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The automotive industry is required to meet improved fuel efficiency standards 

and stricter emission controls. Aluminum tube hydroforming is particularly well suited in 

meeting the goals of lighter, more fuel-efficient and less polluting cars. Its wider use in 

industry is hindered however by the reduced ductility and more complex constitutive 

behavior of aluminum in comparison to the steels that it is meant to replace. This study 

aims to address these issues by improving the understanding of the limitations of the 

process as applied to aluminum alloys.  

A series of hydroforming experiments were conducted in a custom testing facility, 

designed and constructed for the purposes of this project. At the same time, several levels 

of modeling of the process, of increasing complexity, were developed. A comparison of 

these models to the experiments revealed a serious deficiency in predicting burst, which 

was found experimentally to be one of the main limiting factors of the process. This 

discrepancy between theory and experiment was linked to the adoption of the von Mises 

yield function for the material at hand. This prompted a separate study, combining 



 ix

experiments and analysis, to calibrate alternative, non-quadratic anisotropic yield 

functions and assess their performance in predicting burst. The experiments involved 

testing tubes under combined internal pressure and axial load to failure using various 

proportional and non-proportional loading paths (free inflation). A number of state of the 

art yield functions were then implemented in numerical models of these experiments and 

calibrated to reproduce the induced strain paths and failure strains.  

The constitutive models were subsequently employed in the finite element models 

of the hydroforming experiments. The results demonstrate that localized wall thinning in 

the presence of contact, as it occurs in hydroforming as well as other sheet metal forming 

problems, is a fully 3D process requiring appropriate modeling with solid elements. This 

success also required the use of non-quadratic yield functions in the constitutive 

modeling, although the anisotropy present did not play as profound a role as it did in the 

simulation of the free inflation experiments. In addition, corresponding shell element 

calculations were deficient in capturing this type of localization that precipitates failure, 

irrespective of the sophistication of the constitutive model adopted. This finding 

contradicts current practice in modeling of sheet metal forming, where the thin-walled 

assumption is customarily adopted. 
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Chapter 1:  Introduction 

The automotive industry is faced with very stringent controls, concerning first the 

fuel consumption and second the emissions. In addition the amount of energy used to 

manufacture the vehicles remains a concern. These challenges are amplified by the 

expectation of the consumer for safer and more comfortable automobiles and commercial 

vehicles.  

To meet these demands of reduced emissions, improved performance and a more 

sustainable carbon footprint, it is generally accepted and even expected from the industry 

to develop more imaginative and more fuel efficient designs. A lighter vehicle structure is 

one way of meeting these targets, along with improved aerodynamics, more efficient 

engines based on new concepts, better rolling tires, etc. To achieve a lighter structure, an 

ever expanding variety of materials has been introduced; indeed, a modern automobile as 

the one shown in Fig. 1.1 has quite a different material mix from the all-steel-sheet car 

that was commonplace 40 years ago. Many of these new materials often require novel 

shaping techniques, as well.  

Tube hydroforming has a history of more than 100 years, however it was 

introduced in the automotive industry only in the past two decades. Typical applications 

involve quite naturally the tubular components found in the engine and exhaust systems. 

In addition however, numerous structural parts of the chassis and the body as well as 

closings such as doors, hoods, etc. are also hydroformed. The main advantage that the 

process offers is the ability to optimize the structure for weight and strength, while often 

offering at the same time superior crashworthiness. Aluminum tube hydroforming is 
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particularly well suited in these roles, however its widespread use in the industry is 

hindered by, among other reasons, the reduced ductility and the more complex 

constitutive behavior of aluminum alloys in comparison to the steels that they are meant 

to replace. 

This thesis presents an investigation into limit states of aluminum hydroforming, 

intrinsically coupled with the study of tube formability and of the appropriate constitutive 

modeling for the material at hand.  

1.1 AUTOMOBILE DESIGN 

Historically, the bodies of the first cars were fabricated using coachbuilding 

techniques and utilizing materials such as wood and fabric (Eckermann, 2001). Soon 

though (1910s), it was realized that such methods did not lend themselves to massive 

production, nor were they compatible with the improvements in automobile performance. 

By the mid 1920s, steel had emerged as the material of choice, combining strength, 

stiffness, formability and weldability. Still however the structural design of the car 

involved a frame, responsible for carrying the loads and an independent body attached to 

the frame and intended to protect the passengers from the elements (termed “body-on-

chassis” technology). Both the frame and the body were manufactured from steel sheets, 

suitably formed to the desired shapes and riveted (initially) or welded. In the mid- to late-

twenties, it was conceived that significant gains in strength and stiffness and reductions in 

weight could be accomplished with the unibody type of construction, manufactured with 

increasingly complex formed sheets. The first mass-production application (1934) 

derived from a patent of the Budd Company in Philadelphia, licensed to Citroën in 

France. In the unibody construction, the frame is merged with the floor of the passenger 

compartment, while the rest of the structure is also reinforced. In this way the loads are 

carried by the entire structure. It was also shown that a car body would be manufactured 
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more economically by welding together a relatively limited amount of large and complex 

formed panels, rather than a larger number of smaller and simpler ones. While the first 

bodies were made out of relatively thick (0.9 to 1 mm) steel sheets, this was reduced to 

0.8 mm in the fifties/sixties to the current standard of 0.7 mm for external panels (Davies, 

2007). With the advent of technology more advanced ferrous alloys were used in the 

construction of the body, such as aluminum killed (AK) and drawing quality (DQ) 

instead of plain carbon steel. In the eighties, high strength low alloy (HSLA), dual phase 

(DP), rephosphorized and zinc coated sheets came to prominence, while nowadays TRIP 

(transformation induced plasticity), High Strength and Advanced High Strength (HSS 

and AHSS) steels are commonly used. The stampings required for the unibody 

construction result in about 40 to 45% scrap, with the result that the material cost 

amounts to about 50% of the total body cost (Ludke, 1999).  

As Fenton (1980) points out, the main drag force encountered by a vehicle at 

relatively low speeds is the tire rolling resistance, which is proportional to the mass of the 

vehicle. In addition, the inertia forces required for acceleration as well as the gradient 

resistance also scale with the mass. Ultimately, the chemical energy of the fuel is 

transformed into kinetic and potential energy of the moving vehicle, which are also 

proportional to the mass. For all these reasons, lightening up a vehicle leads to direct fuel 

savings.  

The oil crises of the seventies brought into attention the issues of fuel economy, 

which in the United States were incorporated into legislation with the Energy Policy and 

Conservation Act of 1975. The Act introduced the concept of the Corporate Average Fuel 

Economy (CAFE), to be maintained by each manufacturer to a preset standard. Starting 

from 18 miles per gallon (mpg) in 1978, CAFE was ramped to 27.5 mpg in 1985 - 

however it has remained fluctuating to that level since then (recently updated to 30.2 mpg 
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for 2011). However, it has contributed to reducing the weight of an average automobile 

from 3,500 lb in the mid-seventies to 2,500 lb in the mid-nineties (Field & Clark, 1997).  

1.2 THE TUBE HYDROFORMING PROCESS (THF) 

The tube hydroforming process allows the fabrication of thin-walled structural 

members of rather complicated cross-sectional shape, which in addition can be varying 

along the length of the component. This is a major difference of the method in 

comparison to extrusion, where the cross-sectional shape can be quite complicated as 

well, but has to remain constant throughout the workpiece. The principle of tube 

hydroforming is quite simple (see Fig. 1.2). One usually starts with a circular cylindrical 

thin-walled tube, which is placed inside a cavity (die) of the desired final shape. The 

workpiece is engaged from the two ends by suitable actuators, providing sealing and axial 

feed. The tube is then inflated internally and thus it is forced to expand and conform to 

the shape of the surrounding die. Usually water with an anticorrosion additive is used as 

pressurizing medium, while a variant of the process uses hot gas. A typical process cycle 

is of 10-15 seconds, which classifies the method as slower than the typical stamping 

operations. However, considering that stamped parts require subsequently more extensive 

assembly and welding and often higher equipment and die capital costs, the method 

becomes economically competitive, especially for medium production volumes. Figure 

1.3 shows a large variety of cross sectional shapes that can be hydroformed.  

1.2.1 Evolution of the Process 

Among the first applications of THF was the manufacturing of serpentine tubing 

for use in steam boilers (Park, 1903, see also Singh, 2003). In that specific application, 

molten lead was used as the pressurizing medium. Also among the earliest applications, 

that continue to date, is the manufacturing of wind instruments (Foster, 1917, Sachs, 
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1950). The instruments are made of conical 70-30 brass tubes, rolled from sheets and 

brazed along the seam. Typical examples include saxophone mouthpipes, trombone 

crooks and sousaphone and euphonium branches and elbows (Fig. 1.4). The tubes are 

first filled with a low temperature melting alloy (e.g., Wood’s metal) and bent to the 

required shape. The filler metal is then melted away and the bent tube is expanded by 

hydroforming to the desired shape. In one such application (Sachs, 1950) the 

pressurization was performed by a special weighted accumulator at 3,000 psi (210 bar) 

while the expansion was achieved in a single operation. Careful design of the process is 

required to avoid local thinning, since even if that does not lead to bursting, it may affect 

the acoustical performance of the instrument.  

Other early applications included the manufacture of T fittings for plumbing from 

wrought-metal (Gray, 1940) and copper (Ogura and Ueda, 1968) tubes, hollow aircraft 

propeller blades (Kearns, 1950), camshafts from steel tubing (Garvin, 1959), joints for 

bicycle frames and even artificial limbs from spun aluminum (Davies, 1932). The 

majority of these pieces are small in dimensions and/or made from relatively low-strength 

materials. In fact, up to the early nineties the main application of THF was in the 

manufacturing of Ts and other plumbing fittings. Only in the last 20 years have the 

advances in high pressure technology and in controls permitted the systematic 

manufacture of long steel components, such as those encountered in car body 

applications (Fig 1.5).   

1.2.2 Process Extensions and Variants 

A number of secondary processes can be performed in conjunction with THF to 

increase its flexibility and competitiveness. Perhaps the most common such process is 

hydropiercing, where a number of holes and other openings are pierced while the tube is 

still inside the hydroforming die and under pressure. Numerous such openings are shown 
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in Fig. 1.5 (several of these are laser cut after forming instead of hydropierced). Other 

operations include hydrobending, to eliminate the need for separate bending before 

hydroforming and localized cam forming to produce local features along the component.   

Perhaps the most common variant of THF is Low Pressure Hydroforming (LPH, 

see Koc, 2008). In the classical THF (also called High Pressure Hydroforming), the 

periphery of the undeformed tube is usually smaller than that of the final product and the 

process is divided into two phases: inflation/axial feed and calibration. In the latter, the 

pressure is increased so that the tube will fill the die completely. This pressurization 

while the tube is in contact with the die often leads to bursting, since the tube-die friction 

impedes the material flow. LPH attempts to resolve this problem by starting with a tube 

of larger diameter, which is subsequently crushed in the die as the die closes. To support 

the tube against collapse, it is filled with water that is maintained at a relatively low 

pressure. The fact that the initial periphery of the tube is closer to that of the final desired 

shape helps limit the need of subsequent pressurization for expansion and hence the 

possibility of local wall thinning and of bursting.   

A further extension of the LPH idea is the Liquid Impact Forming process (LIF), 

in which the tube is filled with water, capped and then crushed locally using a standard 

stamping press. This is a faster method than the previous two and one that also does not 

require special hydroforming equipment. However, the features that can be produced are 

also more limited.  

Hot Forming (HF) involves an inert gas (Nitrogen or Argon) as the pressure 

medium. Both the workpiece and the die are heated. Often, the die is inductively heated 

to different temperatures along its length to aid with the material deformation and flow, 

as well as with end sealing. This last method can be used to achieve very large 

expansions or to form alloys with limited ductility at room temperature.  
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Lastly, other notable cases in industrial practice include the hydroforming of 

conical and of tailor-welded tubes (composed of tubes with different thicknesses), of 

double tubing and of entire tube assemblies that are simultaneously hydroformed in the 

die (see Koc, 2008).   

1.2.3 Equipment 

The standard equipment for THF usually involves a special hydroforming press 

and a set of dies. A laboratory facility that was designed and manufactured for the 

purposes of this study and that also includes a sophisticated data acquisition and control 

system is described in the next Chapter. Industrial THF facilities however tend to be 

grouped into complete forming cells, which receive bundles of tubular blanks and return 

ready to assemble components. These cells include, in sequence, a lubricating facility, a 

tube bender, possibly a preforming press, the actual hydroforming machine, a washing 

system, a shear cutting and trimming machine and perhaps a laser cutting machine, while 

the material handling is usually automated with robots. Such manufacturing cells are 

shown in Figs. 1.6 to 1.8 while a close up of the tooling is shown in Fig. 1.9. 

The actual hydroforming machine consists of the hydraulic press, the pressurizing 

system, auxiliary cylinders and punches for clamping, piercing etc., controls and the 

forming dies (Koc, 2008). The forming press is designed to provide the required 

clamping force during forming. The tonnage is often in the order of 7000-8000 tons, with 

larger machines also in operation nowadays (notice that the machines shown in Figs 1.6 

to 1.8 range from 5000 to 8500 tons). Alternatively, some manufacturers offer a special 

locking device which is activated at the bottom end of the piston stroke and hence 

provides the clamping instead of the actual hydraulic system of the press.  

At the heart of the pressurizing system for the working medium is a pressure 

intensifier (booster) working on Pascal’s principle. The system also includes filling 
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pumps, piping, valves, filters and a tank. Typical working pressures for THF are between 

30 to 150 ksi (2 to 10 kbar). To facilitate short forming cycles, flow rates of the order of 

50 lt/min are common, while in some applications multiple intensifiers are used for this 

reason, as well. 

The hydroforming machine is also equipped with a variety of auxiliary hydraulic 

cylinders. These are used to engage the tubular blank and to provide sealing and perhaps 

axial feed during the operation. Such cylinders (termed “docking rods”) are shown in Fig. 

1.9. Other cylinders can be used for secondary operations close to the end of the forming 

cycle, such as piercing of openings (hydropiercing) and localized cam forming.  

The system is completed with suitable sensors and a controller. Closed-loop 

controllers are often opted for, since the loading paths used for THF are non linear and 

the forming conditions can well vary from specimen to specimen (e.g., due to die wear). 

The present day hydroforming technology was developed in Germany in the 

eighties and nineties. Major suppliers of hydroforming equipment include Schuler, 

Siempelkamp (SPS) and Anton Bauer from Germany, AP&T from Sweden, Muraro from 

Italy, Kawasaki Hydromechanics from Japan and Interlaken from the United States.    

1.2.4 Applications 

Numerous applications of THF have been mentioned in Section 1.2.1 and are 

shown in Figs 1.4 and 1.5. The majority of applications nowadays come from the 

automotive sector. In Fig. 1.10, two all-aluminum Audi models, the A2 and the A8 are 

presented. Among modern manufacturers, Audi has pioneered the use of aluminum in 

mass produced cars (notable earlier applications include the BMW 328 of 1936, the Dyna 

Panhard of 1954 and the Land Rover family of vehicles starting from 1948). Audi’s 

efforts started with the model 100 all-aluminum concept car in 1985 and the Audi Space 

Frame in 1987, which was claimed to have the same behavior as an all steel body but 
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being 40% lighter (Davies, 2007). These matured into actual production vehicles, with 

the A8 (in 1994) designed to be manufactured at a rate of 15,000 per annum while the A2 

(in 2000) at four to five times that rate.   

The GM Kappa platform and a vehicle that is based on it (the 2007 Pontiac 

Solstice) are shown in Fig. 1.11. In this case the structure is made out of steel and can be 

seen to employ multiple hydroformed components. The Pontiac Solstice is remarkable 

also for using a large number of hydroformed sheet panels. Other automobiles that are 

using THF are the Ford Mondeo and Windstar, 1997 Malibu Cutlass, 1997 Buick Park 

Avenue and Pontiac Aztec, 2006 Corvette Z06, Honda Insight, Acura RL and NSX, Saab 

9-3, Volvo 850, Audi A4 and A6, Mercedes-Benz S-Class, BMW 5 and 7 series, Jaguar 

XJ, Dodge Dakota and Ram, 2004 Ford F-150, GMC pick-up trucks and SUVs as well as 

a variety of high performance cars (Koc, 2008) 

Naturally, automotive components that lend themselves to hydroforming are those 

encountered in the exhaust systems (Fig. 1.12), however as shown in Fig. 1.5 the 

automotive applications of THF are by no means limited to that area. A variety of 

structural components is shown in Fig. 1.13 and includes engine cradles, roll bars and 

suspension subframes, i.e., all high stress parts. Often, various machine elements are 

made by THF, such as metal bellows (used in couplings as in Fig. 1.14a but also in 

piping) and transmission drive shafts (notice the hydroformed body of the shaft in Fig. 

1.14b). Another large area of application is in the bicycle (mainly) and the motorcycle 

industry (less so). Typical examples are included in Figs 1.15 and 1.16, showing bicycle 

frames that have distinctly varying cross sections along their length. This trend began in 

2003 when Giant offered the first mass produced hydroformed bicycles and since then 

has undeniably become the industry standard. Hydroforming offers lighter and stiffer 
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frames, but not less importantly, it allows for greater design flexibility in the bicycle 

aesthetics.  

Lastly, typical applications in plumbing fittings and domestic appliances are 

shown in Fig. 1.17, including a Tee fitting, branches and a variety of faucets, formed 

from copper, aluminum and brass alloys. 

1.2.5 Hydroforming Process Envelope 

During the THF process, the tube is loaded under internal pressure and axial load 

and is in partial contact with the surrounding die. Friction impedes the material flow. As 

a result of this, the tube may fail in a variety of ways, presented schematically as a 

working envelope graph in Fig. 1.18. Naturally it is of major interest to the user to be able 

to determine the working envelope for the material at hand, and it is in this direction that 

the present research aims to contribute.    

Provided that the combination of internal pressure and axial load is such as to 

plastically deform the material, the lower bound of the working envelope in Fig. 1.18b is 

traced by the axial force that needs to be provided for any given pressure to ensure 

sealing. As the pressure increases however, the bursting limit of the tube is reached (see 

right hand specimen in Fig. 1.18a). On the other hand, if the axial load is excessive, then 

the tube will wrinkle (left specimen in Fig. 1.18a) or will experience overall bucking as a 

column.  

The working envelope is also affected by the presence of the die. In general, the 

die will support the tube against buckling or wrinkling, however the friction associated 

with the tube/die contact will promote the bursting failure.    
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1.3 OUTLINE OF THE THESIS 

This thesis presents an investigation of aluminum THF and its limit states.  This 

includes the development of a custom hydroforming facility, the forming of tubular 

components and a parallel study dealing with tube formability and constitutive modeling. 

In Chapter 2, an experimental study of THF is described along with the extensive custom 

designed and fabricated facility. Originally, the bursting failures that were encountered 

experimentally in our work could not be predicted beforehand with standard analytical 

and numerical tools. This prompted a combined experimental and analytical study of tube 

formability with the aim, first to investigate the forming limits of the tubular specimens 

and second to establish appropriate constitutive frameworks for accurate predictions of 

localization and burst. The experimental component of the formability study is presented 

in Chapter 3, while the analytical and numerical effort is detailed in Chapter 4. Also 

included in that Chapter are details of the constitutive and of the finite element models 

employed. With the benefit of this improved understanding of the behavior of the 

material, the simulation of the THF experiments is revisited in Chapter 5. The predictions 

from the variety of constitutive models are critically evaluated against the hydroforming 

experiments and a set of firm guidelines for successful simulations of the process, 

including failure, are deduced. The main conclusions and findings are summarized in 

Chapter 6.   
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Fig 1.1 – Materials used in the body of a modern automobile.



 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig 1.2 – Tube hydroforming (www.muraropresse.com).

13



 14

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Fig 1.3 – Examples of shapes that can be hydroformed (www.excellatechnologies.com).



 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

(a)                                                                                                   (b) 
 

Fig 1.4 – Hydroformed musical instruments. (a) Euphonium and (b) Sousaphone.
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Fig 1.5 – Hydroformed frame for Ford F-150 pick-up truck (www.dana.com).
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Fig 1.6 – 8,500 ton hydroforming press, including tube benders, performing press and shear cutting (www.schulergroup.com).

17



 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig 1.7 – 50 MN Hydroforming press (www.siempelkamp.de).
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Fig 1.8 – 60 MN/3 kbar hydroforming press (www.muraropresse.com).
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Fig 1.9 – Hydroforming an automobile component. Also visible are the two tube guides/docking rods 
(www.schulergroup.com).

20



 21

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(a) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(b) 

 
 

Fig 1.10 – All-aluminum cars, employing the space frame with numerous hydroformed 
components. (a) Audi A2, and (b) Audi A8 (www.schulergroup.com).
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(a) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(b) 

 
 

Fig 1.11 – (a) GM Kappa architecture and (b) 2007 Pontiac Solstice that uses the Kappa 
architecture. The Solstice is notable for using extensively both tube and sheet 

hydroforming.
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(b) 
 
 

Fig 1.12 – Automotive exhaust components ((a) www.sapagroup.com and (b) 
www.muraropresse.com ).



 

 
 
 
 
 
 
 
 
 
 
 
 

 
(a)                                                                                                                (b) 

 
 

 
 
 
 
 
 
 
 
 
 

 
(c)                                                                                                                (d) 

 
Fig 1.13 – Hydroformed automotive components. (a) and (b) engine cradle for Opel AG, (c) roll bar and (d) rear axle subframe 

assembly for BMW ((a) to (c) www.schulergroup.com, (d) Hydro Aluminum Deutschland GmbH)
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(a) 

 

 
(b) 

 
Fig 1.14 – Hydroformed machine elements. (a) Coupling with hydroformed stainless 

steel bellows (www.couplingtips.com) and (b) hydroformed drive shaft (www.dana.com) 
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(a) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

(b) 
 

Fig 1.15 – Bicycles with hydroformed frames from aluminum alloys. (a) Giant Reign and 
(b) Giant Cityspeed 



 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
(a)                                                                                                    (b) 

 
Fig 1.16 – Hydroformed bicycle frames from aluminum alloys. (a) Yeti 575 and (b) Scott Gambler FR 10
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Fig 1.17 – Copper, brass and aluminum plumbing fittings, fixtures and faucets
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(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 

Fig 1.18 – (a) Failure modes of tubes under internal pressure and axial load, after Asnafi 
and Skogsgårdh, 2000 and (b) THF process envelope. 
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Chapter 2:  Tube Hydroforming Experiments 

A custom facility was designed and constructed to study the hydroforming of 

relatively long, thin-walled tubes. The facility consists of a hydroforming machine, a 

pressurizing unit of 20,000 psi (1378 bar) capacity and a computerized data acquisition 

and control system. As will be described subsequently, most of this equipment was 

custom designed and fabricated for the purposes of this study. A more detailed 

presentation of the testing facility is given in the MS thesis by J. Capeto (2003).   

2.1 HYDROFORMING FACILITY 

2.1.1 Hydroforming Machine 

We investigated one of the simplest forming operations, where an initially circular 

cross-section is formed into a rounded square of 2.4 in. (60.96 mm) side with a 0.5 in. 

(12.70 mm) radius at each corner (Fig. 2.1). For a tube of 2.357 in. (59.88 mm) initial 

diameter and under ideal forming conditions, this expansion imparts an average hoop 

strain of about 18%, which is close to the failure strain of Al-6260-T4 in uniaxial tension. 

The machine is designed to receive tube specimens of up to 34 in. (863.60 mm) in length. 

Thus for example using 24 in. (609.60 mm) long dies, the remaining 10 in. (254 mm) are 

available for end feeding.  

The cross-section of the hydroforming machine is shown in Fig. 2.2 while a three-

dimensional rendering and side and plan views are given in Fig. 2.3. A photograph of the 

facility is given in Fig. 2.4. The machine consists of two main members (top and bottom 

steel “shoes”) which enclose the forming die and provide support for the end-feed 

actuators. During forming, the shoes are held together by 14 high strength (1.25 in. / 
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31.75mm, Grade 8, 12 UNF) bolts (see Fig. 2.2) which are tightened using a pneumatic 

impact wrench. The closing operation lasts approximately 30 minutes. While clearly too 

slow for a production environment, this solution significantly reduced the cost of the lab 

facility. In industrial hydroforming machines, the opening, closing and clamping 

operations are facilitated by hydraulic actuators, allowing for a forming cycle of 1-2 

minutes or less.  

The forming dies are located in wide channels machined in the shoes for that 

purpose. Generous dimensional allowances were provided for these channels to allow for 

different cross-sections to be investigated (see Fig. 2.2). To hold each piece in place, the 

spacer plates (6) are bolted to the shoes (3 and 9). The clamping strips (7) are in turn 

bolted to the spacers 6 and thus hold the forming die (5 and 8) and the insert plates (4) in 

place. This allowed for the best possible clamping of the forming die, preventing 

distortions and localized loads.  

The dies are made of P20 tool steel and have overall dimensions of 24 × 5 × 5.05 

in. (609.60 ×  127 ×  128.27 mm) as in Fig. 2.5a. They have been machined with 

precision ( ± 0.002 in. / 0.0508 mm and ± 0.005 / 0.127 mm for the inside and outside 

dimensions, respectively) and to a good surface finish (63 RMS) as is customary in such 

applications. The alignment of the dies, and in fact of the two shoes, is facilitated by two 

0.5 in. (12.7 mm) dowel pins. As can be seen in Fig. 2.5a, the cross-section of the die at 

the two ends is circular to receive the yet undeformed tube, while the transition to the 

rounded square shape occurs gradually. A rendering of the transition zone is shown in 

Fig. 2.5b. Beyond each die end, hardened end-guides provide the necessary support to the 

remaining tube.    

The required end-feed is provided by two 8 in. bore / 5 in. stroke (203.2 mm / 127 

mm) hydraulic cylinders rated for 150 kips (667.2 kN) and operating on the standard 
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3,000 psi / 10.1 GPM (210 bar / 38.2 LPM) hydraulic pressure system available in the 

lab. The dimensions of the actuators have been decided using the graph in Fig. 2.6. An 

internal pressure of 20,000 psi (1,380 bar) results in 75 kips (333.6 kN) force on the load 

cell. Since a cylinder with 8 in. bore diameter and operating at 3,000 psi can develop 150 

kips, the available load for forming (i.e., force on the specimen) when the internal 

pressure is 20,000 psi is 75 kips. Each actuator is mounted on a 12.5 × 15 × 2 in. (317.5 

×  381 ×  50.8 mm) vertical plate which rests in suitable grooves in the top and bottom 

shoes (Fig. 2.3). In this manner, the axial loads are ultimately reacted by the shoes.  

The whole machine has a footprint of 94.5 ×  28 ×  24 in. (2400 ×  711.2 ×  609.6 

mm) and weighs approximately 3,250 lbs (1474 kg). Each shoe weighs approximately 

1,100 lb (500 kg) without the axial actuators assemblies. The machine rests on wooden 

blocks, about 12 in. (304.8 mm) off the floor, and is serviced by a 1 ton jib crane with a 

chain hoist.  

2.1.2 Pressurization System 

Pressurization is provided by a 20,000 psi (1,380 bar) pressure intensifier 

(“booster”) shown in Fig. 2.4. The booster operates on the standard 3,000 psi (210 bar) 

pressure available in the lab, while the available volume of high pressure fluid is 0.5 

gallons (1.9 liters). For this reason and to conserve the booster stroke, the filling of the 

tube before each experiment was performed using a low-pressure water pump as shown 

in Fig. 2.7a. In Fig. 2.7b the detail of fluid passage through the axial actuator rams and 

the load cells is shown. These are connected to the pressurizing system using high-

pressure flexible hoses, to facilitate their free axial movement. As a pressurizing medium, 

a compound of 95 parts water / 5 parts Multan 98-10 was selected. This substance is a 

standard, commercially available metalworking fluid supplied by Henkel Surface 

Technologies. 
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2.1.3 Data Acquisition and Control System 

The facility is controlled via a six channel custom system shown schematically in 

Figs. 2.8 and 2.9. The same system is used both for feedback control and for data 

acquisition. It is based on an extensively modified MTS 458.20 control unit and is 

commanded by custom software running on a PC and created using LabView. 

a. Transducers 

Each axial feed actuator is equipped with a load cell and a displacement 

transducer. The load cells are custom designed to a rated capacity of 150 kips (667.2 kN) 

and are positioned between the actuator rams and the specimen (see Fig. 2.7b and Fig. 

2.10). The material selected is AISI 4142 steel that was heat treated after machining, 

while the overall dimensions are chosen so as to prevent yielding. The end of the load 

cell, that engages the specimen, is suitably configured to ensure sealing using o-rings. 

The fluid passage through the load cell is facilitated by a coaxial high pressure tube (Fig. 

2.10). Each load cell is provided with a pair of biaxial strain gages (CEA-06-062UT-

350), suitably arranged in a Wheatstone bridge (providing both temperature and bending 

compensation). The bridge excitation is 10 V. The calibration of the load cells was 

performed using a standard servohydraulic testing machine with 220 kips (1 MN) 

capacity.  

The actuator displacement is monitored using a Linear Variable Differential 

Transformer (LVDT) with a linear range of ± 3 in. ( ± 76.2 mm) and a linearity of 

± 0.25% full range (Schaevitz 3000 HR). Each hydraulic cylinder is equipped with a tail 

rod. This rod is connected to the core of the LVDT through an aluminum bracket and a 

non-conductive brass rod, thus transferring its motion to the sensor (Fig. 2.11). The 

LVDTs were calibrated using a standard electromechanical testing machine.   
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Also available are measurements of the internal pressure and of the volume of the 

pressurizing medium discharged in the specimen. The first is monitored by a 20,000 psi 

pressure transducer (Sensotec Z/1108-03), shown in Figs. 2.7a, 2.8 and 2.9. This 

transducer was calibrated using a dead-weight tester.  

Because of the long stroke of the booster, a Magnetostrictive Linear Displacement 

Transducer was selected for monitoring the volume (= area ×  stroke) (MagneRule MRU-

3000-018). This instrument has a range of 18 in. (457.2 mm), maximum nonlinearity 

± 0.05% full range, resolution up to ± 0.002% full range and maximum hysterisis of 

0.001 in. The instrument was connected to the tail rod of the booster in a similar fashion 

as the LVDTs described earlier (see Fig. 2.12) and was calibrated using a standard 

electromechanical testing machine.  

Since the MagneRule is an unconventional instrument, a description of its 

principle of operation is appropriate here. To measure the displacement, short electric 

pulses are emitted along a waveguide. When the accompanying magnetic field is 

disturbed by that of a permanent magnet, which is connected to the booster’s tail rod 

(Fig. 2.12), magnetostriction generates a torsional wave that travels along the waveguide. 

As this wave is received by the instrument, it is converted back to an electric pulse. By 

measuring the time difference between the two pulses (original and reflected), the 

position of the permanent magnet can be precisely determined.  

All transducers were suitably calibrated to the 10 V standard. 

b. Computerized Control System 

The controller of the facility is based on an extensively modified MTS 458.20 

MicroConsole unit and a Personal Computer running a custom LabView application.  

The MicroConsole is a microprocessor-based analog controller, also providing 

signal conditioning. In a biaxial materials testing setup, the MicroConsole is configured 
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to control two active actuators. In the present facility, it was initially aimed to use two 

control channels as well: one for the booster and the other for both of the axial feed 

actuators. However, it was discovered that due to asymmetries present in the system the 

two feed actuators did not have the same response to a common command signal. It was 

thus necessary to modify the MicroConsole to control three servovalves and to receive 

signals from six transducers. This resulted in using a total of six conditioner/controller 

channels (see Fig. 2.9). Depending on the particular transducer, these channels are either 

AC or DC (MTS 458.13 and 458.11, respectively) and perform conditioning of the 

transducers signals, as required. The outputs are directed to a PC-based system for 

plotting in real-time, storage and data reduction. 

The computer system consists of a PC with 1.8 GHz Pentium 4 processor, 256 

MB RAM and 40 GB Hard Drive, equipped with two NI PCI-6035E A/D cards. Each 

card has 8 differential input channels (A/D) with 16-bit resolution and 2 bipolar output 

channels (D/A) with 12-bit resolution. The maximum sampling rate when all six channels 

are active is 200 kS/s.  

The software that is used to acquire the data and to generate the control 

commands was created in the LabView environment. During the experiment, the 

software acquires and plots the desired quantities in real-time and at the same time 

outputs the predetermined command signals. Special attention was paid to the fact that 

reading input from and writing output to the A/D-D/A card cannot be performed in 

LabView simultaneously by default. To overcome this difficulty, the input and the output 

functions were placed inside a “while loop” and executed in sequence. This loop was set 

to iterate every few milliseconds, thus allowing the nearly simultaneous input and output 

of signals. While this solution is perfectly adequate for the needs of these experiments, it 
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would be unsuitable for applications with more rapid events due to the execution time 

required for the loop to complete.  

The LabView software developed for this facility can output arbitrary piece-wise 

linear commands. The A/D-D/A card converts the digital into analog signals, scaled from 

0-10 V, before they are directed to the MTS MicroConsole. The MicroConsole performs 

the feedback control by comparing the output commands from the PC to the system 

response as monitored by the transducers, and issues the final command signals to the 

three servovalves (see Fig. 2.8).  

Each function can run under either displacement (volume) or load (pressure) 

control. In our experimental work, we usually prescribed the axial feed displacements and 

the internal pressure.  

2.1.4 Summary of Specifications of Hydroforming Facility 

Specimen dimensions 

2.357 in. OD, 34 in. length (10 in. used for feeding) 

Axial feed 

8 in. bore / 5 in. stroke hydraulic cylinders, 150 kips capacity 

Pressurization 

20,000 psi pressure intensifier, 0.5 gals pressurizing medium 

Physical dimensions of machine 

Footprint 94.5 ×  24 in. 

Height 28 in. 

Shoe weight 850 lbs 

Top shoe with accessories weight 1,100 lbs 
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Total weight (excluding booster) 3,236 lbs 

Sensors 

Axial load Custom load cells (150 kips) 

Axial feed LVDT (Schaevitz 3000 HR, ± 3 in.) 

Internal pressure Pressure transducer (Sensotec, 20,000 psi) 

Displaced volume
Magnetostrictive transducer (MagneRule 

MRU-3000-018, 18 in.) 

Data acquisition and control 

Controller MTS 458.20 MicroConsole with 458.11 

PC
Dell Dimension 8200, 1.8 GHz Pentium 4, 

256 MB RAM, 40 GB HDD 

A/D-D/A card
NI PCI-6035E cards (8 input and 2 output 

channels).  

1 in = 25.4 mm, 1 gal = 3.785 l, 1 psi = 0.06895 bar, 1 kips = 4448 N 

2.2 DESCRIPTION OF A TYPICAL EXPERIMENT 

2.2.1 Selection of the Loading Path 

At first, it was considered to simply ramp both the pressure and the axial 

displacement to their target values. However, numerical simulations revealed that the 

induced compressive load on the specimen would then exhibit a limit load instability, 

which is customarily associated with buckling. This naturally led to the decision to select 

appropriate loading paths through simulation. The numerical models employed are 

described in detail in Chapter 5. Here it suffices to mention that two families of models 

were developed: generalized plane strain (2-D), and fully three dimensional (3-D). To 
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design a particular experiment, several runs of the fast 2-D models were performed given 

a target shape, and the required pressure and axial feed and their approximate histories 

were established. With the benefit of these results, a detailed 3-D calculation was 

conducted, to establish the final axial feed – internal pressure history. A typical path is 

shown in Fig. 2.13. It can be noticed that the axial feed is initially kept low, until the 

pressure has increased sufficiently to yield the tube and to bring it into contact with the 

surrounding die. With the additional stabilizing effect provided by the die and the danger 

of overall buckling of the specimen diminished, the material is then fed into the forming 

cavity. Finally, as is also customary in industrial practice, the axial feed is kept constant, 

while the internal pressure is increased further, to bring the shape of the formed tube 

closer to that of the surrounding die. The two main phases are referred to as “axial 

feeding” and “calibration”.   

2.2.2 Tube Preparation 

The specimen’s external surface is cleaned of various scratches by placing it in a 

lathe and scrubbing it with a Scotch Brite, while the ends are chamfered to facilitate the 

engagement of the load cells (Fig. 2.7b). An array of lines with a regular spacing of 1 in. 

(25.4 mm) is lightly scribed on the tube, to enable axial strain measurements after the 

test. Subsequently, the geometry of the specimens is documented by measurements with 

micrometers. Since the tubes tested were manufactured by extrusion and drawing, there 

was a slight thickness eccentricity (between 0.56% and 0.75%) in all of the stock tested.  

The tube is then is ready to be formed and is coated with the Henkel PTD-1424 

BX lubricant. This is a special metal working lubricant with a viscosity of 3500 cPs.  

2.2.3 Experimental Procedure 

The lubricated specimen is placed in the machine and engaged from both ends by 

the load cells/axial feed actuators. This is a delicate operation, since at the end of it the 
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specimen must be centered in the machine, unloaded, while both load cells need to be in 

the appropriate place for forming to commence. The machine is then closed and the 14 

bolts tightened. Time is of paramount importance here, since the lubricant slowly flows 

under gravity and collects in the bottom of the die, while leaving the top side of the tube 

unlubricated. The test then commences.  

2.3 TYPICAL RESULTS 

The forming was slow enough to be considered quasi-static, with the tests lasting 

between 20 and 30 minutes (see Fig. 2.13). Since the loading was applied in steps, with 

limited but finite time in between, some creep was evident. A major observation for the 

experiments is that as the machine was being closed and tightened, the tubes were 

pinched between the two semi-circular halves of the die ends. This restricted the flow of 

the material into the forming cavity and in addition resulted in axial loads much greater 

than anticipated from the simulations. In combination with a small clearance present 

between the tube and the end guides, the ends of the tube adjacent to the load cells had a 

markedly increased thickness after the forming operation.   

Two hydroformed tubes are shown in Fig. 2.14, one of them having failed by 

bursting. Different views of a sectioned tube are given in Fig. 2.15. An interesting 

observation is that due to the relatively long specimens, friction has played a significant 

role in the final shapes of the two tubes. It can be noticed from Fig. 2.14 that the cross-

sectional shape changes along the tube length: it is closer to the desired shape close to the 

two ends, while deviating increasingly from it as we approach the middle of the 

specimen. It would appear that as the material was fed into the forming cavity, the high 

friction encouraged local expansion instead of further axial displacement. This would be 

a serious shortcoming in an actual operation, but can be possibly remedied by a different 

transition zone in the dies and/or a different lubricant.  
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A number of specimens exhibited some mild wrinkling in the unsupported curved 

regions between the flat sides in contact with the die, as can be seen from Fig. 2.15a. It 

was not clarified however whether this developed during the actual forming, or during the 

unloading of the formed specimen.  

The axial non-uniformity evident in these photographs has been quantified and is 

presented in Fig. 2.16. In this figure, the axial strain is plotted along the length of the 

tube. This is measured with the aid of the pre-scribed lines, using a pair of calipers. The 

striking feature is that the axial feed experienced at mid-span is significantly lower (1/3 to 

1/2, depending on the loading path employed) than the one prescribed at the two ends. 

Hence, it can be concluded that the beneficial effect of axial feeding on delaying burst 

may in some cases be negated by the high friction encountered.  

The circumferential thickness variation at mid-span for a quadrant of a formed 

tube is presented in Fig. 2.17. These data were acquired in a variety of ways. For the 

sectioned tubes, direct measurements were performed with a micrometer. Due to the 

relative softness of Al-6260-T4, as well as the fine scale nature of the thickness variation 

measured, these data were confirmed using a standard machine shop optical comparator 

with suitable magnification. For the non-sectioned tubes, an ultrasonic thickness gage 

(Panametrics 25 DL with an M 208 probe) was used, with glycerin as a coupling 

medium. This instrument has 0.0001 in. (2.54 μm) resolution and requires calibration for 

the material to be used on.     

It can be noted from these thickness measurements that the maximum reduction in 

thickness on a given cross section occurs at the intersection of the flat and the curved 

sides. The pattern occurred in all of our experiments. It can be attributed to friction, since 

any part of the tube that comes into contact with the die is restrained to some degree in its 

further movement along the circumference.  
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As mentioned earlier, the tubes had an initial thickness eccentricity so that the 

corresponding final thickness measurements also vary around the circumference. This is 

shown in Fig. 2.18, where thickness measurements along the entire circumference are 

given for three axial locations along a particular tube (mid-span, 4 in. / 101.6mm and 8 

in. / 203.2 mm away). The three sets of measurements are different, as is expected 

because of the friction. Interestingly, the section closest to the end of the die (8 in. / 203.2 

mm from mid-span) has in fact become thicker than the original tube. One may also 

reasonably expect that had the loading continued, the deformation would have localized 

in the deepest groove (at about 250o at mid-span, Fig. 2.18) and the tube would have 

failed in much the same fashion as in Fig. 2.14b. 
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Fig 2.1 – Cross-sectional layout of the hydroforming experiment 
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Fig 2.2 – Cross-section of the hydroforming machine 
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(a) 
 
 

 
 
 

Fig 2.3 – Scaled drawings of the hydroforming machine 
(a) Assembly, (b) side view and (c) plan view 

(b) 

(c) 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Fig 2.4 – Photograph of the hydroforming facility
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Fig 2.5 – (a) Scaled drawings of hydroforming die (plan, side and cross-sections) 
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Fig 2.5 – (b) Rendering of the die transition zone 
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Fig 2.6 – Diagram relating the actuator load capacity as a function of cylinder bore 
diameter and internal pressure (FTot : total force that the actuator can develop at 3,000 

psi, FP : force on actuator due to internal pressure on specimen of ID=2.36”)
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Fig 2.7 – (a) Inflation and pressurizing system and (b) detail of fluid passage 
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Fig 2.8 – Schematic of the pressurization and the data acquisition and control systems 

51



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 2.9 – Block diagram of the system transducers
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Fig 2.10 – Cross sectional view of a load cell 
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Fig 2.11 – Method of mounting the axial feed displacement transducer (LVDT) 
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Fig 2.12 – Method of mounting the booster displacement transducer (MagneRule) 
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Fig 2.13 – Displacement and pressure histories prescribed in the experiment 
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Fig 2.14 – Hydroformed tubes. (a) Sound (HY7) and (b) Failed by bursting (HY1)
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Fig 2.15 – Original and deformed cross sections of the hydroformed tube (HY8) 
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Fig 2.16 – Axial strain distribution in the tube after hydroforming (uncertainty is less than 
0.1 % in strain)  
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Fig 2.17 – Circumferential thickness distribution for a quadrant of the formed tube, at mid span (HY5)
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Fig 2.18 – Circumferential thickness distribution plotted at three axial locations for the 
entire circumference 
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Chapter 3:  Tube Inflation and Burst Experiments 

As it was demonstrated in the hydroforming experiments (Chapter 2), burst is a 

major mode of failure of aluminum tubes formed by this method. Clearly, accurate 

prediction of this limit state is essential for establishing a reliable working envelope for 

the process. Motivated by this, a separate study was undertaken to establish forming 

limits in the “free hydroforming” set up (i.e., tube inflation without a die). The problem 

was tackled using a combination of experiments and analysis. The simpler setting of this 

problem will enable evaluation of appropriate constitutive models to be used in numerical 

simulations of the hydroforming process, as well as establish the related failure limits. 

This chapter describes in detail the testing facilities used, the procedures followed and the 

experimental results. 

3.1 TEST SPECIMENS 

The test specimens used were seamless Al-6260-T4 tubes with a diameter (D) of 

approximately 2.36 in. (60 mm) and a wall thickness (t) of about 0.080 in. (2 mm). The 

material at hand is an aluminum-silicon-magnesium alloy (including multiple other 

elements) that is solution but not precipitation heat treated. This combination of alloying 

and temper results in a material with relatively low yield stress, significant work 

hardening and above average ductility (compared to other Al-alloys). It is these 

characteristics that make this alloy attractive for manufacturing.  

The tubes were supplied by Alcoa in about 6 ft lengths. The tubes had a mild 

circumferential non-uniformity in the thickness in the form of an eccentricity between the 
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inner and outer diameters. This is a result of the extrusion process used to manufacture 

the tubes. The eccentricity is quantified by the following variable: 

 

Ξo =
tmax − tmin
tmax + tmin

                                                         (3.1) 

The eccentricity was of the order of 0.75% but this was sufficient to cause the specimens 

to rupture systematically on the thinner side.  

The specimens had an overall length (2L) of about 5.5D when cut from the 

mother tubes. The geometric characteristics including the eccentricity of the tubes tested 

appear in Table 3.1.  

3.2 EXPERIMENTAL SET-UP AND TESTING PROCEDURES 

The tubular specimens were loaded under combined axial tension/compression 

and internal pressure along radial and along corner paths in the engineering stress space.  

The custom experimental facility consisted of a 50 kips (222 kN) servohydraulic testing 

machine that can operate in conjunction with a 10,000 psi (690 bar) pressurizing unit 

(Fig. 3.1). The pressurization unit has an independent closed-loop control system shown 

schematically inside the dashed boundary in Fig. 3.1. The pressurizing medium used was 

a white mineral oil. By connecting the two systems through feedback, tests can be 

performed under displacement (volume) or load (pressure) control. Typical strain rates 

during these experiments were of the order of 10-4 s-1.  

The tubes were held in the testing machine using Ringfeder axisymmetric locking 

devices leaving a test section that ranged in length between 7.625 and 8.5 in. (194-216 

mm). A solid rod was placed inside the tube cavity, in order to reduce the energy stored 

in the system and thus to avoid an extended disintegration of the specimen during burst. 

During each test, transducers were recording the axial load, internal pressure and the 



 64

strains that developed in the specimen. Thus for example the strains were measured with 

strain gages mounted in the test section as well as with extensometers. Two pairs of strain 

gages (one pair in the axial and the other in the circumferential direction) recorded the 

strains up to about 4% while an axial and a hoop (chain) extensometer (MTS 632.11B-20 

and 632.21A-01, respectively) were used for the entire response. The axial extensometer 

had a 1 in. gage length and a range of 30%, whereas the chain extensometer was modified 

to have a range of about 17%. This instrument consists of a chain that wraps around the 

tube, and hence measures the average hoop strain that the specimen experiences. Of 

course, since the deformation is anticipated to be axisymmetric for the most part of the 

experiment such a measurement is quite adequate. All signals were recorded in a 

computer operated data acquisition system using LabView. 

To facilitate local strain measurements around the zone of failure, each specimen 

was equipped with a square strain grid of 0.25 in (6.4 mm) spacing, as shown in Fig. 3.2. 

Due to the wall thickness eccentricity mentioned earlier, the neighborhood of failure was 

known. Hence only half of the circumference was lightly scribed over a length of about 

1.5D around the mid-span. For better accuracy, the pattern was scribed in a lathe.  

In addition to the strain grid, the thickness around the failure zone was measured 

with an ultrasonic thickness gage. Since the localization is experienced only in one 

direction (axial or hoop), the strain in that direction and adjacent to the rupture can then 

be determined by knowing the strains in the two orthogonal directions and invoking the 

incompressibility of the plastic deformations. These results compare favorably to the grid 

measurements.   

3.2.1 Radial (Proportional) Stress Paths 

Initially, the tubes were loaded along radial stress paths such that:  

σ x =α σθ       (3.2) 
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where α  is the stress biaxiality ratio (path denoted as “R” in Fig. 3.3). In turn, if the force 

measured by the load cell of the machine is F and the internal pressure is P, the axial and 

circumferential engineering stresses are: 

 

σ x =
F

2πRt
+

PR
2t

   and   σθ =
PR
t

    (3.3) 

where R and t are the initial mid-surface radius and wall thickness of the tube, 

respectively. Using (3.2) and (3.3) one can find a relationship between F and P for a 

constant stress biaxiality ratio.  

To perform the radial tests, the pressurizing unit was run under volume control 

supplying fluid at a constant flow rate to the tube. A pressure transducer was measuring 

the induced internal pressure in the specimen. The axial actuator was run under load 

control, and through feedback it was made to follow the induced pressure at a prescribed 

ratio. Thus by keeping the load to pressure ratio constant, the stress biaxiality ratio α  was 

also maintained constant.  

3.2.2 Corner Stress Paths 

The radial paths were used to extract the formability information for the material 

at hand and to establish the appropriate constitutive framework for accurate numerical 

predictions of the rupture (see following chapter). Since however plastic deformations are 

path-dependent, one may suspect that the results associated with the radial paths might 

only be applicable to forming operations with similar loading histories. Hence the 

investigation was expanded by considering highly non-proportional paths, involving 

sharp corners in the engineering stress space. These paths can also be considered to be 

closer to the loading experienced by the tube in an actual hydroforming operation.  

Two families of corners were examined: x →θ  and θ → x , each set associated 

with a corresponding radial path (Fig. 3.3). The x →θ  paths were designed so that the 
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tube was first loaded axially in tension (branch OB in Fig 3.3), until the stress reached the 

axial stress at the onset of failure in the corresponding radial path. Then, by holding that 

stress constant, biaxial loading commenced by inflating the tube until rupture (branch 

BC). In the associated θ → x  path, the tube was loaded in uniaxial tension in the hoop 

direction first, until the stress reached the hoop stress at failure of the corresponding 

radial path (branch OD). The tube then was pulled to failure, while keeping the hoop 

stress constant (branch DE).  

To implement the x →θ  paths, the testing machine was first run in displacement 

control (branch OB). On reaching point B, the machine was switched to load control and 

the tube was inflated under volume control, with the induced pressure serving as the 

command signal for the axial loading (branch BC). In this way, as the pressure increased, 

the machine force was reduced in accordance with Eq. (3), to keep the axial stress in the 

specimen constant. 

For the θ → x  paths, the two systems were initially coupled as for the radial 

paths, with the axial load servocontrolled to exactly balance the end-cap loading due to 

the internal pressure (branch OD). This way no axial stress developed in the specimen 

(also see Section 3.3). On arriving at point D, the two systems were decoupled and 

pressurization was switched to pressure control. By keeping the pressure constant in this 

fashion, the tube was loaded axially under displacement control and taken to failure 

(branch DE).  

3.3 MATERIAL TESTING 

A series of tests to extract the basic mechanical properties of the tubes was 

conducted before the biaxial experiments. The first test was a uniaxial tension test 

performed on a strip extracted along the axial direction of the tube (see Fig. 3.4a). The 

test was conducted in a universal electromechanical testing machine. The maximum 
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stress occurred at a strain of 19.5%, soon after which the strip developed a diffuse and 

then a localized inclined neck. The failure strain measured by the extensometer (1 in. 

gage length) was about 25%.  

The tensile tests on the strips were repeated for strain rates ranging from 10-5 to 

10-3 s-1. These tests were performed in the same electromechanical testing machine and 

the results are presented in Fig. 3.5, with the curves truncated just before the maximum 

load. It can be concluded that for the range of rates investigated, the material response 

appears to be insensitive to the strain rate.   

The stress-strain response was also measured in the circumferential direction, 

using a tube which was inflated in the biaxial facility described in the previous section. 

The path chosen was such that the axial actuator balanced exactly the end-cap load due to 

the internal pressure in the specimen, so that the axial stress in the specimen remained 

zero. A very different sequence of events was observed during this test, in comparison to 

the strip. At first, the inflation lead to uniform deformation of the specimen, which 

maintained its circular cylindrical geometry except of course at the ends. After some 

deformation, a limit load in the form of a pressure maximum was attained, which was 

soon followed by a mild axisymmetric bulge at mid-span. This is seen to occur in Fig. 

3.4a at about 11% hoop strain. The bulge quickly evolved into a non-axisymmetric one 

which led to localization of the deformation and rapid failure of the specimen in the form 

of an axial rupture. The failure of this specimen is seen in Fig. 3.7 to extend over a length 

of approximately one tube diameter (this is a function of the energy stored in the test 

system as a whole). It should be noted however that despite the “stiff” testing system 

used, the localization of plastic deformation occurs suddenly and dynamically at a 

location not exactly known a priori.  
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It is quite apparent by comparing the two responses in Fig. 3.4a that the overall 

deformations and the strains that correspond to the limit loads are significantly different, 

with the strip specimen having failed at more than twice the strain of the tubular one. 

This is a striking difference considering that both specimens are in a uniaxial stress state, 

at least up to their respective limit loads. A similar observation was reported earlier by 

Stout and Hecker (1983). While naturally one may attribute this to anisotropy, the 

difference in the failure strains is too large to be caused only by this. It is thus postulated 

that it should be largely attributed to the different geometries of the two specimens, 

which favor different necking instabilities and different localization patterns. In the 

context of tube hydroforming, this observation leads to the conclusion that the 

formability information should be extracted from tests performed directly on tubes, rather 

than be extrapolated from tests on sheets or other geometries.  

A third material test was performed by twisting a tubular specimen to establish 

any shear anisotropy present. This experiment was performed on the same servohydraulic 

machine, which also possesses a rotational actuator. The resulting equivalent stress – 

equivalent plastic strain response using the von Mises yield function is compared to the 

two uniaxial responses in Fig. 3.4b. The results show significant shear anisotropy thus 

revealing a more complex constitutive behavior of the material at hand. 

3.4 EXPERIMENTAL RESULTS FROM THE RADIAL PATH TESTS 

3.4.1 Stress – Strain Responses 

Nine biaxial radial experiments were conducted for ratios in the range 

  -0.2 ≤α ≤1.25. The nine stress paths traced are shown in Fig. 3.6a and b (engineering 

and true, respectively), including the uniaxial response from the strip specimen. The 

engineering paths are exactly linear, as prescribed, while the true paths are also close to 
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linear. For the true paths, the same equations were used to convert the engineering to the 

true quantities even after the limit load, which is of course only an approximation.    

A sample of tested specimens is presented in Fig. 3.7 where it can be noted that as 

the biaxiality ratio changes, the mode of failure switches from an axial to a 

circumferential rupture. Because of the way the experiments are performed, where care is 

taken to limit the amount of energy stored in the system, the extent of the rupture was 

limited thereby enabling local post-failure measurements.  

The corresponding stress-strain responses in the axial and in the circumferential 

direction are given in Figs. 3.8a and b and the stresses and strains at the limit load and at 

failure are also included in Table 3.1.  

All tubes developed a limit load instability and in several cases significant 

deformation well past this point was recorded. This indicates that a purely stress-

controlled loading (e.g., as used by Kuwabara et al., 2005) is not the best option if 

capturing the failure is a goal of the tests. In the case of the seven paths with 

−0.2 ≤α ≤ 0.9, the tubes developed some bulging followed by localized thinning along a 

generator of the cylinder that resulted in ductile rupture. This sequence of events was 

described earlier in Section 3.3 (three failed specimens from this group are shown in Fig. 

3.7). For the other two cases, corresponding to α  = 1.0 and 1.25, the specimens 

developed a mild bulge at mid-span and failed by localized thinning in the 

circumferential direction as illustrated in Fig. 3.7 for α  = 1.0 (similar failure modes were 

reported in Davies et al., 2000 and Yoshida et al., 2005). Figure 3.9 shows thickness 

profiles along the lengths of these two tubes, measured with an ultrasonic thickness gage 

after the tests. The profiles demonstrate that the localization at mid-span extended over 

approximately a length of one tube diameter. 
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Results from two representative experiments corresponding to α  = 0.75 and -0.2 

and shown in Figs. 3.10-3.12, will be used to describe some of the measurements made as 

well as some of the observed trends. In the case of α  = 0.75, shown in Fig. 3.10a and b, 

both the axial and circumferential stresses increase monotonically until a pressure 

maximum develops. The stress at the pressure maximum (σθ max) is 34.03 ksi (235.7 

MPa) and the corresponding strain (εθL ) is 5.8% (see Table 3.1). The corresponding axial 

stress and strain are respectively 25.50 ksi (175.9 MPa) and 1.8%. Failure occurred at a 

decreasing pressure so the maximum strain recorded by the circumferential extensometer 

(εθf ) was somewhat higher, 6.1%. Following the response past the limit load is possible 

because of the volume-controlled pressurization scheme adopted. Notice that because of 

the live pressure present and despite our efforts to limit the amount of energy stored in 

the system, failure occurred suddenly and dynamically at a location not exactly known a 

priori. Hence the stresses and strains that can be recorded and thus reported dependably 

stop at the onset of failure.  

Included in Table 3.1 are strain values measured locally, adjacent to the failure 

zone, using the grid and verified by the ultrasonic thickness gage. For this experiment the 

local values were εθf |l  = 18.3% and εxf |l  = 11.0%. These values are significantly larger 

than the average strains at failure illustrating the local nature of the failure. Figure 3.11 

shows thickness contours around the circumference, taken after the completion of the test 

at the three axial locations indicated in the inset. The contours illustrate that wall thinning 

is localized circumferentially around the tube mid-span.  

Results for α  = -0.2 are shown in Fig. 3.12a and b. In this case the tube was 

compressed as it was pressurized. The circumferential stress level is lower than the 

previous case, reaching a maximum of 31.21 ksi (215.2 MPa). Compression has however 

the beneficial effect of delaying burst as the circumferential strain at failure is now 22.1% 
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and the corresponding axial strain is -14.4%. In this case the capacity of the 

circumferential extensometer was exceeded and thus the last part of the σθ −εθ  response 

was constructed from the grid measurements (drawn in dashed line). In accord with the 

observations on the rest of the tests, this specimen (included in Fig. 3.7) also developed a 

bulge and failed by localized wall thinning along a generator of the cylinder. 

3.4.2 Strain Paths 

The stress-strain responses in Figs. 3.8a and b reveal that as α  decreases from 1.0 

to -0.2 the maximum circumferential stress sustained is reduced but more importantly the 

circumferential strain at the limit load increases. This is illustrated in Fig. 3.13a and b 

where plots of the engineering (εx −εθ ) and of the logarithmic (  ex - eθ ) strain paths 

recorded appear. Also included in the two plots is the response from the uniaxial strip 

(see Section 3.3). 

The strain paths remain nearly radial up to the limit load instability marked in 

these plots with the symbol ( ). Values of the stresses and strains at the limit load are 

listed in Table 3.1. Because of space constraints, the axial extensometer was mounted just 

above the chain of the circumferential one, in other words above the axial centerline of 

the specimen. For this reason, in some cases where failure involved bulging followed by 

localization around the mid-span, the axial extensometer did not record accurately the 

axial strain past the limit load, causing the abrupt nonlinearity seen in one of the strain 

paths. The maximum average strains recoded by the extensometers are listed in Table 3.1 

and are marked in the figure with the symbol ( ). Finally, the local strains in the zones of 

failure were measured from the grid and verified by local thickness measurements using 

the ultrasonic thickness gage. These strains are listed under (εx|l , εθ |l ) in Table 3.1 and 

are marked with an open circle symbol ( ) in Fig. 3.13a and b. They follow a similar 

trend as the average strains at failure but have much higher values.  
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The strain path results illustrate that the local strains in the proximity of the failure 

zone are significantly higher than the values measured by the extensometers at the onset 

of failure. Furthermore, by comparing the uniaxial response to α  = 0, it can be concluded 

again that the onset of instability, as indicated by the attainment of a load maximum, is 

influenced by the cylindrical geometry of the specimens. The magnitude and trend of the 

failure strains is similar to those reported by Davies et al. (2000) for the same material 

(Al-6260-T4). 

3.4.3 Contours of Constant Plastic Work 

It has been long realized that deformation can induce anisotropy to materials. To 

evaluate this effect for our material, we use the experimental results to construct contours 

of constant plastic work in the spirit of Hill (Hill, 1991; Hill and Hutchinson, 1992; Hill 

et al., 1994). Each contour consists of 10 points of equal plastic work plotted in the true 

stress (τ x ,τθ ) plane in Fig. 3.14 (the points are joined by straight construction lines). The 

innermost contour is essentially equivalent to the initial yield surface. Subsequent ones 

are not related to yield surfaces except through the fact that the local normal at a point on 

the contour is in the direction of the plastic strain increment. In other words, at any stress 

state, the current yield surface is tangent to the plastic work contour. In that sense, for 

each level of plastic work the contour can be considered as the envelope of the current 

yield surfaces.  

It is apparent from Fig. 3.14 that the shapes of successive contours gradually 

change, with the sides becoming flatter and the rounded zone around equibiaxial tension 

changing curvature. This indicates that deformation-induced anisotropy, due to 

microstructural evolution, has taken place. Since the plastic strain increment is in effect 

normal to the plastic work contours, such distortions can be expected to affect the strains 

that develop.  
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The plastic work contours will be shown in Chapter 4 to be very useful in 

developing an appropriate constitutive framework for the material in hand and thus in 

predicting the deformation of the inflated tubes.  

3.5  EXPERIMENTAL RESULTS FROM THE CORNER PATH TESTS 

The radial path experiments were used to assess the forming limits of the Al-

6260-T4 tubes and to establish the appropriate constitutive framework for accurate 

predictions of this mode of failure (also see following Chapter). However, since plastic 

deformations are path-dependent, evaluation of the performance of the constitutive 

models that will be developed in more challenging, non-proportional paths is desirable. 

This was investigated by considering rather extreme corner paths. Two families of paths 

were examined, x →θ  and θ → x . Each pair of paths is associated with a specific radial 

path (see Fig. 3.3) while the implementation details in our biaxial testing facility were 

discussed in Section 3.2.2.  

Clearly, it would be desirable to examine as many such combinations of corner 

and radial paths as possible. It was only feasible however to perform the tests shown in 

Fig. 3.15a on Al-6260-T4 for the following reason. Considering for example the θ → x  

case, the preloading essentially follows the α  = 0 path. Referring now to Fig. 3.6a, it can 

be seen that there is only a limited number of radial paths that have hoop failure stresses 

less than that of the α  = 0 path. Hence a θ → x  corner path can be associated to only a 

few of the radial paths. Similar difficulties were encountered for the x →θ  paths, bearing 

in mind that the preloading should deform the material plastically (the uniaxial yield 

stress is approximately 18 ksi / 125 MPa, see Fig. 3.4a). However, despite the relatively 

limited number of corner path experiments that could be performed, this work unearthed 

a number of significant findings and trends.  
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3.5.1 x →θ  Paths 

Three x →θ  corner path tests were performed and are included in Figs. 3.15a and 

b (engineering and true stresses, respectively). The geometric characteristics of the tubes 

tested are included in Table 3.2. Each corner path is characterized by a number that 

corresponds to the associated radial path (also included in the figures). The engineering 

stress paths are forming sharp corners, as prescribed. The true paths are quite similar in 

shape and value, which is a result of the relatively limited deformations that developed in 

the specimens (see below).  

The strain paths traced are given in Figs. 3.16a and b (engineering and 

logarithmic versions). These paths are seen to consist of two distinct branches, like the 

stress paths did. The first branch corresponds to the uniaxial preloading (branch OB in 

Fig. 3.3), so that the hoop strain that is seen to develop is purely due to the Poisson effect. 

The path then exhibits a tight knee, which marks the commencement of the biaxial 

loading. Typically, only limited deformation follows the knee, before failure. 

By comparing a x →θ  corner path to the associated radial one, one can notice 

that both the strain path and the strains at failure are distinctly path-dependent (see also 

Table 3.2). For example, while the strains at the onset of failure for the R0.9 path were 

{εxL ,εθL } = {7.39%, 7.54%}, the strains of the corresponding x →θ  corner path were 

{6.61%, 0.88%}. This path dependence is quite visible in the actual specimens, as well 

(Fig. 3.17). In one experiment, a failure mode change was observed (Fig. 3.18). Notice 

how the corner specimens’ (ones on the RHS) gage sections seem identical in diameter to 

the gripped ends, indicating the very limited deformation that preceded failure. The 

failure mode change in this experiment can be explained easily with reference to Fig. 

3.15a, where it can be noted that for the radial path (R1.25) the axial stress at failure was 
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greater than the hoop (hence the circumferential rupture mode), whereas in the x →θ  

path the hoop stress was greater than the axial (hence the axial rupture mode). 

The axial and circumferential stress-strain responses in the three x →θ  corner 

tests are given in Figs. 3.19a and b. The axial responses replicate the initial uniaxial 

behavior, until the beginning of the biaxial loading, where the axial stress is held constant 

(of course, the axial strain continues to accumulate, so that the responses exhibit a 

plateau). The corresponding initial part of the hoop responses (Fig. 3.19b) is not visible 

since the hoop stress is kept at zero. With the commencement of the biaxiality, the tube 

responds at first elastically as one would expect, re-yields and failure occurs after limited 

deformation. Also to be noted is the limit load instability in each of the three paths tested. 

Furthermore, it can be seen from Fig. 3.19b that as the preloading increases ( x →θ  0.75 

to 1.25), the subsequent re-yielding of the tube is significantly delayed, indicating that for 

the material at hand isotropic hardening seems to be dominating the evolution of the yield 

surface. 

3.5.2 θ → x  Path 

In addition one θ → x  path test was performed that corresponds to R1.25 

following the loading procedure described in Section 3.2.2 (see Fig. 3.3). The results are 

included in Figs. 3.15 and 3.16 and in Table 3.2. The first leg (OD in Fig. 3.3) represents 

in essence uniaxial loading in the hoop direction, which results in nearly uniform 

expansion of the tube diameter and axial contraction (see Fig. 3.16a). During the axial 

loading leg (DE in Fig. 3.3), the presence of the constant pressure causes simultaneous 

growth of εθ  and εx  as illustrated in Fig. 3.16a. Unfortunately this specimen failed at the 

grips, perhaps prematurely. Consequently comparison of failure stresses and strains to 

those of the radial path is not possible but the new stress-strain results are a welcome 
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addition to the data set. It is of interest however that the axial stress reached before failure 

exceeds the value at failure of the corresponding R path.  

3.5.3 Discussion of the Corner Path Test Results 

The observed path dependence of the strains at the onset of failure (Fig. 3.16a) is 

in concert with similar results in the literature (e.g., see Hosford and Caddell, 2007) and 

follows quite naturally from the path-dependent nature of the plastic deformation. On the 

other hand, strain based forming limits have been generated experimentally without 

regard for the path followed and then used to design actual operations with drastically 

different loading paths. Only recently has the strong path dependence of these results 

been appreciated and a search for more intrinsic limits to ductility has began.  

Recently, it has been postulated that despite the strains at failure being path 

dependent, the corresponding stresses at the onset of failure are not, and hence can be 

used as a measure of forming severity. In this context, the experimental results included 

in Figs. 3.15a and b indicate that in the case of paths with limited plastic prestraining, the 

stresses at failure are indeed close for the corner and radial paths. By contrast, when the 

prestraining is large the difference between the corner and radial paths becomes quite 

significant. This is in variance with the current prevailing thinking that the stresses at the 

onset of failure are path independent. A possible explanation of this fact is that as shown 

in Fig. 3.19b, the corner paths chosen introduced significant prestraining to the Al-6260-

T4 specimens. This tended to expand the yield surface of this material, which in turn 

delayed re-yielding during the second legs of the corner paths (see also similar results in 

Fig. 6b in Wu et al., 2005).  



Table 3.1a  Geometric characteristics of the tubes tested under radial paths. 
Exp 
No. 

D 
in 

t  
in 

2L  
in 

Ξo  
% 

A17-4 2.359 0.0800 13.38 0.69 
A17-3 2.359 0.0800 13.50 0.63 
A19-3 2.358 0.0800 13.38 0.69 
A17-1 2.359 0.0801 13.38 0.63 
A20-1 2.358 0.0800 12.63 0.56 
A19-1 2.356 0.0800 13.00 0.63 
A20-2 2.359 0.0800 12.63 0.75 
A19-2 2.358 0.0800 13.25 0.69 
A17-2 2.359 0.0800 13.38 0.69 
A18-3† - - - - 

1 in = 25.4 mm 
 

Table 3.1b  Summary of biaxial burst test results. Included are the stresses and strains at the limit load instability and at failure. 
Exp 
No. α  

σθ max
 ksi 

σ x σθ max
 ksi 

σθ σ x max
 ksi 

σ x max
ksi 

εθL  
(%) 

εxL  
(%) 

εθf  
(%) 

εxf  
(%) 

εθf |l  
 (%) 

εxf |l  
(%) 

A17-4 -0.2 31.21 -6.19 - - 18.1 -11.9 22.1 -14.4 44.0 -14.4 
A17-3 -0.1 32.07 -3.02 - - 18.0 -11.0 19.1 -11.0 35.3 -11.0 
A19-3 0 32.87 0.185 - - 11.8 -5.7 12.6 -5.7 29.7 -5.7 
A17-1 0.25 33.58 8.58 - - 9.3 -2.2 9.7 -2.2 25.5 -3.6 
A20-1 0.5 33.68 16.87 - - 7.0 -0.2 7.4 -0.2 19.4 0.0 
A19-1 0.75 34.03 25.50 - - 5.8 1.8 6.1 1.8 21.6 1.8 
A20-2 0.9 33.88 30.49 - - 6.7 7.4 7.5 7.9 18.3 11.0 
A19-2 1.0 - - 32.27 32.40 5.0 10.6 9.8 12.8 11.9 27.7 
A17-2 1.25 - - 26.95 33.61 2.2 15.1 3.3 19.4 3.3 29.5 
A18-3† - - - 0 32.55 - 19.5 - 24.7 - - 

1 ksi = 6.897 MPa 
† uniaxial test on an axial strip of the material 
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Table 3.2a  Geometric characteristics of the tubes tested under the corner paths and the corresponding radial ones. 
Exp 
No. 

D 
in 

t  
in 

2L  
in 

Ξo  
% 

A17-2 2.359 0.0800 13.38 0.69 
A19-1 2.356 0.0800 13.00 0.63 
A20-2 2.359 0.0800 12.63 0.75 
A20-4 2.360 0.0796 13.50 0.82 
A20-5 2.359 0.0797 12.75 0.75 
A21-1 2.359 0.0795 13.50 0.70 
A21-3 2.359 0.0800 13.50 0.88 

1 in = 25.4 mm 
 
 

Table 3.2b  Summary of radial and corner path test results. Included are the stresses and strains at the limit load instability and 
at failure, and the mode of failure (A: axial and C: circumferential as per Fig. 3.18). 

Exp No. 
R 
α  

x →θ
 

 
θ → x

 
 

maxθσ
 ksi 

maxθσxσ  

ksi 
maxxσθ

σ
 ksi 

maxxσ
ksi 

σθf  
ksi 

σ xf  
ksi 

εθL  
(%) 

εxL  
(%) 

εθf  

(%) 

εxf  

(%) 
εθf |l
 (%)

εxf |l
 (%)

Mode 
of 

failure 

A19-1 0.75 - - 34.03 25.50 - - 33.31 25.00 5.86 1.80 6.08 1.80 21.6 1.8 A 
A20-4 - 0.75 - 36.77 24.56 - - 35.77 24.56 2.79 3.49 3.08 3.49 11.5 4.6 A 
A20-2 0.9 - - 33.88 30.49 - - 33.31 30.02 6.73 7.39 7.54 7.85 18.3 11.0 A 
A20-5 - 0.9 - 38.44 29.78 - - 37.33 29.78 0.58 6.61 0.88 6.61 5.3 6.7 A 
A17-2 1.25 - - - - 26.95 33.61 25.63 31.98 2.19 15.12 3.26 19.38 3.3 29.5 C 
A21-1 - 1.25 - 39.33 31.89 - - 38.33 31.89 -0.79 8.98 -0.25 9.27 2.4 10.0 A 
A21-3 - - 1.25 n/a n/a n/a  n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

1 ksi = 6.897 MPa. 
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Fig. 3.1 – Experimental set-up used to load tubes under internal pressure and axial load
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Fig. 3.2 – Tube ductile rupture from Exp. A20-1 (α =0.5), also showing the strain grid employed 
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Fig. 3.3 – Definition of the radial and corner loading paths prescribed in the engineering 
stress space. 
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(a) 

 
 

 
 
 
 
 
 

 
 
 

 
 

 
 
 

 
 
 

 
(b) 

Fig. 3.4 – (a) Axial and circumferential stress-strain responses of Al-6260-T4 tubes tested 
to failure. (b) Axial, circumferential and shear equivalent plastic stress-strain responses.
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Fig. 3.5 – Effect of strain rate on the uniaxial response.
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Fig. 3.6(a)– Radial engineering stress paths prescribed. Marked are the limit and the 
failure stresses 
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Fig. 3.6(b) – Radial true stress paths induced. Marked are the limit and the failure stresses
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Fig. 3.7 – A set of failed specimens tested at different biaxiality ratios: 
 from left to right, α = - 0.2, 0, 0.75, 1.0
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(b) 
Fig. 3.8 – (a) Circumferential and (b) axial stress-strain responses recorded in nine 

experiments 
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Fig. 3.9 – Axial thickness reduction profiles from two experiments that exhibited 
circumferential rupture. Both illustrate localized wall-thinning. 
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(b) 
Fig. 3.10 – (a) Circumferential and (b) axial stress-strain responses recorded in 

experiment with α =0.75 
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Fig. 3.11 – Thickness reduction profiles at three locations around the circumference of a 
burst tube, illustrating localization of wall thinning.  
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Fig. 3.12 – (a) Circumferential and (b) axial stress-strain responses recorded in 

experiment with α = -0.2 
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Fig. 3.13(a) – Strain paths traced in the experiments ( , average strains at the limit load; 
, average strains at rupture; , local strains in zone of rupture).  

 
 
 
 
 

-10

0

10

20

30

40

-20 -10 0 10 20 30 40

ε
θ

(%)

ε
x
 (%)

Al-6260-T4

-0.2

-0.1

0

0.25
0.5

0.75

0.9
1.0

1.25

α

uniaxial



 93

 
 
 
 

 
 

 
 
 
 
 
 
 
 

 
 
 

 
 

 
 
 
 

 
 

 
 

 
 
 

 
 

 
 
 
 

Fig. 3.13(b)– Figure 3.13(a) replotted for the logarithmic strains. 
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Fig. 3.14 – Loci of experimental points representing various levels of constant plastic 
work 
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Fig. 3.15(a) – Corner paths prescribed in the experiments and the corresponding radial 
paths, plotted in the engineering stress space. Marked are the limit ( )  and the 

failure stresses ( ). 
 
 
 
 
 
 
 

0

10

20

30

40

0 10 20 30 40

LL
F

0

50

100

150

200

250

0 50 100 150 200 250

σ
θ

(ksi)

σ
x
 (ksi)

Al-6260-T4

R0.75

R0.9

R1.25

x   θ

0.75 0.9 1.25

θ   x 1.25

σ
θ

(MPa)

σ
x
 (MPa)



 96

 
 
 

 
 
 
 

 
 
 

 
 
 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 
 
 
 
 

Fig. 3.15(b) – Figure 3.15(a) replotted for the true stresses. 
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Fig. 3.16(a) – Engineering strain paths traced in the corner experiments, and the corresponding paths for radial loadings. 
Marked are the average strains at the limit load ( ) and at failure ( ). 
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Fig. 3.16(b) – Figure 3.16(a) replotted for the logarithmic strains. 
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Fig. 3.17 – Comparison of failed test specimens for R0.75 (left) and x →θ  0.75 (right). 
Notice the remarkably different hoop strain. 
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Fig. 3.18 – Comparison of failed test specimens for R1.25 (left) and for the 

corresponding corner path x →θ  1.25 (right). Of interest is the failure mode change, and 
the very limited hoop strain the developed in the right tube before rupture. 
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(b) 

 
Fig. 3.19 – (a) Axial, and (b) circumferential stress-strain responses recorded in the three 

x →θ  corner path experiments. The symbol ( ) in (a) corresponds to the limit 
pressure marked in (b). 
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Chapter 4:  Constitutive and Numerical Modeling 

 of Tube Bursting 

The major aims of the experimental study on the formability of Al-6260-T4 tubes 

described in the previous Chapter were, first, to establish the forming limits for this 

material and in tubular form; and second, to generate enough data to calibrate an 

appropriate constitutive framework for accurate numerical predictions of burst. This 

mode of failure was seen in Chapter 2 to be a dominant factor that limited the 

performance of Al-6260-T4 in the tube hydroforming experiments. With the aid of these 

data then, we expand here in detail on the constitutive and numerical modeling 

appropriate for this class of problems. 

4.1 CONSTITUTIVE MODELING 

The inelastic behavior of our material will be modeled through an associated flow 

rule that is based on an anisotropic yield function. It is clear from the plastic work 

contours of Fig. 3.14 that the as-received tubes exhibited initial anisotropy induced by the 

manufacturing process. Furthermore, that the anisotropy evolves as plastic deformation 

accumulates. Isotropic hardening will be adopted, in the sense that the center of any 

subsequent yield surface will always remain at the origin. Also, as is currently well 

accepted, aluminum alloys require the use of non-quadratic yield functions (Hosford 

1972, 1979, Hill 1979, 1990, Barlat and Lian 1989, Bartlat et al. 1991, Barlat et al. 1997, 

Barlat et al. 2003, Miller and Kyriakides, 2003; Kyriakides et al., 2004 and others).  
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In the free hydroforming experiments conducted (radial as well as corner paths), 

the tubes deformed homogeneously over a significant part of their loading histories, with 

bulging and localization that precipitate rupture only occurring in the latter parts of the 

histories. Thus, for the most part of the life of the specimen, a principal state of stress 

(σ x ,σθ ) existed (the third component being negligible). Consequently we begin by 

examining Hosford’s principal stress anisotropic yield function (Hosford, 1972, 1979) as 

it is relatively easy to calibrate and manipulate. By contrast, at the onset of rupture the 

state of stress is no longer axisymmetric and thus the more general anisotropic yield 

functions put forward by Karafillis and Boyce (1993) and Barlat et al. (2003) are more 

appropriate.   

4.1.1 Hosford’s 1979 Anisotropic Yield Function 

A variety of materials, including aluminum alloys, exhibit initial, plane stress 

yield loci that lie between the von Mises ellipse and the Tresca hexagon. In an attempt to 

model this behavior, Hosford (1972) at first suggested an isotropic non-quadratic yield 

function in terms of the principal stresses: 
 

  |σθ -σ x |k + |σ x - σ r |k + |σ r - σθ |k = 2σo
k    (4.1) 

Later, this yield function was extended by Hosford (1979) to the anisotropic case to read: 
 

  
1
2

F |σθ -σ x |k + G |σ x -σ r |k + H |σ r - σθ |k{ }= σo
k   (4.2) 

Introducing now the dimensionless parameters Sθ =
σoθ
σo

 and Sr =
σor
σo

, where σo , σoθ , 

σor  are the yield stresses in the axial, circumferential and radial directions respectively, 

Eq. (4.2) can be written in a form more suitable for our problem: 
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1
2

1+
1

Sθ
k −

1
Sr

k

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ |σθ −σ x |k + 1+

1
Sr

k −
1

Sθ
k

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ |σ x −σ r |k +

1
Sr

k +
1

Sθ
k −1

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ |σ r −σθ |k

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
= σo

k     

           (4.3) 

 This constitutive model allows for two parameters to be adjusted to match the 

yield behavior of any specific material. The exponent k can be calculated with the aid of 

crystal plasticity, and was shown to be equal to 8 for FCC materials such as aluminum 

alloys (Logan and Hosford, 1980). Notice that for k = 2, Eq. (4.3) reduces to the classical 

Hill (1948) yield function. For the two anisotropy parameters, Sθ  = 1.04 was found to 

bring together the early parts of the two uniaxial stress-strain responses shown in Fig. 

3.4b. The value of Sr  was then chosen for optimal matching of the structural response of 

the finite element models of the biaxial tests (to be described in Section 4.2.1) to the 

actual experiments. Observe that since the tubes deformed essentially uniformly up until 

at least the limit load a homogeneous state of stress can be assumed, which greatly 

simplifies this calibration procedure.  

The resulting initial yield surface in the (σ x −σθ )  plane is shown in Fig. 4.1. It 

has a sharper curvature along the equibiaxial tension direction and flatter sides than the 

von Mises yield criterion. Included in the figure are two sets of experimental points, for 

two different definitions of yielding. The first set corresponds to a strain offset of 0.05% 

and the second to a plastic work of 9.2 psi (63 kPa). The two sets of points are seen to 

agree quite well with each other, indicating the near equivalence of the two methods of 

establishing yielding. The data is also in good agreement with Hosford’s yield function as 

calibrated.  

The true stress version of the yield function was used to generate an associative 

flow rule. The flow rule was subsequently used to calculate the equivalent true stress-

equivalent logarithmic plastic strain (τe − dee
p) response for the early part of each of the 
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nine biaxial experiments performed (radial paths). The equivalent logarithmic plastic 

strain is calculated by requiring that these stress and strain measures are work conjugate, 

or that: 

τedee
p = τθ deθ

p + τ xdex
p .    (4.4) 

 The results for the nine radial path experiments performed are shown in Fig. 4.2. The 

yield function bundles the responses around the uniaxial one to a reasonable degree, 

while the spreading between the responses is an indication of the limitations of this yield 

function. The flow rule was also used to calculate contours of equal plastic work for the 

values for which the experimental contours in Fig. 3.14 were generated. The calculated 

and the experimental contours are compared in Fig. 4.3. The calculated work contours do 

not match perfectly the experimental points, which is another indication of the limitations 

of this yield function. Of course, it should also be considered that the isotropic hardening 

assumed is only an approximation that may not represent the material behavior perfectly.    

4.1.2 Karafillis and Boyce 1993 Anisotropic Yield Function 

A more elaborate description of the yielding behavior in comparison to that 

offered by Hosford was proposed by Karafillis and Boyce (1993) - abbreviated 

henceforth as K-B. The K-B yield function offers more flexibility than Hosford’s model 

in fitting experimental work contours like the ones in Fig. 3.14. Even more importantly, 

since it can be related to the actual stress tensor and not only its principal values, it can be 

more naturally used for the incorporation of shear anisotropy. Recall that as shown in Fig. 

3.4b, the material at hand exhibits significant anisotropy in shear. 

The isotropic version of this yield criterion is a combination of two distinct yield 

surfaces. The first is Hosford’s isotropic yield criterion (Eq. (4.1)) which in terms of the 

principal deviatoric stresses, si  (i=1,3), is given by: 
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   f1 =
1
2

(s1 − s2)2k + (s2 − s3)2k + (s3 − s1)2k[ ]= σo
2k   (4.5) 

where σo  is the yield stress in a uniaxial test. Yield surfaces bounded by the von Mises 

( k =1) and Tresca ( k = ∞) surfaces can be generated by selecting the exponent to be an 

integer k ∈ [1,∞) . The second yield criterion, expressed again in terms of si , is written as: 
 

    f2 =
32k

22k + 2
s1

2k + s2
2k + s3

2k[ ]= σo
2k    (4.6) 

with k once more having the same range. Equation (4.6) represents surfaces that lie 

between the von Mises and the outer bound for isotropic convex surfaces (Mendelson, 

1968). Karafillis and Boyce combined f1 and f2 to form the following convex yield 

function: 
    f = (1− c) f1 + cf2[ ]1/2k ,    c ∈ [0,1].   (4.7) 

Anisotropy was introduced by evaluating the isotropic plasticity equivalent deviatoric 

stress tensor s , related to the stress tensor σ  acting on the anisotropic material point 

through a linear operator as follows: 
         s = Lσ .     (4.8) 

Adopting the symmetries for L appropriate for orthotropy, and limiting attention to plane 

stress states of interest to our tube problems, (4.8) can be written as: 
 

    

sx
sθ
sr
srθ

⎧ 

⎨ 
⎪ ⎪ 

⎩ 
⎪ 
⎪ 

⎫ 

⎬ 
⎪ ⎪ 

⎭ 
⎪ 
⎪ 

= Γ

1 β1 β2 0
β1 α1 β3 0
β2 β3 α2 0
0 0 0 δ

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

σ x
σθ
0

σ rθ

⎧ 

⎨ 
⎪ ⎪ 

⎩ 
⎪ 
⎪ 

⎫ 

⎬ 
⎪ ⎪ 

⎭ 
⎪ 
⎪ 

   (4.9) 

where β1 =
1
2

(α2 −α1 −1),  β2 =
1
2

(α1 −α2 −1) ,  and  β3 =
1
2

(1−α1 −α2). 
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Thus, the anisotropy is defined by four parameters, {Γ ,α1,α2,δ} in addition to the 

exponent that controls the curvature. (Contrast this with the two parameters available for 

the anisotropic Hosford yield function.) The principal deviatoric stress components si  (i 

= 1,3) are evaluated from sij  in (4.9) in the usual manner and are substituted in (4.7) to 

complete the anisotropic yield function. For sheet metal forming applications, the 

parameters {Γ ,α1,α2} can be determined as discussed in Appendix 2 of K-B (1993). The 

value of δ  then becomes: 

       δ =
σo

Γσ xyo
(1− c)(22k−1 +1) + c 32k

22k−1 +1

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

−1
2k

.   (4.10) 

 Two versions of this model will be considered. In the first version c = 0, which 

reduces f  in (4.7) to Hosford’s yield function where however si  are evaluated through 

(4.9). In this case, 2k was selected to be 8 as in the principal stress version of the 

anisotropic Hosford function. Since the procedure for determining the constants 

{Γ ,α1,α2} described in K-B is better suited for sheet metal, it was found more 

convenient in the present case to follow a different calibration approach. The constants 

were selected for optimal agreement of the initial yield surface with the experimental 

data, as well as for best performance in bringing together the structural response of the 

finite element models (Section 4.2.1) to those observed in the experiments. Notice again 

that a simple numerical model is sufficient for this trial-and-error procedure, as before. 

The parameters chosen are {Γ ,α1,α2} = {0.68, 0.94, 0.97}. The resulting initial yield 

surface is compared to the experimental data that correspond to the two different 

definitions of yielding discussed earlier, in Fig. 4.4. The shape is seen to be in reasonable 

agreement with the data. The performance of the model with regards to the equivalent 

true stress-equivalent plastic strain responses from the biaxial experiments is comparable 

to the corresponding results from Hosford’s model shown in Fig. 4.2.  
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Constant plastic work contours were generated with this yield function and are 

compared to the experimental ones in Fig. 4.5. The calculated contours underpredict the 

experimental values to some degree, most prominently for values of α  between 0.5 and 

1.0. Recall that the plastic strain increment vector at a point is normal to the contour. 

Then, this deviation between the experimental and the predicted work contours is 

expected to have an impact in the numerical simulations of the burst experiments that 

follow (see Section 4.2).  

 The performance of the full version of the K-B yield function was also 

investigated. The model was calibrated following a similar procedure. In this case, the 

presence of f2 dictates that a much higher exponent be employed, 2 k  = 24 in accord 

with K-B findings (Miller and Kyriakides (2003) used 2 k  = 30). The parameters arrived 

at are {c,Γ ,α1,α2} = {0.8, 0.6665, 0.96, 0.99}. The corresponding initial yield surface is 

shown in Fig. 4.6. In general, the shape is very close to the one in Fig. 4.4 with c  = 0. 

The performance in pulling together the measured equivalent true stress-equivalent 

logarithmic plastic strain responses is once more of similar quality as that of the Hosford 

yield function shown in Fig. 4.2.  

4.1.3 Barlat et al. 2003 Anisotropic Yield Function (Yld2000-2D) 

An even more elaborate and flexible description of the constitutive behavior of a 

given material is afforded by the model suggested by Barlat et al. (2003). This is again 

based (as the K-B model) in the non-quadratic isotropic yield function of Hosford (1972), 

written now in terms of the principal stress deviators as: 

 
   s1 − s2

k + 2s1 + s2
k + s1 + 2s2

k = 2σο
k    (4.11) 

derived from (4.5) by using sii = 0. To allow for the inclusion of even more anisotropic 

parameters and hence improved flexibility of the model, Barlat et al. introduced 
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anisotropy by two linear transformations, one applied to the first term ( ′ φ ) and the other 

to the second and third terms ( ′ ′ φ ):  
 

  φ = ′ φ + ′ ′ φ = ′ S 1 − ′ S 2
k + 2 ′ ′ S 1 + ′ ′ S 2

k + ′ ′ S 1 + 2 ′ ′ S 2
k = 2σο

k   (4.12) 

Here ( ′ S 1, ′ S 2) and ( ′ ′ S 1, ′ ′ S 2) are the principal values of the linearly transformed stress 

tensors ′ S  and ′ ′ S , respectively, obtained from the stress deviator s and the stress tensor 

σ  by: 
 

  ′ S = ′ C s = ′ C Tσ = ′ L σ        and        ′ ′ S = ′ ′ C s = ′ ′ C Tσ = ′ ′ L σ   (4.13) 

where ′ C , ′ ′ C ,T , ′ L  and ′ ′ L  are appropriate transformation tensors that allow introduction 

of the anisotropy (Barlat et al., 2003). Thus, for our 2-D stress state: 
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 (4.14a) 

where ′ L  and ′ ′ L  are related to parameters αi  (i =1,8) as follows: 
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           (4.14b) 

(The first and second derivatives of the yield function with respect to the stress 

components, required for the flow rule and its numerical implementation, appear in Barlat 

et al., 2003, and Yoon et al., 2004).   
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 The exponent k  is again assigned the value of 8 as is typical for aluminum alloys. 

The model is then calibrated by fitting the parameters αi (i = 1,8)  to the experimental 

work contours. Of these α7 and α8 are related to the shear stresses. As will be 

demonstrated in Section 4.2.2, shear anisotropy does not influence the predictions of this 

set of biaxial burst experiments and as a result it will be neglected here too (i.e., 

α7 = α8 =1). Three different calibration schemes were attempted, leading to different 

performance first in predicting the strain paths traced and second in identifying the onset 

of rupture. As each of these calibration schemes was prompted by the performance of the 

previous one, the detailed discussion of them is postponed until Section 4.2.3 where they 

can be motivated and introduced more naturally than here. At this point it suffices to 

present the initial yield surface and work contour predictions for the three schemes (Figs. 

4.7-4.10). It can be noted that the added flexibility of the Yld2000-2D model is reflected 

in the much better overall agreement between the experimental and the calculated plastic 

work contours in relation to either Hosford or K-B models (compare Figs. 4.8-4.10 to 

Figs. 4.3 and 4.5). 

4.2 FINITE ELEMENT MODELING OF THE BURST EXPERIMENTS 

4.2.1 Finite Element Models 

The inflation experiments were simulated numerically using finite element 

models developed in the nonlinear code ABAQUS/Standard. The models are used in 

conjunction with the constitutive equations described in the previous section to reproduce 

the inflation experiments (radial and corner paths), including the onset of localization and 

burst. Because of the two distinctly different failure modes observed in the experiments, 

two different FE models have been developed. Model I is tailored to simulate rupture 

along a generator that was observed in seven of the radial and three of the corner 
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experiments. In this case, symmetry allows consideration of one quarter of the tube as 

shown in Fig. 4.11, with the origin of the coordinate system used being at the mid-span of 

the tube (i.e., the planes x = 0 and θ = [0 − π ] are planes of symmetry). In each 

simulation the model is assigned the length (2L ), mid-surface radius ( R) and wall 

thickness ( t ) corresponding to the actual values of the tubes given in Tables 3.1 and 3.2. 

The wall thickness is assumed to be uniform except that a local imperfection in the form 

of an axial groove of reduced thickness ( tg ) is added as shown in Fig. 4.11 (shaded 

band). Observe that this resembles a Marciniak-Kuczynski (1967) type of analysis, 

common in necking studies in sheet metal forming. The domain is discretized using 

linear, 4-node shell elements with reduced integration (S4R). These elements allow for 

large strains and large rotations, both required for the problem at hand. A mainly 

isotropic mesh is used, with a refinement in the zone surrounding the groove. The main 

mesh has 45 elements along the length and 45 around the half circumference. The zone 

around the groove ( L1 × s1) has double the mesh density in both directions and the groove 

itself is two elements wide and 25 elements long ( Lg = R  and sg ≅ t  arrived at from 

convergence studies). The wall thinning imperfection is defined by:  

 

     η =
t − tg

t
≥ 0.     (4.15) 

The value of η = 0.05 is used in all cases analyzed.  

Model II is customized to model circumferential rupture that was observed in two 

radial experiments with high biaxiality ratio (α  = 1.0 and 1.25). Again symmetries allow 

consideration of just one quarter of the tube. In this case the model is discretized with 61 

elements along the half-length and 60 around the half-circumference. A groove of width 

wg ≅ t  is placed along the circumference at the plane of symmetry at x = 0 as shown in 
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Fig. 4.12. The groove is two elements wide and has a wall thickness tg (θ)  with a wall 

thinning imperfection of η = 0.05. In order to allow for the possibility of non-

axisymmetric localization to develop, tg  was given a small perturbation described by: 
 

        tg (θ) = t g 1+
ξ
t g

cosθ
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ ,    (4.16) 

where ξ t g  is a wall eccentricity variable that was assigned the value of 0.0105. 

 The boundary at x = L is fixed radially and constrained to remain plane. To 

simulate the radial path experiments, each model is loaded by prescribing incrementally 

both the internal pressure and the axial load. The internal cavity of the tube is meshed 

with ABAQUS’ hydrostatic elements F3D3 and F3D4 (removed from the figures for 

clarity), which allowed the pressure to be applied. In order to allow for the anticipated 

limit load to develop, Riks’ path-following procedure is employed. The external axial 

force is prescribed at a reference node at (x,r,θ) = (L,0,0). All nodes in the plane x = L 

(i.e., those of the tube as well as those of the cavity) were constrained to follow the 

reference node. Because of the kinematic coupling of the nodes, the axial load is shared 

between the specimen and the pressurized cavity, thus corresponding to the load 

measured by the load cell in our experimental setup. In this way the proportional loading 

histories prescribed in our radial experiments are reproduced exactly. Thus, for example, 

when the external axial force is set to remain zero throughout the simulation, the response 

of the model matches that of a hydrostatic pressure loading test (closed ends tube 

inflation, where the axial stress that develops is due to the end cap pressure loading only). 

Similarly, when the external load/pressure ratio is set at −πR2, a purely lateral pressure 

loading is reproduced (zero engineering axial stress, in other words in the experiment the 

axial load due to the pressure on the end caps is reacted by the servohydraulic machine). 
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The x → θ  and θ → x  corner path tests were simulated in analogous ways, 

corresponding to the actual experimental procedures. Notice that for the corner test 

simulations, the “*RESTART” option was used in ABAQUS to allow for Riks’ method 

to be used throughout the calculation.   

 The FE models use any one of the three constitutive models described in the 

previous section, through user defined material subroutines (UMATs). The anisotropy 

parameters of the three constitutive models discussed earlier are summarized in Tables 

4.1 – 4.3. In the two K-B models, the experimentally recorded shear anisotropy was also 

included. For each case the appropriate values of δ  evaluated using Eq. (4.10) are listed 

in Table 4.2. 

4.2.2 Discussion of Representative Numerical Results for the Radial Paths 

 We will discuss the main characteristics of the numerical responses through two 

representative examples. Figure 4.13a shows the calculated pressure-average 

circumferential strain response ( P − ε θ ) for the radial loading case with α  = 0.9. Figure 

4.13b shows the corresponding axial stress-strain response (σ x −εx ). Two sets of 

numerical results are presented, using the K-B and the Yld2000-2D-III constitutive 

models respectively, with the parameters given in Tables 4.2 and 4.3c. In an attempt to 

present results in a manner similar to the experimental ones, the circumferential 

deformation measure (ε θ ) adopted is the change in circumference/initial circumference at 

x = 0. By contrast, the axial strain (εx ) is based on the change in length/original length of 

a 0.5-inch gage length in the imperfection at (x,θ) = (0,π ). Included in the two figures are 

the corresponding experimental responses based on the average strain measured by the 

chain extensometer at the specimen mid-span and the strain measured by the axial 

extensometer. The predicted P − ε θ  response using the K-B model is seen to track the 
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experimental one fairly well, under-predicting the pressure to some extent but over-

predicting the corresponding strains significantly. The corresponding σ x −εx  response 

from the K-B model also under-predicts the experimental one, but to a lesser extent. 

However, for both responses, the improvement in the performance offered by the 

Yld2000-2D-III model is quite drastic. It can be noticed that the responses predicted with 

this model lie now very closely to the experimental ones, both in terms of pressure or 

stress and of strain. This conclusion is true for all the other paths simulated, as well. 

The numerical model reproduces very faithfully the array of events observed in 

the experiments. Inflation leads to uniform deformation, except of course at the ends 

where the tube is clamped. The stiffness of the model is gradually reduced, until a 

maximum pressure is reached. Observe that for the Yld2000-2D-III model, the predicted 

strain at the maximum pressure is ε θ = 7.99% which compares favorably with the 

corresponding experimental strain of 6.76%. The simulation can of course continue past 

that instability since Riks’ method is used to increment the “loading”; hence reproducing 

the effect of volume controlled-inflation used in the experiments. Soon after the 

maximum pressure, an axisymmetric bulge that extends for about one tube diameter 

appears at mid-span. Depending on the loading path, the deformation can continue for 

quite a while. At some point however, the deformation starts to localize in the 

neighborhood of the thickness imperfection where non-axisymmetric bulging develops. 

The growth of this bulge is rapid, as in the experiments. At approximately ε θ = 9.03% 

(Yld2000-2D-III model), the wall in the local imperfection starts to undergo precipitous 

thinning while simultaneously the pressure drops sharply. This sharp drop is exactly 

associated with the onset of the non-axisymmetric bulge, as will be illustrated.  

To better understand the events associated with the non-axisymmetric bulging, the 

reader is referred to Figures 4.13c and d. The first figure shows a view of the deformed 
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mesh at a point well past the sharp pressure drop, in the descending parts of the 

responses, with the color contours representing the current wall thickness (compare with 

corresponding experimental configurations in Fig. 3.7). The localized bulging is evident, 

as is the significant stretching and thinning of the elements spanning the imperfection. In 

the second figure, the localization of wall thinning is illustrated by plotting the reduction 

in wall thickness (−Δt / t ) at two locations (A and B) against the mean circumferential 

strain at mid-span (same horizontal scale as Fig. 4.13a). Point A is located in the 

imperfection at (x,θ) = (0,π ) whereas point B is located outside the imperfection at 

(x,θ) = (0.6L,π ) . Initially the thickness changes at a similar rate at the two points. 

Around a strain of 5% the two trajectories are already increasingly diverging, with the 

rate of thinning somewhat decelerating at point B. As the strain corresponding to the 

pressure maximum in Fig. 4.13a is approached, the rate of thinning at A is continuing to 

increase, while at B it is decelerating further. The kink on the response at A corresponds 

to the sharp downward trend in pressure in Fig. 4.13a at about 9% strain. The model does 

not include a rupture criterion and as a result the thickness at the crown point of the bulge 

is down to about 35% of its original value in the configuration of Fig. 4.13c. The material 

cannot sustain such large strains, and consequently rupture can be expected to take place 

in the very early parts of the descending response, as indeed occurred in the 

corresponding experimental response. The average strain at failure in the experiment was 

ε θ  = 7.5% which compares favorably with ε θ = 8.97% from the calculation at the point 

where the precipitous localization commenced. 

 A similar calculation was performed using the constitutive model K-Bc, with the 

parameters listed in Table 4.2. The calculated P − ε θ  response is shown in Fig. 4.14 for 

the radial case α  = -0.1. The response is essentially identical to the one based on the K-B 

model, with the localization now occurring at the somewhat larger strain of 
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approximately ε θ  = 20% instead of 19% for the reference K-B model. All other aspects 

of the simulation are essentially identical to those described above. 

 As stated earlier, the problems considered in this study remain essentially 

axisymmetric until the pressure maximum is reached, when non-axisymmetric localized 

bulging that precipitates wall thinning and rupture commences. In other words, in the 

latter part of the response in-plane shear cannot be precluded. At the same time, a certain 

amount of shear anisotropy was recorded in the pure shear test performed on a section of 

our tube (Fig. 3.4b), which for completeness should be incorporated in the constitutive 

model. This prompted the adoption of the K-B constitutive framework in our modeling 

efforts in the first place. The role of this shear anisotropy on the problem at hand was 

evaluated by running simulations of all experiments using the K-B model with and 

without the shear anisotropy (shear anisotropy is precluded when δ =1/Γ  in Eq. (4.9)). 

Interestingly, in all cases the two simulations ended up being very close to each other. 

This is illustrated in Fig. 4.15, which shows the P − ε θ  responses from the two 

simulations for the loading case α = −0.1 (K-B1 does not include the shear anisotropy). 

Having reached the conclusion that the shear anisotropy does not influence the bursting 

response in any tangible manner, it became apparent that Hosford’s principal stress 

anisotropic yield function could also serve the purposes of this class of problems. 

Included in Fig. 4.15 is the P − ε θ  response calculated with this constitutive model (H) 

using the anisotropy constants listed in Table 4.1. The response is very close to the two in 

which the K-B model was implemented, with the pressure maximum and the onset of 

localization being slightly delayed.  

 Figure 4.16 shows predictions for the radial loading case α  = 1. In the 

experiment, rupture was around the circumference (see Fig. 3.7) and as a result the FE 

model II with a circumferential imperfection at the plane of symmetry ( x = 0) was 
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adopted. Figure 4.16a shows the calculated engineering stress-average axial strain 

response (σ x − ε x ) and Fig. 4.16b the P − ε θ  response, using this time only the Yld2000-

2D-III model. The corresponding experimental results are included in both plots. Using 

the numerical results we evaluated ε x  based on the change in length/original length using 

two different 0.5 in gage lengths (GL1 and GL2 shown in Fig. 4.12). GL1 starts at x = 0 

so that it includes the imperfection. In this manner it is anticipated that it will capture the 

localized deformation expected to develop in the imperfection band. GL2 spans several 

elements immediately next to the imperfection and may not sense the localization. In 

each case, results from three locations, 0o, 90o and 180o from the position of the thinnest 

wall (θ = π , see Eq. (4.16)), were then averaged to generate ε x . The circumferential 

strain ε θ  was evaluated in the manner described earlier.  

 The axial responses are initially very close, following the experimental one quite 

well. Their small deviation is caused by the small difference in thickness in part of GL1. 

The responses attain a stress maximum at somewhat different strain levels, ε x = 9.63% 

for GL2 and 10.67% for GL1. These values compare favorably with the 10.6% value 

recorded in the experiment by the 1-inch axial extensometer that was adjacent to the 

rupture zone. The circumferential response is seen to agree with the experimental one up 

to the limit load quite well. 

 The loading causes simultaneous circumferential expansion and axial stretching. 

In contrast to the “bottleneck” deformation of the tube seen in Fig. 4.13c for α  = 0.9 

loading, in this case the radial fixity condition at x = L results in the frustum-like 

deformed shape shown in Fig. 4.16c (compare these to the test specimens in Fig. 3.7). On 

reaching the axial stress maximum, deformation starts to localize in the imperfection 

band and its neighborhood. This is illustrated by the increasingly larger strain recorded by 

GL1. Concurrently, GL2 is registering unloading, something that is typical of localization 
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problems. At some point, the thinning becomes precipitous while the load is decreasing. 

The wall thinning is mainly axial but with a circumferential bias towards the initially 

thinner side. This bias results in loss of the essential axisymmetry (see Fig. 4.16c) that 

prevailed before the load maximum. As before, the model does not include a rupture 

criterion and as a result it is not possible to pinpoint the failure, but one can consider the 

strain regimes inside the construction ellipse (see Fig. 4.16a) to be reasonable estimates 

of rupture strains. 

4.2.3 Cumulative Numerical Results for Radial Paths 

 Simulations were conducted for all nine radial and four corner path experiments 

performed, using subsequently all the constitutive models detailed in Section 4.1. The 

calculated limit loads and the resultant failure strains are influenced by the shape of the 

yield surface adopted, as it plays a decisive role in the induced strain path. In addition, 

they are influenced by the evolution of the yield surface, by the shape of the stress-strain 

response adopted, and by the amplitude of the imperfection introduced in the model. The 

stress-strain response adopted is the one measured in uniaxial tension tests on axial strips 

extracted from the tubes used in this study (true stress-logarithmic plastic strain version 

of the one shown in Fig. 3.4a). It is a fact that small changes in tangent modulus at higher 

strains can influence the calculation of the strains at which the limit load instabilities 

occur. In addition, since the uniaxial stress-strain curve needs to be extrapolated to be 

used in the numerical simulations, the way that this is performed affects the predictions 

drastically. We opted to use an extrapolated stress-strain curve that yielded close 

agreement with the experiments. The imperfection amplitude used was selected through a 

parametric study as the one that best represents actual thickness variations and other 

small imperfections unavoidably present in the test setup used. The complement of the 

results will now be presented in summary form.  
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 Figures 4.17a and b show respectively the circumferential and axial engineering 

stress-strain responses calculated for each of the nine radial loading paths, using the K-B 

constitutive model. For the seven cases with −0.2 ≤ α ≤ 0.9 the average circumferential 

strain (ε θ ) is based on the change in circumference/initial circumference at the symmetry 

plane x = 0 and the axial strain (εx ) is based on the change in length of a 0.5 in gage 

length at (x,θ) = (0,π ). For the cases with α  = 1 and 1.25 the circumferential strain is 

evaluated in the same manner but the axial strain is based on the average value of the 

change in length in three 0.5 in gage lengths located at θ  = (0,π /2,π )  and x = 0. All 

responses exhibit a limit load instability that leads to localized wall thinning and rupture. 

The onset of rupture is associated with the sharp downturn in the calculated responses, as 

explained in the previous section (see also Fig. 4.13). As was the case in the experiments, 

in seven cases rupture is axial and in two circumferential. The trends of the responses 

follow reasonably well those of the experimental results, while the quantitative 

comparison exposes some interesting differences (see below).  

 Figure 4.18 shows a plot of the engineering stress paths traced, with the 

simulations again performed with the K-B model. Since these were prescribed, they are 

identical to the corresponding experimental ones. Marked on the responses are the 

positions of the limit loads (●, at the end of each trajectory) and the corresponding 

experimental values (●). Also marked are the experimental ( ) and numerical ( ) points 

of rupture. The predicted limit load and rupture stresses with the K-B model are in very 

good agreement with the experiment.  

 A different perspective of the performance of the constitutive models can be 

obtained from Fig. 4.19, which shows plots of the engineering strain paths followed in 

the experiments and in the corresponding simulations using the Hosford (1979) model 

(presented in Section 4.1.1). Each path has been truncated at the pressure/load maximum. 
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The calculated paths follow the experimental ones quite well only for four paths, 

deviating from the experiments to a greater or lesser extent for the other five. The 

agreement is found to be particularly deficient for the α  = 0.9 and 1.0 cases. In other 

words, the main discrepancy is in the neighborhood of equibiaxial tension. In isotropic 

hardening plasticity, the high curvature of the yield surface in this regime (see Figs. 4.1 

and 4.3) implies that even a small local deviation between the actual and fitted shapes can 

result in significant difference in the orientation of the local normal, with corresponding 

differences in the predicted strains. We believe that such differences are the main 

contributors for the strain path deviations for α  = 0.9 and 1.0, as well as for the much 

milder disagreements observed for α  = -0.1, 0 and 0.25.  

 The ends of the trajectories in Fig. 4.19 correspond to the load maximum that 

precipitates localization. With one exception (i.e. for α  = 1.25), the general trend is that 

the predicted limit loads occur at higher strains than in the experiments.  

The calculated average strains at rupture, as defined above and using Hosford’s 

(1979) model, are compared to the ones measured by the extensometers in the 

experiments in Fig. 4.20. Here the agreement is good for α  = -0.2, -0.1, 0 and 0.25, 

deteriorating somewhat for α ≥  0.5. The calculated results generally overpredict the 

experimental ones for α  = 0, 0.25, 0.5, 0.75 and 0.9, and underpredict the failure strain 

for α  = 1.25. The case of α  = 1 presents some special interest, since it engages the yield 

surface in the region of its highest curvature. Hence, it is a rather difficult situation to 

achieve experimentally with accuracy and then to reproduce numerically. Despite this, 

the agreement of the predicted rupture strains with the experimental ones is not worse 

than for the rest of the radial paths.  

 The radial path experiments were subsequently simulated using the K-B yield 

function (see Section 4.1.2). The material is assumed to be isotropic in shear, since the 
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significant shear anisotropy present does not affect the failure predictions (Fig. 4.15). The 

agreement between the experimental and the predicted work contours is now only slightly 

better than with Hosford’s model (compare Fig. 4.5 to Fig. 4.3). Thus the deficiency of 

the K-B model in the high curvature, equibiaxial tension region is still comparable to that 

of Hosford. As expected, this led to a similar overall behavior, shown in Figs. 4.21 and 

4.22. The paths are slightly different from those in Fig. 4.19, being in some cases a bit 

closer to the measured paths while in others somewhat further apart. The strains at the 

limit loads and at the onset of failure were once more generally larger than the 

experimental values. As before, the strain paths for α  = 0.9 and 1.0 are not realistically 

predicted, which leads to poor estimations of the failure strains for these paths, as well. It 

is interesting to note however that the corresponding stresses at the limit load and at the 

onset of failure appear to be much less sensitive to details of the constitutive model 

employed (see Fig. 4.18). 

These results clearly show that the two yield functions adopted are not capable of 

reproducing all the strain paths and consequently the failure strains recorded in the 

experiments. This deficiency is related to the small disagreements between the 

experimental and the predicted work contours, since it is the local normal to the yield 

surface that determines the amount of plastic deformation that can develop in the two 

directions (axial and hoop). This prompted the adoption of an even more powerful 

constitutive model, i.e. the one suggested by Barlat et al. and described in Section 4.1.3. 

As shown previously in Figs. 4.7 and 4.8, the added flexibility afforded by the 8 

anisotropy parameters available in this model lead to a closer representation of the 

experimental contours than that of either Hosford (2 parameters) or K-B (4).  

 Three different calibration schemes of the Yld2000-2D model were attempted and 

are described in what follows. In the first case (I), in view of the experimentally observed 
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evolution of the plastic work contours, it was found convenient to choose the anisotropy 

variables from a subsequent contour, W p = 2 ksi (13.8 MPa). The anisotropy parameters 

αi  are chosen for best fit of the experimental data and are given in Table 4.3a. The 

comparison of the resulting predicted work contour to the experimental one (W p = 2 ksi 

-- 13.8 MPa) can be seen in Fig. 4.7 to be quite favorable, while the agreement is 

somewhat more adverse for other contours, but better than the corresponding results with 

the two previous models. 

 Figure 4.23 shows the calculated engineering strain paths, in each case truncated 

at the related limit load. By comparison to the corresponding results in Figs. 4.19 and 

4.21, the paths are now uniformly much closer to the experimental ones, although the 

paths predicted for α  = 0.9, 1.0 and 1.25 continue to differ somewhat from the 

experimental ones. This improvement in performance can be linked to the better 

agreement between the calibrated and measured work contours, particularly true for the 

shapes, if not for the absolute values of the contours. Despite this improvement, the onset 

of limit states is further delayed and the corresponding strains (ends of trajectories) are 

much larger than the experimental ones. Consequently, the calculated onsets of rupture 

are similarly delayed as seen in Fig. 4.24 for the failure strains.  

 In a second attempt (Case II) the coefficients αi  are allowed to change with 

increasing plastic deformation (Plunkett et al., 2006). This is done in order to also 

account for the experimentally observed deformation-induced anisotropy. The calibration 

was performed as follows. For six of the experimental work contours (9.2, 150, 500, 

1000, 2000 and 3000 psi--63.5 kPa, 1.03, 3.45, 6.9, 13.8, 20.7 MPa) the anisotropy 

parameters were selected for best fit of each contour. The resulting αi  are given in Table 

4.3b while the fitted contours were presented in Fig. 4.9, where it can be noted that the 

agreement to the experimental data is superior to that in Fig. 4.8.  
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 In the FE implementation of this model, for each value of the plastic work the 

corresponding parameters are determined by linear interpolation between two 

neighboring contours. The calculated strain paths are compared to the measured ones in 

Fig. 4.25. The computed results in general follow the experiments with small deviations 

in the equibiaxial region. It is quite possible that additional data may be required in this 

high curvature area for further improvement of these predictions. It is interesting to 

observe that the results in Fig. 4.25 do not differ significantly from those of the previous 

calibration scheme (Fig. 4.23). This is partly due to the fact that the evolution of 

anisotropy is mild for this material, and partly due to the fitting of the previous case to a 

subsequent work contour rather than to the initial one. Unfortunately, the predicted limit 

states (ends of paths) are delayed essentially to the same extent as for the previous case. 

The same is true for the failure strains plotted with the corresponding experimental values 

in Fig. 4.26. This state of affairs confirms that matching of the work contours closely is 

not by itself sufficient to ensure accurate prediction of failure.  

 In an effort to understand the extent to which the calibrated yield functions used 

in the previous two cases need to be modified for the model predictions of the failure 

strains to approach the measured values, the following “hybrid” calibration approach was 

employed. The parameters given in Table 4.3b were considered as an initial guess for an 

iterative procedure where they were re-adjusted until an acceptable structural 

performance was achieved. The main structural performance criteria used were the loads 

and strains at which the limit load was attained. In Fig. 4.27, the axial (a) and 

circumferential (b) strains at the limit loads measured in the radial experiments are 

plotted as a function of the loading parameter α . Included are the corresponding values 

predicted using the two calibrations of Yld2000-2D described earlier (Cases I and II). 
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Both are seen to deviate from the experimental values by a certain degree. The two 

models also overpredict the corresponding limit pressures ( Pmax ) shown in Fig. 4.27c.  

 To improve this performance, the parameters were iteratively readjusted by 

performing a number of structural runs (using again the axisymmetric model), in each 

case modifying the anisotropy parameters αi  to approach the experimental data at the 

limit load. The values of αi  found to produce optimal overall results are given in Table 

4.3c. The calculated strains and pressures that correspond to the limit loads are included 

in Fig. 4.27 as Case III and are seen to be in much better agreement with the experimental 

values than Cases I or II. Even though the predicted work contours of Case III shown in 

Fig. 4.10 now deviate somewhat from the experimental values, the induced strain paths 

shown in Fig. 4.28 are uniformly better predicted. Furthermore, the limit load states (ends 

of trajectories) are quite close to the actual ones. Indeed, they are much closer than any of 

the results described previously. This uniformly improved performance also carries over 

to the calculated failure strains, shown in Fig. 4.29. For completeness, the calculated and 

experimental engineering stress paths prescribed are shown in Fig. 4.30 for this case. 

Marked on the trajectories are the predicted stresses at the limit loads ( ) and at the onset 

of rupture ( ) and the corresponding experimental values (red color). Both envelopes are 

seen to agree well with the experimental ones (compare this with the K-B predictions in 

Fig. 4.18). 

 It is interesting to observe that the work contours produced by this hybrid 

calibration scheme (Fig. 4.10) do not seem markedly different from those of Cases I and 

II (Figs. 4.8 and 4.9). However, the small shape changes introduced were sufficient to 

improve the predictions of failure. A detailed example of this improved performance was 

shown in Fig. 4.13 where the measured and calculated responses for the case with 

σ x = 0.9σθ  are compared. Included in the figure are the predictions obtained using the 
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K-B yield function. The first observation is that the Yld2000-2D-III responses are in 

better agreement with the measured ones than those yielded by K-B. The second is that 

the limit pressure and the onset of localized thinning are both attained at strains that are 

closer to the experimental values and simultaneously smaller than those of the K-B 

predictions. This carries over to most of the nine loading paths examined. 

 Clearly, the added flexibility provided by the 8 parameters of the Yld2000-2D 

model enables better fitting of the initial yielding and its evolution. This in turn is 

responsible for the overall better prediction of the strain paths compared to previously 

used models with fewer parameters. Nevertheless, this was not by itself sufficient for a 

corresponding improvement in the predicted rupture strains. A hybrid calibration 

procedure in which the yield function constants were also iteratively updated by 

monitoring the structural response had to be implemented for best overall performance. 

However, despite this procedure yielding very accurate predictions of failure, it is 

admittedly too cumbersome for implementation in more general settings.  

4.2.4 Numerical Results for the Corner Paths 

 The FE models are now used to simulate the corner path experiments and their 

performance is evaluated by direct comparisons of the two sets of results. Since it was 

established in the previous section that the Yld2000-2D, Case III model gave the best 

predictions of failure, it will be used to generate all the results to be reported for the 

corner paths. Additional runs are subsequently performed in order to span more broadly 

the biaxial stress and strain spaces examined and help extract more general trends.   

a. x → θ  Paths 

 We will discuss the main characteristics of the x → θ  path simulations by 

comparing experimental and predicted results from the 1.25 test. Figure 4.31 shows 



 126

comparisons of the measured and calculated axial and circumferential stresses and strains 

at mid-span. The prescribed stress path is included in Fig. 4.32 and the induced strain 

paths are compared to the experimental ones in Fig. 4.33. The first branch of this test 

involves pure uniaxial loading and as expected the numerical results replicate this exactly 

(see Fig. 4.31a). Figure 4.33 shows that the induced hoop strain follows a slightly 

different trajectory than the measured one, apparently because of some minor deficiency 

in the anisotropic yield function adopted in the neighborhood of the σ x  axis (this section 

of the stress space was not probed sufficiently in our original radial path tests used to 

calibrate the Yld2000 function -- see Fig. 4.7. This however, should not have a significant 

impact on the discussion that follows). Because of this small difference, the calculated 

σθ −εθ  response in Fig. 4.31b starts at a slightly smaller value of εθ  but follows a 

similar trajectory to that of the experimental one. Indeed, the position of yielding is 

reproduced well as is the limited hardening that follows. The tube experiences some mild 

circumferential expansion but a limit load instability develops at a strain of about 1.5%, a 

value that is somewhat larger than the corresponding experimental one (see also Fig. 

4.33). Beyond this point, the tube starts of develop some mild non-axisymmetric bulging 

that precipitates localized wall thinning in the axial groove. This is responsible for the 

sharp drop in pressure that is seen to occur at a strain of about 2.4%. As was done in the 

radial paths, we identify this point with the onset of rupture. The increasing 

circumferential strain in the descending part of the response, drawn in dashed line, is 

driven by the localizing deformation in the grooved zone illustrated in the similarly 

deformed configuration shown in Fig. 4.13c. In other words, the axial rupture observed in 

the corresponding experiment is reproduced by the model. The stresses and strains at the 

limit load and at rupture are listed in Table 4.4 and are marked in Figs. 4.32 and 4.33 with 

red bullets ( , ). It is important to note that the limit and rupture stresses are both close 
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to the experimental ones (see Table 3.2b and blue bullets -- ,  -- in Fig. 4.32). In other 

words, the analysis reproduces the path-dependence of the failure stresses observed in the 

experiment quite faithfully.  

 The other two x →θ  path experiments (0.75 and 0.9) were simulated in a similar 

fashion. The prescribed stress paths are included in Fig. 4.32, the induced strain paths in 

Fig. 4.33 while the σ x −εx  and σθ −εθ  trajectories appear in Figs. 4.34a and 4.34b 

respectively. The general trends of the predictions follow those of the experimental 

results. Both cases ruptured along a generator, which is in agreement with the 

experiments. The delay in yielding during the pressurization phase of the response 

observed in the experiments is reproduced by the simulations. So also is the relatively 

low rate of hardening of the inelastic part of this branch. Consequently, the stresses at the 

limit loads and at the points of rupture are in close agreement with the measured values 

(see Tables 3.2b and 4.4 and Fig. 4.32). Furthermore, both the experimental and 

numerical results indicate that re-yielding in the circumferential direction is delayed until 

a stress level develops that approximately corresponds to the maximum value reached 

during the axial stressing phase of the path. This “delayed” re-yielding is at least partly 

responsible for the much higher failure stresses of the x → θ  paths compared to the 

corresponding radial ones. 

 Incidentally, we observe that since our calculations are based on pure isotropic 

hardening plasticity, the level of agreement between the measured and calculated stress-

strain trajectories achieved in these simulations would indicate that for this particular Al 

alloy isotropic hardening must be dominant. This is said realizing that any deformation-

induced shape changes of the yield surface, such as those purported to take place in the 

direction of loading, that may affect other performance criteria of the model (e.g., the 

onset of instability), are obviously not accounted for by this constitutive model.  
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 The calculated strain paths are seen in Fig. 4.33 to follow the experimental ones 

quite well. However, as was the case for the 1.25 experiment, both the onset of the limit 

loads and the points of rupture are delayed somewhat compared to the experiments. It is 

reasonable to assume that this disagreement may be related to local changes in the yield 

surface shape not captured by our isotropic hardening plasticity model. This is suggested 

despite the deformation-induced adjustment of the anisotropy and the additional 

corrections to the yield functions described earlier (see Section 4.2.3), as such effects are 

most probably path dependent.  

 In summary then, the performance of the x → θ  path simulations and of the 

constitutive model as calibrated can be declared quite satisfactory as they support both 

qualitatively and quantitatively the experimental observations that for this type of corner 

paths the strains are strongly path dependent and the stresses of the limit states can also 

be so, especially as the prestrain increases.  

 For completeness, two additional pairs of cases were run numerically and will be 

discussed: R1.75 and R0.5 along with the corresponding x → θ  paths. The results from 

the x → θ  cases are included in Figs. 4.32-4.34. Both sets of results fall in line with the 

other three cases. Thus, for 1.75 the axial strain induced in the first branch of the path is 

larger than for 1.25 as is the corresponding contraction of the circumference (Fig. 4.33). 

A similar delay in yielding observed for the other cases during the pressurization phase of 

the path is seen to take place again (Fig. 4.34). The specimen develops a limit load 

instability close to 1% average εθ  and ruptures along a generator. The stress and strain 

trajectories are compared to those of the corresponding radial path in Figs. 4.35 and 4.36. 

Once again a very significant difference between the limit and failure stresses from the 

two paths is observed in Fig. 4.35. Interestingly, Fig. 4.36 shows that R1.75 induced a 
nearly pure axial straining that led to circumferential rupture at (εxf ,εθf ) of (9.19%, 0) 
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(see Table 4.4). These values compare with (εxf ,εθf ) of (11.7%, 1.91%) for the x → θ  

path. In other words, in the radial path rupture occurs at smaller strains reversing the 

trend seen in the other cases (0.75, 0.9 and 1.25).  

 The case of x → θ  0.5 develops no plastic strain during the axial phase of the 

path. Furthermore, this path engages the yield surface in the zone of relatively small 

curvature (see Fig. 4.10) as does the corresponding R path. (We note that experimental 

results for R0.5 presented in Section 4.2.3 are in good agreement with the present 

simulation). Consequently, during the pressurization phase an essentially purely hoop 

strain trajectory is traced that is nearly congruent to that of the R path (Fig. 4.36). The 

values of the limit and rupture strains from the two cases are also almost coincident, 

which indicates that the strain path plays a decisive role in influencing rupture. The 

corresponding stress values from the two paths (Fig. 4.35 and Table 4.4) differ slightly 

but the difference is by far the smallest amongst the five cases compared in this set. 

b. θ → x  Paths 

 The θ → x  1.25 experiment was also simulated numerically and the induced 

stress and strain paths are included in Figs. 4.32, 4.33, 4.35 and 4.36. In addition, the 

axial and circumferential stress-strain results are compared to the corresponding 

measurements in Fig. 4.37. The calculated stress-strain paths are very close to those 

measured. The end of the experimental strain path in Fig. 4.33 represents the point at 

which the specimen failed prematurely at the grips. In the simulation, rupture was 

circumferential and occurred at strains that are slightly lower than those of the end of the 

experimental trajectory. From this we conclude that in the experiment the tube must have 

been very close to rupture before the test was terminated by end-failure. The deformed 

configuration, illustrating circumferential localization at mid-span of the specimen is 

similar to that shown in Fig. 4.16c. The stresses at rupture in the simulation are seen in 
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Fig. 4.32 to be in good agreement to those of the experiment also. Included in Figs. 4.35 

and 4.36 are the stress and strain paths for the corresponding R path. The critical stresses 

of the θ → x  path are close to those of the R path but the strains differ considerably (as 

indeed was also the case in the experimental results in Figs. 3.15 and 3.16). 

 One additional pair of cases was run numerically comparing R1.75 and the 

corresponding θ → x  path. The calculated stress and strain paths are compared in Figs. 

4.35 and 4.36 while the axial and circumferential stress-strain responses for the θ → x  

run are included in Fig. 4.37. This particular radial path results in almost no plastic hoop 

strain and consequently the strain path is along the εx  axis or, in other words, plastic 

deformation is essentially limited to the axial direction. The axial response develops a 

limit load at a strain of 8.87% and ruptures circumferentially at a strain of 9.19%. These 

values are of course significantly smaller than the failure strains for the 1.75 x →θ  path 

included in Figs. 4.35 and 4.36 as are the failure stresses.  

 Interestingly, the θ → x  path induces a strain trajectory that is very similar to that 

of the R path. Apparently, despite the different stresses the model develops very limited 

plastic circumferential deformation during the pressurization phase. During the σ x  

branch of the path the material is initially elastic and plastic deformation, when it occurs, 

is limited to the axial strain. The axial response develops a limit load at εxL  = 8.63% and 

ruptures circumferentially at a strain of 8.91%. Both of these values are very close to 

those of the R1.75 path while the maximum axial stress achieved is slightly higher than 

that of the R path. This supports once more the premise that the strain path is a major 

factor in deciding rupture. Surprisingly, the two rupture strains are also very close to the 

corresponding εθ  values of the R0.5 and x →θ  0.5 paths, which ruptured along a 

generator. In other words, despite the difference in the mode of rupture, the critical 

strains in the two pairs of calculations are similar.  
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 Finally, it is also worth noting the significant difference between the critical stress 

levels of the 1.25 and 1.75 θ → x  and x → θ  paths observed in Fig. 4.35. As mentioned 

above, the critical stresses of the former paths are close to those of the R paths while the 

ones for the x → θ  paths are significantly higher. One contributor to this difference may 

be the fact that the stress levels of the initial σθ  branches of the θ → x  paths are 

significantly lower than the axial stresses achieved during the σ x  branches of the x → θ  

paths. Consequently, the induced σθ  stresses did not cause significant expansion of the 

yield surfaces whereas, as observed earlier, the σ x  branches did. Accordingly, during the 

axial stressing branches of the θ → x  paths plastic deformation recommences earlier and 

apparently this also leads to failure at lower stresses levels. 
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Table 4.1  Anisotropy variables for the Hosford 1979 model 

Model 2k  Sr  Sθ  

H 8 1.01 1.04 

 

 

Table 4.2  Anisotropy variables for two K-B models 

Model c  2k  Γ  α1 α2 δ  

K-B 0 8 0.680 0.94 0.97 1.249 

K-Bc 0.8 24 0.6665 0.96 0.99 1.287 

 

 

Table 4.3a  Anisotropy parameters for Yld2000-2D, Case I ( k =8) 

W p  α1 α 2 α 3 α 4 α 5 α 6 α 7 α 8 

2 ksi 0.78 1.15 0.85 0.89 1.06 1.03 1.0 1.0 

 

 

Table 4.3b  Anisotropy parameters for Yld2000-2D, Case II ( k =8) 

W p  α1 α 2 α 3 α 4 α 5 α 6 α 7 α 8 

9.2 psi 0.88 1.15 0.87 0.91 1.03 1.01 1.0 1.0 

150 psi 0.8 1.15 0.92 0.88 1.05 1.03 1.0 1.0 

500 psi 0.83 1.12 0.85 0.87 1.05 1.03 1.0 1.0 

1 ksi 0.83 1.15 0.85 0.88 1.05 1.03 1.0 1.0 

2 ksi 0.78 1.15 0.85 0.89 1.06 1.03 1.0 1.0 

3 ksi 0.74 1.18 0.85 0.89 1.06 1.03 1.0 1.0 

 

 

 



 133

 

Table 4.3c  Anisotropy parameters for Yld2000-2D, Case III ( k =8) 

W p  α1 α 2 α 3 α 4 α 5 α 6 α 7 α 8 

9.2 psi 0.917 1.066 0.92 0.935 1.018 0.993 1.0 1.0 

150 psi 0.87 1.066 0.92 0.91 1.05 1.03 1.0 1.0 

500 psi 0.87 1.066 0.85 0.92 1.05 1.03 1.0 1.0 

1 ksi 0.88 1.066 0.91 0.91 1.035 1.01 1.0 1.0 

2 ksi 0.88 1.066 0.94 0.94 1.04 1.01 1.0 1.0 

3 ksi 0.88 1.05 0.92 0.97 1.05 1.06 1.0 1.0 

 

 

 



 

 
 
 

Table 4.4  Summary of radial and corner path results from numerical simulation. Included are the stresses and strains at the 
limit load instability and at failure, and the mode of failure (A: axial, and C: circumferential rupture) 

 
R 
α  

x →θ
 

θ → x 
 

σθ max  
ksi 

σ x σθ max
 ksi 

σθ σ x max
 ksi 

σ x max
ksi 

σθf  
ksi 

σ xf  
ksi 

εθL  
(%) 

εxL  
(%) 

εθf  
(%) 

εxf  
(%) 

Mode 
of 

failure
0.5 - - 34.12 17.08 - - 33.57 16.81 8.55 -0.14 9.03 -0.34 A 
- 0.5 - 35.65 16.56 - - 34.76 16.56 8.63 -0.18 9.20 -0.34 A 

0.75 - - 33.84 25.42 - - 33.57 25.28 7.91 1.89 8.72 2.05 A 
- 0.75 - 36.55 25.51 - - 36.12 25.51 4.77 3.41 4.93 3.37 A 

0.9 - - 33.15 29.86 - - 33.00 29.72 7.91 6.78 8.83 7.15 A 
- 0.9 - 37.21 29.67 - - 36.55 29.67 2.76 7.49 3.08 7.54 A 

1.25 - - - - 26.04 32.50 25.21 31.53 1.11 13.44 1.23 14.35 C 
- 1.25 - 38.20 31.85 - - 38.20 31.88 1.47 10.00 2.36 10.36 A 
- - 1.25 - - 25.34 33.27 25.34 31.61 3.39 4.62 3.51 4.93 C 

1.75 - - - - 18.72 32.56 18.05 31.44 0.10 8.87 0.10 9.19 C 
- 1.75 - 37.66 32.11 - - 37.10 32.11 0.55 10.97 1.91 11.70 A 
- - 1.75 - - 18.49 33.89 18.49 31.89 0.26 8.63 0.26 8.91 C 

        1 ksi = 6.897 MPa. 
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Fig. 4.1 – Experimental data representing the initial yield surface according to two 
different definitions of yielding and Hosford’s anisotropic yield function.
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Fig. 4.2 – Experimental data presented in the form of equivalent true stress vs. the work conjugate equivalent logarithmic 

plastic strain based on Hosford’s anisotropic yield function.
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Fig. 4.3 – Loci of experimental points representing various levels of constant plastic work 
and corresponding contours based on Hosford’s anisotropic yield function. 
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Fig. 4.4 – Experimental data representing the initial yield surface according to two 
different definitions of yielding and Karafillis – Boyce yield function. 
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Fig. 4.5 – Loci of experimental points representing various levels of constant plastic work 
and corresponding contours based on Karafillis - Boyce anisotropic yield function. 
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Fig. 4.6 – Experimental data representing the initial yield surface according to two 
different definitions of yielding and the weighted Karafillis – Boyce yield function. 
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Fig. 4.7 – Experimental data representing the 2 ksi (13.8 MPa) work contour and the 
Yld2000-2D yield function, Case I. 
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Fig. 4.8 – Loci of experimental points representing various levels of constant plastic work 
and corresponding contours based on the Yld2000-2D yield function Case I. 
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Fig. 4.9 – Loci of experimental points representing various levels of constant plastic work 
and corresponding contours based on the Yld2000-2D yield function Case II. 
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Fig. 4.10 – Loci of experimental points representing various levels of constant plastic 
work and corresponding contours based on the Yld2000-2D yield function Case III. 
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Fig. 4.11 – Model geometry and FE mesh for cases that rupture in the axial direction. 
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Fig. 4.12 – Model geometry and FE mesh for cases that rupture in the circumferential 
direction.
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(b) 

Fig. 4.13 – Results from numerical simulation of α = 0.9 path using two plasticity 
models, and the corresponding experimental responses. (a) P − ε θ  and (b) σ x −εx . 
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(d) 

Fig. 4.13 (cont’d) – (c) Model deformed configuration just after the onset of localization 
(K-B) and (d) calculated wall thinning at two locations, from Yld2000-2D, Case III.
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Fig. 4.14 – Comparison of P − ε θ  responses calculated using two Karafillis – Boyce 
models (reference, K-B, and weighted, K-Bc).

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25
0

4

8

12

16P
(ksi)

ε
θ
 (%)

Al-6260-T4

K-B
c 

K-BExp.

α = -0.1

σ
x
 = ασ

θ

σ
θ

σ
x

Rupture

Onset of Localized Wall Thinning

P
(MPa)



 150

 
 
 
 
 
 
 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 
 
 

 
 

 
 
 
 
 
 

Fig. 4.15 – Comparison of P − ε θ  responses calculated using two Karafillis – Boyce 
models (K-B1 includes the shear anisotropy) and anisotropic Hosford’s model
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(b) 

 
Fig. 4.16 – Results from numerical simulation of α = 1.0 path using the Yld2000-2D, 
Case III plasticity model, and the experimental responses. (a) σ x −εx  and (b) P − ε θ . 
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Fig. 4.16 (cont’d) – (c) Model deformed configuration just after the onset of localization (Yld2000-2D, Case III). 
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(b) 
 

Fig. 4.17 – Results from numerical simulations of the nine radial experiments, using the 
K-B plasticity model. (a) θθ εσ  and (b) σ x −εx . 
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Fig. 4.18 – Engineering stress paths prescribed in the experiments and predicted by the 
analysis, using the K-B plasticity model. Marked are the stresses at the limit load and at 

rupture.
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Fig. 4.19 – Comparison of calculated and measured engineering strain paths for nine 
radial paths using the Hosford yield function. 
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Fig. 4.20 – Comparison of measured and calculated average strains at rupture using the  
Hosford yield function. 
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Fig. 4.21 – Comparison of calculated and measured engineering strain paths for nine 
radial paths using the Karafillis – Boyce yield function. 
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Fig. 4.22 – Comparison of measured and calculated average strains at rupture using the 
Karafillis – Boyce yield function. 
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Fig. 4.23 – Comparison of calculated and measured engineering strain paths for nine 
radial paths using the Yld2000-2D yield function, Case I. 
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Fig. 4.24 – Comparison of measured and calculated average strains at rupture using the 
Yld2000-2D yield function Case I. 
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Fig. 4.25 – Comparison of calculated and measured engineering strain paths for nine 
radial paths using the Yld2000-2D yield function, Case II. 
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Fig. 4.26 – Comparison of measured and calculated average strains at rupture using the 
Yld2000-2D yield function Case II. 
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Fig. 4.27 – Performance of the three constitutive models in predicting the limit load states 
for each imposed stress ratio α  and corresponding experimental data. (a) Axial 
strain at the limit pressure, (b) hoop strain at the limit pressure, and (c) limit 
pressure. 
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Fig. 4.28 – Comparison of calculated and measured engineering strain paths for nine 
radial paths using the Yld2000-2D yield function, Case III. 
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Fig. 4.29 – Comparison of measured and calculated average strains at rupture using the 
Yld2000-2D yield function Case III. 
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Fig. 4.30 – Engineering stress paths prescribed in the experiments and predicted by the 
analysis, using the Yld2000-2D-III plasticity model. Marked are the stresses at the limit 

load and at rupture.
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(b) 

Fig. 4.31 –(a) Axial, and (b) circumferential stress-strain responses recorded in the x →θ  
1.25 corner path experiment and comparison with the numerical simulation results using 

the Yld2000-2D-III plasticity model. The symbol ( ) in (a) corresponds to the limit 
pressure marked in (b).
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Fig. 4.32 Engineering stress paths prescribed in the experiments and predicted by the 
analysis, using the Yld2000-2D-III plasticity model. Marked are the stresses at the limit 

load and at rupture.
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Fig. 4.33 Comparison of measured and calculated engineering strain paths, using the 
Yld2000-2D-III plasticity model. Marked are the average strains at the limit load and at 

failure.
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(b) 
Fig. 4.34 (a) Axial, and (b) circumferential stress-strain responses from numerical 

simulations of various x →θ  corner paths. The symbol ( ) in (a) corresponds to the limit 
pressure marked in (b).

0

10

20

30

40

0 2 4 6 8 10 12 14
0

60

120

180

240σ
x

(ksi)

ε
x
 (%)

Al-6260-T4

0.75

0.9

0.5

σ
x

(MPa)

σ
θ

σ
x

1.75

1.25

0

10

20

30

40

-4 -2 0 2 4 6 8 10
0

60

120

180

240σ
θ

(ksi)

ε
θ
 (%)

Al-6260-T4

0.9

0.5

0.75

σ
θ

(MPa)

1.25
1.75



 172

 
 
 
 
 

 
 

 
 
 

 
 

 
 
 

 
 
 

 
 
 

 
 
 
 
 

 
 
 

 
 

 
 

 
 
 
 

Fig. 4.35 Engineering stress paths prescribed in numerical calculations, using the 
Yld2000-2D-III plasticity model. Marked are the average strains at the limit load and at 

failure.
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Fig. 4.36 Strain paths corresponding to stress paths in previous figure.
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(b) 

 
Fig. 4.37 (a) Circumferential, and (b) axial stress-strain responses from numerical 

simulations of various θ → x  corner paths. The symbol ( ) in (a) corresponds to the limit 
load marked in (b). Notice that the specimen failed at the grips before a limit load was 

encountered. 
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Chapter 5:  Numerical Modeling of Tube Hydroforming 

The present chapter contains the numerical simulations of the tube hydroforming 

experiments described in Chapter 2. As will be shown shortly, the standard von Mises 

plasticity does not yield accurate predictions of failure in these experiments. This 

prompted the formability study described in Chapters 3 and 4. With the constitutive 

framework developed in this study, we now return to the hydroforming experiments and 

examine numerically the prediction of the failures encountered. Different numerical 

models were developed in Abaqus/Standard for this purpose and are described below. 

5.1 GENERALIZED PLANE STRAIN MODEL (2D) 

5.1.1 Model Set-up 

The simplest model that can be used for the geometry at hand is a slice of the tube 

at mid-span, treated as a 2D problem. Exploiting the symmetries of the setup (see Fig. 

2.1), only one fourth of the tube slice needs to be examined, as shown in Fig. 5.1. (Note 

that the quarter sector was preferred over one-eighth as it allows demonstration of 

localization of wall thinning.) The model has been meshed with linear, 4-node, 

generalized plane strain elements with reduced integration (CPEG4R). These elements 

allow the application of a uniform deformation in the out-of-plane direction, replicating 

the effect of axial feed in the actual experiments. The use of linear elements is dictated by 

the presence of contact between the tube and the die. Soft contact is used, where the 

constraint is enforced by the introduction of non-linear springs on the tube surface nodes. 

In this case, the contact pressure-overclosure relationship is assumed to have an 

exponential form. The Coulomb friction coefficient used is μ = 0.2 (see Section 5.2.2). 



 176

The fluid cavity (see Fig. 5.1) is meshed with hydrostatic elements (F2D2), allowing for 

either pressure- or volume-controlled inflation. Additionally, this allows for the load on 

the structure (tube + fluid cavity) rather than on the tube only, to be monitored.  

The elements are arranged as 4 × 98 (thickness × circumference) for the CPEG4R 

elements, with 98 matching F2D2 elements in the inner surface of the tube (see Fig. 5.2). 

This configuration was arrived at after suitable parametric studies, shown in Fig. 5.3. The 

criterion for mesh convergence is the prediction of the final wall thickness. At least 60 

elements are required in the circumferential direction (Fig. 5.3a), whereas at least 4 

elements are needed in the thickness direction (Fig. 5.3b). The finding that even 4 

elements through the thickness can be sufficient is somewhat surprising, since the 

bending deformation is significant and reduced integration elements are used. Since the 

computational time required by any of these models is rather small, we opted to use the 4 

× 98 configuration which uses the most regularly shaped elements.  

To gain a better insight into the behavior of the 2D model, a number of additional 

parametric runs were performed by varying the coefficient of friction and the axial feed. 

In the first case, shown in Fig. 5.4a, increasing the friction impedes the flow of the 

material circumferentially and each material point that comes into contact with the die 

tends to remain where it is. As the internal pressure increases, localized wall thinning in 

the regions where the tube detaches from the die tends to develop (i.e., at about 25o and 

65o in Fig 5.4a). Friction tends to intensify the localization. Recall from Fig. 2.14b that 

these were exactly the locations of failure in the experiments.  

The effect of the axial feed on the final wall thickness is shown in Fig. 5.4b. By 

increasing the axial feed, the formed tube becomes thinner in the flat regions and thicker 

in the curved ones. Interestingly, the minimum thickness around the circumference 

appears to be much less sensitive to the axial feed.  
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5.1.2 Design of the Hydroforming Experiments 

The 2D model was used extensively for the design of the hydroforming 

experiments described in Chapter 2. Given a tube geometry and a target shape, the 

computational efficiency of the model allows the user to quickly generate estimates of the 

required loading parameters. With the benefit of this initial guess, the design can be 

further evaluated and streamlined with the aid of more detailed but also computationally 

more intensive 3D simulations.  

The philosophy employed in the design of our hydroforming experiments 

(Chapter 2) is to gradually increase the axial feed and the internal pressure in a manner 

that avoids load maxima, associated with buckling and wrinkling instabilities. Figure 5.5a 

shows an axial force-internal pressure-axial feed response from such a process parameter 

study with the 2D model. Note that the force reported is the one acting on the specimen 

only and that it increases monotonically. Four deformed configurations in Fig. 5.5b show 

the evolution of the cross section and correspond to the locations marked in Fig. 5.5a. In 

configuration  the tube is in partial contact with the die. Interestingly, as the axial feed 

is exhausted the tube is still not in full contact with the die, which prompts the further 

pressurization (calibration phase, see also Sect. 2.2.1). The pressure required for full 

contact exceeds 5,000 psi: configuration  at 5,500 psi is seen to be in full contact with 

the die.   

5.1.3 Numerical Results 

Despite its simplicity, the 2D model can provide fairly reasonable estimates for a 

variety of features of the hydroforming process. The final deformed configuration as 

predicted by this model for HY5 is shown in Figs. 5.6a (equivalent stress) and 5.6b 

(equivalent plastic strain). In the flat regions of the tube, the stress contours appear as 

layers, which is typical of bending dominated problems. In the still curved part, the 
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contours also appear as layers, which is characteristic of a cylinder under internal 

pressure. In the boundaries between the flat and the curved parts, the 2D model predicts 

locally increased plastic deformation. Further localization of the deformation will 

eventually lead to failure at these locations.  

The predicted wall thinning for the HY5 path is compared to the experiment in 

Fig. 5.7. The model reproduces the average wall thickness of the formed part quite well. 

However, it fails to capture the intensity of the localized deformation at the two locations 

where the flat sides meet the curved one. In one of these locations the wall thinning will 

increase further and will precipitate failure if the loading continues (see Fig. 2.14b). As 

will be shown later, even a fully 3D model fails to capture this feature when using the 

von Mises plasticity.  

Clearly then, the 2D model offers significant advantages in the preliminary design 

of a process and in the selection of material, undeformed geometry and loading path to 

achieve a target shape. However, it is impaired by the use of an unsuitable, for the 

material at hand, constitutive model and hence the predictions of failure cannot be 

depended upon. Also, given the high friction encountered in the process, the coefficient 

of friction and the axial strain that will develop at the tube mid-span (which the 2D model 

simulates) can only be guessed at this stage. This situation invites the use of more 

advanced 3D models, which are also capable of including the constitutive framework 

developed in Chapter 4. 

5.2 SHELL ELEMENT MODEL (3D-SH) 

The yield functions detailed in Chapter 4 were originally developed to describe 

the anisotropy of metallic sheets. Hence they are either limited to plane stress (e.g., the 

Yld2000-2D model) or can be adapted to such states (e.g., the Karafillis – Boyce model). 

Furthermore, the models were calibrated from experiments on thin-walled tubes under 
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internal pressure and axial load, i.e., where the through thickness stresses can be 

neglected. Naturally then, to employ these models as well as to take into account the 

three-dimensional features of the tube hydroforming process, the next step in the 

numerical modeling employs shell elements. It should be noted that shell element 

calculations constitute at the time of the writing of this report the standard industrial 

practice in sheet and tube forming simulations. 

5.2.1 Model Set-up 

A schematic of the shell element model is shown in Fig. 5.8. Taking into account 

the symmetries of the problem (see Fig. 2.1), only one eighth of the actual tube is 

considered. The model is meshed with linear, reduced integration shell elements (S4R), 

capable of course for large deformations. The mesh employed features 77 × 40 (length × 

circumference) elements and uses Simpson’s rule with 7 integration points for the 

through-thickness integration of the field equations. This mesh was arrived at after 

suitable parametric studies, shown in Figs. 5.9 to 5.13. In the order presented in these 

figures, the performance criteria examined were the final shape at mid-span, 0=x  in. 

(Fig. 5.9), the axial load-feed response (Fig. 5.10), the distribution of axial compressive 

strain along the tube (Fig. 5.11), and the final wall thickness at mid-span (Figs. 5.12 and 

5.13). The variables investigated were the number of elements in the axial direction, in 

the circumferential direction, and the through-thickness integration rule. The results of 

the parametric simulations shown in Figs. 5.9 to 5.12, demonstrate that 77 elements along 

the length and 40 around the circumference of the model are sufficient. Also, the use of 

the alternate integration rules available in Abaqus did not give different results (see Fig. 

5.13), hence the default option is used subsequently (Simpson rule with 7 integration 

points through the thickness). 
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It is worth noting that the number of elements in the circumference is less than 

half of those employed in the 2D model. Interestingly, finer meshes do not result in better 

performance. This can be explained by considering the aspect ratio of the different 

element arrangements. For the 77 × 40 mesh, the in-plane dimensions of each element are 

0.206 × 0.045 in. (length × circumference) while the undeformed thickness of the tube is 

0.080 in. Thus, further refining the mesh in the circumferential direction results in poorly 

shaped shell elements and should be avoided. In addition, the variations encountered in 

the axial direction are much milder than those in the circumferential one (see Figs. 2.15a 

and 2.18) and hence a relatively coarse mesh (axially) is sufficient. For these reasons, a 

locally refined mesh around the tube mid-span did not yield different results either.      

There is a variety of options available in Abaqus for the modeling of contact with 

shell elements. The default is that the reference surface is the mid-surface of the shell, 

and contact takes place between this surface and the rigid die. This was chosen because 

of its simplicity.  

5.2.2 Numerical Results 

A deformed configuration from the shell element model is shown in Fig. 5.14, for 

HY5 (the model has been reflected about the θ = 0 and θ = π 2 planes). The axial non-

uniformity of the shape of the formed tubes that is due to the friction (see Figs. 2.14 and 

2.15a) is reproduced by the numerical model very well. In fact, the model can be used to 

accurately calculate the coefficient of friction μ: in Fig. 5.15 the resulting compressive 

axial strain distributions along the tube for different values of μ are compared to the 

experimental one for HY8. A value of μ = 0.2 provides the best correlation between 

experiment and analysis and will be used throughout this work.  

The shell element model can be used in conjunction with the 2D model (see 

Section 5.1.2) to design a hydroforming process given the target shape and to predict the 
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properties of the formed tube. For example, the final thickness distribution of the tube is 

shown in Fig. 5.16. As a result of the friction, the thickness contours vary along the 

length of the tube with the most precarious conditions occurring at mid-span ( 0=x  in.). 

The localized wall thinning is predicted to occur at the locations where the flat sides meet 

the curved ones, as in the experiment. The areas of the figure that are colored in gray 

have become thicker than the undeformed tube (0.080 in.), as a result of the friction 

encountered in the die. The actual measurements of thickness for the same experiment 

(HY5) were presented in Fig. 2.18 and confirm the numerical results.  

The various constitutive models described and calibrated in Chapter 4 can be 

straightforwardly used with the shell element model of tube hydroforming. Since this 

model also includes the 3D geometry and the friction, it is interesting to examine the 

effect of the yield function on the numerical predictions of failure. In Fig. 5.17, the 

compressive load on the specimen is plotted with the axial feed for HY8 from the shell 

elements with the various models employed and is compared to the experiment. It 

appears that switching to a non-quadratic yield function lowers somewhat the predicted 

responses, however the details of each yield function do not make much difference. 

Similarly, the prediction of the axial compressive strain variation along the tube shown in 

Fig. 5.18 also appears to be insensitive to the model used. These findings are perhaps to 

be expected since the plotted quantities correspond to the overall structural response of 

the tube, in the presence of contact and friction. In both figures however, the good 

agreement between experiment and analysis is noted.   

What is more interesting in the context of failure prediction is the performance of 

the different constitutive models in the neighborhood of failure, i.e., at the tube mid-span. 

As shown in Fig. 5.19, the final shape of the mid-surface at mid-span is dependent to 
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some extent on the constitutive model, with the higher exponents leading to more 

pronounced deformation of the curved part of the cross-section.  

The prediction of the final wall thickness by the constitutive models described in 

Chapter 4 is presented in Figs. 5.20 and 5.21 and is compared to the experiment for the 

HY5 case. The effect of the anisotropic description is shown in Fig. 5.20. Most of the 

models considered yield approximately the same results. An exception is the isotropic 

Hosford with an exponent of 8, which produced more wall thinning and more pronounced 

localization. This finding is in drastic contrast with the results presented in Chapter 4 for 

the simulation of the free inflation experiments. In that problem, the details of each 

constitutive model had a much more profound effect on the prediction of rupture, which 

actually prompted the examination of additional models until a satisfactory performance 

was finally achieved.  

The effect of the yield function exponent on the predictions of wall-thinning is 

examined in more detail in Fig. 5.21 using the isotropic Hosford model. It is shown that 

increasing the exponent intensifies the localization, at the expense however of the quality 

of the prediction of wall thinning in the rest of the circumference. In addition, there 

would be no way of deciding on the appropriate exponent to capture the localization if 

the experimental value had not been available. 

In summary, we have seen that switching to a non-quadratic yield function 

improves the prediction of localization. At the same time, unlike the problem of free 

inflation, tube hydroforming in the context of a shell element model, is not particularly 

influenced by the specifics of each description of anisotropy. It will now be shown that 

these conclusions are not completely true if one switches to a more elaborate numerical 

model using solid elements. 
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5.3 SOLID ELEMENT MODEL (3D-SO) 

The objective of this model is to reproduce exactly the three-dimensional features 

of the hydroforming problem, but in contrast to the shell element model described in 

Section 5.2, to also capture and monitor the evolution of stress triaxiality in the regions of 

the tube that are in contact with the die and the evolution of localization.  

5.3.1 Model Set-up 

Once again the symmetries allow only one-eighth of the actual tube to be 

considered. The model is meshed with linear, 8-node solid elements with full integration 

(C3D8), arranged as 45 × 60 × 3 (axial × circumference × thickness). The model is 

shown in Fig. 5.22a, with a close up at mid-span given in Fig. 5.22b. As before, the 

relatively mild variations along the length of the tube in comparison to the circumference 

has allowed for a mesh with axially elongated elements. The mesh convergence studies 

are included in Figs. 5.23 to 5.25. As before, we seek the optimal number of elements in 

the axial, hoop and thickness directions. The axial load-feed response is given in Fig. 

5.23, the distribution of axial compressive strain along the tube in Fig. 5.24 and the final 

wall thickness at mid-span in Fig. 5.25. It can be concluded that at least 3 elements 

through the thickness, 60 around the circumference and 45 along the length are required 

for best performance.  

5.3.2 Numerical Results 

The hydroforming experiments were simulated with the solid element models and 

the results presented in the following figures. Once again several constitutive frameworks 

will be considered. Figure 5.26 shows the deformed configuration of the tube. The effect 

of the coefficient of friction in the non uniform final shape is quite obvious, as was the 

case with the shell element model in Fig. 5.14. Another rendering of the original and the 
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deformed configurations is given in Fig. 5.27. The equivalent plastic strain contours are 

shown in Fig. 5.28 for the isotropic Hosford model with an exponent of 8. It can be seen 

that there is significant deformation at the feeding end of the tube, which as reported 

earlier is due to wall thickening. At mid span, the model predicts localized wall thinning 

at the expected locations. An interesting feature is that in any one quadrant, one of the 

thickness wells tends to deepen at faster rate than the other (see later discussion). The 

contact pressure contours between the tube and the die are given in Fig. 5.29. The 

boundary of contact between the tube and the die is outlined very neatly by the highest 

pressure contour, as expected.  

Quantitative comparisons of the solid element models to the hydroforming 

experiments is given next. In addition to the constitutive models presented in Chapter 4, 

here we will also include results based on a more recent 3D extension of the anisotropic 

Yld2000-2D of Barlat et al. designated as Yld2004-3D. The model is outlined in 

Appendix A while the subroutine used was provided by Yoon (2009). The axial load-feed 

responses calculated for HY2 with the solid elements using 3 constitutive models appear 

in Fig. 5.30 along with the corresponding experimental one. The three models yield 

similar predictions, as noticed earlier from the shell element simulations, while the 

agreement of all three models with the experiment is very good. Similar is the conclusion 

from Fig. 5.31 which shows the distribution of axial compressive strain along the formed 

tube. Figures 5.32 and 5.33 show comparisons of predicted and measured wall thinning 

for HY6 and HY2 respectively. In these results the three constitutive models yield 

significantly different predictions. It can be seen that a non-quadratic yield function 

promotes the localization much more than the von Mises plasticity model does. This is 

particularly pronounced in the two zones of localized wall thinning at approximately 25o 

and 65o. It is interesting to also observe that at some stage, one of the sites overtakes the 
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other one, as is natural in localization problems. Depending on the specifics of each 

loading path, incorporation of anisotropy may or may not have a noticeable effect on the 

thinning predictions, at least for the present material (compare Fig. 5.32 for HY6 to Fig. 

5.33 for HY2). The present results support the conclusion drawn earlier from the shell 

element calculations, namely that the specifics of the description of anisotropy appear to 

be much less crucial in tube hydroforming than they were for the free inflation problem. 

The difference however between the two sets of results is that in the solid element 

models, the calculated thickness wells approach the experimental measurements more 

closely (compare Figs. 5.20 and 5.32 or 5.33).  

A set of solid element results that illustrate the effect of the exponent of the yield 

function on the predicted localized wall thinning at mid-span is shown Fig. 5.34. Notice 

that despite the thickness being approximately the same in the rest of the tube, increasing 

the exponent leads to much more intense localization of wall thinning. The evolution of 

wall thinning with pressure is shown in Fig. 5.35. While the wall thickness is initially 

uniform, as the deformation progresses and the tube-die contact is established, the friction 

encountered promotes the development of two wells in the circumferential distribution of 

the thickness. This deformation pattern is stable up to some pressure, but at higher values 

the deformation localizes in one of the two wells and grows precipitously leading to 

failure (not included in the model). Simultaneously the thickness well at the second site 

stops growing. This “bifurcated” behavior is better illustrated in Fig. 5.36 where the 

thickness reduction in the two wells is plotted against the pressure. The critical pressure 

is approximately 4400 psi. Interestingly this is very close to the pressure at which the 

HY6 tube failed in the experiment.  
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5.4 DISCUSSION 

We now summarize the main findings from the numerical simulations of tube 

hydroforming. First, a 2D model, although capable of reproducing most of the structural 

aspects of the process is unsuccessful in capturing localization and by extension, failure. 

Prompted by the results of the free inflation study, the problem was tackled next with 

shell elements using increasingly more complex constitutive models. However, this 

model did not prove to be adequate for hydroforming, either.    

The results indicate that correct simulation of the evolution of localized wall 

thinning requires a fully 3D model using solid elements. This can be attributed to the 

triaxiality that is associated, first with the contact of the structure with the die and second 

with the actual necking process. In the regions that are in contact with the die, the tube is 

acted upon by the internal and contact pressures. Hence, non-negligible through thickness 

stresses develop. In addition, necking is triggered and regulated by the tube-die contact 

and by the resulting friction. This causes a relatively stable deformation, with multiple 

necks forming around the circumference and growing gradually with pressure (see Fig. 

2.18 and 5.35). Capturing the stress triaxiality and the growth of the necks, both essential 

for accurate failure predictions, requires the use of solid elements.  

By contrast, in the free inflation problem rupture is precipitated by a structural 

limit load instability. Failure is once more localized necking but one that occurs soon 

after the limit load in a sudden and dynamic fashion. Thus the simulation of the problem 

can be terminated at the onset of localization. In other words, it is not necessary to track 

the evolution of the localized wall thinning. Since the stress state up to the onset of 

localization is essentially two-dimensional (negligible through thickness components), it 

can be adequately represented by a shell element model. This is a crucial difference 
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between the two problems and the reason behind the requirements for different FE 

formulations.   

Interestingly, Cho et al. (2002) observed a similar need for a switch to solid 

elements in predictions of necking in sheet metal stamping. Despite the thin-walled 

geometry, the contact with a die can result in triaxial stress states locally that can only be 

captured by a 3D formulation.  
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Fig. 5.1 – Problem geometry in 2D: all dimensions in inches. Note the initial gap between 
the tube and the die.
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Fig. 5.2 – Finite element mesh used with the generalized plane strain elements 
(dimensions given in Fig. 5.1).
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Fig. 5.3 – Convergence study for the effect of number of (a) circumferential and (b) through-thickness elements on the 
prediction of wall thinning. 
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Fig. 5.4(a) – Effect of friction coefficient on the prediction of wall thickness distribution 
at mid-span
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Fig. 5.4(b) – Effect of axial feed on the prediction of wall thickness distribution at mid-
span 
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Fig. 5.5 – Results from a 2D simulation used to select hydroforming process parameters. 
(a) Load – pressure – axial feed history, and (b) predicted cross-section deformed 

configurations.
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Fig. 5.6 – Results from numerical simulations of experiment HY5 using the 2D model with von Mises plasticity. (a) Equivalent 
stress, and (b) equivalent plastic strain.
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Fig. 5.7 – Experimental and predicted circumferential distribution of wall thickness at 
mid-span (2D model using von Mises plasticity).
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Fig. 5.8 – Undeformed mesh using 77 × 40 shell elements (L × θ), showing 1/8th of the tube (surrounding die has been 
removed for clarity).
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Fig. 5.9 – Effect of number of elements on the prediction of the mid-surface final shape at mid-span. (a) 77 elements along the 
tube, and (b) 97 elements.
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Fig. 5.10 – Effect of number of elements on the prediction of load on specimen vs. axial feed response. (a) 77 elements along 
the tube, and (b) 97 elements.
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(a)                                                                                                                (b) 
 
 

Fig. 5.11 – Effect of number of elements on the prediction of axial strain along the formed tube. (a) 77 elements along the tube, 
and (b) 97 elements.
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Fig. 5.12 – Effect of number of elements on the prediction of wall thickness distribution at mid-span. (a) 77 elements along the 
tube, and (b) 97 elements. 
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Fig. 5.13 – Effect of type of integration rule on the prediction of wall thickness 
distribution at mid-span.



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.14 – Deformed configuration for experiment HY5 using shell elements with 2.0=μ  and the Hosford plasticity model 
(isotropic case, k=8). Surrounding die has been removed for clarity and the model has been reflected about the 0=θ and 

2= πθ  planes. Notice the variation of shape along the length and compare with the experiment in Fig. 2.14a.
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Fig. 5.15 – Predictions of the axial strain variation along the formed tube for different 
coefficients of friction and comparison to experiment, using von Mises plasticity. 
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Fig. 5.16 – Predicted thickness reduction contours for the shell element model ( 2.0=μ ) for experiment HY5, using the 

Hosford plasticity model (isotropic case, k=8). In the grey areas the formed tube is thicker than the undeformed one (compare 
to Fig. 2.18). 
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Fig. 5.17 – Predictions of axial load on the tube specimen against the axial end feed for 
HY8, with different plasticity models. Also included is the experiment.

0

10

20

30

40

50

60

70

0 5 10 15 20

Exp.
von Mises
Hosford, k=8
Anis.Hosford
Karafillis-Boyce
Yld2000-2D-III

  -F
spec.

(kips)

Al-6260-T4

Exp. HY8
3D-Sh Model

μ=0.2

−2δ / L (%)



 206

 
 
 
 
 

 
 

 
 

 
 

 
 
 

 
 
 
 

 
 
 

 
 

 
 

 
 

 
 
 

 
 

 
 
 
 
 
 

Fig. 5.18– Effect of constitutive model on predicted axial strain distribution along the 
formed tube for HY5, and comparison to experiment.
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Fig. 5.19– Effect of constitutive model on predicted final shape of the mid-surface at 
mid-span for HY5.
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Fig. 5.20 – Effect of the yield function employed on the prediction of wall thinning at 
mid-span for HY5. The constitutive models have been calibrated in Chapter 4.
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Fig. 5.21 – Effect of the exponent of Hosford’s yield function (isotropic case) on the 
prediction of wall thinning at mid-span for HY5.
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(a)                                                                                                                                          (b) 
 

Fig. 5.22 – (a) Undeformed mesh using 45 × 60 × 3 shell elements (L × θ × t) continuum (solid) elements, showing 1/8th of the 
tube, and (b) close-up of the model at mid-span, showing the arrangement of the elements. Surrounding die has been removed 

for clarity.
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Fig. 5.23 – Effect of number of (a) through-thickness and (b) axial and circumferential elements on the prediction of load on 
specimen vs. axial feed response.
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(a)                                                                                                                (b) 
 
 

Fig. 5.24 – Effect of number of (a) through-thickness and (b) axial and circumferential elements on the prediction of axial 
strain along the formed tube.
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(a)                                                                                                                (b) 
 
 

Fig. 5.25 – Effect of number of (a) through-thickness and (b) axial and circumferential elements on the prediction of wall 
thickness distribution at mid-span.

213



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 5.26 – Deformed configuration for experiment HY6 using solid elements ( 2.0=μ , Hosford, isotropic, k=8). Notice the 
variation of shape along the length and compare with the experiment in Fig. 2.14a 
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(a) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(b) 

 
Fig. 5.27 – Renderings of (a) initial, and (b) deformed configuration using solid elements. 

Surrounding die has been removed for clarity.



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5.28 – Prediction of equivalent plastic strain of the formed tube for experiment HY6, using the solid elements ( 2.0=μ , 

Hosford, isotropic, k=8). Note the large deformation at the feeding end of the tube.
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Fig. 5.29 – Prediction of the contact pressure between the formed tube and the die for experiment HY6, using the solid 

elements ( 2.0=μ , Hosford, isotropic, k=8). The contours outline the boundaries of contact between the tube and the die 
(compare with the experiment at Fig. 2.14a).
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Fig. 5.30 – Predictions of axial load on the tube specimen against the axial end feed for 
HY2, using solid elements with different plasticity models. Also included is the 

experiment.

0

10

20

30

40

0 2 4 6

  -F
spec.

(kips)

Al-6260-T4

Exp. HY2

3D-So Model
μ=0.2

−2δ / L (%)

Exp.

Yld2004-3D

Hosford, k=8

von Mises



 219

 
 
 
 
 

 
 

 
 

 
 

 
 
 

 
 
 
 

 
 
 

 
 

 
 

 
 

 
 
 

 
 

 
 
 
 
 
 

Fig. 5.31– Effect of constitutive model on predicted axial strain distribution along the 
formed tube for HY6, and comparison to experiment.
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Fig. 5.32 – Predictions of wall thinning for HY6 using solid elements with 2.0=μ  and 
different plasticity models. Also included is the experiment.
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Fig. 5.33 –Predictions of wall thinning for HY2 using solid elements with 2.0=μ  and 
different plasticity models. Also included is the experiment.
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Fig. 5.34 – Effect of exponent of Hosford’s yield function (isotropic case) on the 
prediction of wall thinning at mid-span.
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Fig. 5.35 – Evolution of the localization of plastic deformation, using the solid element 
model and the Yld2004-3D yield function.
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Fig. 5.36 – Evolution of wall thinning at the two thickness depressions (see Fig. 5.35) 
using the solid element model and the Yld2004-3D yield function. 
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Chapter 6:  Conclusions 

This dissertation uses experiments and analyses to study aluminum tube 

hydroforming. The study includes the design and fabrication of a custom hydroforming 

testing facility, the design and conduct of hydroforming experiments and investigation of 

bursting failures that were found to be a limit state of the process. Following are the 

major conclusions drawn from these efforts.  

6.1 HYDROFORMING EXPERIMENTS 

The hydroforming experiments were performed in a dedicated facility, designed 

and fabricated for the purposes of this study. The specimens tested were Al-6260-T4 

seamless tubes with diameters of approximately 2.36 in and wall thickness of 0.080 in. 

The circular tubes started with a length of about 32 in and they were formed into a 

rounded square cross section with a side of 2.4 in. The major points to be made from the 

experimental investigation of the THF process are: 

(a) The loading paths were selected so as to avoid maxima in the axial load, so that 

overall bucking and wrinkling were not encountered in our experiments.  

(b) Because of the relatively large aspect ratio of the test specimens chosen, friction 

between the tube and the die prevented the complete filling of the die and yielded 

products with a non-uniform axial shape. The tubes thickened close to the feeding 

end, while they developed non-uniform wall thinning around mid-span.  

(c) The amount of wall thinning was affected by the friction, and typically involved two 

thickness wells at each quadrant of the rounded square cross-section.  
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(d) As a result of (b) and (c), burst was a major limiting factor in the experimental work 

prompting an extensive independent investigation of bursting under biaxial loading 

states of this alloy tubes.  

6.2  TUBE FORMABILITY STUDY 

This study was dictated by the need to understand and model bursting as a major 

limit state in hydroforming. The study involved loading of Al-6260-T4 tubes to failure 

under selected biaxial stress states and calibration and evaluation of constitutive models 

for the prediction of the induced strain paths and failures. The main conclusions from the 

experimental study are the following:  

(a) Tubes were tested to failure under radial and corner paths in the engineering stress 

space. Depending on whether the axial or the hoop stress was dominant, the tubes 

failed in different modes (circumferential or axial rupture, respectively).  

(b) For some paths, significant deformation followed the limit load. This dictates the use 

of volume instead of pressure control when inflating the specimens. 

(c) The failure strains are influenced by the cylindrical geometry of the test specimens. 

Thus, for example, for the uniaxial hoop stress state (until bulging develops) the limit 

hoop strain was 11.8%, which compares with a 19.5% strain measured in a uniaxial 

tension test on an axial strip. Hence the formability investigation needs to be 

performed on tubes directly, rather than extrapolated from studies on sheets. 

(d)  The shape of the initial yield surface for Al-6260-T4 lies between that of the Tresca 

and von Mises yield surfaces, as indeed has been observed previously for many 

aluminum alloys. Thus, a non-quadratic yield criterion is required for the present 

material.  
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(e) The material exhibited some initial anisotropy that appears to be different from that 

observed in aluminum alloy sheets. In addition, the constant plastic work contours 

indicate that the anisotropy evolved to some degree with deformation. 

(f) The corner path tests verified that the failure strains are distinctly path-dependent, as 

expected. However, it was discovered that the failure stresses can be path-dependent 

as well, especially as the prestrain increases. This was at least partly attributed to the 

fact that the corner paths chosen introduced significant prestraining to the specimens, 

something that is not sufficiently investigated in the literature. For the specific 

material, this tended to expand the yield surface, which in turn delayed re-yielding 

during the second branches of the corner paths. 

The following conclusions can be drawn from the numerical investigation. 

(a) The initial yield surface was fitted quite well using Hosford’s principal stress 

anisotropic yield function and two versions of the K-B yield function with exponents 

of 8. The more powerful yield function examined subsequently (Yld2000-2D) 

captured the experimental work contours even better.  

(b) Strains from the radial paths calculated with the H and K-B models differed from 

measured ones, in particular in the neighborhood of equibiaxial tension, where the 

yield surface has the highest curvature. On the other hand, the use of Yld2000-2D 

captured the experimental strain paths very well.  

(c) The influence on burst of the sizeable shear anisotropy present in the tubes tested was 

found to be small. 

(d) The stresses corresponding to the limit load instabilities were generally well captured 

by the simulations. The corresponding strains and those at the onset of rupture were 

very sensitive to the constitutive model used. A properly calibrated Yld2000-2D 

model gave the best predictions of the onset of failure. The same function was very 
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satisfactory in predicting failure not only for the radial, but for the corner paths as 

well.  

(e) The hybrid calibration procedure used for the best performing Yld2000-2D model is 

too cumbersome to be used in more complicated settings.  

6.3 HYDROFORMING SIMULATIONS 

Several levels of modeling were performed for the simulation of the hydroforming 

experiments. These include 2D models used primarily for the preliminary design of the 

experiments and 3D shell and solid element models that are more appropriate for 

capturing the effects of friction and the axial variation of deformation. These simulations 

led to the following observations:  

(a) A 2D model using generalized plane strain elements can reproduce quite well the 

main structural features of the THF process. Hence it can be profitably used to 

generate estimates of the initial cross sectional geometry, material specification and 

loading path to obtain a given target shape. On the other hand, it is deficient in 

predicting failure. 

(b) The next level of analysis involves a 3D FE model that uses shell elements. Such a 

model is capable of incorporating the yield functions calibrated and evaluated in the 

formability study (Chapters 3 and 4). The model includes friction and reproduces the 

axial variation of the shape of the formed tube, as well as a variety of structural 

features of the problem (e.g., axial load-feed response, distribution of axial strain 

along the tube, etc.). However, the shell elements fail to capture the localized wall 

thinning to the extent and intensity that it was observed experimentally, and hence the 

failure predictions also fall short of the experiments. This is true despite the use of the 

various constitutive models that were calibrated in Chapter 4 to give excellent 

predictions of failure in the free inflation case.   
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(c) The deficiency of the shell element model was traced to the stress triaxiality that 

develops during hydroforming, both due to the tube-die contact and to the necking 

itself. To capture this, a discretization of the problem using solid elements is required. 

In conjunction with a non-quadratic yield function, this model yielded failure 

predictions much more in concert with the experiments. Traditionally sheet metal 

forming processes have been modeled using formulations based on thin-walled 

assumptions (i.e., shell elements). The present results demonstrate that localized wall 

thinning in the presence of contact is a fully 3D process, requiring appropriate 

modeling with solid elements, if tracking of its evolution is necessary for predicting 

failure. 

(d) Using the solid element model, the details of the anisotropic description appear to be 

less crucial in hydroforming, than they were in the free inflation. This is due to the 

different stress states and paths involved and to other factors active in hydroforming 

and not present in the free inflation case such as geometrical constraints, friction, etc. 
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Appendix:  Yld2004-3D Anisotropic Yield Function 

The Yld2004-3D constitutive model suggested by Barlat et al. (2005) follows the 

lines of their earlier Yld2000-2D function (see Chapter 4) but affords a fully three-

dimensional description of anisotropy. Two linear transformations are used here as well, 

operating on the deviatoric stress tensor and offering a total of eighteen parameters for 

the description of anisotropy (compares with the eight parameters of Yld2000-2D). 

Despite the popularity of the plane stress models, especially for sheet metal forming 

applications, the three-dimensional nature of necking and localization even in a thin sheet 

may necessitate the use of this more complete model. 

The starting point is again the non-quadratic isotropic yield function of Hosford 

(1972) which in terms of the principal values of the stress deviator is written as:  
 

   s1 − s2
k + s2 − s3

k + s3 − s1
k = 2σο

k        (A.1) 

Anisotropy is now introduced by two linear transformations, which are used to 

construct the tensors ′ S , ′ ′ S  from the actual stress tensor as follows:  
 

  ′ S = ′ C s = ′ C Tσ = ′ L σ        and        ′ ′ S = ′ ′ C s = ′ ′ C Tσ = ′ ′ L σ      (A.2) 

where ′ C , ′ ′ C ,T , ′ L  and ′ ′ L  are appropriate transformation matrices that allow 

introduction of the anisotropy.  

Naturally, the deviator is obtained from the stress tensor with the transformation 

matrix T : 
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T =
1
3

2 −1 −1 0 0 0
−1 2 −1 0 0 0
−1 −1 2 0 0 0
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⎢ 
⎢ 
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⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

       (A.3) 

while the transformation matrices ′ C  and ′ ′ C contain the 18 anisotropy parameters: 

 

 ′ C =

0 − ′ c 12 − ′ c 13 0 0 0
− ′ c 21 0 − ′ c 23 0 0 0
− ′ c 31 − ′ c 32 0 0 0 0

0 0 0 ′ c 44 0 0
0 0 0 0 ′ c 55 0
0 0 0 0 0 ′ c 66

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

     (A.4a) 

and 

  

′ ′ C =

0 − ′ ′ c 12 − ′ ′ c 13 0 0 0
− ′ ′ c 21 0 − ′ ′ c 23 0 0 0
− ′ ′ c 31 − ′ ′ c 32 0 0 0 0

0 0 0 ′ ′ c 44 0 0
0 0 0 0 ′ ′ c 55 0
0 0 0 0 0 ′ ′ c 66

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

     (A.4b) 

Writing now the principal values of the linearly transformed stress tensors ′ S  and ′ ′ S  as 

( ′ S 1, ′ S 2, ′ S 3) and ( ′ ′ S 1, ′ ′ S 2, ′ ′ S 3), respectively, the Yld2004-3D yield function is: 

 
φ = ′ S 1 − ′ ′ S 1

k + ′ S 1 − ′ ′ S 2
k + ′ S 1 − ′ ′ S 3

k + ′ S 2 − ′ ′ S 1
k +

′ S 2 − ′ ′ S 2
k + ′ S 2 − ′ ′ S 3

k + ′ S 3 − ′ ′ S 1
k + ′ S 3 − ′ ′ S 2

k + ′ S 3 − ′ ′ S 3
k = 4σο

k
      (A.5) 

The analytical solution for the principal stresses ( ′ S 1, ′ S 2, ′ S 3) and ( ′ ′ S 1, ′ ′ S 2, ′ ′ S 3) using 

Cardan’s method, as well as the first and second derivatives of the yield function with 
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respect to the stress components, which are required for the flow rule and the consistent 

tangent modulus, are given in Barlat et al. (2005).  

 In concert with the rest of our work, the exponent k  is again assigned the value of 

8, typical for aluminum alloys. The model is then calibrated by fitting the twelve 

parameters ′ c ij  and ′ ′ c ij  (i, j =1,3) to the 2 ksi plane stress work contour. These parameters 

are associated with normal stresses. The remaining six parameters, ′ c ii  and ′ ′ c ii  ( i = 4,5,6, 

no sum on i) which are associated with shear stresses are set equal to 1, since it was 

demonstrated that shear anisotropy does not affect the failure predictions (see Section 

4.2.2). The set of eighteen parameters thus arrived at is given in Table A.1 and the 

resulting plane stress work contour is shown in Fig. A.1. Notice that the agreement 

between the predicted and the experimental contour is excellent, except perhaps for the 

uniaxial loading path. This state of stress however lies quite different from the stress 

states encountered in tube hydroforming. The performance of the constitutive model in 

the 3D simulations of tube hydroforming is included in Chapter 5 (see Figs. 5.30 to 5.36).  

 
 
 

Table A.1  Anisotropy parameters for Yld2004-3D ( k =8) 

W p  12c′  13c′  21c′  23c′  31c′  32c′  44c′  55c′  66c′  

2 ksi 

1.02 1.21 1.14 0.91 0.64 0.73 1.0 1.0 1.0 

12c ′′  13c ′′  21c ′′  23c ′′  31c ′′  32c ′′  44c ′′  55c ′′  66c ′′  

1.01 0.85 0.82 1.0 1.03 0.98 1.0 1.0 1.0 
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Fig. A.1 – Experimental data representing the 2 ksi (13.8 MPa) work contour and the 
Yld2004-3D yield function. 
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