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In vivo analysis of cell division during vertebrate development
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In this work, we identified and characterized developmentally regulated aspects to

cell division in the Xenopus laevis.  We found that cells in the early neural plate divide in

an oriented manner.  This orientation is established by Cdc42 controlled maintenance of

stable interactions between the spindle and the cell cortex.  This role of Cdc42 is

developmentally regulated and cells dividing later in a related tissue, the tail epidermis,

are not under this control.  Moreover, we find that the cell divisions in the early neural

plate are further specialized in their mechanisms of cell division.  Cells in the early neural

plate exhibit exaggerated anaphase-B movements, a delayed onset of cytokinesis, low

density of midzone microtubules and a rapid cytokinetic furrow ingression as compared

to the late tail epidermis, another ectodermally derived tissue.  These modifications to the

mechanism of cell division appear to be because of a reduced level of PRC1, a

microtubule bundling protein, and thus modifications to the central spindle structure.

Finally, we find that cytokinetic mechanisms may be functionally related to the process

of ciliogenesis.  We find proteins known to localize to the central spindle localized to the

rootlet of the basal body of cilia in multiciliated cells of the mucociliary epidermis.  This
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localization may be related to vesicle transport during both these processes.  This work

reveals unexpected plasticity to fundamental mechanisms of cell division
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Chapter 1: General Information

1.1 STEPS OF CELL DIVISION

The phases of the cell cycle are well studied and this process is well conserved

between species (Hartwell and Weinert, 1989; Nurse, 1990; Oshima and Campisi, 1991).

The process of cell division undergoes a number of modifications during development.

Just after fertilization, cells begin a process called cleavage whereby cells divide in a

rapid manner, only undergoing DNA replication and mitosis, approximately halving their

volume after each division (Etkin, 1988; Masui and Wang, 1998; Philpott and Yew,

2005). Cell divisions are rapid and synchronous during the first 10-13 cell divisions after

fertilization (Kane and Kimmel, 1993; Fogarty et al., 1994; Klymkowsky and Karnovsky,

1994).  After this cell cycle the cell cycle begins to extend to a classical cell division

cycle.  The phases of this cycle are interphase and mitosis (Oshima and Campisi, 1991).

Interphase is, in fact, three individual phases: a growth period (G1), synthesis (S) and a

second growth period (G2).  Mitosis is also divided into phases: prophase,

prometaphase/metaphase, anaphase and telophase.  As embryos develop, the cells begin

to differentiate (Figure 1.1).  Once fully differentiated, cells generally enter a quiescent

state (G0).  When required, for example when a tissue is injured, cells can re-enter the

cell cycle.

1.1.1 Interphase

Interphase is the longest phase of the mitotic cell cycle.  During this period the

cell builds up the materials it needs to undergo division and prepares these materials for

mitosis.  As mentioned above interphase is divided up into three phases, G1, synthesis (S)
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and G2.  During G1, cells prepare for S-phase by building up the proteins required, such

as polymerases and histones (Pardee, 1989).  During the synthesis phase, the DNA of the

cell is replicated and is prepared for separation during mitosis.  Nucleosomes form on

newly replicated DNA just behind the replication machinery (Laskey et al., 1989).  This

is the beginning of chromosome condensation for mitosis.  Chromosomes will be further

condensed later in the cell cycle.  During the second growth phase, G2, the cell ensures

that chromosomes are replicated with high fidelity (Laskey et al., 1989) (Figure 1.1).

1.1.2 Mitosis

The phase of “mitosis” is the process by which the newly synthesized DNA is

separated into two new cells.  Mitosis has been divided into four individual phases:

prophase, prometaphase/metaphase, anaphase and telophase.  During prophase, DNA

continues the condensation started during the synthesis phase and the nuclear envelope

begins to break down.  This phase ensures that the chromosomes are small enough to

separate quickly.  The mitotic spindle begins to form by mass assembly of microtubules

from the newly replicated centrosomes.  These mitotic spindle microtubules become

attached to the kinetochores of the chromatid pairs and the spindle positions the

chromosomes at the metaphase plate during prometaphase/metaphase (McIntosh and

Koonce, 1989).  Next, anaphase occurs where sister chromatids are separated from each

other and move toward the spindle poles.  Anaphase occurs in two steps.  First, anaphase-

A occurs, where the chromosomes move apart from each other and then the spindle poles

separate from one another during anaphase-B (Cande and Hogan, 1989). Telophase then

occurs to create two new daughter cells by forming two new nuclei and decondensation

of the chromosomes (McIntosh and Koonce, 1989).  The process of cytokinesis separates

these two new cells.  Plasma membrane from each side of the cell ingresses then meets at
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the middle of the daughter cell (Rappaport, 1971; Glotzer, 2001).  The final step to the

cell cycle is the abscission where the plasma membranes of the cytokinetic furrows fuse

forming two separate cells (Figure 1.1).

1.2 RATIONALE

Cell division ensures the proper segregation of genetic information and

contributes importantly to embryo morphogenesis (Rappaport, 1961; Kaltschmidt et al.,

2000; Chalmers et al., 2003; Gong et al., 2004).  Most of the analysis of mechanisms of

cell division has been conducted on cells in culture.  While these studies are fundamental

to understanding the process, they do not address how these mechanisms are regulated

during development.  Basic mechanisms of cell division remain relatively ill defined in

early vertebrate embryos.  Previous analysis of cell division during development has

concentrated on fixed cells and DNA stains, such as BrdU or DAPI, to determine the

phase of the cell cycle (Hartenstein, 1989).

Furthermore, time-lapse analysis of cell division during development has focused

on if cell division simply occurs with a particular gene mutated (Saka and Smith, 2004).

More recently time-lapse analysis has been used to study the orientation of cell division

during development and the molecular cues that control this orientation in the fish

(Concha and Adams, 1998; Geldmacher-Voss et al., 2003; Gong et al., 2004).  While

these studies are important they do not address how cell divisions are regulated during

development.  As embryos develop they go through a number drastic changes. During the

cleavage stage of development chromosomes are kept in a highly condensed state for

much of the short cell cycle. At the 11th cell division when embryos undergo the

midblastula transition and cells begin to have gap phases (G1, G2), with some cells

becoming quiescent in the G0 stage. This allows the chromosomes to decondense long
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enough for the transcription machinery to build up and transcription begins at the

midblastula transition (Patterton and Wolffe, 1996).  The initiation of transcription causes

cells to begin differentiating and to become different from one another.  These

differences are easily seen in the adult form but leave the question of how they are

different earlier in development.  Cell division is a process that may be very similar

during development or may be very different.  We sought to address these questions in

Xenopus through analysis of the general mechanisms of cell division and the control of

oriented cell divisions, throughout development.  Combining data from cells in culture,

Xenopus and other organisms we wish to formulate a more comprehensive model of the

controlling factors of cell division.  Understanding how these and other systems differ in

the control of cell divisions should eventually lead to a model that will encompass all

recent findings.
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Figure 1.1. The cell cycle

Cells begin the cell cycle in the G1, growth or gap 1, phase where they build up materials
for synthesis of DNA.  Cells then synthesis their DNA during S-phase and then enter
another growth phase, G2, where cells build up the material for mitosis and the
chromosomes begin to condense (DNA – blue).  Cells then enter mitosis beginning with
prophase, where chromosomes continue to condense and the nuclear envelope breaks
down (nuclear envelope – black doted line).  During prometaphase and metaphase the
mitotic spindle begins to form (green).  The mitotic spindle attaches to the chromosomes
and position the chromosomes to the metaphase plate.  The chromosomes begin to
separate during anaphase.  The central spindle, the bundle of microtubules between the
separating chromosomes, sets up the contractile ring (red).  The contractile ring causes
the cytokinetic furrows to ingress during telophase.  Cytokinesis is the process of the
ingressing furrows and the separation of the two new daughter cells.  Telophase, on the
other hand, is the process of the mitotic spindle breaking down and the reformation of the
nuclear envelopes.  The end result of this cycle is two new daughter cells.
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1.3 Neural Tube Closure

Neural tube closure is the process by which a flat sheet of cells, the neural plate,

roles into a hollow tube to form the brain and spinal cord. The process of neural tube

closure in Xenopus laevis is one of large morphogenic movements.  The embryo gets

becomes thin and lengthens by a process called convergent extension.  Convergent

extension occurs by a rearrangement of cells.  Cells in a tissue elongate along one axis

while intercalating between each other along the opposite axis (Figure 1.2A and B)

(Keller et al., 1985; Wilson and Keller, 1991; Davidson and Keller, 1999; Zajac et al.,

2000; Wallingford et al., 2002).  This leads to cells that were once neighbors on one axis

are now neighbors along the opposite axis (Figure 1.2C).  This process elongates and

thins the tissue they are in (Figure 1.2, compare C to A).

Figure 1.2. Model of convergent extension

(A) Cells that will undergo convergent extension begin in a non-extended state with each
axis being about the same length.  (B) Cells elongate one axis by extension of
lamellipodia on each side of the cells.  (C) Cells uses these lamellipodia to crawl between
each other.  This process causes the tissue to be longer and thinner than it was.
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To form the brain and spinal cord a tube of ectoderm is formed and internalized

by invagination of the neural tissue and the medial movement of the epidermis (Figure

1.3). Two neural folds form on the lateral edges of the neural plate (Zohn et al., 2003).

These folds are formed by the changes to the shape of the cells in this region (Jacobson

and Gordon, 1976).  Cells in the folds constrict their apical surface while keeping their

basal surface the approximate original size.  This causes the kinking of the tissue and the

formation of the fold (Figure 1.3B) (Lee et al., 2007).  These types of cell shape change

occur also at the midline to begin the folding of the tissue forming a medial hinge point

(Figure 1.3B) (Zohn et al., 2003).  The epidermis that flanks the neural plate also aids in

the folding/rolling of the neural tube by its medial movement (Figure 1.3B and C)

(Alvarez and Schoenwolf, 1992).  Finally, dorsal lateral hinge points form between the

neural folds and the medial hinge point (Figure 1.3C) (Zohn et al., 2003).  These motions

bring the neural folds close to each other and the folds can then fuse together forming a

tube of internalized ectoderm.  The neural plate of Xenopus has two cell layers, a deep

layer giving rise to the primary neurons and a superficial layer that only differentiates

much later and continues to proliferate dramatically during general tube closure

(Hartenstein, 1989; Chalmers et al., 2002).  This superficial layer of the Xenopus neural

plate allows for easy analysis of cell division during neural tube closure in this organism.
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Figure 1.3. Diagram of neural tube closure

(A) Diagram of the neural plate prior to the initiation of neural tube closure.  In Xenopus
the neural plate is made of two layers, the superficial layer and the deep layer, and is
flanked on each side by non-neural ectoderm, which will form the epidermis of the
animal.  (B) At the boarder between the neural ectoderm and epidermis cells undergo
apical constriction to form the neural folds.  Apical constriction also occurs at the midline
of the neural plate, forming the medial hinge point.  This process begins the folding of the
neural plate  (C) At a position between the medial hinge point and the neural folds the
dorsal-lateral hinge points, again by apical constriction.  This brings the neural folds in
close proximity to one another.  These neural folds will eventually fuse completing the
neural tube closure.
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1.4 ORIENTED CELL DIVISION

The proper completion of the phases of cell division is not the only aspect that is

important to cells dividing in a tissue.  The orientation of division has been found to be an

attribute crucial for proper morphogenesis and embryonic development.  Oriented cell

division is the process in which cells in a tissue all divide in a particular orientation

thereby contributing to the elongation or general shape of that tissue (Strutt, 2005).

These types of divisions are found in many organisms and control different processes

during development.  In C. elegans oriented cell divisions determine the

anterior/posterior axis of the animal (Gonczy and Rose, 2005), while in the fly these

types of divisions contribute to the elongation of kidney tubules (Fischer et al., 2006;

Saburi et al., 2008) and the distribution of determination factors in neuroblasts (Bellaiche

et al., 2001a; Bellaiche et al., 2001b).  Analysis of how these types of divisions are

controlled throughout development is lacking (Geldmacher-Voss et al., 2003).

1.4.1 Oriented Cell division and development

Developmentally regulated cell division is a central facet of embryogenesis.

Precisely oriented divisions are important for controlling determination of the embryonic

axes in C. elegans (Gotta et al., 2001; Gonczy and Rose, 2005), for axis elongation and

epithelial tube elongation in vertebrates (Concha and Adams, 1998; Gong et al., 2004;

Fischer et al., 2006; Saburi et al., 2008) and for the diversification of cell types in the

embryonic nervous systems of Drosophila and Xenopus (Bellaiche et al., 2001a;

Bellaiche et al., 2001b; Chalmers et al., 2003; David et al., 2005).

Oriented cell divisions have been thoroughly described in more mature vertebrate

nervous systems as well.  Early in development, the hollow neural tube forms by the

intricate folding of an initially flat neural plate during a process termed neural tube
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closure (Wallingford, 2005).  The formation of neurons occurs in the closed neural tube

via oriented cell divisions.  Divisions that occur parallel to the plane of the neural

epithelium, dividing the apical membrane in half equally, are generally proliferative,

while perpendicular divisions, one daughter cell adopts more of the apical membrane,

tend to be neurogenic.  The daughter cell that adopts more of the apical membrane

remains proliferative while its sister cell differentiates into a neuron (Haydar et al., 2003;

Gotz and Huttner, 2005; Wilcock et al., 2007).

Furthermore, proliferative divisions occurring within the plane of the neural

epithelium can display stereotypical orientations with respect to the anteroposterior axis.

During neural tube closure in chick embryos, the axis of cell division is preferentially

parallel to the long axis of the embryo and help to elongate the neural tube along this axis

(Sausedo et al., 1997), while in zebrafish, divisions are initially parallel to the long axis

and shift to a perpendicular orientation as neurulation proceeds (Concha and Adams,

1998; Geldmacher-Voss et al., 2003; Gong et al., 2004).  The Xenopus embryo represents

a special situation, however. The neural plate of Xenopus has two cell layers, a deep

layer, giving rise to the primary neurons, and a superficial layer that only differentiates

much later and continues to proliferate dramatically during general tube closure.

Previous analysis has shown that cell divisions occur in both these layers (Hartenstein,

1989; Chalmers et al., 2002).  Because of imaging constraints we focused our work on

the superficial layer.  Xenopus eggs and embryos contain a large amount of yolk, which

makes them opaque.  This makes imaging more than ten-to-twenty microns past the

surface of the embryo difficult (Becker, 2006).  This means that the superficial layer can

be imaged easily but the deep layer cannot.
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1.4.2 Role of PCP signaling in oriented cell divisions

Many oriented cell divisions have a few controlling factors in common.  In

particular, the planar cell polarity (PCP) pathway has been found to be a major player.

Cells in an epithelium have one major axis of polarity, apical/basal polarity, which is

perpendicular to the plane of the tissue.  Some epithelial cells also have another polarity,

planar cell polarity, which organizes the cells within the plane of the tissue (Nechiporuk

and Vasioukhin, 2006).  This polarity can be seen through the organization of cellular

structures, such as hairs or cilia.  For example, in the Drosophila wing, each cell forms a

single hair that is formed on the distal most part of the cell and points in a distal direction.

The PCP signaling pathway determines all of these aspects, the number, the location and

the orientation, of the hair.  When genes of the PCP signaling pathway is mutated various

alterations to the hairs are seen (Adler and Lee, 2001).

The planar cell polarity pathway is also known as the non-canonical Wnt

(Wingless/Int) pathway (Nusse and Varmus, 1982; van Ooyen and Nusse, 1984;

Rijsewijk et al., 1987).  The canonical Wnt pathway and the non-canonical pathway share

a similar gene set but elicit different results.  The canonical Wnt pathway occurs when a

Wnt ligand binds to a Frizzled receptor and this activates the cytoplasmic Dishevelled

protein.  Dishevelled then inhibits the degradation of β-catenin by the Axin/APC/GSK3β

complex (Cadigan and Nusse, 1997; Korswagen, 2002).  This leads to the stabilization of

β-catenin and its accumulation in the nucleus.  β-catenin then interacts with and stabilizes

the TCF/LEF-1 family of transcription factors and induces the transcription of down

stream genes which effect cell fate decisions (Struhl and Basler, 1993; Lawrence et al.,

1996; Cadigan and Nusse, 1997).  The non-canonical Wnt pathway does not induce

transcriptional activation.  Instead, PCP signaling causes changes in the morphology of

cells through changes to the cytoskeleton.
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The PCP signaling cascade uses two sets of genes: the core PCP signaling genes

and PCP effector genes.  Core PCP genes include a number of membrane bound

receptors required to activate the signaling pathway.  Some of these genes are also

involved in canonical Wnt signaling, such as Frizzled receptors and Dishevelled

(Shulman et al., 1998).  PCP effector proteins are genes that are activated down stream of

the core PCP genes and are tissue specific (Eaton, 1997; Adler, 2002; Weber et al., 2008).

As mentioned above, the PCP signaling pathway controls the localization, orientation and

number of hairs on cells in the Drosophila wing.  Core PCP genes localize in distinct

regions at the cell cortex to direct the growth of hairs.  Flamingo, a seven-pass

transmembrane cadherin, localizes to the proximal and distal sides of wing cells, while

Dishevelled and Frizzled localize only to the distal cortex (Klingensmith et al., 1994;

Usui et al., 1999; Adler and Lee, 2001; Malbon, 2004).  When one of these core PCP

molecules are mutated the other core proteins are mislocalized and alterations to the hair

location, orientation and/or number are seen (Adler and Lee, 2001).  Core PCP molecules

signal downstream to PCP effector proteins.  These effector proteins transduce the signal

to the cytoskeleton of the cell and control the orientation and number of hairs.  When

these genes are mutated the core PCP proteins are not mislocalized but defects are seen.

Core PCP and PCP effector proteins also control the orientation of cell divisions

in other tissues of the fly.   PCP signaling was first shown to regulate spindle rotations

that orient cell divisions in Drosophila neuroblasts, facilitating the asymmetric

distribution of determination factors and the formation of sensory organs (Bellaiche et al.,

2001a; Roegiers et al., 2001; David et al., 2005).  In the fly, the PI cell divides in the

plane of the epithelium to form the PIIa and PIIb cells.  A spindle rotation occurs to

ensure the proper division orientation of this division.  These two cells under go a

stereotypical set of oriented cell divisions, each of with is established by mitotic spindle
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rotations, to form five cells which then form the sensory organ (Roegiers et al., 2001).

For the proper determination of these different neuroblasts Numb must be segregated

correctly.  Recently, Frizzled has been found to control the correct localization of Numb

and partner of numb (Pon) and control spindle rotations associated with the correctly

oriented cell divisions (Bellaiche et al., 2001a; Bellaiche et al., 2001b).

PCP signaling also controls proliferative oriented cell divisions in other

organisms.  PCP signaling in the zebrafish governs orientation of cell divisions along the

anterior-to-posterior axis that facilitate elongation of the embryo (Gong et al., 2004).

Most recently, PCP signaling has been found to control oriented cell division in the

developing mammalian kidney to elongate kidney tubules (Saburi et al., 2008).  The

mechanism of this process is currently unknown but thought to be similar to what is

observed in fly neuroblasts.  It should be noted however, that this role for PCP signaling

in controlling oriented cell division is not universal.  For example, extension of the

germband in Drosophila also relies on oriented cell divisions, but this orientation is

independent of PCP signaling (da Silva and Vincent, 2007).

1.4.3 Role of Cdc42 in oriented cell divisions

Another common player in developmental regulation of oriented cell divisions is

the small Rho GTPase, Cdc42.  The Rho-GTPases include isoforms of Rho, Rac and

Cdc42.  These proteins have many various roles in the cell but the major body of research

has been on their regulation the cytoskeleton (Boureux et al., 2007).  Rho-GTPases can

be in two states, active, bound to GTP, or inactive, bound to GDP.  Three different sets of

proteins regulate these states.  Guanine nucleotide exchange factors (GEFs) help

exchange a GDP for a GTP and thus activate the GTPase.  GAPs, GTPase activating

protein, inactivate the protein by promoting the hydrolysis of GTP to GDP.  Finally the
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guanine nucleotide dissociation inhibitors (GDI) stabilize the GDP bound state making it

harder for the GEFs to activate the proteins (Bement et al., 2006).  When RhoGTPases

are bound to GTP and in their active state they bind to and activate downstream effector

proteins (Etienne-Manneville and Hall, 2002).  Active effector proteins then cause

changes within the cell.  These changes range from actin polymerization to endocytosis

(Niedergang and Chavrier, 2005; Ridley, 2006).

Cdc42, in particularly, has been shown to have a wide range of activities.  Cdc42

has been shown to control cleavage furrow ingression in Xenopus eggs (Drechsel et al.,

1997) and controls axon guidance (Luo et al., 1996).  Cdc42 is associated with the Par3

complex (Par3/Par6/aPKC) and controls spindle orientation during the first cell cycle and

thereby is involved in defining the anteroposterior axis in C. elegans (Etemad-Moghadam

et al., 1995; Tabuse et al., 1998; Hung and Kemphues, 1999; Joberty et al., 2000; Gotta et

al., 2001; Gonczy and Rose, 2005).  Cdc42 has also been shown to be involved in bud

site selection for yeast (Adams et al., 1990). Cdc42 is localized to the bud site in yeast

and in the growing bud and appears to direct vesicle traffic to the bud (Ziman et al.,

1993).  These data indicate that Cdc42 has a clear role in controlling the polarity of cells

through its subcellular localization.  A clear role for Cdc42 in controlling oriented cell

division in vertebrate somatic cells has not been reported as yet, but Cdc42 is essential for

proper localization and organization of the meiotic spindle in mouse oocytes (Na and

Zernicka-Goetz, 2006).  Furthermore, Cdc42 is activated asymmetrically on meiotic

spindles in Xenopus oocytes, where it links spindle position to the position of the

cytokinetic ring (Ma et al., 2006).

Cdc42 has been found to play a role in controlling the polarity of cells and

oriented cell divisions (Kuroda et al., 1997; Rojas et al., 2001; Suzuki et al., 2001;

Yamanaka et al., 2001).  The involvement of Cdc42 in oriented cell division in
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developing embryos is particularly intriguing in light of recent findings that suggest that

Cdc42 plays cell-type-specific roles in many fundamental aspects of cell division.  In

some cell lines, Cdc42 has been reported to control microtubule attachment to

kinetochores (Yasuda et al., 2004), while in others it governs assembly of the cytokinetic

septin cytoskeleton, as it does in yeast (Joberty et al., 2000; Caviston et al., 2003; Garcia

et al., 2006).  Moreover, biosensors in live cells have revealed differing patterns of Cdc42

activity during division of different cultured cell types (Yoshizaki et al., 2003; Garcia et

al., 2006).  These differences may reflect the fact that even fundamental aspects of cell

division are under cell-type specific developmental control. Recently, Cdc42 has been

found to control spindle orientation in HeLa and Caco2 cells (Jaffe et al., 2008;

Mitsushima et al., 2009).  In HeLa cells, this appears to be through Cdc42 influencing the

localization of dynein/dynactin, which then controls the interaction of actin with the cell

membrane and microtubules (Mitsushima et al., 2009).  The mechanism of Cdc42’s role

in Caco2 cells has not yet been elucidated but may relate to its role in HeLa cells (Jaffe et

al., 2008).

1.5 THE CENTRAL SPINDLE

While the orientation of division is important for proper segregation of

determination factors and development, the other more fundamental steps of cell division

are important to the survival of the animal.  As mentioned above the mechanism of cell

division is divided into a number of sub-steps: interphase and mitosis (Oshima and

Campisi, 1991).  Interphase is, in fact, three individual phases: a growth period (G1),

synthesis (S) and a second growth period (G2).  Mitosis is also divided into phases:

prophase, prometaphase/metaphase, anaphase and telophase (Cande and Hogan, 1989;

Laskey et al., 1989; McIntosh and Koonce, 1989; Pardee, 1989). Plasma membrane from
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each side of the cell ingresses then meets at the middle of the daughter cell (Rappaport,

1971; Glotzer, 2001).

This furrow ingression is called cytokinesis and is an important step to ensuring

the fidelity of cell division (Glotzer, 2001).  A number of structures are necessary for the

completion of this process, one of which is the central spindle (Glotzer, 2001; Severson

and Bowerman, 2002).  The central spindle is a set of bundled anti-parallel microtubules

that originate from the spindle poles but are not associated with kinetochores (Figure

1.2).  The region of microtubule overlap concentrates several proteins and protein

complexes required for cytokinesis (Glotzer, 2005).  Many of these proteins and protein

complexes rely on the other central spindle proteins for their localization (Schumacher et

al., 1998; Severson et al., 2000; Kurasawa et al., 2004).  The position of the central

spindle dictates the position of the contractile ring and thus the cleavage furrows (Figure

1.2) (Adams et al., 1998; Gatti et al., 2000; Kimura et al., 2000; Dechant and Glotzer,

2003).

1.5.1 Contractile ring and the central spindle

The contractile ring is a complex structure made of actin and myosin.  This

actomyosin ring is associated with the plasma membrane by a number of scaffolding

proteins. This ring, as evident by its name, contracts inward to the center of the cell.

Actin becomes aligned and myosin is able to walk along the actin causing the actin

filaments to slide past one another (Figure 1.4) (Piekny et al., 2005; Yuce et al., 2005).

The scaffolding proteins allow for the ingression of the membrane furrows (Neufeld and

Rubin, 1994; Field and Alberts, 1995).  Small Rho GTPases, specifically RhoA, have

been shown to be required for the formation of the contractile ring.  RhoA, in its active

form, activates actin assembly factors and regulates the activation state of myosin light
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chain (Werner and Glotzer, 2008).   The specific localization and activation of RhoA

requires the central spindle.  As mentioned above many proteins required for proper

completion of cytokinesis are recruited to the region of microtubule overlap at the central

spindle.  Many of these proteins and protein complexes rely on the other central spindle

proteins for their localization (Schumacher et al., 1998; Severson et al., 2000; Kurasawa

et al., 2004). A RhoGEF, ECT2 (epithelial cell transforming sequence 2 oncogene) is

localized to the central spindle by its association with the centralspindlin complex, a

motor proteins, MKLP1 (mitotic kinesin-like protein 1) and a RhoGAP, CYK-4

(cytokeratin-4), (Watanabe et al., 1997; Prokopenko et al., 1999; Tatsumoto et al., 1999).

The association of ECT2 with centralspindlin activates ECT2 specifically at the central

spindle (Solski et al., 2004; Yuce et al., 2005; Chalamalasetty et al., 2006; Nishimura and

Yonemura, 2006).  Activation of ECT2 causes the localized activation of RhoA at the

central spindle (Saint and Somers, 2003).  Plk1 (polo-like kinase 1) promotes the

localized activation of ECT2 by CYK-4 (Petronczki et al., 2007; Santamaria et al., 2007;

Wolfe et al., 2009) and the localization of Plk1 to the central spindle requires the

microtubule bundling protein PRC1 (protein regulator of cytokinesis 1) (Neef et al.,

2007).
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Figure 1.4. The central spindle and the midbody

The central spindle is a bundle of antiparallel microtubules that originates from the
spindle poles but does not associate with the kinetochores of chromosomes.  As
chromosomes separate this bundle remains in the middle of the cell.  Proteins that
associate with this set of bundled microtubules recruits the proteins required for the
contractile ring to form.  This causes the contractile ring to form where the central spindle
is located and the furrows begin to ingress at this location.  After the completion of
furrow ingression a remnant of the central spindle remains between the furrows, the
midbody.  The midbody is involved in the abscission of the two cells into two individual
cells.

1.5.2 Protein Regulator of Cytokinesis 1 (PRC1)

PRC1 (protein regulator of cytokinesis 1) is a microtubule bundling protein and

has been found to be an essential component for central spindle formation in many

organisms (Jiang et al., 1998; Mollinari et al., 2002; Verbrugghe and White, 2004; Verni

et al., 2004; Yamashita et al., 2005).  PRC1 is localized to the nucleus during interphase

but then moves to the spindle at the onset metaphase (Figure 1.5A).  PRC1 then relocates

to the spindle midzone where it organizes the central spindle (Figure 1.5B and C).

During abscission PRC1 remains at the midbody in a structure called the flemming body

(Figure 1.5D).  When PRC1 levels are reduced via siRNA in cultured cells chromosomes

are misaligned, do not segregate correctly and cytokinesis eventually fails (Mollinari et

al., 2005; Zhu and Jiang, 2005).  Furthermore, cells depleted of PRC1 have a number of
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unexpected phenotypes.  For example, chromosomes separate to a greater extent and

furrows have an increased rate of ingression (Mollinari et al., 2005).

These phenotypes are related to the absence of a central spindle.  When the

central spindle is not formed, chromosomes can separate further because there is no

restriction on how far the spindle poles can move.  Moreover, microtubules destined to

form the central spindle instead associate directly with the ingressing furrows (Mollinari

et al., 2005).  Central spindle proteins are still localized to the plus ends of the

microtubules, but since PRC1 is not bundling the microtubules, these proteins instead are

associated with the ingressing furrows (Mollinari et al., 2005).  The association of these

proteins with the membrane allows for the ingression of the furrows in PRC1 depleted

cells but cytokinesis ultimately fails when furrows regress (Jiang et al., 1998; Mollinari et

al., 2002; Verbrugghe and White, 2004; Verni et al., 2004; Mollinari et al., 2005;

Yamashita et al., 2005).  These data indicates that PRC1 is required to form the central

spindle and that the central spindle is required for completion of cytokinesis.

Analysis of the role of PRC1 during cytokinesis is relatively recent, with PRC1

being identified in 1998 (Jiang et al., 1998).  More recent research shows that the

function of PRC1 is broader than just a microtubule bundling protein.  PRC1 interacts

with other central spindle proteins and regulate their activity during other phases of cell

division (Ban et al., 2004).  These studies suggest that the role of PRC1 is not fully

understood.  Previous studies in the worm have shown that PRC1 may not be absolutely

required for cell division.  When the PRC1 homologue, SPD-1, is mutated in the worm

the central spindle does not form but the first few cell divisions occur correctly.  One of

the cells, the EMS cell, at the 4-cell stage consistently and often failed during cytokinesis

(Verbrugghe and White, 2004).  This suggests that PRC1 may have different roles in

different cell types and more detailed analysis of its role during development is required.
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Figure 1.5. Localization of PRC1 through mitosis

(A) PRC1 is localized over the entire spindle during metaphase.  (B and C) PRC1 then
moves to the spindle midzone during anaphase (B) and telophase (C) where it is required
for the bundling of the microtubules at the central spindle.  (D) The area of PRC1
expression is then compressed into the flemming body of the midbody.

1.6 CILIA

Cilia and flagella are microtubule-based organelles that protrude from the surface

of most vertebrate cells.  There are two types of cilia, motile and stationary or primary

cilia.  Both these types of cilia have similar architectures; a microtubule based axoneme

extending from the surface of the cell covered with a membrane that is continuous with

the plasma membrane and a basal body at the base of the axoneme (Bossinger and

Bachmann, 2004).  Furthermore, both motile and stationary cilia have a basal foot and a

rootlet, accessory structures to the basal body (Satir and Christensen, 2008).  As evident

by their distinction motile cilia move while stationary cilia remain in one position.

Motile cilia are used in many tissues to move liquid over the tissue of interest (Sleigh et

al., 1988).  Most vertebrate cells have at least one primary cilia protruding from its
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surface (Olsen, 2005).  These primary cilia have been found to be hubs for particular

signaling molecules and the ciliary structure is required for transduction of certain

signaling pathways, such as the Hedgehog pathway (Corbit et al., 2005; Haycraft et al.,

2005; May et al., 2005; Scholey and Anderson, 2006).  Motile cilia can be singular such

as on sperm (Sleigh and Barlow, 1982) or in a multi-ciliated cell as in lungs (Sleigh et al.,

1988).

To facilitate the movement of motile cilia they have a different structure to the

microtubules in their axoneme.  Motile cilia have a 9+2 structure of tubules while

primary cilia have a 9+0.  Both types of cilia have 9 doublets of tubules in a polarized

around the outside of the axoneme just under the membrane cortex in a circle (Figure

1.6A).  Motile cilia also have a central pair of tubules, hence the +2.  This central pair is

missing in primary cilia (Figure 1.6B) (Satir and Christensen, 2008).  Motile cilia are able

to move by the presence of dyneins forming two arms, the inner dynein arm (IDA) and

the outer dynein arm (ODA), extending from each of the outer doublets (Figure 1.6A, red

lines).  These arms allow the doublets to slide against one another to produce the

effective stroke.  The central pair interacts with the IDA and causes the cilia to beat in a

directed fashion (Nicastro et al., 2006; Satir and Christensen, 2008).

Both types of cilia have a common structure at the base of the ciliary shaft, the

basal body (Inglis et al., 2007).  Basal bodies modified centrioles that are also

microtubule based and have a similar structure to the ciliary axoneme but have nine

microtubule triplets, instead of doublets, arranged in a similar manner to the axoneme and

do not contain a central pair (Fliegauf et al., 2007). Basal bodies associate with vesicles

and are trafficked to the apical surface where cilia are formed (Figure 1.6B) (Yang et al.,

2005; Yang and Li, 2005; Park et al., 2008). As basal bodies are trafficked to the apical

surface they associate with two main accessory structures, the basal foot and the rootlet
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(Figure 1.6B and C). The basal foot is closely associated with the basal body and points

in the direction of cilia beating (Boisvieux-Ulrich and Sandoz, 1991). The rootlet

interacts with the actin cytoskeleton to stabilize the cilia (Hagiwara et al., 1997; Yang et

al., 2002; Yang et al., 2005; Yang and Li, 2005).  In multiciliated cells the rootlet and

basal foot associated with each cilium all point in the same direction (Figure 1.6D).  This

allows all of the cilia to beat in the same direction for coordinated movement of liquid

over the tissue (Park et al., 2005; Mitchell et al., 2007; Park et al., 2008; Vladar and

Axelrod, 2008).

Figure 1.6. Structure of motile and stationary cilia

(A) Structure of motile cilia axoneme.  Motile cilia have a 9+2 structure of microtubules.
Around the outside of the axoneme are 9 doublets of microtubules with a central pair of
single tubules.  On each of the outer doublets are two arms of dynein (red), which
facilitate the movement of the cilia.  (B) Structure of stationary cilia.  Stationary cilia
have a 9+0 structure of microtubules in the axoneme. Around the outside of the axoneme
are 9 doublets of microtubules.  There is no central pair or dynein arms on the
microtubules since they are not required to move.
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1.6.1 Cilia and cell division

A large body of research concentrates on the connection between ciliogenesis and

cell division.  As mentioned above, most vertebrate cells have at least one primary cilia

protruding from its surface (Olsen, 2005).  The basal body of the primary cilia also acts

as one of the centrioles of the centrosome and regulated break down of the cilia is

required for proper progression of cell division (Rieder et al., 1979; Wheatley et al.,

1996; Pan and Snell, 2007). The basal body is formed by the older centriole of the

centrosome pair (Sorokin, 1962).  This indicates that there is a communication between

the cilia and cell division.  In fact, there is an inverse relationship between cell

proliferation and cilia formation, as cells differentiate they reduce their proliferation rate

and form cilia (Fonte et al., 1971).  Some cells that form cilia are completely

differentiated and in the G0 stage of cell division (Tucker et al., 1979).

Recently it has been discovered that in sea urchins a ciliary kinesin subunit, KAP,

must be translocated to the nucleus for the progression of mitosis.  For this translocation

to occur the cilia must be broken down and reabsorbed (Morris et al., 2004).

Furthermore, diseases associated with defects in cilia formation, such as polycystic

kidney disease, are now being linked to defects in the progression of the cell cycle

(Mahjoub et al., 2002; Mahjoub et al., 2004).  While the connection of cilia formation to

the cell cycle is well studied the inverse is not as well studied.  Proteins involved in cilia

formation and maintenance are involved with cell cycle progression but what about the

inverse: What cell divisions proteins are involved in ciliogenesis?  Recently, more

research has been conducted to help answer this questions.  For example, Aurora-A, a

kinase involved in spindle formation during cell division and centriole maturation, has

been shown to be involved in ciliogenesis (Hannak and Heald, 2006; Pugacheva et al.,
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2007).  Further connecting cell division and the molecules involved in cell division to cell

division requires more research.

1.6.2 Ciliogenesis

Ciliogenesis is the process by which a cilium is formed at the surface of a cell.  As

described, above the process of forming cilia comes when a basal body is formed near the

Golgi and in multiciliated cells replicate in this area of the cell as well (Figure 1.7A).

Basal bodies are then trafficked to the apical surface of the cell by use of vesicle transport

(Figure 1.7B and C) (Yang et al., 2005; Park et al., 2008).  The doublets of the ciliary

axoneme then extend up to form the axoneme making the axoneme continuous with the

basal body (Figure 1.6D) (Rosenbaum and Witman, 2002; Pazour and Witman, 2003).

This extension of the axoneme relies on a process called intraflagellar transport (IFT).

This process grows the cilia from the distal tip of the axoneme (Witman, 1975;

Rosenbaum and Witman, 2002).  Disruption of any of the many IFT molecules leads to

defects in ciliogenesis (Rosenbaum and Witman, 2002; Pazour and Witman, 2003).

Recently it has been shown that defects in ciliogenesis leads to defects in neural

tube closure (Huangfu et al., 2003; Huangfu and Anderson, 2005; Park et al., 2006).

These defects are probably due to the inability of the neural plate to pattern properly.  As

mentioned above, without cilia Hedgehog signaling is unable to occur.  Without

Hedgehog signaling the neural plate may not be correctly differentiated and neural tube

closure will fail (Huangfu and Anderson, 2005; Wallingford, 2006).  These neural tube

closure defects and defects in cilia formation have been linked to the PCP pathway (Park

et al., 2006; Park et al., 2008; Vladar and Axelrod, 2008).  When Dishevelled function is

disrupted through use of dominant negatives or knocked down through use of morpholino

anti-sense oligonucleotides ciliogenesis fails.  Morpholinos to Dishevelled show defects
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to docking of basal bodies to the apical surface whereas dominant negatives cause the

polarity of basal bodies and thus ciliary beating to be disrupted (Park et al., 2005;

Mitchell et al., 2007; Park et al., 2008; Vladar and Axelrod, 2008).  These data is fairly

recent but reveals that our understanding of ciliogenesis is not complete and some

unexpected pathways may be involved in this process.

Figure 1.7. Ciliogenesis

(A) The centrioles of the centrosome separate near the Golgi.  In the case of multiciliated
cells the mother/older centriole replicates in this area to produce many basal bodies.  (B)
These basal bodies then associate with vesicles and are trafficked toward the apical
surface of the cell.  (C) As they are trafficked the basal bodies associate with two
accessory structures, the basal foot (black triangle) and the rootlet (black lines).  This
completed basal body structure then docks to the apical membrane by the fusion of the
vesicle with the plasma membrane.   (D) The axoneme grows out from the basal body by
the addition of axonemal units to the distal tip by intraflagellar transport.
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1.6.2 Ciliogenesis and the exocyst

As mentioned above, to traffic the basal body to the surface of the cell a vesicle

associates with the distal tip of the basal body (Figure 1.7B and C) (Sorokin, 1968; Park

et al., 2008).  Ciliogenesis has been found to require the exocyst complex and this

complex is found at the base of cilia (Rogers, 2004; Zuo et al., 2009).  The exocyst is a

complex of eight proteins that is required for secretion from the cell through exocytosis

(TerBush et al., 1996; Kee et al., 1997; Hsu et al., 2004).  These data indicate this vesicle

travels to the apical surface with the basal body and then exocytosis occurs to dock the

basal body to the apical surface of the cell.  The exocyst remains at the basal body most

likely to maintain the ciliary sheath after if forms and to traffic membrane bound

signaling molecules to the axoneme (Sorokin, 1968; Rogers et al., 2004).

1.6.4 Connecting ciliogenesis to cytokinesis

Centriolin has recently been discovered and found to be a major protein of

centrosomes.  Antibody staining has shown that Centriolin is localized to the basal body

of primary cilia in cultured cells (Gromley et al., 2003; Gromley et al., 2005).

Surprisingly, during cytokinesis centriolin relocalizes to the midbody and when knocked-

down the final steps of cytokinesis fail (Gromley et al., 2003).  Centriolin interacts with

members of the exocyst complex and proteins associated with SNAREs (soluble N-

ethylmaleimide-sensitive factor attachment receptor).  More detailed analysis of the

knock down phenotype showed that Centriolin is required for the recruitment of the

exocyst to the midbody.  When the exocyst is not localized to the midbody vesicles are

shown to accumulate around the cytokinetic furrow indicating a failure of fusion between

the vesicles and the plasma membrane.  MKLP1 is required to localize centriolin to the

midbody and thus shows a requirement for MKLP1 in recruiting the exocyst complex to
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the cytokinetic furrow (Gromley et al., 2005).  Previous findings in the Wallingford lab

show that the process of ciliogenesis also requires vesicle fusion through the exocyst

complex (Park et al., 2008).  Based on the work of other members in the lab and the work

of Gromley et al., we felt that the ciliogenesis and cytokinesis may share a number of the

same molecules and the same molecular pathways.  The central spindle proteins may be

required at cilia, either for ciliogenesis or for maintenance of the cilium.

1.7 THE XENOPUS LAEVIS SYSTEM

Early embryos of the frog Xenopus, owing to their external development and large

cell-size, provide un-paralleled access to cell behaviors associated with vertebrate

development, including cytokinesis.  Upon fertilization, Xenopus embryos undergo rapid,

synchronous divisions until the mid-blastula transition (Newport and Kirschner, 1982).

Soon thereafter, morphogenesis initiates with the onset of gastrulation, which is then

followed by neural tube closure, which generates the hollow central nervous system

(Keller, 1991; Wallingford, 2005).  During this time, neural epithelial cells constitute the

major population of dividing cells (Saka and Smith, 2001).  The neural plate of Xenopus

has two cell layers, a deep layer giving rise to the primary neurons and a superficial layer

that only differentiates much later and continues to proliferate dramatically during

general tube closure (Hartenstein, 1989; Chalmers et al., 2002).  A second wave of cell

proliferation occurs during the early tadpole stage, when epidermal epithelial cells

proliferate extensively in the developing tail (Gibson et al., 2006).  We chose to exploit

these attributes to analyze both the mechanism of cell division and the orientation of cell

divisions during development.
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Chapter 2: Role of Cdc42 in spindle positioning and planar orientation
of cell divisions during neural tube closure

2.1 INTRODUCTION

Oriented cell division is a process in which cells in a specific tissue divide in a

specified alignment (Gong et al., 2004). Such alignment allows for axis formation in C.

elegans (Gong et al., 2004; Gonczy and Rose, 2005), morphogenesis of tissues (Concha

and Adams, 1998; Gong et al., 2004; Fischer et al., 2006; Saburi et al., 2008), segregation

of differentiation factors and many other aspects important for development (Bellaiche et

al., 2001a; Bellaiche et al., 2001b; Chalmers et al., 2003; David et al., 2005).

Oriented cell divisions occur prevalently in neural and/or neurogenic cells.  In the

closed neural tube, divisions that occur parallel to the plane of the neural epithelium are

generally proliferative, with the daughter cells continuing to produce more cells, while

divisions perpendicular to the apical membrane tend to be neurogenic, with one daughter

cell remaining proliferative and the other exiting the cell cycle and differentiating

(Haydar et al., 2003; Gotz and Huttner, 2005; Wilcock et al., 2007).  Furthermore,

proliferative divisions in the early neural plate may have oriented cell divisions with

respect to a particular embryonic axis, such as the anterior/posterior or medio/lateral.

This type of oriented cell division is seen in the neural plate of the chick and the

zebrafish.  In the chick, cells in the neural plate divide parallel to the long axis of the

embryo (Sausedo et al., 1997).  In the zebrafish, cells initially divide parallel to the long

axis early during neurulation but then later switches to a perpendicular division (Concha

and Adams, 1998; Geldmacher-Voss et al., 2003; Gong et al., 2004).

Many of these oriented cell divisions are controlled by a similar set of proteins.

The planar cell polarity (PCP) pathway have been found to be a large contributor to
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setting up oriented cell divisions (Bellaiche et al., 2001a). In Drosophila, localization of

determinants to different regions of the neuroblast PI cells allows for reorientation of the

mitotic spindle (Bellaiche et al., 2001a; Bellaiche et al., 2001b; David et al., 2005). The

PI cell divides in the plane of the epithelium to form the PIIa and PIIb cells.  A spindle

rotation occurs to ensure the proper division orientation of this division.  These two cells

under go a stereotypical set of oriented cell divisions, each of with is established by

mitotic spindle rotations, to form five cells which then form the sensory organ (Roegiers

et al., 2001).  For the proper determination of these different neuroblasts Numb must be

segregated correctly.  Recently, Frizzled has been found to control the correct localization

of Numb and partner of numb (Pon) and control spindle rotations associated with the

correctly oriented cell divisions (Bellaiche et al., 2001a; Bellaiche et al., 2001b).  In

zebrafish, PCP signaling controls the oriented cell divisions seen early in neurulation

(Gong et al., 2004).  Cells in the future neural plate divided along the anterior to posterior

axis during epiboly.  These oriented cell divisions aid in the elongation of the embryo

(Gong et al., 2004).   It should be noted however, that this role for PCP signaling in

controlling oriented cell division is not universal.  For example, extension of the

germband in Drosophila also relies on oriented cell divisions, but this orientation is

independent of PCP signaling (da Silva and Vincent, 2007).

Another common player in developmental regulation of oriented cell divisions is

the small GTPase, Cdc42.  In C. elegans, the anterior of the embryo is determined by the

localization of the Par complex (Par-3/Par-6/PKC-3) to the cortex of the one cell embryo

and this localization is maintained by the small Rho-GTPase Cdc42 (Gotta et al., 2001;

Kay and Hunter, 2001).  In some cell lines, Cdc42 has been reported to control

microtubule attachment to kinetochores (Yasuda et al., 2004), while in others it governs

assembly of the cytokinetic septin cytoskeleton, as it does in yeast (Joberty et al., 2001;
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Caviston et al., 2003; Garcia et al., 2006).  Cdc42 controls the relocalization of the

microtubule organizing center (MTOC) to the leading edge of cells in culture during

migration (Etienne-Manneville and Hall, 2001).  Cdc42 is also involved in bud site

selection for yeast (Adams et al., 1990).  Cdc42 localizes to the bud site in yeast, in the

growing bud and appears to direct vesicle traffic to the bud (Ziman et al., 1993).  These

data indicate that Cdc42 has a clear role in controlling the polarity of cells through its

subcellular localization.  A clear role for Cdc42 in controlling oriented cell division in

vertebrate somatic cells has not been reported as yet, but Cdc42 is essential for proper

localization and organization of the meiotic spindle in mouse oocytes (Na and Zernicka-

Goetz, 2006).  Furthermore, Cdc42 is activated asymmetrically on meiotic spindles in

Xenopus oocytes, where it links spindle position to the position of the cytokinetic ring

(Ma et al., 2006). Very recently, Cdc42 has been shown to control the orientation of the

spindle in HeLa and Caco2 cells (Jaffe et al., 2008; Mitsushima et al., 2009).  HeLa cells

divide parallel to the substrate to ensure that neither of the daughter cells loses contact

with the substrate (Toyoshima and Nishida, 2007).  Cdc42 controls the localization of the

dynein/dynactin complex to the midcortex of the cell through PtdIns(3,4,5)P3 activation

at this site.  This dynactin localization modulates the interaction of the mitotic spindle

with the cell cortex for proper orientation (Mitsushima et al., 2009).  HeLa cells are not

polarized and instead lay flat on the substrate.  Caco2 cells, on the other hand, are

polarized epithelial cells from the human intestine and have an apical/basal axis.  These

cells form cysts when grown in culture and cell division occurs perpendicular to the

apical-basal axis (Jaffe et al., 2008).    When Cdc42 is knocked down in Caco2 cells by

siRNA the angle of division is randomized (Jaffe et al., 2008).  The mechanism for this

role of Cdc42 remains unclear but may also be related to positioning of dynactin at the

lateral cortex.
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Cdc42 has been shown to be involved in reorganizing cells in vertebrate culture in

response to tension and forces.  When endothelial cells are exposed to a shear force they

move their MTOC, microtubule-organizing center, toward the direction of the force.

Cdc42 is involved in the positioning of the MTOC in migrating cells (Tzima et al., 2003).

Cells exposed to a shear force also reorganize their cytoskeleton and shape in response to

shear force (Tzima, 2006).  This reorganization is in response to the activation of the

small Rho-GTPases.  Cdc42 is activated in response to shear flow and becomes

membrane localized to aid reorganization of the cytoskeleton (Li et al., 1999; Tzima et

al., 2003).  More recently it has been shown that Cdc42 regulates cell shape in epithelial

cells by being locally activated at junctions (Otani et al., 2006).  All of this data indicates

that forces exerted on the cell affect the activation of Cdc42 and thus cell shape.

These differences in controlling the orientation of cell division and cell polarity

indicate that further analysis of other organisms is required.  The presence of oriented cell

divisions in the neural tissue of the Zebrafish, chick and fly indicate that oriented cell

divisions in neural tissue may be a common phenomenon in many organisms.

Comparatively little research has be conducted on cell divisions in the neural plate of the

Xenopus laevis embryo, making this organism a good candidate (Hartenstein, 1989; Saka

and Smith, 2001; Wu et al., 2001).  Combining data from cells in culture, Xenopus and

other organisms we wish to formulate a more comprehensive model of the controlling

factors of oriented cell division.  Understanding how these and other systems differ in the

control of the orientation of cell divisions should eventually lead to a model that will

encompass all recent findings.

Using in vivo 4-D analysis of the Xenopus laevis neural plate, we have found that

cell divisions in the early neural ectoderm exhibit a unique set of oriented cell divisions.

The majority of the cells in the early neural plate of the Xenopus divide in a medio/lateral
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orientation but they are unique in the fact that they are not perfectly medio/lateral but

instead divide at an oblique angle with respect to the midline.  The anterior most daughter

cell is oriented away from or toward the midline, in approximately equal proportion, at an

angle of about 60o.  Rapid mitotic spindle rotations during anaphase established this

division polarity and place the division angle parallel with the long axis of cells.

Surprisingly, the PCP pathway does not control the polarity of cell division in Xenopus

as it is in the zebrafish and fly but instead is regulated by Cdc42 function.  When Cdc42

function is perturbed, cells divide with more cells oriented obliquely away from the

midline of the embryo.  Furthermore we found that cells with altered Cdc42 function had

over rotations of mitotic spindles as well as instable metaphase spindle.  We also find that

these effects are specific to the early neural plate; when Cdc42 function is altered in the

epidermis of the tail bud embryo we do not see alterations to the stability of the mitotic

spindle. These data reveal a role of Cdc42 in controlling the interactions between the

mitotic spindle and the cell cortex during development.

2.2 RESULTS

2.2.1 Cdc42 is required to stably position metaphase spindles in neural plate cells.

As previously mentioned (Chapter 1) Xenopus laevis is an excellent model for

analysis of cell divisions.  Cdc42 has been shown to control very early embryonic

divisions through positioning the mitotic spindle in C. elegans, Xenopus oocyte meiotic

spindle and the mouse oocyte meiotic spindle (Gotta et al., 2001; Bement et al., 2005; Ma

et al., 2006; Na and Zernicka-Goetz, 2006).  We wished to examine if this was conserved

through development.  By use of expression of two different dominant negatives against

Cdc42 in clones in Xenopus we were able to answer this question.
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Cdc42 is in the small Rho-GTPase family, which also includes Rac and RhoA.

We used Cdc42-N17 as a dominant negative to block Cdc42 function.  Cdc42-N17

preferentially binds GDP and keeps the protein inactive.  This construct may sequester

GEFs (GTP-exchange factors) that are not specific for Cdc42 but instead Rac or Rho and

may lead to Cdc42 non-specific effects (Zhang et al., 1995; Karnoub et al., 2004).  For

this reason we also used the Cdc42-F37A dominant negative (Zhang et al., 1995;

Lamarche et al., 1996; Richman et al., 2002), which is more specific to Cdc42 function,

blocking the interaction of Cdc42 and its downstream effector proteins (Lamarche et al.,

1996).

Embryos were injected at the 4-cell stage with mRNA encoding histone-2B-GFP

into both dorsal cells of the embryo.  Embryos were then grown to the 8-cell stage and

co-injected again with mRNA encoding membrane-RFP and either Cdc42-N17 or Cdc42-

F37A into one animal dorsal embryo.  This method labeled chromosomes along its entire

neural plate, and half the neural plate also had labeled membranes and Cdc42 function

perturbed.  Wild-type clones and experimental clones can then be compared directly

within a single embryo.

In control cells chromosomes condensed at the metaphase plate at one position in

the cell and remained at approximately that position until anaphase onset (Figure 2.1A

and a’).  When Cdc42 function was altered we saw that chromosomes condensed at the

metaphase plate and did not stably remain at that location (Figure 2.1B and b’).  Often we

saw chromosomes condense and then move from one side of the cell to the other before

anaphase onset.  In each of these perturbations of Cdc42 we saw the same alteration to

spindle stability.
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Figure 2.1. Mitotic chromosomes undergo drastic movements in neural cells expressing
dominant negatives to Cdc42

(A) Still frames from a movie showing a control cell.  The chromosomes can be seen to
condense and remain at that location throughout metaphase.  Scale bar = 10mm.  (a’)
Cartoons of the cell of interest from above.  Cell outlines are shown in black and nuclei
are shown in green.  (B) Still frames from a movie showing a cell expressing Cdc42-
F37A dominant during metaphase.  The chromosomes can be seen to move quickly from
the upper left hand side of the cell to the lower left and back again. Scale bar = 10mm.
(b’) Cartoons of the cell of interest from above.  Cell outlines are shown in black and
nuclei are shown in green.  Chromosomes move dramatically through the cell before
aligning at the approximate middle of the cell and anaphase proceeds.
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2.2.1.1 Cdc42 does not control spindle positioning in epithelial cells of the developing
Xenopus epidermis

We next sought to quantify the excessive spindle movement following

manipulation of Cdc42.  Because of the overall movement of the tissue of the neural plate

we needed to develop a method to correctly assess how much chromosomes move during

metaphase.  To do this we determined how much chromosomes moved with relation to

the size of the cell, which should remain stable.  Cell size (d1) and the distance between

one side of the cell and the middle of the chromosomes (d2) were determined every

minute for the 14 minutes before the onset of anaphase (Figure 2.2A).  The ratio of these

two numbers at each time point was taken and subtracted from the ratio of the next time

point.  The absolute value of this value divided by the time difference between the two

time points was determined to be the spindle instability index (SII) (Figure 2.2A).  The

average SII for control cell chromosomes was about 5% while for Cdc42-N17 and

Cdc42-F37A had an average of about 8% (Figure 2.2B).  Furthermore, control cell

chromosomes rarely moved more than 20% of the cell length at one time (Figure 2.2C)

whereas Cdc42-N17 and Cdc42-F37A expressing cells frequently had chromosomal

movement well above 20% with the maximum for both manipulations was well over 46%

(Figure 2.2D and E). This difference in the average distance moved between control and

experimental groups was extremely significant  (P<0.001, Kuskal-Wallis multiple

comparisons test).

Given that core cytokinesis mechanisms differ surprisingly between neural

epithelial cells and epidermal epithelial cells examined in vivo (Kieserman et al., 2008),

we next asked if epidermal cell division was affected by disruption of Cdc42. To examine

the developmental role of Cdc42 in stabilizing spindles we examined the epidermis of the

tail of an early tadpole embryo.  Embryos were injected as described above but instead on
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Figure 2.2. Cdc42 is required to stabilize metaphase plates in the early neural plate but
not in the tail epidermis

(A) Diagram and equation of how chromosome stability was accessed.  The Spindle
Instability Index (SII) was assessed using the equation shown. (B) Graph showing the
mean SII value for control cells (white bar), cells expressing Cdc42-N17 (gray bar) and
cells expressing Cdc42-F37A (black bar). Error bars = SEM.  (C) Graph showing
instantaneous SII for each time point of all control cells in.  The maximum instantaneous
SII for control cells is 20% and is represented by the red line.  (D) Graph showing
instantaneous SII for each time point of all of Cdc42-N17 cells. (E) Graph showing
instantaneous SII for each time point of all Cdc42-F37A cells.  (F) Graph showing the
mean SII value for control cells (white bar, 3 embryos, 26 cells) and cells expressing
Cdc42-F37A (black bar, 2 embryos, 26 cells). Error bars = SEM.  (G) Graph showing
instantaneous SII for each time point of all of the 26 cells in control epidermal cells. The
maximum instantaneous SII seen for control neural cells is 20% and is represented by the
red line.  (H) Graph showing instantaneous SII for each time point of all of the 26 cells in
Cdc42-N17 expressing epidermal cells.
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the ventral side of the embryo.  We saw no change in the SII in control cells as compared

to Cdc42-N17 or Cdc42-F37A (Figure 2.2F, G and H).  This revealed a neural specific

role for Cdc42 in controlling spindle stability.

2.2.2 Planar orientation of cell divisions in the closing neural tube of Xenopus

Since oriented cell divisions are often seen in neural cells (Concha and Adams,

1998; Haydar et al., 2003; Gong et al., 2004; Gotz and Huttner, 2005; Wilcock et al.,

2007) we sought to ask if these types of division were present in the early neural plate of

Xenopus.   4-D in vivo time-lapse movies were made of the closing spinal cord labeled

with membrane-RFP and histone-GFP.  The angle of cell division of 330 cells in 6

embryos were assessed and plotted on a rose diagram.  This diagram is from 0o to 360o in

a circular form.  A histogram of each division value, 10o increments or bins, is set up over

this circle.  The number of divisions that fall with in a set 10o bin is plotted.  The more

divisions with in a bin the larger the bar.  This analysis showed that the majority of cell

divisions were oriented perpendicular to the anterior-posterior axis (Figure 2.3 C).  This

was unexpected based on division orientation seen in the zebrafish, where divisions are

parallel to the anterior-posterior axis.  Furthermore, the range of division angles is more

widely varying than that seen in the zebrafish.  The majority of the divisions occur at

angles that are oblique with respect to the midline (Figure 2.3C).  Cells divide with their

anterior most daughter cell oriented away from or toward the midline (Figure 2.3A).

Often we found that adjacent cells divided simultaneously with opposite orientations, one

obliquely away from the midline and one obliquely toward (Figure 2.3 B).

To quantify the angle of division, each division was assigned based upon the

position of the anterior-most daughter cell relative to the midline.  To simplify this
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process, all division angles were converted to represent divisions on the right side of the

embryo. A positive value indicates an orientation obliquely toward the midline (Figure

2.3, pink arrows) and a negative value indicates a division obliquely away from the

midline (Figure 2.3, blue arrows).  A cell dividing parallel to the medio-lateral axis is

given an angle of 0° (Figure 2.3E).   Representative division angles are provided in

Figure 2.3a’ and Figure 2.3B and correspond to a color-coded rose diagram (Figure

2.3C).

2.2.3 Rotations of the mitotic spindle establish division orientation.

Mitotic spindle rotations often accompany oriented divisions and establish the

angle of division (Kaltschmidt et al., 2000; Bellaiche et al., 2001a; Geldmacher-Voss et

al., 2003; Haydar et al., 2003).  Typically spindle rotations in neural cells occur to a

stereotypical extent, they set up in the same orientation and rotate in the same direction

the same number of degrees each time (Bellaiche et al., 2001a).  To determine if this was

the case with oriented cell divisions seen here we made movies of the mitotic spindles by

injection of mRNA encoding tau-GFP, a microtubule-stabilizing factor (Kwan and

Kirschner, 2005) and membrane-RFP.  Indeed, we found that mitotic spindles underwent

rotations just prior to anaphase onset (Figure 2.4A and B).  Surprisingly, we found that

the extent of rotations in the Xenopus neural plate varied from cell to cell (Figure 2.4A

and B).  To fully assess these rotations we examined the angle at which the spindle

formed (Figure 2.4A and B, white line) and the angle at which anaphase occurred at

(Figure 2.4A and B, yellow line).  We found that the angle of spindle setup was

essentially random with respect to the midline (Figure 2.4C).  The angle of the spindle at

the onset of anaphase exhibited the same oblique polarity seen when chromosomes were

examined
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Figure 2.3. Cell divisions in the early neural plate are polarized at an oblique angle with
respect to the midline

(A) Still frames from a movie of neural tube closure.  Anterior is to the top and the
midline is to the left.  A few cells undergoing division are highlighted (non-transparent
squares).  Cells with their anterior daughter cell oriented away from the midline are
denoted with a light blue arrow (T = 0 min and T = 24 min).  Cells that divide with their
anterior daughter cell toward the midline are dented with a pink arrow (T = 10 min and
39 min).  Scale bar = 50µm.  (a’) Blow up of cells highlighted in figure 2.3A.  The angle
of division, with respect to the midline, is shown above the line for each cell. Scale bar =
10µm.  (B) Still frames from a movie of cells dividing in the early neural plate.  Cells
adjacent in the anterior-posterior divide with opposite oblique polarities. The angles of
these divisions are noted.  Scale bar = 10µm.  (C) Rose diagram of division orientation of
333 cells in 6 embryos.  Division angles are binned from 0 to 360 in bins of 10 degrees.
Pink bars represent cells dividing with their anterior daughter cell facing toward the
midline.  Light blue bars represent cells dividing with their anterior daughter cell facing
toward the midline.
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Figure 2.4. Mitotic spindle rotations establish division polarity

(A) Still frames from a movie of cells are expressing membrane-RFP and Tau-GFP.
Mitotic spindles are easily seen and a rotation of 15º is seen before anaphase onset.
White line represents orientation of spindle set up and corresponds to the purple line.
Yellow line represents the orientation of spindle pole separation.  Scale bar = 10µm. (B)
Still frames from a different sector of the same movie as in the A panel.  This spindle
rotates a total of 86º before anaphase onset. White line represents orientation of spindle
set up and corresponds to the purple line.  Yellow line represents the orientation of
spindle pole separation.  Scale bar = 10µm. (C) Rose diagram of the angle of 144 cells in
6 embryos each expressing membrane-RFP and Tau-GFP.  Angles of spindle set up are
shown from 0º to 360º in bins of 10º.



41

(Figure 2.4D).  This result indicates that the spindle rotations in these neural cells indeed

establish the division polarity.

2.2.4 Disruption of Cdc42 function results in over-rotation of mitotic spindles

Because of the role of Cdc42 in controlling spindle stability, we asked if it also

controlled spindle rotations.  Indeed, we found that when Cdc42 function was disrupted

caused dramatic over rotations of the mitotic spindle (Figure 2.5C compare to A).

Because of toxicity effects by tau-GFP injection with either Cdc42 dominant negative we

examined rotations of the chromosomes.  We found that control cells had an average

rotation of 45o with the majority of the rotations occurring between 0o and 60o and very

few rotations exceeding 120o (Figure 2.5B and E).  In contrast, cells expressing Cdc42-

F37A had an average spindle rotation of 78o and often rotations were seen to exceed 90o

with a number exceeding 200o (Figure 2.5D and E).

2.2.5. Cdc42 controls division orientation of cell division in early neural plate

We next examined if this alteration of the extent of spindle rotation caused an

alteration to the orientation of cell division seen.  Embryos were injected as above

allowing for an internal control.  The angle of division of control cells is easily

comparable to manipulated cells.  Following manipulation of Cdc42 by injection of either

Cdc42-N17 or Cdc42-F37A the majority of the cell divisions occurred with the anterior-

most daughter cell oriented away from the midline at an expense of the cells dividing

toward the midline (Figure 2.6B and C, compare to Figure 2.6A). This caused a 12o shift

of the division angle on average.  While this shift is moderate, it is consistent with
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Figure 2.5. Alteration of Cdc42 function causes over rotations of mitotic spindles

(A) Still frames from a movie of a control embryo expressing histone-2B-GFP and
membrane RFP.  The blue arrow represents the major axis of the chromosomes during
the rotation and the white arrow represents the direction of rotation of the chromosomes.
Scale bar = 10µm.  (a’) Cartoons of the cell of interest from control nuclear rotation
movie. (B) Histogram representing the rotation of 114 chromosomes from 4 control
embryos. These values are shown in bins of 5º from 0º to 290º.  (C) Still frames from a
movie of cells expressing Cdc42-F37A, histone-2B-GFP and membrane-RFP.  The light
blue arrow represents the major axis of the chromosomes during the rotation and the
white arrow represents the direction of the chromosomal rotation. Scale bar = 10µm.  (c’)
Cartoons of the cell of interest from Cdc42-F37A nuclear rotation movie.  (D) Histogram
representing the rotation of 82 chromosomes from 4 embryos expressing Cdc42-F37A.
These values are shown in bins of 5º from 0º to 290º.  (E) Graph of the average rotation
of chromosomes in control cells (light grey bar) and cells expressing Cdc42-F37A (dark
grey bar).  Error bars represent standard error for each (2.9 for control and 7.0 for Cdc42-
F37A).  A Mann-Whitney test, with a U-statistic of 3302.5 and a U’ of 6045.5, was
performed and showed a two-tailed P-value of  0.0005.
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Figure 2.6 Cdc42 controls orientation of cell divisions in early neural plate

(A) Rose diagram of division polarity of a control clone.  99 cells from 5 embryos are
binned from 0o to 360o in bins of 10º.  (a’) Diagram representing the polarity of division
seen in control clones of Cdc42-N17 and Cdc42-F37A injected embryos.  Double-headed
pink arrows represent cells dividing in a medial manner and double-headed blue arrows
represent cells dividing in a lateral manner. (B) Rose of the division polarity in a clone
expressing a dominant negative to Cdc42, Cdc42-F37A.  73 cells from 3 embryos are
binned from 0º to 360º in bins of 10º.  (b’)  Diagram representing the polarity of division
seen in Cdc42-F37A clones.  Pink double-headed arrows represent cells dividing in a
medial manner and blue double-headed arrows represent cells dividing in a lateral
manner. (C) Rose diagram of the division polarity in a clone expressing a dominant
negative to Cdc42, Cdc42-N17.  87 cells from 4 embryos are binned from –90º to +90º in
bins of 10º.  (c’) Diagram representing the polarity of division seen in Cdc42-N17 clones.
Pink double-headed arrows represent cells dividing in a medial manner and blue double-
headed arrows represent cells dividing in a lateral manner.
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previous results from the fly neuroblasts showing only small changes to the division

angle in Ric8 mutants (David et al., 2005).

2.2.7 Spindle rotations align divisions with the cellular long axis, but cellular axis
alignment is not affected by disruption of Cdc42.

Based on how instable spindles were and the over rotation of mitotic spindles

indicate that the role of Cdc42 in controlling the orientation of cell divisions is through

the interaction of the spindle with the cell cortex.  Cells have been shown to preferentially

divide along their long axis: “Hertwig’s rule”  (Hertwig, 1893; O'Connell and Wang,

2000; Thery and Bornens, 2006).  We therefore determined if the neural cells in the

Xenopus obeyed this rule.  The cellular long axis was determined in dividing cells when

the entered metaphase.  We found that cells are initially polarized in the orientation of

division and spindle rotations orient into this long axis (Figure 2.7A).  The same analysis

was conducted on cells expressing either Cdc42-N17 or Cdc42-F37A and no difference

was found (Figure 2.7B and C, K-S test, p=0.431 and p=0.083 respectively).  This

indicates that Cdc42 does not determine the shape of cells and instead directly acts to

orient and stabilize spindle rotations.
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Figure 2.7. Long axis of cells is unaltered in cells expressing dominant negatives to
Cdc42.

(A) Rose diagram representing the angle of the long axis of 84 dividing control neural
cells in 6 embryos at initiation of metaphase.  Angles of cellular long axis are shown
from 0º to 360º in bins of 10º. Pink bars represent cells dividing with their anterior
daughter cell facing toward the midline.  Light blue bars represent cells dividing with
their anterior daughter cell facing toward the midline.  (B) Rose diagram representing the
angle of the long axis of 99 dividing Cdc42-F37A expressing neural cells in 9 embryos at
initiation of metaphase.  Angles of cellular long axis are shown from 0º to 360º in bins of
10º. (C) Rose diagram representing the angle of the long axis of 79 dividing Cdc42-N17
neural cells in 8 embryos at initiation of metaphase.  Angles of cellular long axis are
shown from 0º to 360º in bins of 10º.

2.2.6 Cell division orientation is not controlled by PCP signaling and does not
require normal neural tube morphogenesis.

The planer cell polarity (PCP) pathway has been shown to control oriented cell

divisions in the fish and the fly (Gho and Schweisguth, 1998; Kaltschmidt et al., 2000;

Bellaiche et al., 2001a; Gong et al., 2004).  Therefore, we examined the role of these

genes in the oriented cell divisions in Xenopus by use of dominant negatives to molecules

in the PCP pathway.  Use of Xdd1, a dominant negative to Dishevelled, did not disrupt

oriented cell divisions in the superficial neural plate (Figure 2.8A). A Kolmogorov-

Smirnov (K-S) test was not found to be significant when conducted on histograms of

Xdd1 and control clones (p=0.892). To confirm these data we used a dominant negative
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to Frizzled-8 function, Nfz-8 (Deardorff et al., 1998).  We again found no difference in

the orientation of cell divisions in the neural plate (Figure 2.8B, K-S test, p=0.296).

Modification of the PCP signaling pathway by these dominant negatives has been shown

to control neural tube closure in the Xenopus (Wallingford et al., 2000; Gong et al., 2004;

Park et al., 2008).

These data suggested that the orientation of cell division did not depend on the

closure of the neural tube.  Injection of either Xdd1 or Nfz-8 mRNA into the entire neural

plate gave significant neural tube closure defects indicating they were functioning

correctly (not shown).  To confirm the independence of cell division orientation from

neural tube closure we used another dominant negative known to disrupt neural tube

closure, Shroom3-ASD1 (Haigo et al., 2003).  Expression of this dominant negative

disrupted neural tube closure but did not cause alteration to the division polarity (Figure

2.8D K-S test, p=0.127).



47

Figure 2.8. PCP signaling does not control cell division polarity

(A) Representative rose diagram of the division polarity in a control clone.  85 cells from
3 embryos are binned from 0º to 360º in bins of 10º.  (B) Rose diagram of the division
polarity in clones expressing Xdd1, a dominant negative to Dishevelled. 110 cells from 4
embryos are binned from 0º to 360º in bins of 10º.  (C) Rose diagram of the division
polarity in clones expressing a dominant negative to Frizzled Xfz8N. 100 cells from 5
embryos are binned from 0º to 360º in bins of 10º.  (D) Rose diagram of the division
polarity in clones expressing a dominant negative to Shroom-3, the ASD1 domain. 41
cells from 2 embryos are binned from 0º to 360º in bins of 10º.
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 2.3 DISCUSSION

Oriented cell divisions are important for normal development and a small number

of conserved mechanisms appear to be associated with setting up the correct division

plane.  Previous studies have shown that cells tend to divide in one orientation (i.e.

anterior-posterior or medio-lateral) within a given tissue and that spindles reliably rotate

to a precisely defined degree (Concha and Adams, 1998; Bellaiche et al., 2001a;

Bellaiche et al., 2001b; Gong et al., 2004).  By contrast, we find that here these themes

are not universal, and we describe a novel system of medio-lateral cell division in an

intact vertebrate embryonic epithelium.  Cells in the early neural plate of Xenopus

divided in a medio-lateral fashion.  These divisions are novel in the fact that the majority

of divisions are not oriented perfectly in a medio-lateral orientation but the majority of

the cells divide obliquely with relation to the midline in a mirror symmetric manner.  We

are able to define the division orientation of these cells by the anterior-most daughter cell.

Cells in the Xenopus neural plate divide with the anterior most daughter cells facing

obliquely toward or away from the midline in approximately equal proportion at a degree

of about 60o (Figure 2.3).  Like other oriented cell divisions, rotations of the mitotic

spindle establish the orientation of division in these cells.  But unlike previously

examined spindle rotations the extent of spindle rotation in the Xenopus neural plate was

highly variable from cell to cell (Figure 2.4).  We also found that while the extent of

spindle rotation varied from cell to cell, all spindles rotated to align parallel to the cellular

long axis (Figure 2.7).

Previous studies have also found that PCP signaling plays a major role in

controlling orientated cell divisions and associated spindle rotations in vertebrate

animals, but we find no role for PCP signaling in this case (Figure 2.8).  Moreover, we

find that in Xenopus the orientation of cell division is independent from the morphogenic
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movements of the neural plate.  When dominant negatives to PCP genes or to Shroom3,

another gene required for neural tube closure, we see dramatic neural tube closure defects

(Figure 2.7).  This phenotype serves as a useful indicator for the efficacy of our reagents.

Surprisingly, we find that Cdc42 plays a key role in establishing division

orientation in the closing Xenopus neural tube (Figure 2.6).  Cells expressing two

different dominant negatives to Cdc42, Cdc42-N17 or Cdc42-F37A, divided with more

cells dividing obliquely away from the midline at the expense of the cells oriented toward

it.  Alteration of Cdc42 function causes neural tube closure defects (Choi and Han, 2002).

This result may be important, as the neural plate is subject to defined mechanical strains,

and such strains are likely to influence cell shape and cell division in epithelial sheets

(Brodland and Veldhuis, 2002; Thery and Bornens, 2006; Benko and Brodland, 2007).

To investigate the dependence of cell shape on neural tube closure we examined the long

axis of cells as they divide.  We find that cells divide along their long axis in control

cells, thus obeying Hertwig’s rule (Figure 2.8).  Moreover the orientation of the cellular

long axis is unaltered in perturbations of Cdc42 or PCP genes (Figure 2.8 and not

shown), showing an independence of cell shape and neural plate morphogenesis.

Since cell shape was not altered in Cdc42 dominant negative cells we examined

spindle dynamics in these cells and found a dramatic effect.  Spindles were highly

unstable and mitotic chromosomes were often seen to move from one side of the cell to

the other.  This was not seen in control cells where chromosomes remained stably

localized at the metaphase plate (Figure 2.1 and 2.2).  Quantification of these data

showed that the chromosomes in cells expressing either Cdc42-N17 or Cdc-F37A had a

significantly higher average SII (Figure 2.2). Moreover, such hyperactive nuclear

movement is linked to spindle positioning in C. elegans (Couwenbergs et al., 2004).

Cdc42 has been shown to control the reorientation of the MTOC in migrating cells by
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governing association of the microtubules with the cell cortex (Etienne-Manneville and

Hall, 2001; Palazzo et al., 2001). Our results suggest a similar mechanism may function

to position the spindle in Xenopus neural plate cells.

Previously we have found that cell divisions in the neural plate are highly

specialized (Chapter 3).  To determine if Cdc42 played a role in this specialization, we

altered Cdc42 function in the epidermis of the tail.  We found no change to the

stabilization of the mitotic spindle in either Cdc42-N17 or Cdc42-F37A expressing cells

(Figure 2.2).  This implies that Cdc42 may play a role in coordinating the interaction of

the spindle with the cell cortex in the early neural plate.  To confirm this, we examined

spindle rotations in cells with altered Cdc42 function.  Control cells have a limited range

of rotation, with very few spindles rotating more than 120°, cells with altered Cdc42

function had spindles that rotated in excess of 200° (Figure 2.5).  These data suggest a

model for the oblique angle of cell divisions in the neural plate.  We propose that spindle

rotations are essentially random, and that molecular cues on the cell cortex define “catch-

points” that stop rotation prior to anaphase in accordance with a cell’s long axis (Figure

2.9A and B).  One such catch point is responsible for stopping spindle rotation such that

the final division angle is oblique to the midline with the anterior-most daughter cell

lateral to the more-posterior daughter cell.  This catch-point requires Cdc42 function

(Figure 2.9A, blue), while Cdc42-independent catch-point accounts for cells dividing

obliquely toward the midline (Figure 2.9A and B, red).  In this model, if the Cdc42-

dependent catch-point is disrupted, spindles rotate excessively, and eventually are able to

stop by responding to the other, Cdc42-independent catch (Figure 2.9B).
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Figure 2.9. Model of Cdc42 control of spindle stability in early neural plate cells

(A) In a wildtype neural plate cells there are two sets of molecules on the cortex of the
long axis of the cells.  One is Cdc42 dependent (blue) and one is Cdc42 independent.  A
spindle forms and interacts with these molecules, via the astral microtubules, has a
limited range of rotation (pink and black dots) and remains stable in the middle of the
cell.  (B) When Cdc42 function is altered the Cdc42 dependent orientation signal is
disrupted (note lack of blue).  When a spindle forms it is unable to remain stably in the
middle of the cell because of the lack of interaction with the astral microtubules with the
Cdc42 signal.  Also the spindle over rotates (pink and black dots).

This general mechanism, by which multiple inputs “compete” to control spindle

orientation, has been demonstrated in Drosophila neuroblasts (Bellaiche et al., 2001a;

Bellaiche et al., 2001b; David et al., 2005).  Further examination of the localization of

Cdc42 and active Cdc42 in early neural plate cells will be required to aid in the

understanding of these “catch-points”

These data point to a new level of diversity in the mechanisms of oriented cell

division and suggest that additional in vivo studies will be important.  Finally, this study

provide a unique glimpse into the process of cell division in an intact epithelial cell sheet
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that is simultaneously engaged in massive proliferation and a massive morphogenetic

event.
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Chapter 3: Developmental regulation of central spindle assembly and
cytokinesis during vertebrate embryogenesis.

3.1 INTRODUCTION

Proper completion of cell division is critical to ensure segregation of genetic

material and also contributes to morphogenesis in embryos (Rappaport, 1961; Gont et al.,

1996; Glotzer, 2001; Chalmers et al., 2003).  To correctly segregate DNA, accurate

temporal progression and completion of the phases of the mitotic cell cycle: interphase,

synthesis, metaphase, anaphase and telophase/cytokinesis, is required.  Cells have an

elaborate system of checkpoints to ensure that these phases are correctly completed.  A

number of these checkpoints make certain that the architecture of mitotic structures is

correct.  Furrow ingression is called cytokinesis and is an important step to ensuring the

fidelity of cell division (Glotzer, 2001).  A number of structures are necessary for the

completion of this process, one of which is the central spindle (Severson and Bowerman,

2002; Glotzer, 2009).  The central spindle is a microtubule-based structure containing

overlapping anti-parallel non-kinetochore associated polar microtubules that dictate the

site of cytokinetic furrow ingression (Glotzer, 2001; Glotzer, 2005).  The central spindle

determines the site of furrow ingression by locally recruiting and activating the small Rho

GTPase RhoA.  This local activation of RhoA is required for the formation of the

contractile ring.  RhoA, in its active form, activates actin assembly factors and regulates

the activation state of myosin light chain (Werner and Glotzer, 2008).

While the central spindle structure is required for the localization and activation

of RhoA at the site of cleavage its presence is not the sole factor.  Many proteins are

known to localize to this region of microtubule overlap and their localization leads to

cleavage furrow initiation.  Many of these proteins require the cooperation of other
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central spindle proteins their proper localization.  For example, Plk1 (polo-like kinase 1),

a kinase required for the eventual activation of RhoA, requires the microtubule bundling

protein PRC1 (protein regulator of cytokinesis).  PRC1 has been shown to be required for

proper completion of cytokinesis in many organisms (Jiang et al., 1998; Mollinari et al.,

2002; Verbrugghe and White, 2004; Verni et al., 2004).  When the expression of PRC1 is

reduced cytokinetic furrows ingress but then regress after a period of time. (Jiang et al.,

1998; Mollinari et al., 2002).  This failure of abscission is because of the disorganization

of the central spindle.  Central spindle proteins do not localize correctly when the central

spindle is not organized correctly (Jiang et al., 1998; Mollinari et al., 2002; Mollinari et

al., 2005).

A number of unexpected phenotypes are seen when PRC1 is ablated in cultured

cells.  In control cells, with PRC1 present, chromosomes separate to about the geometric

center of the new daughter cells before cytokinesis initiates (Figure 3.1A, anaphase).  The

central spindle is well organized between the chromosome masses and PRC1 is present at

the central spindle through anaphase and telophase (Figure 3.1A, anaphase and

telophase).  In PRC1 depleted cells chromosomes separate much farther than in control

cells (Figure 3.1B, telophase).  Moreover, instead of a well-organized central spindle

astral microtubules associate directly with the membrane of the cleavage furrow.  This

causes these PRC1 depleted cells to have a low density of microtubules in the spindle

midzone (Figure 3.1B, anaphase and telophase).  The final surprising phenotype that is

observed in these cell (Mollinari et al., 2005) is that the cytokinetic furrows move inward

at a faster rate as compared to the controls (Figure 3.1B, telophase) (Mollinari et al.,

2005).
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  Figure 3.1. Depletion of PRC1 causes unexpected phenotypes in cultured cells

(A) In cultured cells with PRC1 present anaphase and telophase occur as expected.  The
chromosomes separate to the middle of the new daughter cells before cytokinesis initiates
(anaphase).  A properly bundled central spindle is observed and PRC1 is localized to the
central spindle (anaphase and telophase). (B) In cultured cells with PRC1 depleted a
number of unexpected phenotypes are seen.  The central spindle is disorganized and there
is a low density of microtubules in the spindle midzone (anaphase).  The mitotic spindle
microtubules now instead associate directly with the ingressing furrows (telophase) The
chromosomes separate much farther than expected and closely appose the cell cortex
before the onset of telophase (telophase).  Finally, the rate of furrow ingression is
accelerated as compared to control cells (telophase).
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Most analysis of the central spindle and central spindle proteins has been

conducted in cultured cells or in cleavage stage embryos (Roos and Camenzind, 1981;

Salmon and Wolniak, 1990; Verbrugghe and White, 2004; Glotzer, 2005; Canman et al.,

2008).  The role of these proteins during embryonic development has not been well

studied but regulation of the expression levels of these proteins throughout development

may aid in the regulation of cell divisions at different stages.  Analysis of SPD1, the

PRC1 homologue, in the worm show that these central spindle proteins may play a

developmental role in controlling cell divisions.  When SPD-1, is mutated the central

spindle does not form but the first few cell divisions occur correctly.  One of the cells, the

EMS cell, at the 4-cell stage consistently and often failed during cytokinesis while the

other 3 cells are able to complete cell division properly (Verbrugghe and White, 2004).

This suggests that SPD1 may have a different role in this EMS cell than it does in the

other 3 cells.  This also suggests a possible stage specific regulation of cell division

where early during development SPD1/PRC1 may not be required for cell division but is

later.  We wished to compare cell divisions in different tissues during development, early

and late, determine the differences and the causes for any differences seen.

Here we show that cell divisions in the early neural plate of the developing

Xenopus embryo are highly modified as compared to cell divisions in the posterior region

of the tail epidermis.  Both of these tissues are derived from the ectoderm so these

differences were quite surprising. Cells in the early neural plate early undergo

exaggerated chromosome separation, delayed cytokinetic onset and rapid cytokinetic

furrow ingression.  In addition there is a low density of microtubules between separating

chromosomes in the early neural plate, as compared to the late tail epidermis, instead

microtubules associate with the ingressing cytokinetic furrows.  These modifications
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resemble phenotypes seen in cultured mammalian cells lacking PRC1 (Jiang et al., 1998;

Mollinari et al., 2002; Kurasawa et al., 2004; Mollinari et al., 2005).

We show that the expression levels of PRC1 are developmentally regulated in

these two ectodermally derived tissues. The expression level of PRC1 was found to be

lower in the early neural plate than in the tail epidermis.  It was found that the level of

PRC1 mRNA and protein level were both reduced in the early neural plate as compared

to the tail epidermis.  Forced expression of PRC1 in early neural cells rescues both the

exaggerated anaphase and low microtubule density.  These data show that PRC1 is a

developmental regulator of central spindle assembly and may be related to the

specialization of the midbody in neural cells (Bancroft and Bellairs, 1975; Bellairs and

Bancroft, 1975; Cohen et al., 1988; Dubreuil et al., 2007; Wilcock et al., 2007).

3.2 RESULTS

3.2.1 Novel modifications to mitotic mechanisms in early neural epithelial cells

Xenopus laevis embryos provide an exceptional model to study the mechanisms

of cell division in an in vivo system.  Xenopus an externally developing vertebrate and

embryos have large easily visualized cells throughout development (Davidson and

Wallingford, 2005).  We chose to exploit these attributes in our study of cell divisions

during development.  To compare cell divisions we chose to study two ectodermally

derived tissues, the early neural plate and the epidermis of the tail bud.  Both tissues

undergo abundant cell division and are situated on the surface of the embryo, making

them easily accessible (Harris and Hartenstein, 1991; Saka and Smith, 2001; Wallingford,

2005; Gibson et al., 2006).  Because of the conserved nature of cell divisions among
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metazoans and the fact that these tissues are derived from the same germ layer we were

surprised to find significant differences between them.

To assess cell divisions in these tissues we injected mRNAs encoding fluorescent

fusion proteins to visualize particular structures in the cell.  Membranes were labeled by

injection of mRNA encoding myristylated red fluorescent protein (mem-RFP).  The

myristyl tag is a small peptide sequence that, when added to the N-terminus of a protein,

targets it to the membrane (McIlhinney, 1998).  To label nuclei/chromosomes we injected

a histone-2B green fluorescent protein (H2B-GFP) encoding mRNA, which labels one of

the subunits of the nucleosomes of condensed DNA.  Analysis using mem-RFP and H2B-

GFP revealed that cells in the early neural plate undergo exaggerated spindle elongation

during anaphase B as compared to the tail epidermis.  This movement caused

chromosomes to closely approach the cell cortex before the onset of cytokinesis (Figure

3.2A, bracket and Figure 3.2C blue line).  In the tail epidermis, chromosome movements

were similar to those seen in cells in culture where chromosomes stopped in about the

middle of the new daughter cell (Figure 3.2B, bracket and Figure 3.2C pink line).

Exaggerated chromosome movement in the early neural plate was not accompanied by a

significant difference in cell size.  Associated with the exaggerated anaphase movements

is a delay in the onset of cytokinesis.  In the early neural plate, ingression of cytokinetic

furrows began at approximately 6-7 minutes after the onset of anaphase while in the tail

epidermis it began at 4-5 minutes (Figure 3.2A and B arrowheads).  The completion of

cytokinesis furrow ingression occurred for both tissues
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Figure 3.2 Modifications to cell division mechanism in early neural epidermis

(A and B) Still frames taken from movies of cell division in later tail epidermal cells (A)
or in earlier neural epithelial cells. (B) Membranes are labeled with RFP and
chromosomes are labeled with H2B-GFP.  Bracket indicates distance between
chromosomes and cell cortex; arrowhead indicates onset of cytokinesis. Scale bars =
10µm.  (C) Graph illustrating chromosome separation during anaphase in early neural
(blue) and later epidermal cells (red) expressed as percentage of cell length (N = 20 cells;
3 different embryos). (D) Graph showing progress of cytokinetic furrow ingression over
time for early neural (red) and late epidermal (blue) cells. (N = 20 cells; 3 embryos) (E)
Graph showing instantaneous rate of cytokinetic furrow ingression at time-points during
mid-cytokinesis for early neural (red) and late epidermal (blue) cells (N = 20 cells; 3
embryos). (F and G)  Still frames taken from movies showing the lifetime of the midbody
in the late epidermis (G) and the early neural tissue (F).  Microtubules are labeled with
Tau-GFP and membranes with membrane-RFP.  Arrowheads indicate midbodies.  (H)
Graph showing average midbody lifetime for late epidermal (red) and early neural (blue)
cells (N = 14 cells; 3 embryos for neural; 11 cells; 2 embryos for epidermal).
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at the same time, about 12 minutes after anaphase onset, indicating that the furrows may

move at different rates in the two tissues.  Furrow ingression rate was examined and it

was found that for a short period of time during cytokinesis the furrows in the neural

plate move at a faster rate (Figure 3.2D and E).  Finally, the two tissues differed in the

lifetime of the midbody.  To examine microtubules during cell division mRNA encoding

tau-green fluorescent protein (tau-GFP) was injected.  Tau is a microtubule binding and

stabilizing protein (Weingarten et al., 1975).  Movies of tau-GFP revealed that the

midbody persisted longer in the early neural plate than the tail epidermis, about 60

minutes and 30 minutes respectively (Figure 3.2F, G and H).

3.2.2 Decreased microtubule density in spindle midzone of early neural epithelia

The mitotic spindle and the central spindle are important for the control of the

extent of sister chromosome separation (Glotzer, 2001).  For this reason, we examined

the spindle using movies of tau-GFP and α-tubulin immunostaining (Kwan and

Kirschner, 2005).  In the tail epidermis we saw a typical course of mitotic events.  As

anaphase and telophase progressed, a dense array of microtubules is present between the

separating chromosomes.  This array of microtubules is seen in both movies of tau-GFP

and α-tubulin antibody staining and is the central spindle.  In the tail epidermis, the

midbody is formed by the compression of the central by the cytokinetic furrows (Figure

3.3A and C-F arrow).  In the early neural plate this dense array of microtubules was not

observed.  Instead, there is a low density of microtubules between the chromosomes

throughout anaphase and microtubules associate with the ingressing cytokinetic furrows

during telophase (Figure 3.3B and G-J arrow and arrowhead).

To quantify the differences in microtubule density we measured the pixel

intensity of microtubules between the spindle poles as indicated in Figure 3.5 (dashed
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Figure 3.3 Decreased microtubule density in the spindle midzone of neural plate
epithelial cells in vivo

(A and B) Still frames from movies of late epidermal epithelial cells (A) or early neural
epithelial cells (B) showing the distribution of Tau-GFP-labeled microtubules during
cytokinesis; membranes are labeled with membrane-RFP and chromosomes in the late
epidermis are labeled with H2B-RFP.  (C-J) Immunohistochemistry for α-tubulin in late
epidermal (C-F) and early neural (G-J) cells confirm the microtubule distributions seen in
time-lapse movies.  All scale bars = 10µm.



62

lines in A-C).  Cells at the same stage of the cell cycle, early telophase, were analyzed in

the tail epidermis and the early neural plate.  We consistently saw that the tail epidermis

had a higher microtubule density between the spindle poles, and the average pixel

intensity for several cells in the tail epidermis was higher than that in neural plate cells

(Figure 3.5F compare dark blue line to the pink line).

3.2.3 PRC1 is dynamically expressed in the developing Xenopus embryo

Our data indicate that cells in the tail epidermis divide in a manner similar to

mammalian cells in culture.  In contrast, cells in the early neural plate divide with an

exaggerated chromosome separation, rapid furrow ingression and low microtubule

density between the separating chromosomes.  These modifications to cell division are

reminiscent of the phenotypes seen in cultured cells with depleted levels of the protein

PRC1 (protein regulator of cytokinesis 1) (Jiang et al., 1998; Mollinari et al., 2002;

Kurasawa et al., 2004; Verbrugghe and White, 2004; Verni et al., 2004; Mollinari et al.,

2005).  The similarity between these phenotypes suggested that PRC1 may control these

differences in cell division in the developing Xenopus laevis embryo.

Using both in situ hybridization and immunostaining for PRC1 we observed

decreased levels, but not a complete absence, of PRC1.  In situ hybridization at the early

neural stage showed low levels of PRC1 in the neural plate (Figure 3.4A, arrowheads

indicate neural plate/epidermis boarder).  At the early tadpole stage of development

PRC1 was highly expressed in the tail bud, the kidney and the brain (Figure 3.4B).  High

levels of PRC1 expression in the tail bud correlate with the high level of cell division in

this region.  Antibody staining was consistent with the in situ data.  Both stages had

PRC1 protein expression but there was less overall in neural cells.  To quantify the

difference in PRC1 protein expression we imaged embryos at the two different stages
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with identical staining and imaging parameters.  Pixel intensity was then determined over

a number of cell lengths including one midbody.  PRC1 was localized to midbodies in

both tissues and to this was measured to ensure that the level of PRC1 at the end of

cytokinesis was the same.  Indeed, we found that at the midbody the level of PRC1 was

the identical (Figure 3.4C, D and E, arrow and arrowhead) but the level of PRC1

expression through the rest of the cells was reduced in the neural plate compared to the

tail epidermis (Figure 3.4E compare blue line to pink line).  Furthermore, the average

PRC1 level over several embryos was lower in the early neural plate (Figure 3.4F).

PRC1 associated with the midbody indicating that a central spindle does

eventually form.  To determine when the central spindle formed in each of these tissues

we examined when PRC1 associated with midzone microtubules by use of antibody

staining.  We found that PRC1 was often absent from midzone microtubules in the neural

plate during early/mid telophase (Figure 3.4G and G’).  At the same stages in the tail

epidermis PRC1 localized to the spindle midzone microtubules at the expected mitotic

phase, late anaphase/early telophase (Figure 3.4H and H’).  At the late telophase/midbody

stage of cell division PRC1 is localized to the midzone in cells in both tissues (Figure

3.4I-J’).



64

Figure 3.4 PRC1 is dynamically expressed in the developing Xenopus embryo

(A) In situ hybridization of PRC1 mRNA in an early neural plate stage embryo.
Arrowheads outline the border of neural plate.  (B) In situ hybridization of PRC1 mRNA
in a late tail epidermis stage embryo.  Arrowheads show areas of high expression of
PRC1 mRNA, the brain, kidney and tail bud.  (C) Immunostaining of PRC1 in the tail
bud epidermis.  White arrow indicates the line scan indicated by the pink line in panel E.
Red arrowhead indicates a midbody stained by PRC1.  (D) Immunostaining of PRC1 in
the neural plate.  White arrow indicates the line scan indicated by the blue line in panel E.
Red arrow indicates a midbody stained by PRC1.  Scale bar in C & D = 20µm.  (E)
Graph of line scans for PRC1 signal intensity in a representative tail bud epidermal cells
(pink) and neural plate cells (blue). Arrow and arrowhead indicate the intense signal at
midbodies in both cell types.  (F) Graph mean pixel intensity of interphase, cytoplasmic
PRC1 immunostaining signal for tail bud epidermis (pink; N = 12 embryos) and neural
plate (blue bar.  N = 7 embryos).  (G) Immunostaining for PRC1 (green) and α-tubulin
(red) in a tail bud epidermal cell at early telophase.  PRC1 channel alone is shown in
panel g’; PRC1 is concentrated around bundled microtubules in the midzone.  (H)
Immunostaining for PRC1 (green) and α-tubulin (red) in a neural plate cell at early
telophase.  PRC1 channel alone is shown in panel h’; despite cytokinesis onset, PRC is
not concentrated in the midzone. Scale bar in G & H = 5µm.  By late telophase, PRC
localizes to the central spindle in both epidermal cells (I, i’) and neural cells (J, j’).
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3.2.4 Excess PRC1 converts neural cell division mechanism to a more epidermal like
mechanism

We next examined whether the low level of PRC1 in the neural plate could

explain the modifications to cell division in this tissue.  To test this idea, we used DNA

injection of PRC1-GFP, in a mosaic manner, into the neural plate.  Embryos were

injected with histone-2B-RFP and membrane-RFP along the entire dorsal side at the 4-

cell stage.  At the 8-cell stage embryos are injected into one of the animal/dorsal cells

with a plasmid in which a CMV promoter drives PRC1 expression.  DNA was used

because it avoids any early pleiotropic effects overexpression of PRC1 by delaying its

expression until after the mid-blastula transition and the beginning of zygotic

transcription (Vize et al., 1991).  In neural cells expressing PRC1 at moderate levels, we

saw increased density of midzone microtubules and a reduction in the extent of

chromosome movement during anaphase-B to a similar degree as observed in the tail

epidermis (Figure 3.5C, F, light blue line and G, light blue line).

3.2.5 MKLP1 onset to central spindle is delayed in early neural cells

In cultured cells depleted of PRC1 a mis-localization of a number of central

spindle proteins was seen including MKLP1 (Mollinari et al., 2005).  To examine if

similar mis-localization events occur in the neural plate we investigated the onset of

MKLP1 to the spindle midzone.  MKLP1 is a kinesin like motor protein thought to be

required for movement of vesicles to the cytokinetic furrows (Gromley et al., 2005).

Antibody staining analysis of MKLP1 showed that it also had delayed onset to the central

spindle.  MKLP1 accumulated in the spindle midzone during early anaphase in epidermal

cells, but not until late anaphase or early telophase in neural cells (Figure 3.6A and B).  A

similar delay was observed in time-lapse movies of embryos expressing MKLP1-GFP.
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Figure 3.5 Excess PRC1 converts neural cell division mechanisms to a more epidermal-
like mechanism.

(A) α-tubulin immunostaining of a neural plate cell during early telophase.  Dark blue
dashed line indicates position of line scanning for data shown in panel F.  (B) α-tubulin
antibody staining of a tail epidermis cell during early telophase.  Pink dashed line
indicates position of line scanning for data shown in panel F.   (C) α -tubulin
immunostaining of a neural plate cell overexpressing PRC1-GFP.  Light blue dashed line
position of line scanning for data shown in panel F.  (D) Still frames from a movie of
division in a GFP-negative early neural epithelial cell. (E) Still frames from a movie of
division in a GFP-positive (PRC1-expressing) early neural epithelial cell.  Brackets in
panels B and C indicate the distance between chromosomes and the cell cortex. (F) Graph
of α-tubulin intensity across the early telophase spindle of the early neural plate cells
(dark blue line; N = 13), tail bud epidermis (pink line; N = 6) and early neural plate cells
overexpressing PRC1-GFP (light blue line;  N = 12).  (G) Graph of anaphase
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chromosome separation (expressed as percent of cell length) in neural plate cells (dark
blue line; N = 12), tail bud epidermis (pink line; N = 20), and neural plate cells
overexpressing PRC1 (light blue line; N = 12).

Figure 3.6 MKLP1 is recruited to central spindle later in the early neural plate

(A) Immunohistochemistry of MKLP1 localization during cell division in the tail
epidermis.  Distance between separating nuclei were assessed and compared to graph in
Figure 3.1C. For telophase distance between ingressing furrows was measured and
compared to graph in figure 3.1D.  (B) Immunohistochemistry of MKLP1 localization
during cell division in the early neural epithelial cells.  Distance between separating
nuclei were assessed and compared to graph in Figure 3.1C. For telophase distance
between ingressing furrows was measured and compared to graph in figure 3.1D.
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3.2.6 Midbodies in the neural plate are highly arched and release from the apical
surface of cells

Our MKLP1-GFP movies also showed another striking phenomenon.  After cell

division was completed, puncta of MKLP1-GFP were released from the apical surface of

the cells into the future lumen of the neural tube (Figure 3.7A).  This indicated that the

midbody is most likely released from the apical surface of these neural cells.  This release

was not observed in cells of the tail epidermis, suggesting that there might be a difference

in the structure of the midbody.  Both antibody staining and in vivo imaging showed that

the midbody in neural plate cells had a highly arcuate structure (Figure 3.7B and C) and

central spindle proteins and the midbody were closely localized to the apical surface of

the cell.  We did not observe this in the tail epidermis; instead the central spindle and the

midbody spanned most of the apical/basal axis of the cell (Figure 3.7B and C).  This

indicates that the midbody in early neural cells may be specialized as compared to the tail

epidermis.

3.2.7 High-level overexpression of PRC1 in neural cells causes ectopic microtubules
and disrupts cytokinesis

When we examined the expression of PRC1 in the neural plate of DNA injected

embryos, the cells had varying levels of the protein.  This variability is due to mosaic

expression of the gene of interest, with one cell with high expression being directly

adjacent to a cell with low or no expression (Vize et al., 1991).  When PRC1 is expressed

at a low level or a moderate level we saw reduced chromosome separation and enhanced

microtubule density in the midzone (see above).  When PRC1 is expressed at very high

levels, we encountered much different phenotypes.  Cells had thick cables of PRC1-GFP

positive microtubules (Figure 3.8A-A”).  These cables were previously seen in
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mammalian cells in culture with forced over-expression of PRC1.  These cables broke

down during the onset of metaphase, formed a mitotic spindle and underwent proper

cytokinesis (Mollinari et al., 2002).  Once the cells re-entered interphase the large

bundles of microtubules reformed but the general morphology of the cells was normal.

In cells of the Xenopus early neural plate, we saw that cells containing the large bundles

contained multiple nuclei and were much larger than normal cells (Figure 3.8B).  Movies

of these cells revealed that they are still susceptible to mechanisms of PRC1 regulation

previously seen (Jiang et al., 1998; Zhu and Jiang, 2005).  Cables broke down during the

onset of metaphase and formed a mitotic spindle.  Anaphase began in these cells but

ultimately failed and no cytokinetic onset was seen.  This indicates that the cells in the

Xenopus neural cells are very sensitive to changes in PRC1 levels.
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Figure 3.7 Midbody architecture differs in early neural plate and releases from the apical
surface of cells

A) Still frames from a movie of MKLP1-GFP and membrane-RFP in the neural plate.
Arrows point at a stably localized puncta of MKLP1, marking the midbody, that releases
out of the apical surface of the tissue.  B) Zoomed in view of the midbody at early
telophase.  The midbody is labeled with antibody staining of a-tubulin and PRC1 in both
the neural plate (upper row) and the tail epidermis (lower row) at early telophase.  Shown
is an X-projection of a stack (left hand column) and a Z-projection of the same stack
(right hand column). C) Zoomed in view of the midbody at late telophase.  The midbody
is labeled with antibody staining of a-tubulin and PRC1 in both the neural plate (upper
row) and the tail epidermis (lower row) at early telophase.  Shown is an X-projection of a
stack (left hand column) and a Z-projection of the same stack (right hand column).
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Figure 3.8 High-level overexpression of PRC1 in neural cells causes ectopic microtubules
and disrupts cytokinesis

(A-A”) Immunohistochemistry of α-tubulin in a neural cell expressing high levels of
PRC1-eGFP.  Showing colocalization of PRC1 and α-tubulin in large cables  (A)
Localization of PRC1-eGFP.  (A’) Localization of α-tubulin.  (A”) Merged image of
PRC1, α-tubulin and DNA.  (B) Still frames from a movie of PRC1-eGFP mosaics in the
early neural plate.  Cells expressing high levels of PRC1 are multi-nucleated and contain
large cables of PRC1 associated microtubules.  (C-C”) Still frames over time from the
same movie in figure 3.5B.  Cables of microtubules break down at the onset of metaphase
to form a multipolar spindle with more than one metaphase plate.
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3.3 DISCUSSION

3.3.1 Central spindle assembly is developmentally regulated by PRC1 expression
levels

Proper completion of cell division ensures the faithful segregation of genetic

material and growth of organisms (Rappaport, 1961; Gont et al., 1996; Glotzer, 2001;

Chalmers et al., 2003).  Most of the previous analysis of the mechanisms of cell division

has occurred in cultured mammalian cells and in early invertebrate embryos (Glotzer,

2001; Wang, 2001; Mazumdar and Mazumdar, 2002).  Comparatively little data is

available about the mechanisms of cell division during vertebrate development

(Hartenstein, 1989; Concha and Adams, 1998; Saka and Smith, 2001; Geldmacher-Voss

et al., 2003; Gong et al., 2004).  Even less in vivo time-lapse data is available (Concha

and Adams, 1998; Geldmacher-Voss et al., 2003; Gong et al., 2004).  Here we present a

method to analyze cell divisions during different stages of development in an intact,

developing vertebrate.

To guarantee proper cell division the structures controlling this process must be

correctly formed.  One of the most important structures for cell division is the central

spindle (Glotzer, 2001; Glotzer, 2005).  The central spindle is a dense bundle of

antiparallel microtubules shown to be required for cytokinesis (McCollum, 2004).  Many

proteins required for cytokinesis are recruited to this structure and if their localization is

disrupted the structure of the central spindle is also disrupted and cytokinesis progresses

but does not complete (Severson and Bowerman, 2002).  Much of the previous work on

central spindle proteins has been focused on the centralspindilin complex and passenger

protein complex (Adams et al., 2001; Terada, 2001; Mishima et al., 2002; Mishima and

Glotzer, 2003).  Recent research has elucidated the role of the microtubule bundling
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protein PRC1 in maintenance of the central spindle (Jiang et al., 1998; Mollinari et al.,

2002; Verbrugghe and White, 2004; Verni et al., 2004).

Here we show that the structure of the central spindle is developmentally

regulated in Xenopus laevis.  We made in vivo 4-D movies of cell division at two

different stages of development in two ectodermally derived tissues, the early neural plate

and the tail bud epidermis.  In the tail epidermis we found a typical central spindle

structure throughout anaphase and telophase/cytokinesis (Figure 3.3A and C-F).  In the

early neural plate instead we found a dispersed central spindle during anaphase, which

became more bundled and “normal” in appearance as telophase progressed (Figure 3.3B

and G-J).  We have found that regulation of the level of PRC1 expression in each of these

tissues explains these differences.  The neural plate has a low level of PRC1 expression

compared to the tail epidermis (Figure 3.4).  We propose that, due to this low level of

expression, the microtubules of the central spindle are unable to be bundled until late in

the cytokinetic process.

3.3.2 Differences in central spindle structure lead to changes to the mechanism of
cell division

Interestingly, we find that alterations to the structure of the central spindle lead to

changes in the mechanisms of cell division.  In the tail epidermis cell division proceeds

similar to cells in culture (Rappaport, 1961; Glotzer, 2001).  During anaphase the

chromosomes stop poleward movement when they reach the approximate geometric

center of the new daughter cell.  At this point, approximately 4 minutes after anaphase

onset, telophase begins with the ingression of the cytokinetic furrows (Figure 3.2A). In

contrast, early neural plate cells have chromosomes that travel much further than the

center of the new daughter cell and instead closely approach the cell cortex (Figure 3.2B).
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Furthermore, we find that cytokinesis onset is does not occur until the chromosomes stop

pole ward motion, approximately 6 minutes after anaphase onset (Figure 3.2B).

Our data show that that modifications to cell division are caused by the

differences in the structure of the central spindle because of a reduction of the level of

PRC1 in the early neural plate.  When we forced expression of PRC1 in the neural plate,

the differences observed were relieved.  When PRC1 is moderately over-expressed in the

early neural plate a well-structured central spindle was formed and the chromosomes do

not as closely appose the cell cortex (Figure 3.5).  If when PRC1 was highly over-

expressed cells were much larger, multinucleated and failed to divide properly (Figure

3.8).  This indicates that cells in the early neural plate are highly sensitive to large

changes in PRC1 expression and that in this tissue the altered central spindle structure is

important for the high fidelity of cell division.

3.3.3 Differences in cytokinesis may be related to specialization of the midbody

As the cytokinetic furrows ingress they compress the central spindle down to a

dense bundle called the midbody.  The midbody is a microtubule-based structure that is

thought to be required for the final abscission of dividing cells (Krishan and Buck, 1965;

Saxton and McIntosh, 1987; Skop et al., 2004; Gromley et al., 2005).  Different cells

have been shown to discard their midbodies in different ways.  For cultured cells to

complete abscission, one of the daughter cells adopts the midbody (Figure 3.9A-C)

(Mishima et al., 2002; Glotzer, 2005; von Dassow and Bement, 2005; Dhonukshe et al.,

2007; Pohl and Jentsch, 2008).

In neural cells the midbody has been found to be a highly specialized (Bancroft

and Bellairs, 1975; Bellairs and Bancroft, 1975; Dubreuil et al., 2007; Wilcock et al.,

2007).  The apical process in mature neural-epithelial cells is microtubule based and is
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derived from the midbody (Wilcock et al., 2007).  Furthermore, midbodies are released

from the apical surface of neural cells to maintain the balance of differentiation factors

(Figure 3.9D-G) (Dubreuil et al., 2007).  Differentiation factors are primarily found at the

apical membrane of cells (Bellaiche et al., 2001a; Bellaiche et al., 2001b; David et al.,

2005; Dubreuil et al., 2007).  Very small differences in segregation of these factors can

lead to differentiation of one of the daughter cells (Kosodo et al., 2004).  If these neural

cells underwent abscission like cultured cells, one of the daughter cells would adopt more

of the differentiation factors via the membrane around the midbody.  Instead, these neural

cells have modified their disposal of the midbody to release it from the apical membrane

and out into the lumen of the neural tube.  This allows for both of the cells to retain equal

amounts of the midbody.
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Figure 3.9. Neural cells discard their midbody differently than cells in culture

A) A cell in culture undergoing telophase.  B) Cell at the late telophase/cytokinesis stage
of the cell cycle.  The midbody is seen as a bridge between the two new daughter cells.
C) Vesicle traffic occurs from one of the daughter cells to the midbody.  Vesicles fuse
with the plasma membrane on one side of the midbody and allow one of the new
daughter cells to adopt the midbody.  D) A neural cell undergoing telophase.  E) Neural
cell at the mid/late telophase/cytokinesis stage.  The midbody is seen as a highly arched
bridge between the two cells.  F) Neural cell at the late telophase/cytokinesis stage.
Vesicle traffic occurs from both of the new daughter cells to the midbody.  f’) Vesicles
fuse on both sides of the midbody with the plasma membrane leading to the release of the
midbody off of the apical surface.  G) Two new daughter neural cells with equal apical
membranes.
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During our time-lapse analysis we found that the midbody in Xenopus neural plate

was also released from the apical surface of the cell.  This release may be related to the

control of the differentiation state of these neural cells.  Most of the factors that control

differentiation of cells lie at the apical surface.  Symmetric cell divisions maintain the

same level of these differentiation factors between each of the daughter cells keeping

them proliferative.  Asymmetric cell divisions cause one cell to gain more of the

differentiation factor and this cell remains proliferative while the other differentiates

(Bellaiche et al., 2001a; Bellaiche et al., 2001b; Dubreuil et al., 2007).  This release of the

midbody in neural cells is in contrast to the situation during Hela cell division where one

of the daughter cells adopts the midbody to complete abscission (Mishima et al., 2002;

Glotzer, 2005).  We present the following model for the cell divisions in these two

different cell types.  Cells in the tail epidermis divide in the standard way.  During

anaphase chromosomes separate and stop at approximately the geometric center of the

new daughter cell (Figure 3.10A, anaphase).  During this period the central spindle forms

by the bundling of the antiparallel microtubules by PRC1 (Figure 3.10, red dots).  The

cytokinetic furrows ingress at the central spindle (Figure 3.10A, early telophase).  This

central spindle is then compressed into the midbody by the cytokinetic furrows.  In the

tail epidermis this midbody spans the entire apical to basal axis (Figure 3.10A, mid/late

telophase).  In the early neural plate this process is different.  Chromosomes separate to a

further extent in the early neural plate (Figure 3.10B, anaphase).  Moreover, the central

spindle is not well organized until late in telophase.  Astral microtubules instead associate

with the ingressing cytokinetic furrows.  These furrows also move at a faster rate than the

furrows in the tail epidermis (Figure 3.10B, early telophase, compare to early telophase in

3.9A).  At this stage the central spindle begins to form with PRC1 at bundles of

antiparallel microtubules.  This altered central spindle structure may lead to a highly
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arched midbody (Figure 3.10B, mid telophase).  This highly arched midbody most likely

enables to the release of the midbody from the apical membrane (Figure 3.10B, late

telophase).  Also the requirement of vesicle trafficking to both sides of the midbody may

lead to the midbody having a longer life time in these neural cells (Figure 3.2F-H).

Together these modifications lead to the maintenance of the state of these neural

cells until differentiation is required.  Cells in the tail epidermis may not need these

modifications to the midbody because they are closer to their final fated state.  The

modifications to cell division seen in these neural cells; exaggerated anaphase, delayed

cytokinesis, rapid furrow ingression and a long lasting midbody, may be a consequence

of the differences in central spindle structure.  They may also be another evolutionary

role to these modifications.  Cells in the early neural plate are under a large amount of

tension by the movement of the tissues surrounding them. The process of neural tube

closure in Xenopus laevis is one of large morphogenic movements.  The embryo gets

becomes thin and lengthens by a process called convergent extension.  A tube of

ectoderm, the future central nervous system, is formed and internalized by invagination

of the neural tissue and the medial movement of the epidermis.  Convergent extension is

the process whereby cells intercalate between one another to create a longer thinner tissue

(Davidson and Keller, 1999; Wallingford et al., 2002).  The rolling of the neural tissue

into a tube is caused by cell shape changes (Jacobson and Gordon, 1976).  Medial

movement of the epidermis on the neural tissue aids this rolling action (Alvarez and

Schoenwolf, 1992).  These motions apply mechanical tension on the cells in the neural

tube.  The modifications seen in these early neural plate cells may be a response to these

motions as a way to avoid aneuploidy.  The cells may have their chromosomes move as

far apart as possible, have the cytokinetic furrows ingress as fast as possible and have the
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midbody as long lasting as possible to avoid chromosome slippage back through the

cytokinetic bridge.  Further research on this is required to fully address this question.

Figure 3.10. Model of final abscission in the tail epidermis and the early neural plate.

A) Model of division in the tail epidermis.  First column represents a top view of a tail
epidermal cell during anaphase and early telophase.  A well bundled central spindle is
observed and PRC1 localizes to the overlapping antiparallel microtubules.  The second
column represents a side view of the same cell during mid and late telophase.  The black
bar across the central spindle represents the ingressing cytokinetic furrows.  The midbody
is seen to span almost the entire apical to basal axis of the cell.  B) Model of division in
the early neural plate.  First column represents a top view of a neural cell during anaphase
and early telophase.  A well bundled central spindle is not observed.   PRC1 localizes to
the overlapping antiparallel microtubules that are associating with the ingressing furrows
and begins to form a central spindle later during the cell cycle.  The second column
represents a side view of the same cell during mid and late telophase.  The midbody is
highly arched and is close to the apical membrane of the cell.  The midbody is eventually
is released into the future lumen of the neural tube.
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Chapter 4: Possible role of central spindle proteins in ciliogenesis

4.1 INTRODUCTION

Ciliogenesis is the process by which a cilium is formed at the surface of a cell.

Cilia and flagella are microtubule based organelles that protrude from the surface of most

vertebrate cells.  There are two types of cilia, motile and stationary or primary cilia

(Bossinger and Bachmann, 2004).  Motile cilia move liquid over tissues such as the lung

and kidney (Sleigh et al., 1988).  Most vertebrate cells have at least one primary, or

stationary, cilium protruding from its surface (Olsen, 2005).  These primary cilia have

been found to be hubs for particular signaling molecules and the ciliary structure is

required for transduction of certain signaling pathways, such as the Hedgehog pathway

(Scholey et al., 2004; Corbit et al., 2005; Haycraft et al., 2005; May et al., 2005; Scholey

and Anderson, 2006).  Cilia are formed at the surface of cells by a specific set of events

called ciliogenesis.  Ciliogenesis occurs when basal bodies are formed by the replication

of centrioles near the golgi (Figure 4.1A).  These basal bodies then associate with

vesicles, possibly from the golgi as well, and are trafficked toward the apical surface of

the cell (Figure 4.1B) (Yang and Li, 2005; Park et al., 2008).  As the basal body is being

trafficked apically it associates with two structures the basal foot and the rootlet (Figure

4.1C and D) (Boisvieux-Ulrich et al., 1990; Hagiwara et al., 1997; Yang et al., 2002;

Yang and Li, 2005).  The vesicle associated with the basal body then fuses with the apical

membrane of the cell thus docking the basal body to the apical surface of the cell (Figure

4.1C).  The cilia can now form by extension of the microtubules that make up the basal

body (Rosenbaum and Witman, 2002; Pazour and Witman, 2003).  This extension of the

axoneme relies on a process called intraflagellar transport (IFT).  This process grows the

cilia from the distal tip of the axoneme (Witman, 1975; Rosenbaum and Witman, 2002).
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Disruption of any of the many IFT molecules leads to defects in ciliogenesis (Rosenbaum

and Witman, 2002; Pazour and Witman, 2003).

Figure 4.1. Ciliogenesis

(A) The centrioles of the centrosome separate near the golgi.  In the case of multiciliated
cells the mother/older centriole replicates in this area to produce many basal bodies.  (B)
These basal bodies then associate with vesicles and are trafficked toward the apical
surface of the cell.  (C) As they are trafficked the basal bodies associate with two
accessory structures, the basal foot (black triangle) and the rootlet (black lines).  This
completed basal body structure then docks to the apical membrane by the fusion of the
vesicle with the plasma membrane.   (D) The axoneme grows out from the basal body by
the addition of axonemal units to the distal tip by intraflagellar transport.
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When ciliogenesis is disrupted during development a number of diseases,

disorders and syndromes are seen, called ciliopathies.  Along with other defects to

development ciliopathies often present with defects to neural tube closure (Badano et al.,

2006; Chen, 2008; Leitch et al., 2008; Tallila et al., 2008).   These neural tube closure

defects have been linked to defects in hedgehog signaling and patterning of the neural

tissue (Huangfu et al., 2003; Huangfu and Anderson, 2005).  The planar cell polarity

(PCP) pathway also has been found to play a role in neural tube closure by aiding in

convergent extension and cell shape changes that occur during this time (Wallingford and

Harland, 2002; Ueno and Greene, 2003; Ciruna et al., 2006).  As mentioned previously

(Chapter 1), PCP signaling organizes cells within the plane of a tissue as opposed to the

apical basal axis, which is perpendicular to the plane of the tissue (Nechiporuk and

Vasioukhin, 2006).  PCP signaling controls the outgrowth of lamellipodia on each side of

the cell through the localized organization of actin filaments (Shih and Keller, 1992).

Recently, PCP signaling has been shown to be involved in ciliogenesis by regulation of

basal body docking and the polarity of basal bodies (Park et al., 2006; Park et al., 2008).

When PCP signaling is disrupted, through morpholino knockdown, basal bodies are not

trafficked to the apical surface of the cell.  This may be because of disruption of the actin

cytoskeleton at the apical surface (Park et al., 2006; Park et al., 2008).  This data is fairly

recent but reveals that our understanding of ciliogenesis is not complete and some

unexpected pathways may be involved in this process.

The epidermis of the Xenopus tadpole is an excellent model system in which to

study ciliogenesis.  This tissue is a mucociliary epithelium that closely resembles that of

the lining of the airway in vertebrates (Hayes et al., 2007).  Both of these tissues contain

goblet cells, that secrete mucus, and ciliated cells, with dozens of motile cilia that beat to

move the mucus over the tissue (Steinman, 1968; Billett and Gould, 1971; Knowles and
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Boucher, 2002; Rogers, 2003; Nokhbatolfoghahai et al., 2005).  The vast number of cilia

on these ciliated cells makes it easy to analyze defects by assessing the length and/or

number of cilia present.

A large body of research concentrates on the connection between ciliogenesis and

cell division.  The basal body of the primary cilium also acts as one of the centrioles of

the centrosome and regulated breakdown of the cilium is required for proper progression

of cell division (Rieder et al., 1979; Wheatley et al., 1996; Pan and Snell, 2007).  There is

an inverse relationship between cell proliferation and cilia formation, as cells differentiate

they reduce their proliferation rate and form cilia (Fonte et al., 1971).

The progression of cell division in sea urchins relies on the translocation of a

ciliary kinesin subunit, KAP, to the nucleus.  For this translocation to occur the cilia must

be broken down allowing the release of KAP into the cytoplasm where it can be

translocated to the nucleus  (Morris et al., 2004).  Furthermore, diseases associated with

defects in cilia formation, such as polycystic kidney disease, are now being linked to

defects in the progression of the cell cycle (Mahjoub et al., 2002; Mahjoub et al., 2004).

Recently there has been an increase in research connecting the molecular

mechanisms of ciliogenesis and cytokinesis (Gromley et al., 2003; Gromley et al., 2005;

Zhao et al., 2006; Spektor et al., 2007).  Centriolin has recently been discovered and

found to be a major protein of centrosomes.  During cytokinesis Centriolin localizes to

the midbody and when knocked-down the final steps of cytokinesis fail (Gromley et al.,

2003).  Centriolin interacts with members of the exocyst complex and proteins associated

with SNAREs (soluble N-ethylmaleimide-sensitive factor attachment receptor).  More

detailed analysis of the knock down phenotype showed that centriolin is required for the

recruitment of the exocyst to the midbody.  When the exocyst is not localized to the

midbody vesicles are shown to accumulate around the cytokinetic furrow indicating a
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failure of fusion between the vesicles and the plasma membrane.  MKLP1 (mitotic

kinesin-like protein 1) is required to localize centriolin to the midbody and thus shows a

requirement for MKLP1 in recruiting the exocyst complex to the cytokinetic furrow

(Gromley et al., 2005).  Previous findings in the Wallingford lab show that the process of

ciliogenesis also localization of the exocyst to basal bodies (Park et al., 2008). This

research shows a link between ciliogenesis and cytokinesis but the inverse relationship is

poorly understood and further research is required.  While the connection of cilia

formation to the cell cycle is well studied the inverse is not as well studied.

Based on the work of other members in the lab and the work of Gromley et al., we

sought to find out what cell divisions proteins are involved in ciliogenesis.  Fully

understanding the connection between ciliogenesis and cell division, cilia to cell division

and cell division to cilia, will aid in understanding a number of ciliopathies.  This will

also lead to a better understanding of both these processes by gleaning information from

each other.  Specifically, vesicle trafficking appears to be involved in each of these

processes (Gromley et al., 2005; Park et al., 2008).  The specifics of vesicle trafficking in

either cell division or ciliogenesis are not well known and connection of the two may aid

in understanding this.

To this end we examined the localization of centriolin and central spindle proteins

in the epidermis.  Here we show that Centriolin, MKLP1, INCENP (inner centromere

protein), PRC1 and CENP-E (centromere protein-E) all localized in a punctate pattern at

the apical surface of multiciliated cells.  To elucidate the exact localization of these

proteins we did co-localization analysis with proteins known to localize to the basal body,

γ-tubulin, or the rootlet, a basal body accessory structure, CLAMP.  We found that

centriolin was localized to the basal body while MKLP1, INCENP, PRC1 and CENP-E

all appear to localize to the rootlet.  Confirming this, MKLP1 and INCENP were both
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shown to co-localize with CLAMP (Calponin-homology and microtubule associated

protein), a protein associated with the rootlet.  We hypothesize that since both processes

involve vesicle trafficking these central spindle proteins may regulate the docking of the

basal body to the apical surface of the cell or regulate traffic in to the ciliary axoneme.

Future collaboration with other lab members will further elucidate the role of these

central spindle proteins in the formation of cilia.

4.2 RESULTS

4.2.1 Select central spindle proteins localize in puncta in multiciliated cells

Based on the work of Gromley and other members in the Wallingford lab, we

examined the localization of central spindle proteins in the multi-ciliated cells of the

epidermis of the Xenopus tadpole.  Antibody staining was conducted on proteins known

to localize to the central spindle and α-tubulin to mark the microtubules of the cilium.

PRC1, MKLP1, CENP-E and INCENP were all found to localize in a punctate pattern at

the apical surface of ciliated cells just below the ciliary axonemes (Figure 4.2A, E, B, F,

C, G, D and H).  These central spindle proteins also localized correctly in cytokinetic

cells (Figure 4.2a’, b’, c’ and d’, arrow for each) indicating that in addition to their known

localization in dividing cells, these proteins had an additional localization in ciliated cells.

Based on the pattern of localization in the ciliated cells, we thought these proteins are

associated with the basal body or its associated structures, the basal foot or the rootlet.

4.2.1.1 Not all central spindle proteins show consistent localization in ciliated cells

While the majority of central spindle proteins examined showed possible basal

body localization there were some inconsistencies.  INCENP has been found to be in a
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complex with Aurora-B, Survivin and Borealin at the central spindle (Nakajima et al.,

2009).  Antibody staining of Aurora-B showed proper localization in cytokinetic cells

(Figure 4.3A and a’, arrow), but in multi-ciliated cells there was no punctate localization

under the ciliary axonemes (Figure 4.2C).  Antibody staining of Survivin showed the

punctate possible basal body staining in multi-ciliated cells (Figure 4.2B and D).  This

antibody did not show correct localization in dividing cells (Figure 4.2B’). Because of

these discrepancies, we did not pursue analysis of Aurora-B or Survivin.
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Figure 4.2. Select central spindle proteins localize in puncta at apical surface of
multiciliated cells

(A) Immunostaining of PRC1 in the mucociliary epidermis of the Xenopus.  (a’) Merged
image of PRC1 and α-tubulin immunostaining.  Arrow indicates dividing cell with
central spindle localization of PRC1. (B) Immunostaining of MKLP1 in the mucociliary
epidermis of the Xenopus.  (b’) Merged image of MKLP1 and α-tubulin immunostaining.
Arrow indicates dividing cell with central spindle localization of MKLP1. (C)
Immunostaining of CENP-E in the mucociliary epidermis of the Xenopus.  (c’) Merged
image of CENP-E and α-tubulin immunostaining.  Arrow indicates dividing cell with
central spindle localization of CENP-E. (D) Immunostaining of INCENP in the
mucociliary epidermis of the Xenopus.  (d’) Merged image of INCENP and α-tubulin
immunostaining.  Arrow indicates dividing cell with central spindle localization of
INCENP.  (E) Close up image of PRC1 puncta and α-tubulin in a ciliated cell.  (F) Close
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up image of MKLP1 puncta and α-tubulin in a ciliated cell. (G) Close up image of
CENP-E puncta and α-tubulin in a ciliated cell.  (H) Close up image of INCENP puncta
and α-tubulin in a ciliated cell.

Figure 4.3. Not all central spindle proteins show consistent localization

(A) Immunostaining of Aurora-B in the mucociliary epidermis of the Xenopus.  (a’)
Merged image of Aurora-B and α-tubulin immunostaining.  Arrow indicates dividing cell
with central spindle localization of Aurora-B.  (B) Immunostaining of Survivin in the
mucociliary epidermis of the Xenopus.  (b’) Merged image of Survivin and α-tubulin
immunostaining.  Arrow indicates dividing cell with no central spindle localization of
Survivin.  (C) Close up image of α-tubulin in a ciliated cell showing no puncta of
Aurora-B.  (D) Close up image of Survivin puncta and α-tubulin in a ciliated cell.
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4.2.2 Central spindle proteins do not localize to the basal body but centriolin does

Based on the localization of some central spindle proteins seen in multi-ciliated

cells, we wished to examine their localization in more detail.  A number of proteins are

known to localize to specific structures of the basal body complex.  Since the basal body

is a modified centriole γ-tubulin labels the basal body proper (Beisson and Wright, 2003).

We used antibody staining of both γ-tubulin and the central spindle proteins of interest to

determine co-localization.  PRC1, MKLP1 and INCENP do not co-localize with γ-tubulin

(Figure 4.4A-a”’, B-b”’ and C-c”’).  Instead, they are localized adjacently to γ-tubulin

puncta, in an anterior and dorsal manner with respect to the γ-tubulin (Figure 4.3c’”, b’”

and c’”).  This could indicate that these proteins are localized to either the basal foot or

the rootlet and will be assessed in section 4.2.3.  Because of the weak antibody staining

of CENP-E we were not able to assess its localization with respect to γ-tubulin.

Gromley and colleagues found that centriolin was a major component of

centrioles.  They found that centriolin localized to the centrosomes throughout the cell

but also localized to the midbody ring during cytokinesis (Gromley et al., 2003; Gromley

et al., 2005).  Furthermore, they found that centriolin localized to the basal body of

primary cilium of COS-7 cells (Gromley et al., 2003).  We wished to examine if this

localization was also seen in Xenopus multi-ciliated cells.  Indeed, we did find centriolin

localized to the basal body region of multi-ciliated cells (Figure 4.3D).  Moreover, we

find that centriolin co-localizes with γ-tubulin (Figure 4.3d’-d’”), confirming that

centriolin is localized to the basal body.



90

     

Figure 4.4. Central spindle proteins do not localize to basal body but centriolin does

(A) Immunostaining of PRC1 in a multiciliated cell.  (a’) Immunostaining of γ-tubulin in
the same cell.  (a”) Merged image of PRC1 and γ-tubulin immunostaining showing that
they do not co-localize.  (a’”) Blow up of white square in a”.  (B) Immunostaining of
MKLP1 in a multiciliated cell. (b’) Immunostaining of γ-tubulin in the same cell. (b”)
Merged image of MKLP1 and γ-tubulin immunostaining showing that they do not co-
localize. (b’”) Blow up of white square in b”. (C) Immunostaining of INCENP in a
multiciliated cell.  (c’) Immunostaining of γ-tubulin in the same cell.  (c”) Merged image
of INCENP and γ-tubulin showing that they do not co-localize. (c’”) Blow up of white
square in c”. (D) Immunostaining of centriolin in a multiciliated cell.  (d’)
Immunostaining of γ-tubulin in the same cell. (d”)Merged image of centriolin and γ-
tubulin showing that they do co-localize.  (D’”) Blow up of white square in d”.
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4.2.3 Central spindle proteins localize to the rootlet.

The striated rootlet is an accessory structure associated with the basal body of

cilia that extends away from the basal body.  This structure is known to be required for

maintaining stability of cilia and has been found to also be a docking station for vesicle

transport into the cilia (Fariss et al., 1997; Yang et al., 2005; Yang and Li, 2005; Park et

al., 2008).  The rootlet can be visualized by marking rootletin or CLAMP, the two major

proteins of the structure (Yang et al., 2002; Park et al., 2008).

For motile cilia, the basal foot points in the direction that cilia beat, while the

rootlet is localized to the other side, presumably for stability (Yang et al., 2005).

Xenopus cilia, in the mucociliary epidermis, beat in a posterior/ventral manner (Konig

and Hausen, 1993; Mitchell et al., 2007) meaning that the rootlet is localized to the

anterior and dorsal to the basal body.  Based on the localization of the central spindle

proteins with relation to the basal body, anterior and dorsal, we hypothesized that they

were localized to the rootlet.  To test this we used a CLAMP-RFP fusion protein.  We

injected embryos with CLAMP-RFP mRNA and conducted immunostaining of the

central spindle proteins.  The rootlet is pointed at its distal tip (Lundin, 1997) and

CLAMP-RFP shows this morphology well (Figure 4.5b’ and c’).  We noticed that the

central spindle proteins also had a pointed appearance in our previous antibody staining

(Figure 4.1 and 4.3).  We found that MKLP1 and INCENP both colocalized with

CLAMP-RFP but their localizations were not the same.  MKLP1 had a very pronounced

pointed appearance but in the opposite direction and CLAMP (Figure 4.4A-a” and B-b”).

INCENP, on the other hand, consistently localizes to the center of the CLAMP-RFP

region (Figure 4.4C-c” and D-d’).
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Figure 4.5. Central spindle proteins appear to localize to the rootlet

(A) Immunostaining of MKLP1 in a multiciliated cell. Pink box represents area used in
B-b”. (a’) Image of CLAMP-RFP in a multiciliated cell.  (a”) Merged image of MKLP1
and CLAMP-RFP showing co-localization.  (B) Hi-mag image of a small area of image
in figure 4.4A.  (b’) Hi-mag image of a small area of image in figure 4.4a’.  (b”) Hi-mag
image of a small area of image in figure 4.4a” showing the co-localization of MKLP1 and
CLAMP.  (C) Immunostaining of INCENP in a multiciliated cell.  Pink box represents
area in D-d”.  (c’) Image of CLAMP-RFP in a multiciliated cell.  (c”) Merged image of
INCENP and CLAMP-RFP showing co-localization. (D) Hi-mag image of a small area
of image in figure 4.4A.  d’) Hi-mag image of a small area of image in figure 4.4a’.  (d”)
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Hi-mag image of a small area of image in figure 4.4a” showing the co-localization of
INCENP and CLAMP

4.3 DISCUSSION

The localization of central spindle proteins to the basal body region of cilia was

surprising but not completely unexpected.  At the central spindle, these proteins are

known to be required for completion of cytokinesis (Bowerman, 2001; Terada, 2001;

Severson and Bowerman, 2002).  When these proteins are absent from the central

spindle, cytokinetic furrows will progress but cytokinesis will not complete and furrows

will eventually regress (Glotzer, 2001; Mollinari et al., 2002; Glotzer, 2005; Mollinari et

al., 2005).  Recently it has been found the cause of this defect is vesicle trafficking to and

vesicle fusion at the cleavage furrow (Bowerman and Severson, 1999; Straight and Field,

2000; Gromley et al., 2005).

Centriolin has recently been discovered and found to be a major protein of

centrosomes.  Centriolin also plays a surprising role during cytokinesis.  During

cytokinesis centriolin localizes to the midbody) (Gromley et al., 2003; Gromley et al.,

2005).   Centriolin then recruits components of the exocyst complex and other

components required for vesicle/plasma membrane fusion (Figure 4.6B) (Gromley et al.,

2003; Gromley et al., 2005).  The localization of MKLP1 at the midbody is required for

Centriolin’s localization there (Figure 4.6B) (Gromley et al., 2005; von Dassow and

Bement, 2005).  For proper localization of MKLP1 at the midbody other central spindle

proteins are required.  PRC1 aids in the localization of Aurora-B and Survivin (Mollinari

et al., 2005).  Aurora-B and Survivin exist in a complex with INCENP at the central

spindle and flemming body (Adams et al., 2000; Uren et al., 2000; Adams et al., 2001)

and INCENP aids in the localization of MKLP1 (Kaitna et al., 2000; Zhu et al., 2005).
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These data show that the localization of the exocyst to the spindle midzone requires

complex interactions of central spindle proteins.

Figure 4.6. The role of Centriolin and vesicle trafficking during cytokinesis

(A) Cell at the late telophase/cytokinesis stage of cell division.  Black box indicates
region blown up in Figure 4.6B.  (B) MKLP1 (red circle) is recruited to the spindle
midzone (green lines).  MKLP1 recruits Centriolin (blue circle) to the midzone, which
then recruits the Exocyst and SNAREs. Vesicles (black circles) are then transported to
the spindle midzone by traveling along the microtubules of the midbody.  By the aid of
the exocyst and the presence of SNAREs at the spindle midzone these vesicles fuse
together and with the plasma membrane, completing abscission.

Another process known to use the exocyst complex is the process of ciliogenesis.

(Zuo et al., 2009).  The process of apical docking of the basal bodies requires the exocyst

(Sorokin, 1968; Cohen et al., 1988; Park et al., 2008).  The exocyst complex also remains

associated with the basal bodies after docking has occurred, in Xenopus epidermis (Park

et al., 2008).  This localization may indicate that continued fusion of vesicles at the base

of cilia is required for ciliary maintenance or transport of molecules in and out of the

cilium.

The localization of central spindle proteins to the rootlet may be required for the

initial docking of the basal body to the apical surface.  Another possibility is that these
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proteins are required at the rootlet for continued transport of vesicles to the cilium.  The

process of intraflagellar transport (IFT) has been found to be required for cilia formation

and maintenance (Kozminski et al., 1995; Sloboda, 2002).  IFT transport moves ciliary

cargo along the microtubule doublets to the tip of the cilium where the cargo is released.

IFT particles in ciliary axonemes are not associated with membranous vesicles (Sloboda,

2002; Bisgrove and Yost, 2006).  Cargo directly interacts with IFT particles.  IFT

particles consist of two complexes, IFT complex A and IFT complex B (Figure 4.7).

These two complexes also interact with microtubule motors, kinesin and dynein

(Bisgrove and Yost, 2006). This allows for anterograde and retrograde transport through

the cilium (Figure 4.7).  While vesicles are not involved in transport in the axoneme,

vesicles from the golgi transport the IFT proteins to the base of the cilium (Follit et al.,

2006).
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Figure 4.7. Model of intraflagellar transport

Intraflagellar transport (IFT) controls the transport of cargo in and out of cilia as well as
maintains the ciliary structure.  IFT particles consist of two complexes, IFT complex A
(light blue oval) and IFT complex B (yellow oval).  IFT transport occurs along the
microtubule doublets (green lines, here simplified to show one doublet of nine)  Kinesin
(blue circle) controls anterograde transport of cargo (orange and pink ovals), while
dynein (red circle) controls retrograde transport.  Exchange of cargo and motors occurs at
the tip of the cilium.  At the base of the cilium there is a specialized area of membrane
called the transition zone that restricts traffic of cargo in to and out of the ciliary
axoneme.
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We believe that the ciliary rootlet may have a secondary function in directing

vesicle transport to the basal body.  Vesicles from the Golgi may transport to the rootlet,

possibly through the attachments of the rootlet with the cytoskeleton, and the cargo in the

vesicles can then be transported in the cilium through IFT (Figure 4.8).  This transfer

from vesicle to IFT may occur by fusion of these vesicles with the membrane at the base

of the cilium, which has been found to be very specialized (Figure 4.8) (Reiter and

Mostov, 2006; Vieira et al., 2006).  The localization of the central spindle proteins to the

rootlet may aid in the fusion of vesicles to this specialized membrane (Figure 4.8).  In the

fly, specialized membrane rafts have been found to be required for completion of

cytokinesis and central spindle formation (Szafer-Glusman et al., 2008).  Since both

processes require specialized membranes and similar set of proteins we feel that further

research is required to fully elucidate the role of central spindle proteins in ciliogenesis.
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Figure 4.8. Model of role of central spindle proteins in cilia maintenance

Vesicles with cargo destined for the cilia originate from the golgi.  These vesicles travel
by the actin cytoskeleton to the rootlet of the cilium.  At the rootlet are the central spindle
proteins, MKLP1, INCENP, PRC1 and CENP-E.  The exocyst may also lie at the rootlet
and aid in the fusion of the vesicles with the membrane at the base of the cilia or may aid
in the exchange of cargo within the vesicles with the IFT complex.  Alternatively, the
exocyst may be associated with the basal body proper and have a similar function.  This
may be more likely because of the presence of Centriolin at the basal body.
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Chapter 5: Conclusions and Future Directions

In this work, I identified and characterized developmentally regulated aspects to

cell division in the Xenopus laevis.  I found that cells in the early neural plate divide in an

oriented manner.  This orientation is established by Cdc42 controlled maintenance of

stable interactions between the spindle and the cell cortex.  This role of Cdc42 is

developmentally regulated and cells dividing later in a related tissue, the tail epidermis,

are not under this control.  Moreover, we find that the cell divisions in the early neural

plate are further specialized in their mechanisms of cell division.  Cells in the early neural

plate exhibit exaggerated anaphase-B movements, a delayed onset of cytokinesis and a

rapid cytokinetic furrow ingression as compared to the late tail epidermis, another

ectodermally derived tissue.  These modifications to the mechanism of cell division

appear to be because of a reduced level of PRC1, a microtubule bundling protein, and

thus modifications to the central spindle structure.  Finally, we find that cytokinetic

mechanisms may be functionally related to the process of ciliogenesis.  We find proteins

known to localize to the central spindle localized to the rootlet of the basal body of cilia

in multiciliated cells of the mucociliary epidermis.  This localization may be related to

vesicle transport during both these processes.

5.1 ORIENTED CELL DIVISIONS IN THE EARLY NEURAL PLATE

Oriented cell division is the process where cells in a tissue all divide in a

particular orientation thereby contributing to the elongation or general shape of that tissue

(Strutt, 2005). These types of cell divisions are seen in many organisms including the fly,

fish and the worm (Concha and Adams, 1998; Gotta et al., 2001; Geldmacher-Voss et al.,

2003; Gong et al., 2004; Baena-Lopez et al., 2005; Gonczy and Rose, 2005).  We find
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that there are oriented cell divisions in the neural tube of Xenopus laevis.  Cell divisions

are oriented medio-laterally.  The orientation of cell division in this tissue has another

variable that has not previously been assessed; the relation of the most anterior daughter

cell to the midline.  We find that the anterior most daughter cell is obliquely oriented with

relation to the midline instead of perpendicular to it.  Cells are oriented obliquely away

from or toward the midline in equal proportion.  Moreover, we find that rotations of the

mitotic spindle establish this orientation of division and that cells divide along their long

axis.

5.1.1 Cdc42 controls division orientation

Many oriented cell divisions have a few controlling factors in common.  In

particular, the planar cell polarity (PCP) pathway and Cdc42 have been found to be major

components of establishing oriented cell division (Bellaiche et al., 2001b; Gotta et al.,

2001; Kozminski et al., 2003; Gong et al., 2004; David et al., 2005; Gonczy and Rose,

2005; Ma et al., 2006; Na and Zernicka-Goetz, 2006; Saburi et al., 2008).  We found that

modifications to PCP signaling did not alter the orientation of cell division.  Instead when

two different dominant negatives to Cdc42 are expressed we find that more cells are

oriented obliquely away from the midline at the expense of the cells that were oriented

toward the midline.  We find that this appears to be because of an alteration of the mitotic

spindle with the cell cortex since alteration does not cause changes to the cell shape. Cells

with altered Cdc42 function are still elongated in the same manner as control cells.
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5.1.2 Cdc42 controls oriented cell division through spindle cortex interactions

During our examination of cells with altered Cdc42 function, we found that

spindles were highly instable.  Chromosomes were seen to “bounce” from one side of the

cell to the other during metaphase.  This indicates that Cdc42 might have a role in

controlling spindle-cell cortex interactions.  Confirming this we find that spindles in

Cdc42 altered cells over rotate before anaphase onset.  This role of Cdc42 is

developmentally regulated.  When we assessed these roles in the late tail epidermis we

found that there was no difference in the stability of chromosomes during metaphase.

This shows that Cdc42 has a neural specific role in controlling interactions between the

mitotic spindle and the cell cortex leading to oriented cell divisions in this tissue.

We propose that spindle rotations are essentially random, and that molecular cues

on the cell cortex define “catch-points” that stop rotation prior to anaphase in accordance

with a cell’s long axis (Figure 5.1A and B).  One such catch point is responsible for

stopping spindle rotation such that the final division angle is oblique to the midline with

the anterior-most daughter cell lateral to the more-posterior daughter cell.  This catch-

point requires Cdc42 function (Figure 5.1A, blue), while Cdc42-independent catch-point

accounts for cells dividing obliquely toward the midline (Figure 5.1A and B, red).  In this

model, if the Cdc42-dependent catch-point is disrupted, spindles rotate excessively, and

eventually are able to stop by responding to the other, Cdc42-independent catch (Figure

5.1B).



102

Figure 5.1. Model of Cdc42 control of spindle stability in early neural plate cells

(A) In a wildtype neural plate cells there are two sets of molecules on the cortex of the
long axis of the cells.  One is Cdc42 dependent (blue) and one is Cdc42 independent.  A
spindle forms and interacts with these molecules, via the astral microtubules, has a
limited range of rotation (pink and black dots) and remains stable in the middle of the
cell.  (B) When Cdc42 function is altered the Cdc42 dependent orientation signal is
disrupted (note lack of blue).  When a spindle forms it is unable to remain stably in the
middle of the cell because of the lack of interaction with the astral microtubules with the
Cdc42 signal.  Also the spindle over rotates (pink and black dots).

5.2 THE MECHANISM OF CELL DIVISION IN THE NEURAL PLATE IS MODIFIED AS
COMPARED TO THE TAIL EPIDERMIS

Further examination of cell division in the neural plate showed that these

divisions are highly specialized.  Proper completion of cell division is critical to ensure

segregation of genetic material and also contributes to morphogenesis in embryos

(Rappaport, 1961; Gont et al., 1996; Glotzer, 2001; Chalmers et al., 2003).  To correctly

segregate DNA accurate completion of the phases of the mitotic cell cycle: interphase,

synthesis, prophase, metaphase, anaphase and telophase/cytokinesis, is required.
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Modifications can occur at many of these steps that can cause divisions in different

organisms to look different.  Most of the analysis of the mechanisms of cell has been

conducted on cells in culture.  While these studies are fundamental to understanding the

process of cell division they do not address how these mechanisms are regulated during

development.  Basic mechanisms of cell division remain relatively ill-defined in early

vertebrate embryos.

In vivo time-lapse analysis of cell division at two separate stages of development

revealed that the mechanisms differed.  Chromosomes in the early neural plate exhibit

exaggerated anaphase-B movements, delayed onset of cytokinesis, rapid cytokinetic

furrow ingression and a low density of midzone microtubules as compared to the late tail

epidermis, another ectodermally derived tissue.

5.2.1 Modifications to cell division is caused by reduced levels of PRC1 expression

These modifications to the mechanism of cell division appear to be because of a

reduced level of PRC1, a microtubule bundling protein, in the early neural plate.  We

found that this lack of PRC1 caused alterations to the structure of the central spindle.

The central spindle is a set of bundled anti-parallel microtubules that concentrates several

proteins and protein complexes required for cytokinesis (Glotzer, 2005).  The position of

the central spindle dictates the position of the contractile ring and thus the cleavage

furrows (Adams et al., 1998; Gatti et al., 2000; Kimura et al., 2000; Dechant and Glotzer,

2003). In cultured cells depleted of PRC1 these modifications to cell division are seen

(Jiang et al., 1998; Mollinari et al., 2002; Kurasawa et al., 2004; Verbrugghe and White,

2004; Verni et al., 2004; Mollinari et al., 2005).  In situ hybridization and western blot

showed reduced levels of PRC1 in the early neural plate as compared to the late tail
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epidermis.  Overexpression of PRC1 abrogated the modifications to cell division seen in

the neural plate confirming that its absence is the cause of these modifications.

I present the following model (also described in Chapter 3) to describe the

differences in cell division between the cells in the neural plate and the tail epidermis.

During anaphase, in the tail epidermis, chromosomes separate during this period the

central spindle forms by the bundling of the antiparallel microtubules by PRC1 (Figure

5.2, red dots).  Bundling of microtubules stops the separating chromosomes by reducing

the movements of anaphase B (the movement of the spindle poles from one another). The

cytokinetic furrows ingress at the central spindle (Figure 5.2A, early telophase).  This

central spindle is then compressed into the midbody by the cytokinetic furrows.  In the

tail epidermis this midbody spans the entire apical to basal axis (Figure 5.2A, mid/late

telophase side view).

In the early neural plate this process is different.  The low level of PRC1 in these

cells delays the formation of the central spindle until later on in the cell cycle.  Because

there is little to no hindrance on the movement of the chromosomes during anaphase B

the chromosomes are able to separate to a further extent (Figure 5.2B, anaphase).

Because there is no properly bundled central spindle these microtubules instead associate

with the ingressing cytokinetic furrows.  These furrows also move at a faster rate than the

furrows in the tail epidermis (Figure 5.2B, early telophase, compare to early telophase in

3.10A).  At this stage the central spindle begins to form with PRC1 at bundles of

antiparallel microtubules.  This altered central spindle structure may lead to a highly

arched midbody (Figure 5.2B, mid telophase).  This highly arched midbody most likely

enables to the release of the midbody from the apical membrane (Figure 5.2B, late

telophase).  Also the requirement of vesicle trafficking to both sides of the midbody may

lead to the midbody having a longer life time in these neural cells (Figure 3.2F-H).
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Figure 5.2.. Model of division and abscission in the tail epidermis and the early neural
plate.

(A) Model of division in the tail epidermis.  First column represents a top view of a tail
epidermal cell during anaphase and early telophase.  A well bundled central spindle is
observed and PRC1 localizes to the overlapping antiparallel microtubules.  The second
column represents a side view of the same cell during mid and late telophase.  The black
bar across the central spindle represents the ingressing cytokinetic furrows.  The midbody
is seen to span almost the entire apical to basal axis of the cell.  (B) Model of division in
the early neural plate.  First column represents a top view of a neural cell during anaphase
and early telophase.  A well bundled central spindle is not observed.   PRC1 localizes to
the overlapping antiparallel microtubules that are associating with the ingressing furrows
and begins to form a central spindle later during the cell cycle.  The second column
represents a side view of the same cell during mid and late telophase.  The midbody is
highly arched and is close to the apical membrane of the cell.  The midbody is eventually
is released into the future lumen of the neural tube.

5.3 THE POTENTIAL ROLE OF CENTRAL SPINDLE PROTEINS IN CILIOGENESIS OR
CILIA MAINTENANCE

Ciliogenesis is the process by which cilia are formed at the surface of a cell.  Most

vertebrate cells have at least one primary cilia protruding from its surface (Olsen, 2005).
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These primary cilia have been found to be hubs for particular signaling molecules, such

as the Hedgehog pathway (Corbit et al., 2005; Haycraft et al., 2005; May et al., 2005;

Scholey and Anderson, 2006). Cilia can also be mobile, for the movement of liquid over

a tissue.  Both types of cilia have a common structure at the base of the ciliary shaft, the

basal body (Inglis et al., 2007).  Basal bodies are modified centrioles that associate with

vesicles and are trafficked to the apical surface and associate with two main accessory

structures, the basal foot and the rootlet. (Yang et al., 2005; Park et al., 2008). The basal

foot is closely associated with the basal body and points in the direction of cilia beating

(Boisvieux-Ulrich and Sandoz, 1991). The rootlet is on the opposite side of the basal

body and interacts with the actin cytoskeleton to stabilize cilia (Hagiwara et al., 1997;

Yang et al., 2002; Yang et al., 2005).  Recently it has been found that centriolin, a major

component of centrioles localizes to the midbody and controls vesicle traffic to this

region (Gromley et al., 2003; Gromley et al., 2005).  We find that centriolin localizes to

the basal body.  Gromley and colleagues also found that the localization of centriolin to

the midbody relied on MKLP1, a central spindle protein required for cytokinesis.  This

data implied that there might be a connection between centriolin localization at the basal

body and central spindle proteins.  Indeed, we find MKLP1, INCENP, PRC1 and CENP-

E localized to the basal body region.  Further analysis revealed that these proteins are

localized to the rootlet.

We believe that the ciliary rootlet may have a secondary function in directing

vesicle transport to the basal body.  Vesicles from the Golgi may transport to the rootlet,

possibly through the attachments of the rootlet with the cytoskeleton, and the cargo in the

vesicles can then be transported in the cilium through IFT (Figure 5.3).  This transfer

from vesicle to IFT may occur by fusion of these vesicles with the membrane at the base

of the cilium, which has been found to be very specialized (Figure 5.3) (Reiter and
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Mostov, 2006; Vieira et al., 2006).  The localization of the central spindle proteins to the

rootlet may aid in the fusion of vesicles to this specialized membrane (Figure 5.3).  In the

fly, specialized membrane rafts have been found to be required for completion of

cytokinesis and central spindle formation (Szafer-Glusman et al., 2008).  Since both

processes require specialized membranes and similar set of proteins we feel that further

research is required to fully elucidate the role of central spindle proteins in ciliogenesis.
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Figure 5.3. Model of role of central spindle proteins in cilia maintenance

Vesicles with cargo destined for the cilia originate from the golgi.  These vesicles travel
by the actin cytoskeleton to the rootlet of the cilium.  At the rootlet are the central spindle
proteins, MKLP1, INCENP, PRC1 and CENP-E.  The exocyst may also lie at the rootlet
and aid in the fusion of the vesicles with the membrane at the base of the cilia or may aid
in the exchange of cargo within the vesicles with the IFT complex.  Alternatively, the
exocyst may be associated with the basal body proper and have a similar function.  This
may be more likely because of the presence of Centriolin at the basal body.
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5.4 FURTHER DIRECTIONS

5.4.1 Oriented cell divisions

Here we showed that Cdc42 mediated the interaction of the mitotic spindle and

the cell cortex to stabilize the spindle and restrict mitotic spindle rotations in early neural

plate cells, leading to an alteration of the orientation of cell division.  The mechanism

behind how Cdc42 controls this interaction is unknown and further research

concentrating on this mechanism is required.  Sensors have been created to show the

localization of GTP-bound or active form of the small Rho-GTPase (Bement et al., 2005;

Bement et al., 2006).  These sensors may be useful to show the localization of active

Cdc42.  This analysis of the localization may shed light on the function of Cdc42 in

spindle dynamics.  Furthermore, analysis of the localization of Cdc42 downstream

effector proteins may aid in this understanding.

Analysis of the actin cytoskeleton in these early neural cells will help in

understanding how actin interacts with the cell cortex.  Cdc42 is known to reorganize the

actin cytoskeleton in a number of cells in response to a signal (Glotzer and Hyman, 1995;

Stowers et al., 1995).  While cortical actin may not differ from control cells and Cdc42

altered cells more detailed actin structures may not be correctly formed.  In conjunction

with this the localization of dynein–dynactin complex should be examined.  This

complex is known to coordinate the interaction between microtubules and actin and is a

prime candidate for mislocalization by these dominant negatives to Cdc42  (Glotzer and

Hyman, 1995).
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5.4.2 Role of PRC1 in modifications to cell division

Here we have described cell divisions only at two stages of development.  Further

examination of cell divisions during development is required to fully understand

developmental regulation of cell division.  We show that varying PRC1 is required for

the modifications seen in these two stages but if this is the case in other stages is

unknown.  Bundles of microtubules are localized under the cytokinetic furrows of

cleavage stage embryos (Danilchik et al., 2003).  We have found that over expression of

PRC1 at cleavage stages cause drastic defects to cell division.  Cleavage furrows are seen

or they form and then retract (data not shown).  Cells appear to attempt to divide, as

noted by waves of compression over the entire surface of the embryo.  This may possibly

be because of an over bundling of microtubules in these cells.  If PRC1 bundles

microtubules along the entire surface of the cells there is no one specific region of

ingression and instead the entire membrane tries to ingress.  Analysis of the level of

microtubule bundling in PRC1 over expressing cells will answer this question.  Also

analysis of other stages with rapid cell division will further elucidate the role of PRC1 in

controlling the mechanisms of cell division.

5.4.3 Role of central spindle proteins in ciliogenesis

Other members of the Wallingford lab have undertaken this project.  Dissecting

the role of central spindle proteins in cytokinesis from their role in ciliogenesis in the

epidermis of the frog embryo has been difficult.  Use of temperature sensitive mutants of

these proteins in C. elegans seems to be able to aid in answering this question.  C.

elegans have two sets of 12 neurons, which aid in chemosensory or thermosensory

movements.  Each of these 12 neurons contains a cilia specific for the neuron.  Proteins

localize to the ciliary axoneme and transduce a response in the worm when they bind to a
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chemosensory cue.  When ciliogenesis is disrupted the worms are unable to respond to

chemotactic cues (Scholey et al., 2004; Bargmann, 2006).  Full knock out of central

spindle proteins are embryonic lethal because of their requirement for full cytokinetic

completion (Raich et al., 1998; Kaitna et al., 2000; Verbrugghe and White, 2004).

Temperature sensitive mutations avoid these early defects by allowing the protein to

function early in development at the permissive temperature.  Shifting the worms to the

restrictive temperature will disrupt protein function.  If this is done before cilia form,

simple chemotaxis assays will show if these genes are indeed involved in ciliogenesis.
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Appendices

Appendix A: Materials and Methods

Materials and Methods:

Collection and manipulation of embryos
Female Xenopus laevis were injected with 700ccs of human chorionic

gonadotropin hormone (HCG) and stored at 18oC overnight.  The next day eggs were
isolated and fertilized.  Embryos were de-jellied using a 3% cystine solution in 1/3x
MMR.

Time-lapse analysis of cell divisions in the neural plate and tail epidermis
Embryos were injected dorsally, at the 4-cell stage, with 200pg histone-eGFP,

200pg membrane-RFP, 50pg tau-eGFP, 200pg histone-RFP or any combination of these
to examine cell divisions in the neural plate.  To examine the epidermis, all cells were
injected at the 4-cell stage.  To examine the neural plate, embryos were grown to stage 13
and then placed upside down in a culture dish.  This dish contained 2% agarose with
wells made from a hair comb.  To image the tail epidermis embryos were grown to stage
30 and covered in agarose in a culture dish.  Both of these sets of embryos were imaged
on a Zeiss Pascal LSM5, at 10x (na - 0.3), 20x (na – 0.5), 40x (oil, na – 1.3) or 63x (oil,
na – 1.4) and cell divisions were analyzed using Image-Pro Plus.

Immunohistochemistry for microtubules
For MT immunostaining, embryos were grown to appropriate stages and fixed in

1X MEMFA at 4°C overnight.  Embryos were completely dehydrated in 100% methanol
and stored overnight at –20°C in methanol.  Embryos were then bleached in a light box in
60% methanol/10% H2O2.  Rehydration was done by 5 minute washes in methanol/TBS
or TBST mixtures: 50% methanol in TBS, 25% methanol in TBST and finally 100%
TBST.  Embryos were then blocked for 1 hour in 300ul of TBS + 10% FBS + 5%
DMSO.  Primary antibody, 1:250 dilution for mouse-anti-a-tubulin (Sigma), was added to
this mixture and embryos were incubated overnight at 4°C.  Embryos were washed 5x 1
hour in TBST, blocked again as described above, and secondary antibody was added,
1:200 dilution for anti-mouse-alexa-488, and embryos were incubated again overnight at
4°C.  Secondary antibody solution was discarded and embryos were washed 5x 1 hour in
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TBST.  In some cases, during the last wash a dilution of 1:2000 of propidium iodide was
added to label nuclei.

Immunohistochemistry for central spindle proteins
For immunostaining of central spindle and passenger proteins, for both chapter 3

and 4, embryos were grown to appropriate stages and fixed in DENTs fix (80% methanol
/ 20% DMSO) overnight at 4°C.  Embryos were fully dehydrated in methanol and stored
in –20°C overnight.  Embryos were slowly rehydrated by 5-minute washes in 75%
methanol in H2O, 50% methanol in PTW, 25% methanol in PTW and finally PTW.
Embryos were bleached in a light box in a solution of 10% H2O2, 0.5% formamide and
2.5% 2X SCC.  Embryos were then washed 3 times in TBST, 5 minutes each.  Embryos
were blocked in 300ul of TBS + 10% FBS + 5% DMSO.  Primary antibody was added;
rabbit-anti-PRC1 1:5 (BioLegend), rabbit-anti-MKLP1 1:200, rabbit-anti-INCENP 1:800,
Aurora-B 1:50, and embryos were incubated overnight at 4°C.  Embryos were washed 2x
1 hour in TBST.  TBST was removed and 300ul of mouse-anti-a-tubulin antibody +
blocking solution was added (1:250) and embryos were incubated for 1 hour at RT.
Embryos were washed again for 5x 1 hour washes in TBST. In some cases, during the
last wash a dilution of 1:2000 of DAPI was added to label nuclei.

Analysis of immunostaining images:
For measuring midzone MT density, pixel intensity measurements (8 bit, 1-255)

were made from projections of stacks.  All measurements were made from maximum
intensity projections of 10µm stacks made by collecting 11 overlapped 4.5µm optical
sections (Z-interval of 1µm) using a 40x objective and 4.5x zoom. All slices are 8-bit and
have not been modified post-acquisition.

For measurements comparing PRC1 levels, pixel intensity measurements were
made from stacks.  All measurements were made from maximum intensity projections of
26.8µm stacks made by collecting 13 overlapped 4.5 µm optical sections (Z-interval of
2.23 µm) using the 40x objective and 1x zoom.  All images were 8-bit, and no post-
acquisition modifications were performed.  The images contain very small saturated
regions corresponding to intense PRC1 signal at midbodies; the saturated regions at
midbodies were removed for the population level quantification.

For MT density, all images were collected at 63x using comparable settings.
Stacks of varying sizes were made to incorporate all visible spindle microtubules in each
cell.

All quantified images were taken from embryos stained in Dent’s fixative.  Much
Xenopus autofluorescence results from byproducts of aldhehyde fixation, so these
embryos have extremely low background signal.  Nonetheless, we imaged unstained
embryos and found that neural plate cells had slightly higher background signal than did
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epidermal cells.  Thus, the differences in α-tubulin signal and PRC1 signal presented here
may very slightly greater than presented.

Determination of division polarity
Stacks were projected and exported from the Zeiss LSM5 Pascal program and

analyzed using Image-Pro Plus.  The polarity of cell division was assessed at the onset of
telophase for all cells.  Lines were drawn bisecting the center of each set of daughter
chromosomes in a posterior-to-anterior manner.  The features of these lines were then
exported to MS Excel.  The angles of divisions were converted placed into a –90° to +90°
range and histograms were made using Delta-Graph.  Kolmogorov-Smrinov tests were
performed using an on-line tool available at http://www.physics.csbsju.edu/stats/KS-
test.html.

Effect of molecular effectors on cell division polarity
To examine the effect of PCP signaling and Cdc42 function embryos were first

injected with 200pg of histone-eGFP along the entire dorsal side at the 4-cell stage.
These embryos were grown to the 8-cell stage and 200pg of membrane-RFP along with
either 500pg Xdd1, 500pg Xfz8N, 1ng Shroom3-ASD1, 750pg Cdc42-F37A or 750pg
Cdc42-N17 was injected into one of the dorsal animal blastomeres (Figure 1C).  To
examine the effect of Cdc42 on the tail epidermis embryos are injected into one of the
ventral cells with 150pg of histone-eGFP, 150pg of membrane-RFP and 750pg of Cdc42-
N17 or 750pg of Cdc42-F37A.  Embryos were then imaged and analyzed as above.

Quantifying spindle rotations
This longer axis of the metaphase spindle was assessed upon initial formation,

and again one minute before anaphase onset. The difference of these angles were
determined and plotted in Delta-Graph. The Mann-Whitney comparison test was
conducted on the two sets of data using GraphPad Instat software.

Analysis of cell divisions in neural plates over-expressing PRC1
Embryos were injected as before with mRNAs for fluorescent fusion proteins.

These mRNAs were injected into the entire dorsal side of the embryo at the 4-cell stage.
These injected embryos were grown to the 8-cell stage and one of the animal dorsal
blastomeres was injected with 100pg of human PRC1-GFP DNA.
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Analysis of the effect of over-expression of PRC1 in cleavage stage embryos
Embryos were injected with 25pg of xPRC1-RNA was injected with a 1/10

dilution of fluorescein-dextran into one cell at the 2-cell stage or all 4 cells at the 4-cell
stage.  Embryos were placed in a culture dish lined with modeling clay and imaged using
Image Pro-Plus and the Leica stereoscope.  These embryos and their clutch mates were
lysed (see western blot method) and used for western blot analysis of PRC1 expression
levels.

In situ hybridization of xPRC1
Embryos were grown to appropriate stages and fixed overnight in 1X MEMFA at

4oC.  Embryo were completely dehydrated in menthol and stored overnight at –20oC in
menthol.  Embryos were then rehydrated slowly and in situ hybridization was conducted
as described in Sive et al. with digoxygenin-labeled, antisense full-length probe to
Xenopus PRC1.

Western Blot of xPRC1
25 Embryos were grown to correct appropriate stages and lysed; 50mM Tris (pH

8.0), 150mM NaCl, 1mM EGTA, 0.5%NP40, 0.5% Triton-X 100.  Lysates were spun
twice at 4oC for 20 minutes each and the supernatant was saved each time.  Sample buffer
was added to each protein lysate at a concentration of 1X (25 mM Tris-Cl pH 6.8, 1%
SDS, 0.002% bromophenol blue, 0.002% phenol red, 2mM EGTA, 5% glycerol and
1%bME).  Lysates were stored at –20oC until use and boiled at 100oC for 10 minutes
prior to each use.  Proteins were run on 12% poly acrylamide gel with a 5% stacking gel
and blotted onto a nitrocellulose membrane.  Membranes were blocked in a PBS and 5%
milk solution for two hours and then incubated with 1/2000 dilution of rabbit-anti-
gamma-tubulin (Abcam) or a 1/500 dilution of rabbit-anti-PRC1 (BioLegend).
Secondary goat-anti-rabbit HRP antibody was added after washing at a 1/5000 dilution
(Pierce).

Expression of Cdc42-N17 and Cdc42-F37A in neural tube
Embryos were injected as before with mRNAs for fluorescent fusion proteins.

These mRNAs were injected into the entire dorsal side of the embryo at the 4-cell stage.
These injected embryos were grown to the 8-cell stage and one of the animal dorsal
blastomeres was injected with 750pg of Cdc42-N17 or Cdc42-F37A mRNA.
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Quantifying spindle rotations in embryos expressing Cdc42-N17 or F37A
This longer axis of the metaphase chromosome mass was assessed upon initial

condesation, and again one minute before anaphase onset.  This was done for control
cells expressing Cdc42-F37A and Cdc42-N17, in both the tail epidermis and the neural
plate and cells.  The difference of these angles were determined and plotted in Delta-
Graph. The Mann-Whitney comparison test was conducted on the two sets of data using
GraphPad Instat software.

Analysis of colocalization of central spindle and basal body components
Embryos were grown to the 4-cell stage and injected with CLAMP-GFP or

CLAMP-RFP mRNA into both of the ventral cells.  Embryos were grown to stage 30 and
fixed in DENT’s fix and immunostained as above in “Immunohistochemistry for central
spindle proteins”.

To assess the colocalization of central spindle proteins with γ-tubulin uninjected
embryos were grown to stage 30 and fixed in DENT’s fix.  Emrbyos were then co-stained
with the central spindle protein of interest (rabbit antibodies) and mouse-anti-γ-tubulin at
a 1:250 dilution.  The central spindle antibodies were identified by goat-anti-rabbit-
Alexa-488 and the gamma tubulin antibody was identified by goat-anti-mouse-Alexa-
555.  Other embryos were injected with γ-tubulin-RFP at the 4-cell stage into both of the
ventral cells and immunostained as above.
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Appendix B: Miscellaneous Experiments

Figure D.1: Method for analysis of cell divisions during neural tube closure

(A) Method to analyze cell divisions during neural tube closure in Xenopus laevis. Eggs
are collected and undergo in vitro fertilization as described in methods section.  Solutions
of mRNA, previously made by an in vitro transcription kit (Sigma) are made to label
appropriate portions of cells (i.e. Chromosomes via H2B-GFP or membranes via mem-
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RFP).  Mixes of mRNA are put in small glass needles and are injected directly in to the
embryo at the four-cell stage by use of a picospritzer (1).  For analysis for the early neural
plate the two dorsal cells are injected and for analysis of the late tail epidermis all four
cells are injected.  Embryos are then grown to an appropriate stage, 13 for early neural
plate and 30 for late tail epidermis (2).  Embryos are then placed on a microscope and
imaged.  Images of the early neural plate are obtained from horizontal confocal slices of
the dorsal surface of the spinal chord region prior to neural tube closure.  Images of the
late tail epidermis are obtained from sagittal confocal slices of the most posterior surface
of the flank of the embryo (3, see red boxes).  Stacks are obtained every 30 seconds or 1
minute for 150 iterations (4).  Movies are then projected into an X confocal projection in
the Pascal program (5).  Confocal projections are then exported to tiff files and analyzed
by use of ImagePro Plus (6).  (B) Use of this method allows for easy analysis of
morphogenesis of the neural plate.  Movies are started at early neural plate stage (T = 0
min).  As time progresses neural folds come into view (T = 80 min).  These neural folds
continue to move laterally until the neural plate is no longer well seen and the future
epidermis of the embryo is easily seen (T = 90 min and T = 110 min). Scale bar = 50µm.
(C) Method to assess division polarity effectors.  Embryos are injected to have different
clones for analysis of polarity effectors.  Embryos are injected on their entire dorsal side
with a histone-2B-GFP marker at the four-cell stage (1).  Embryos are grown up one
stage, to the eight-cell stage, and injected with a membrane-RFP marker and an mRNA of
interest (2).  Embryos are grown to the early neurula stage and cells injected with the
mRNA of interest can be distinguished by the expression of GFP and RFP while control
cells only express the GFP marker (3).  Scale bar = 100µm.
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Figure D.2 Neural tube and tail epidermal cells are similar in size.   

(A) Graph of cell size during the course of anaphase in cells within the neural tube (blue
line) and the tail epidermis (red line).  (B) Graph of chromosome separation expressed in
microns over time for neural (blue line) and epidermal (pink line) cells.  (C) Graph of
chromosome separation expressed in microns over time for normal neural plate cells
(dark blue line) or  PRC1-GFP expressing cells (light blue line) in mosaic embryos..
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