stone, U. Rana, A.D. Gidings, A.B. Shick, C.T. Foxon, R.P. Campion,

D.A. Williams, and B.L. Gallagher. Phys. Rev. Lett., 97:077201, 2006.

[112] X. Wang, R. Wu, D.S. Wang, and A.J. Freeman. Phys. Rev. B, 54:61,

1996.

207



[113] N. Nagaosa, J. Sinova, S. Onoda, A.H. MacDonald, and N.P. Ong.

arXiv, 0904.4154, 2009.

[114] I. Stolichnov, S.W.E. Riester, H.J. Trodahl, N. Setter, A.W. Rushforth,

K.W. Edmonds, R.P. Campion, C.T. Foxon, and B.L. Gallagher. Mat.

Materials, 7:464, 2008.

[115] Ohno H and T. Dietl. J. Magn. Magn. Mater., 320:1293, 2008.

[116] M. Abolfath, T. Jungwirth, J. Brum, and A.H. MacDonald. Phys. Rev.

B, 63:054418, 2001.

[117] T. Dietl, H. Ohno, and F. Matsukura. Phys. Rev. B, 63:195205, 2001.

[118] J. Zemen, J. Kucera, K. Olejnik, and T. Jungwirth. arXiv, 0904.0993,

2009.

[119] M. Silver, W. Batty, A. Ghiti, and E.P. O’Reilly. Phys. Rev. B, 46:6781,

1992.

[120] R. Winkler. Spin-Orbit Coupling Effects in Two-Dimensional Electron

and Hole Systems. Springer (Berlin), 2003.

[121] J. Stohr, H.C. Siegmann, A. Kashuba, and S.J. Gamble. Appl. Phys.

Lett., 94:072504, 2009.

[122] O. Krupin, G. Bihlmayer, K. Starke, S. Gorovikov, J.E. Prieto, K. Do-

brich, S. Blugel, and G. Kaindl. Phys. Rev. B, 71:201403(R), 2005.

208



[123] A. Larkin and A. Varlamov. Theory of Fluctuations in Superconductors.

Clarendon Press (Oxford), 2005.

[124] N. Kopnin. Theory of Nonequilibrium Superconductivity. Oxford Uni-

versity Press (Oxford), 2001.

[125] P.W. Anderson. Phys. Rev., 112:1900, 1958.

[126] L.P. Gorkov. Soviet Phys. JETP, 7:505, 1958.

[127] Y. Nambu. Phys. Rev., 117:648, 1960.

[128] K. Moon, H. Mori, K. Yang, S.M. Girvin, A.H. MacDonald, L. Zheng,

D. Yoshioka, and S.C. Zhang. Phys. Rev. B, 51:5138, 1995.

[129] K.Y. Arutyunov, D.S. Golubev, and A.D. Zaikin. Phys. Rep., 464:1,

2008.

[130] A. Auerbach. Interacting Electrons and Quantum Magnetism. Springer-

Verlag (New York), 1994.

[131] A.L Fetter and J.D. Walecka. Quantum Theory of Many-Particle Sys-

tems (reprint). Dover Publications (New York), 2003.

[132] I.O. Kulik, O. Entil-Wohlman, and R. Orbach. J. Low Temp. Phys.,

43:591, 1981.

[133] N. Nagaosa. Quantum Field Theory in Condensed Matter Physics.

Springer-Verlag (Berlin), 1999.

209



[134] J.W. Negele and H. Orland. Quantum Many-Particle Systems. Perseus

Books (Reading, Massachusetts), 2003.

[135] R. Tidecks. Nonequilibrium Phenomena in Quasi-One-Dimensional Su-

perconductors. Springer (Berlin), 1990.

[136] A.H. MacDonald, A.A Burkov, Y.N. Joglekar, and E. Rossi. ICPS 2002

Conference Proceedings, 171:29, 2002.

[137] K.K. Likharev. Dynamics of Josephson Junctions and Circuits. Gordon

and Breach Science Publishers (Amsterdam), 1986.

[138] J. Clarke and S.M. Freake. Phys. Rev. Lett., 29:588, 1972.

[139] E. Abrahams and T. Tsuneto. Phys. Rev., 152:416, 1966.

[140] I.J.R. Aitchison, G. Metikas, and D.J. Lee. Phys. Rev. B, 62:6638,

2000.

[141] S.G. Sharapov, H. Beck, and V.M. Loktev. Phys. Rev. B, 64:134519,

2001.

[142] A. Del Maestro, B. Rosenow, and S. Sachdev. Annals of Physics,

324:523, 2009.

[143] R.D. Parks (ed.). Superconductivity (vols. 1 and 2). Marcel Dekker

Inc. (New York), 1969.

[144] G. Schon. Festkorperprobleme, 21:341, 1981.

210



[145] S.N. Artemenko and A.F. Volkov. Sov. Phys. JETP, 43:548, 1976.

[146] O. Buisson, P. Xavier, and J. Richard. Phys. Rev. Lett., 73:3153, 1994.

[147] J.E. Mooij and G. Schon. Phys. Rev. Lett., 55:114, 1985.

[148] B. Camarota, F. Parage, F. Balestro, P. Delsing, and O. Buisson. Phys.

Rev. Lett., 86:480, 2001.

[149] K. Goto, H. Katsura, and N. Nagaosa. arXiv, 0807.2901, 2008.

[150] M. Marder. Condensed Matter Physics (corrected printing). John Wiley

and Sons (New York), 2000.

[151] P.M. Haney and M.D. Stiles. arXiv, 0906.2423, 2009.

211



Vita

Ion Garate Aranberri was born in Elgoibar, Basque Country on 12 May

1980, the son of Ignacio Garate and Maritxu Aranberri. He received the Bach-

elor of Science degree in Physics from the University of the Basque Country in

June 2003. During the 2002-2003 academic year he was a TASSEP exchange

student at the University of Texas at Austin. He entered the Graduate School

of the University of Texas at Austin in August of 2003.

Permanent address: 1906 Pearl Street
Austin, Texas 78705

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

212


