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A novel method of human presence detection using passive millimeter-wave 

sensors is presented. The method focuses on detecting a standing human from a moving 

platform in a cluttered outdoor environment using millimeter-wave radiometry, which 

has not been attempted before. Ka-band radiometers are used in total power mode as well 

as correlation mode, which ideally responds well to self-luminous objects such as 

humans. The intrinsic radiative power from a human is derived as well as the responses 
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Chapter 1:  Introduction 

 

The ability of a sensor to detect human presence is desirable in cases where the 

use of a person is unpractical, expensive, or dangerous. Many current techniques employ 

radars or infrared detectors. The drawback of a radar system is that it is not passive: it 

transmits as well as receives energy and thus could be detected. In addition, while a radar 

system can effectively detect a moving object, it cannot easily distinguish a stationary 

human from other stationary objects. Infrared (IR) systems are passive and can detect a 

stationary person however these systems detect thermal radiation from the skin surface 

and can thus be overcome by wearing thick clothing. In addition, IR sensors can be 

overcome by bright daytime sunlight reflection, rendering human detection impossible. 

Passive millimeter-wave (PMMW) systems are an effective way of determining 

the presence of a stationary human. Systems of this form typically use total power 

radiometers which function similarly to infrared detectors in that they detect the radiation 

of objects due to their heat signatures, except at much lower frequencies thus detecting 

thermal radiation from the body as a whole rather than the skin surface. However, these 

sensors can still have trouble resolving the presence of a human in outdoor environments 

as background objects of greatly varying temperatures can confuse the sensor. This 

dissertation will show that a new technique in PMMW systems using radiometers in both 

total power and correlation mode can effectively detect the presence of a human from a 

moving platform. 

No studies have been shown to successfully detect a stationary person in an 

outdoor environment from a moving platform. I will discuss the current state of 
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autonomous presence detection and show the lack of focus on this problem of human 

presence detection. The use of a radiometer in both total power and correlation mode 

presents a solution to this problem, and the use of a correlation receiver is a novel 

concept which has not been utilized in presence detection; such a receiver ideally 

responds well only to self-luminous objects such as humans. The requirements of the 

sensor will be put into context by reviewing the current state of technology in two areas 

which the detection method draws from: millimeter-wave radiometry and correlation 

radiometry in remote sensing. Following this, because the radiation detected by the 

method presented in this dissertation is thermal in origin, I will describe the uses and 

drawbacks of a more widely used thermal detector, infrared detection systems. 
 

1.1 PROLEGOMENON 

All objects with a physical temperature emit radiation at certain frequencies. In 

addition, the temperature of the object is proportional to the power of the emitted 

radiation. Humans tend to have greater temperature than inanimate objects and therefore 

the radiation emitted by humans in the microwave region of the electromagnetic spectrum 

is typically greater and is also essentially flat over frequency [1]; thus sensors can be used 

to detect the presence of a human in certain environments. One such sensor is a total 

power radiometer which detects the radiation power emitted by whatever it sees in its 

antenna beam and produces an output voltage proportional to the power detected. 

However, this system cannot easily distinguish between humans and objects of similar 

temperature.  

The radiation emitted by a human differs from many outdoor objects in that it is 

more coherent because the human is a self-luminous object. Typical outdoor objects do 

not generate their own heat and thus their radiation is a combination of scattering, 
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reflection and thermal emission from solar heating. By using two total power radiometers 

and correlating the outputs the responses to these uncorrelated background objects can be 

reduced significantly, while the coherent, correlated radiation from a human will be 

preserved. This dissertation will present the development and analysis of such a 

radiometer and show that this sensor can effectively detect the presence of a human from 

a moving platform. 
 

1.2 REVIEW OF PUBLISHED LITERATURE 

1.2.1 Autonomous Robotic Sensing 

Detection of human presence for autonomous sensors typically falls into the 

categories of motion detection and emission detection, and has been attempted by active 

and passive means using primarily infrared, ultrasonic, and microwave sensors [2]. 

Motion detection focuses on changes in a stable environment and has been accomplished 

successfully using microwave Doppler radars by examining the Doppler shift of the 

signal reflected off a moving person. Ultrasonic transducers have been used in an 

analogous way [3]. Motion detection is also achieved by using passive means such as 

video imagers or infrared imagers. These imagers work by detecting a change in a 

stationary scene as a person scans across the field of view. Imagers such as these are well 

suited to stationary applications since the background is stationary, though typically 

cannot be implemented as mobile sensors because the shifting background leaves no 

reference with which to compare changes. An example of a change-detection system for a 

moving platform was developed by H. R. Everett at the Naval Postgraduate School in a 

robot called ROBART II; the ultrasonic detection system creates a reference template of 

the most frequently occurring ranges detected in a specified area and compares 

subsequent detected ranges on following passes [3].  
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While a moving person is differentiated from his environment by his velocity, a 

standing human must be detected by other means of differentiating him from his 

environment. Emission detection focuses on intrinsic signals produced by a person, such 

as thermal radiation or acoustic signals. A number of methods have been developed, for 

instance ROBART II utilized an array of acoustical transducers to triangulate the position 

of a person creating noise. This method works well indoors or in very quiet outdoor 

environments but in typical outdoor environments ambient noise typically drowns out the 

acoustic signal from a moving person. Other techniques use optical arrays to detect any 

light emission, such as a person using a flashlight, or infrared thermal sensors [3, 4]. The 

drawbacks to optical detection are in cases such as broad daylight where a person uses no 

light source. For a thermal sensor, a person must appear warmer to the sensor than the 

background. For indoor environments this is a safe assumption, however in an outdoor 

daytime environment infrared detection becomes difficult, as I will discuss in Section 1.3.  

An area of human presence detection which has not been explored is the passive 

detection of intrinsic millimeter-wave radiation from a human. Radiation in this 

frequency range has benefits over infrared in outdoor environments, as I will present in 

later sections. The method I present in this dissertation focuses on the detection of 

intrinsic human radiation using passive receivers and can detect a standing person in an 

outdoor environment, where other techniques have failed.  

The human presence detection method utilizes passive millimeter-wave 

radiometry and a radiometric correlation technique which was developed in the fields of 

radio astronomy and remote sensing. I will put the objective in context by briefly 

reviewing current trends in millimeter-wave security applications as well as radio 

astronomy and remote sensing. 
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1.2.2 Millimeter-Wave Radiometry 

The focus of passive millimeter-wave imaging has recently been in the area of 

contraband detection because millimeter-wave radiation passes through most garment 

and baggage materials with negligible attenuation [5]. The millimeter-wave emissivity of 

most metals is in the range of 0.10-0.30 while the millimeter-wave emissivity of a human 

is 0.60-0.65 [1]. Thus a metal weapon or other contraband hidden under clothing would 

appear cold on the warmer background of the human body. A contraband detection 

imager developed by Millivision Technologies [6] uses a focal plane array of 64 

radiometric channels at 94 GHz to provide images of 28 × 28 pixels. The device is shown 

to work reasonably well indoors or outdoors with an all-sky background. However, the 

millimeter-wave radiometric temperature of the sky is approximately 20 K due to the 

cosmic microwave background [7], and in contrast, nearly any material will have a larger 

brightness temperature. Other millimeter-wave imagers use active technology for 

contraband detection, transmitting a signal and detecting the reflected millimeter-wave 

radiation from the person and any objects under the person’s clothing [8, 9]. However, in 

a security environment it is beneficial to have a passive sensor so that no information is 

being transmitted that could possibly be intercepted, indicating to an intruder where the 

sensor might be. For this reason passive sensors are more desirable. In addition, 

millimeter-wave radars make no use of the thermal information detected by radiometers 

and thus amount to a simple mapping device. 

Passive millimeter-wave radiometers have been developed as flight sensors 

mounted on helicopters. One design uses a phased-array frequency-scanned imager with 

a square planar dielectric antenna at 84.5 GHz to provide a 128 ×192 pixel detection map 

[10]. This study demonstrated that the emissivity of objects plays an important role; in 
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cases where no thermal contrast is present the differing emissivities will cause contrasting 

brightness temperatures. Other designs have used imagers for collision avoidance [11]. 

The detection method described in this dissertation shares much of the same 

technology as the systems just described, however for many of these systems, such as 

contraband detection, human presence is implied and even required. In other cases, such 

as collision-avoidance flight sensors, there have been no tests on detecting a human and 

no studies focused solely on presence detection. By concentrating on human presence 

detection my millimeter-wave detection method has the added benefit of a lower data rate 

than the systems discussed above. That is, the majority of millimeter-wave systems are 

imagers and thus require a large amount of data processing in order to run real-time. The 

technique described here uses one-dimensional sensors and correlates the outputs to 

determine a detection, thus by analyzing data arrays rather than matrices the processing 

time is easier to implement in real-time.  
 

1.2.3 Radio Astronomy and Remote Sensing 

A novel approach of the detection method is the use of a correlation mode to 

attempt to detect self-luminous objects. The correlation radiometer has been widely used 

in radio astronomy [12-15] and earth remote sensing [16-18]. In radio astronomy large 

radio telescopes are needed as the angular resolution of the system is dependent on the 

size of the antenna system. By using multiple antennas and correlating the outputs the 

effective aperture of the receiver is equal in size to the largest baseline between the 

antennas. An example is the Very Large Array in Socorro, NM, which comprises of 27 

antennas with a maximum baseline of 36 km resulting in an angular resolution of 0.05 

arcseconds.  
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The interferometer technique is also used in earth remote sensing where it is 

unfeasible to deploy a large single-aperture antenna in space. An example demonstrating 

the effectiveness of the technique is ESTAR which was an L-band airborne radiometer 

used to detect soil moisture content [18].   

To achieve large effective apertures radio astronomy arrays correlate the outputs 

of the individual receivers. The voltage output of the receivers is comprised of two 

components: the signal from the radiating source Vs and noise from antenna reception of 

radiation away from the main beam as well as system noise generated in the microwave 

components Vi and is written by Vout,i = Vi + Vs, where i = 1, 2 indicates the receiver 

channel. The radiation from the source is coherent and thus the same in both receivers 

while the noise component is incoherent. Thus by multiplying the two voltages and 

averaging over a sufficient length of time, the incoherent noise components will tend to 

zero, while the signal component will be squared, resulting in a voltage output 

proportional to power. Following multiplication the output voltage is given by 
 

  

 
( )( ),1 ,2 1 2

2
1 2 1 2 .

out out s s

s s s

V V V V V V

VV VV V V V

= + +

= + + +
 (1.1) 

 

The noise components in the receiver circuitries are statistically independent, and 

thus with sufficient time averaging the first three terms of (1.1) tend to zero, yielding 
 
  
 2

,1 ,2 .out out sV V V=  (1.2) 
 

The correlation technique is useful in radio astronomy and earth remote sensing to 

achieve greater aperture sizes, but also inherent in the correlation process is the response 

only to self-luminous objects, which are sources of coherent radiation. Though 
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astronomical objects as well as humans are spatially incoherent, that is, the radiation from 

one point on the object is statistically independent of the radiation from another point, 

each point produces coherent radiation. This aspect can be useful in human presence 

detection. A person is a self-luminous source and much of the other radiation present in a 

cluttered outdoor environment is incoherent radiation from reflections and scatterings. 

Thus an ideal correlation radiometer (a radiometer with sufficient averaging time) should 

respond only to self-luminous objects, such as humans, while other radiation will be 

averaged to zero.  
 

1.3 INFRARED SENSORS 

Upon the advent of IR thermocouples and IR imagers, devices were created to 

detect human presence based on intrinsic human IR radiation. The ratio of energy emitted 

by an object compared to a perfect radiator (called a blackbody) of the same temperature 

is called the emissivity, and human skin emissivity in the infrared spectrum was found to 

be 0.997-0.999 [19]. Thus human skin is a near-perfect radiator in the IR region of the 

electromagnetic spectrum. Since the source of energy in the human body is of thermal 

origin the radiation is directly related to the temperature of the body. An object is 

measured radiometrically by its brightness temperature TB, which is a quantity related to 

an object’s physical temperature T and its emissivity e at a given frequency by TB = eT. A 

contrast in brightness temperature can result from two cases: an object and its 

background have similar emissivities and the object has a higher temperature than the 

background, or the object and its background have similar temperatures but the 

background has a lower emissivity than the object.  
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Figure 1.1. IR image of a person in a cluttered outdoor environment. The person is in the center of the 
image. 
 

IR devices work well in certain situations such as nighttime or indoor 

environments due strong thermal contrast as well as lack of sunlight. In an indoor 

environment a person’s thermal signature in the IR band is dominant over most other 

sources of radiation and thus a person can be detected through his warm thermal signal 

contrasting with a cooler background. However, outdoors the IR radiation of the 

environment looks different. The IR emissivity of typical vegetation is 0.90-0.98 [20] and 

thus in environments where physical temperatures are on the order of human body 

temperature, vegetation will have a brightness temperature similar to that of a human. 

The peak wavelength of the sun’s radiation is 500 nm which is just under the defined 

limit of IR wavelengths of 1 mm to 750 nm and since most metals reflect IR radiation 

very well, reflections from the sun can be extremely bright in cluttered outdoor 

environments, drowning out the signature from a human. In addition, treated wood has an 

IR emissivity of 0.89-0.94 [20], thus any wooden objects warming in the sun will also 

have a large brightness temperature which can further cause confusion. Figure 1.1 shows 
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an image from an IR camera of a person with a building in the background; of note are 

the objects that have brightness much larger than the human, as well as the fact that the 

level of emission from the person is nearly equivalent to that of other parts of the 

building. 

My research has shown that millimeter-wave radiometers perform better then IR 

sensors in outdoor environments. Figure 1.2 shows comparisons of a 27.4 GHz total 

power radiometer and an IR sensor scanning across a human in an outdoor environment. 

The background of the test included the metal wall of a building to the right of the peak 

and a parking lot to the left. The total power detector has a noticeable peak when 

scanning the person between -20˚ and 0˚, but the IR shows no indication of detection.  
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Figure 1.2. Comparison of IR and PMMW sensors scanning a human. 
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The use of millimeter-wave technology has another benefit over IR in that 

clothing of thickness on the order of 1 mm is effectively opaque at IR frequencies, 

suffering transmission attenuation of 22 dB through typical garment materials [5]. Power 

is related to temperature through Boltzmann’s Law: 
 
  
 ,BP kT f= Δ  (1.3) 
 

where k = 1.38 ×10-23 joule·K-1 is Boltzmann’s constant and Δf is the detection 

bandwidth. Thus the power is proportional to the brightness temperature of the source 

and with 22 dB of power attenuation this translates to an observed brightness temperature 

158 times lower. Thus IR sensors will have difficulty differentiating a clothed human 

from a typical outdoor background temperature. Even with clothing that has warmed to 

high temperatures the brightness temperature may still be low depending on the 

emissivity of the clothing material. Thus it is relatively simple to cover up a person’s IR 

radiation signature by attenuating the radiation through layers of clothing. However, 

millimeter-wave frequencies have been shown to have less than 3 dB of attenuation up to 

300 GHz and less than 1 dB attenuation at Ka-band through most garment materials [5].  

 

1.4 SYSTEM CONCEPT – HUMAN PRESENCE DETECTING RADIOMETER 

In this dissertation I present a method of human presence detection using passive 

millimeter-wave radiometry. To demonstrate this novel mode of human presence 

detection I present a system concept which uses a Ka-band radiometer in total power and 

correlation mode, a W-band total power radiometer and a Bayesian statistical detection 

classifier; for simplicity the system is referred to as the correlation radiometer or 

radiometer system. The radiometer utilizes three superheterodyne receivers, two at 27.4 
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GHz, the third at 95 GHz. The sensor suite is mounted to a rotating platform atop a semi-

autonomous robot, the rotation giving the scanning beam system 360° coverage. The 

sensor signals are collected in an analog-to-digital converter and processed with a Naïve 

Bayesian statistical classifier, which analyzes the signals based on voltage level, width of 

detection peaks, and temporal correlation of each signal. 

 

1.5 RESEARCH OBJECTIVES 

The research presented in this dissertation serves to introduce the idea of using 

millimeter-wave radiometry to detect the presence of a human from a moving platform. 

Detection of human presence from a moving platform in outdoor environments is an 

unsolved problem and this dissertation presents one possible solution.  

An additional goal of this dissertation is to investigate new methods of detection 

and classification in the data fusion of total power and correlation signals. The Bayesian 

formulation of detection and classification shows promising results with a simplistic 

implementation which allows for easy combination of additional sensors or additional 

signal statistics. 

 

1.6 DISSERTATION ORGANIZATION 

The detection method presented in this dissertation can be conceptually decoupled 

into the different regimes in which the relevant signals are generated, detected, or 

processed. The first regime is the generation of the thermal radiation by the human and is 

discussed in Chapter 2. After the radiation escapes the surface of the human, passing 

through clothing layers with minimal attenuation as discussed in Chapter 1, it traverses 

through the effectively free-space outdoor medium to the receiver. In the millimeter-wave 
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region radiation interacts minimally with air in most conditions; only during rain where 

the water droplets become significantly large compared to the wavelength does the 

radiation suffer attenuation. The radiation is detected by the correlation and total power 

receivers after transmitting through the air. The theoretical responses of the receivers are 

discussed in Chapter 3 and the system design, where the radiation is converted to digital 

signals, is discussed in Chapter 4. The general interferometer theory must be altered in 

the case of close-range human presence detection and these modifications to the theory 

are also discussed in Chapter 4. 

Chapter 5 discusses the processing and conditioning of the digitized signals as 

well as the detection and classification algorithms. Two classification methods were 

investigated; first a heuristic classifier which showed promising results but which was too 

computationally expensive, and second a Bayesian formulation to signal classification 

which showed reliable detection capabilities and which was far less computationally 

expensive. 

The detection method is evaluated by experimental validation in Chapter 6. 

Experimental setups are discussed and results are shown. The data sets resulting from the 

system experiments are shown to be imbalanced, with a small percentage of positive 

detections of humans. Performance metrics are discussed which pertain to imbalanced 

data sets and give a theoretical measure of the classifier performance. The practical 

performance of the classifier is demonstrated by analyzing the receiver operating curve of 

the correlation radiometer. Finally, the conclusion chapter discusses the contributions my 

research has made to the field and covers future directions of the research. 
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Chapter 2:  Applying MMW Radiometry to Human Presence Detection 

 

2.2 SOURCE OF HUMAN RADIATION 

The radiation emitted by human is thermal in nature. In the infrared spectrum the 

thermal radiation detected originates from the outer layer of the skin, with a depth of a 

few wavelengths [19]. In the millimeter-wave region the radiation originates from the 

outer layer of the underlying tissue as well as the bulk of the skin. Using a simple model 

of the human body, this section shows that the majority of the radiation emitted by a 

human in the millimeter-wave region originates in the skin and the surface of the tissue 

beneath the skin. 

The optical depth of a material or object at a frequency f is defined by [21] 

 

 ( ) ( )
0

' ',
s

f f
s

s s dsτ α= ∫  (2.1) 

 

where αf is the spectral absorption coefficient of the material and the integral is taken 

along the depth of the material. In the microwave region at f = 23.6 GHz, the absorption 

coefficients of human skin and human blood are [22] 

 
 1~ 6.35 ,skin cmα −  (2.2) 
 1~ 10 .blood cmα −  (2.3) 
 

 It is difficult to model the human body while including organs, tissue, and blood, 

and as such I will approximate the human body as a layer of skin surrounding tissue 
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approximated as blood. Such a model is an oversimplification, although it will provide an 

approximation of how the radiation is generated. Also, the model is not wholly 

unreasonable because of the high blood content of most tissue and organs in the human 

body. The average thickness of human skin has been measured as s1 ~ 1 mm [23], and the 

thickness of the torso from front to back is s2 ~ 18 cm [24]. 

 The optical depth of human skin is then 

 

 
1

1
0

' 0.635,
s

skin skin skinds sτ α α= = =∫  (2.4) 

 

and the optical depth of the tissue is  

 

 
2

2
0

' 180.
s

tissue blood bloodds sτ α α= = =∫  (2.5) 

 

Since τskin < 1, the skin is optically thin, while the tissue is optically thick since τtissue > 1. 

This means that the majority of the photons originating in the tissue are absorbed before 

reaching the surface of the tissue; the radiation emitted comes from photons originating 

from the surface to a depth of a few mean-free paths. A mean-free path is the distance an 

average photon can travel through an absorbing material without being absorbed. The 

majority of the photons originating from the bulk of the skin are not absorbed, and thus 

are radiated outwards, along with those photons which are not absorbed in the tissue an 

eventually escape. Thus the human thermal radiation detected in the millimeter-wave 

region is generated from the surface of the tissue underneath the skin and from the skin 

itself. 
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2.3 RECEIVED HUMAN MMW RADIATION 

The spectral brightness of a blackbody is given by Planck’s radiation law: 
 
  

 
3

2

2 1 ,
1f hf kT

hfI
c e

=
−

 (2.6) 

 

where If = spectral brightness or spectral intensity (W·m-2·Hz-1·sr-1),  

h = Planck’s constant (6.63 ×10-34 joule·s),  

f = frequency (Hz), 

c = speed of light (3 ×108 m·s-1), 

k = Boltzmann’s constant (1.38 ×10-23 joule·K-1), 

T = temperature (K). 

Human body temperature is T = 310.015 K and at a frequency f = 27.4 GHz the argument 

of the exponential is hf ⁄ kT = 4.24 ×10-3. Since this is much less than unity the 

denominator can be approximated by ehf ⁄ kT  − 1 ≈ 1 + hf ⁄ kT  − 1 = hf ⁄ kT , and thus 
 
 

 
3 2

2 2

2 2 ,f
hf kT fI kT
c hf c

= =  (2.7) 

 

which is known as the Rayleigh-Jeans approximation. Figure 2.1 shows (2.6) over 

frequency at human body temperature. The Rayleigh-Jeans region to the left of the dotted 

line indicates the frequencies where (2.7) is valid. Over a narrow bandwidth Δf << f the 

spectral brightness is approximately constant over the bandwidth and thus the brightness, 

given by I  W·m-2·sr-1, is 

 

 
2

2

2 .
f f f f

f ff f

fI I df I df kT f
c

+Δ +Δ
= ≈ = Δ∫ ∫  (2.8) 
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Figure 2.1. Radiation from a blackbody at the temperature of a human. 

 

If the effective aperture of the transmitter is At the power received by an antenna 

of effective aperture Ar is given by  

 

 
2

2 2 2

1 .
2

t r t
bb r

A A A fP I A kT f
R R c

= = Δ  (2.9) 

 

where R is the distance between the radiating source and the receiving antenna. The 

power given by (2.9) is that due to a blackbody radiating at a physical temperature T, 

indicated by the subscript bb. To relate this to a greybody the emissivity is used, defined 

by  
 
  

 ,BTe
T

=  (2.10) 
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where TB is the brightness temperature, which is the blackbody equivalent radiometric 

temperature, or the temperature that a blackbody must be to radiate at the observed 

brightness. The previous equations assumed that e = 1, thus that T = TB. Inserting (2.10) 

into (2.9) yields the received power from a radiating greybody: 
 
  

 
2

2 2 .r tA A fP e kT f
R c

= Δ  (2.11) 

 

If the person is close enough to the antenna that the antenna beamwidth β is not 

greater than the angular extent of the person, the person is resolved within the beam, and 

the preceding equations are accurate. However, as the person becomes more distant β 

becomes too wide to resolve the person and the self-luminous radiation becomes only a 

certain fraction of the brightness seen by the sensor. In such cases the brightness 

temperature seen by the antenna is no longer given simply by (2.10) and must be 

modified to include the effects of the antenna beamwidth. 

The brightness given by (2.10) can be considered the resolved brightness, while 

the unresolved brightness is given by [12] 

 

 , ,s
B u

r

T eTΩ
=
Ω

 (2.12) 

 

where Ωs is the source solid angle and Ωr is the antenna beam area which is given by [12] 

 

 24 .
3r βΩ =  (2.13) 
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Let the width of a person be given by w meters. The angular width χ of the person 

at a given range is then 

 

 12 tan w
R

χ − ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (2.14) 

 

and the source solid angle can then be found by 

 

 
2

2 14 tan .s
w
R

πχ π −⎡ ⎤⎛ ⎞Ω = = ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 (2.15) 

 

The point at which a person becomes unresolved can be found by setting (2.13) and 

(2.15) equal and solving for R. For a person of width w = 0.3048 m with β = 0.066 radian 

the resolution limit is Rl = 7.0533 m. 
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Figure 2.2. Received power from a radiating human  
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A range profile of the approximate received radiation from a human can now be 

found. The emissivity of a human in the Ka-band is approximately 0.65 [1]. Assuming the 

human body is an omni-directional radiator, the surface area of the skin can be used 

which is about 1.8 m2 [25]. Given a bandwidth of Δf = 500 MHz, which satisfies that Δf 

<< f, the received power in terms of distance R for a receiving antenna with a circular 

aperture of diameter 6 is shown in Figure 2.2.  
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Chapter 3:  Theory of the Total Power and Correlation Responses 

 

The response of the millimeter-wave sensors to the received radiation is discussed 

in this chapter. I begin by deriving the response if the total power receiver and follow by 

deriving the more complicated response of the correlation receiver and showing examples 

of each mode. 

 

3.1 RESPONSE OF THE TOTAL POWER RECEIVER 

The input power to the receiver system is a combination of the antenna noise 

power and the system noise power [16]: 
 
  
 ,sys A rec sysP P P kT f= + = Δ  (3.1) 
 

where  
 
  
 sys A recT T T= +  (3.2) 
 

is the system noise temperature, comprised of the antenna noise temperature TA and 

receiver noise temperature Trec; Δf is the system bandwidth. The noise power at the 

output of the IF amplifier is given by 
 
  
 IF sysP GkT f= Δ  (3.3) 
 

where G is the system gain. Assuming that the output power of the IF amplifier is across 

a 1 Ω resistor yields 
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 2 .IF IFP V=  (3.4) 
 

Following the IF amplifier is a detector diode with a power-sensitivity constant Cd. The 

output of the diode is given by Vd = Cd VIF
2, and the average value is given by 

 
  
 2 .d d IF d sysV C V C GkT f= = Δ  (3.5) 
 

The signal is then typically passed through a low-pass filter (LPF), which is the 

equivalent of averaging Vd over an interval τ = (2ΔfLPF)-1, where ΔfLPF is the filter 

bandwidth. The voltage output of the LPF is then given by 
 
  
 ,out LPF d sysV L C GkT f= Δ  (3.6) 
 

where LLPF is the loss of the LPF. Thus the output voltage of the total power radiometer is 

directly proportional to the input power Psys, given in terms of the antenna temperature by 

(3.1) and (3.2). Trec is measured in the lab [12, 16], while TA is related to the brightness 

temperature of the observed scene through 
 
  

 ,A
A

PT
k f

=
Δ

 (3.7) 

 

where PA is given by (2.11). Thus the output voltage of the total power receiver is 

directly related to the temperature of the observed scene. 

In practice the output voltage of the filter is often in the range of microvolts and 

must be further amplified. The radiometer system uses op-amp based baseband amplifiers 

to provide an additional 50 dB of gain just prior to the LPFs. Because the signals being 

boosted are so low in voltage there is often a small dc bias that must be subtracted out to 
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keep the amplified signal within the limits of the op-amp and filter power rails. This is 

accomplished with an op-amp based differencing amplifier which subtracts a variable 

voltage from the amplified signal. Thus the total power output is given by 
 
  
 ,out sys offsetV GkT f V= Δ +  (3.8) 
 

where LLPF, Cd, and the baseband amplifier gain has been included in G. An example of 

the total power response as a person crosses the antenna beam at varying distances is 

show in Figure 3.1. The person starts approximately 10ft from the radiometer, walks out 

to nearly 50ft and walks back. The background is the metal wall of a building. 
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Figure 3.1. Total power response to a human crossing in front of the radiometer at varying distances. 
 

3.2 RESPONSE OF THE CORRELATION RECEIVER 

A simple correlation receiver consists of two identical total power receivers 

whose outputs are multiplied and integrated prior to any square-law detection. The 

frequency response of the multiplier due to a point source is proportional to  
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Figure 3.2. Geometry of a simple correlation radiometer. 

  

 
( ) ( )
( ) ( ) ( )

2sin 2 sin 2

2cos 2 2cos 2 cos 2 ,

g

g g

F ft f t

f ft f t

π π τ

π τ π π τ

⎡ ⎤= −⎣ ⎦
⎡ ⎤= − −⎣ ⎦

 (3.9) 

 

where  
 
  

 sing
D
c

τ θ=  (3.10) 

 
 

is the geometrical time delay between the reception of the signal on the two antennas and 

D is the antenna baseline, as seen in Figure 3.2. Following some trigonometric 

manipulation (3.9) becomes 
 
  
 ( ) ( ) ( ) ( ) ( )cos 2 cos 4 cos 2 sin 4 sin 2 .g g gF f ft f ft fπ τ π π τ π π τ= − −  (3.11) 
 

Low-pass filtering (3.11) results in the fringe pattern, given by 
 
  

 ( ) 2cos 2 cos sin .g
DF f ππ τ θ
λ

⎛ ⎞= = ⎜ ⎟
⎝ ⎠

 (3.12) 
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Integrating over the pre-detection bandwidth Δf of the receiver centered at fc gives an 

envelope to the fringe pattern, called the fringe washing function. Ideally the passband is 

rectangular which results in a sinc function envelope. The fringe washing function is 

further limited in angle by the antenna pattern Aθ, resulting in a receiver response given 

by 

 
 ( ) ( ) ( )cos 2 sin sinc sin .c cF f A f D c f D cθ π θ π θ= Δ  (3.13) 

 

The fringe washing function is wide enough at the bandwidth Δf  = 500 MHz that 

the angular limiting factor of the fringe washing function is the antenna pattern of the 6” 

lens antennas. In fact, for a given center frequency and bandwidth the fringe washing 

function is dependent only on the antenna baseline. It was calculated that the antenna 

pattern is the angular limiting factor of the fringe washing function if the baseline D < 

130.75 cm, or 4.29 ft.  

It is seen from (3.13) that the period of the fringes varies inversely with the 

quantity fD ⁄ c = D ⁄ λ and that the fringe width is given by λ ⁄ D and both are independent 

of the bandwidth Δf. However, the fringe washing function is dependent on Δf as well as 

D through τg. The placement of the baseline and bandwidth variables in (3.13) means that 

long baselines or wide bandwidths will result in narrow fringe washing functions.  

Figure 3.3 shows the fringe pattern over angle, and Figure 3.4 shows how the 

fringe washing function angularly limits the fringe pattern. In radio astronomy the fringe 

washing function is created to be narrower than the antenna pattern, however in this case 

the antenna pattern is the angularly limiting factor, as seen in Figure 3.5. The full 

response is then show in Figure 3.6. 
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Figure 3.3. Fringe pattern. 
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Figure 3.4. Fringe washing function. 

 



 27

−25 −20 −15 −10 −5 0 5 10 15 20 25

−1
−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

1

N
or

m
al

iz
ed

 a
m

pl
itu

de
 (V

)

θ (degrees)  
Figure 3.5. Antenna pattern. 
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Figure 3.6. Resulting correlation response. 
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Figure 3.7. Geometry describing the correlation response to a distributed source (after [14]). 

 

The power received by the antenna from a point source is given by 
 
  

 1 .
2A r fP A I f= Δ  (3.14) 

 

For an extended source whose center is located at s0, as seen in Figure 3.7, an element of 

solid angle dΩ at position s = s0 + σ contributes a component of power given by 
 
  

 ( ) ( )1 .
2AP A I f d= Δ Ωσ σ  (3.15) 

 

With equal responses on each antenna the correlator response is proportional to the 

received power and the fringe term: 
 
  
 ( ) ( ) ( )cos 2 .c gr A I f f dπ τ∝ Δ Ωσ σ  (3.16) 
 

Let the vector Dλ represent the antenna baseline in wavelengths. Then fcτg = Dλ · s = Dλ · 

(s0 + σ) and thus 
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The complex visibility function is defined as [14] 
 
  
 ( ) ( ) ( )

4
exp 2 ,j

Ne A I j dυφ
λπ

π= = − ⋅ Ω∫ σ σ D σV V  (3.18) 

 

where AN is the normalized antenna pattern given by AN (σ) = A(σ) ⁄ A0 where A0 is the 

antenna collecting area in the direction s0. Separating (3.18) into real and imaginary 

components and inserting into (3.17) yields 
 
  

 
( ) ( )
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cos 2 cos sin 2 sin

cos 2 ,

r f A f A

A f
λ υ λ υ

λ υ

π φ π φ

π φ

= Δ ⋅ + Δ ⋅

= Δ ⋅ −

D s D s

D s

V V

V
 (3.19) 

 

which is the general response of the correlation receiver to a distributed source. Equation 

(3.19) is expressed as the fringe pattern of a hypothetical point source multiplied by the 

complex visibility function. As defined in (3.18) the visibility has a Fourier transform 

relationship with the brightness. Thus an inverse Fourier transform of the visibility results 

in a quantity proportional to the observed brightness. 

A more general expression for the correlation response must include effects of 

phase from the receivers as well as the geometrical time delay. Let the frequency 

responses of two receivers be given by H1( f ) and H2( f ). The frequency f is that at the 

input of the correlator while the input to the antennas is fLO − f since the system has two 

lower-sideband superheterodyne receivers. The phase delays through the receivers are 



 30

designated 1φ  and 2φ  where negative values indicate phase delays. Assuming that the 

visibility does not vary significantly over the receiver bandwidth, the response is given by 
 
  

 ( ) ( ) ( )( ){ }0 1 2 1 20
Re exp .r A H f H f j dfυφ φ φ

∞ ∗= − −∫V  (3.20) 

 

If receiver 1 is designated the delay reference the signal reaching the antenna on 

receiver 2 undergoes a geometrical time delay of τg and thus a phase delay of  
 
  
 1 12 ,c gfφ π τ θ= +  (3.21) 
 

where θ1 is the local oscillator phase. The signal reaching receiver 1, being the reference, 

does not undergo a geometrical time delay, thus the phase delay is given by the LO 

phase: 
 
  
 2 2.φ θ=  (3.22) 
 

The correlator output is then given by 
 
  

 
( )( ){

( ) ( ) ( ) }
0 1 2

1 20

Re exp 2

exp 2 .

c g

g

r A j f

H f H f j f df

υπ τ θ θ φ

π τ
∞ ∗

⎡ ⎤= − + − −⎣ ⎦

× ∫

V
 (3.23) 

 

In general, the instrumental gain factor G = |G|exp(j Gφ ) is defined such that 
 
  

 
( ) ( ) ( ) ( ) ( )

( ) ( )
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exp 2 .
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Thus, the general response of the lower-sideband correlation receiver including phase 

effects is given by 

 
 ( ) ( )1 2cos 2 .g c g Gr G f υτ π τ θ θ φ φ⎡ ⎤= + − − −⎣ ⎦V  (3.25) 
 

The variation of G over the geometrical time delay results in the fringe washing function, 

while the fringe pattern results from the cosine term. The phase Gφ  of the instrumental 

gain factor is due to the difference in phase of the two receivers, from the phase delays of 

the receiver amplifiers, filters, and other components. This is kept separate from the LO 

phases only because they enter into an upper-sideband receiver with opposite sign. 

System two is an upper-sideband system, and the response is given by 
 
  
 ( ) ( )1 2cos 2 .g c g Gr G f υτ π τ θ θ φ φ⎡ ⎤= + − − +⎣ ⎦V  (3.26) 
 

Measurement of the system phase delay results in a quantity which is a 

combination of the LO and component phase delays, and in this case it is useful to use the 

correlation response with a total system phase delay  
 
  
 ( )1 2sys Gφ θ θ φ= − ±  (3.27) 
 

resulting in an expression for the correlation response given by 
 
  
 ( ) ( )cos 2 .g LO IF g sysr G f f υτ π τ φ φ⎡ ⎤= ± − +⎣ ⎦V  (3.28) 
 
 

where fIF is the intermediate frequency after down-conversion and the positive signs in 

(3.27) and (3.28) are used for the upper-sideband receiver.
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Chapter 4: System Concept and Adaptation to Human Presence 
Detection 

 

4.1 DESIGN OBJECTIVES 

The use of a millimeter-wave correlation receiver is novel for the application of 

human presence detection. Therefore, while the hardware system is in general based on 

established research, the presence detection system must be designed with the new 

application of human presence detection as the focal point. Modifications are necessary 

to adapt the theory to the short ranges and different types of detection in human presence 

detection. 

The sensitivity of the correlation radiometer must be analyzed in the context of 

human presence detection to ensure validity of the system radiometric sensitivity. The 

novel use of the sensor as a rotating, scanning beam system makes the determination of 

the correlation fringe frequency important for signal processing, and the projected 

baseline must be determined to ensure validity of the Fourier inversion of the measured 

visibility. 

The ranges of the detection system are small compared to radio astronomy or 

Earth remote sensing, and to detect humans at shorter ranges the antennas are angled 

inwards. Thus the phase must be analyzed to ensure that far-field conditions are not 

violated. In addition, the spatial resolution of the correlation mode must be determined in 

order to calculate the dwell time of the sensor, which affects the radiometric resolution. 
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Figure 4.1. Correlation radiometer atop the mobile platform. The black antennas feed the Ka-band 
radiometer. 

 

4.2 HARDWARE DEVELOPMENT 

4.2.1 Overview 

Figure 4.1 shows the entire radiometer system atop the mobile platform. The 

system design is based on a two-element correlation interferometer. The voltage output of 

the pre-detection hardware is divided by a power-splitter to facilitate both the total power 

and correlation detection modes. Two receivers are used and the outputs of each are 
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multiplied and integrated to provide the correlation detection mode. Figure 4.2 shows the 

component schematic of the receiver. Because both receivers are identical in structure 

with minor variations in component parameters, one receiver will be described in the 

following sections. 
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Figure 4.2. Correlation radiometer component schematic. 

 

4.2.2 Antenna 

The antenna used on each receiver is a Gaussian optical lens antenna with a 6” 

diameter lens and gain of 32.7 dBi. The radiation patterns of the antennas are circularly 

symmetric with half-power beamwidths of 3.876°  in azimuth and 3.759°  in elevation. In 

order to use the antenna pattern in theoretical simulations it was approximated by a 

cosxθ  directivity function [26]. This simulates only the main beam of the antenna and 

therefore the figures used to match the simulated pattern to the actual pattern were the 3-

dB beamwidths. While only the main beam is simulated, this approximation is valid since 

the sidelobes of the measured pattern are greater than 30 dB lower than the main beam. 

The approximating functions that most closely matched the measured values from the 

data sheet were 1210cos θ  for the azimuth pattern and 1285cos θ  for the elevation pattern. 

The resulting simulated azimuth HPBW is 3.8772°  with an error of 0.0003% from the 
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measured value; the simulated elevation HPBW is 3.762°  with an error of 0.0008%. The 

simulated antenna patterns are shown in Figure 4.3. 
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Figure 4.3. Simulated antenna patterns. 

 

4.2.3 Pre-Detection Hardware 

The hardware front-end of the detection system consists of two independent 

superheterodyne receivers of identical structure. The pre-detection hardware consists of 

components prior to detection through either a detector diode for the total power 

response, or the analog correlator for the correlation response.  

The receiver is a lower-sideband receiver and has an RF center frequency given 

by fc,RF = 27.4 GHz, an LO frequency fLO = 28.9 GHz, and an IF center frequency fc,IF = 

1.5 GHz. The antenna used is a Gaussian optical lens antennas with a diameter of 6 

inches, HPBW = 3.8o and a gain of 32.7 dBi. Following the antenna is a flexible coaxial 

cable with a loss of 0.15 dB which is connected directly to the RF LNA which has a gain 
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of 32 dB and a noise figure of 3.2 dB. The pre-detection bandwidth is Δfpre = 500 MHz 

and is set by the RF band-pass filter (BPF) which follows the LNA. The output of the 

BPF is mixed down to the IF where another BPF is located with a bandwidth of 500 MHz 

centered on fc,IF. Following the IF BPF are two cascaded LNAs giving a total of 63 dB 

gain. The LNA output is split; one output is sent to a detector diode which produces the 

total power response, the other combined with the output of the second receiver through a 

mixer which provides the multiplication part of the correlation. There are then three 

voltage signals: total power one, total power two, and correlation, and each are sent to a 

baseband circuit which provides additional amplification of 50 dB as well as low-pass 

filtering of the signals.  

 

4.2.4 Post-Detection Hardware 

The amplification is achieved using four cascaded op-amps, as seen in Figure 4.4, 

and is divided into two sections of two op-amps each. The purpose of the first section is 

to zero out the input signals. Despite an RF gain of nearly 80 dB up to this point, the 

input signal fluctuations are still in the microvolt range and must be amplified to the 

range of volts in order to clearly differentiate them from amplifier noise. A voltage of 

approximately 100− mV was measured on the output of the detector diodes under 

ambient conditions and amplifying this would put the value off the range capable of the 

op-amps. Therefore the input to the baseband amps must be offset to zero before the 

amplification [27]. The first op-amp has a gain of 1.5 and following this is a differential 

amplifier subtracting up to 120− mV from the total power channels. The detector diodes 

are inverting in nature and hence the negative signs on the preceding values. A voltage of 

approximately 10mV was measured on the output of the correlation channel and its 

differencing amplifier subtracts up to 120+ mV. These differencing values are connected 
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to 10 kΩ potentiometers and were thus adjusted until the outputs of the first baseband 

stages were as close to DC as possible. This was done before the full system assembly 

and the potentiometers are not accessible during operation however the second amplifier 

stage also contains 10kΩ  pots which are adjustable during operation. Thus the first offset 

adjustment is used to manipulate the output voltages to the general range desired and the 

second offsets are used to fine-tune the voltage levels. 
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Figure 4.4. Baseband amplifier hardware 

 

The second stage is identical in layout to the first stage except the total stage gain 

is 40.7 dB for the total power channels and 53.4 dB for the correlation (the 22 kΩ resistor 

is replaced with a 1.2 kΩ for the correlation channel). The extra gain on the correlation 

channel is needed to compensate for the 12 dB conversion loss of the mixer. The 

differencing value for the secondary offset is 12− V for the total power channels and 

12+ V for the correlation.  

The LPFs used are 4-pole Butterworth filters and provide the post-detection 

bandwidth of Δfpost,tp = 500 Hz for the total power channels and Δfpost,cr = 2 kHz for the 

correlation signal. The LPF provides the integration of the correlation process.  
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4.2.5 A/D Converter and Processing 

The analog outputs of the radiometer are passed to a Texas Instruments MSP430 

microprocessor which has a 12 bit-precision analog-to-digital converter. The correlation 

and three total power signals are all sampled a rate of 2048 S·s-1. The digitized signals are 

passed to a USART on the MSP430 and then to an FTDI USB-to-Serial microchip. The 

FTDI chip allows the MSP430 to be physically linked to the processing computer 

through a simple USB cable while the making use of the straightforward serial 

communication protocol. 

The digitized signals are recorded on an OQO Model 2 computer. The OQO is a 

small-form-factor PC chosen for its small size of 5.6 in x 3.3 in x 1.0 in. Following an 

experiment the data are analyzed and the detection algorithms are run using MATLAB. 

Figure 4.5 shows the Ka-band correlation radiometer system with the phase shifter 

for each channel mounted to the top. The phase shifters are used to calibrate sysφ to 

eliminate the phase error between the channels. The baseband hardware is shown in 

Figure 4.6 with the baseband circuit board containing the op-amp amplifiers and low-pass 

filters. The mixer to the right performs the analog multiplication for the correlation 

channel. Underneath the baseband hardware is the IF hardware, shown in Figure 4.7, with 

the band-pass filters on the left and the LNAs (two per channel) on the right. Finally, the 

RF hardware is shown in Figure 4.8, with the antenna inputs on the right connected to a 

LNA, then a BPF and then the mixer which performs the down-conversion. 
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Figure 4.5. Correlation radiometer hardware case. 
 

 
Figure 4.6. Baseband hardware. 
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Figure 4.7. Correlation radiometer IF components. 
 

 
Figure 4.8. RF components. 
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4.3 NOISE FIGURE AND SYSTEM EQUIVALENT TEMPERATURE 

The system noise figures were calculated using the Y-factor method [28]. The 

antennas were replaced with a noise source with an excess noise ratio (ENR) of 12.4 dB 

at 27.4 GHz. The ENR is defined by 

 

 0
10

0

10log ,ne
dB

T TENR
T
−

=  (4.1) 

 

where T0 = 290 K and Tne is the effective noise temperature of the noise source, related to 

its noise temperature Ta by Tne = Ta(1−|Γ|2) where Γ is the reflection coefficient of the 

noise source [29]. 

Because temperature fluctuations in the RF amplifiers can cause small gain 

variations, the system was run for a period of time to allow the temperatures to equalize. 

Following this the voltages of all three channels were recorded. The Y-factor is a ratio of 

two noise power levels, one power level measured with a noise source on and the other 

with the noise source off. Because the total power channels are detected with square-law 

detectors the voltage output is linearly related to the input power. Likewise the 

correlation output is the multiplication of two noise voltage levels by the mixer and thus 

gives a voltage signal which is also linearly related to the power. The Y-factor for each 

channel is the ratio of the output voltage with noise source on (VH) to the output voltage 

with the noise source off (VL) and is given by 
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The voltage outputs represent the noise power of the system Nsys plus the noise 

power of the noise source, whether it is on or off: VH,L = NH,L + Nsys. The thermal noise 

power of a device is given by N = kTB where k is Boltzmann’s constant, T is the noise 

temperature and B is the bandwidth [29]. Since N is proportional to T the Y-factor can 

then be given as 
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 (4.3) 

 

Rearranging, the system temperature can be given in terms of Y by 
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 The noise figure is then given by 
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The noise figures for each sensor are given in Table 4.1.  

 
Table 4.1. Radiometer sensor noise figures. 

 Sensor 
 Correlation Total Power Ka,1 Total Power Ka,2 Total Power W

Noise Figure (dB) 3.09 6.71 7.20 6.90 
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4.4 SYSTEM ADAPTATION TO HUMAN PRESENCE DETECTION 

The application of the theory of the correlation radiometer to human presence 

detection requires the modification of certain properties. The synthesized beam, 

sensitivity, fringe frequency, projected baselines, far-field phase approximation, spatial 

resolution and dwell time are analyzed in the following sections. 

 

4.4.1 Point Source Response and Synthesized Beam 

If the radiometer views a point source, the spectral radiance I(σ) reduces to a delta 

function δ(σ) and the integral in (3.18) reduces to the normalized antenna pattern. If H(f) 

is an ideal square passband of bandwidth ∆f, (3.24) reduces to the antenna pattern A0  

multiplied by a sinc function with argument DsinθΔf⁄c where D is the baseline distance. If 

sysφ  is also negligible, either by design or calibration, the response of the two-element 

interferometer to a radiating point source is given by 

 
 ( ) ( ) ( )sinc sin cos 2 sin .p cr A D f c f D cθ θ π θ= Δ  (4.6) 
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Figure 4.9. Theoretical and measured point source responses for the correlation radiometer. 
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The expression in (4.6) is compared to a point source measurement of the 

correlation radiometer in Figure 4.9. The correlation radiometer has and D = 27.94 cm for 

the point source measurement. Note that the response is angularly limited by the antenna 

pattern which has half-power beamwidth β = 3.8°. In most radio astronomy and Earth 

remote sensing applications it is desirable to have the fringe function narrower than the 

antenna pattern. This creates a synthesized beam which can achieve greater angular 

resolution than the individual antennas. In the case of human presence detection the goal 

is to exploit the coherence of the electromagnetic field produced by self-luminous 

objects. Because of this and the availability of antennas with beams narrow relative to the 

application of human and object detection, narrow synthesized beams are less important.  

 

4.4.2 Sensitivity 

The sensitivity of a two-element correlation radiometer is the minimum detectable 

change in flux density and in general is given by [30] 

 

 ( )2 2
1 2 1 2 ,2

T TCS S S SEFD SEFD SEFD SEFD
S fτ

+ + + +
Δ =

Δ
 (4.7) 

 

where τ is the integration time, ST is the total flux density at the two antennas (assumed to 

be equal), and SC is the correlated flux density between the antennas†. If the received 

radiation is perfectly correlated, SC = ST, otherwise SC < ST. The system equivalent flux 

density, denoted SEFDi for receiver i = 1, 2, is related to the receiver system temperature 

and is typically many times greater than the flux density in radio astronomy applications. 

In such a case only the SEFD1SEFD2 term of (4.7) is important. 

                                                 
† Expression (4.7) is derived in Appendix A. 
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The SEFD is defined as [30] 
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where k = 1.38 ×10-23 joule·K-1 is Boltzmann’s constant and Aant is the antenna collecting 

area. The observed flux density is given by [12] 
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where the antenna temperature is given in terms of the source temperature TS and antenna 

pattern by 

 
 ( ) ( )2 , , .ant

A S
AT T A dθ φ θ φ
λ

= Ω∫∫  (4.10) 

 

For an indoor environment the source temperature can be assumed to be constant 

with angle, and is typically 290 K. Outdoors a constant temperature is an idealized case, 

but an ambient temperature of 290 K is within an order of magnitude of typical 

conditions and is used here as an approximation. In this case (4.10) reduces to 

 
 ( )2290 , .ant

A
AT A dθ φ
λ

= Ω∫∫  (4.11) 

 

In typical remote sensing applications such as radio astronomy the antenna beams 

are narrow enough that TA << Tsys and thus, through (4.8) and (4.9), ST << SEFD. The 

sensitivity given by (4.7) then reduces to 
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If the two receivers are identical,  
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In terms of temperature, the sensitivity can be written 
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and the temperature sensitivity is 
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The measured system temperature of the correlation radiometer is 301 K and the 

antenna collecting area is 6.1×10-3 m2 giving SEFD = 1.36×10-18 W·m-2·Hz-1 from (4.8). 

The antennas have β = 3.8° at a wavelength of 1.1 cm giving ST = 3.45 ×10-20 W·m-2·Hz-1 

from (4.9) and (4.11), and thus ST << SEFD and (4.12) - (4.15) are valid. 

With the baseband LPF bandwidth of 2 kHz the resulting sensitivity is 426 mK. 

The relatively high cutoff frequency of the baseband filter allows for fringe frequencies 

resulting from fast rotation rates. The signal is filtered around the fringe frequency with a 

bandwidth proportional to the 3dB width of a simulated spectral point source response 

generated with equal rotation rate and results in a lower sensitivity. After estimation of 
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the fringe frequency, the signal is filtered around it resulting in sensitivities in the range 

of 150-400 mK. The sensitivities of the Ka-band total power radiometer modes were 477 

mK and 550 mK. 

 

4.4.3 Fringe Frequency 

The fringe frequency is the centroid of the correlation frequency response and is 

dependent on the phase of the fringe pattern in (4.6): 

 

 0cos 2 sin .fFP D
c

π θ
⎛ ⎞
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⎝ ⎠

=  (4.16) 

 

For a scanning radiometer the angle variable θ can be given by the rotation rate ω rad·s-1 

multiplied by the time t. The phase of the fringe pattern is then 

 

 ( )02 sin 2 ,F
f D tcφ π πω=  (4.17) 

 

and the instantaneous frequency of (4.17) gives the fringe frequency 

 

 02 .F
ff Dcπω=  (4.18) 

 

The fringe frequency is dependent on the rotation rate of the radiometer as well as 

the antenna baseline, and the correlation radiometer has a variable rate of rotation as the 

system scans. Once fF is determined the signal can be filtered to reject noise outside of 

the frequency band of interest. 
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Since the rotation rate is variable fF can vary from a few hundred Hz to a few kHz 

and the baseband hardware must accommodate the range of frequencies. Thus 

determination of fF is important to filter noise outside of the band of interest. To 

determine fF in real-time, spectral estimation techniques are used. Pisarenko harmonic 

decomposition (PHD) [31, 32], Root MUSIC [31, 33], and a least-squares ESPRIT [31, 

34] were compared to (4.18) using four sets of data†. The algorithms are run prior to any 

filtering, thus there are a total of three complex sinusoids present in the correlation signal; 

two resulting from the cosine in (4.16) centered at ±fF and one at DC. The signal of 

interest is the +fF sinusoid. The time-window length for the PHD algorithm is M = 4 (one 

greater than the number of signals), while for the Root MUSIC and ESPRIT algorithms a 

time-window length of M = 10 was chosen. Using M > 10 for MUSIC and ESPRIT did 

not result in a significant improvement in estimating fF and increased the processing time. 

The results of the experimental comparison are shown in Table 4.2 and demonstrate that 

the Root MUSIC and ESPRIT algorithms performed comparably while the PHD 

algorithm showed the greatest error. Due to its computational simplicity the ESPRIT 

algorithm was chosen over MUSIC. 

 
Table 4.2. Spectral estimation of the fringe frequency  

Fringe Frequency 97 Hz 126 Hz 171 Hz 
Number of tests 32 41 57 

    
Average Estimation error (Hz) 

PHD 110.2 16.1 6.1 
Root MUSIC 3.8 3.2 0.3 
ESPRIT LS 5.7 5.0 0.5 

 

                                                 
† The derivations of the PHD, MUSIC, and ESPRIT algorithms are covered in Appendix B. 
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4.4.4 Projected Baseline 

The response of the correlation radiometer is a measure of the coherence of the 

electric field at the two antennas. In general the coherence at two points can be measured 

by the mutual coherence function, defined by [15] 
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The electric field is given by 

 

 ( )0 1,2 1,2exp 2 ,E E j f c tπ⎡ ⎤
⎢ ⎥⎣ ⎦

= − ⋅ −x s  (D.20) 

 

where xi is the location of the antenna and si is the vector from the antenna to the point of 

interest on the source. The baseline is then given by D = x1−x2 and σ = s1−s2. The total 

coherence function is integrated over the source giving [15] 

 
 ( ) ( ) ( )

4
exp 2 .I j f d

π
πΓ = − ⋅ Ω∫∫D σ D σ  (4.21) 

 

The mutual coherence function given by (4.21) is similar to the visibility given by 

(3.18) except that the visibility is modified by the antenna pattern. In radio astronomy and 

remote sensing applications, the inverted visibility is divided by the antenna pattern to 

recover the radiance. 

For a total power receiver the baseline |D| = 0 and (4.21) reduces to Γ(D) = I(σ). 

For the correlation receiver Γ(D) ≤  I(σ) depending on the level of coherence of the 
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incoming waves. In human presence detection in cluttered environments the coherence 

depends on the type of object being viewed and whether it is self-luminous or reflecting. 

A self-luminous object, such as a human, will produce radiation that tends to be highly 

correlated between the antennas. Radiation from an object which reflects and scatters 

radiation from other environmental sources will contain a number of random signals and 

will tend to have low correlation between the antennas.  

Because of the narrow beamwidth of the antennas, and because the antennas on 

the correlation radiometer are stationary and do not track a source as in radio astronomy, 

the projected baseline Dp, which is the baseline as seen from the source, remains 

approximately stationary as a source passes through the beams. This is in contrast to 

radio astronomy applications which use the rotation of the Earth to alter the projected 

baseline as the source is tracked [14]. The beamwidth on each antenna is 0.0663 radians, 

thus for a point source the recorded response results from the projection of the baseline 

changing over 0.0332 radians on either side of the source. The projected baseline at the 

edges of this region is then 

 

 , sin 0.0332 0.9995 .2p edge
π⎛ ⎞
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⎝ ⎠

= ± =D D D  (4.22) 

 

The maximum baseline used on the correlation radiometer is approximately 70λ, 

resulting in a negligible change in the projected baseline over the beamwidth. With only a 

single baseline the spatial transfer function of the interferometer, which indicates which 

spatial points are sampled in the source plane, is a point source or delta function in terms 

of the baseline [35]. If multiple antennas were used, the transfer function would be a sum 

of delta-functions at each of the available baselines. The visibility given by (3.18), 

sometimes referred to as the measured visibility, is the multiplication of the spatial 
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transfer function and the actual visibility. Thus (3.18) is approximately constant at each 

sampled point of the response. 

 

4.4.5 Phase Analysis and the Far-Field Approximation† 

When the radiating source is not significantly far from the correlation radiometer 

the vectors from the source to each antenna are no longer parallel. With a uniformly 

radiating source the difference between this setup and that with parallel radiating vectors 

is the geometrical time delay. The general geometrical diagram with non-parallel 

radiation vectors is shown in Figure 4.10.  
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Figure 4.10. Geometry of non-parallel radiation setup. 

 

The geometrical time delay for parallel radiation is defined as  

 
 ( ), sin .g p d cτ θ=  (4.23) 

 
                                                 
† For completeness of this dissertation, this section is reproduced from [36] J. A. Nanzer, "A Ka-Band 
Correlation Radiometer for Human Presence Detection from a Moving Platform," M.S. Thesis, The 
University of Texas at Austin, 2005. 
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The geometrical time delay for the non-parallel case is the difference in length between 

the two distances A and B, the distances between the source and each antenna, divided by 

the speed of light: 

 

 ( ),
1 .g n A B
c

τ = −  (4.24) 

 

The length d is known and the angle θ is the variable. This information alone is 

not enough to define the response and thus the distance to the radiating source x is also 

assumed to be known and will be defined in test cases to show how changing the distance 

to the source affects the time delay compared to the parallel case. Thus the distances A 

and B must be found in terms of d, θ and x From the diagram, these distances can be 

defined as 
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The time delay is then given by 
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The length y can be used to find the angles α and β by 

 
 cos cos ,y A Bα β= =  (4.27) 
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A
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 1cos .y
B
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The lengths D and y can be given by 

 
 tan ,D y θ=  (4.30) 
 cos .y x θ=  (4.31) 

 

Distance A can be found in terms of these lengths by 

 

 ( ) ( )2 22 2 22 cos 2 cos tan .A y d D x d xθ θ θ= + + = + +  (4.32) 

 

Distance B is found similarly except that the length d⁄2+D becomes d⁄2-D: 

 

 ( )22 2cos 2 cos tan .B x d xθ θ θ= + −  (4.33) 

 

Equations (4.32) and (4.33) can then be substituted into equations (4.28) and (4.29) to 

find the angles α and β; these along with (4.31) can then be substituted into (4.26) 

yielding 
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with the angles and distances defined by (4.28), (4.29), (4.31), (4.32) and (4.33). 
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When θ =±π⁄2 the angles α and β become equal and (4.34) becomes zero; this 

corresponds to radiation incident 90°  to boresight on the antennas. For a real antenna this 

would be of no concern since it would not pick up radiation that was incident directly 

sideways. Theoretically however equation (4.34) should be amended as follows: 
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recalling that θ =π⁄2 → α = β.  

The difference between (4.23) and (4.35) depends on y the distance to the 

radiating source. Figure 4.11 shows the delays graphed over one half-cycle for four 

different distances. The difference between τg,n and τp becomes negligible beyond even a 

few feet from the antennas: With x = 15.7 ft and a range of 4 ft to the radiation source, the 

average time difference |τp - τg,n| = 7.5 ps over the hemisphere. However the antenna half 

power beamwidth is 3.876˚ in azimuth and in this range the time difference is 0.589 ps 

which at 27.4 GHz translates to a phase delay of merely 0.92˚ compared to the 

assumption of parallel radiation vectors. The inner range of the radiometer is about 4 ft 

and a phase delay of less than 1˚ is acceptable, thus τg,n ≈ τp. 

Figure 4.12 shows the fringe patterns resulting from a radiating source at 15.7 ft 

and parallel radiation (15.7 ft is the distance where the center of the angled antenna 

beams cross in this configuration). The average difference in amplitude between the two 

fringe patterns is 0.0019 V where the patterns have been normalized to 1 V; this 

difference is negligible. Thus if the radiating source is greater than 5 ft from the 

radiometer the difference between the theoretical result assuming non-parallel radiation 

incidence and that assuming parallel incidence is negligible.  
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Figure 4.11. Time delays over one half-cycle for distance of 1 to 4 ft for non-parallel radiation τg,n and 
parallel radiation τp. 
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Figure 4.12. Calculated fringe patterns resulting from non-parallel radiation from a source at 15.7 ft and 
parallel radiation incidence. 
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4.4.6 Spatial Resolution and Dwell Time 

The antenna beams of the correlation radiometer are not always parallel [37]. 

Angling the antennas changes the spatial resolution depending on the range and antenna 

angle. It is important to accurately know the spatial resolution because the dwell time of 

the radiometer directly depends on it, and to ensure good radiometric resolution the dwell 

time must be longer than the integration time of the correlator [16]. 

The dwell time for a single antenna beam is given by 

 
 .dτ β ω=  (4.36) 

 

In terms of the spatial resolution Δx and the range R the dwell time can be written 

 
 .d x Rτ ω= Δ  (4.37) 

 

For close range detection with a two-element correlation radiometer there are 

generally three different cases specifying the spatial resolution depending on the antenna 

angle α, the beamwidth β, and the range r1 where the centers of the antenna beams 

converge: no convergence (Figure 4.13(a)), where the beams cross at infinity; partial 

convergence (Figure 4.13(b)), where the beam centers converge but the beams do not 

diverge within β; and total convergence (Figure 4.13(c)), where the beam centers 

converge and the beams diverge at a finite distance. The expressions for the ranges where 

the 3dB beamwidths converge (rc) and diverge (rd) are given by 

 

 , tan .2 2 2c d
Dr βπ α⎛ ⎞

⎜ ⎟
⎝ ⎠

= − m  (4.38) 
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The spatial resolution is given by the following equations for each case: 

1. 0α =  (no convergence) 
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c

R r R rx
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2. 0 2α β< ≤  (partial convergence) 
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 (4.40) 

 

where r1 = rc + b(α + β/2) and  

 

 2 2sin 4.
sin 2 cb r Dβ

α
= +  (4.41) 

 

3. 2α β> (total convergence) 
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    where r1 = D/2α.  
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                (a)      (b)               (c) 
Figure 4.13. Diagrams of three cases of antenna coverage for the calculation of spatial resolution. (a) No 
convergence, (b) partial convergence, and (c) total convergence. 

 

The dwell time for the correlation radiometer is then 

 
 .crd x Rτ ω= Δ  (4.43) 

 

The spatial resolution of the correlation radiometer is shown in Figure 4.14(a) for 

a baseline D = 16 cm and β = 3.8°. When α = β/2 = 1.9° the spatial resolution remains 

constant in R beyond rc; this is the boundary between partial convergence and total 

convergence. The dwell time, being proportional to R-1, does not remain constant over 

range (Figure 4.14(b)). 
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Figure 4.14. (a). Spatial resolution. (b). Dwell time. 

 

If the integration time τ of the radiometer is much greater than τd it will take the 

radiometer longer than τd to register a change in the observed scene. This effectively 

makes the radiometric spatial resolution larger than the antenna spatial resolution Δxcr. 

Thus, given the dwell time in (4.43) the integration time of the system can be set to keep 

the spatial resolution reasonably close to Δxcr. On the correlation radiometer τ is set by 

the 2 kHz LPF at 0.5 ms, which is lower than τd in all relevant cases. Only when α > 2° 
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does the integration time become an issue at large values of R; however, the maximum α 

used for the correlation radiometer is 1.5°. 
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Chapter 5:  Target Detection and Classification 

 

5.1 OBJECTIVE 

The voltage signals from the correlation mode given by (3.28) and the three total 

power detection modes (two Ka-band and one W-band) given by (3.8) must be analyzed 

in conjunction with the shaft encoder signal to determine target classification on a 

rotation-to-rotation basis. The signals must be filtered and conditioned properly in order 

to pass to the classification algorithms. This section describes the processes used to 

condition the signals prior to classification and describes the methods of signal 

classification that were used. Some experimental results are discussed, although the 

experimental evaluation of the classifiers is presented in the following chapter. 

 

5.2 PRE-CLASSIFICATION SIGNAL PROCESSING 

The sensor suite contains the Ka-band radiometer sensor, the W-band total power 

radiometer, a shaft encoder for angle data, and a laser range finder for the determination 

of range. The range estimated using only the Ka-band total power radiometers in order to 

focus solely on the PMMW system; however the passive range estimation is relatively 

inaccurate as will be shown, and the active ranging laser range finder is used to 

corroborate the passive estimate. Using the shaft encoder data the signals are divided into 

arrays for each rotation to facilitate real-time processing. Thus, upon completion of a full 

360˚ rotation the signal arrays are conditioned and analyzed. 
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(c) 

Figure 5.1. Steps in the processing of the correlation signal. The response to a human is present at -45°. (a) 
Raw time-domain signal. (b) Time-domain signal filtered around fF. (c) Spectral correlation signal in the 
time-frequency domain. 

 

The fringe frequency fF is estimated each rotation using ESPRIT. The correlation 

signal is then band-pass filtered around fF with a bandwidth equal to the spectral 3dB 

width of a simulated point source response. Following this the signal is processed by 

short-time Fourier transform (STFT) resulting in the spectral correlation signal, which is 

proportional to the radiance. If calibrated to absolute temperature, the spectral radiance is 

equal to the observed brightness. The profile of the spectral radiance is taken along fF, 

resulting in a time-dependent voltage signal consisting of peaks and nulls which is similar 

in appearance to the total power signals. Figure 5.1 shows the raw correlation signal, the 

signal filtered around fF, and the spectral correlation signal resulting from the STFT. 

 

5.2.1 Median Filtering 

The width of a peak in the total power or spectral correlation signals that is due to 

a human is dependent mostly on the distance of the person. For this dissertation I am only 
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concerned with detecting a standing human; detection of a person in other positions 

would be carried out by creating training data sets and setting the classification thresholds 

accordingly. The peak width is dependent somewhat on the position of the standing 

person; whether the sensor views the side or front of a person. However, the dependence 

on position of the person is dwarfed by the dependence on distance thus it is not included 

in the analysis. 

The median filter is a nonlinear smoothing filter which consists of a running 

median of a given length. The median filter is nonlinear because it does not obey the 

superposition property [38]: 

 
 ( ) ( ) ( ) ( )1 2 1 2median median median .ax n bx n a x n b x n+ ≠ +⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (5.1) 

 

Consider the total power or spectral correlation signal as a combination of a slowly 

varying signal due to the background and a rapidly varying signal due to human 

detections; 

 
 ( ) ( ) ( ) ,x n s n r n= +  (5.2) 

 

where s(n) is the slowly varying background signal and r(n) is the rapidly varying signal 

due to the human. A median filter of median length m has the effect of eliminating sharp 

discontinuities of length l ≤  m [38]. Thus, given the width of a peak resulting from a 

human at a distance r, all such peaks will be eliminated from the signal, leaving the 

smoothed signal 

 
 ( ) ( ).y n s n≈  (5.3) 
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The desired signal is composed only of the rapidly varying signals to be classified. This 

signal can be obtained by subtracting (5.3) from (5.2), giving 

 
 ( ) ( ) ( ) ( ).z n x n y n r n= − ≈  (5.4) 

 

Figure 5.2 shows a block diagram of the median filtering process and examples of the 

median filtering process are shown in Figure 5.3. The first plot shows x(n) from a total 

power scan over one rotation. The following plots show the median filtered signal and the 

difference of the two. The final signal is contained of peaks whose width is equal to or 

less than that of a human at a given distance and this signals allows the filtering of the 

raw data into range bins. The data is then analyzed based on the peak widths for its 

appropriate range bin. 
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Figure 5.2. Block diagram of the median filtering process. 

 



 66

−150 −100 −50 0 50 100 150

−0.4

−0.3

−0.2

−0.1

0

0.1

θ (degrees)

A
m

pl
itu

de
 (V

)

x(n)

 

 

−150 −100 −50 0 50 100 150
−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

θ  (degrees)

A
m

pl
itu

de
 (V

)

y(n)

 

 

−150 −100 −50 0 50 100 150
−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

θ (degrees)

A
m

pl
itu

de
 (V

)

z(n)

 
Figure 5.3. Example of the median filtering process. 
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Table 5.1. Detection range divisions 

 Region 1 Region 2 Region 3 Region 4 
Range (ft) 0-10 10-25 25-35 35-45 

 

Region 1

Region 2

Region 3

Region 4

Robot and
Radiometer

 
 
Figure 5.4. Diagram showing the range divisions for the median filtering process. 

 

The peak width used to detect humans is calculated based on four divisions in the 

effective range of the sensors which are given in Table 5.1. Four filtered signals are 

calculated from each input signal (total power or correlation), each filtered signal specific 

to one region. Figure 5.4 shows a diagram (not to scale) of the range regions. 

 

5.2.2 Range Estimation 

Range is determined in two different methods, one using a simple triangulation 

laser range finder, the second using the intrinsic properties of the angled beams of the Ka-

band total power modes to estimate the range passively. Once the range is determined an 
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x-y map of the area scanned can be produced. Without the range determination the 

detection method would not work as a mobile system. 

Passive Range Estimation 

The range is estimated by measuring the time difference between peaks in the 

total power signals. Knowing the angles of the antenna beams, once a peak is detected in 

the first beam the time until the same peak appears in the second beam can determine the 

range. The method also works beyond the convergence point of the beams by measuring 

the time between the peak appearing on the second beam before the first.  

 

D

R R‘ α

Δr

 
Figure 5.5. Geometry describing the passive range estimation. The circles indicate where the person crosses 
the antenna beams, R is the range vector to the person. 

 

 The geometry in Figure 5.5 shows how the passive range estimation is calculated. 

The range to the person R is found based on the antenna angle α and the separation 

between the peak 2Δr, which is measure in radians. From the law of sines, 
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( ) ( )

' 2 ,
sin 2 sin

R D
rπ α α

=
− Δ +

 (5.5) 

 

or 

 

 ( )
( )

sin 2
' .

2 sin
DR

r
π α

α
−

= ⋅
Δ +

 (5.6) 

 

Since R = R’cos(Δr), 

 

 ( ) ( )
( )

sin 2
cos .

2 sin
DR r

r
π α

α
−

= Δ
Δ +

 (5.7) 

 

The distance Δr can be found by the equation 

 

 12 ,
2

Nr
F

πΔ = ⋅  (5.8) 

 

where N  is the number of data points between the two peaks and F is the number of 

points in the full rotation. 

 The preponderance of peaks present in the total power channels caused an over-

prediction of objects estimated by the passive ranging, as seen in Figures 5.6 and 5.7. In 

Figure 5.6 (a)-(c) a person is present at (10ft, 25ft), (14ft, 25ft), and (18ft, 25ft) 

respectively, and there is clutter present on the left of the graph. The colors indicate the 

number of times an object is detected at each pixel: grey pixels indicate one range 

detection and black pixels indicate two detections. In the actual setting there are fewer 

objects than detected by the passive range estimation. However, the passive range tends 



 70

to cluster range detections at the correct locations. In Figures 5.6 (a)-(c) the clutter 

present on the black pixels on the left of the graph were present in the actual setting, as 

were objects where the grey pixels tend to cluster. Lines can be seen on the bottom left of 

the graph which are comprised of grey pixels and correctly, although somewhat 

inaccurately, represent actual objects. The center line of range detections in the figures 

indicate the location of the platform as it traverses the track and does not indicate an 

object. Figures 5.7 (a)-(c) shows three passive range maps with a person located at (10ft, 

25ft), (14ft, 25ft), and (18ft, 25ft) respectively in a less cluttered environment. The range 

still tends to clutter in the area where the person is located.  
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(caption on following page) 
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(c) 

Figure 5.6. Passive range maps from one setting with a person present at (a) (10ft, 25ft), (b) (14ft, 25ft), 
and (c) (18ft, 25ft). There are objects present on the left side of the graph where the pixels tend to cluster. 
The center line indicates the location of the moving platform as it moves forward. 
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(caption on following page) 
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(c) 

Figure 5.7. Passive range maps from a second, less cluttered setting with a person present at (a) (10ft, 25ft), 
(b) (14ft, 25ft), and (c) (18ft, 25ft). 
 

 

 The over-estimation of objects indicates the inaccuracy of the passive range 

method, however the tendency of the estimation to cluster range detections in the area of 

actual detections indicates that the estimation of range to objects is approximately correct 

in these areas. In the following sections I will discuss that the probability of detection in 

the areas where there are fewer passive range detections tends to be lower since there are 

no peaks present in these areas. Thus when implementing the final x-y map with the 

range, only the areas of greater probability tend to be present. To improve the accuracy of 

the passive range estimation a linear regression estimator could be implemented using the 

active range as the data to approximate. 
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Active Range 

In its current implementation the passive range estimate is not accurate enough on 

its own. As a backup measure a triangulation laser range finder is attached to the platform 

to provide a more accurate range measurement. 

Range determination does not enter into the classification algorithms. The range is 

only used to create the x-y detection map in the final steps. Thus the detection and 

classification algorithms are only dependent on the millimeter-wave sensors, thus making 

the detection method presented here independent of any active sensors. 

 

5.3 TARGET CLASSIFICATION 

5.3.1 Heuristic classification 

Target classification was initially accomplished using a heuristic formulation. In 

this classification method the total power signals are filtered to remove slowly-varying 

background variations, resulting in a series of peaks and troughs in the voltage signal. 

Analyzing one total power channel, each peak is measured for width and height then 

compared to temporally close peaks on the other total power channel. When two peaks 

are temporally close, the difference in width and height are calculated. The same process 

is done using the derivative of each signal. If the differences in peak width, height, and 

location are under certain heuristic thresholds a peak window is defined around the data 

points. This process is referred to as peak correlation in the following discussion and for 

two signals tp1 and tp2 is denoted by PC(tp1, tp2). Within this window the spectral 

correlation power is used to determine whether a detection is present. Figure 5.8 shows 

the peak window PC(Ka,1, Ka,2) formed around a detection at 118.05 s. The peak windows 

formed are as follows: PC(Ka,1, Ka,2), PC(Ka,1, W), PC(Ka,2, W), PC(Ka,1, Ka,1), PC(Ka,2, 
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Ka,2 ), PC(W, W), and PC(Ka,1, Ka,2, W), where Ka,i  refers to the ith Ka-band total power 

channel and W refers to the W-band total power channel. Peak correlation pairs such as 

PC(Ka,1, Ka,1) are effectively the peak autocorrelation of the signal and serves to filter out 

any non-peaks in the data. Including the spectral correlation data, and the three raw total 

power signals (prior to data correlation) the heuristic formulation uses a total of eleven 

sensor signals (not including the laser range-finder or shaft angle encoder) to classify 

detections.  
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Figure 5.8. Peak correlation PC(Ka,1, Ka,2) resulting in a peak window centered at 118.05 sec. 
 

The correlation signal is processed by short-time Fourier transform to convert the 

data into a quantity proportional to the scene brightness temperature. The experiment was 

run as is seen in Figure 5.9, with two people present in the data set on the left graph. Each 

rotation the maximum value of the STFT is taken at each data point and an array is 

created. Following this the arrays are plotted in versus the number of scans, producing a 
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scan map as seen in Figure 5.10, which shows the maximum spectral correlation data per 

angle. While one detection is noticeable, the other is not very noticeable. In addition, 

background objects cause strong signals on the right side of the graph. The peak window 

formed from the total power signals is then applied to the spectral correlation data by 

multiplying the peak window arrays per scan with each array of the spectral correlation 

signal. Applying the peak window has the effect of eliminating the false detections from 

the background objects seen on the right of Figure 5.10, as seen in Figure 5.11. The 

detections from the people are now very present while other responses are nearly 

eliminated. 
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Figure 5.9. Experimental setup. 

 



 77

Degrees off broadside

N
um

be
r 

of
 s

ca
ns

 

 

−150 −100 −50 0 50 100 150
0

5

10

15

20

25

30

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 
Figure 5.10. Scan map of spectral correlation data. 
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Figure 5.11. Scan map of spectral correlation data following the application of the peak window. 
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The detection map is formed by analyzing the output of a laser range finder and 

correlating the peak windows coinciding with the laser hits. Through each rotation 

vectors are formed of equal length containing total power, spectral correlation, laser 

range, and shaft angle data. The laser range vectors contains a series of points whose 

values are equal to the distance seen when the laser registers a detection on its CCD 

array. By incorporating the shaft angle encoder data an x-y grid of the area is formed. The 

vector data points coinciding with each laser hit are correlated with the vector points of 

the peak windowed arrays and each pixel on the x-y grid is summed with the value of 

each peak window at that pixel. Each rotation, pixels corresponding to laser range hits are 

summed with the value of the corresponding peak window. The result of applying this 

process to the map is shown in Figure 5.12; a human is standing at (15, 40) and it can be 

seen that there is a strong detection at this point. 

This process works relatively well in most cases, however it is not without its 

drawbacks. The prominent detriment of the heuristic algorithms is processing overhead, 

running close to 400% slower than real-time, which clearly cannot be implemented in any 

kind of real-world security setting. Moreover, the heuristic approach lacks any 

fundamental statistical formulation in which a reasonable estimate of probabilities of 

detection and false alarm can be quantified. A formulation could be derived however it 

would be time consuming and would likely be specific only to this approach. 
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Figure 5.12. Heuristic detection map showing a detection at (15, 40). 

 

5.3.2 Naïve Bayesian Classification 

To improve the target classification results, a rudimentary Naïve Bayesian 

formulation was developed. This is a simple probabilistic classifier which depends on a 

number of inputs, or features, which are assumed to be independent. While it is typically 

not true that all the features are independent of each, other Naïve Bayesian classifiers 

typically produce better than expected results in real-world situations [39]. 

Given an array of features x the probability of a given data point being above the 

detection threshold (detection) is p(D|x). Using Bayes’ rule yields 
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and the probability of the point being below the threshold (no detection) is 
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Since ( ) ( )| | 1,p D p N+ =x x  
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The features are the correlation signal given by (3.28) and the three total power 

signals given by (3.8), thus x = (cr, Ka,1, Ka,2, W). Under the feature independence 

assumption  
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and thus it is determined that a detection has occurred if  
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Figure 5.13. Probability densities for the total power 1 feature. 
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Figure 5.14. Probability densities for the correlation feature. 
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Table 5.2. Feature probabilities 

Signal Threshold 

cr 40 mV 

Ka,1 17.5 mV 

Ka,2 17.5 mV 

W 10 mV 
 
 

Table 5.3. Feature probabilities 

Signal Pd Pfa 

cr 0.985 0.107 

Ka,1 0.856 0.085 

Ka,2 0.919 0.101 

W 0.834 0.035 

 

The prior probabilities p(D) and p(N) = 1 − p(D) cannot be accurately defined 

since they are highly dependent on the situation in which the system is being used. As 

such it is assumed that each outcome is equally likely to occur for the general case; that 

is, p(D) = p(N) = 0.5. 

The feature probabilities were experimentally determined using only threshold 

detection as a factor; the probability densities from the noise and the signal plus the noise 

are seen in Figures 5.13 and 5.14 for the total power 1 and correlation signals, 

respectively. The voltage thresholds for each signal are shown in Table 5.2 and the 

resulting probabilities of detection and false alarm shown in Table 5.3. 
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Similar to the heuristic formulation, a vector is formed containing the probability 

of detection determined by (5.15) for each point in every rotation. Laser range data is 

correlated to these probabilities and an x-y map is formed. Each rotation, pixels 

corresponding to laser range hits have added to their values the probability determined by 

(5.15), as seen in Figure 5.15.  

The detection map resulting from the rudimentary Naïve Bayesian classifier is 

clearly comparable to the heuristic formulation depicted in Figure 5.12. In addition, the 

processing time of this implementation of the Naïve Bayesian classifier runs on average 

at nearly 15% faster than the experimental time, which is an improvement over the 

heuristic formulation and can be applied to real-world situations. Another benefit of the 

Bayesian approach that has been seen in experimental outcomes is improved range; the 

heuristic approach was limited by a maximum range of about 25 ft whereas the current 

Bayesian formulation detects out to approximately 35 ft.  
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Figure 5.15. Detection map using rudimentary Naïve Bayesian classifier. 
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It should be noted that the Naïve Bayesian formulation described above uses only 

the three individual total power signals and the correlation signal as features whereas the 

heuristic approach used a total of eleven features as noted previously. Thus the Bayesian 

formulation achieves better results than the heuristic approach using close to 20% of the 

processing time and less than a third of the number of features. 

An alternate Naïve Bayesian formulation uses the natural logarithm ratio of 

p(x|D) and p(x|N) which is called the log-likelihood ratio or Bayes factor to classify 

feature vector and is termed the Bayes factor formulation. Taking the ratio of (5.9) and 

(5.10) and using Bayes’ rule yields 
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Taking the logarithm of these ratios gives 
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The data associated with the feature array is considered a detection if  
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Figure 5.16. Detection map using log-likelihood Naïve Bayesian formulation. 
 

 

The Bayes factor formulation includes the added benefit of classifying every data 

point where a laser range hit occurs, which has the effect of reducing the detection of 

non-humans. The detection map is initialized as a matrix of zeros and as the algorithm 

runs pixel values are increased or decreased based on the log-likelihood ratio. Thus laser 

hits that occur on low probability objects have a lower log-likelihood ratio than areas 

where no determination has been made. In general this has the effect of improving the 

signal-to-noise ratio of the final map. Figure 5.16 shows the data from Figure 5.15 run 

through the log-likelihood Naïve Bayesian classifier. 

The Bayes factor formulation has an inherent drawback in its classification of 

non-humans with a low probability of detection. Namely, if a human is present at a large 

distance, the peaks may not be greater than the threshold. Thus if a person is correctly 
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detected at close ranges, as the platform passes and the person becomes farther away, the 

classifier may begin to add negative probabilities to the pixels where the person is 

located. A method of correcting this is to classify detections with a sliding time window 

of rotations. Thus the indication to alarm the user of the system would be time-dependent. 

However, in the current formulation such a method is not implemented and detections are 

determined on the basis of the entire experiment.  

 

5.4 ENVIRONMENTAL DEPENDENCIES AND TEMPERATURE CALIBRATION 

To develop a dependable statistical classifier I needed to determine what 

dependence the detection method had on different environmental backgrounds. If the 

statistical distributions of the true positive signals were significantly different in different 

environments the system would either have to include separate variables in the classifier 

for each environment, or the system would have to be calibrated to eliminate the 

statistical difference. This section shows that the signals can be calibrated in order to 

remove any environmental dependencies and thus eliminate the need for different 

algorithms in separate environments. 

Experiments were conducted in three different environments, each containing a 

different amount of viewed scenes containing vegetation, man-made materials (concrete, 

treated wood, metal), and areas of mostly open range giving a mix of radiation from sky 

reflections, scattering, and thermal radiation. Each scene is show in Figure 5.17. Scene 1 

is comprised of approximately 70% man-made, 20% open areas, and 10% vegetation 

(grass). Scene 2 is approximately 80% open area, 10% man-made, and 10% vegetation. 

Scene 3 is approximately 85% vegetation and 7% each man-made and open areas. 
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Scene 1 

 

 
Scene 2 

 

 
Scene 3 

Figure 5.17. Scenes used for determination of environmental dependencies.  

 

The experiments consisted of the radiometer rotating atop the stationary platform 

with one person being detected at varying distances. The true positive signal distributions 

were calculated and compared between the environments using Kolmogorov-Smirnov 

tests. The Kolmogorov – Smirnov test is a statistical measure of the difference between 

two distributions. For each data set of N values yi the empirical distribution function is 

formed, defined by 
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The Kolmogorov – Smirnov (K-S) statistic is a measure of the maximum difference 

between the two distributions, given by [40] 
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The significance level of an observed value of D is given by [41] 

 
 ( ) ( )Probability observed 0.12 0.11 ,KS e eD Q N N D⎡ ⎤> = + +⎣ ⎦  (5.21) 

 

where the function QKS is given by  
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It should be noted that (5.21) is an approximation, although it is reasonably accurate for 

values of Ne ≥ 4. A typical value for N1,2 for my system is 1000, resulting in Ne = 500, and 

thus the approximation is accurate. 

The signals compared are the Ka-band total power and correlation signals and the 

W-band total power signal. In addition to the raw signals the absolute value of all three 

total power signals are also compared. The absolute value signals are analyzed to 

determine if they provide better probabilities of detection than the normal signals. 

The K-S test was conducted with a significance level of α = 0.05 or 5%. A K-S 

statistic measuring below α denotes a statistically significant difference in the 

distributions. The K-S matrices of the results from the raw data are shown in Figure 5.18. 

The matrices are thresholded by the significance level; a K-S result above α is set to 1 

(black squares) and below α is set to 0 (white squares). It can be seen that the correlation 
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signal (CR) retains similar distributions between scenes, while all other signals show 

significant differences. Only TP1 shows some similarity between scenes 2 and 3, 

although not between 1 and 2 or 1 and 3. The reason the correlation signals produce 

similar distributions from scene to scene is that the correlation signal inherently filters out 

any DC voltage in the signal. However, the total power signals do not and thus a signal 

from one scene can have a higher offset than another scene, giving the distributions 

different means. Figure 5.19 shows the same data with the mean removed from each 

signal; no signals show significant differences in their distributions. Thus if the mean of 

the signal can be removed the environmental dependence can be eliminated from the 

processing algorithm. 

 

 
Figure 5.18. K-S matrices. The matrices are thresholded at α; a result above α is set to 1 (black), a result 
below is set to zero (white). The total power signals (tp1, |tp1|, etc…) show significant differences in their 
probability distributions from scene to scene while the correlation signal (cr) does not show a significant 
difference. 

 

 
Figure 5.19. K-S matrices with the signal means removed. With the mean removed there is no significant 
difference in the signal distributions. 
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Removal of the signal mean on the total power signals can be accomplished by 

calibrating the receivers to absolute temperature. The probability densities of the response 

of a human will then have consistent mean from environment to environment. 

Calibration of a total power receiver can be done in many ways. The simplest 

form of calibration is to view a source with known flux density and calibrate all resulting 

flux densities to this value [42]. However, the gain of the microwave low-noise 

amplifiers will drift over time, giving incorrect values of temperature or flux density [12, 

15]. The calibration can then be repeated, but constant calibration with a known source is 

not always a viable option. A more reliable solution was introduced by Dicke [43] where 

a microwave switch is introduced behind the antenna which switches continually between 

the antenna and a calibrated noise source. This can reliably calibrate the temperature, but 

results in reduced radiometric sensitivity [12, 16, 43]. Another effective method of 

calibration involves characterizing the gain drift as a function of component temperature 

[27] however this method requires all the components of the receiver chain to be tied to a 

common heat sink. 

Because of the difficulty involved in altering the radiometer hardware in order to 

introduce a microwave switch or temperature characterization, I implemented a 

calibration source to demonstrate the effect of calibrating the total power channels. The 

calibration was only tested on one total power channel in order to prove that the mean 

could be removed, and thus give K-S test results which show no significant differences. 
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(a) 

 
(b) 

 
Figure 5.20. (a) Simulated total power signals from two difference scenes prior to calibration. The negative 
peak at t = 0.25 s is the calibration source, the small peak at t = 0.75 s is a simulated response to a human. 
The other peaks are simulated background structures. (b) Simulated total power signals after calibration. 

 

The calibration source consisted of a sky reflector placed at the back of the 

platform. The reflector was a 94 cm × 11 cm strip of aluminum placed at 45° to direct 
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radiation from the sky towards the antennas. The width of the strip was chosen to be 

slightly greater than β of the Ka-band antennas so as to direct enough of the sky reflection 

to the antenna without occluding too much of the background scene. As the radiometer 

rotates the antennas view the calibration source once per rotation at -180°. Figure 5.20(a) 

shows two simulated total power signals with different offsets. The negative peak at t = 

0.25 s is the calibration source, the small peak at t = 0.75 s is a simulated response to a 

human. The other peaks are different, simulated background structures, one in each 

scene. The observed brightness temperature of the sky at 27 GHz  varies from 15 to 30 K 

depending on whether conditions are dry, moderate, or humid, but can be accurately 

specified based on the conditions [44], thus the sky reflection will produce a total power 

response with a much lower apparent brightness temperature than any other objects in a 

natural scene. This lowest point per rotation in the signal is then set to a specified value; 

the sky temperature if the conditions are known, or in this case, the low point is set to 

zero volts. The resulting voltage signals are shown in Figure 5.20(b). The simulated 

human response normalizes to a constant temperature between the scenes. 

The probability density functions of the two full signals still have different 

statistical means (see Figure 5.21(a)) and thus the K-S test will results in a significant 

difference. However, the signals resulting from only the human responses are now 

normalized and their statistical means are similar (see Figure 5.21(b)). Thus the K-S tests 

will show no significant difference in the distributions, resulting in the K-S matrices seen 

in Figure 5.19. 

 



 93

 
(a) 

 
 

 
(b) 

Figure 5.21. (a) PDF of the full signals in Figure 5.20(a). (b) PDF of only the human response. 

 

To demonstrate this procedure experimentally, the total power signals were 

measure in scenes 1 and 2 with the calibration sky reflector in place. Scene 3 was not 

included because overhead vegetation from tree limbs occluded the sky. However, as the 
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point is to show that the signal means can be normalized by temperature calibration, 

demonstration between the two scenes was considered adequate. Following the 

calibration process the calculation of the statistical means of the human responses over 

the range of 1.8 to 12.2 m resulted in 

 
 1 0.869 Vμ =  (5.24) 
 2 0.870 Vμ =  (5.25) 

 

or a difference of 0.004 or 0.5%. The probability density functions of the calibrated 

signals due to the humans are shown in Figure 5.22. Running a K-S test on the signals 

results in a value of p = 0.358, which is well above the significance level of 0.05, 

indicating that the distributions show no significant difference. Thus the calibration 

successfully removed the environmental bias. 

 

0.84 0.85 0.86 0.87 0.88 0.89 0.90 0.91

Scene 1
Scene 2

 
Figure 5.22. Measured PDFs of temperature calibrated signals due to human responses. 
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The method of temperature calibration presented here showed that the detection 

method may be used independent of the operating environment. However, the 

implementation of the temperature calibration is not very practical. The prominent 

drawback is the loss of coverage over a non-trivial portion of the viewed scene. Also, the 

frequency with which the signals are calibrated is not as accurate as it might need to be in 

other applications. Typical Dicke radiometer setups require the system to switch to the 

calibration temperature at a rate twice as fast as the integration time of the baseband 

amplifier [16]. While this is not impractical, it would require a high-speed waveguide 

switch at the antenna output and would result in lower radiometric sensitivity. 
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Chapter 6:  Experimental Results and Performance Evaluation 

 

The performance of the detection method using the Naïve Bayesian classifier is 

analyzed in this chapter. The experimental validation set is discussed and some 

intermediate results are shown. I follow by discussing the metrics used to evaluate the 

classifier and how they are affected by the balance of positive and negative instances in 

the data set. 

 

6.1 EXPERIMENTAL SETUP 

The evaluation data set consisted of sixteen different experiments in environment 

1 of Figure 5.17. The results of the temperature calibration allowed me to conduct the 

evaluation sets in any location and environment 1 was chosen because of the diversity in 

the radiometric background. Each experiment consisted of approximately 30 rotations, 

resulting in ~500 rotations with which to evaluate the performance of the detection 

method. Each rotation produces ~1000 data points on each of the four sensors. 

The experiments consisted of one person standing at varying distances from the 

path of the moving platform, from a closest approach of 4 ft to a closest approach of 18 

ft. Note that the closest approach is not indicative of the maximum range of the sensor 

and is only the minimum distance that the person is from the platform. The platform 

moved at ~1 m·s-1 and the rotation rate of the platform was ~2π rad·s-1. Two different 

locations within environment 1 were used, each providing a different direct backdrop to 

the person. Figure 6.1 shows an overhead diagram of the experimental setup. 
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Background
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4-18ft

 
 
Figure 6.1. Experimental setup for the validation data tests. 

 

6.2 INTERMEDIATE EXPERIMENTAL RESULTS 

The raw data result of total power 1 is shown in Figure 6.2. The scan map is 

formed by plotting the sensor output per rotation as a function of rotation angle. The 

tracks on either side of the map represent objects as they pass the platform. The faint 

track seen at 80˚ and 12-15 rotations is the response from the person. In its raw unfiltered 

form the total power response from the person can be difficult to detect. The following 

figures show the total power scan map as it is filtered by range using the median filters. 

Figures 6.3 through 6.6 show the total power scan maps resulting from median filtering 

the total power signal for regions 1 through 4, respectively. The total power signals are 

analyzed per rotation in the detection and classification algorithms, but I present the 

results as maps representing the entire experiments in order to better elucidate the 

processes.  
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Figure 6.2. Total power 1 scan map of raw data. 
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Figure 6.3. Total power 1 scan map after median filtering in range region 1. 
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Figure 6.4 Total power 1 scan map after median filtering in range region 2. 
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Figure 6.5 Total power 1 scan map after median filtering in range region 3 
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Figure 6.6Total power 1 scan map after median filtering in range region 4 

 

All four signals are then processed in the Naïve Bayesian classifier and a 

probability of detection is calculated for each point. Figures 6.7 though 6.10 show the 

results of thresholding the individual total power 1 signal. The black areas denote where 

the signal level is greater than or equal to the detection threshold for the individual signal. 

It can be seen that the response from the person is consistently prominent through the 

median filtering process over the four regions. However, there are also a number of other 

tracks seen on either side of the graph. These tracks represent objects or regions which 

are moving slowly compared to the platform, as their angle changes slowly per rotation. 

This means that the objects or regions producing these responses are very distant from the 

sensors and will be filtered out in the creation of the x-y detection map. Because each 

sensor sees these distant objects at different angles (due to the angle of the antennas), the 

probability of detection from the combines sensors will help to remove these responses. 
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Figure 6.7. Thresholded total power 1 signal in region 1. 
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Figure 6.8. Thresholded total power 1 signal in region 2. 
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Figure 6.9. Thresholded total power 1 signal in region 3. 
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Figure 6.10. Thresholded total power 1 signal in region 4. 
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Figure 6.11. Thresholded total power 2 signal in region 1. 
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Figure 6.12. Thresholded total power 3 signal in region 1. 
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Figure 6.13. Raw spectral correlation signal. 
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Figure 6.14. Thresholded spectral correlation signal in region 1. 

 



 105

The individual probability of detection scan maps for total power 2 and total 

power 3 are shown in Figures 6.11 and 6.12 for region 1. Figure 6. 13 shows the raw 

spectral correlation signal scan map. It can be seen that there is a prominent response 

from the person on the right side of the graph. Figure 6.14 shows the detection scan map 

resulting from thresholding the spectral correlation signal. 

The full detection probability scan maps resulting from all four signals in the four 

different regions are shown in Figures 6.15 though 6.18. The response from the human is 

still present but diminishes as the range region increases. However, many of the distant 

false detections are also reduced. While some still remain, most will be removed during 

the range determination process, by either the passive or active ranging. 
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Figure 6.15. Detection probability in region 1. 
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Figure 6.16. Detection probability in region 2. 
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Figure 6.17. Detection probability in region 3. 
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Figure 6.18. Thresholded spectral correlation signal in region 4. 
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Figure 6.19. Combined detection probability for the entire experiment. 
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The final detection map is formed by correlating the passive or active range to the 

detection probability. The range and angle information allows the creation of the x-y map. 

The detection map resulting from correlating the detection probability scan map (Figure 

6.19) with the active range is shown in Figure 6.20. The detection map using the passive 

range is shown in Figure 6.21. The passive range shows considerable error in the range 

estimation, although the range estimates tend to cluster in the areas where objects are 

present. The active range can be viewed as a more accurate measure of present objects, 

although not all objects reflect the laser light enough to register a detection, and can be 

used as a measure of the accuracy of the passive range. The detection map from the 

combined active and passive range is shown in Figure 6.22. The final detection map is 

formed by thresholding the probability of detection at the chosen cutoff level and is 

shown in Figure 6.23 for a cutoff level of 0.5. Thus detection with a confidence level 

greater than or equal to 0.5 is classified as a detection. 
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Figure 6.20. Detection map from active range. 
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Figure 6.21. Detection map from passive range. 
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Figure 6.22. Detection map from combined active and passive range. 
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Figure 6.23. Final detection map with thresholded detection confidence. 

 

6.3 CLASSIFIER PERFORMANCE METRICS 

To focus on the capabilities of the passive sensor alone, the performance was 

analyzed by using the resulting passive detection maps. Final results are also shown using 

the total detection map, which uses both the passive and active ranging, for completeness.  

 

6.3.1 Confusion Matrix and Typical Performance Metrics 

When defining measures of the performance of a classifier, researchers often use 

the confusion matrix, shown in Table 6.1. The positive case is typically the case of 

interest in the classification; here the positive case is the classification of a human. The 

negative case is the classification of non-humans. The confusion matrix shows the 

number of true positives (TP), which are correctly predicted positive instances; false 
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negatives (FN), which are positive instances incorrectly classified as negative; false 

positives (FP), which are negative instances incorrectly classified as positive; and true 

negatives (TN), which are correctly classified negative instances. 

To evaluate the performance of the Naïve Bayesian classifier I employ a number 

of widely used metrics. A commonly used metric which is derived from the confusion 

matrix is the accuracy, given by 

 

 .TP TNAC
TP TN FP FN

+
=

+ + +
 (6.1) 

 

The accuracy provides a good measure of the classifier providing that the data sets are 

appropriately balanced; that is, the number of positive instances must be on the order of 

the number of negative instances. 

The true positive rate (TPR) is a measure of how well the classifier identifies the 

positive case and is alternatively called the sensitivity or recall rate. It is defined by 

 

 .TPTPR
TP FN

=
+

 (6.2) 

 

A TPR of 1 indicates that the classifier correctly classifies all positive instances. Note 

that this metric does not indicate how well the classifier identifies other cases. 

 
Table 6.1. Confusion Matrix 

  Predicted 
  Positive Negative

Positive TP FN Actual Negative FP TN 
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 The true negative rate (TNR) is defined as 

 

 ,TNTNR
TN FP

=
+

 (6.3) 

 

and is alternatively referred as the specificity. The TNR indicates how well the classifier 

correctly identifies negative instances. Other similar metrics are the false positive rate 

and the false negative rate, given by 

 

 ,FPFPR
TN FP

=
+

 (6.4) 

 .FNFNR
TP FN

=
+

 (6.5) 

 

The FPR is important is measuring how well the classifier rejects nuisance alarms and is 

important in applications such as security monitoring.  

 
Table 6.2. Example Confusion Matrix 

  Predicted 
  Positive Negative

Positive 115 250 Actual Negative 250 10550 

 

6.3.2 Imbalanced Data Sets 

 When one of the classes in a binary classification problem constitutes a small 

minority of the entire data set the classification problem is called imbalanced. There are 

many practical situations where such a classification arises, including the detection of 

rare diseases and information retrieval. In such a case the accuracy no longer provides a 
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good representation of how well the classifier works. For instance, take the confusion 

matrix of Table 6.2. This confusion matrix has a percent minority of  

 

 

%

115 250
115 10550 250 250

3.26%.

TP FNM
TP TN FP FN

+
=

+ + +

+
=

+ + +

=

 (6.6) 

 

A data set is typically considered imbalanced if the percent minority is below 10%. The 

accuracy of the classifier represented by the confusion matrix is 

 

 115 10550 0.9552.
115 10550 250 250

AC +
= =

+ + +
 (6.7) 

 

This indicates that the classifier is correct 95% of the time, however it can bee seen that 

of the 365 total positive cases (TP + FN) the classifier correctly classified only 115 

instances, or 32% of the time. Thus for imbalanced data sets the accuracy measure is 

typically not useful. 

 In some cases the imbalanced stat problem is approached by altering the number 

of instances in the training data set. Techniques used are oversampling the minority case, 

undersampling the majority case, or both [45]. Oversampling the minority case involves 

techniques such as replication of the minority instances or creation of synthetic minority 

instances. Introducing additional positive cases into the training set by methods such as 

replication does not change the amount of information provided, but changes the weight 

applied to the minority data instances. Likewise, undersampling of the majority cases 
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involves removal of majority instances and has the effect of decreasing the weight 

applied to the majority case. In either method, the goal is to approach normalization of 

the number of instances of both the minority and majority cases. 

 

6.3.3 Performance Measures for Imbalanced Data Sets 

The percent minority of the data set for the detection method presented in this 

dissertation was 5.73%. The minority case is the positive case, which is the detection of a 

human while the majority case is the negative case which is the detection of anything 

other than a human. Because a human comprises only a small fraction of the detected 

data points in the detection map, the number of positive cases is very small.  

Instead of altering the training set by undersampling the majority case or 

oversampling the minority case, I used a metric that is typically used to evaluate binary 

classifiers under an imbalanced data set, the Fα-measure [45, 46], defined by 

 

 ( )1
.

P TPR
F

P TPRα

α
α
+ ×

=
×

 (6.8) 

 

where P is the precision, or positive predictive value, which is a measure of the predicted 

positives which are true positives and is defined by 

 

 .TPP
TP FP

=
+

 (6.9) 

 

The Fα-measure is the harmonic mean of the precision and the recall (true positive rate) 

and is has been used in the information retrieval area. The F1-measure equally weights 

the precision and recall by setting α=1, resulting in 
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 1
2 .P TPRF
P TPR
×

=
+

 (6.10) 

 

Other commonly used values are α=2, which weights the recall twice as much as the 

precision, and α=0.5, which weights the precision twice as much as the recall. I will use 

the F1 metric in this dissertation. 

 

6.3.4 Receiver Operating Characteristic 

In practice it is necessary to evaluate the TPR and FPR for a sensor that will be 

deployed in an environment such as a security setting. For a binary classifier a graphical 

representation of the tradeoff between TPR (sensitivity) and the FPR (1–specificity) can 

be created which is called the receiver operating characteristic or ROC curve. Initially 

created to evaluate the performance of radars, the ROC curve is now used in numerous 

applications where binary classification is used; often the ROC curve is used to evaluate 

the performance of medical tests for diseases. 

In the final data set a cutoff value is set where any value above the cutoff is 

classified in the positive class and anything below is classified in the negative class. By 

varying the cutoff the ROC curve is calculated. At a cutoff of 0, the classifier will classify 

every instance in the positive class, resulting in a TPR=1, since all positive instances are 

correctly classified; but this also classifies all negative instances in the positive class, 

resulting in FPR=1. At the other end of the curve, the cutoff is set to is maximum value 

(normalized to 1), resulting in FPR=0, but also TPR=0 since all instances are classified as 

negative. ROC curves are often plotted against a random guess classifier which has an 
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equal probability of classifying an instance as positive or negative. Anything performing 

equal to or worse than the random guess is typically considered useless as a classifier. 

A commonly used metric to evaluate a classifier based on its ROC curve is 

calculating the area under the curve (AUC). A perfect classifier will have AUC=1, while 

if the classifier is no better than a random guess it will have AUC=0.5. 

 

6.4 PERFORMANCE EVALUATION 

The probability detection maps from the validation data set were analyzed by 

altering the threshold cutoff for determining the classification of instances. With prior 

knowledge of the position of the person in the experiment the positive instances were 

differentiated from the negative instances. The probability maps are normalized, and thus 

the cutoff value was varied from 0 to 1 in increments of 0.1. Tables 6.3-6.7 show the 

confusion matrix for the detection maps for cutoff values ranging from 0.3-0.7.  

 
Table 6.3. Confusion Matrix: Cutoff = 0.3 

  Predicted 
  Positive Negative

Positive 132 11 Actual Negative 278 2076 
 

Table 6.4. Confusion Matrix: Cutoff = 0.4 

  Predicted 
  Positive Negative

Positive 125 18 Actual Negative 186 2168 
 

Table 6.5. Confusion Matrix: Cutoff = 0.5 

  Predicted 
  Positive Negative

Positive 116 27 Actual Negative 80 2274 
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Table 6.6. Confusion Matrix: Cutoff = 0.6 

  Predicted 
  Positive Negative

Positive 89 54 Actual Negative 51 2303 
 

Table 6.7. Confusion Matrix: Cutoff = 0.7 

  Predicted 
  Positive Negative

Positive 75 68 Actual Negative 32 2322 

 

The confusion matrices are used to compute the precision and the true positive 

rate and in turn compute F1. I use F1 to measure the performance of the classifier while 

TPR and FPR are used to measure the practical performance of the system. Figure 6.24 

shows F1 plotted against the cutoff number. The performance peaks at a cutoff rate of 0.5 

and thus I use this as the operating point for the classifier. The peak value is F1,0.5 = 

0.6844. 

The receiver operating curve is shown in Figure 6.25 for all 11 cutoff values using 

only the passive ranging to develop the detection map. The Naïve Bayesian classifier of 

this dissertation reasonable performance compared to a random guess; the area under the 

ROC curve was calculated as 

 
 0.9392.passiveAUC =  (6.11) 

 

However, at 90% detection probability the false positive rate is nearly 20%. This is not 

good enough for a system to be deployed directly to an application environment. 

However, the results are promising considering the novel aspects of the detection method. 
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In the concluding chapter of this dissertation I discuss possible improvements that may 

increase the effectiveness of this detection method. 

 Figure 6.26 shows the ROC curve from the detection maps when including the 

active ranging component. It can be seen that at a detection probability of 90% the false 

positive rate is improved two-fold to about 10%. The area under the curve is 

 
 0.9753.AUC =  (6.12) 
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Figure 6.24. F1 plotted against the cutoff level. 
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Figure 6.25. Receiver operating characteristic for the passive ranging method. 
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Figure 6.26. Receiver operating characteristic including the active ranging. 
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The F1 value at the 0.5 cutoff is reasonable, at about 0.7. F1 is the harmonic mean 

of the recall and the precision and it is the precision which brings the value down. The 

recall is approximately 0.8. The F1 value indicates that the classifier could be more robust 

in eliminating false positives, which would bring the precision value up. However, with 

F1 ≈ 0.7 the classifier cannot be considered useless by any means, and indeed due to the 

novel nature of the detection method being employed the metric indicates that the method 

shows promise. 

The AUC values of the ROC curves indicate that the detection method actually 

performs very well compared to a random-guess classifier. For site security monitoring 

purposes, however, the false alarm rates of 10-20% are too high. Again, the number of 

false positives needs to be reduced to improve the performance. To achieve this, the 

passive estimation needs to be improved. This could be done be developing a linear 

estimator and using the active range to calibrate estimator. 

 

6.5 OTHER PERFORMANCE METRICS 

I use F1 and the ROC curve as the main performance measures of the detection 

method presented in this dissertation. However, I also investigated a number of other 

performance metrics, many of which are useful for evaluating classifiers under 

imbalanced data sets. I present these metrics and their results for a more complete view of 

the classifier, although I maintain the previous metrics as the main performance 

evaluators. 

The FNR can be used to calculate the power of the classifier which is the 

probability that the test will not make a Type II error. The power is given by 
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 1 .p FNR= −  (6.13) 

 

One typical metric measures the geometric mean between TPR and TNR. I refer to this as 

g-mean1 and it is defined by 

 
 1 .g mean TPR TNR− = ×  (6.14) 

 

This metric has been used to measure other imbalanced data sets, such as the detection of 

oil slicks on the ocean surface from satellite radar images in [47], where the percent 

minority was 4.4%. The g-mean1 metric is independent of the distribution of the cases, 

and thus maintains its effectiveness in cases where the training set distribution differs 

from the validation set. 

A similar metric used is called g-mean2 and calculates the geometric mean 

between TPR and P and is defined by 

 
 2 .g mean TPR P− = ×  (6.15) 

 

Both g-mean1 and g-mean2 achieve the goal of producing a single quantity which is 

typically used in the comparison of multiple classifiers. Because this dissertation does not 

compare classifiers I present the results from multiple metrics to measure the 

effectiveness of the Naïve Bayesian classifier in the context of human presence detection. 

Finally, I used the weighted accuracy, defined by [45] 

 
 ( )1 .W TPR TNRβ β= + −  (6.16) 
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This metric is typically used to measure classifiers under imbalanced data sets when it is 

important have high accuracy in predicting the minority case and have only decent 

accuracy in the prediction of the majority case. The weight β can be adjusted to increase 

(or decrease) the weight on TPR, which places more (less) emphasis on predicting the 

minority class. For this dissertation I weight TPR and TNR equally by setting β=0.5. 

The confusion matrices are used to calculate the metrics described in the previous 

sections. The metrics are analyzed for the five cutoff values shown in the above tables 

with the results shown in Table 6.8. Aside from the TPR and FPR, which improve with 

decreasing cutoff independent of the classifier, and TNR and FNR, which improve with 

increasing cutoff independent of the classifier, the best values for each metric are 

presented in bold. The accuracy AC has better performance as the cutoff increases due to 

the imbalanced data set: TN increases with increasing cutoff and is a majority case, thus 

as the cutoff rises, TN increases, pushing AC closer to 1. As mentioned earlier, this is not 

a particularly useful metric for imbalanced data sets and the results here demonstrate 

why.  

The precision also benefits from increasing cutoff. However, P only takes into 

account TP and FP, and as can be seen in the confusion matrices, FN increases with each 

increasing cutoff as well. The power p decreases with increasing cutoff, indicating that 

the classifier becomes more likely to make a Type II error. As the cutoff rises, g-mean1 

decreases, indicating worsening performance. This is the same for W as well.  

The metrics g-mean2 and F1 both show a peak in performance at the 0.5 cutoff 

level. Because these two metrics are the geometric and harmonic means, respectively, of 

the precision and the recall, these metrics provide more insight into the performance of a 

classifier under an imbalanced data set.  
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Table 6.8. Other Performance Metrics 

  Cutoff Value 

  0.3 0.4 0.5 0.6 0.7 

TPR (6.2) 0.9231 0.8741 0.8112 0.6224 0.5245 

TNR (6.3) 0.8819 0.9210 0.9660 0.9783 0.9864 

FPR (6.4) 0.1181 0.0790 0.0340 0.0217 0.0136 

FNR (6.5) 0.0769 0.1259 0.1888 0.3776 0.4755 

AC (6.1) 0.8843 0.9183 0.9572 0.9580 0.9600 

P (6.9)  0.3220 0.4019 0.5918 0.6357 0.7010 

p (6.13) 0.9231 0.8741 0.8112 0.6224 0.5245 

g-mean1 (6.14) 0.9023 0.8973 0.8852 0.7803 0.7193 

g-mean2 (6.15) 0.5452 0.5927 0.6929 0.6290 0.6063 

F1 (6.10) 0.4774 0.5507 0.6844 0.6290 0.6000 

Metric 

W (6.16) 0.9025 0.8976 0.8886 0.8003 0.7554 

 

Looking closer at Table 6.8, it can be seen that while g-mean1 and W demonstrate 

better performance at lower cutoffs, the values of both metrics at cutoff of 0.3 and 0.5 are 

very close. g-mean1 at 0.5 is only 1.7% lower than at 0.3 and W at 0.5 is only 1.4% 

lower. Also, at 0.6, both metrics show a decrease of nearly 10%, indicating a precipitous 

drop-off beyond 0.5. While the power p at 0.5 is 11.2% lower than at 0.3, its value 

decreases 18.9% at 0.6, another dramatic decrease. Thus, while the metrics p, g-mean1, 

and W show better performance at lower cutoffs, the performance at 0.5 is very close to 

their best values. Because g-mean2, and F1 show the best performance at 0.5, and because 
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p, g-mean1, and W have dramatic drop-offs in performance beyond 0.5, it is reasonable to 

set the cutoff to 0.5.  
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Chapter 7: Conclusions 

 

7.1 CONTRIBUTIONS AND FINDINGS 

The novel use of the correlation radiometer for close-range detection presented in 

this dissertation represents a significant contribution to the field and can be applied to 

many other areas where the detection of close-range self-luminous objects is required. 

Specifically, the detection method using millimeter-wave radiometers was tailored to the 

detection of stationary humans in daytime, outdoor environments, which is a problem in 

intruder detection and security monitoring that previously had no consistent solution. 

Both the total power and correlation radiometers have a low data rate, which is 

significant for object detection. Some methods focus on object detection in images which 

requires a much larger amount of data. Because radiometer sensor outputs are simple 

voltage signals the processing unit can have more overhead free for computing complex 

detection and classification algorithms. 

In applying the theory of correlation interferometry to the close-range required for 

human presence detection, a number of modifications were made which may be applied 

for similar situations of close-range detection. The sensitivity in the millimeter-wave 

region in outdoor environments was derived, showing that the theory developed for radio 

astronomy and remote sensing was feasible in such an environment. The derivation of the 

dwell time for the correlation radiometer with angled antennas provides a necessary 

framework for determining the radiometric resolution of a system with angled antennas. 

The phase of the incoming radiation was analyzed in the context of the far-field 

approximation when the antennas are angled and it was shown that if, the antenna beams 
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are narrow enough, the phase of the incoming radiation does not deviate significantly 

from the plane-wave approximation. 

Because the radiometer sensors are passive, no range information is readily 

available. To begin solving this problem I presented a method of range determination 

using the two total power receivers whose antennas were separated by a certain baseline. 

The method proved to be useful, however somewhat inaccurate. Thus it provides a 

framework for developing a method which can estimate the range more accurately. 

The use of total power and correlation radiometers for the detection of human 

presence has never been attempted in this context, thus there were no models of the 

sensor responses as they viewed a human. I analyzed some aspects of the responses, 

using the distributions to develop a statistical classifier to discriminate between humans 

and non-humans. The naïve Bayesian classifier developed is a simple probabilistic 

classifier which was computationally inexpensive and allows for additional features due 

to its simple implementation. The classifier performed well in the F1 metric showing 

reasonable classification capabilities. To achieve a reasonable TPR rate of 90% the FPR 

was 20% using only the passive sensor for range estimation, or 10% using the active 

ranging laser. Both measures indicate a sensor which is not viable for immediate 

deployment in practical situations such as site security monitoring where nuisance alarms 

would be too high. However, the scientific viability of the detection method is sound and 

improvement of the range estimation and classifier performance would help reduce the 

FPR. 

 

7.2 FUTURE WORK 

The most notable drawback of the detection method is its limited range. 

Increasing the range is a difficult problem because of the passive nature of the sensors, 
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however, a number of options are possible. If the antenna beamwidth were decreased the 

sensors would be able to resolve a human out to resolve a human out to longer distances, 

as the background temperature would not be averaged with that of the human when the 

person is unresolved. If the frequency were increased the radiation from the human would 

be stronger, as the blackbody curve increase with frequency until the infrared region. The 

drawback of increasing the frequency comes in the transmission of the radiation through 

the human’s clothes and through the air. As the frequency increases more radiation is 

attenuated through the lossy clothing material, and particles in the air introduce more 

attenuation as the wavelength becomes closer to that of particles in the air such as water 

droplets, dust, and smoke. 

The human model used to derive the intrinsic radiation in the millimeter-wave 

region was overly simplistic and provided only an approximation of the radiation 

produced. This approximate model gave enough information to develop the practical 

aspects of the sensor hardware however a more complete model of the human could 

provide further insight into improvements in the sensor. A more complete model could 

make use of limb darkening in the calculation of the radiation. Limb darkening is the 

decreasing radiance from the center of an object to its edges. For instance, the radiance 

seen from the center of the human torso is that calculated in Chapter 2; the radiance seen 

from the person’s side (as viewed from the front) would be less since the skin is optically 

thin and there is no tissue seen under the skin when viewing the edges. While making use 

of this and would likely reduce the approximate radiation generated, and I justify its 

absence by pointing out that the main focus of Chapter 2 was to derive an approximate 

value of the maximum radiation seen from a human. 

The passive range estimate proved to be marginally accurate at best because of 

the preponderance of false objects detected. Improvement of this could be made by using 
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a linear regression with the active ranging as the regressor to train the passive ranging. If 

the passive range estimation were improved to the point where the active ranging was no 

longer needed the detection method could rely solely on the passive sensors, and would 

likely improve the FPR. Doing so would put the system closer to being a deployable 

system in settings where nuisance alarms need to be minimized. 

The receiver hardware itself could be improved or modified in numerous ways. At 

the front end, different antennas would be beneficial for improving the coverage of the 

beams: multiple antennas or multiple beam antennas could be used to improve the range 

coverage and beamforming could be used to create beams which are tall and narrow, 

increasing the coverage of the beams in elevation while keeping the azimuth beams 

narrow enough to resolve a human out to reasonable distances. 

A multiple frequency front-end could be developed to detect human radiation at 

significantly different frequencies. Because of the difference in emissivities of various 

objects the resulting received radiation will look different at separate frequencies. 

Because human emissivity increases rather linearly over the millimeter-wave region [1] 

the response from a human will look similar in different frequency bands while that of 

other objects may change from band  to band. Being able to discriminate between objects 

at different band would help in removing nuisance alarms and improve the performance 

of the classifier. With the availability of fast A/D converters the IF signals could be 

directly sampled and the correlations performed in software. This would allow for 

improved sensitivity in the correlation channel by not requiring the relatively high cutoff 

of the baseband LPF as the LPF frequency could be set in software,  based on the fringe 

frequency of the correlation signal.  
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Appendix A: Sensitivity of the Correlation Radiometer 

This appendix analyzes the theoretical sensitivity of a simple two-element 

interferometer. The analysis assumes a real correlator, although the same results apply to 

the two outputs of a complex correlator. There are a number of different derivations of 

the sensitivity of a two-element interferometer [12-14, 30, 48]. In this derivation I follow 

the analysis of Wrobel and Walker [30] which makes use of the RMS variations of the 

sampled data. 

The voltages from the two antennas i, j are composed of a signal component si,j 

and a noise component ni,j. For a single element (total power) the receiver power output is 

the expectation value, denoted by ,⋅  of the sum of the signal and noise squared: 

 
 ( )2 2 22 .i i i i i i iP s n s n s n= + = + +  (A.1) 

 

Because the signal and noise components are uncorrelated the expectation value of the 

sini component tends to zero yielding 

 
 2 2 .i i iP s n= +  (A.2) 

 

The power in each component in (A.2) is given by GkTΔf as described in Section 3.1. 

The signal power results from the antenna temperature and the noise power results from 

the system noise temperature, resulting in 

 

 
( ), , , ,

, .
i A i rec i A i rec i

sys i

P GkT f GkT f Gk T T f

GkT f

= Δ + Δ = + Δ

= Δ
 (A.3) 
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 For a correlation receiver the output power is the expectation value of the signal 

and noise from two antenna elements: 

 
 ( )( ) .ij i i j j i j i j j i i jP s n s n s s s n s n n n= + + = + + +  (A.4) 

 

Because the expectation value of the noise components is zero, resulting in 

 
 .ij i jP s s=  (A.5) 

 

 It is convenient at this point to define  

 

 
2

antAK
k

=  (A.6) 

 

where Aant is the antenna collecting area. Since the antenna temperature can be written in 

terms of the detected flux density S by TA = AantS, the receiver power (A.3) can be written  

 
 ( ), ,i i T sys iP Gk K S T f= + Δ  (A.7) 

 

where ST is the total flux received. Then (A.5) can be written 

 
 ,ij i j i j CP G G K K kS f= Δ  (A.8) 

 

where i jG G  is the expectation value of the gains of the two receivers and SC is the 

correlated flux density, which is not greater than the total flux density ST.  

 The RMS fluctuation, or variance, of Pij is found by 
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 ( )2 2 2 ,xx xσ μ= −  (A.9) 

 

where in this case 

 

 
( )( ) 22 2 ,

.

ij i i j j

x ij i j i j C

x P s n s n

P G G K K kS fμ

⎡ ⎤= = + +⎣ ⎦

= = Δ
 (A.10) 

 

The RMS fluctuation of the power is then 

 

 ( ) ( )( ) 22 2 2 2.ij i i j j i j i j CP s n s n G G K K k S fσ ⎡ ⎤= + + − Δ⎣ ⎦  (A.11) 

 

To analyze the first term, use the relation 
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This results in 
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(A.13) 

 

Collecting terms the RMS fluctuation is  
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 ( ) ( )2 2 2 2 2

, , , ,ij i j i j C i j T i sys j T j sys i T sys i sys jP G G k f K K S K K S K T S K T S T Tσ = Δ + + + +  (A.14) 

 

The RMS fluctuation in (A.14) is in terms of the squared power 
2
.ijP  Because 

the sensitivity is defined in terms of the minimum detectable flux density, the general 

expression between power and flux is used: 

  
 .ij i j i jP G G K K kS f= Δ  (A.15) 

 

The RMS flux is then given by the square root of (A.14) divided by :i j i jG G K K k fΔ  

 

 , , , ,2 2 .sys i sys j sys i sys j
ij C T T

i j i j

T T T T
S S S S

K K K K
⎛ ⎞

= + + + +⎜ ⎟⎜ ⎟
⎝ ⎠

 (A.16) 

 

For a square band-pass the number of independent samples recorded is 2Δfτ, where τ is 

the integration time of the correlator. The sensitivity is given by dividing (A.16) by the 

square root of the number of independent samples: 
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Using the (A.6) and definition of the system equivalent flux density (SEFD) given by 

(4.8), (A.17) can be written in the form given by (4.7): 
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    Appendix B: Spectral Estimation† 

An observation of signals with P complex sinusoids in noise can be given by 
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∑  are the complex sinusoids with amplitudes α and ( )w n  is the noise. 

The noise power is 

 

 ( ) 2 2 ,nw n σ=  (B.2) 

 

where x  denotes the expectation value of x. A time-window of the observed signal of 

length M is then 
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† This section follows [31] D. G. Monolakis, V. K. Ingle, and S. M. Kogon, Statistical and Adaptive Signal 
Processing: Spectral Estimation, Signal Modeling, Adaptive Filtering and Array Processing: Artech 
House, 2005. 
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where the Vandermonde vector 

 
 ( ) ( )2 2 11 p pj f j M f

pf e eπ π −⎡ ⎤= ⎣ ⎦v L  (B.5) 

 

is a discrete Fourier transform vector at frequency fp. 

 The autocorrelation matrix of the observed signal is 
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where Rs is the autocorrelation matrix of the signal subspace, Rw is the autocorrelation 

matrix of the noise subspace, and I is the identity matrix. (B.6) can also be written  

 
 H 2 ,x wσ= +R VAV I  (B.7) 
 

where V is the Vandermonde matrix 
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The eigendecomposition of the correlation matrix is 
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where  qm is the eigenvector corresponding to the eigenvalue λm. 

Because there are P complex sinusoids present in the signal,  
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If the eigenvalues of VAVH are { }
1
,

P
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=
%  the eigenvalues of Rx are 

 
 2 for 1, , .m m w m Pλ λ σ= + =% K  (B.12) 

 

Because Ax = λx it follows that (A + σI)x = (λ + α) and thus the eigenvalues of Rx can be 

written 
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Thus there is a clean, discrete separation between the subspace containing the noise and 

the subspace containing the signal and the noise. The correlation matrix can now be 

written 
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Thus the M-dimensional subspace containing the observations (B.3) can be split into a 

signal subspace and a noise subspace. Furthermore, since Rx is Hermitian symmetric, the 

signal and noise subspaces are orthogonal. 

 

B.1 PISARENKO HARMONIC DECOMPOSITION (PHD) 

Because the signal and noise subspaces are orthogonal, the frequencies of the 

complex sinusoids contained in the observations can be found by determining where the 

vector product of the signal and noise subspaces goes to zero. 

If the observation time-window is limited to one more than the number of 

complex sinusoids 

 
 1,M P= +  (B.15) 

 

there is then only one noise eigenvector qM corresponding to the eigenvalue λM. Since the 

signal and noise subspace are orthogonal, all of the P complex exponentials are 

orthogonal to the eigenvector qM: 
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The pseudospectrum is then calculated as  
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The peaks in the pseudospectrum indicate the frequencies of the complex sinusoids. 
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B.1.1 Sample Correlation Matrix 

The accuracy of the Pisarenko method is dependent on the accuracy with which 

qM is calculated. However, qM (and thus λM) will only be precisely calculated from the 

true correlation matrix (B.6). In practice, the true correlation matrix is unattainable due to 

its dependence on the entire observed signal and must be estimated from the available 

data. As a result, the eigenvector qM in the Pisarenko method has an error associated with 

it that is only minimized by increasing the number of data points used to estimate the 

correlation matrix. The estimated correlation matrix, or sample correlation matrix, is 

estimated by first calculating the data matrix 
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where N is specified to determine the matrix size. The sample correlation matrix is then 

 
 1 Hˆ .x N −=R X X  (B.19) 

 

B.2 MULTIPLE SIGNAL CLASSIFICATION (MUSIC) 

The MUSIC algorithm allows the time-window to increase beyond one greater 

than the number of complex sinusoids and thus allowing a greater number of noise 
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eigenvectors to be used. This allows for averaging over the noise subspace, increasing the 

accuracy of the pseudospectrum. 

The vector product of the observed signal and the eigenvectors is then 

 

 ( ) ( ) ( )2 1H

1

0 forp
M

j k f
p m m

k
f k e P m Mπ −

=

= = < ≤∑v q q  (B.20) 

 

for all P frequencies fp of the complex sinusoids. The pseudospectrum for each 

eigenvector is  
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and the MUSIC pseudospectrum is  
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B.3 ESTIMATION OF SIGNAL PARAMETERS USING ROTATIONAL INVARIANCE 
TECHNIQUES (ESPRIT) 

Whereas the PHD and MUSIC algorithms made use of the sample correlation 

matrix ˆ
xR , the ESPRIT algorithm uses the data matrix X. The observed signal given by 

(B.4) can be written as 
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where V is given by (B.8), α is a vector of the amplitudes, and  
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is the diagonal matrix composed of the phase shifts between time samples. This rotation 

matrix is composed of the frequencies of the complex exponentials, and thus in 

determining this matrix the frequencies can be found. 

 The signal subspace  

 
 ( ) nn =s VΦ α  (B.25) 

 

is partitioned into two (M – 1)-dimensional subspaces sM-1 by 
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Equivalent to (B.25) the subwindows can be written 
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Defining 
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gives the relation 
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 2 1 .=V VΦ  (B.29) 

 

Until this point the derivation has made use of the actual signal space s(n). To 

estimate the frequencies the data matrix X and (B.29) are used to access Φ. First a 

singular value decomposition (SVD) is performed on the data matrix yielding 

 
 ,H=X LΣU  (B.30) 

 

where L is the N × N matrix of left singular values, Σ is the N × M matrix of descending 

singular values on the diagonal, and U is the M × M matrix of right singular values. The 

columns of U are the eigenvectors of ˆ
xR  and the squared magnitude of the singular 

values are the eigenvalues scaled by N through (B.19). Thus the matrix U can be divided 

into the signal and noise subspaces by 

 
 [ ]| .s n=U U U  (B.31) 

 

Us contains only the singular values with the P largest values, and thus spans the same 

subspace as V, and thus there exists a transform  

 
 .s=V U T  (B.32) 

 

 The subspace Us is partitioned into two (M – 1)-dimensional subspaces in the 

same way that V was in (B.28) and thus, by (B.29), a rotation Ψ must exist such that 

 
 2 1 .=U U Ψ  (B.33) 
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Through (B.32) the partitioned subspaces have the relations 

 
 1 1 ,=V U T  (B.34) 
 2 2 .=V U T  (B.35) 

 

Thus the partitioned subspaces of the actual signals V and the estimated signals U can be 

related by 

 
 2 2 1 .= =V U T U ΨT  (B.36) 

 

V2 can also be solved for through (B.29) and (B.35) yielding 

 
 2 2 1 .= =V V Φ U TΦ  (B.37) 

 

Equating (B.36) and (B.37) gives 

 
 1.−=Ψ TΦT  (B.38) 

Thus the diagonal elements of Φ are the eigenvectors of Ψ. Since the diagonal elements 

of Φ are of the form exp(j2πfp), the frequency estimates are found by taking the phase of 

the eigenvectors of Ψ. The rotation matrix Ψ is calculated through (B.33) by 

 
 ( ) 1

1 1 1 2.H H−
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