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building frames to Eurocodes 
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Abstract.  

The optimum structural design of real-world 3D concrete building frames to modern design standards is a 

complex and computationally expensive task. Hence, the use of surrogate-based optimization (SBO) 

methodologies must be investigated to reduce computational cost. The present study applies, for first time, a fully-

fledged SBO algorithm to the optimum design of 3D concrete building frames. More particularly, the algorithm 

is applied to the minimum material cost design of a 4-storey and a 12-storey 3D RC building according to 

Eurocodes. It is found that the SBO algorithm can converge earlier than other well-established metaheuristic 

optimization algorithms reducing considerably the required computational effort. Nevertheless, it is likely to get 

trapped in local optima for large-scale RC frames. To overcome this drawback, a novel hybrid approach is also 

proposed herein that offers improved computational performance for large-scale concrete building frames. 

 

Keywords: Structural optimization; Surrogates; Metamodels; Reinforced concrete; 3D; Building frames 

 

1 Introduction 

 

Reinforced concrete (RC) building frames represent a large part of the built environment and 

they are associated with significant economic costs and environmental impacts (Olivier et al. 

2015). Therefore, design of these structural systems for minimum economic cost and/or 

environmental impact represents an urgent need for modern societies (Mergos 2018a, 2018b). 

At the same time, the optimum structural design of RC building frames to modern design 

standards, such as the Eurocodes, may be so highly complex that cannot be addressed 

adequately by manual trial and error procedures. In these cases, the use of automated 

optimization algorithms is recommended. Optimization algorithms can be divided into 

gradient-based and metaheuristic. The latter category includes algorithms such as the Genetic 

Algorithm (GA) (Holland 1975), Simulated Annealing (SA) (Kirkpatrick et al 1983), Particle 

Swarm Optimization (PSO) (Kennedy 2001), the Flower Pollination Algorithm (FPA) (Yang 

2012), and many others. Metaheuristic optimization algorithms may require more 
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computational cost to converge but they are less likely to get trapped in local optima than 

gradient-based algorithms (Yang 2008). 

A significant amount of research has been dedicated in the previous years on optimizing the 

structural design of concrete frames (Sarma and Adeli 1997). Nevertheless, the vast majority 

of these studies concentrate on either single concrete members (i.e. beams, columns and others) 

(e.g. Mergos 2018a, Yeo and Gabbai 2011, Medeiros and Kripka 2014, Kayabekir et al. 2021 

and Kayabekir et al. 2022) or 2D concrete frames (e.g. Paya et al. 2008, Akin and Saka 2015, 

Mergos 2018c, Rakici et al. 2020). To the best of the author’s knowledge, the research studies 

addressing optimum structural design of realistic 3D RC buildings to modern design codes are 

only limited to: Fadaee and Grierson (1996), BaIling and Yao (1997), Sahab et al. (2005), 

Govindaraj and Ramasany (2007), Sharafi et al. (2012), Kaveh and Behnam (2013), Lagaros 

(2014), Esfandiari et al. (2018), Dehnavipour et al. (2019), Martins et al. (2020) and Mergos 

(2021). The limited number of these research studies can be attributed to the high level of 

complexity and significant computational effort involved in the structural design of 3D RC 

buildings frames (Sarma and Adeli 1997).  

The previous observations reveal the need to investigate the applicability and efficiency of 

surrogate-assisted methodologies in the optimum design of real-world concrete building 

frames. Surrogates or else metamodels are prediction models that provide fast approximations 

of computationally expensive objective and/or constraint functions at new design points based 

on a limited number of previous design points of these functions. In this manner, the 

computational burden drastically decreases making parametric, sensitivity and optimization 

studies more feasible. There exists a wide range of available surrogate models in literature, 

characterized by different levels of accuracy and complexity, such as the classic polynomial 

Response Surface Models (RSM), Radial Basis Functions (RBFs), Kriging model, Support 

Vector Regression and Artificial Neural Networks (ANN) (Forrester et al. 2008).  

Surrogate-based optimization (SBO) is the process of employing surrogates to drastically 

reduce the computational effort of optimization problems involving computationally intensive 

objective and/or constraint functions. SBO is a far more elaborated procedure than developing 

a surrogate model. Furthermore, it is not limited to the identification of the optimum solution 

of a surrogate model. The latter is not the case because surrogates are only approximations of 

real functions.  

SBO has been widely used in aerospace and mechanical engineering designs mainly due to the 

intensive finite element analyses involved (Queipo et al. 2005, Forrester and Keane 2009). In 

civil engineering, there exists a significant number of studies developing surrogate models to 

predict structural response and performance (e.g. Gudipati et al. 2018, Du and Padgett 2020, 
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Shekhar and Gosh 2020). Nevertheless, application of SBO to the optimum design of civil 

engineering structures, such as buildings and bridges, is still quite limited. In the latter 

applications, SBO has been mainly used within probabilistic optimization frameworks such as 

the robust (e.g. Battacharjya and Chakraborty 2011, Battacharjya et al. 2018, Penadés-Plà et 

al. 2020), reliability-based (e.g. Papadrakakis and Lagaros 2002, Khatibinia et al. 2013, Jia et 

al. 2014), risk-based (e.g. Ruiz et al. 2018) and life-cycle cost based (e.g. Gidaris and 

Taflanidis 2015) optimum structural design. These studies employ surrogates to address the 

high computational cost arising from the numerous numerical simulations required to obtain 

reliable statistical results of the objective functions and/or design constraints involved. 

Furthermore, SBO has been used in the context of the optimum performance-based design of 

structures (e.g. Gholizadeh and Salajegheh 2009, Mokarram and Banan 2018), where structural 

performance has to be evaluated by computationally expensive nonlinear structural analyses. 

Recently, SBO has been used in the optimum, code-based design of complex bridge structures. 

García-Segura et al. (2018) developed a multi-objective, surrogate-assisted optimization 

framework for the sustainable design of post-tensioned concrete box-girder bridges. The 

application of surrogates in this study is justified by the large computational cost from the 

existence of numerous design variables and objective functions in addition to the need for time-

consuming finite element analyses. Therefore, a surrogate model is used to predict the 

structural behaviour of the bridge designs. Furthermore, Penadés-Plà et al. (2019) examined 

kriging-based heuristic optimization to obtain the optimal solution of a continuous box-girder 

pedestrian bridge of three spans. The authors conclude that kriging-based optimization offers 

similar results to metaheuristic optimization algorithms using less computational effort. More 

particularly, the SBO reduces the computational effort by approximately 100% while it offers 

only 3% more expensive optimal solutions with respect to metaheuristic algorithms.  

From the previous literature review, it can be concluded that SBO methodologies have not yet 

been applied to the structural design of 3D RC building frames. This is despite the fact that the 

design of these systems is accompanied by high computational costs prohibiting efficient 

optimization efforts in reasonable computational times. The latter may hinder the widespread 

use of optimization solutions in the design of real-world concrete buildings. Furthermore, most 

of the existing SBO studies in civil engineering adopt simplified frameworks, where surrogate 

models are only built once, and the optimum solutions of the surrogates are treated as the 

optimum solutions of the real functions. As discussed, this approach can be misleading since 

surrogates are only approximations of real functions. 

The main objective of the present study is to investigate the efficiency and applicability of 

SBO frameworks to the optimum design of real-world RC buildings. To serve this goal, a 
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computational platform for optimizing the structural design of real-scale 3D RC frame 

buildings is used that employs, for first time, a fully-fledged SBO algorithm to this challenging 

optimization problem. The performance of the SBO algorithm is compared with several 

established metaheuristic optimization algorithms and useful conclusions are drawn with 

respect to its computational efficiency and limitations. Furthermore, recommendations are 

made regarding the most efficient use of the SBO algorithm in the context of the optimum 

design of real-world RC building frames according to modern design guidelines. Finally, a 

novel hybrid approach is also proposed in this study that offers high computational 

performance and efficiency in optimizing complex and/or large-scale RC frames. 

 

2 Framework for optimum structural design of RC building frames 

 

The optimum structural design of concrete frames is treated herein as a single-objective 

optimization task with discrete design variables. The vector 𝒙 of these design variables consists 

of the cross-sections assigned to different groups of structural members in the frame. These 

cross-sections are taken from discrete lists of cross-sections specified by the designers 

following standard construction practices. Any shape of cross-sections can be used in this 

optimization framework. However, for reasons of simplicity, in the present study square 

sections are considered for columns and rectangular sections for beams with the corresponding 

steel reinforcement configurations shown in Fig. 1. Furthermore, sizing optimization is only 

considered herein by assuming that the geometry, material properties, concrete cover, 

boundary conditions and loadings of the concrete frames are fixed.  

The objective function 𝑓(𝒙) of the optimization problem is the total construction cost of 

concrete and reinforcing steel materials. These costs are calculated by summing the individual 

costs of all structural members in frames. The steel reinforcement of concrete members is 

calculated for the ULS based on standard structural design procedures in accordance with 

Eurocode 2 (EC2) (CEN 2000) and Eurocode 8 (EC8) (CEN 2004) for low ductility class 

(DCL) design rules. More particularly, concrete beams are designed for major direction 

bending, shear and torsion and concrete columns are designed for biaxial bending moments 

accounting for axial load effects and biaxial shear forces using the procedures described in 

CSI (2016). 

Following this approach, 𝑓(𝒙) is determined by Eq. (1), where Vc (m
3) stands for the total 

concrete volume and ms (kg) the total mass of reinforcing steel accounting for both the 

longitudinal and transversal steel reinforcement of concrete members. In Eq. (1), 𝑓𝑐𝑜 and 𝑓𝑠𝑜 
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represent the prices of concrete per unit volume and reinforcing steel per unit mass, 

respectively. 

 

 𝑓(𝒙) = 𝑉𝑐(𝒙) · 𝑓𝑐𝑜 + 𝑚𝑠(𝒙) · 𝑓𝑠𝑜      (1) 

 

It is worth noting at this point that other design objectives such as the life-cycle economic cost 

and environmental impact of concrete buildings can be considered in the optimum design of 

concrete buildings to offer more holistic design solutions (Mergos 2018a). Furthermore, the 

design of concrete buildings to maximize structural robustness (i.e. the capacity of sustaining 

local failures of elements e.g. via alternate load path strategy or redundancy) should be further 

investigated to prevent catastrophic progressive collapses in extreme events such as 

earthquakes and blasts (Biagi and Chiaia 2013, Kiakojouri et al. 2020). Nevertheless, the 

objective function used herein is deemed as adequate for the purposes of the present study that 

is focussing on the numerical efficiency of the surrogate-based optimization framework. 

The design constraints in the optimization problem herein reflect the rules for the design of 

concrete frames in EC2 – Part 1 (CEN 2000) and EC8 – Part 1 (CEN 2004) for DCL. They 

include structural detailing prescriptions and safety verifications for the ultimate (ULS) and 

serviceability (SLS) limit states in terms of both displacements and forces. More particularly, 

for the ULS, a design constraint is assumed not to be satisfied when the corresponding safety 

check (i.e. for bending, shear and torsion) cannot be fulfilled by any permissible amount of 

steel reinforcement in the concrete sections. This is the case because only concrete sections are 

treated as independent variables herein. Furthermore, a design constraint for a column or a 

beam member is assumed not to be satisfied when the design shear forces and torsional 

moments exceed the maximum capacity of compressive concrete struts. For the SLS, a beam 

member is assumed not to fulfil the design constraints when the corresponding check for 

deflections is not satisfied. Beam members are checked for deflections using the limiting span-

to-depth ratio approach (Moss and Brooker 2006). 

The design constraints are treated indirectly in the formulation of the optimization problem by 

following the penalty function approach. A more detailed description of the optimization 

framework used in this study for concrete buildings can be found in Mergos (2021).  
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Fig. 1: Concrete cross-sections and steel reinforcement configurations assumed for; a) columns; b) 

beams 

 

For the implementation of the optimization framework described above, a MATLAB 

(MathWorks 2020a) application, namely STROLAB (STRuctural Optimization LABoratory), 

has been developed (Mergos 2021).  STROLAB is interacting, for the purposes of structural 

analysis and design, with the well-established integrated structural analysis and design 

software SAP2000 (CSI 2020) via its Application Programming Interface. A detailed 

presentation of the computational procedures followed by STROLAB can be found in Mergos 

(2021). 

Closing this section, it is important to clarify that a code-based approach is followed in the 

present study that is consistent with standard engineering practice. However, code-based 

design is not guaranteed to offer maximum structural performance of concrete frames. 

Additional considerations are required for the optimum performance-based design of concrete 

frames as explained in Mergos (2018c). 

 

3 Surrogate-based optimization (SBO) 

 

From the description of the optimization framework of the previous section, it is clear that the 

evaluation of the objective function 𝑓(𝒙), which is the materials cost of the 3D concrete 

building frames, entails significant computational effort. This is the case because of the several 

computationally costly 3D finite element analyses required to calculate design action effects 

and the numerous structural design checks needed to examine compliance with the ULS and 

SLS constraints of the Eurocodes. Therefore, the applicability and potential benefits of SBO 

approaches to the computational cost of the optimum design of real-world concrete building 

frames have to be further investigated.  
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Most fully-fledged SBO methodologies follow a similar generic procedure. First, a set of initial 

sampling designs is decided where the computationally expensive objective function 𝑓(𝒙) is 

evaluated. This procedure is also called the Design of Experiments (DoE) or the initial 

sampling plan (Queipo et al. 2005, Forrester and Keane 2009). Next, the examined initial 

designs are used to construct the surrogate model 𝑠(𝒙). The surrogate model should offer 

reliable predictions of the real objective function 𝑓(𝒙) landscape especially in the vicinity of 

the optimum design. Then, a search of the surrogate model takes place to identify new 

promising design solutions. These new designs are called adaptive sampling designs or infill 

points. The adaptive sampling designs have been determined by using the surrogate models. 

Therefore, they must be re-evaluated by calling the true functions. Finally, the adaptive 

sampling designs are added to the previous designs and the procedure returns to the 

construction of the surrogate model phase until convergence is reached.  

The SBO computational framework adopted herein is part of the Global Optimization Toolbox 

of MATLAB version R2020b (MathWorks 2020b). It follows the same generic methodology 

steps as the general SBO procedure described above. In the following, the numerical 

techniques used by the adopted SBO framework to implement these generic methodology steps 

are discussed in more detail. 

To construct the surrogate, the SBO framework generates first a number of quasi-random 

initial designs within bounds as part of the DoE phase. For these designs, the real objective 

function 𝑓(𝒙) is evaluated. It is clarified that 𝑓(𝒙) is evaluated in this study by STROLAB 

calling SAP2000 to conduct structural analysis and design and by calculating the materials cost 

from Eq. (1) and adding potential penalties due to constraints violation. Then, the SBO 

framework uses the random points to construct a surrogate 𝑠(𝒙) as an approximation to the 

real function by using a Radial Basis Function (RBF) interpolator. RBF interpolators are 

beneficial because they use the same basic formula for any number of problem dimensions and 

points. Furthermore, they can take prescribed 𝑓(𝒙) values at the points where the function has 

been evaluated. Moreover, constructing an RBF interpolator is computationally efficient since 

it only requires a system of N-by-N linear equations to be solved, where N represents the 

number of evaluation points. In the adopted SBO framework, a cubic RBF with a linear trail 

is assumed (Gutmann 2001) as shown in Eq. (2), where 𝜆𝑖 are coefficients (weights) to be 

determined by the construction of the surrogate, the norm ‖⋅‖ is the Euclidean norm, 𝒙 is the 

prediction point location, 𝒙𝒊 are the locations of the previously evaluated points, 𝜑 (𝑟) = 𝑟3 

for a cubic RBF and 𝑝(𝑥) is a linear polynomial. 

 

 𝑠(𝒙) = ∑ 𝜆𝑖𝜑(‖𝒙 − 𝒙𝒊‖)𝑁
𝑖=1 + 𝑝(𝒙)     (2) 
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In the next stage, the algorithm searches the surrogate for new promising design solutions. The 

search procedure followed is mainly based on the recommendations by Regis and Shoemaker 

(2007). The search begins from the incumbent, which is the best evaluated point since the last 

surrogate reset. The algorithm generates randomly a great number of sample points within a 

scaled area around the incumbent and within specified bounds of the design variables. Special 

sampling and rounding provisions are also taken so that the sample points consist of integer 

variables as required in the present study (MathWorks 2020b). Next, the sample points are 

evaluated based on the merit function. The merit function 𝑓𝑚𝑒𝑟(𝒙) is the weighted sum of two 

terms as shown in Eq. (3), where w is a weight value between 0 and 1. �̅�(𝒙) is the scaled 

surrogate value given by Eq. (4), where 𝑠𝑚𝑎𝑥 and 𝑠𝑚𝑖𝑛 are the maximum and minimum 

respectively surrogate values of the sample points. Furthermore, �̅�(𝒙) represents the scaled 

distance value given by Eq. (5), where 𝑑(𝒙) is the minimum distance of the sample point 𝒙 

from any evaluated point, 𝑑𝑚𝑎𝑥 is the maximum of all distances between the sample points 

and the evaluation points and 𝑑𝑚𝑖𝑛 is the minimum of all distances between the sample points 

and the evaluation points. Clearly, as w increases the search method focusses on the surrogate 

values leading the search to minimize the surrogate. On the other hand, as w decreases the 

search places more emphasis to points that are distant from the evaluated points driving the 

search to new regions.  

 

 𝑓𝑚𝑒𝑟(𝒙) = 𝑤 ∙ �̅�(𝒙) + (1 − 𝑤) ∙ �̅�(𝒙)     (3) 

 

 �̅�(𝒙) =
𝑠(𝒙)−𝑠𝑚𝑖𝑛 

𝑠𝑚𝑎𝑥−𝑠𝑚𝑖𝑛
 (4) 

 

 �̅�(𝒙) =
𝑑𝑚𝑎𝑥−𝑑(𝒙) 

𝑑𝑚𝑎𝑥−𝑑𝑚𝑖𝑛
  (5) 
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Fig. 2: SBO flowchart 

 

The algorithm evaluates the merit function for all sample points and selects the point with the 

lowest value that is the adaptive point. Then, it evaluates the real objective function at the 

adaptive point. If the 𝑓(𝒙) value at the adaptive point is smaller than the incumbent, then the 

search is deemed as successful and the incumbent point is updated. If the latter is not the case 

then the search is deemed as unsuccessful. If a number of consecutive successful searches take 

place then the algorithm increases the scale of the search area to accelerate the exploration of 

the search space. On the other hand, if a number of unsuccessful searches occur then the 

algorithm decreases the scale of the search area to exploit better the examined location. 

Following this approach, the algorithm eventually converges to an incumbent with near 

optimal 𝑓(𝒙) value. When the search area becomes sufficiently small and all sample points are 

tightly clustered around the incumbent then convergence is assumed and the algorithm resets 

the surrogate which means that it returns to the stages of generating new random initial points 

and reconstructing the surrogate (MathWorks 2020b).  

The analysis terminates when one of the stopping criteria set by the user is met such as the 

maximum number of the real objective function evaluations. The final solution is the best 

incumbent point of all surrogate resets. The afore-described procedure of the adopted SBO 

framework is illustrated in the flowchart of Fig. 2. 
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4 Case studies 

 

4.1 Four-storey RC frame 

 

In this section, a 3D regular 4-storey concrete building frame is examined with 3 equal spans 

of 5m in each direction and uniform storey height of 3m (Fig. 3). Concrete class C25/30 and 

reinforcing steel class B500C are used following the specifications of EC2. Concrete cover to 

the centroid of the longitudinal steel bars is taken as 50mm. Due to symmetry, one cross-

section is used for all interior columns, one section for all corner columns and one section for 

the rest of perimeter columns. Furthermore, one section is used for all exterior beams and one 

section for all interior beams of the first 3 storeys. Two more sections are used for the exterior 

and interior beams respectively of the top storey due to the high dead loads applied at this level, 

as explained in the following. In total, 7 different cross-sections are used for this frame setting 

the number of dimensions d in this optimization problem (i.e. d = 7).   

The beam and column cross-sections are assumed to have the general form of Fig. 1. For 

beams, a list of 8 different rectangular cross-sections is considered having a width of 0.30m 

and heights that increase from 0.30m to 0.65m with a constant step of 0.05m. For columns, a 

list of 8 possible square cross-sections is considered with heights ranging from 0.30m to 0.65m 

again with a constant step of 0.05m. Following these considerations, the size of the search 

space for this optimization problem is 87 possible design configurations. 

The concrete building is designed to withstand static and wind loads. Slab dead loads are taken 

as 6kN/m2 (inclusive of self-weight) for all storeys apart from the top storey where they 

become 16kN/m2 because of the existence of a roof garden.  Slab live loads are 5kN/m2 for all 

storeys except for the top storey, where they are set as 2kN/m2. The slab loads are transferred 

to the beams following standard procedures. In addition, a wind uniform lateral pressure, of 

1.5kN/m2 magnitude, is assumed to be acting to the external surface of the building. Concrete 

and reinforcing steel unit prices are considered to be 𝑓𝑐𝑜 = 100 €/𝑚3 and 𝑓𝑠𝑜 = 1 €/𝑘𝑔 

respectively. The building is designed according to the specifications of EC2. 

Figure 4 shows an indicative optimization history exhibited by the adopted SBO framework 

for the 3D RC frame under examination in terms of material cost versus the number of real 

function evaluations (i.e. number of structural designs of the RC frame). For this analysis, 50 

initial random points were used for the first construction of the surrogate function 𝒔(𝒙). This 

is clear in Fig. 4, where the first 50 function evaluations correspond to initial random points 
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indicated by inverted triangles. Next, function evaluations related to adaptive sample points 

take place that are indicated by small black asterisks in the figure. At the same time, the 

progression of the incumbent (blue x markers) and the best of all evaluated points (green circle 

markers) with the number of function evaluations is demonstrated. The best points always 

coincide with the incumbent points since there is no surrogate reset taking place within the 

function evaluations shown in the figure. As anticipated, the cost of the best points gradually 

decreases until the SBO framework reaches the optimum solution to this problem, with a 

minimum cost of approximately 12,477 Euros, after 285 function evaluations.  

 

 

Fig. 3: 3D view of the 4-storey concrete frame 

 

Table 1 presents the cross-sections and costs of the design solutions obtained at the start, at 

100 function evaluations and at the end of the optimization history of Fig. 4. It can be seen that 

the 1st feasible solution uses larger beam sections and smaller interior and perimeter column 

sections than the final optimal solution. The best solution after 100 evaluations uses smaller 

sections for the interior beams of the first three storeys, the exterior beams of the top storey 

and the interior columns than the final solution. On the other side, it employs larger sections 

for the interior beams of the top storey. All other sections are the same as the final solution. It 

can be concluded from the previous comparisons that the identification of the optimal design 

solution for this concrete frame is not a straightforward task as it affected by the complex 

interaction of concrete members in structural analysis and the subsequent calculation of the 

steel reinforcement that contributes to the frame cost. 

Furthermore, Fig. 5 demonstrates the exterior and interior frames of the final optimum solution 

of the concrete building with the corresponding cross-sections drawn to scale. It can be 

concluded that the interior frames require larger sections than the exterior and that the beam 

sections of the top storey are larger than the lower storeys due to the existence of the additional 

dead load at the roof of the building. The same figure presents the calculated flexural and shear 
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steel reinforcement areas of the exterior and interior frames of the optimum solution of the 

concrete building as calculated by SAP2000. It is emphasised herein that it is not implied that 

this optimal solution is the most efficient structural solution for the concrete building under 

investigation. It is simply the best solution following the specifications of the optimization 

problem described at the beginning of this section. 

 

 
Fig. 4: Optimization history of the SBO framework with 50 initial random points   

 

Table 1: Design solutions cross-sections and costs 

Members group Cross sections (m) 

 1st feasible solution Best solution after 100 iterations Final optimal solution 

Exterior beams – storeys 1 - 3 0.40 X 0.30 0.30 X 0.30 0.30 X 0.30 

Interior beams – storeys 1 - 3 0.45 X 0.30 0.35 X 0.30 0.40 X 0.30 

Exterior beams – storey 4 0.40 X 0.30 0.30 X 0.30 0.35 X 0.30 

Interior beams – storey 4 0.60 X 0.30 0.60 X 0.30 0.45 X 0.30 

Interior columns 0.40 X 0.40 0.35 X 0.35 0.45 X 0.45 

Perimeter columns 0.30 X 0.30 0.35 X 0.35 0.35 X 0.35 

Corner columns 0.35 X 0.35 0.30 X 0.30 0.30 X 0.30 

Frame Cost (Euros) 14,888 13,139 12,477 

 

Figure 6 compares the computational performance of the SBO framework with well-

established metaheuristic optimization algorithms such as the GA, PSO, SA and FPA 

optimization algorithms. For each algorithm, 5 independent runs are conducted to account for 

their stochastic formulation. For the SBO algorithm, 50 initial random points are employed 

based on the findings of a preliminary analysis. For the GA, PSO and SA algorithms, the 

parameters values used are the ones recommended in MATLAB R2020b – Global 

Optimization Toolbox (MathWorks 2020b) that maximize their overall computational 

performance. For the FPA algorithm, which is not included in the Global Optimization 

Toolbox, a population size of n = 25 and a switch probability value of p = 0.5 is assumed as 

these values provide in general good performance for this algorithm (Yang 2008, Mergos 

 



13 

2021). It is noted herein that the parameter values of all previous metaheuristic algorithms have 

not been specifically tuned for the optimization problems of this study. Parameter tuning 

tailored to these optimization problems could further improve the computational performance 

of the optimization algorithms. For all algorithms, 3500 (= 500·d) maximum objective function 

evaluations are set as a stopping criterion for each run. This limit is deemed as a reasonable 

computational cost for practical applications of the present optimization framework. 

 

  
 

 

 

 

 
 

 

 

 

 
 

Fig. 5: Optimal design solution a) exterior frame with cross-sections drawn to scale; b) interior frames with cross-

sections drawn to scale; c) flexural reinforcement (mm2) - exterior frames; b) flexural reinforcement – interior 

frames (mm2); c) shear reinforcement – exterior frames (mm2/mm); d) shear reinforcement – interior frames 

(mm2/mm) 

 

a) b) 

c) d) 

e) f) 
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Figure 6a compares the mean optimization histories of the 5 independent runs of the different 

algorithms. It is interesting to note that all mean optimization histories converge to almost the 

same minimum cost after approximately 600-800 function evaluations. It is seen in this figure 

that the SBO and SA algorithms converge on average significantly faster than then other 

algorithms in the first 100 function evaluations. At approximately 200 evaluations, all 

algorithms seem to offer similar performance apart from the FPA algorithm, which converges 

more slowly. After 200 function evaluations, the SBO algorithm exhibits best average 

performance converging after approximately 400 function evaluations, which is considerably 

faster than all other algorithms converging after more than 600 evaluations. It is also worth 

noting that all algorithms’ independent runs, within the 3500 function evaluations limit, 

converge to the same optimum design solution, shown in Table 1, apart from one run of the 

PSO algorithm. Figure 6b presents, in the form of box plots, the numbers of function 

evaluations at which convergence to the optimum solution was achieved by all independent 

runs of the different algorithms. The box plots show the minimum, maximum and median (red 

line) function evaluations. Inside the boxes, the 25th to 75th percentiles are contained. It is clear 

that that the SBO algorithm convergences faster than all algorithms and it does so more 

robustly with smaller variations in the numbers of function evaluations at convergence. 

 

 

 

 

Fig. 6: Comparison of the SBO framework with other optimization algorithms: a) mean optimization histories; 

b) number of function evaluations at convergence. 

 

4.2 Twelve-storey RC frame 

 

In the present section, a 3D regular 12-storey concrete building frame is examined with 3 equal 

spans of 5m in each direction and uniform storey height of 3m (Fig. 7). Concrete class C25/30 

and reinforcing steel class B500C are used following the specifications of EC2. Concrete cover 

to the centroid of the longitudinal steel bars is taken as 50mm. Due to symmetry, one cross-

b) a) 
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section is used for all interior columns, one section for all corner columns and one section for 

the rest of perimeter columns. Furthermore, for simplicity, one cross-section is assumed for all 

exterior beams and one cross-section for all interior beams of every two consecutive storeys. 

Totally, 15 different cross-sections are used (i.e. d = 15) for this frame constituting the design 

variables of this optimization problem.  

For beams, a list of 10 different rectangular cross-sections is considered having a width of 

0.30m and heights that increase from 0.30m to 1.2m with a constant step of 0.10m. For 

columns, a list of 10 possible square cross-sections is considered with heights ranging from 

0.30m to 1.20m again with a constant step of 0.10m. It is clarified herein that it is it not implied 

that square columns are more structurally efficient than rectangular columns for the present 

case study. Square columns are used as they are assumed to serve better architectural 

considerations of the building. Following these considerations, the size of the search space for 

this optimization problem is 1015 potential design solutions. 

 

 

Fig. 7: 3D view of the 12-storey concrete frame 

 

The concrete building is designed to withstand static and seismic loads. Slab dead loads are 

taken as 6kN/m2 (inclusive of self-weight) for all storeys apart from the top storey where they 

become 16kN/m2 because of the existence of a roof garden.  Slab live loads are 2kN/m2 for all 

storeys. Fos static loads, the building is designed in accordance with EC2. Moreover, the 

concrete building is designed against earthquake loads following EC8 for the low ductility 

class (DCL). The seismic action is applied via the Type 1 response spectrum of EC8 assuming 

type D soil conditions. The building is assumed to be of importance class II. The design peak 

ground acceleration (PGA) is 0.36g as recommended for seismic zone III in Greece. The 
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behaviour factor is taken as 1.5 in accordance with DCL requirements in EC8. To satisfy the 

damage limitation (DL) prescriptions of EC8, it is specified that inter-storey drifts should 

remain below 0.75% for the frequent earthquake, assuming ductile non-structural elements 

attached to the frame. Moreover, to prevent large lateral displacements under the design 

seismic action, the roof displacement of the frame is constrained to 1% of the total height. 

Figure 8 presents a sample optimization history exhibited by the SBO algorithm for the RC 

frame in terms of material cost versus number of function evaluations. In this history, 20 initial 

random points were used for the construction of the surrogate. Again, initial points are 

represented by inverted triangles, adaptive points by asterisks, incumbents by blue x markers 

and best points by green circles. As in the previous example, the analysis starts with initial 

points followed by adaptive points and the best points match with incumbent points. However, 

in this design example, the search of surrogate, for promising new designs, phase of the 

algorithm converges multiple times before the stopping criterion is met leading to an equal 

number of surrogate resets as highlighted by the vertical blue lines in the figure. For each 

surrogate reset, new initial points are calculated followed by corresponding adaptive points. 

Interestingly, in the subsequent surrogate resets, the incumbent points do not always coincide 

with the best achieved points of the algorithm. This is because incumbent points represent the 

best points achieved from the last surrogate reset and not from the start of the analysis. In this 

optimization history, surrogate resets seem to fail updating the best solution after 

approximately 3200 function evaluations. 

 

 

Fig. 8: Optimization history of the SBO framework with 20 initial random points   

 

Figure 9 compares the performance of the SBO framework with the GA, PSO, SA and FPA 

optimization algorithms. For all algorithms, 5 independent runs with 7500 (= 500⋅d) maximum 
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function evaluations are conducted to account for the random procedures of these algorithms. 

This maximum number of function evaluations is used herein as a termination criterion to 

account for computational budget limitations when the optimization framework is applied in 

standard engineering practice.  

 For the SBO framework, 20 random points are used for the initial surrogate construction based 

on the results of a preliminary analysis. For the FPA, a population size of n = 25 flowers and 

a switch probability of p = 0.5 are assumed in this comparison (Mergos 2021). For all other 

algorithms, the recommended parameter values in MATLAB R2020b – Global Optimization 

Toolbox (MathWorks 2020b) are used that maximize their performance. Figures 9a and 9b 

compare the mean optimization histories of these algorithms after the 5 independent runs. The 

latter figure is only a zoom of the former figure in the first 1000 function evaluations. It can be 

seen that the SBO outperforms significantly all other algorithms in the first approximately 300 

function evaluations showing initially a high exploitation capability. This can be considered as 

a clear advantage of this algorithm when the computational budget for the optimization 

analysis is limited to a very low number of function evaluations. After the first 300 evaluations, 

however, the SBO framework gets stuck in local optima exhibiting rather poor performance 

and gradually it is outperformed by all other optimization algorithms. Figure 9c presents, in 

the form of box plots, the final costs obtained by the various optimization runs after 7500 

function evaluations. It is verified that the SBO demonstrates the worst median performance 

of all algorithms. The best performance is obtained by the FPA algorithm with a final cost of 

192,694.3 Euros. This is due to the high degree of diversification and exploration capacity of 

the FPA algorithm, which is able to track global optimum solutions in complex and large-scale 

problems (Mergos 2021, Mergos and Yang 2021, Mergos and Yang 2022).  

The cross-sectional dimensions of the best design solution are presented in Table 2. For 

comparison purposes, the cross-sectional dimensions of the 1st feasible solution and the best 

design solution after 3750 (= 50% of total) function evaluations and corresponding frame costs 

are also presented in this table. As anticipated, the beam section sizes of the final optimal 

solution are larger at the lower stories than the upper stories. This is justified by the higher 

seismic actions at the lower stories. Moreover, the interior beams at the upper floors are larger 

than the exterior beams at the same floors as they attract higher static loads. It is also noted 

that the interior columns are larger than the perimeter columns and that the perimeters columns 

are larger than then corner columns. The previous anticipated trends are not consistently met 

in the earlier design solutions. For example, the exterior beams of the 5th and 6th storey in the 

first feasible design solution are larger than the interior beams of the same floors and all the 
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beams of the lowest four storeys. Similarly, the beams of the 9th and 10th storey of the best 

solution after 3750 evaluations are larger than all other beams in the frame. Again, it is 

emphasised that it is not implied herein that this optimal solution is the most efficient structural 

solution for the concrete building under investigation. It is simply the best solution following 

the specifications of the optimization problem described at the beginning of this section. 

 
Table 2: Design solutions cross-sectional dimensions (in m) and costs 

 Beam Groups 

 1st feasible solution 
Best solution after 3750 

iterations 
Final Optimal Solution 

Storeys 
Exterior 

Beams 

Interior 

Beams 

Exterior 

Beams 

Interior 

Beams 

Exterior 

Beams 

Interior 

Beams 

1 - 2 0.4 X 0.3 1.1 X 0.3 0.7 X 0.3 0.8 X 0.3 1.2 X 0.3 1.2 X 0.3 

3 – 4 0.9 X 0.3 0.9 X 0.3 0.8 X 0.3 0.3 X 0.3 1.2 X 0.3 1.2 X 0.3 

5 - 6 1.1 X 0.3 0.4 X 0.3 0.3 X 0.3 0.8 X 0.3 0.3 X 0.3 1.0 X 0.3 

7 - 8 0.4 X 0.3 0.4 X 0.3 0.7 X 0.3 0.3 X 0.3 0.3 X 0.3 0.7 X 0.3 

9 - 10 0.6 X 0.3 0.4 X 0.3 0.8 X 0.3 0.9 X 0.3 0.3 X 0.3 0.7 X 0.3 

11 - 12 0.9 X 0.3 0.4 X 0.3 0.4 X 0.3 0.6 X 0.3 0.3 X 0.3 0.4 X 0.3 

 Column Groups 

 1st feasible solution 
Best solution after 3750 

iterations 
Final Optimal Solution 

Interior 

columns 
0.9 X 0.9 1.1 X 1.1 0.9 X 0.9 

Perimeter 

columns 
1.1 X 1.1  0.7 X 0.7  0.7 X 0.7  

Corner 

columns 
0.9 X 0.9 0.8 X 0.8 0.5 X 0.5 

Frame Costs 

(Euros) 
228,700 205,910 192,694 

  

Furthermore, Fig. 10 shows the lateral deflections of the exterior and interior frames of the 

obtained optimum solution of the RC building when subjected to the design earthquake where 

the corresponding cross-sections are drawn to scale. It is interesting to note in Fig. 10 that the 

top lateral displacement under the design earthquake is slightly lower than the 1% limit of the 

building height satisfying marginally the respective constraint of the optimization problem. 

Based on the previous discussion, it is further investigated in this study a novel hybrid approach 

combining the SBO and FPA algorithms. The goal is to examine whether the proposed hybrid 

approach combines the benefits of these algorithms (i.e. exploitation capacity of the SBO 

algorithm and exploration capability of the FPA algorithm). Two potential combinations of 

these algorithms are considered. In the first combination, termed SBO-FPA, the analysis starts 
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with the SBO algorithm followed by FPA algorithm and in the second combination, termed as 

FPA-SBO, the analysis starts with the FPA algorithm followed by the SBO algorithm. In both 

cases, 1000 function evaluations are allocated to the SBO algorithm and 6500 evaluations to 

the FPA algorithm leading to a total of 7500 total evaluations as the case with the single 

algorithms. In the hybrid approach, the best solution obtained by the first algorithm serves as 

a starting point of the second algorithm ensuring the continuity of the solution procedure. 

Figure 9d compares the mean optimization histories obtained by the single and hybrid 

algorithms after 5 independent runs with 7500 function evaluations in total. As expected, the 

SBO and SBO-FPA algorithms exhibit similar performance in the first 1000 evaluations, which 

outperforms the other two algorithms. After 1000 evaluations, the SBO-FPA algorithms 

performs better than the SBO algorithm taking advantage of the exploration capabilities of the 

FPA algorithm. Nevertheless, the final solutions obtained after 7500 evaluations are on average 

significantly worse than the original FPA algorithm. This practically means that there is no 

benefit of using the SBO-FPA hybrid algorithm since it seems to be outperformed by the single 

algorithms (i.e. either SBO or FPA) in the full range of the response.  

The FPA-SBO algorithm exhibits initially a very similar performance to the FPA algorithm 

but after the first 2000 evaluations it seems to outperform the FPA algorithm. This is just due 

to the random procedures of the FPA algorithm since both solutions use the FPA in the first 

6500 evaluations. It is therefore more meaningful to compare the mean performance of these 

algorithms after the 6500 function evaluations. This comparison is given in Fig. 9e. It can be 

seen in this figure that both the FPA and the SBO algorithms improve considerably the 

previously obtained solutions after the 6500 evaluations. However, the SBO does so 

significantly earlier than the single FPA (i.e. approximately 250 function evaluations in this 

example as opposed to 1000 evaluations of the FPA algorithm after the first 6500 function 

evaluations). This is an interesting conclusion since it means that the SBO has the potential to 

improve FPA’s performance even in the later stages of the response and with a very limited 

amount of additional function evaluations. Furthermore, Fig. 9f shows the final costs obtained 

at the end of the analysis for the single and hybrid algorithms. It can be seen in this figure that 

the best solution obtained by the FPA-SBO algorithm out of the 5 independent runs is the same 

as the single FPA algorithm presented in Table 2. Even more, the FPA-SBO algorithm 

performs on average better and more robustly than the single FPA algorithm. This means that 

the recommended hybrid algorithm is a more reliable alternative to the single FPA algorithm. 
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Fig. 9: Comparisons of algorithm performances: a) mean histories; b) mean histories in the first 1000 evaluations; 

c) final costs after 7500 evaluations; d) mean histories of hybrid algorithms; e) FPA and surrogate mean response 

after 6500 FPA evaluations; f) final costs of hybrid algorithms after 7500 evaluations 

 

a) b) 

c) 

e) 

d) 

f) 
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Fig. 10: Lateral deflections response of the optimal design solution with cross-sections drawn to scale: a) 

exterior frames; b) interior frames (note: displacements in m) 
 

5 Conclusions 

 

Reinforced concrete frame buildings are associated with high economic and environmental 

costs on a global scale. Therefore, the optimum design of these structural systems is an 

imperative need. Nevertheless, the structural design of real-world concrete building frames to 

modern design guidelines is highly complex and accompanied by significant computational 

costs undermining the application of optimization methodologies in everyday practice. 

Therefore, the applicability and efficiency of surrogate-based optimization (SBO) approaches 

in this optimization problem is investigated.  

To support the purposes of the current research, a versatile computational platform, namely 

STROLAB (i.e. Structural Optimization Laboratory), is applied. The platform applies, for first 

time, a fully-fledged SBO algorithm to the optimum design of 3D concrete building frames. In 

particular, the SBO algorithm is applied in the design of a 4-storey and 12-storey 3D building 

RC frames for minimum cost and according to Eurocodes. The performance of the SBO 

algorithm is then compared with several metaheuristic algorithms including SA, GA, PSO and 

FPA. Useful conclusions are made with respect to the solution efficiency of the SBO 

framework in the optimum structural design of concrete frames. 

It is found that for the smaller-scale concrete building the SBO algorithm drives to the same 

optimum design solution as the other algorithms and in a smaller number of function 

evaluations leading to significant savings in the required computational effort. For the larger-

scale concrete building, it is observed that the SBO outperforms the other algorithms for very 

small numbers of function evaluations showing high early exploitation capability. Therefore, 
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it represents the best choice for this building when the computational budget is very limited. 

Nevertheless, as the number of function evaluations increases, the SBO seems to get trapped 

in local optima. As a result, it is outperformed by other optimization algorithms, with larger 

exploration capacity, such as the FPA algorithm.  

To combine the high exploration ability of the FPA algorithm and the exploitation capacity of 

the SBO algorithm, a novel hybrid approach, termed FPA-SBO, is also proposed in this study 

where the efficient global search of the FPA algorithm is followed by an intensive local search 

of the SBO algorithm. It is found that the SBO algorithm, when applied after the FPA 

algorithm, considerably improves the outcomes of the FPA search within a very limited 

number of additional function evaluations and that the FPA-SBO hybrid approach offers 

improved quality and more robust computational performance.  

At this point, it is important to clarify that a code-based approach is followed in the present 

study that is consistent with standard engineering practice. A performance-based design 

approach is more appropriate to control structural performance of concrete frames. Therefore, 

the use of SBO algorithms in the optimum performance-based design of concrete frames needs 

to be examined. Furthermore, additional design objectives such as the life-cycle cost and/or 

environmental impact as well as structural robustness should be further investigated. 

Closing this study, the need for adopting efficient SBO procedures in the optimum design of 

real-world reinforced concrete structures is highlighted that can reduce drastically the 

computational cost and promote optimization efforts in standard engineering practice. Hence, 

further research is required to explore the applicability and efficiency of different existing SBO 

methodologies in the optimum design of concrete structures as well as to develop new SBO 

techniques that are specifically tailored to this optimization problem.  
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