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A study was undertaken to improve the signal quality and the resolution of the 

velocity profile for deep downhole seismic testing. Deep downhole testing is defined in 

this research as measurements below 225 m (750 ft). The study demonstrated that current 

testing procedures can be improved to result in higher signal quality by customizing the 

excitation frequency of the vibrator to local site conditions of the vibrator-earth system. 

The earth condition beneath the base plate can be an important factor in the signal quality 

subject to variations with time when tests are repetitive. This work proposes a convenient 

method to measure the site localized natural frequency and damping ratio, and 

recommends using different excitation frequencies for P- and S-wave generation. 

Properly increasing the excitation duration of the source signal also contributes to the 

quality of the receiver signal.  

The source signature of sinusoidal vibratory source is identified. Conventional 

travel time analysis using vibratory source generally focuses on chirp sweeps. After 
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testing with impulsive sources and chirp sweeps and comparing the results with the 

durational sinusoidal source, the sinusoidal source was then chosen. This work develops 

an approach to identifying the source signature of the sinusoidal source and concludes 

that the normalized source signature is relevant only to four parameters: the fixed-sine 

excitation frequency, the duration of excitation, the damping ratio of the vibrator-earth 

system, and the damped natural frequency of the vibrator-earth system. Two of the 

parameters are designated input to the vibrator and the other two parameters are 

measured in the field test using the proposed method in this work.  

A new wavelet-response technique based on deconvolution and consideration of 

velocity dispersion is explored in travel-time analyses. The wavelet-response technique is 

also used for development of a new approach to correcting disorientation of receiver tool. 

The improved downhole procedures and analyses are then used in the analysis of deep 

downhole test data obtained at Hanford, WA. Downhole testing was performed to a depth 

of about 420 m (1400 ft) at Hanford site. Improvements in resolving the wave velocity 

profiles to depths below 300 m (1000) ft are clearly shown. 
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Chapter 1  Introduction 

1.1 BACKGROUND 

The U.S. Department of Energy (DOE) and the Pacific Northwest National 

Laboratory (PNNL) drilled three boreholes to a depth of approximately 420 m (1400 ft) 

below the ground surface at the Waste Treatment and Immobilization Plant (WTP) 

construction site on the Hanford Site in southeastern Washington. The goal of the new 

boreholes was to obtain direct shear (S) and compression (P) wave velocity 

measurements in the subsurface to reduce uncertainty both in seismic response spectra 

and the design basis for the WTP. The University of Texas at Austin (UT) was selected 

by PNNL to collect S- and P-wave measurements over the depth range of about 110 to 

420 m (360 to 1400 ft) in each of the three new boreholes identified as C4993, C4996， 

and C4997 (Barnett et al, 2007; Gardner and Price，2007).  

Redpath Geophysics was contracted for the acquisition of velocity measurements 

in shallow alluvial sediments located from the ground surface to a depth of approximately 

110 to 120 m (360 to 400 ft) using impulsive S- and P-wave seismic sources (Redpath 

Geophysics, 2007). In addition, the testing by Redpath Geophysics overlapped with the 

UT testing by about 90 m (300 ft) in the rock beneath the alluvium. As participants in the 

project, researchers from UT used the T-Rex tri-axial vibrator to obtain measurements 

below the depth of 120 m (400 ft) within basaltic and sedimentary interbeds in each of 

the three boreholes (Stokoe et al，2004). 

Figure 1.1 displays the generalized site which consists of alternating layers 

characterized by strong velocity contrast below the alluvium. The alluvium consists of 

the Hanford Formation H2, Hanform Formation H3, Cold Creek Unit and Ringold 

Formation Unit A as shown in Figure 1.1. 
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Figure 1.1 Geological stratigraphy of Borehole C4993 at Hanford WTP site 
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The depths used in Figure 1.1 are taken from Barnett et al. (2007) and Rohay and 

Brouns (2007). The alluvium is 107 m (358 ft) thick at Borehole C4993. Alternating 

basalt layers and sedimentary interbeds underlie the alluvium. The interbeds are both 

thinner and softer than the surrounding basalt layers. The wave velocities of the basalt 

rock layers are about twice to three times that of the interbeds. The stratigraphy is 

characterized by alternating strong contrast in stiffness. 

The frequencies generated by a vibrator source, including the T-Rex mobile 

shaker, create a source signal with wavelengths greater than the thicknesses of most 

layers. Conventional vibratory source is a chirp sweep with a band of frequencies that 

vary linearly with time. Multilayer reflection and velocity dispersion contribute to poor 

resolution in cross-correlation of chirp sweep signals with trace data. In an effort to 

improve resolution, fixed-sine source signals, which are wavelets generated by a fixed 

excitation frequency, were also chosen for investigations to acquire data in this research. 

The vibratory source signal that was used was 4 to 10 cycles of a sine wave with a fixed 

frequency of 20, 30 or 50 Hz. This signal is a specific frequency for the fixed sine wave 

which is readily generated with T-Rex.  

Multiple direct arrivals and reflections constitute a multi-component signal. 

Strong reflectivity between layer reflectors, especially thin layers, causes waveform 

distortion that presents challenges for travel time analysis using conventional wave 

identification and cross-correlation methods. Errors in travel time analysis due to these 

complicated factors affect the resolution of velocity profiling in that the cross correlation 

in the time domain is affected by the reflections. The separation of reflections and direct 

arrivals is a key step to obtaining more accurate travel time measurements and, hence, 

more accuracy and resolution in the velocity profiles for engineering purposes. 

Superposition of multi-cycle waveforms of multiple shifted reflections can significantly 
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shift cross-correlation peaks because cross-correlation relies on the shape of the 

waveforms, which can be distorted by reflections and lower- or higher-frequency noise. 

For S-wave signals, the proceeding P-wave components as well as possible waves from 

the cable suspending the geophones further compromise cross correlation. 

The difference between an impulsive source and a durational source wavelet 

results in much greater differences in travel time analysis. The short duration of 

impulsive source wavelets are of such duration that the overlap of multi-components in 

the receiver signal does not pose a significant problem. However, durational wavelets 

generated by the vibrator can display overlapping from the first break (multi-path direct 

arrivals) through the end of the time record (reflections, coupling of converted and/or 

split waves). The use of deconvolution and reflectivity coefficients may improve the 

resolution of the travel time analysis. Hence, the use of reflection coefficients from 

deconvolution requires identification of the source signature of the durational wavelets. 

The velocity dispersion of different frequencies provides an advantage to using a 

fixed-sine source signal as opposed to using chirp sweep signals. The chirp sweep signals 

have a band of frequencies that velocity dispersion is of concern when site stratigraphy is 

characterized by alternating hard and weak rock layers. The fixed-sine source signal has 

at most two significant frequencies. One is the excitation frequency and the other is the 

damped natural frequency of the vibrator-earth system. The velocity dispersion effect of 

the fixed-sine source signal can be easily evaluated.  

The impulse response includes velocity dispersion caused by frequency contents, 

but it treats the dispersion as a spread impulse instead of a separate impulse for each 

frequency. The impulse response is adequate for tracking group energy, but does not take 

into account the resolution for velocity variation when the dominant frequency content 

has changed or shifted during propagation. The wavelet response is the linear 
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combination of the impulse responses of each pure wavelet that carries a single 

frequency. The separation of up-going and down-going signal components from the 

receiver signal is more difficult for wavelet response than for the impulse response. 

1.2 OBJECTIVES OF RESEARCH 

The objective of this research is to find a method to improve the resolution of 

velocity profiling in deep downhole tests for engineering studies at sites where the 

geological stratigraphy exhibits strong velocity contrasts. Deep downhole testing is 

defined in this research as testing below a depth of 225 m (750 ft). The availability of the 

powerful T-Rex vibroseis enables deeper ground investigation without the use of 

dynamite, excavation, or other methods. The unique geological stratigraphy of the 

research site attenuates and reflects wave vibration energy in such a way that poses 

challenges to the analysis of weak and distorted signals deep within the ground. The 

existence of thin layers presents another difficulty for investigation methods using long 

wavelength sources as used in this work. 

Durational source signals generally cause severe wavelet overlap, polarization 

change, nonlinear polarization and waveform distortion, which make the use of 

conventional, hand-picked, first-break techniques particularly difficult. The fixed-sine 

source signal is neither an impulsive wavelet nor a chirp sweep, thus the conventional 

impulse response method or cross-correlation technique cannot be applied in this case. 

An approach to source signature identification for fixed-sine source signals is presented 

for the acquisition of arrival and reflection coefficients. A method for in-situ 

measurement of damping ratio and natural frequency for the vibrator-earth system is 

proposed. The wavelet response technique for travel time analysis is explored and 

applied. The benefit of this research is then demonstrated with comparisons of the 

different analysis procedures at a test site in Hanford, WA. 
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1.3 ORGANIZATION OF DISSERTATION 

Chapter 2 briefly introduces wave propagation in homogeneous anisotropic 

media. This introduction is followed by a discussion of how vertical velocity 

measurements provide an understanding of the engineering parameters (stiffness) and 

anisotropy. The Christoffel Equation for plane wave propagation is also presented in the 

chapter and use of the equation in the calculation of the difference between the phase and 

group velocities is discussed. The complexity of wave propagation in real earth is also 

discussed. 

The new downhole field test procedures with a fixed sinusoidal input are 

introduced in Chapter 3. The method of hand-picking wave arrivals is used in this chapter 

to demonstrate travel time analysis for velocity profiles. Complete analysis for both P- 

and S-wave measurements using the new fixed-sine source are presented in detail in 

Chapter 4. In addition, the terminology and approaches used to develop the DeepSeis 2.1 

software program are discussed. DeepSeis 2.1 was used in analyzing all travel time data 

collected at the Hanford site. 

The characteristic of the source signal that is not directly available from field 

measurements because of the near-field effect is studied in Chapter 5. Source signals 

consist of a forced vibration followed by a free vibration. Derivations of equations for 

time- and frequency-domain solutions are presented to be used for signature 

identification in following chapters. The source signal is divided into two pure wavelets 

that define the analytical format of the source signature. 

 A method to differentiate the source signature from the field measurements is 

presented in Chapter 6. Determination of the damping ratio and natural frequency of the 

vibrator-earth system is the first step to the identification of the source signature, which is 

evaluated in the frequency domain. The boundary conditions between the forced 
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vibration and free vibration wavelets provide for complete identification of the source 

signature. 

A discussion of how the deconvolution technique utilizes the source signature to 

acquire the wavelet response of the receiver signals is presented in Chapter 7. Criteria for 

obtaining improved receiver signals are proposed by using a specific frequency that 

reflects the local vibrator-earth properties. A new approach for correction of S-wave 

disorientation of the receiver tool is proposed. The wavelet-response method, which is 

implemented in the upgraded software version called DeepSeis 3.1, was developed to 

improve the resolution of travel time analysis. An example of the improvement is 

presented at the end of Chapter 7.  

Summary, conclusions, and recommendations are presented in Chapter 8. 
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Chapter 2  Wave Propagation in Anisotropic Layered Media 

2.1 INTRODUCTION 

The measurement of wave velocity in the downhole method for obtaining desired 

engineering parameters in seismic analysis is introduced in this chapter. Factors such as 

anisotropy, heterogeneity, nonlinearity, mode conversion, S-wave birefringence, and S-

wave splitting which affect signal quality in deep downhole testing are introduced. Wave 

propagation in homogeneous anisotropic media is presented as an example to 

demonstrate the complexity of wave propagation in real earth. Velocity dispersion due to 

anisotropy is one of the major sources of waveform distortion and travel-time 

misinterpretation. 

It is also important to point out that, for the deep downhole testing considered in 

the research, the direction of wave propagation becomes nearly vertical because the 

vertical deviation of the source-receiver direction is within 5 degrees. For example, the 

offset of the vibratory source to Borehole C4993 is 7.5 m (25 ft), the top measurement is 

at a depth of 110 m (370 ft), and the deepest measurement is at 420 m (1400 ft). The 

vertical deviation angle of the source-receiver direction is between 1.0 to 3.9 degrees.  

2.2 EFFECT OF ANISOTROPY AND HETEROGENEITY  

Anisotropy describes the degree of change in material properties with direction if 

measured at the same location. If the properties of a material measured at the same 

location do not vary with direction, the material is isotropic. Heterogeneity describes the 

degree of variation of the material’s properties with location when measured in the same 

direction. If the properties of a material measured in the same direction do not change 

with location, the material is termed homogeneous. Winterstein (1990) suggested that the 
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term anisotropy be constrained to indicate the variation of properties with direction in 

homogeneous materials as opposed to those of heterogeneous materials. Winterstein 

pointed out that the scale used to consider the dimension and the size of rocks is 

important in differentiating anisotropy from inhomogeneity.  For example, locally 

homogeneous and anisotropic material that varies systematically on a large scale is still 

considered anisotropic. An inhomogeneous material with smooth variations in properties 

that are predictable based on the scale of the wavelengths used to probe those properties 

is called anisotropic instead of inhomogeneity as long as such variations do not change 

the symmetry properties of the material. 

Velocity anisotropy represents the variation of wave velocity with direction of 

wave propagation in a homogeneous medium where homogeneity extends over distances 

on the order of or exceeding a wavelength (Winterstein, 1990). Figure 2.1 illustrates 

wave propagation from source point O into an isotropic medium along ray path OA. The 

wavefront is a locus in the wave field with the same phase angle. The wave propagation 

direction is the direction with the greatest phase gradient. As shown in Figure 2.1, the 

wavefront in an isotropic medium is circular, indicating equal velocity in all directions. 

The propagation direction is denoted by angleφ . Along the circumference of the circular 

wavefront, the P-wave particle motion direction, P1 at point A, is parallel to the 

propagation direction. Wave propagation in an anisotropic medium is illustrated in Figure 

2.2, where wave velocities vary with direction. The corresponding wavefront has an 

elliptical shape. The instant propagation direction is perpendicular to the tangent of the 

local wavefront, as denoted byθ . P-wave particle motion at point B, as denoted by P2 in 

Figure 2.2, is no longer parallel to the propagation direction.  
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Figure 2.1 Wave propagation in an isotropic medium 

 

Figure 2.2 Wave propagation in anisotropic medium 

Polarization is a term widely used to describe the trajectory shape and spatial 

orientation of particle motion. The polarization direction specifies the polarization of 

waves traveling along actual rays. Polarization direction is sometimes referred to as 

displacement direction. When particle motion is along a straight line as denoted by P1, the 

polarization is linear or the motion has polarity. Linear polarization occurs in a noise-free 

and perfectly elastic medium if the waves are separate. Actual polarizations can be 

nonlinear and of arbitrary shape. Polarization directions may vary with direction of 
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propagation. The source is not the sole determinant of the polarization direction, but also 

the medium. 

Polarization of P waves in isotropic media is parallel to the direction of 

propagation and polarizations of S waves are perpendicular to the direction of wave 

propagation. Polarizations of waves in anisotropic media are generally neither 

perpendicular nor parallel to the direction of propagation as denoted by P2. When 

polarization of a wave in an isotropic or an anisotropic medium is either perpendicular or 

parallel to the propagation direction, the wave is called pure. Otherwise, it is called 

“quasi”, which means similar. For example, the P wave denoted by P1 is a pure P-wave, 

while the P wave denoted by P2 is a quasi-P wave, or quasi-longitudinal wave. The term 

“quasi” is sometimes denoted by “q”, for example qP wave. When the polarization detail 

is not of concern, the “quasi” or “q” is commonly dropped in the literature. If the 

departure of polarization of quasi waves exceeds 45 degrees from the pure polarization, 

then the term “quasi” is not applied (Winterstein, 1990). 

An S wave has two polarizations. The S wave polarized in the vertical plane is 

referred to as an “SV wave”, and the one polarized in the horizontal plane is an “SH-

wave”. The use of SV and SH can be confusing because their polarizations are not always 

vertical or horizontal during propagation because polarizations may vary. For example, in 

transversely isotropic medium with a tilted symmetry axis, SH-wave polarization may not 

always be horizontal. An SV wave and an SH wave in isotropic medium are 

distinguished by their plane of incidence. An SV wave lies in the plane of incidence, 

while an SH wave is perpendicular to it. S1 and S2 are generally used instead of SV and 

SH in anisotropic media. S1 represents the faster S wave and S2 the slower one for a 

specific wave propagation direction (Figure 2.3). 
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Figure 2.3 Illustration of pure and quasi polarizations 

Three main factors contribute to the anisotropy in sedimentary rock (Thomsen, 

1986): the first factor is intrinsic anisotropy, which is caused by the orientation of 

anisotropic mineral grains or the shapes of isotropic minerals; the second is thin bedding 

of isotropic layers, and the third is fractures or cracks. 

Early problems involving anisotropy were solved by examining equivalent 

isotropic solutions applicable to anisotropy of stratified media for reflection seismics.  

Krey and Helbig (1956) determined the reflections of longitudinal waves for a small dip 

by considering the anisotropic material or the stratified media as isotropic because 

materials comprising a horizontally stratified media do not differ in the value of Poisson 

ratio. They found that approximating the surface of the wave using an ellipsoid resulted 

in significant errors. Backus (1962) studied long-wave elastic anisotropy created by 

horizontal layering and used the averaging technique to obtain the stiffness matrix of an 

effective medium that consists of many constituents within the thickness of one 

wavelength. The effective velocity is determined by the real-valued stiffness elements 

which are independent of attenuation. Berryman (1979) studied long-wave, elastic 
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anisotropy in transversely layered media and concluded that anisotropic effects are 

greatest in areas where the layering is quite thin (3-15 m or 10-50 ft) for seismic signals 

whose frequency range is typically below 50 Hz. Berryman (1979) considered the effects 

of relaxing the assumptions associated with a constant Poisson’s ratio. Using the 

perturbation method for the near-offset test such as a deep downhole test, Berryman 

demonstrated that the anisotropy of P-waves is always negligible when ray path angles 

are nearly vertical or less than 15 degrees, while the anisotropy of S-waves caused by 

small angles of less than 15 degrees can still be substantial. 

Thomsen (1986) introduced a critical anisotropic parameter δ (discussed in 

section 2.7), which is a combination of elastic parameters, and found that δ controls 

most anisotropic phenomena of importance in exploration geophysics. He concluded that 

in most cases of interest to geophysicists, the anisotropy is weak (the anisotropic 

parameter δ =10-20%), even though many of their constituent minerals are highly 

anisotropic. Thomsen drew four important conclusions from weak anisotropy equations: 

(1) the most common measure of anisotropy (contrasting vertical and horizontal 

velocities) does not adequately address problems of near-vertical P-wave propagation; (2) 

the definition of the most critical measure of anisotropy δ does not include the 

horizontal velocity and is in fact often left undetermined by experimental programs 

intended to measure anisotropy of rock samples; (3)  the simplification of the 

anisotropic wave-velocity equations (elliptical anisotropy) is generally inappropriate and 

misleading for P- and SV-waves; and (4) estimating horizontal stress through the use of 

Poisson’s Ratio obtained from vertical P and S velocities frequently results in significant 

error. These conclusions apply irrespective of the physical cause of the anisotropy. 

Heterogeneity is also a factor affecting signal quality. Minor heterogeneities in 

materials were studied by Nair and Nemat-Nasser (1971). Gradual variations of a half 
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space were studied by Kluwick and Nayfeh (1979) to research heterogeneous effects 

caused by gradual variations of material properties. Sato et al (1998) discussed the 

scattering of seismic waves caused by random inhomogeneities. Particle motion 

surrounding the direct-wave arrival showed evidence of scattering along the propagation 

path from the source to the receiver. The researchers used the 3-D covariance matrix to 

analyze the 3-D particle motion trajectory that contains information about the types of 

seismic waves and their directions of travel. The P-wave should be linearly polarized in a 

simple medium along the direction of travel and the S-wave is polarized in the plane 

perpendicular to the direction of travel as illustrated in Figure 2.4. The P-wave particle 

motion in most cases is observed to be elliptical which indicates scattering. Scattering 

causes waveform distortion and travel time fluctuations. 

 

Figure 2.4 Scattering of P-wave particle motion 

Intrinsic anisotropy is the anisotropy caused by small scale and especially 

microscopic oriented inhomogeneities but not including anisotropy caused by any 

succession of isotropic layers (Winterstein, 1990). Bakulin and Grechka (2003) studied 
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the influence of heterogeneity on intrinsic anisotropy in heterogeneous anisotropic media. 

Bakulin and Grechka remarked that many available measurements of in-situ anisotropy 

tend to be relatively contaminated by unaccounted-for heterogeneity because of the scale 

of measurement over a finite volume of inevitably heterogeneous rock. Bakulin and 

Grechka pointed out that heterogeneity and anisotropy may imitate each other, depending 

on the frequency of propagating waves. Seismic frequency range in seismic exploration 

refers to 10 to 200 Hz. A finely layered isotropic media can effectively behave as a 

vertically transversely isotropic media when probed by long seismic waves (Backus, 

1962). Because frequency varies over the entire range of seismic frequencies, 

heterogeneity transitions to anisotropy and vice versa. The anisotropy that purely stems 

from heterogeneity, such as that produced by the Backus averaging of isotropic finely 

layered media, is usually weak because it is a quadratic term in the fluctuation of the 

relative changes from the mean values of the velocities and density. The studies 

concluded that the interdependence of anisotropy and heterogeneity may be ignored.  

2.3 EFFECT OF NONLINEARITY 

Linear wave theories assume that small-amplitude signals characterized by 

deformations of a solid due to elastic waves are small enough so that the linear stress-

strain relationship is applicable. Linear wave theories apply only in the far field. Far field 

is the region where the stress and strain relationship is linear. Empirically, the distinction 

between the near field and the far field is frequency dependent. Baeten and Ziolkowski 

(1990) recommended the far field be the region more than a wavelength away from the 

source. Depending on the output force level of the vibrator, the far field can start from 

less than a wavelength away. When the maximal output force is used, the far field is 

assumed to start from the region a wavelength way from the vibrator. For example, P-
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wave velocity near the ground surface is below 600 m/s (2000 fps), for a 50-Hz source 

signal, the far field of a vibratory source starts at about 12 m (40 ft). 

In the near field the strains are high and the relationship between the components 

of the stress and strain tensors becomes nonlinear. Nonlinearity occurs in the near field, 

especially from explosive sources. Nonlinear elastic waves are called finite-amplitude 

waves in the literature. Nevertheless, the near field generates some high-frequency 

contents that can propagate in the far field. Although all measurements used for velocity 

profiling in the work come from the far field where linear wave theories apply, the 

signals measured in the far field can be significantly distorted by the high frequency 

content generated in the near field. 

Nonlinear dynamic elasticity for planar and spherical waves in isotropic and 

compressible elastic media was studied by Bland (1969), whose primary analytical tool 

was the method of characteristics. The method of characteristics (Jeffrey et al, 1964) is 

adequate for one-dimensional wave propagation. Fine and Shield (1966) used a different 

approach called the straightforward perturbation method to investigate nonlinear effects 

of stress waves in homogeneous and isotropic solids.   

Nonlinearity in the near-field media occurs in the constitutive wave propagation 

equations as well as in the geometrical relations between strain and displacement. The 

nonlinear relation between the components of the stress and strain tensors necessitates 

consideration of the interaction between longitudinal and transverse waves. Jones et al 

(1963) derived a criterion for the occurrence of a strong scattered wave from two elastic 

waves intersecting in a homogeneous, isotropic media. The amplitude of the scattered 

wave was found to be proportional to the volume of interaction. Higher harmonics and 

other complications arise because of the generality of the stress tensor and the interaction 

of P and S waves (Thompson et al, 1977; Goldberg, 1961). Higher harmonics are also 
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generated by a nonlinear boundary at normal incidence (Konovalov et al, 1991). 

Nonlinear modal interactions and energy transfer between high-frequency and low-

frequency modes were studied as well (Nayfeh and Balachandran, 1994; Nayfeh, 2000). 

The propagation speed of such linear waves with infinitesimally small amplitudes 

remains constant throughout wave propagation. However, the propagation speed of 

nonlinear waves with finite amplitude is not constant in cases where dissipation does not 

occur. Propagation speed depends on the local wave amplitude which causes crests of a 

wave to propagate faster than the troughs only when the coefficient of nonlinearity is 

positive. As a result, the wave shape becomes distorted as the wave propagates. 

2.4 TRANSVERSELY ISOTROPIC MEDIUM AND MODE CONVERSION 

The Saggittal plane is often used to describe a transversely isotropic medium. As 

shown in Figure 2.5, a coordinate system is defined with 3x vertical along the gravitational 

direction, and 1x is selected as the horizontal, which can rotate any azimuth angleψ  

around 3x . The plane defined by 1x and 3x is called the Sagittal plane. A transversely 

isotropic medium is isotropic only in any of the two axes, and the other axis is called the 

symmetry axis. For example, a transversely isotropic media characterized by a vertical 

axis of symmetry, 3x , (TIV or VTI) is widely used to simulate sedimentary rocks. For 

vertical cracks, transversely isotropic media characterized by a horizontal symmetry 

axis 1x or 2x  (TIH or HTI) is used (MacBeth, 2002). 

If the vertical inclination angle θ  in Figure 2.5 and the azimuth angle ψ are 

defined, the following expressions for any vector ),,( 321 nnnn =r  are obtained: 

 θψ sincos1 =n , (2.1)  

 θψ sinsin2 =n , (2.2) 

 θcos3 =n . (2.3) 
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Figure 2.5 Transversely isotropic medium with a vertical symmetry axis (TIV) 

When a plane wave propagating in a medium encounters a boundary, the incident 

wave may generate a number of reflected and transmitted waves according to the 

boundary condition. Generally a maximum of six wave components are possible for a flat 

solid boundary interfaced by two contacted solid media (Nayfeh, 1995). Snell’s law 

(Equation 2.4) and slowness surface (see Figure 2.6) are often used to determine the 

number of components during reflections and refractions. Slowness surface (Musgrave, 

1970) is the inverse of phase velocity surface. The dashed lines in Figures 2.6 represent 

the surfaces of SV waves and the solid lines represent P waves. The arrow connecting the 

slowness surface to the origin O is called slowness vector. The length of slowness vector 

represents the reciprocal of velocity values such as Pv , 1Pv and 2Pv . The slowness surface 

in anisotropic media is not circular (Figure 2.7). Slowness vectors are parallel to phase 

velocity vectors. The inclinations of the slowness vectors are determined according to 

Snell’s law in Equation (2.4) as: 
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because all the arrows have the same length of projection onto the 1n
r axis, as denoted 

by a . 

 

Figure 2.6 Slowness surface for an incident P-wave in isotropic medium 

 

Figure 2.7 Slowness surface for an incident P-wave in anisotropic medium 

Three possible modes of wave propagation in a homogeneous medium are P, SV 

(or S1), and SH (or S2) pure or quasi modes. Figure 2.8 illustrates the multiple mode 

conversions of an incident P wave from a source traveling through a four-layer isotropic 
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medium. An incident P wave or SV wave will generate reflected as well as transmitted P 

and SV waves. 

 

Figure 2.8 Multiple wave reflections and refractions in TIV media (from Richart et al, 
1970) 

As shown in Figure 2.8, half of the reflections are composed of SV waves. The 

adverse effect of SV waves is that, the velocity anisotropy of SV waves is about an order 

of magnitude greater than that of P waves (Grechka, 2001).  

2.5 S-WAVE BIREFRINGENCE AND S-WAVE SPLITTING 

Birefringence means double refraction (Figure 2.7), where a single incident wave 

refracts as two waves with different polarizations because of different velocities. An 

isotropic medium of geophysical interest is birefringent because the velocities of P and S 

wave are always different. An anisotropic medium is generally trirefringent if none of the 

three wave velocities (P, S1, and S2 waves) are equal (Auld, 1973).  

S-wave birefringence is often referred to as S waves with different polarizations 

traveling in a similar direction at different speeds. S-wave birefringence is a characteristic 

of a homogenous anisotropic medium and is used to measure anisotropy in a single 

homogeneous medium. 
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When two S-waves travel in the same direction but with different polarizations 

and velocities, the accumulated effects of S-wave birefringence in one or more 

homogeneous media will result in S-wave splitting. If the source polarization is along a 

natural earth polarization direction, a highly birefringent rock may have no S-wave 

splitting, which means the two S-waves may propagate at the same speed. The amount of 

splitting is measured quantitatively by the time lag between the two waves. Fractures, 

cracks, and fissures in typical rocks and soils can cause obvious S-wave splitting (Majer 

et al, 1988). Split S-waves create nonlinear polarizations if the S-waves do not 

completely separate.  

TIV models are generally accepted for sedimentary rocks, but insufficient for 

describing azimuthally varying seismic signatures (Grechka, 2001). Alford (1986) 

studied shear data in the presence of azimuthal anisotropy, and pointed out that azimuthal 

anisotropy, even on the order of a few percent, cannot be ignored for shear-wave 

exploration because S-wave splitting due to azimuthal anisotropy can cause poor shear 

data quality. 

2.6 RELATIONSHIP OF ENGINEERING CONSTANTS AND VERTICAL VELOCITIES 

Determination of the engineering constants in the stiffness tensor for seismic site-

response analyses is one of the purposes of seismic measurements. Vertical velocity 

measurements in the field play an important role in specifying many or all of these 

constants. A breakthrough from isotropic medium to anisotropic medium was made by 

Thomsen (1986), who first expressed anisotropy analytically using a combination of 

engineering elastic constants in the stiffness tensor.  

In the orthogonal Cartesian system, the indices i, j, k and l below for tensor 

operations are assigned values 1, 2 and 3 corresponding to three axes of Cartesian 

coordinates ),,( 321 xxx  shown in Figure 2.5. The stiffness tensor c is a four-rank tensor 
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with 81 elements. However, the stiffness tensor has only 21 independent stiffnesses or 
elastic moduli, ijklc , for general anisotropy. The stress tensor, ijσ , is a two-rank tensor with 

9 elements; strain tensor kle  is a two-rank tensor with 9 elements and displacement 

vector iu  is a one-rank tensor with 3 elements. The number of independent elements 

depends on symmetry. 

The dynamic behavior of linear elastic and generally anisotropic solids satisfies 

the following condition: 

 2

2

t
u

x
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j

ij

∂
∂

=
∂

∂
ρ

σ
, (2.5) 

where: ρ  is material mass density. The stress-strain relation is defined as: 

 klijklij ec=σ , (2.6) 

and the strain-displacement relation is given by: 
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+
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∂

= . (2.7) 

The stress tensor ijσ and the strain tensor kle  are both symmetric, each possessing 

6 independent elements. The symmetry of ijσ and kle results in the symmetry of the 

stiffness tensor, or jilkijlkjiklijkl cccc === . Therefore, ijklc  reduces to 36 independent 

elements. Further symmetry comes from the strain energy U relations given by: 

 ijklijklijij eeceU
2
1

2
1

== σ  (2.8) 

The interchange of indices kl and ij does not change the strain energy U. Thus, ijklc = klijc , 

which has only 21 independent elements. The contracted index notation in Equation (2.9) 
is used to map the symmetric, four-rank tensor ijklc  to a simplified second-rank 

tensor ijC  as shown in Equation (2.10).  

 126,135,234,333,222,111 →→→→→→ . (2.9) 
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 (2.10) 

where: ijij e2=γ  (2.11) 

The left side of the arrows in Equation (2.9) denotes the contracted indices, while 

the right side stands for the tensor rank indices. 

All 21 elements in the stiffness matrix in Equation (2.10) are independent of 

general anisotropy. The anisotropy of materials with specific symmetries exhibit fewer 

independent elements (Helbig, K., 1994; Nayfeh, 1995). For example, the stiffnesses for 

isotropic materials may be expressed as Lamé parametersλ andμ as follows: 

 )( jkiljlikklijijklc δδδδμδλδ ++= , (2.12) 

 μλ 2332211 +=== CCC , (2.13) 

 λ=== 231312 CCC , (2.14) 

and μ=== 665544 CCC , (2.15) 

where: μ is shear modulus, andλ is Lamé’s constant, which is given by Young’s 

modulus E, shear modulusμ and Poisson’s ratioν as: 

 
ν

μνμλ
21

22
−

=−= E  (2.16) 

For isotropic materials, the stiffness matrix in Equation (2.10) can also be written as: 
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Substituting Equations (2.13), (2.14) and (2.15) into (2.17) yields: 
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The vertical P- and S-wave velocities ( PV  and SV , respectively), are defined as: 

 ρ/33CVP = , (2.19) 

and ρ/44CVS = , (2.20) 

which means that Equations (2.19) and (2.20) become: 

 2
33 PVC ρ= , (2.21) 

and 2
44 SVC ρ= . (2.22) 

The stiffness matrix 0c  for isotropic material is eventually and completely 

determined by substituting Equations (2.21) and (2.22) into Equation (2.17) to yield: 
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Anisotropy of transversely isotropic material with a vertical symmetry axis (TIV) 

is also widely used for anisotropy of sedimentary rock. Seismic exploration using 

vibrators typically utilizes frequencies below 80 Hz, as a result, wavelengths in such 

investigations are generally in the range of a few hundred feet or longer than typical layer 

thicknesses. Backus (1962) studied long-wave elastic anisotropy produced by horizontal 

layering and concluded that waves in layered media propagate as if they were in a 

homogeneous, anisotropic medium in cases where the elastic wavelength is much longer 

than the typical layer thickness. The stiffness matrix for TIV anisotropy is: 
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The stiffness matrix TIVc  in Equation (2.24) can also be expressed a function of the 

vertical P- and S-wave velocities PV  and SV , as discussed in the next section.  

2.7 WAVE VELOCITIES IN ANISOTROPIC MEDIA 

Group velocity and phase velocity are commonly used. Group velocity is the 

speed of wave energy with a wide range in frequencies traveling in a given direction from 

a point source. When the medium is attenuating and anisotropic, group velocity is the 

velocity of the wave envelope because of frequency dispersion and angular dispersion 

(Aki and Richards, 1980). Theoretical group velocity is defined as the differential of 

circular frequency with respect to wave vector (Auld, 1973). Group velocity can be 

measured by dividing travel distance by travel time. 

Phase velocity in a homogeneous media is the speed of constant phase of a given 

frequency traveling in a direction normal to the wavefront. Phase velocity in attenuating 
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and anisotropic media is subject to frequency dispersion and angular dispersion 

(Futterman, 1962). The solution of the Christoffel Equation (Auld, 1973) is used to obtain 

phase velocity.  

Group velocity and phase velocity are identical in isotropic medium, but different 

in anisotropic medium. To bridge the wave velocities in isotropic medium and in 

anisotropic medium, evaluation of anisotropy is indispensable. Based on the examination 

of contemporary available data and literature concerning the anisotropy of sedimentary 

rocks at the time, Thomsen (1986) first introduced three parameters γε , (not representing 

volume and shear strains), andδ to quantitatively describe anisotropy of a material. These 

parameters are given in Equations (2.25) through (2.27) as: 

 
33
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=ε  (2.25) 
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The practical evaluation and calculation methods Thomsen developed for weak 

anisotropy are widely considered a milestone in the study of anisotropy. He determined 

that most rocks have parametersε andγ that are between 0 to 0.3 andδ in the range of -

0.1 to 0.2. For layered media, 0≥γ and 0≥−δε . Berryman et al (1999) used both Monte 

Carlo studies and detailed analysis of Backus' equations for both two- and three-

component layered media to analyze the Thomsen parameters for TIV media. They found 

that for finely layered media, the range of ε  is: 

 [ ]1
2
1

8
3 22 −≤≤− −

PP VVε  (2.28) 
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where: the symbol x denotes the volume average of the quantity x  in the 

layered medium under consideration. If large fluctuations occur in the Lamé parameter 

λ of the component layers, ε  has small positive and all negative values, butδ is most 

likely to have positive values. The sign ofδ can be either positive or negative. In constant 

density media, the sign ofδ satisfies: 

 )()( 2

2
22

P

S
SP V

V
VVsignsign −− −=δ  (2.29) 

Velocity anisotropy is the variation of velocity with direction, as shown in Figure 

2.9, where the relation of the phase angle,θ , to the phase velocity and the group angle,φ , 

to the group velocity is also illustrated. The phase velocity travels along the direction of 

the wavefront normal (shown as the wave vector in Figure 2.9), while the group velocity 

radiates from the point source along the ray path in Figure 2.9.  

 

Figure 2.9 Illustration of velocity anisotropy 

With help of the Thomsen parameters, the angular dispersion of phase velocity for 

weak anisotropy can be expressed as: 

 )sincossin1()( 422 θεθθδθ ++= PP Vv  (2.30) 
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 ]cossin)(1[)( 22
2

2

θθδεθ −+=
S

P
SSV V

VVv  (2.31) 

and )sin1()( 22 θγθ += SSH Vv . (2.32) 

For arbitrary anisotropy, the velocity equations are more complicated (see 

Thomsen, 1986 for Equations 7 and 10) but still solvable by iterative adjustments. 

Thomsen (1986) presented a conversion between group velocity and phase 

velocity. Equations (2.30) to (2.32) can also be used for group velocities if the phase 

angle θ  is replaced with group angle ϕ  when using the following relationship for the 

linear approximation (Thomsen, 1986): 

P-wave: ]sin)(421[tantan 2 θδεδθϕ −++=  (2.33) 

SV-wave: )]sin21)((21[tantan 2
2

2

θδεθϕ −−+=
S

P

V
V  (2.34) 

SH-wave:  )21(tantan γθϕ +=  (2.35) 

Thomsen demonstrated that this replacement is valid for all three wave types (P, SV and 

SH). For near-offset VSP, theϕ andθ are small. The difference between the group 

velocity and phase velocity is minor as shown in Figure 2.10.  

Figure 2.11 is a schematic illustration of the deviation of the P-wave polarization 

direction P and the group direction ϕ  from the phase direction θ  in a TIV medium. 

The deviation of P from the phase direction isα , and the deviation of the group direction 

from the phase direction is (ϕ -θ ). For a TIV medium where anisotropic parameters ε  

= 0.2 and δ = 0.1, the maximum deviation of the polarization from the group direction 

(α -ϕ +θ ) is 2 to 3 degrees (MacBeth, 2002). The deviation of measured P-wave 

polarization from the group direction is negligible. In other words, the measured P-wave 

polarization represents the unknown group direction in TIV medium. 
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Figure 2.10 Comparison of phase velocity and group velocity (from MacBeth, 2002) 

 

Figure 2.11 Deviation of the polarization and group direction from the phase direction 
(redrawn after MacBeth, 2002) 

3x  

1x  

θ  

O 

Phase direction

P P

ϕ -θ  

α  

Group direction

α -ϕ +θ  

Polarization 
direction 



 30

The Thomsen parameters can be measured for weak anisotropy using a single set 

of measurements at phase angle θ  = 0,
4
π and

2
π , as shown by Equations (2.36) through 

(2.38): 
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The Thomsen parameters can also be predicted by empirical relationships with 

measured PV and sV . For example Ryan-Grigor (1998) presented the following empirical 

relationships for saturated shale at low and high porosities as: 

 2397.02090.0 −=
S

P

V
V

ε  (2.39) 

 5576.04014.0 −=
S

P

V
V

γ  (2.40) 

and 
22

2
2

2

)(1)(2

1)(54.487.3

S

P

S

P

S

P

S

P

V
V

V
V

V
V

V
V

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

≈δ . (2.41) 

Given the Thomsen parameters ( δγε ,, ) and the vertical velocities ( PV  and SV ), 

the elastic stiffness matrix TIVc  in Equation (2.24) can be completely specified using 

Equations (2.25) through (2.27). By substituting Equation (2.21) into Equation (2.25) one 

obtains: 
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 2
3311 )12()12( PVCC ρεε +=+=  (2.42) 

By substituting Equation (2.22) into Equation (2.26), one obtains: 

 2
4466 )12()12( SVCC ργγ +=+=  (2.43) 
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For smallδ , Equation (2.44) can be simplified as: 
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By substituting Equations (2.42) through (2.45) into Equation (2.24), one obtains: 
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where 0c is defined by Equation (2.23). 

2.8 WAVE PROPAGATION IN A HOMOGENEOUS MEDIUM 

3-D wave propagation in 3-D general anisotropic media is more complicated to 

model than media with one or more symmetric axes. Sharma (2007) recently explored 

general anisotropy in 3D media and modeled the reflection of the elastic plane wave. He 

solved the inverse problem of finding the group velocity in a given direction of ray travel 

without using numerical differentiation. First he derived the phase direction from the 
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given ray direction, then used the phase direction to calculate phase velocity and group 

velocity. 3-D wave propagation for the deep downhole test can be reasonably simplified 

as 1-D (vertical) wave propagation vertically along the borehole. 

The vibratory source is actually a point source. The solution of a point-source 

relies on the use of Green functions (Tsvankin, 2001; Cerveny, 2001). When the wave 

propagation of concern is generally one dimensional, such as in deep downhole testing, 

also called near-offset vertical seismic profiling (Macbeth, 2002), or along the symmetry 

axis of a multilayered anisotropic medium (Nayfeh, 1995), the common practice is to 

approximate the far-field wavefield from a point source as an equivalent plane wave 

(Kennett, 1979).  

Plane wave propagation in infinite homogeneous medium is described by the 

Christoffel Equation as follows: 
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where: ),,( 321 uuuu =r is the displacement vector or the polarization direction, 

and ),,( 321 nnnn =r  is the propagation direction that satisfies 12
3

2
2

2
1 =++ nnn  (see 

Figure 2.5). The plane waveform is: 

 )(1 txKn
ii

jjeUu ω−−=  (2.48) 

iU is the displacement amplitude vector that also defines the polarization, and K is 

a scalar wave number. By substituting Equation (2.48) into Equation (2.47), the following 

equation is obtained: 
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By defining phase velocity as: 
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and a two-rank tensor as: 
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results in the Christoffel Equation for homogeneous linear equations as: 

 0)( 2 =− lilil UvA δ . (2.52) 

The phase velocities, 2v , are the eigenvalues and the displacement amplitudes lU  

are the eigenvectors that are expressed as: 
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The determinant is solved as  0
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to obtain 2v and lU . 

If the cross product of ur and nr  is zero ( 0=× nu rr ), then the polarization is 

directed along the propagation direction, which is a P wave. If the dot product of ur and nr  

is zero ( 0=⋅ nu rr ), then the polarization is directed normal to the propagation direction, 

which is a shear wave or S wave.  Nayfeh (1995) stated that if each of the three 

polarization vectors is directed either along or normal to the propagation direction, then 

they are called pure modes of wave propagation, otherwise they are called a quasi wave. 

As shown in Figure 2.3, three pure modes of wave propagation are possible only 

in isotropic media. In anisotropic media none of the three polarization vectors 

satisfies 0=× nu rr . However, it is still possible to satisfy the condition of 0=⋅ nu rr , which 
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indicates that pure modes of shear waves can occur for some propagation directions in 

anisotropic media depending on the material symmetry. 

When anisotropy results in polarization deviations, then quasi-longitudinal and 

quasi-shear waves can be identified using amplitude ratios. For example, Nayfeh (1995) 

defined normalized polarization directions with respect to the coordinate system ix . For 

each eigenvalue 2v , there is an eigenvector lU . If the following definition is applied, 

 1)(
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then each polarization is directed along the vector ),,( )(
3

)(
2

)(
1

)( kkkk rrrr =
r , k=1,2,3. The 

maximal dot product value nr k rr
⋅)(  is unity. The largest dot product value of nr k rr

⋅)( is 

associated with the largest eigenvalue, which defines the quasi-longitudinal wave, and the 

other two are quasi-shear waves. For pure modes, one of the dot products is unity, and it 

is along the propagation direction called the pure longitudinal wave; for anisotropy, the 

dot product is typically less than unity. If the dot products in anisotropy are not unity, 

then the zero value defines a single type pure mode. 

2.9 VELOCITY DISPERSION 

Velocity dispersion is characterized by angular dispersion and frequency 

dispersion. The dispersion describing velocity varying with direction is called angular 

dispersion. The dispersion displaying dependence of velocity on frequency is called 

frequency dispersion. Group velocity and phase velocity in anisotropic media are subject 

to angular dispersion, while in attenuating media they are subject to frequency dispersion 

(Futterman, 1962; Aki and Richards, 1980). The wave propagation in stratified media can 

be described by ray theory (Cerveny, 2001), effective medium theory (Backus, 1962), 

and other theories with the appropriate theory based on the scale of the wavelength to the 

layer spacing. 
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When employing the effective medium theory to consider vertically propagating 

waves through a horizontally layered media, if the thickness of the layers is several times 

greater than the incoming wavelength, then the velocity is the moderated average of the 

velocities of each layer which is obtained by dividing the total path length by the total 

travel time. If the layer thickness in horizontally layered media is only a fraction of the 

incoming wavelength, then these layers are considered equivalent to one homogeneous 

medium. The elastic stiffness in this case is the moderated average of the stiffness of each 

layer. The difference between the short-wavelength and long-wavelength velocities 

increases with the lithology contrast of the layers. However, the differences are 

independent of layer order.  

In the stiff soil and rock tested in the research, the P- and S-wave velocities 

exceed 4800 m/s (16000 fps) and 2100 m/s (7000 fps), respectively. For testing with an 

excitation frequency of 50 Hz, the resulting wavelengths were 96 m (320 ft) and 42 m 

(140 ft) for P and S waves, respectively. For testing with an excitation frequency of 20 

Hz, the corresponding wavelengths were 240 m (800 ft) and 105 m (350 ft) for P and S 

waves, respectively. As shown in Figure 1.1, these wavelengths can cover up to 7 layers, 

so that the effective medium theory is of concern in the research. 

To better understand the effective medium theory, Marion et al (1994) examined 

the transition of velocity from ray theory to effective medium theory in a laboratory 

setting. The stratified media is a periodic media of alternating steel and plastic discs, but 

the volume fraction of the steel varies from test to test. The P-wave velocity of steel is 

5535 m/s (18450 ft/s) and of plastic is 2487 m/s (8290 ft/s). Their densities are 7.9 g/cc 

and 1.21 g/cc, respectively. Experimental and theoretical studies were jointly conducted 

to investigate the velocity behavior in stratified media at the transition from ray theory to 

effective medium theory. Velocity measurements were obtained at 50 and 500 kHz. The 
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source was located at the bottom of the composite and the receiver was at the top in these 

experiments. 

Figure 2.12 shows the dependence of velocity as the volume fraction of steel was 

varied. The upper line, indicated by “Ray theory”, is the theoretical calculations for short 

wavelengths (500 kHz) and the lower line, indicated by “Effective Medium”, indicates 

the theoretical result for long wavelengths (50 kHz). The middle lines are drawn from the 

experimental data points (shown by the small circles). Figure 2.12 indicates that, as 

wavelengthλ increases, the experimental results gradually shift from the ray theory and 

to the effective medium theory.  

 

Figure 2.12 Experimentally observed velocities versus volume fraction of steel (from 
Marion et al, 1994) 

Results displayed in Figure 2.13 confirm that velocities in stratified media not 

only depend on its composition, but also are controlled by the ratio of wavelength λ  to 

the layer spacing d expressed as λ /d. The experiment indicates that a narrow transition 

zone with λ /d values of approximately 8 to 20 exists between the two velocities, while 
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the numerical calculation shows the ratio to be about 7. The solid lines denote the trend 

of the experimental or numerical results. The researchers mentioned that further research 

is needed to examine the difference between the laboratory and numerical results. They 

found that for plastic-steel composites, the transition from short-wavelength to long-

wavelength behavior coincides with strong attenuation of the signal because of scattering 

and occurs over a narrow range of λ /d between 8 and 15. This transition range is almost 

independent of the relative fractions of steel and plastic. In addition, the scattering effect 

in the transition zone depends strongly upon layer order. 

The thickest layer in Hanford TWP site is 61.2 m (204 ft), and the thinnest is 5.1 

m (17 ft). The possible λ /d in the research varies from 1.6 to 40. In some depth range 

where λ /d is close to 10, the measured velocity may be very scattered, as denoted by the 

transition zone in Figure 2.13. 

Gupta (1966) conducted similar research in materials closer in stiffness to soils. 

He stated that P- and S-wave propagation is dispersive in an elastic medium that is not 

infinite, homogeneous, and isotropic. The dispersion effects are generally minor but not 

negligible for the purpose of deep downhole investigations. Shorter-period body waves 

travel faster than longer-period body waves in propagation events normal to a layered 

system. Gupta (1972) further compared short-wave length and long-wave length 

velocities in layered media in events where propagation is not normal to the layered 

system. The results of his studies are presented in Figures 2.14 through 2.17. The average 

velocity in the figures is calculated by dividing the total ray path length by the measured 

travel time. 

Gupta concluded that, if the probed properties of the media vary with frequency 

or wavelength, the results are closer to those using Snell’s Law when studying shorter 

wavelengths that are much shorter than the thickness of layers. 



 38

 

 

Figure 2.13 (a) Experimental velocity versus the ratioλ /d and (b) numerical simulation 
velocity versus the ratioλ /d (from Marion et al, 1994) 
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Figure 2.14 Ray tracing based on Snell’s law through: (a) two layered media and (b) 
alternating layers of the same two layered media (from Gupta, 1972). 
Symbols ρβα ,,  and h denote P-wave velocity, S-wave velocity, density, 
and thickness, respectively  

 

Figure 2.15 Short-wavelength and long-wavelength average velocities as a function of 
the angle of incidence for Models A and B shown in Figure 2.14 (from 
Gupta, 1972) 
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Figure 2.16 Ray tracing through a ten-layered media (from Gupta 1972). The numbers 
from left to right in each layer indicate P-, S-wave velocities (ft/sec) and 
density (g/cc), respectively  

 

 

Figure 2.17 Short-wavelength and long-wavelength average velocities as a function of 
the angle of incidence for Model C (from Gupta, 1972) 
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Periodic layering for transversely isotropic media was studied by Backus (1962) 

as well as Folstad and Schoenberg (1992). Folstad and Schoenberg (1992) concluded that 

fine layering of the order of one-tenth of the smallest wavelength or less does not affect 

the seismic wave propagation other than causing the medium to be considered 

anisotropic. Anisotropy of the coarse layers increases significantly when the rapid 

variations in depth of velocities and density have a standard deviation approaching 0.1. 

The fine layers with thicknesses well below a tenth of the smallest wavelength may be 

replaced by more coarsely layered (thicker), homogeneous equivalent transversely 

isotropic layers with far fewer layers by applying the equivalent medium theory proposed 

by Backus (1962). If the thickness of the equivalent coarse layering is still a tenth of the 

smallest wavelength, no difference in travel time attenuation or pulse shape is observed 

once layer induced anisotropy is taken into account. However, the periodic fine layering 

does not accurately explain the origin of anisotropy of most transversely isotropic media 

(Winterstein and Paulsson, 1990). 

2.10 PHASE VELOCITY SURFACE AND GROUP VELOCITY SURFACE 

For a given mode (P, S1 or S2), a phase-velocity surface can be constructed by 

connecting the tips of all the phase velocity vectors of a point source embedded in a 

homogeneous medium. A separate phase velocity surface in isotropic medium exists for 

each mode where the two S-wave surfaces coincide. P-wave surface may contact one of 

the S-wave surfaces only in certain media (for example, tellurium dioxide) that are 

generally irrelevant to geophysicists’ interests (Winterstein, 1990). Musgrave (1970) 

described the three velocity surfaces as a single surface of three sheets, one sheet for each 

of the three velocity eigenvalues obtained from the Christoffel equation. Crampin (1981) 

considered the two S-wave sheets as an analytically continuous surface because the two 

sheets have points in common. A point where S-wave phase velocity surfaces touch is 
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called S-wave singularity. Crampin (1981) distinguished three singularities: point, kiss, 

and line. In point singularity, phase velocity surfaces touch at a point. If the two S-wave 

surfaces approach tangentially and touch at some places but do not intersect, it is called 

kissing singularity. If S-wave surfaces intersect along a line in a transversely isotropic 

medium, it is called line singularity.  

At points where S-wave singularity occurs, wave polarizations are impure. Phase 

velocity in attenuating medium is subject to frequency dispersion (Aki and Richards, 

1980), hence each mode may have more than one phase velocity surfaces if the source 

contains more than one frequency as observed in this research. On the other hand, the 

three possible surfaces defined by the Christoffel equation may not always coexist if the 

three modes are not generated in the mean time. Theoretically, a single incidence of a 

plane P-wave source of a single frequency can only generate one (P-wave) phase velocity 

surface in an isotropic medium. However, in anisotropic medium, S-wave splitting may 

result in two S-wave surfaces and/or S-wave singularity. The two S-wave surfaces 

intersect in most cases, but along the symmetry axis the two surfaces kiss (MacBeth, 

2002).  

Group velocity surface can be derived by differentiation from the phase velocity 

surface. When the plane waves constructively interfere, the phase velocity has high 

curvature and the differentiation for group velocity can lead to rapid variation in 

polarizations that demonstrates irregular cuspidal features. For strong anisotropic 

medium, the cuspidal features are called cusps. Cusps only exist in the quasi-SV group 

velocity surface. Actual surfaces near cusps on S-wave surfaces might deviate from ray 

theory predictions (White, 1982). Cusps can result in two possible shear wave arrivals 

and earlier signal arrivals than expected (MacBeth, 2002). In isotropic medium, the group 

velocity surface coincides with the phase velocity surface. 
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This research attempts to minimize complicated polarizations caused by mode 

conversions, wave coupling, and S-wave singularity. P- and S-mode source signals are 

always generated separately and waves propagate near vertically. The three surfaces 

cause multiple polarizations in the receiver signals. A wavelet-response technique 

introduced in Chapter 7 aims at distinguishing the desired polarization from multi-

polarization signals. 

2.11 SUMMARY 

In this chapter, background information regarding wave propagation and current 

theoretical developments in the exploration of seismic anisotropy and heterogeneity in 

real earth are presented. For most cases of interest to geophysicists, the anisotropy is 

weak. For P-wave velocity, most seismic anisotropy is negligible when the incident angle 

is vertical or within 15 degrees for a TIV medium, which is typically the case for deep 

downhole testing. 

Frequency dispersion is of concern in anisotropic media. Waves with different 

frequency propagate at different speeds. Velocity dispersion leads to the variation of the 

source wavelet with depths if the source wavelet, such as a chirp sweep, contains 

different frequencies. For deep downhole test, frequency content may change with depth 

because of attenuation. On the other hand, if the velocities are measured by a single 

frequency, the measured velocity should be frequency-specific, because higher frequency 

results in higher measured velocity. 

Effective medium theory should be used where thin layers exist. A number of 

layers examined in the Hanford project are much thinner than the wavelength generated 

by the fixed-frequency vibratory source. According to the effective medium theory, their 

velocity should be accordingly adjusted. 
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Angular dispersion is of concern when dipping layers exist. As demonstrated by 

Gupta (1972), both P- and S-wave velocities vary with incident angle. When the incident 

angle is near vertical (within 5 degrees for instance), the velocity difference between 

short wavelengths and long wavelengths is at a minimum.  
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Chapter 3  Deep Downhole Testing 

3.1 INTRODUCTION 

In this chapter, test equipment, procedures, and challenges in current practice in 

deep downhole seismic testing are introduced and discussed. Again, in the context of this 

research, deep downhole testing is considered to be testing at depths exceeding 225 m 

(750 ft). 

Downhole measurements are generally categorized as near-offset vertical seismic 

profiling (VSP). VSP is a field survey in which seismic waves generated by a surface 

source are recorded by geophones located at different depths in a borehole. If the source 

is in the borehole and the geophones are located along a borehole or on the ground 

surface, the test is called a reversed or reverse VSP (Chen et al, 1990) which corresponds 

to an uphole test. Reversed VSP may use earthquakes or microearthquakes as a source.  

VSP differs from surface surveying in that VSP records both up-going and down-

going seismic waves. The effects of the borehole are negligible due to the fact that the 

diameter of the borehole is much smaller than the wavelength in the survey (Lee, 1987). 

VSP was first used in the former Soviet Union in the 1950s and afterwards used in other 

countries outside the Soviet Union beginning in the 1970s (Hardage, 1983; Puzirev et al, 

1985). VSP has been extensively used in oil exploration, underground water resource 

surveys, and seismic surveys (Hardage, 2000). Based on the total number of crew months 

spent on land petroleum exploration from the early 1960s to the late 1980s, the use of 

dynamite as a source signal for VSP testing has dropped from more than 90% to 48%, 

while the use of vibroseis has increased from less than 10% to 49% (Baeten and 

Ziolkowsik, 1990). Due to the growing interest in environmental protection, the use of 

vibroseis is increasing.  
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As an impulsive seismic source for VSP tests, a dynamite explosion is destructive 

and introduces large nonlinear effects in the near field. The deterministic processing of 

data is source-dependent because the same borehole is used in successive experiments. 

Frequency-dependent phases tend to shift between data shots in the same place with 

different sources which couple with the ground. Ziolkowski and Lerwill (1979) 

demonstrated that frequency content shifts towards the low frequencies as the dynamite 

charge size increases. A trade-off exists between resolution and penetration in that a large 

charge has more energy and better penetration. However, the energy is concentrated in 

lower frequencies, therefore the resolution is decreased.  

Other seismic sources were used in addition to explosives and weight-drop trucks 

--- for example, Dinoseis, Dynaseis, Dynageese, McCollum Vibrator, Thumper, Spring-

loaded Thumper, Dynapulse, Kettle Popper, and Becker Drill (Lindsey, 1991). The 

seismic source Thumper (Stokoe et al, 2004) has been improved and is still used in the 

North America. Continental Oil Company (Conoco Inc.) developed the Vibroseis in the 

1950s. It is still widely used to propagate seismic energy into the earth over an extended 

period of time. New land Vibroseis devices have been invented, among which are the 

Liquidator and T-Rex. T-Rex is the most powerful Vibroseis today for the purpose of 

land seismic investigation (Table 3.1). 

VSP data processing methods for both impulsive sources and vibratory sources 

have also undergone a great deal of development while VSP equipment and testing 

techniques continue to undergo improvements and upgrades. 
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Table 3.1 T-Rex features (from Stokoe et al, 2004) 

Thomson (1950) derived equations for wave propagation in media consisting of 

arbitrary numbers of flat layers. He introduced a transfer matrix, which was later referred 

to as a “propagator matrix” in order to describe the displacements and stresses at the 
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bottom of a layer with respect to those at the top of the layer. Haskell (1953) later 

corrected a small error in his derivation. A single matrix for the complete system can be 

derived from the individual matrices for any number of layers. One advantage of the 

propagator matrix is the correlation of the displacements and stresses at the bottom of a 

multilayered system to those at the top of the system. Another advantage of the 

propagator matrix is that the method facilitates the propagation of the boundary 

conditions from one boundary of the system to the other via matrix multiplications.  

Some of the analytical and experimental studies dealing with VSP testing are the 

following. Stewart (1983, 1984) studied one-dimensional forward and inverse problems 

using VSP and interval velocities from travel time inversion. Gaiser et al (1984) studied 

anisotropic properties of near-borehole formations using P-waves. Pujol et al (1985) 

investigated offset vertical seismic profiling. Alford (1986) used two horizontal source 

components and two horizontal receiver components to rotate four-component data into 

other coordinate systems. Naville (1986), Nicoletis et al (1988), and Lefeuvre et al (1992) 

developed different applications for the Propagator matrix method.  Tapered down-

sweep and up-sweep signals were employed to reduce correlation noise (Martinez, 1987). 

Kommedal and Tjostheim (1989) performed a study of different methods of wavefield 

separation for application to VSP data. Gaiser (1990) employed six impulsive P-wave 

offset VSPs in a 663-m (2210-ft) deep well and observed strong transversely isotropic 

velocity variation. Lee (1990) studied inherent and crack-induced anisotropy by multi-

offset VSP and well-log. Winterstein and Meadows (1991A and 1991B) explored shear-

wave polarizations for depth resolution improvement. Zeng and Macbeth (1993) 

estimated shear-wave splitting in near-offset VSP data using algebraic processing 

techniques. Trantham (1994) utilized a plot sweep as a deterministic signature. Desired 
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impulse response and autocorrelation of vibrator pilot sweeps were used to design a 

deconvolution filter.  

Grech et al (2002) recently performed multi-offset VSP experiments to investigate 

P-wave velocity anisotropy of the dipping shale strata and found 10% anisotropy. The 

currently deepest VSP was performed at a drill hole of 8.5 km depth where P-wave 

velocities dropped to about 5.5 km/s at 8.5 km depth from 6.0–6.5 km/s above 7 km 

depth (Rabbel et al, 2004).  Digranes (1996) reported a VSP experiment in a drill hole of 

12.26 km in Russia, but the measurement of VSP was between depths of 2.15 km and 6 

km. 

Yu et al (2006) developed a theory of crosscorrelogram migration of ghost 

reflections using inverse vertical seismic profile data without access to the source 

location and wavelet. 

The VSP of this work focuses on engineering purpose that requires detailed 

velocity layering with measurements of every 5 to 10 ft (1.5 to 3 m) in the borehole for 

the complete depth range. Higher resolution for travel time analysis is required. 

3.2 VIBROSEIS SOURCE 

Land Vibroseises can be grouped into three different types: electro-hydraulic, 

electro-magnetic, and magnetic levitation. The electro-hydraulic vibrator can in principle 

generate any desired signal, but its major disadvantage is in the harmonic distortion 

because the servo valve closes discontinuously and, as a result, the fluid flow is 

intermittently reversed.  Thus, the force applied to both the reaction mass and the base 

plate is discontinuous. The servo system cannot adequately correct for the amplitude and 

phase of these harmonic distortions because it is causal. The frequency range is restricted 

by the piston length and compressibility of the fluid. The velocity is restricted by the flux 

of the flow. 
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The P-wave and S-wave source signals used in this research were generated 

through a tri-axial vibrator T-Rex (Figure 3.1) weighing 29 tons or 64,000 lbs. T-Rex is 

an electro-hydraulic Vibroseis. T-Rex is capable of generating three vibration modes --- 

the vertical mode for P-wave shaking and two horizontal modes for S-wave shaking. The 

vertical theoretical force output is 60,000 lbs for frequencies between 12 and 180 Hz and 

the theoretical horizontal force output is 30,000 lbs for frequencies between 5 to 180 Hz 

(Figures 3.2 and 3.3).  

 

Figure 3.1 Tri-axial vibrator: T-Rex (from Stokoe et al, 2004) 

 

Figure 3.2 Vertical mode of T-Rex (courtesy of Brent Rosenblad) 



 51

 

Figure 3.3 T-Rex theoretical force output (from Stokoe et al, 2004) 

3.3 NONLINEAR DISTORTION IN THE VIBROSEIS SOURCE 

The drive signal q(t), which is a predetermined time function in the function 

generator, is employed for controlling the forced applied to the base plate (Baeten and 

Ziolkowski, 1990). The drive signal is expressed by: 
 )](2sin[)()( ttatq πθ= , (3.1) 

in which the function )(tθ determines the frequency of the sinusoidal excitation.  The 

function )(tθ  is a quadratic polynomial function when generating a linear chirp sweep; it 

is a linear function in the generation of a harmonic excitation. The amplitude 

function, )(ta , can be a linear or cosine roll-off taper function for a chirp sweep or a 

constant for a sinusoidal excitation. The same force must be exerted on the reaction mass 

in the opposite direction in order to enable T-Rex to exert a force, )(tf , on the base plate. 

The expression of f(t) is: 

 )()( tuMtf rr &&−=  (3.2) 
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in which the mass of the reaction mass is rM  and its acceleration is )(tur&&  which can be 

measured. Therefore, the force on the base plate is known.  

By neglecting the bending forces of the base plate, Sallas and Weber (1982) 

determined the ground force as:  

 )()()( tuMtuMtg bbrr &&&& −−=  (3.3) 

where )(tg is the ground force, Mb refers to the mass of the baseplate, and bu&&  is the 

baseplate acceleration. Equation (3.3) is called the “weighted-sum estimation” of the 

ground force, which assumes the baseplate a rigid body. Baeten and Ziolkowski (1990) 

demonstrated through field measurements that conventional rigid body assumptions 

regarding uniformly distributed traction and displacement directly underneath the 

vibrator base plate are incorrect.  

The standard Vibroseis theory states that the P-wave far-field displacement is 

proportional to the true ground force (Miller and Pursey, 1954; Aki and Richards, 1980). 

Standard Vibroseis theory implies that the far-field velocity is proportional to the 

derivative of the true ground force when geophones are employed for obtaining velocity 

measurements.  True ground force depends on base plate flexibility and near-field soil 

nonlinearity, resulting in nonuniform distribution of traction underneath the base plate.  

The “weighted-sum estimation” of the ground force is widely used as a feedback 

signal on vibrators; for this reason, correlated Vibroseis data do not contain zero phase 

wavelets. Smoothing and causal correction (delay) in the feedback system causes the 

weighted-sum signal to differ from the pilot sweep or drive signal. The true ground force 

differs from the force estimated from the weighted sum acceleration because of the true 

traction involving the bending of the base plate and the nonlinearity of the soil beneath it. 

Two sources of nonlinearity occur with the use of Vibroseis sources. First, the 

travel time is occasionally correlated with the driving force level, which means the travel 
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time changes as driving force level increases. Martin and Jack (1990) attribute this 

correlation to possible changes from the physical soil properties of the near-surface 

layers. As the amplitude of the vibrations increase, the near-surface soil layers become 

softer and have a lower velocity.  The second nonlinear problem is the harmonic 

distortion of the outgoing waveforms. Two general viewpoints regarding this issue are 

found in the literature. One states that nonlinearity stems from the vicinity of the base 

plate, but accumulates as the wave propagates in the far field (Dimitriu, 1990). The other 

viewpoint states that the near-source zone is primarily responsible for the harmonic 

distortion beyond which the waves remain essentially linear (Jeffrey, 1996). No matter 

the sources of the nonlinearity, it does exist in the measurements. 

Lebedev et al (2004) built a contact-nonlinearity model to explain the 

nonlinearity. The model approximates the thin layer between the base plate and the soil 

with large deformations as a nonlinear oscillating spring. The contact spring determines 

the rigidity of the contact. They conclude that the harmonic distortion originates from the 

contact-nonlinearity or from the difference in the restoring force between the 

compression and tension phases of the structurally inhomogeneous media. 

Finite amplitude waves in the near field generate higher harmonics and other 

complications due to the interaction of P and S waves (Thompson et al, 1977; Goldberg, 

1961), the existence of a nonlinear boundary (Konovalov et al, 1991), or nonlinear modal 

interactions and energy transfer between high-frequency and low-frequency modes 

(Nayfeh and Balachandran, 1994; Nayfeh, 2000). 

The adverse effect of the nonlinear distortion on the travel time analysis is 

significant for chirp sweep signals. To reduce the nonlinear distortion to the minimum, 

this work used a sinusoidal drive signal that has a fixed single frequency, called fixed-
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sine signal. A new method is developed to identify the source signature of the fixed-sine 

source signal. 

3.4 FIELD TEST CONFIGURATION AND TEST PROCEDURES 

Figure 3.4 shows field test setup that was used for Borehole C4993 at Hanford 

Waste Treatment Project site. The results from measurements in this borehole are used as 

examples of the measurements and signal processing in this work. T-Rex was located on 

the ground surface 7.5 m (25 ft) away from the borehole with its longitudinal axis 

tangential to a circle centered at the borehole.  

 

 

Figure 3.4 Deep downhole test setup diagram 

All P- and S-wave measurements were performed using the Lawrence Berkeley 

National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver, 
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which is called the lower receiver. A hoist was used to move the lower geophone along 

the borehole and vary the depths traveled by this device.  

 In addition to the LBNL 3-D geophone, a 3-D geophone from Redpath 

Geophysics was fixed at a depth of 6 m (20 ft) and a 3-D geophone from the University 

of Texas was embedded near the borehole at about 0.45m (1.5 ft) below the ground 

surface. 

The drive signal used to control the motion of T-Rex is defined by a given 

number of cycles of a fixed sine signal at a fixed frequency. The drive signal was 

generated by a function generator and dispatched to T-Rex in order to excite the reaction 

mass. The base plate of T-Rex transmitted the vibration energy from the reaction mass to 

the ground surface.  

The recorded time series of the base plate motion is called the input signal. When 

the base plate moves only in the vertical direction, then the input signal is called a P-

wave. Only one mode of P-wave motion (vertical) was generated. The initial force was 

normally set to allow the base plate to initially move downward and compress the soil 

underneath the plate. 

When the base plate moves in the horizontal direction, then the input signal is 

called an S-wave. As discussed further in section 4.3.4, two modes of S-wave vibrations 

can be generated; one is along the longitudinal axis of T-Rex, called the in-line S-wave; 

the other is along the transverse axis, called the cross-line S-wave. T-Rex is usually 

oriented in such a way that either the longitudinal or the transverse axis is tangential to a 

circle centered at the borehole. Each mode of S-wave shaking has two initial orientations; 

one is called forward motion and the other is called reversed motion, which is 

characterized by a 180-degree phase difference from the forward motion. In the 
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measurements at Borehole C4993, only one mode of S-wave shaking was used and this 

mode was driven in both the forward and reverse motions (directions). 

All signals during the test were recorded by a Data Physics Analyzer, which was 

connected to a laptop for synchronized monitoring. Signals that were recorded include 

the drive signal, reaction mass and base plate acceleration signals, surface geophone 

receiver signals as well as signals from the reference and lower geophones. 

Whenever the lower geophone was moved and fixed at a given depth, three tests 

were performed separately in any sequence, namely the P-wave, forward S-wave, and 

reversed S-wave tests. Each test corresponded to a unique vibration mode of T-Rex. Each 

test for a fixed lower geophone depth was repeated multiple times in the same mode so as 

to permit signal averaging in the time domain. Signal averaging was performed using 

approximately 3 to 15 averages, with 5 or 10 averages typically used.  

After completing all the three tests, the lower geophone was moved to a new 

depth and the procedures described above were repeated until all measurements over the 

depth range were performed. For example, measurements in Borehole C4993 at the 

Hanford site were performed over the depth range of 110m (370 ft) to 420 m (1400 ft) 

(Figure 3.4), typically at 3m (10 ft) intervals. However, in some interbeds, 1.5m (5 ft) 

depth intervals were used, while below about 360m (1200 ft), depth intervals of 6m (20 

ft) were used.  

Measurements using this method and procedures were also performed at the 

Yucca Mountain Site in Neveda. In this case, the measurements were accelerated by 

replacing the single 3-D lower geophone mentioned above with five identical 3-D lower 

geophones. These geophones are called the LBNL 5-level receivers and were secured at 

3m intervals along a cable, which permitted relocating the receivers along the borehole. 

For each vibration mode of T-Rex, five depths within a 15 m (50 ft) depth range were 
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simultaneously measured. The LBNL GeoRes was used to record all the 3-D signals of 

each of the 5 geophones at the Yucca Mountain Site. 

3.5 TRAVEL TIMES OF MULTI-COMPONENT SIGNAL 

Travel times have two definitions as discussed by Cerveny (2001). The first 

definition is ray-theory travel times and the other is first-arrival travel times. Ray-theory 

travel times are calculated along the rays of such individual elementary waves as direct 

waves, reflected waves, converted waves, and multiply-reflected waves. Ray-theory 

travel times consider multi-path travel. First-arrival travel times are the travel times of the 

first arrival of the complete wave field at a specified receiver position. First-arrival travel 

times are the properties of the complete wave field, regardless of what type of wave that 

arrives first. It is not related to the amplitudes of the wave field unless it coincides with 

the ray-theory travel time. 

The main features of deep downhole analysis are multilayer reflections, multi-ray-

path, angular and frequency dispersion, waveform scattering and coupling, and low 

signal-to-noise ratio (Figure 3.5). These features pose a challenge to the consistency of 

first-arrival travel times. Ray-theory travel times were used in this work.  

Vertical wave propagation is chosen in this work because it increases the signal-

to-noise ratio as well as permits vibration energy to reach greater depths. The T-Rex 

vibratory source is located very close to the borehole. The offset of T-Rex to the borehole 

is about 6 to 12m (20 to 40 ft), while the depth of the borehole is about 600 m (2000 ft). 

The motion can be considered as many energy fluxes, each propagating along a 

ray path. Energy flux is defined as the kinetic energy crossing unit surface in unit time 

(Auld, 1973). The motion at receiver R is the superposition of many energy fluxes from 

different ray paths, including direct and reflected ray paths. The direct ray paths have no 

reflections in that the direct ray path arrives directly from the source to the receiver 
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without reflecting from the layer boundaries throughout the course of propagation, such 

as ray paths c and d. The reflected arrivals have one or more reflections, such as ray paths 

e, f, and g. The travel times of different energy fluxes from the source to the receiver 

typically are not the same, which constitute a multi-component signal at the receiver. 

 

 

Figure 3.5 Illustration of various ray paths of multilayer wave propagation 
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all ray paths that reach the receiver can be approximated as a ray beam that is a straight 

line connecting the source, S, and the receiver, R.  

The signal at the receiver is considered a superposition of direct waves of both P 

and S waves, reflected waves of both P and S waves, coupled waveforms, correlated 

noise (for example, waves from the cable that have similar frequency as the desired 

signals), and white noise. Several approaches are used for travel time analysis. The most 

commonly used approaches are arrival-identification method (hand picked), 

deconvolution, cross-correlation, wavelet transform, and time-frequency domain analysis. 

Figure 3.6 displays an application of the arrival-identification method, which uses the 

first-arrival travel times of a pre-selected point on the waveform. The first peak marked 

by a small circle is used as the wave arrival-identification for the P wave. 

 

Figure 3.6 Waterfall plot of filtered P-wave receiver signals at Hanford site over the 
depth range of 900 to 1080 ft (270-324 m) 



 60

 

Figure 3.7 P-wave acceleration signals from the reaction mass of T-Rex at the Hanford 
site 

Measurements of travel times at each depth were obtained using different source 

signals as references. One problem that was found is the different references can give 

trigger times that may not be perfectly aligned. Figure 3.7 is an example of the trigger 

times corresponding to the receiver signals in Figure 3.6. As a result, relative travel times 

were used, which means that arrival times are subtracted from the corresponding trigger 

times.  

The slopes of linear segments of the travel time versus depth plot are considered 

to represent the phase velocity. Figure 3.8 is an example of such a plot and the travel 

times of each layer can be plotted as a straight line if the layer is homogeneous and 

isotropic. Once the velocity profile is completed, engineering constants can be obtained 

using the method introduced in Chapter 2. 
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The analysis of travel times becomes complicated when soil or rock layers 

demonstrate strong anisotropy or stiffness contrast. Figure 3.9 shows distortion of the 

first peaks (marked by small circles) caused by reflections or other possible factors such 

as anisotropy, scattering and coupling, heterogeneity, and fractures. The impact of these 

factors and the analyses to minimize their effects are the thrust of this research. 
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Figure 3.8 P-wave relative travel times and interpreted velocity profile in Borehole 
C4993 at Hanford site 

Figure 3.10 is a shallow downhole test at Duke Cherokee site with a sledge 

hammer used to generate the source signal. The same source signal was applied to the 

receiver signals at all the depths. The bottom of the borehole is located on an incline 

slope. As shown in Figure 3.11, starting from a depth of about 5 m (15 ft), an additional 

peak gradually emerged between the first arrival and the first trough. 
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Figure 3.9 P-wave receiver signals at WT-1 site, Yucca Mountain, NV 
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Figure 3.10 Downhole test at Duke Cherokee site (Courtesy of Minjae Jung) 
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Figure 3.11 The effect on the downhole P-wave signals of a known slope shown in 
Figure 3.10 

3.6 S-WAVE ORIENTATION AND COMPOSITION 

All boreholes are vertical. The length of the receiver tool is a few times the 

diameter of the boreholes. The deviation of the receiver tool from the vertical line due to 

the roughness of borehole walls is negligible. Therefore, P-wave signals were considered 

directly measured from the vertical geophone. However, the receiver tool attached to a 

cable was prone to horizontal twisting each time the receiver was mounted to the 

borehole thereby adversely affecting the orientation of horizontal geophones. During the 

test, the alignment of two horizontal geophones - namely the S1 (in-line component) and 

the S2 (cross-line or X-line component) - to the vibration orientation is not completely 

assured. Figure 3.12 shows the hodograph of S-wave signal at a depth of 380 ft (114 m). 

The vibration orientation is about 46 degree. The two components S1 and S2 have 180 
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degree phase shift. To track the same phase of the S-wave signal for travel time analysis, 

a common practice is to correct the disorientation of the receiver tool and retrieve the S-

wave signal in the corrected direction of shaking. The drive signal is 5 cycles of 50-Hz 

sine wave. Figure 3.13 is the filtered hodograph of the S-wave in Figure 3.12. The filter is 

an 80-Hz low-pass filter. The straight line denotes the rotated in-line direction, which 

indicates that the strongest horizontal motion is characterized by a 46 degrees angle to the 

in-line geophone orientation. The angles vary along the borehole with depth because of 

unavoidable twisting of the cables from which the geophones are mounted.  

 

Figure 3.12 Hodograph of S-wave signal in Borehole C4993 at Hanford site 
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Figure 3.13 Hodograph of filtered S-wave signal in Borehole C4993 at Hanford site 

The variation in geophone orientation requires correction. Failure to correct 

variations in geophone orientation will result in phase or time shifts in recorded signals. 

There are a few methods in the literature to correct the disorientation. One correction is to 

track the particle motion alignment by inspection (Oye et al, 2005). This method works 

when signal-to-noise ratio is high because it is sensitive to noise and preceding P-wave 

and SV-wave arrivals. Another method for the correction is the maximum energy method 

by Di Siena et al (1984) using P-wave arrivals. The most common method is the 

eigenvector analysis of the covariance matrix (Kanasewich, 1981; Esmersoy, 1984; Daley 

et al, 1988). Strong anisotropy and polarization skewing pose a challenge to all of these 

methods. A trend line was used to obtain the strongest direction of the S-wave motion, 
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which is called the rotated in-line orientation. The recorded in-line and x-line signals 

were then projected onto the rotated in-line orientation in order to reproduce S-wave 

signals at each depth that are aligned to the T-Rex shaking orientation. Strong anisotropy, 

multi-polarization and polarization skewing pose a challenge to all of these methods 

when signal-to-noise is low at significant depths. Only when the polarization skewing, 

wave scattering and coupling effect (Figure 3.14) are eliminated from the time series can 

the rotated in-line orientation be correctly recovered. A new method using wavelet 

response is proposed in Chapter 6 to solve this problem.  

 

 

Figure 3.14 Polarization skewing, wave scattering and coupling of S-wave signal 

3.7 SUMMARY 

In this chapter, the vibratory source equipment and the procedures for field testing 

are discussed. Complicated conditions caused the underground stratigraphy of the real 



 67

earth add to the difficulty in obtaining high quality signals. As discussed in the following 

chapters, the signal quality can be improved by customizing the excitation frequency of 

the vibrator to the damped natural frequency of the earth-vibrator system. A proper 

increase in the excitation duration of the source signal also contributes to the quality of 

the receiver signal. 

The arrival-identification method is also discussed in this chapter and an example 

of a travel-time analysis is presented. This method is vulnerable to waveform distortions. 

Other conventional travel time analyses almost universally focus on impulsive sources or 

chirp sweeps. No data processing technique is available in the literature regarding the 

trace data generated by durational harmonic source wavelet. This approach and lack of 

analysis technique call for the development of a new technique in signal processing, 

namely the wavelet response technique as discussed in the following chapters. 
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Chapter 4  Simplified Analysis of Downhole Measurements 

4.1 INTRODUCTION 

To assist in the analysis of deep downhole seismic measurements using T-Rex 

and a fixed-sine wavelet as described in Chapter 3, a computer program called DeepSeis 

2.1 was developed. The primary functions of the software are as follows: 

1. Read any data files or time records in ASCII format. Data files can be recorded 

with any number of description header lines, in any number of rows or columns 

for any number of traces in one file. The program provides an interface to script 

useful information from raw data saved in the various formats of different 

recording equipments. To avoid data contamination, the program always directly 

reads the raw data file throughout the data processing process. 

2. Filter signals in time domain or frequency domain. Raw data records can be 

averaged or stacked, and time shift between each shot can be aligned. 

Disorientation of S-wave components can be corrected. 

3. Visualize signals with interactive graphic user interface. Signals can be displayed 

individually or grouped in panels, or in waterfall format. For example, this 

program permits comparison of the filtered and unfiltered signals, the in-line and 

x-line signals, the forward and reverse signals, and the P-wave and S-wave 

signals.  

4. Pick travel time interactively using a mouse pointer or using keyboard. The 

paneled plot and the waterfall plot can be switched alternatively to track wave 

identifications or amplitude variations. 

5. Create travel time or velocity profiles. 
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One example of using DeepSeis 2.1 is presented in this chapter. Testing was 

conducted using the setup shown in Figure 3.4. An example set of data from one borehole 

at the Hanford site is shown. 

4.2 BRIEF BACKGROUND OF CONVENTIONAL ANALYSES 

Conventional VSP and the deep downhole test commonly assume that the source 

and receiver are on the same vertical line perpendicular to horizontal layers. On the other 

hand, in offset VSP tests, the ray deviation is located significantly from a vertical line, 

thereby requiring moveout corrections and migration of trace data. 

Conventional VSP processing is divided into five processing sequences (Mari et 

al, 1999). The first sequence includes correlation, correction for signature variations, tool 

rotation and borehole deviation, editing inaccurate records, and sorting into 3D 

components. The second sequence comprises selection of the first arrival times. The third 

sequence is characterized by wave separation of up-going and down-going P and S 

waves. The third sequence is deconvolution of up-going waves by down-going waves. 

The fourth sequence consists of flattening the deconvolved up-going waves. The fifth 

sequence is the production of the stacked VSP trace. 

An impulse response of the earth is generally preferred for travel time analysis. 

For a source signal )(tf , if )(te is the impulse response of a linear system, then the 

displacement response, )(tu , at the receiver satisfies: 

 )(*)()( tetftu =  (4.1) 

where the asterisk “*” denotes convolution.  

If the source signal is available, deconvolution is used to get the impulse response as: 

 
⎭
⎬
⎫

⎩
⎨
⎧

= −

)}({
)}({)( 1

tfFFT
tuFFTFFTte  (4.2) 

where FFT denotes Fast Fourier Transform, and 1−FFT denotes inverse FFT. 
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If the source signal is unavailable, one approach to obtaining an impulse, )(tδ , is trying to 

find an inverse filter )(tl such that: 

 )()(*)( ttftl δ≈ . (4.3) 

Application of the inverse filter to Equation (4.1) yields: 
 )()(*)()(*)(*)()(*)( tetettetftltutl =≈= δ . (4.4) 

Unfortunately, an inverse filter is not always available. As an alternative, a chirp 

sweep )(tf is used in the conventional VSP, the autocorrelation of which results in a zero-

phase wavelet that is similar to an impulse )(tδ . The autocorrelation can expressed as: 

 )()()( ttftf δ≈⊗  (4.5) 

where the symbol “⊗ ” denotes correlation. 

It is assumed (Brotz et al, 1987; Bickel, 1982) that the cross-correlation of the chirp 

sweep )(tf with receiver signal )(tu would result in the impulse response )(te  that can be 

expressed as: 
 )()(*)()()()( tetetftftutf ∝⊗=⊗  (4.6) 

where the symbol “ ∝ ” denotes proportional with a constant scale. In the 

frequency domain, if the following is defined:  
 )}({)( teFFTE =ω , )}({)( tuFFTU =ω , )}({)( tfFFTF =ω  (4.7) 

one obtains (Baeten et al, 1990): 

 )(|)(|)()()()()( 2 ωωωωωωω EFEFFUF ==  (4.8) 

where: )(ωF denotes the conjugate of )(ωF .  

A chirp sweep is capable of keeping the power spectrum 2|)(| ωF  constant over 

a given bandwidth. The impulse response within this bandwidth can be recovered from: 

 2|)(|
)()()(

ω
ωωω

F
UFE =  (4.9) 
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The terms minimum phase, maximum phase, and zero phase generally refer to a 

system, a signal, or a filter in the literature. These terms and concepts are critical to the 

correct interpretation of signal processing. 

A linear and time-invariant system and its inverse are both causal and stable, so 

that the system is considered minimum-phase (Oppenheim and Schafer, 1975; Cambois, 

2000). The energy of a minimum-phase system (for example, an airgun shot or a 

dynamite blast) is as close to time zero (trigger time) as possible, but the energy can not 

precede the trigger time because a minimum-phase signal must be causal. The inverse of 

the minimum-phase is also causal. Mari et al (1999) defines the minimum and maximum 

phase signals as follows. The z-transform of a wavelet s(t) can be expressed as the 

product of multiple doublets as: 

 ∏∑ +==
= k

k

N

i

i
i zbCzszS )1()(

0
 (4.10) 

where: zbk+1 is the k-th doublet and C is a normalization constant. If 1|| <kb  

for all k, the signal S(z) is called the minimum phase, and S(z) is invertible because the 

doublet is invertible and stable. If 1|| >kb  for all k, then S(z) is maximum phase. 

A minimum phase filter has a phase spectrum )(ωφ which is the Hilbert 

transform of the amplitude spectrum |)(| ωA , or: 

  |)})({ln(|)( ωωφ AHT=  (4.11) 

where HT is the Hilbert transform. A minimum phase filter is causal and causally 

invertible. 

An autocorrelation function, which has the largest central amplitude at time zero, 

is called a zero-phase wavelet (Berkhout, 1984). The Continental Oil Company 

recommended using zero-phase deconvolution on Vibroseis data in the 1970s. However, 

Baeten and Ziolkowski (1990) concluded that the Vibroseis source signature was not 
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zero-phase after they analyzed the mechanism of the Vibroseis vibration and then 

modeled it analytically and compared with field test results. 

The weighted sum signal of the ground force of the vibrators is generally used as 

the feedback signal, while the chirp sweep is widely used as the drive signal. This is 

partly due to the effectiveness of the predictive deconvolution for a chirp sweep that 

assumes a zero phase Klauder (pilot sweep) wavelet. In addition, the recording 

instruments, attenuation, ghosts, reverberations, and other types of multiple reflections 

are minimum-phase components. The convolution of the zero-phase Klauder wavelet 

with minimum-phase components results in a mixed phase seismic wavelet. The Klauder 

wavelet is converted to its minimum-phase equivalent in order to avoid a mixed phase 

wavelet for a spiking deconvolution (Cambois, 2000; Robinson and Saggaf, 2001; and 

Brittle et al, 2001). However, this solution still assumes that the zero-phase Klauder 

wavelet represents the Vibroseis source signature, which conflicts with the results by 

Baeten and Ziolkowski (1990) who concluded the correlated Vibroseis data does not 

contain a zero phase wavelet.  

On the other hand, the conventional predictive deconvolution is challenged 

because it assumes that the reflectivity of the earth is statistically white, the data is noise 

free, and the seismic wavelet is minimum phase. Mewhort (2002) redeems the use of 

predictive deconvolution on Vibroseis data as a violation of the minimum phase 

assumption because the source signature is constant phase. Mewhort (2002) concluded 

that the results from the minimum-phase Vibroseis deconvolution are superior to zero-

phase deconvolution, though both displayed residual phase errors. 

Correlation with a matched filter produces a degraded result in the presence of 

significant noise (Mari, 1999). Cross-correlation is sensitive to waveform distortions as a 

result of noise and correlated waveforms such as multi-path arrivals, reflections, S-wave 
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birefringe, and S-wave splitting. When the signal to noise ratio is low, the cross-

correlation deteriorates. Generalized cross-correlation algorithms have been widely used 

to filter signals in a frequency window before correlation (Ching et al, 1999; Hero and 

Schwartz, 1985). 

The multi-component signal poses a challenge to current wavelet transform and 

time-frequency signal analysis. Okaya et al (1992) used Fourier frequency-uncorrelated 

time transformation (short time Fourier transform) to suppress and reduce resonance-

induced energy through vibrator-to-ground coupling. Wei and Bi (2005) divided a signal 

into a number of segments and estimated the desired parameters for computing the 

modified local polynomial time-frequency transform in each segment from polynomial 

Fourier transform in the frequency domain.  

Jiang et al (2006) proposed a time-frequency cross-correlation algorithm based on 

wavelet transform to extract reflections from the trace data. Their method proved 

appropriate for removing ambient noise and extracting reflected sweeps from the trace 

data. Eigenimage discrete wavelet transform is used for multi-scale geophysical data 

analysis by Droujinine (2006) to improve the scale resolution when non-stationary noise 

spans most wavelet scales. 

Without assuming weak anisotropy, Ursin and Stovas (2006) derived 

approximations for travel time and travel time squared for multiple transmitted, reflected, 

and converted quasi-P-quasi-SV-waves, or multiple transmitted, reflected SH-waves in a 

layered transversely isotropic medium using the Taylor series approximations in 

slowness.  

Svenningsen and Jacobsen (2007) presented a novel method to recover and 

retrieve information on absolute S-wave velocities from receiver functions. They 
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calculated the half-space S-wave velocity from the horizontal slowness and the angle of 

surface particle motion for an incident P wave using a suite of filter-parameters.  

The drive signal used in this research is a fixed-sine wavelet as discussed in 

Chapter 3. Different from a chirp sweep, an inverse filter as described by Equation (4.3) 

is not available, and an autocorrelation of a fixed-sine wavelet as described by Equation 

(4.5) is far from an impulse )(tδ . The hand-picked arrival-identification method is used 

for this simplified travel time analysis before the more complex wavelet-response 

analysis is introduced in Chapter 7.  

4.3 EXPLANATION OF TERMINOLOGY USED IN DEEPSEIS 2.1 

4.3.1 Record or signal 

The recorded and sampled time series of analog voltage from a geophone or an 

accelerometer is called a record. A signal generally refers to a raw record, a processed 

record, or any designed or generated (as by function generator) time series. The 

magnitude of any signals related to the downhole test is by default denoted in voltage. All 

signal amplitudes (y-axis for time series, both axes for hodograph) in the figures in this 

chapter, if not otherwise explicitly labeled, are denoted in volts. 

All figures for time series are shown with the y axis scaled independently in order 

to improve legibility for each trace (gain-normalized). This makes the figures more 

legible in cases where the amplitude varies from trace to trace (large when close to the 

surface, small at depth).  

4.3.2 Input signal or drive signal 

An independent fixed sine wave with a frequency of 50 Hz, 30 Hz or 20 Hz was 

sent from a function generator to T-Rex at each measurement depth. This signal is called 

the Input Signal to T-Rex, or the T-Rex Drive Signal. The input signal was a perfect sine 
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wave comprising of either 5 cycles of 50 Hz or 4 cycles of 30 or 20 Hz. A 50-Hz drive 

signal is shown in Figure 4.1. Input signals of all measurements were aligned so that they 

all commenced at the same instant, which is called time zero, and was marked as time 

zero (at t = 0) on all recorded signals. 

The input signal was sent to T-Rex anywhere from three to 15 times to allow 

signal averaging of the compression and shear waves in the time domain. In addition, the 

polarity of the drive signal for the shear wave was then reversed and the whole process 

was repeated to allow another averaged shear wave signal with reversed polarity to be 

recorded at the same depth. A set of 30-Hz S-wave drive signals is shown in Figure 4.2. 

 

Figure 4.1 5 cycles of 50-Hz P-wave drive signal to T-Rex 

 

Figure 4.2 4 cycles of reversed sets of 30-Hz S-wave drive signals to T-Rex 

4.3.3 Reaction mass acceleration in vertical shaking 

The vertical output force of T-Rex that was used to generate compression waves 

was transmitted to the ground surface by the square base plate located on the bottom of 
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T-Rex. The base plate directly contacted the ground surface. The acceleration of the 

reaction mass that loads the base plate was recorded by a vertical accelerometer on the 

reaction mass. An example of the reaction mass output signal is presented in Figure 4.3. 

 

Figure 4.3 Unfiltered P-wave acceleration signal of the reaction mass for 4 cycles of 
the 30-Hz sine-wave drive signal 

4.3.4 In-line and cross-line (x-line) 

Two ways to position the vibrator are illustrated in the Figure 4.4. Figure 4.4 (a) 

displays the most common plane layout of the vibrator relative to the borehole. 

Regardless of the orientation of the vibrator, the vertical section crossing both the center 

line of the vibrator and the borehole is called the in-line plane or in-line direction,. The 

plane perpendicular to the in-line section is called the cross-line plane or cross-line 

direction. Figure 4.4 (b) shows the layout of T-Rex used in this research. During shaking 

for the generation of shear waves, the base plate was moving perpendicular to a radial 

line between the base plate and borehole as shown in Figure 4.4b. The radial line is called 

the cross-line (x-line) direction, while the tangential line, which represents the direction 

of the base plate, is called the in-line direction. 
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Figure 4.4 Illustration of in-line and cross-line planes for S-wave generation 

4.3.5 Forward signal and reverse signal 

The horizontal in-line direction in Figure 4.4 (b) has two orientations - the 

forward direction and its opposite, namely the reverse direction. Specifically for shear 

wave generation, the initial horizontal direction in which T-Rex is excited is called the 

forward direction. The opposite initial direction of excitation as a result of reversing the 

polarity of the drive signal to T-Rex is called the reverse direction. The forward and 

reverse motions should be out of phase or have a 180-degree in-phase difference. An 

example of these two records is shown in Figure 4.2 for the drive signal. 

4.3.6 Reaction mass acceleration in horizontal shaking 

The horizontal output force of T-Rex was transmitted to the ground surface by the 

square base plate located on the bottom of T-Rex. The acceleration of the reaction mass 

that loads the base plate was recorded by a horizontal accelerometer on the reaction mass 

during horizontal shaking. An example of the reaction mass output signal is presented in 

Figure 4.5. The top graph represents the forward initial motion while the lower graph 

represents the reverse input motion. 

Offset 

Cross-Line 

In-Line
Borehole T-Rex 

Offset 

In-Line Borehole Vibrator 
Cross-Line 

(a) In-Line Setup (b) Cross-Line Setup 
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Figure 4.5 Unfiltered S-wave acceleration signals of the reaction mass excited in the 
forward and reverse directions with 4 cycles of a 30-Hz sine wave drive 
signal 

4.3.7 Weighted-sum force signal 

As defined by Equation (3.3), the weighted-sum force signal is the weighted 

average of the accelerations of the reaction mass and the baseplate when their 

corresponding masses are used for weights. Figure 4.6a shows that the P-wave weighted-

sum signal is smoother than P-wave acceleration signal of the reaction mass in Figure 

4.3, but slighted shifted upward. The S-wave weighted-sum signals shown in Figures 4.6 

b and c are not significantly improved over that of the acceleration of the reaction mass 

shown in Figure 4.5.  

As the feedback signal of the Vibroseis, the weighted-sum signal better represents 

the ground force signal than does the acceleration of the reaction mass. However, as a 

reference for the trigger time or time zero, the acceleration of the reaction mass is 

preferred because the trigger time of the weight-sum signal is averaged.  
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Figure 4.6 Unfiltered weighted-sum force signal for 5 cycles of a 50-Hz sine wave 
drive signal 

4.3.8 Unfiltered signals 

Unfiltered signals are the averaged original time series directly recorded with the 

Data Physics Analyzer. They are the averaged outputs of the reaction mass accelerometer 

or the receiver geophones from the 50-Hz, 30-Hz or 20-Hz input signal. The average 

amplitude of the unfiltered signal over the record length may not be zero because of the 

non-zero initial voltage. Figure 4.7 shows that, the average amplitude of the unfiltered P-

wave signal of the lower receiver at a depth of 1400 ft is less than zero. Figure 4.8 shows 

that, the average amplitude of the unfiltered S-wave signal is also less than zero. If an 

unfiltered signal is not stationary, its average value displays a trend or variation with 

time. Only the fluctuation of the waves is of concern. The trend of each signal was 

removed to obtain a zero average, so that in waterfall plots showing signal fluctuations 
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versus scaled depth intervals, the center line (average) of each signal is located exactly at 

each depth location. 

 

Figure 4.7 Unfiltered P-wave signal of lower receiver for 4 cycles of a 30-Hz sine wave 
drive signal 

 

Figure 4.8 Unfiltered S-wave signal of lower in-line receiver for 4 cycles of a 30-Hz 
sine wave drive signal 

4.3.9 Filters and filtered signals 

Filters were used in processing the unfiltered signals in this research using 

DeepSeis 2.1. A filter is a transfer function that modifies magnitudes and phases of the 

signal. A low-pass filter is a filter that attenuates or removes undesired high frequencies. 

The filtered signal is then smoother, thereby facilitating identification of  the input 

signal transmitted through the geologic column. Unfiltered signals in the time domain are 

transformed into the frequency domain using the discrete Fast Fourier Transform (FFT).  
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A low-pass filter is applied by multiplying filter coefficients with both the real and 

imaginary parts of the frequency magnitudes to obtain a modified frequency response. 

Then the inverse FFT is applied to the modified frequency response to obtain a filtered 

signal in the time domain. Figure 4.9 displays the filtered P-wave signal from Figure 4.7.  

Figure 4.10 is the filtered S-wave signal from Figure 4.8. The open symbols on the 

waveforms in Figures 4.9 and 4.10 identify wave points on the waveforms that were used 

to determine the relative travel times discussed in later sections. 

The exact same filtering was performed on all signals with a given fixed 

frequency in this research. Therefore, any minor shifting in the time domain due to the 

filtering is the same for each fixed-frequency signal. As a result, the relative travel times 

determined herein are unaffected by this filtering. As noted above, the wave-arrival 

identification on the filtered waveform is denoted by a symbol added to the waveform 

(the small circle at t ~ 0.21 sec in Figure 4.9 and the triangles at t ~ 0.37 sec in Figure 

4.10)  

 

Figure 4.9 Filtered P-wave signal of lower receiver for 4 cycles of a 30-Hz sine wave 
drive signal; low pass 40 Hz 
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Figure 4.10 Filtered S-wave signal of lower in-line receiver for 4 cycles of a 30-Hz sine 
wave drive signal; low pass 40 Hz 

4.3.10 Pass band and low pass filter 

According to signal-processing convention, the “pass band” of a filter refers to the 

band of frequencies that lie within three decibels (a factor of two) of the peak magnitude. 

The “stop band” or “reject band” comprises all other frequencies. The word “band” refers 

to a frequency range. The frequency corresponding to three decibels of the peak value is 

called the “cut-off” frequency.  A “low pass” filter applies to a pass band of a filter in 

the frequency range between zero and the cut-off frequency. 

Unfiltered signals are all considered digital discrete time series whose frequency 

domain is also discrete. Figure 4.11 shows the amplitude spectrum of the P-wave signal 

when the input signal is a 30-Hz sine wave. As demonstrated in the figure, the largest 

magnitude in the spectrum is the frequency near 30 Hz except for the 60-Hz noise peak.  

Because the 60-Hz noise has a dominant contribution in the unfiltered signal, it must be 

filtered or removed in order to retrieve and view the desired measurement of the 30-Hz 

input signal. 
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Figure 4.11 Amplitude spectrum of the unfiltered P-wave signal of the lower receiver at 
a depth of 1400 ft for 4 cycles of a 30-Hz sine wave drive signal; Expanded 
from 0 to 100 Hz 

A discrete filter in the frequency domain is shown in Figure 4.12. This filter is 

applicable to these discrete time series. The pass band is 0 to 40 Hz while the reject band 

is 50 Hz to the Nyquist frequency, which is half of the sampling frequency (the sampling 

rate used in this research is 0.00012207 sec). A transitional band exists between 40 Hz 

and 50 Hz, which is a cubic spline curve or a straight line in this work. 

A transitional band is selected if the magnitude of the reject band is not negligible 

compared with the magnitude of the desired dominant frequency. For example, in Figure 

4.11, if the pass band is 0 to 32 Hz, then a transitional band of 32 to 40 Hz significantly 

improves the filtered signal. If the contribution of the reject band to the spectrum (or 

energy) is negligible, an ideal filter makes little difference compared to a transitional 

filter. For example, if the pass band is 0 to 40 Hz, no significant difference is observed 

between a transitional filter and an ideal filter. If a general trough (near 39 Hz) follows 

the peak of the signal energy (near 30 Hz), a cut-off frequency (40 Hz) is chosen near the 

trough and an ideal filter is used. Otherwise, a transitional filter is used. 



 84

 

Figure 4.12 Pass band and reject band of a 40-Hz low pass filter 

4.3.11 Time shift 

The acceleration of the reaction mass, as shown in Figure 4.3 is prone to 

distortion when the initial state of the T-Rex mass is inconsistent, or the soil below the 

base plate is nonlinearly loaded. In this research, it was found that even if the drive signal 

is always aligned to zero time, the reaction mass initial response may be shifted from zero 

time, which is called a time shift. The denoted first-arrival in Figure 4.13 is the optimal 

point for wave-arrival identification. However, this point is not reliable because of the 

nonlinear initial response of the reaction mass, which may produce different first arrival 

times for the reaction mass and receivers even if the drive signals are exactly aligned. 

 

Figure 4.13 P-wave initial response of the reaction mass 

Figure 4.14 is used to further explain the unreliability of the first arrival (or first 

movement of the reaction mass) and the transient effect on both frequency and 

magnitude. The filter is a 40-Hz low-pass filter (shown in Figure 4.12) that removes all 
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frequencies higher than 40 Hz. The first arrival point (or “first break”) in Figure 4.13 no 

longer exists in Figure 4.14 because it may originally contain transient frequencies that 

are higher than 30 Hz. On the other hand, a low pass filter in the frequency domain is 

equivalent to a convolution of a sinc-function with the corresponding time series. If the 

cutoff frequency is too close to the desired frequency, the moving average effect of the 

convolution will also cause the time shift near the first break. The amplitude of the first 

peak denoted by the small circle in Figure 4.14 is smaller than that of other peaks because 

of the transient state of the reaction mass before the steady state is reached. It was found 

in the research that this first peak is a relatively consistent timing point to use in 

evaluating the relative travel times of P waves. 

 

Figure 4.14 First peak of the filtered acceleration signal of the reaction mass 

Further analysis confirmed that different non-causal low pass filters for the 30-Hz 

signal in Figure 4.13 will shift the first arrival and first trough, but only slightly shift the 

first peak. When the transient state extends to the first peak, other peaks and troughs that 

are in steady state remain unchanged and perfectly aligned. The shift of the first arrival is 

systematically backward (time is less) and stable because the desired 30-Hz signal 

remains dominant. Steady-state peaks of output signals display no time shift if the input 

signals do not demonstrate a time shift.  A low-pass filter proved superior to other 

approaches (for example, Butterworth filter) in tracking the desired fixed frequencies in 

this research. 
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Nevertheless, steady state peaks and troughs do not always serve as an 

appropriate reference for wave-arrival identification because of reflection waves that 

come into the direct signal and distort the steady state peaks and troughs. As a 

compromise and for convenience, the first-arrival wave identification method is replaced 

with the first peak or first trough of the waveform for the reaction mass acceleration and 

other receiver signals in the analysis using DeepSeis 2.1. Little shifting is observed from 

the steady state of the desired signal frequency (for example 30 Hz) and less interference 

is seen from the reflections. 

As an alternative to the non-causal filter, a Butterworth filter may secure the first 

arrival as being stationary, but proved inadequate if the frequency of the dominant noise 

(60-Hz noise in Figure 4.11 with larger magnitude than the desired signal at 30 Hz) is 

very close to that of the signal, and even more so for the filtering of the 60-Hz noise from 

the 50-Hz signal, which was used in much of this work. If the noise can not be 

significantly attenuated or removed, it will shift the first arrival as well as the steady-state 

peaks and troughs, and the shift is irregular because it is controlled by the noise. On the 

other hand the low-pass filter can remove undesired 60-Hz noise completely and track the 

desired frequency effectively.  Therefore, the low-pass filter was used herein in all 

analysis with DeepSeis 2.1. 

4.3.12 Relative travel times 

Relative travel times refer to the time intervals between the same points on the 

waveforms of the reaction mass and receivers (lower receiver or reference receiver). The 

time on each filtered waveform used to determine the relative travel time is denoted by a 

small symbol that has been added to all waveforms. Examples are shown in Figures 4.9, 

4.10, and 4.14 by the small circles or triangles. These points representing times are not 
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the wave arrivals but are the same point on the waveform from one measurement depth to 

the next. These points are called herein: “wave-arrival identifications”. 

4.3.13 Long lever arm and short lever arm 

The lower borehole geophone from Lawrence Berkeley National Laboratory 

(LBNL) was fixed to the borehole wall at a depth by rotating the pivoting lever arm 

attached to the geophone tool (see Figure 3.4). As the lever arm rotated outward, the 

geophone tool came into contact with the borehole wall. Two lengths of lever arms were 

used, namely a longer lever arm and the shorter lever arm. Because of irregularities in the 

borehole diameter (Gardner and Price, 2007), the longer lever arm was used to avoid 

inadequate contact with the borehole wall in regions where washouts would have 

substantially increased the borehole diameter. Both longer and shorter arms were used at 

depths 1240 and 1260 ft in borehole C4993 and no significant difference was found in the 

lower receiver output with the different level arms. For all other depths, only the longer 

lever arm was used. 

4.3.14 Reference receiver 

The reference receiver is the receiver that was consistently fixed at a depth of 6.6 

m (22 ft) in Borehole C4993 while the lower 3-D receiver of LBNL (see next section) 

was moved downward or upward along the borehole (see Figure 3.4). During comparison 

of the responses of the longer arm and shorter arm lower receiver, the same reference 

receiver was used but its depth was changed to 5.1 m (17 ft).  

4.3.15 Lower receiver 

The lower receiver is the LBNL 3-D receiver with three orthogonal geophones in 

the tool, one for P wave and two for S waves (see Figure 3.4).  It was positioned lower 
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than the location of the reference receiver, and was moved along the borehole for 

measurements at different depths. 

4.4 WATERFALL PLOTS OF UNFILTERED AND FILTERED P-WAVE RECORDS 

Figures 4.15 to 4.18 are waterfall plots of unfiltered P-wave signals of the vertical 

receiver in Borehole C4993. The drive signal used in recording the records in Figures 

4.15 to 4.17 is 5 cycles of a 50-Hz sine wave. The drive signal used in the records in 

Figure 4.18 is 4 cycles of a 30-Hz sine wave.  

Observation of the unfiltered P-waveforms in Figures 4.15 to 4.18 makes clear 

that the unfiltered waveforms facilitate identification of the initial portion of the P 

waveform over depths from 370 ft (the starting depth in these tests) to a depth of 

approximately 980 ft. However, tracking the initial portion of the waveform below this 

depth is difficult.  

One benefit of DeepSeis 2.1 is the filtering of the fixed-frequency waveform. This 

benefit is seen when viewing the filtered signals of the unfiltered records. The filtered 

signals are presented in Figures 4.19 to 4.22. A 60-Hz low-pass filter was applied to all 

50-Hz P-wave records, and a 40-Hz low-pass filter was used to 30-Hz P-wave records. 

The initial portion of the waveform in these figures is also identified by the open circle on 

each waveform. Clearly, the filtered signals are excellent and the fixed-sine signal 

generation with T-Rex works well in deep downhole profiling for seismic engineering 

purposes. 
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Figure 4.15 Waterfall plot of unfiltered P-wave signals (370-560 ft) 
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Figure 4.16 Waterfall plot of unfiltered P-wave signals (570-790 ft) 
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Figure 4.17 Waterfall plot of unfiltered P-wave signals (800-980 ft) 
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Figure 4.18 Waterfall plot of unfiltered P-wave signals (980-1400 ft) 
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Figure 4.19 Waterfall plot of filtered P-wave signals (370-560 ft) 
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Figure 4.20 Waterfall plot of filtered P-wave signals (570-790 ft) 
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Figure 4.21 Waterfall plot of filtered P-wave signals (800-980 ft) 
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Figure 4.22 Waterfall plot of filtered P-wave signals (980-1400 ft) 
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4.5 RELATIVE P-WAVE TRAVEL TIMES AND INTERPRETED VP PROFILE 

All relative P-wave travel times determined by the open circles in the waterfall 

plots of the filtered P-wave signals for Borehole C4993 at the Hanford site are shown in 

Figure 4.23. Expanded plots of the relative P-wave travel times are shown in Figures 4.24 

to 4.26. The interpreted Vp values of each layer or sub-layers are given by the inverse of 

the slopes of the solid lines through the relative times in these figures. The values of Vp 

are presented in the boxes next to the solid lines. Clearly, reasonable correlations exist 

between the layering and velocities. It should be noted that the geologic profile with the 

depths of the layer boundaries were known before the data were analyzed. However, 

fitting the straight lines through the data was done based on the data and not the layer 

boundaries.  
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Figure 4.23 Relative P-wave travel times and interpreted Vp Profile in Borehole C4993 
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Figure 4.24 Expanded relative P-wave travel times (300–800 ft) 
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Figure 4.25 Expanded relative P-wave travel times (600–1100 ft) 
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Figure 4.26 Expanded relative P-wave travel times (900–1400 ft) 

As seen from the expanded travel time figures in Figures 4.24 to 4.26, some 

measured points deviate from the straight line near the layer boundaries. For example, the 

data points between depths of 195 to 215 m (650 to 718 ft) exhibit a flatter slope than the 

straight line, and then become steeper near the boundary. It is believed that the reflections 

shifted the wave arrival-identification points on the waveforms from the direct arrival 

times. When fitting a straight line through the data points, an overall trend was 

considered, and engineering judgment was applied to discount the local, unreasonable 

data points. The wavelet-response method is developed and presented in Chapter 7 to 

reduce the waveform distortions caused by the reflections, and improve the resolution of 

the travel time analysis. 
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An independent check on the downhole Vp values was also available at this site. 

Independent P-wave velocities were measured in Borehole C4993 with the P-S 

suspension logger by GeoVision Geophysical Services. The Vp profiles from both 

methods are compared in Figure 4.27. Five important results are apparent. First, the 

overall comparison between the two methods is quite good. Second, the average P-wave 

velocities in three of the four interbeds (Rattlesnake Ridge, Cold Creek and Mabton) 

agree well. Third, the P-wave velocities of the thin Selah interbeds (6.9 m or 23 ft thick) 

at an average depth of about 219 m (730 ft) does not agree well. Fourth, the P-wave 

velocities in the basalt layers measured by the suspension logger are generally 10% above 

those measured by the downhole tests. Fifth, the suspension logger captures the variations 

in P-wave velocities within the basalt layers and interbeds and near the boundaries while 

the downhole test does not. 

It should be noted that the frequency dispersion effect may contribute to the 

velocity differences between the downhole and suspension logging tests in basalt layers. 

The source signal generated by the OYO Model 170 Suspension Logging Probe, which 

was used for the suspension logging tests, is between 500 and 5000 Hz, while the 

frequency of a vibratory source (T-Rex) is between 20 and 50 Hz. Suspension logging 

uses much shorter wavelengths (for example, 3000 Hz for P waves and 1000 Hz for S-

waves in soft rock or stiff soils) than does the downhole test (20 ~ 50 Hz). As discussed 

in Chapter 2, tests with higher frequencies yield somewhat higher velocities than do tests 

with lower frequencies due to frequency dispersion. The generally higher velocities in 

basalt layers measured by the suspension logger may be affected by the much higher 

frequencies used in the suspension logging tests. 

On the other hand, it appears that both the frequency dispersion effect and the 

effective medium theory contribute to the velocity differences between the downhole test 
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and suspension logging test in the interbeds as well as the basalt layers. The P-wave 

velocities of the interbeds measured by downhole tests match with those by the 

suspension logger. The frequency dispersion effect on the interbeds is possible to be 

counteracted by the effect from the effective medium theory discussed in Chapter 2. The 

downhole test used much longer wavelengths than the thickness of the thin interbed 

layers. The measured velocity of the thin layers is actually the weighted average of the 

velocities of all layers within a wavelength. For measurements in an interbed, part of the 

basalts within the thickness of a wavelength is covered and measured as an equivalent 

interbed. Similarly, the wavelength is also longer than some of the basalt layers, where 

measured velocities may be underestimated because of the thin layers covered within a 

wavelength from the measurement depths. 

The measured velocities vary with testing frequencies. For the purpose of seismic 

hazard analysis, a test frequency closer to the dominant earthquake frequency is 

preferred. Typically earthquake frequencies that cause strong ground motions are much 

lower than 30 Hz. The frequency of the vibratory source is much closer to the earthquake 

dominant frequencies than that of the suspension logging test. Therefore, the velocities 

measured using downhole tests should be more representative for site response analysis. 

Velocities measured in laboratory tests using samples from Borehole C4998 are 

presented in Figure 4.28. The stratigraphy at Borehole C4998 is similar to that at 

Borehole C4993. Laboratory results are available only for the basalt layers. The velocities 

show some variability because the samples represent localized conditions, but generally 

the laboratory results agree with the measurements by the downhole and suspension 

logging tests. 
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Figure 4.27 Comparison of P-wave velocities from downhole and suspension logging 
tests in Borehole C4993 
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Figure 4.28 Comparison of P-wave velocities from downhole and suspension logging 
tests in Borehole C4993 and lab test in Borehole C4998 
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4.6 UNFILTERED S-WAVE FORWARD IN-LINE RECORDS  

The orientation of both in-line and cross-line receivers is uncontrolled. As shown 

in Figure 4.29, the in-line receiver is expected to be aligned with the in-line shaking 

direction, but its actual orientation is unknown because of the unknown twisting angle,θ , 

of the cable suspending the receiver tool. Therefore, the signal recorded by the in-line 

receiver is not necessarily the motion in the in-line plane. To obtain the motion in the in-

line plane, or the rotated in-line motion, correction for disorientation is performed using 

both the in-line and cross-line signals. 

 

Figure 4.29 Horizontal disorientation of the receiver tool 

The horizontal S-wave shaking is comprised of two initial orientations along the 

in-line direction in Figure 4.4(b). One orientation is called forward, and the other called 

reverse. Figures 4.30 to 4.37 present the unfiltered S-wave signals produced only by 

forward shaking. The reversed S-wave signals, which are similar to the forward S-wave 

signals except a 180-degree phase difference, are not shown. For each forward shaking, 

the horizontal motion is recorded simultaneously by two orthogonal components of the 

lower horizontal receiver, namely the in-line receiver and the cross-line receiver. Figures 

4.30 to 4.37 present the signals recorded only by the in-line receiver. The signals 

recorded by the cross-line receiver are similar.  
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By viewing the records in Figures 4.30 to 4.37, it can be seen that an arrival point 

on the waveform can not be tracked consistently from the in-line signals with depth and 

the records are difficult to interpret below 297 m (990 ft). The disorientation is corrected 

and shown in the next section. 
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Figure 4.30 Unfiltered forward S-wave signal of lower in-line receiver (370 – 475 ft)  
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Figure 4.31 Unfiltered forward S-wave signal of lower in-line receiver (480 – 540 ft)  
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Figure 4.32 Unfiltered forward S-wave signal of lower in-line receiver (550 – 660 ft)  
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Figure 4.33 Unfiltered forward S-wave signal of lower in-line receiver (670 – 760 ft)  



 110

 

Figure 4.34 Unfiltered forward S-wave signal of lower in-line receiver (770 – 870 ft)  



 111

 

Figure 4.35 Unfiltered forward S-wave signal of lower in-line receiver (880 – 990 ft)  
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Figure 4.36 Unfiltered forward S-wave signal of lower in-line receiver (990 – 1100 ft)  
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Figure 4.37 Unfiltered forward S-wave signal of lower in-line receiver (1110 – 1300 ft) 
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4.7 FILTERED AND ROTATED S-WAVE IN-LINE SIGNALS 

Each panel shown in Figures 4.38 to 4.45 presents the filtered and rotated in-line 

signals from both the forward and reverse shaking. The forward shaking is marked by a 

small circle while the reverse shaking is marked by a small triangle. The small circles or 

triangles denote the waveform identifications that present the same waveform traveling in 

the downward direction. After correction for disorientation as shown in Figures 4.38 to 

4.45, the S-wave arrival identifications are followed using the rotated in-line signals. The 

butterfly pattern produced by the forward and reverse rotated-in-line signals is useful for 

identifying the arrival times. 

At significant depths when the signal-to-noise ratio is low, the S-wave signals 

interfere with multiple-path S-wave arrivals as well as preceding P-wave and possible 

SV-wave signals. Superposition of multiple waveforms results in phase shifts and 

waveform distortions that make the tracking of the same waveform very difficult as 

shown in Figure 4.46. When the wave identifications can no longer be tracked in the S-

wave waterfall plots, the combination of waterfall plots of P-wave and S-wave signals are 

appropriate for predicting and estimating the S-wave arrival times using empirical 

Poisson’s ratio values. Figure 4.47 demonstrates the use of the relative time interval 

between P-wave and S-wave arrivals in the deepest range of this profile. 
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Figure 4.38 Filtered and rotated S-wave in-line signals (370 – 475 ft)  



 116

 

Figure 4.39 Filtered and rotated S-wave in-line signals (480 – 540 ft)  
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Figure 4.40 Filtered and rotated S-wave in-line signals (550 – 660 ft)  
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Figure 4.41 Filtered and rotated S-wave in-line signals (670 – 760 ft)  
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Figure 4.42 Filtered and rotated S-wave in-line signals (770 – 870 ft)  
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Figure 4.43 Filtered and rotated S-wave in-line signals (880 – 990 ft)  
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Figure 4.44 Filtered and rotated S-wave in-line signals (990 – 1110 ft)  
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Figure 4.45 Filtered and rotated S-wave in-line signals (1120 – 1300 ft) 
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Figure 4.46 Waterfall plot of S-wave rotated in-line signals (990 – 1300 ft) 
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Figure 4.47 Estimation of S-wave arrival time using the P-wave arrival as a reference 
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4.8 RELATIVE S-WAVE TRAVEL TIMES AND INTERPRETED VS PROFILE 

All relative S-wave travel times determined by the open circles or triangles in the 

waterfall plots of the filtered and rotated S-wave signals for Borehole C4993 at Hanford 

are shown in Figure 4.48. Expanded plots of the relative S-wave travel times are shown 

in Figures 4.49 to 4.51. The interpreted Vs values of each layer or sub-layers are given by 

the inverse of the slopes of the solid lines through the relative times in these figures. The 

values of Vs are presented in the boxes next to the solid lines. Clearly, reasonable 

correlations exist between the layering and velocities. As with P-wave velocity profiles 

discussed in Section 4.5, the geologic profile with the depths of the layer boundaries were 

known before the data were analyzed. However, fitting the straight lines through the data 

was done based on the data and not the layer boundaries. Obviously, the S-wave travel 

times exhibit more scattered than the P-wave travel times, especially at depths below 300 

m (1000 ft) because of the added difficulty in distinguishing S-wave arrivals from 

preceding P, SV and coupled waveforms in the travel time records. 

As seen from expanded Figures 4.49 to 4.51, some measured points are not 

shown. For example, some measurement points between depths of 330 to 360 m (1100 to 

1200 ft) are not shown but travel-time records were taken. These data points 

demonstrated strong scattering and multi-polarizations, a reasonable rotated in-line 

direction is not even available. When fitting a straight line for the data points, an overall 

trend was considered, and engineering judgment was applied. The wavelet-response 

method is developed and presented in Chapter 7 to correct the disorientation of the 

receiver tool at these depths. 
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Figure 4.48 Relative S-wave travel times and interpreted Vs profile in Borehole C4993 
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Figure 4.49 Expanded relative S-wave travel times (300 – 800 ft) 
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Figure 4.50 Expanded relative S-wave travel times (600 – 1100 ft) 
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Figure 4.51 Expanded relative S-wave travel times (900 – 1400 ft) 
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An independent check on the downhole Vs values was also available at this site. 

Independent S-wave velocities were measured in Borehole C4993 with the P-S 

suspension logger by GeoVision Geophysical Services. The Vs profiles from both 

methods are compared in Figure 4.52. The overall comparison between the two methods 

is quite good. The average S wave velocities in the interbeds agree very well, but the S-

wave velocities in the basalt layers measured by suspension logging are generally about 

20% higher than those measured by the downhole tests. It should be noted that the 

suspension logger captures the variations in S-wave velocities within the basalt layers and 

interbeds and near the boundaries but the downhole test does not have the same 

resolution at these depths. 

Both the frequency dispersion effects and the effective medium theory on P-wave 

velocities may also apply to S-wave velocities. The frequency dispersion effect may play 

a role in the velocity differences between the downhole and suspension logging tests in 

the basalt layers. The generally higher velocities in the basalt layers measured by 

suspension logging test may be affected by the much higher frequencies used in 

suspension logging than downhole tests. 

Both the frequency dispersion effect and the effective medium theory may also 

justify the velocity differences between the downhole test and suspension logging test in 

interbeds. The S-wave velocities of the interbeds measured by downhole tests match with 

those by the suspension logger. The frequency dispersion effect on the interbeds could be 

counteracted by the effect from the effective medium theory discussed in Chapter 2. The 

downhole test used much longer wavelengths than the thickness of the thin interbed 

layers. The measured velocity of the thin layers measured by the downhole test should be 

lower than the suspension logger, as is true for the velocity in the basalt layer. The 

measured velocity in the interbeds is actually the volume-weighted average of the 



 129

velocities of all layers within a wavelength. The measurements in an interbed could be a 

result of an equivalent layer that covers part of the basalt layers within the thickness of a 

wavelength. 

The S-wave velocities measured on intact specimens in laboratory tests are 

compared in Figure 4.53 with the downhole and suspension logging measurements. The 

Vs values of the basalt that were measured in the laboratory agree well with those from 

the suspension logging tests. Typical samples for laboratory test have higher quality than 

the field samples, and the laboratory test results generally overestimate the field 

velocities in rock. It is reasonable to suspect that, the velocities measured by the 

suspension logging test might also overestimate the field conditions as they closely agree 

with the laboratory results. 

The S-wave velocities measured in the laboratory with the samples in the 

interbeds may confirm the effective medium theory. The downhole S-wave velocity in an 

interbed are higher than the laboratory test results because of the basalt layers within a 

wavelength of the interbed. 
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Figure 4.52 Comparison of S-wave velocities between downhole and suspension logger 
tests in Borehole C4993 
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Figure 4.53 Comparison of S-wave velocities from downhole and suspension logging 
tests in Borehole C4993 and lab test at Borehole C4998 
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4.9 SUMMARY 

To minimize the effect of frequency dispersion in deep downhole testing, a new 

source signal called the fixed-sine wavelet is used in this research as opposed to a 

conventional chirp sweep. The downhole test data from a real project with strong layer 

contrasts are processed using software called DeepSeis 2.1 that was developed for use 

with T-Rex as a fixed-sine source.  The test data are presented as an example of the 

travel-time analysis that can be performed with DeepSeis 2.1. High-frequency noise is 

low-pass filtered after the time series are transformed into the frequency domain using 

fast Fourier transform. Travel times are hand-picked directly on filtered waveforms. 

Waterfall plots are used to track wave identifications. Disorientation of the receiver tool 

is corrected for S-wave signals to obtain a rotated in-line signal, a critical aspect in deep 

downhole testing. 

The effect of frequency dispersion may play a role in the travel times of the basalt 

layers. Both P- and S-wave velocities measured by downhole tests in the basalt layers are 

lower than those measured by the suspension logger. The difference may be justified by 

the effect of frequency dispersion, which states that velocity measured with higher 

frequencies is greater than that measured with lower frequencies (Gupta, 1972). 

Effective medium theory (Backus, 1962) may also be a factor in the travel time 

analysis of the thin interbeds. The surrounding basalt layers are much thicker than the 

interbeds. The effective medium theory may have little effect in the basalt layers. The 

thin interbeds are characterized by thicknesses much less than the wavelengths of the test 

frequencies. The downhole test is supposed to overestimate the measured wave velocity 

of the interbeds due to the effective medium theory. However, compared with the 

velocity measured by the suspension logger, the overestimation could be counteracted by 

the effect of frequency dispersion. 
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Strong contrasts in layer stiffnesses between basalt and interbed layers results in 

significant boundary reflections that heavily distort waveforms within the first cycle of 

the waveform. It is clearly seen that waveforms are more distorted near the boundaries or 

in thin layers.  

For vibratory source, the effect of effective medium theory on thin layers and the 

strong reflection at reflectors could compromise a clear identification of the velocity 

profile near the boundary using travel times. Travel times near the boundaries exhibit 

fluctuations and disruptions that cause difficulty in determination of a distinct velocity 

value. 

Signal-to-noise ratio is low for deep downhole signals. Wave arrivals of signals 

below 1000 ft are more difficult to identify. P-wave signals have less waveform distortion 

than S-wave signals because the prescribed capability of source energy for P wave is 

almost double that for S-wave. 
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Chapter 5  Characteristics of Vibratory Source 

5.1 INTRODUCTION 

The seismic source used in this research is T-Rex, a controlled vibratory source. 

A vibratory source can be modeled by several components connected in series with 

multiple degrees of freedom (Lebedev and Beresnev, 2004). However, if consider the 

imaginary boundary between the near-field and far-field earth as an equivalent ground 

surface, the displacement of the equivalent ground surface can be simulated by the 

response of a single-degree-of-freedom (SDOF) system (see Figure 5.1) regardless how 

many internal degrees of freedom for equivalent excitation force. In this chapter, the 

fixed-sine vibratory source is modeled as an equivalent SDOF system in terms of far-

field seismic measurements in the earth as performed in this work. The source signature 

is also defined. 

 

Figure 5.1 Illustration of a vibrator-earth system (adapted from Lebedev and Beresnev, 
2004) 
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Standard Vibroseis theory states that the P-wave, far-field displacement is 

proportional to the true ground force (Miller and Pursey, 1954; Aki and Richards, 1980). 

The theory is based on results of Miller and Pursey (1954), who studied seismic radiation 

from a piston source on the surface of an elastic half space. The true ground force is equal 

to the traction underneath the baseplate integrated over the baseplate area. The traction is 

distributed non-uniformly, and cannot be represented directly by the base plate 

acceleration or reaction mass acceleration. The weighted sum estimation of the ground 

force may be unreliable because of the bending of the baseplate (Baeten and Ziolkowski, 

1990; Martin and Jack, 1990). The travel time depends on amplitude and phase of the 

source wavelet, while the source waveform is subject to distortion during propagation 

(Walker, 1995; Jeffreys, 1996). In the literature, various models and assumptions are used 

to simulate the true ground force or extract the source signature (Hero and Schwartz, 

1985; Baeten and Ziolkowski, 1990); Ching et al, 1999; Cambois, 2000; Robinson and 

Saggaf, 2001; Brittle et al, 2001; Mewhort, 2002). Conventional processing of Vibroseis 

data assumes that the signal forced into the ground by the Vibroseis is equal to the 

predetermined drive signal or pilot sweep. Baeten and Ziolkowski (1990) extensively 

studied the source effect and modeled the Vibroseis source signal. They found large 

errors for conventional assumptions in both the amplitude and phase of the estimated 

signal. 

Waveform distortion occurs not only during propagation, but also at the vibrator 

itself. Source spectrum control has been studied by many authors (Lerwill, 1981; Sallas 

and Weber, 1982; Sallas, 1984; Jeffrey and Martin, 2003; Bagaini, 2006). Walker (1995) 

proposed a method to describe harmonic distortion and baseplate vibration observed in 

experiments. Lebedev and Beresnev (2004) studied the linear and nonlinear oscillations 

of the vibrator and improved previous SDOF models for the vibrator-earth system by 
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adding a thin layer of earth under the base plate to the SDOF system. The simulation 

model proposed by Lebedev and Beresnev quantitatively described the nonlinearity of the 

contact between the base plate and the ground, near-field soil. They concluded that 

contact nonlinearity does not lead to dependence of wave travel times on the amplitude of 

the force applied to the ground. 

Conventional drive signals used in the field are linear chirp sweeps. In this 

research, both chirp sweeps and fixed-sine drive signals were used. Fixed-sine drive 

signal is a predetermined sinusoidal signal with duration of a few cycles at a single 

frequency of the Vibroseis. Extensive and intensive studies have examined chirp sweeps 

as a source signal, but no source identification technique is found in the literature using 

the fixed-sine source wavelet as the vibrator source. The analysis of the fixed-sine source 

signature is presented in this work. 

5.2 SOURCE SIGNATURE MODEL 

A source-signature model for fixed-sine excitation based on the characteristic of 

the Vibroseis vibration is presented in this chapter. Using a fixed-sine excitation force 

signal as the drive signal greatly simplifies the identification of the Vibroseis source 

signature. By analyzing the characteristics of the far field velocity signal, the source 

signature is modeled and analytically identified through methods formulated in this work. 

Regardless of the complication posed by the nonlinear near-field effect and the 

interaction of the vibrator system, the far-field displacement and velocity are 

distinguished by a sinusoidal excitation of a SDOF system (see Figure 5.2). This is based 

on observation of the filtered far-field signals, and verified by spectral match in later 

chapters. However, this source signature model does not require that the vibrator-earth 

system be a SDOF system. The vibrator-earth system may be much complicated than a 

SDOF system, but its far-field signals coincide with the responses to a SDOF system. 
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Hence, the far-field signals can be regarded as generated from an equivalent SDOF 

system. The source signature is back-calculated directly from the measured far-field 

displacement or velocity signals instead of from any assumed models of the true ground 

force. 

In this chapter, the source signature model for displacement is introduced as a 

background for the normalized source signatures of displacement, velocity and 

acceleration in next chapter. 

 

Figure 5.2 Displacement of a SDOF system under finite sinusoidal excitation (adapted 
from Kramer, 1996) 

If the Heaviside step function or unit step function U(t) (in Figure 5.3) is defined 

as:  
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then the sinusoidal excitation of a SDOF system is 

 )sin()]()([ ψϖ +−−=++ tQTtUtUkuucum &&&  (5.2)  

where: m is the mass of the system, u is the displacement of the mass, c is the 

damping, and k is the stiffness. Q is the constant excitation force amplitude, ϖ is the 

sinusoidal excitation frequency, ψ is the initial phase of excitation and T is the duration 

of the excitation force. T is exclusively used to denote the excitation duration, which can 

be a whole number of cycles of the drive signal, or any time interval. The factor [U(t)-

U(t-T)] denotes that the excitation duration is from t = 0 to t = T. A signal that exists 

significantly only for a finite time interval is called a wavelet. The key feature of a source 

signal is called a source signature which refers to the solution to Equation (5.2) in this 

work.  

To illustrate the source of singular frequencies for deconvolution discussed in 

Chapter 7, the rectangular pulse P(t) as shown in Figure 5.4 is also used as an alternative 

way to present a finite time interval [U(t)-U(t-T)]. This rectangular pulse P(t) is defined 

as: 
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Figure 5.4 Rectangular pulse 
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Shifting a half duration (or
2
T ) to the right for the rectangular pulse in Figure 5.4 

results in a causal pulse defined by 
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00
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and shown in Figure 5.5.  

 

Figure 5.5 Causal rectangular pulse 

The use of rectangular pulse instead of step function for Equation (5.2) gives 

 )sin()
2

( ψϖ +−=++ tQTtPkuucum &&& . (5.5)  

Equation (5.5) consists of two equations: the damped forced vibration described by 

Equation (5.6) and the damped free vibration described by Equation (5.7). 

 )sin( ψϖ +=++ tQkuucum &&&    ( Tt ≤≤0 ) (5.6) 

 0=++ kuucum &&&    ( Tt > ) (5.7) 

The solution of Equation (5.6) without time domain restraints is the superposition 
of the particular solution, )(tup , for the steady-state vibration and the complementary 

solution, )(tuc , for the transient vibration. Figure 5.6 illustrates their relative relationship, 

where )(tuI and )(tuII  denote the corresponding time restraint equivalents to 

)(tup and )(tuc , respectively, and )(tuIII denotes the solution to Equation (5.7). As shown 

in Figure 5.6, the source signature is the superposition of the subsequent three vibrations, 
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namely, the harmonic vibration, the transient vibration and the free vibration. For 

convenience, three wavelets are named after the vibrations: the sinusoidal wavelet, the 

transient wavelet, and the trailing wavelet.  

The sinusoidal wavelet corresponds to the sinusoidal excitation force. It is a single 

frequency sine wave but truncated to the excitation duration T. The frequency of the 

sinusoidal wavelet is equal to the excitation frequency.  

 

Figure 5.6 Source signature and its wavelets (excitation frequency 50 Hz, natural 
frequency 100 Hz, duration 0.1 sec, damping ratio 25%) 

The transient wavelet is the transient response of the system. The trailing wavelet 

is the damped free vibration of the system. Both the transient and the trailing wavelets 

have the same carrier frequency, which is the damped frequency of the vibrator-earth 

system. For convenience, the transient and trailing wavelet as a whole is called the twin 

wavelets.  

If a wavelet has only one single carrier frequency, it is called a pure wavelet. Both 

the sinusoidal wavelets and the twin wavelets are pure wavelets of different carrier 
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frequencies. When the carrier frequencies of the sinusoidal wavelet and the twin wavelets 

are equal, the combination of the two pure wavelets is termed a U-wavelet herein, which 

is also a pure wavelet but the union of the sinusoidal wavelet and the twin wavelets. Each 

pure wavelet has a single carrier frequency. The advantage of pure wavelets is that there 

is no dispersion within a wavelet because each pure wavelet carries only one frequency. 

The frequency content of a pure wavelet remains stable during propagation. It is subject 

to amplitude attenuation. The envelope shape of each pure wavelet also remains 

relatively stable during propagation, especially for the sinusoidal wavelet.  

5.3 DAMPED FORCED VIBRATION 

The undamped natural circular frequency, 0ω , the damping ratio,ξ , the damped 

natural circular frequency, dω , and tuning ratio,β , are defined for a SDOF system as 

(Kramer,1996; Chopra, 1995): 

 
m
k

=0ω   (5.8) 

 
02 ω

ξ
m
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=  (5.9) 

 2
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0ω
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After dividing by m and using the relationships expressed in Equations (5.8) and (5.9), 

Equation (5.6) becomes: 

 )sin(2 2
00 ψϖωξω +=++ t

m
Quuu &&& . (5.12) 
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5.2.1 Solution of steady-state vibration 

The particular solution of Equation (5.12) is: 

 )cos()sin()( 21 ϕϖϕϖ −+−= tCtCtu p , (5.13) 

where: C1, C2 and ϕ  are constants to be determined.  

 )sin()cos()( 21 ϕϖϖϕϖϖ −−−= tCtCtu p& , (5.14) 

 )cos()sin()( 2
2

2
1 ϕϖϖϕϖϖ −−−−= tCtCtu p&& , (5.15) 

By using )(tuu p= and substituting Equations (5.13), (5.14) and (5.15) into Equation 

(5.12), one obtains: 
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At the instances where πϕϖ nt =− ( n is any integer), one obtains: 

 0)sin( =−ϕϖt ,  (5.17) 

 nt )1()cos( −=−ϕϖ , (5.18) 

and  )sin()1()sin( ψϕψϖ +−=+ nt  (5.19) 

By substituting Equations (5.17) through (5.19) into Equation (5.16), one obtains: 

 )sin(2 10
2

2
2
02 ψϕϖξωϖω +=+−

m
QCCC  (5.20) 

At the instances where 
2
ππϕϖ +=− nt ( n is any integer), one obtains: 

 nt )1()sin( −=−ϕϖ , (5.21) 

  0)cos( =−ϕϖt ,  (5.22) 

and  )cos()1(sin ψϕϖ +−= nt  (5.23) 
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By substituting Equations (5.21) though (5.23) into Equation (5.16), one obtains: 

 )cos(2 20
2

1
2
01 ψϕϖξωϖω +=−−

m
QCCC  (5.24) 

Combination of the Equation (5.20) and (5.24) yields: 
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The use of Equations (5.8) and (5.11) simplifies Equations (5.25) and (5.26) as: 
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Equation (5.13) becomes: 

 )]cos(2)sin()1[(
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The constant ϕ does not appear in Equation (5.29), which implies the phase shift ϕ  can 

be arbitrary. Without loss of generality, by assuming ϕ  = 0 in the Equations (5.13), 

(5.27) and (5.28), one obtains the particular solution as: 

 tCtCtu p ϖϖ cossin)( 21 +=  (5.30) 
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Equation (5.30) can also be expressed as: 
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 )](sin[)()( IIp tttUAtu −= ϖ  (5.33) 

where: 
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The value of It in Equation (5.35) is not unique between [-π ,π ] because 

computing the arc tangent for y/x in order to convert the Cartesian coordinates of a point 

(x, y) to polar coordinates, the value is such that the conventional arc tangent operator 

will yield 
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The unique conversion from the Cartesian coordinates of a point (x,y) to the polar 

coordinates results in a new function ),(2arctan xy which yields: 

 ππ ≤≤− ),(2arctan xy  (5.37) 

Equation (5.35) thus becomes: 

 ])1,2(2[arctan1 2 ψβξβ
ϖ

−−=It  (5.38) 

The drive signal determined by a sine wave in practice lasts a finite time interval 

T. T is typically a whole number of cycles of the exciting sinusoidal function. 

The displacement function, )(tuI , denotes the steady-state motion of a finite time 

interval, which is truncated from )(tup  in Equation (5.33). The displacement 

function, )(tuI , is called the sinusoidal wavelet: 
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For the sinusoidal wavelet to start at zero amplitude when t = 0, It must be zero in 

Equation (5.39). Letting It =0 in Equation (5.38) gives 

 )1,2(2arctan 2βξβψ −=  (5.40) 

Therefore, the sinusoidal wavelet (not the total motion) starts at zero amplitude if and 

only if the initial phase,ψ , of the excitation force satisfies equation (5.40). However, a 

vibratory source is supposed to always start from static state or zero initial force, that is, 

at t = 0, the following is true: 
 ψ = 0 (5.41) 

Substituting Equation (5.41) to Equations (5.31) and (5.32) leads to (Chopra, 1995): 
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5.2.2 Solution of transient vibration 

The complementary solution of Equation (5.12) is: 

 )cossin()( 43
0 tCtCetu dd
t

c ωωξω += − , (5.44) 

where: C3 and C4 are coefficients subject to initial conditions of the complete 

solution of forced vibration Equation (5.12). Equation (5.12) can be obtained by 

combining the particular and complementary solutions, or: 

 )()()( tututu cpf += . (5.45)  

Using Equations (5.30) and (5.44), the following is obtained: 

 )cossin(cossin)( 4321
0 tCtCetCtCtu dd
t

f ωωϖϖ ξω +++= − , (5.46) 

where: C1 and C2 are given by (5.31) and (5.32), respectively. 
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During each test, T-Rex starts from zero initial displacement and zero initial 
velocity. Substituting t = 0 and )0(fu = 0 into Equation (5.46) provides 24 CC −=  or 
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The velocity solution can be obtained from Equation (5.46): 
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Substituting t = 0 and 0)0( =fu&  into Equation (5.48) obtains:  
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Equations (5.31) and (5.47) are used to obtain: 
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The transient motion Equation (5.44) becomes: 
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Equation (5.52) can be expressed as: 
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IId

t
IIc tttUeAtu −= − ωξω  (5.53) 

 2
4

2
3 CCAII +=  (5.54) 
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 ),(2arctan1
34 CCt

d
II −=

ω
 (5.55) 

Where: 3C and 4C are determined from Equations (5.50) and (5.47), respectively. 

when 0=ψ , Equation (5.52) becomes: 
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 (5.56) 

And Equations (5.54) and (5.55) becomes: 

 222

22222

)2()1(

)2()12()(

ξββ

ξβξβ
ω
ϖ

+−

+−+
= d

II k
QA  (5.57) 

and )]12(,2[2arctan1 22 −+−= ξβ
ω
ϖξβ

ω dd
IIt  (5.58) 

The transient motion of finite time interval, )(tuII , is a truncated sine wave from )(tuc . 

)(tuII is called transient wavelet: 

 
)](sin[)]()([

)]()()[()(
0

IId
t

II

cII

ttTtUtUeA

TtUtUtutu

−−−=

−−=
− ωξω  (5.59) 

The actual transient motion continues after the termination of the excitation force at t = T. 

The part of the transient motion after time T is called residual transient motion, )()( tu r
II , 

which is: 

 )](sin[)()()()( 0)(
IId

t
IIc

r
II ttTtUeATtUtutu −−=−= − ωξω  (5.60) 

Clearly,  )()()( )( tututu r
IIIIc +=  (5.61) 
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5.2.3 Solution of damped forced vibration 

The solution of the damped forced vibration Equation (5.12) is the superposition 

of the steady-state motion and the transient motion, or:  

 )()()( tututu cpf += . (5.62) 

The solution to the forced vibration with finite time interval excitation is 

 )()()( tututu IIIf +=  (5.63) 

5.4 DAMPED FREE VIBRATION 

T-Rex motion during damped free vibration satisfies: 

 0=++ kuucum &&& . (5.64) 

The solution to Equation (5.64) is similar to Equation (5.44), except that the coefficients 

C3 and C4 are no longer given by Equations (5.47) and (5.50) because of different initial 

conditions. To avoid confusion, C5 and C6 are used instead as follows: 

 )cossin)(()( 65
0 tCtCtUetu dd
t

III ωωξω += −  (5.65) 
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Considering that the damped free vibration follows immediately after the forced 

vibration, the time origin of )(tuIII  should be at time T. On the other hand, the initial 

condition is bound by the steady-state at time t = T when damped free vibration starts 

with initial displacement 0u and initial velocity 0u& at t = T as follows: 
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Substituting Equations (5.67) and (5.68) into Equations (5.65) and (5.66) gives:  

 06
000

5 , uC
uu

C
d

=
+

=
ω
ξω&

 (5.69) 

The damped free vibration solution is: 
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t
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 (5.70) 

An alternative way to present (5.70) is: 

 )](sin[)()( 0
IIId

t
IIIIII tttUeAtu −= − ωξω  (5.71) 
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 (5.72) 

 ),(2arctan1 000
0

dd
III

uu
ut

ω
ξω

ω
+

−=
&

 (5.73) 

In Equation (5.71), )(tuIII  is called a trailing wavelet. )(tuIII actually starts right 

after the excitation duration T. Hence )( TtuIII − is also called a trailing wavelet. 

The initial condition of the trailing wavelet is comprised of two parts: the first part 

corresponding to the termination of the steady-state force, which is called the steady-state 

transitional motion )()( tu s
III herein, and the second part corresponding to the continuation 

of the transient motion, which is the residual transient motion. The first part includes: 

 )](sin[)()0()()(
0 IIp

s
III

s tTATuuu −=== ϖ , (5.74) 

and )](cos[)()0()()(
0 IIp

s
III

s tTATuuu −=== ϖϖ&&& . (5.75) 

Substituting Equations (5.74) and (5.75) into Equations (5.65) and (5.66) gives:  
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 (5.76) 

The steady-state transitional motion is:  
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 (5.77) 

As an alternative to (5.70), the trailing wavelet )(tuIII is also the superposition of 

the residual transient motion )()( tu r
II defined in Equation (5.60), and the steady-state 

transitional motion )()( tu s
III defined in Equation (5.77). The trailing wavelet )(tuIII can be 

expressed as: 

 )()()( )()( Ttututu s
III

r
IIIII −+=  (5.78) 

The transient wavelet and the trailing wavelet always occur subsequently, so that 

the superposition of the transient wavelet )(tuII and the trailing wavelet )( TtuIII −  is 

called twin wavelets and expressed as: 

 )()()( Ttututu IIIIIT −+=  (5.79) 

The same twin wavelets can also be regarded as the superposition of the transient motion 

and the steady-state transitional motion: 

 )()()( )( Ttututu s
IIIcT −+=  (5.80) 

5.5 SOURCE SIGNATURE 

A high quality source signal is a signal with the least waveform distortion and 

least undesired concurrent signals. Analysis of the source signature characteristics 

improves the source signal in the field test. A source signature is defined by: 

 )()()()( Ttutututu IIIIII −++= , (5.81) 

or )()()()( )( Ttutututu s
IIIcI −++= , (5.82) 

where: )(tuI , )(tuII and )(tuIII are defined by Equations (5.39), (5.59) and (5.71), 

respectively. )(tuc and )()( Ttu s
III − are defined by Equations (5.53) and (5.77), 

respectively. The source signature start time is assumed to be always at time zero. Source 
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signature Equations (5.81) and (5.82) are identical. By default, the Equation (5.81) is 

implied as the source signature.  

The first term of the source signature is the sinusoidal wavelet: 

 )()( tutu I=  (5.83) 

The second term of the source signature is the transient wavelet: 

 )()( tutu II=  (5.84) 

The third term of the source signature is the trailing wavelet: 

 )()( tutu III=  or )()( TtuTtu III −=−  (5.85) 

The combination of the second and the third terms is the twin wavelets: 

 )()()( Ttututu IIIII −+=  (5.86) 

When the sinusoidal and twin wavelets have the same carrier frequency, the source 

signature is called the U-wavelet: 
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When the sinusoidal and twin wavelets have different frequencies, the source signature is 

characterized by two wavelets separately, namely the sinusoidal wavelet and the twin 

wavelets. 

A source signal can be a source signature with any or all transformations such as 

amplitude scaling, frequency scaling, time or phase shifting. Considering that the main 

concern of velocity profiling is in the relative travel time, for convenience, the source 

signal is regarded as simply the shifted version of the source signature. For example, a 

source signal corresponding to Equation (5.81) starting at time 0t is: 

 )()( 0ttutw −=  (5.88)  
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where 0t  is the actual initial shaking time of the recorded time series. It can be 

negative, zero or positive depending on what time origin is configured to use for the time 

series when recording. Most of the tests were recorded from time zero. However, the 

drive signals for some tests started at negative or positive time values. 

Actually only relative travel times between traces are used regardless of the value 

of the source signal initial time ( 0t ). For convenience, assume 0t = 0 if not specifically 

redefined. 

The source signature in Equation (5.81) or Equation (5.82) is strongly correlated 

to the damping ratio and natural frequency of the vibrator-earth system. Figures 5.7 and 

5.8 show how the damping ratio significantly affects the quality of the source signature 

when other conditions are the same. For low system damping in Figure 5.7, the source 

signature with a damping ratio 5% has a much longer trailing wavelet than with a 

damping ratio 25%. The “Transient Motion” in Figure 5.7 and other figures later in this 

chapter refers to )(tuc in Equation (5.82). The part of “Transient Motion” before time T, 

which corresponds to 0 to 0.1 sec in Figure 5.7, is called the “Transient wavelet” denoted 

by )(tuII in Equation (5.59). The rest part of “Transient Motion” after time T is called 

the residual transient motion, )()( tu r
II  defined by Equation (5.60).  
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Figure 5.7 Source signature A (excitation frequency 50 Hz, natural frequency 40 Hz, 
duration 0.1 sec, damping ratio 5%) 

 

Figure 5.8 Source signature B (excitation frequency 50 Hz, natural frequency 40 Hz, 
duration 0.1 sec, damping ratio 25%) 
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Two initial conditions for the signature model should be clarified. As shown in 

Figure 5.7, the first initial condition is at the start-up of the test (t = 0). Both the 

sinusoidal wavelet and the transient wavelet may have initial displacements, but the sum 

of the two displacements should be zero, which is the initial condition of the vibration or 

the signature wavelet. The second initial condition is at the end of the excitation (t = T) 

when the free vibration starts. The initial condition of the free vibration comprises of two 

parts: the contribution of the steady-state vibration and that of the transient vibration. If 

the transient vibration is considered as continuing after the end of excitation, the free 

vibration wavelet should exclude the contribution of the transient vibration. The actual 

transient vibration continues anyway after the end of excitation. However, the transient 

vibration merges into the free vibration. There are two approaches to define the wavelets. 

First, to avoid the truncation of the transient vibration into two time intervals, as a 

compromise, the free vibration should be decomposed into two components: one 

corresponds to the transient vibration, and the other to the steady-state vibration. The 

approach only uses the free vibration caused by the termination of the steady-state 

vibration for trailing wavelet. The second approach is to avoid the decomposition of the 

free vibration into two components, but truncate the transient vibration into two segments 

separated at time T. Both approaches will result in the same twin wavelets, though the 

twin wavelets may not be smooth or even not continuous at time T. 

Figures 5.9 and 5.10 demonstrate how the natural frequency of the vibrator-earth 

system can affect the quality of the source signature. The system with a higher natural 

frequency than the excitation frequency produces a better waveform shape than the 

system with the natural frequency of the system lower than the exciting frequency 

(Figure 5.9). The higher natural frequency leads to a higher damped natural frequency, 

which is the carrier frequency of the twin wavelets. As a result, the twin wavelets 
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propagate faster than the sinusoidal wavelet (Gupta, 1972). The first breaks of 

propagating waves are dominated by the undesired twin wavelets, and later at greater 

depths, are dominated by the sinusoidal wavelet due to attenuation and diminishing of the 

twin wavelets. 

As long as there is a frequency difference between the sinusoidal wavelet and the 

twin wavelets, a relative time shift exists between them during propagation. The time 

shift will distort the waveforms associated with first breaks or first wave identifications. 

In order to avoid the frequency difference and the relative time shift, the excitation 

frequency should be equal to or close to the damped natural frequency. The earth 

underneath the base plate becomes softer and softer with each repetition of the tests at 

each depth so that the damping ratio of the vibrator-earth system steadily increases. Thus 

the excitation frequency should be accordingly adjusted. 

These comparisons indicate that the best excitation frequency should be 

determined by the in-situ earth condition in order to generate a high-quality source signal. 

A method is proposed in Chapter 6 for field measurement of the natural frequency and 

damping ratio of the vibrator-earth system in the vicinity of the borehole. 

The source signature corresponding to the velocity and acceleration records is 

discussed in Chapter 6. 
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Figure 5.9 Source signature C (excitation frequency 50 Hz, natural frequency 20 Hz, 
duration 0.1 sec, damping ratio 25%) 

 

Figure 5.10 Source signature D (excitation frequency 50 Hz, natural frequency 80 Hz, 
duration 0.1 sec, damping ratio 25%) 



 157

5.6 FOURIER TRANSFORM OF SOURCE SIGNATURE 

This section deals extensively with the Fourier integrals and their applications for 

deriving the frequency response of the source signature. Some of the basic equations 

(Equations 5.89 to 5.93) discussed in Papoulis (1962) are presented here as a reference 

for ongoing derivations.  All the time series and frequency series in integration herein, 

whether discrete or continuous, are understood to have finite energy (Boggess and 

Narcowich, 2001). 

5.6.1 Basic equations for Fourier transform 

The notation }{ˆ ⋅F is used throughout this work to denote the Fourier transform. 

For any time series x(t), its Fourier transform )(ωX is the following: 

 ∫
+∞

∞−

−== dtetxtxFX tjωω )()}({ˆ)( . (5.89) 

The inverse Fourier transform is defined as: 

 ∫
+∞

∞−

− == ωω
π

ω ω deXXFtx tj)(
2
1)}({ˆ)( 1 , (5.90) 

where 1ˆ −F denotes inverse Fourier transform. 

A time delay t0 for any time series x(t) will result in a phase shift 0tω  in the frequency 

domain, or: 

 0)}({ˆ)}({ˆ
0

tjetxFttxF ω−=−  (5.91) 

If h(t) is the convolution of f(t) and g(t), then the definition of convolution is: 

 ∫
+∞

∞−
−=∗= dyytgyftgtfth )()()()()( , (5.92) 

where the asterisk “*” denotes the convolution. Any asterisk in the place of an 

operator rather than a superscript denotes the convolution operation throughout the 

dissertation. 
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 The Fourier transform of the product of any two functions f(t) and g(t) is the 

convolution of their Fourier transforms, as shown in Equation (5.93), where the dot “·” 

(largely omitted) denotes a multiplication. 

 )}({ˆ)}({ˆ
2
1)}()({ˆ tgFtfFtgtfF ∗=⋅
π

. (5.93) 

5.6.2 Fourier transform of sinusoidal wavelet 

The sinusoidal wavelet )(tuI is the motion caused by the truncated harmonic 

excitation, which is divided into two parts, )(, tu aI and )(, tu bI as follows: 

       
)()(

)](sin[)()](sin[)(
)](sin[)]()([)(

,, tutu
ttTtUAtttUA

ttTtUtUAtu

bIaI

IIII

III

−=
−−−−=

−−−=
ϖϖ

ϖ
 (5.94) 

where:  )](sin[)()(, IIaI tttUAtu −= ϖ  (5.95) 

 )](sin[)()(, IIbI ttTtUAtu −−= ϖ  (5.96) 

The Fourier transform of Equation (5.94) thus can also be divided into two parts 

associated with Equations (5.95) and (5.96). The first part is the Fourier transform of 

Equation (5.95), or 
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 (5.97) 

The second part is the Fourier transform of Equation (5.96), which can be obtained by 

converting Equation (5.96) into an equivalent format as Equation (5.95) and then using 

Equation (5.97). Let Tt −=τ and substitute it into Equation (5.96), thereby obtaining 
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The only difference between Equations (5.98) and (5.95) is the initial phase angle. Thus 

the two have the same format for spectrum as Equation (5.97), where It  is replaced with 

)( TtI − as: 
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The spectrum of Equation (5.94) is the combination of the two parts: 
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where: )(, ωaIF is defined by Equation (5.97), and )(, ωbIF by Equation (5.99). 

An alternative way to derive the Fourier transform of Equation (5.94) is using the 

rectangular pulse P(t) in Figure 5.4 in place of U(t)-U(t-T), which results in: 

 )
2

()](sin[)( TtPttAtu III −−= ϖ . (5.101) 

The spectrum of the rectangular pulse P(t) is called the sinc-function (Papoulis 1962), 

which is:  

 
ω
ω )2/sin(2)}({ˆ TtPF = , (5.102) 
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or 2/)2/sin(2)}
2
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ω −=− , (5.103) 

The spectrum of Equation (5.101) is: 
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5.6.3 Fourier transform of transient wavelet 

The transient motion in Equation (5.59) or: 

 )](sin[)]()([)( 0
IId

t
IIII ttTtUtUeAtu −−−= − ωξω  (5.105)  

is the subtraction of the two parts shown in Equation (5.106). )(tuc  is the vibration from 

time zero to infinity. In )()( tu r
II , the vibration starts from the end of excitation time T and 

goes until infinity. This can be expressed as: 
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where: 

 )](sin[)()( 0
IId

t
IIc tttUeAtu −= − ωξω  (5.107) 
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r
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The Fourier transform of the transient vibration )(tuII is also the subtraction of 

the following two items: 
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The first item of Equation (5.109) is Fourier transform of the whole transient vibration: 
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A correlation between the trailing vibration in Equation (5.107) and the complete 

vibration Equation (5.108) simplifies the second term. Let Tt −=τ  or Tt += τ , then 

Equation (5.108) becomes: 
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 (5.111a) 

where:  )]}([sin{)()( 0 TtUeAu IIdIIc −−= − τωττ τξω . (5.111b) 

The only difference between )(tuc and )(tuc is the T time shift of the sine function. As 

Equation (5.111a) indicates, the trailing vibration is an amplitude-scaled and time-shifted 
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version of the complete vibration.  Following the same procedures as shown by 

Equation (5.110), one obtains: 
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The second item is obtained from Equations (5.111a) and (5.112) as: 
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By substituting Equations (5.110) and (5.113) into Equation (5.109), the spectrum of the 

transient vibration becomes: 
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5.6.4 Fourier transform of trailing wavelet 

The Fourier transform of the free vibration Equation (5.71) is 
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The trigonometric form of Equation (5.115) is: 
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By accounting for the time shift T, one obtains: 
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If only consider the trailing vibration caused by the inertia of the sinusoidal 

(steady-state) wavelet )()( tu s
III , one obtains: 

 )}({ˆ)( )()( tuFF s
III

s
III =ω  (5.118) 

and )}({ˆ)( )()(
, TtuFF s

III
s
TIII −=ω  (5.119) 

Equations (5.118) and (5.119) have exactly the same format as Equations (5.116) and 

(5.117), respectively. 

5.6.5 Spectrum of the source signature 

The spectrum of the source signature Equation (5.81) is: 
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The spectrum of the source signature Equation (5.82) is: 
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Equation (5.120a) can be written as: 

 )()()()( , ωωωω TIIIIII FFFF ++=  (5.121a) 

where: )(ωIF , )(ωIIF , )(, ωTIIIF  are defined by Equations (5.104), (5.114) and 

(5.118), respectively. 
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Equation (5.120b) can be written as: 

 )()()()( )(
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where: )(ωIF , )(, ωaIIF , )()(
, ωs
TIIIF  are defined by Equations (5.104), (5.110) and 

(5.119), respectively. 

The use of twin wavelets defined in Equations (5.79) and (5.80) can combine the 

spectra of the source signature in Equations (5.121a) and (5.121b). If define the spectrum 
of the twin wavelets )(, ωIIIIIF as: 
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Then the spectrum of the source signature is: 

 )()()( , ωωω IIIIII FFF += . (5.123) 

A source signal can exhibit any delay in the records as 

 )()( 0ttutw −= . (5.124) 

The spectrum of the delayed source signal defined by Equation (5.122) is 
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The spectra of source signatures corresponding to velocity and acceleration 

outputs are described in Chapter 6. 

5.7 SUMMARY 

The displacement solutions of a SDOF system under sinusoidal excitation in a 

finite time interval are derived in this chapter. This system is used to represent vibratory 
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source in deep downhole testing. However,  Three wavelets corresponding to the three 

displacement solutions are defined as the components of the source signature. The 

successful derivations of the spectra of the three wavelets as well as the source signature 

confirm that the source signature is identifiable in the frequency domain as well as in the 

time domain. The analytical identification of the source signature advances the use of 

deterministic deconvolution for source wavelet extraction, which is an important 

technique to reduce waveform distortion. 

As shown in Chapter 2, different frequencies may travel at different speeds due to 

velocity dispersion in anisotropic medium. One approach to improve signal quality is to 

reduce the frequency content in the source signature. Fixed-sine drive signal has much 

less velocity dispersion concern because of less frequency content. The waveform of the 

source signature produced by fixed-sine excitation varies with the frequency of the 

sinusoidal excitation and the damped natural frequency of the vibrator-earth system. For 

deep downhole testing, an optimal source excitation frequency can now be determined 

with this solution to give the best-quality source wavelet. This excitation frequency 

should be close to the in-situ damped natural frequency of the vibrator-earth system, 

otherwise it should be distinctly higher or lower to reduce waveform distortion. The 

excitation frequency should be higher than the damped natural frequency when wave 

identification method is used, in that the higher frequency travels faster than the lower 

one. 

To decide the better excitation frequency to use, one must first measure locally 

the in-situ damped natural frequency. When the test is repeated, the earth beneath the 

vibrator could become softer, and the variation of in-situ damped natural frequency with 

time would change so that this frequency should also be tracked. Due to the different 
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values of the damped natural frequency for P- and S-wave shaking modes, different 

excitation frequencies should be applied to P- and S-wave vibration. 

In this chapter, fundamental equations are presented for use in the next two 

chapters where normalized source signatures are identified and the wavelet response 

method is explored. 
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Chapter 6  Identification of Source Signature 

6.1 INTRODUCTION 

Ziolkowski (1980) defined a point source as a source whose maximum dimension 

is small compared with the shortest wavelength of the useful radiation it generates. 

Vibratory source is a point source in terms of his definition. His definition of the point 

source is in the space domain. For the purpose of differentiating between an impulsive 

point source and a point source with finite time duration of at least 100 ms, the former is 

herein called the impulsive source and the latter is called the durational source in this 

work. 

Identification of source signature and extraction of source wavelet have a long 

history in the literature. Various assumptions were made to advance an impulse response 

for travel time analysis. This chapter introduces a deterministic source wavelet that is 

back calculated from the far-field signal recorded in the field test. 

6.1.1 Impulsive source wavelet 

The method used by Robinson (1957) and Rice (1962) requires that the impulse 

response be stationary, white and consist of a random sequence of impulses. The source 

wavelet must also be minimum-phase and have the same shape throughout the 

seismogram with no absorption. The critical reflection theorem (Fokkema et al, 1987) 

does not require assumptions about the distribution of the reflection coefficients, but it 

does require that critical reflections occur at the boundary of the lower half space under 

the stack of layers. Ziolkowski et al (1987) used this theorem for the extraction of the 

dynamite wavelet on real data. 
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6.1.2 Scalable source wavelet 

Ziolkowski (1980) introduced a source scaling law for wavelet deconvolution 

from a point source in a homogeneous, isotropic medium. The source scaling law 

requires that two different seismograms be generated from each source-receiver pair with 

the source and the receiver remaining at the same locations. The source used to generate 

one seismogram is scaled to generate the second seismogram. The scaling relationship 

between the two source signatures permits the earth impulse response to be extracted 

from the seismograms without any of the usual assumptions about phases.  The scaling 

law requires that the source elastic radiation possess spherical symmetry, such as a buried 

explosion or a single air or water gun. It does not apply to surface sources. The scaling 

law is unsuitable for application if the absorption is not convolutional or not 

approximated by a convolutional model. 

6.1.3 Mixed-delay source wavelet 

Tygel and Hubral (1987) studied transient waves in layered media from a pressure 

response for reflection seismogram at certain depths below the ground surface.  Tygel et 

al (1991) employed evanescent wavefields of the point-source seismogram to extract a 

mixed-delay source wavelet. The researchers assumed that the seismic shot record 

describes the pressure, velocity, or amplitude response to a point source emanating from 

a horizontally layered acoustic medium. They used the plane-wave decomposition 

method, which transforms a point-source seismogram from a time-space domain into a 

frequency-ray parameter domain. The researchers made no assumptions about the 

velocity distribution in the layered medium. Critical reflections were not required for the 

extraction of source wavelets.  
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6.1.4 Source wavelet array 

Loveridge et al (1984) used a marine source array and studied the effects of 

marine source array directivity on seismic data and source signature deconvolution.  

Loewenthal et al (1985) performed the 1-D acoustic wavelet estimation using an 

impedance type technique. The medium above the receivers as well as measurements of 

both field and normal derivatives were all assumed to be known. Based on analogous 

assumptions, Weglein and Secrest (1990) presented a method of calculating the total 

wavelet of a point-source or point-source array for an arbitrary inhomogeneous 

multidimensional acoustic or elastic earth. This method relied only on the incident wave 

and effectively filtered the scattered energy from the integral. A surface integral over the 

data and its normal derivative were required in order to produce the wavelet estimation. 

The derivative of the field required two separate vertical samplings of the field by using 

an Eulerian approximation. The Lippmann-Schwinger equation and Green’s theorem 

were used to determine the wavelet. 

6.1.5 Source wavelet in this work 

Based on the source signature derived from a modeled SDOF system in Chapter 

5, an equivalent SDOF system is introduced in this chapter that is back calculated from 

the far-field signal. The far-field signal is correlated with the vibrator-earth system, but 

not necessarily identical to any of the directly measured signals from the vibrator or in 

the near field. Observation of both the vibrator and the far-field signals reveals that, even 

though any or all of the recorded signals directly from the vibrator are heavily distorted, 

the far-field signal is still featured and can be mapped by the motion of an ideal SDOF 

system. Most of the waveform distortions caused by the near-field effect do not survive 

in the far field.  
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Therefore, in this work all far-field signals are regarded as generated from the 

same equivalent SDOF system that is calibrated by a reference receiver in the proper far 

field but still reasonably near the vibrator. This approach does not affect the velocity 

profile in that the absolute travel times from the vibrator to the receiver are not used; 

rather, the relative delay in travel times between receivers or traces is sufficient for 

calculation of velocities. This method for identification of source signature avoids the 

internal mechanism of the vibrator-earth system and the controversial near field effect as 

long as the system is causal. All the source signatures in this context are defined as the 

signatures of the equivalent SDOF system. 

6.2 LOGARITHMIC DECREMENT METHOD FOR DAMPING RATIO 

The damping ratio can be evaluated from the SDOF damped free vibration of a 

system or from Equation (5.71), which is:  

 )](sin[)()( 0
IIId

t
IIIIII tttUeAtu −= − ωξω . (6.1) 

 

Figure 6.1 Damped free vibration of a SDOF system with an arbitrary initial phase 

According to Figure 6.1, peak amplitudes nu  of Equation (6.1) are as follows:  

 nt
n euu 0

0
ξω−= , n = 1, 2, 3 … (6.2) 

The logarithmic decrement δ is defined as: 
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and the damped natural period dT as: 
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By substituting Equation (6.2) into Equation (6.3) and using Equation (6.4), one obtains: 
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By measuring the period from the time-domain records, one obtains the approximate 

damped natural frequency dω . 

Noise present in the measurement significantly affects the calculated damping 

ratio as defined in this method, especially when the signal-to-noise ratio is low. The 

average of the first three peaks is used in this method; however, noise is unavoidable. 

Hence the spectrum method is introduced and recommended as an improvement. 

6.3 SPECTRAL ANALYSIS METHOD FOR DAMPING RATIO 

The use of the marginal median discrete Fourier transform to estimate the 

sinusoidal frequency in impulsive noise and the Gaussian-noise environment was recently 

explored by Djurovic (2007). The frequency grid near the true frequency and an 

interpolation technique are used. Djurovic derives the expression for the marginal-median 

discreet Fourier transform of the sinusoidal signal in the neighborhood of the exact 

frequency and proposes two specific displacement techniques in order to achieve an 

accurate estimation of the frequency displaced from the frequency grid. 
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In this chapter, a different approach than Djurovic’s is used to estimate the natural 

frequency of the vibrator-earth system. This approach is solved albeit with great effort 

from the SDOF damped free vibration. First, the theoretical amplitude spectrum of the 

damped free vibration is derived. The theoretical damping ratio and damped natural 

frequency are expressed as a function of the featured amplitudes. Second, the damped 

free vibration segment of a measured signal is located. The reference signal in the far 

field but close to the vibrator is used to avoid interference from reflections that carry the 

frequencies other than the damped natural frequency. Third, the spectra of the theoretical 

damped free vibration and the measured damped free vibration are compared and 

matched in order to obtain the values of damping ratio and damped natural frequency. 

Before commencing study of the general Equation (6.1), a simplified equation 

called the damped free sine (DFS) equation is introduced as: 

 )sin()()( 0 τωττ τξω
dUeAu −=  (6.7) 

where: )(τu is a displacement, velocity or acceleration time series. The initial 

amplitude A  corresponds to τ = 0. Regardless of the initial phase, the displacement, 

velocity, and acceleration time series of a damped free vibration can all be mapped onto 

the DFS equation by phase shifting and amplitude scaling.  This feature is demonstrated 

later in this chapter.  
The Fourier transform of DFS Equation (6.7) is 

 

2
0

2222
0

2
0

222
0

2

22
0

)2()(
)2()(

)(

)}({ˆ)(

ξωωωωωξ
ξωωωωωωξω

ωωξω
ω

τω

+−+
−−+

=

++
=

=

d

ddd

d

d

d

AjA

j
A

uFF

 (6.8) 

The amplitude spectrum of Equation (6.8) as shown in Figure 6.2(b) is: 
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Figure 6.2 (a) damped free sine (DFS) vibration and (b) its spectrum 

The peak or trough extreme values of )(ωA  seen in Figure 6.2 (b) are given by: 
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Two extreme values can be obtained; the relative minimum value, A0, at ω = 0 and the 

relative maximum value, Am, at ω = mω . By substituting ω = 0 into Equation (6.9), one 

obtains the relative minimum value as: 
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Upon rearranging Equation (6.11), the measurement of damping ratio is attained as: 
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A ω

ξ −= . (6.12) 

Equation (6.12) involves prior knowledge of 0ω  and A , which is not feasible 

due to the variation of the near field earth condition that constitutes part of the SDOF 

system. The relative maximum value or the peak amplitude, Am, of the spectrum curve in 

Figure (6.2) can also be obtained from Equation (6.10), as shown in Equations (6.13) and 

(6.14). 

 2
0 21 ξωω −=m . (6.13) 
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Using Equations (6.11) and (6.14) to cancel 0ω  and A  in Equation (6.12), the 

damping ratioξ as the function of the ratio of the two extreme values is obtained as: 

 20 )(11
2
2

mA
A

−±=ξ  (6.15) 

The plus sign in Equation (6.15) yields a damping ratio value ξ > 0.7, while a typical 

under-damped free vibration has ξ < 0.7 or:  

 20 )(11
2
2

mA
A

−−=ξ  (6.16) 

where A0 and Am are evaluated from the amplitude spectrum curve in Figure 

(6.2b). 

The field condition may appear as a nonlinear vibration system. A convenient 

approach to verifying nonlinearity is the hillside frequency, hω , which has the same 

spectrum amplitude value A0 as at zero frequency in Figure (6.2b), that is: 

 0|)0(||)(| AFF dhd ==ω  (6.17) 



 176

A linear SDOF system is characterized by (Papoulis, 1962): 

 mh ωω 2= . (6.18) 

Otherwise, the system is nonlinear or characterized by high noise. White noise has high 

frequencies which tend to spread from below the hillside frequency to the Nyquist 

frequency. 

Once the damping ratio is available from Equations (6.16), the natural frequency 

0ω  can be obtained from Equation (6.13) as: 
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The damped natural frequency can be obtained from Equation (5.10) as: 

 2
0 1 ξωω −=d  (6.20) 

The tuning ratio,β , can be obtained by Equation (5.11) as: 

 
0ω

ϖβ = , (6.21) 

where: ϖ is any constant excitation frequency obtained in the field tests. 

6.3.1 Measurement of damping ratio using displacement signal 

The displacement Equation (6.1) presents an initial phase which can be shifted 

and mapped onto the DFS Equation (6.7) so that Equation (6.16) can be used for the 

damping ratio. Figure (6.3) demonstrates two cases in mapping Equation (6.1) to the DFS 

Equation (6.7). Figures (6.3a) and (6.3b) both use the nearest zero amplitude point 

(indicated by τ = 0); the former 0≥IIIt  and in the latter 0<IIIt . The phase shift is 

indicated by mapping t toτ by Equations (6.22) or (6.23) is: 

 IIItt −=τ  (6.22) 

 IIItt += τ  (6.23) 
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By substituting Equation (6.23) into Equation (6.1), one obtains: 
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Figure 6.3 Map of the general Equation (6.1) to DFS Equation (6.7) 

As indicated in Figure (6.3a), when 0≥IIIt , the time corresponding to τ < 0 is removed 

for an exact mapping. Doing so is equivalent to multiplying Equation (6.24) by a step 

function U(τ ): 

 

)sin()(

)sin()(

)sin()()(

)()()(

0

00

00

τωτ

τωτ

τωττ

ττ

τξω

τξωξω

τξωξω

d

dIII
t

dIIIIII
t

III

UeA

UeAe

UtUeAe

Utuu

III

III

−

−−

−−

=

=

+=

=

 (6.25) 

where: III
t AeA III0ξω−=   (6.26) 

As indicated in Figure (6.3b), when 0<IIIt , the damped free vibration is extended 

backward to the near zero amplitude point at τ = 0. The extrapolation is equivalent to the 

union of Equation (6.24) and U(τ ) as: 
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where: III
t AeA III0ξω−= , the same as Equation (6.26). 

However, this extrapolation method needs prior estimation of the period of the free 

vibration (for example, by estimating from the time series) so that the origin at τ = 0 can 

be located by extending a half cycle backward from point P. In order to avoid the 

inconvenience of performing this extrapolation, an alternative method is presented as 

shown in Figure (6.4).  

 

Figure 6.4 Map of the general Equation (6.1) to out-of-phase DFS Equation (6.7) 

Assigning point P as the new origin using Equations (6.28a) and (6.28b) as: 
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d
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ω
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The derivation procedures are similar to those presented in Equation (6.24) as follows: 
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By removing signals for τ < 0 , one obtains: 
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where:  III
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Equations (6.25), (6.27), and (6.30) all map to the same DFS Equation (6.7). Thus the 

damping Equation (6.16) is applicable for all these cases. 

The general free vibration Equation (6.1) may also be mapped to the damped free 

cosine (DFC) Equation (6.32) as shown in Figure 6.5.  

 )cos()()( 0 τωττ τξω
dUeAu −=  (6.32) 

The procedures to map Equation (6.1) onto DFC Equation (6.32) are essentially 

the same as onto the DFS equation. Generally speaking, the DFS equation is preferable 

because the peak amplitude values of a time series experience more noise and distortion 

than does the zero amplitude point. Thus the identification of the origin of DFC (at peak 

amplitude) may be more prone to error than of the origin of DFS (at zero amplitude). 
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Figure 6.5 Map of the general Equation (6.1) to DFC vibration (6.32) 

6.3.2 Measurement of damping ratio using velocity signal 

The velocity signal is the derivative of Equation (6.1) and is expressed as: 
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where:  
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By shifting the phase using vIII ttt −−=τ  and following similar procedures as Equation 

(6.24), the following is obtained: 
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By removing velocities for τ < 0 , one obtains: 
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where:  III
tt AeA vIII )(

0
0 +−−= ξωω  (6.37) 

The velocity signal Equation (6.36) is mapped onto the DFS Equation (6.7) so that the 

damping ratio can be evaluated using Equation (6.7). 

In practice, displacement signals are not directly measured. Only velocity signals 

from geophones or acceleration signals from accelerometers are available, which are 

discussed in the following sections.  

Figure 6.6 is the S-wave reference signal measured at a depth of 7 m (22 ft) depth. 

The signal is 5 cycles of a 30-Hz sine wave. Figure 6.7 expands the time scale of the 

unfiltered signal, but the start point of the DFS equation is noisy. When the signal is 

noisy, a filter is necessary to locate the start point of the DFS equation. Figure 6.8 is 

filtered by a fourth order Butterworth filter with a cutoff frequency at 50 Hz. The start 

point is easier to see in the expanded figure shown in Figure 6.9 and is selected at 0.211 

sec. When the entire time series starting from 0.211 sec to 2.00 sec is used for the 

analysis as shown in Figure 6.10, the noise becomes disruptive. To overcome the 

problem, interval of 0.211 to 0.300 sec is used as the DFS curve and the result is shown 

in Figure 6.11. Both Figures 6.10 and 6.11 yield the same damping ratio of the vibrator-

earth system measured in frequency domain which is 23%. The corresponding natural 

frequency is 21 Hz as determined in Figure 6.11. 
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Figure 6.6 S-wave reference signal recorded with horizontal velocity transducer 

 

Figure 6.7 Expanded unfiltered S-wave reference signal recorded with horizontal 
velocity transducer  

 

Figure 6.8 Filtered S-wave reference signal recorded with horizontal velocity 
transducer 
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Figure 6.9 Expanded filtered S-wave reference signal recorded with horizontal velocity 
transducer 

 

Figure 6.10 S-wave damping ratio measurement using velocity signal 
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Figure 6.11 S-wave damping ratio measurement using part of the velocity signal  

Figure 6.12 is a reference P-wave signal recorded by a geophone at depth 6.6 m 

(22 ft) below the ground surface. The signal is 5 cycles of a 50-Hz sine wave. The 

positive amplitudes are generally greater than the negative side because the compression 

and the tension caused by P-wave shaking are unequal. The mean value of the signal is 

biased. The DFS equation may commence at 0.1457 sec so long as the damped free 

vibration has started before the selected start point. As shown in Figure 6.12, the 

reflection comes as early as 0.2 sec. To avoid the interference of the reflection, time 

interval 0.1457 to 0.2 sec is used for the DFS equation.  

Figure 6.13 presents a damping value of 24% and a natural frequency of 42 Hz for 

this measurement. The bold line is the theoretical curve calculated using the DFS 
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equation and the thin line is the spectrum of the measured P-wave data. The trough at 

about 18 Hz is due to the time truncation that corresponds to a convolution with a sinc-

function in frequency domain. 

 

Figure 6.12 P-wave reference signal recorded with a vertical velocity transducer 

 

Figure 6.13 P-wave damping ratio measurement using velocity signal 
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6.3.3 Measurement of damping ratio using acceleration signal 

The acceleration signal corresponding to Equation (6.1) is: 
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where:  
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By phase shift using aIII ttt −−=τ , one obtains: 
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where:  III
tt AeA aIII )(2

0
0 +−= ξωω  (6.42) 

The acceleration signal Equation (6.41) is mapped to the DSF Equation (6.7) so that the 

damping ratio can be evaluated using Equation (6.7). 

As concluded by Baeten and Ziolkowski (1990), the base plate acceleration, the 

reaction mass acceleration or their weighted sum signal can not serve as the correct 

source signature. Evaluation of the damping ratio using these near-field accelerations is 

inaccurate. Acceleration signals in the far field are not available from the downhole field 

tests and, therefore nothing further is done with accelerations. 

6.4 IDENTIFICATION OF THE SOURCE SIGNATURE 

The real source signal and source signature are unknown. The accelerations of the 

base plate, reaction mass, or their weighted sums do not represent the far-field wavelet 
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(Baeten and Ziolkowski, 1990). The far-field displacement wavelet is proportional to the 

true ground force. Using the method discussed in Section 6.3, any signal recorded in the 

far field can be used to back calculate the source signature. As discussed below, the 

signal used for the back calculation can be any signal in the far field where nonlinear 

near-field effect is attenuated or filtered by the earth. The calculation is best used with the 

signals recorded by a reference receiver in an upper layer at some depth below the ground 

surface where exist the least amount of reflections of the body waves and interference of 

the surface waves. 

     The group of parameters that uniquely determines the normalized source signature 

are: T,,, 0 ϖωξ . Parametersξ and 0ω  are determined in Equations (6.16) and (6.19), 

respectively. Constants ϖ  and T are the values used in the field tests and selected at the 

start of testing. 

6.4.1 Calculation of the normalized source signature 

The source signature can be a displacement, velocity, or acceleration, all of which 

are determined by the same group of parameters.  If not specifically mentioned, the 

source signature refers to the displacement source signature. 

The predetermined drive signal possesses exact information regarding the start 

and termination times of excitation. The start of the drive signal excitation, whether it is 

at time zero or not, is used as the time zero (t = 0) of the source signature. The duration T 

of the excitation corresponds to the time span of the sinusoidal wavelet as well as the 

initial transient wavelet. The damped free vibration or trailing wavelet starts at t = T. 

Assuming the excitation force starts at zero phase (ψ = 0), initial phases or times 

It  and IIt  of the forced vibration Equations (5.39) and (5.59)) can be obtained from 

Equations (5.38) and (5.58), respectively, as: 
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If the normalized amplitudes *
IA  and *

IIA  are defined as: 
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= d
IIA . (6.47) 

then the amplitudes of the forced vibration obtained from Equations (5.34) and (5.57) 

become: 

 *
II A

k
QA = , (6.48) 

and *
IIII A

k
QA = . (6.49) 

The boundary condition between the forced vibration and the ensuing damped 

free vibration is Equations (5.67) and (5.68), which are equivalent to Equations (6.50) 

through (6.53) shown below. 
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 )0(0 IIIuu =  (6.52) 

 )0(0 IIIuu && =  (6.53) 

The following terms for normalized initial displacement and velocity are defined as: 
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By dividing both sides of Equations (6.50) and (6.51) by
k
Q  and using Equations (6.48) 

and (6.49), one obtains 
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By dividing the numerator and the denominator of Equation (5.73) by
k
Q , one obtains: 
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If the normalized trailing amplitude is defined as: 
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Then, dividing both sides of Equation (5.72) by
k
Q , one obtains: 
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The source signature defined by Equation (5.81) becomes: 
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If the normalized source signature is defined as the following:   

 

k
Q
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then Equation (6.60) can be simplified as: 
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where: amplitudes *
IA , *

IIA  , and *
IIIA  are defined in Equations (6.46), (6.47), and 

(6.59), respectively. Initial time shifts It , IIt , and IIIt  are defined in Equations (6.44), 

(6.45), and (6.57), respectively. 

The normalized source signature in Equation (6.62) may not be directly used for 

deconvolution if dispersion is present. If dispersion does exist and requires consideration, 

then the normalized source signature can be separated into the following source 

signatures defined in Equations (6.63) to (6.68), each of which is a pure wavelet that can 

be directly used for deconvolution. The normalized source signature indicates all the 

variations and applications in Equations (6.63) to (6.68). 

The first term in Equation (6.62) is the normalized sinusoidal wavelet: 

 )](sin[)]()([)( **
III ttTtUtUAtu −−−= ϖ  (6.63) 

The second term is the normalized transient wavelet: 
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t
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The third term is the normalized trailing wavelet: 
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The second and the third terms combined comprise the normalized twin wavelets: 
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When the sinusoidal and the twin wavelets feature the same carrier frequency, 

which means the source is being excited at the damped natural frequency of the vibrator-

earth system, Equation (6.62) becomes the normalized U-wavelet: 
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To demonstrate graphically and compare various source signatures and their 

spectra in this chapter, a model test is defined as the response to a SDOF system with 

natural frequency 100 Hz and damping ratio 25%. The system is excited with an 

excitation frequency of 50 Hz and duration of 0.1 second. All the source signatures and 

their wavelets are response to the same model test.  

The displacement response to the model test is shown in Figure 6.14. 
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Figure 6.14 Displacement signature of the model test (excitation frequency 50 Hz, 
duration 0.1 sec, damped frequency 100 Hz, damping ratio 25%) 

6.4.2 Calculation of the source signature 

Once the initial phase or time IIIt  is known from Equations (6.57), the amplitude 

IIIA of the free vibration can be calibrated from any far-field signals such as displacement, 

velocity, or acceleration using the amplitude of the DFS Equation (6.11) as: 
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or by Equation (6.14) as 

 mAA 02|| ξω= . (6.69b) 

If a displacement signal is used for the DFS equation, IIIA  is given by Equation 
(6.26) or (6.31) as: 
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If a velocity signal is used, IIIA  is determined by Equation (6.37) as: 
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. (6.71) 

If an acceleration signal is used, IIIA  is determined by Equation (6.42) as: 
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ω
. (6.72) 

The use of Equation (6.59) and any of Equations (6.70) to (6.72) allows one to 

obtain the normalization factor by 
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III

III

A
A

k
Q
=  (6.73) 

Once 
k
Q  is known, the source signature and any of its variations may be obtained from 

the normalized source signature by using one to one mapping as shown in Equations 

(6.75) to (6.77) as: 

 *** ,, IIIIIIIIIIII AAAAAA ↔↔↔  (6.74) 
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The sinusoidal, the transient, and the trailing wavelets are mapped, respectively, 

as follows: 
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The source signature Equation (6.60) is then determined as: 
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Figure 6.15 demonstrates the procedures to calculate normalized source signatures 

and scaled source signatures. 

 

Figure 6.15 Flow chart for calculation of the source signatures 
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The scaled source signatures ( )(),(),( tututu &&& for displacement, velocity and 

acceleration, respectively) can be obtained from the normalized signatures 

( )(* tu , )(* tu& and )(* tu&& for displacement, velocity and acceleration, respectively) by the 

normalization factor
k
Q . The same mapping Equation (6.74) applies to all other 

normalized signatures discussed in the next two sections.  The normalized signatures are 

chosen because the current focus for travel time analysis is on the phase shift rather than 

the amplitude attenuation.  

6.4.3 Calculation of the normalized velocity signature 

The normalized sinusoidal velocity signature is the derivative of Equation (6.63), 

which is: 

 )](cos[)]()([)( **
III ttTtUtUAtu −−−= ϖϖ&  (6.82) 

If only the sine function is used, then Equation (6.82) becomes: 
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The normalized transient velocity signature is the derivative of Equation (6.64) as: 
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where: vt is defined in Equation (6.34).  

The normalized trailing velocity signature is the derivative of Equations (6.65), or 

Equation (6.66), which is: 
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The normalized twin wavelets velocity signature is the derivative of Equation (6.67) or 

the superposition of Equations (6.84) and (6.86) as: 
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The normalized U-wavelet velocity signature is the derivative of Equation (6.68), or the 

superposition of Equations (6.82) and (6.87) and using dωϖ =  given: 
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The normalized velocity signature is the derivative of the source signature Equation 

(6.62), or the superposition of Equations (6.82) and (6.87), which gives: 
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The normalized velocity signature is demonstrated in Figure 6.16. 



 197

 

Figure 6.16 Velocity signature of the model test (excitation frequency 50 Hz, duration 
0.1 sec, damped frequency 100 Hz, damping ratio 25%) 

If only the sine functions are used, then Equation (6.89) becomes: 
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6.4.4 Calculation of the normalized acceleration signature 

The normalized sinusoidal acceleration signature is the derivative of Equation 

(6.82), which is: 

 )](sin[)]()([)( *2*
III ttTtUtUAtu −−−−= ϖϖ&&  (6.91) 

The normalized transient acceleration signature is the derivative of Equation (6.84), 

which is: 
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where: at is defined in Equation (6.40).  

The normalized trailing acceleration signature is the derivative of Equation (6.85) or 

Equation (6.86), which is: 
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The normalized twin wavelets acceleration signature is the derivative of Equation (6.87) 

or the superposition of Equations (6.92) and (6.94) as: 
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The normalized U-wavelet acceleration signature is the derivative of Equation (6.88), or 

the superposition of Equations (6.91) and (6.95), and using dωϖ = gives: 
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The normalized acceleration signature is the second derivative of source signature 

Equation (6.62), or the superposition of Equations (6.91) and (6.95), which gives: 
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The normalized acceleration signature is demonstrated in Figure 6.17. 

 

Figure 6.17 Acceleration signature of the model test (excitation frequency 50 Hz, 
duration 0.1 sec, damped frequency 100 Hz, damping ratio 25%) 

6.5 SPECTRUM OF THE NORMALIZED SOURCE SIGNATURE 

The difference between the source signature and the normalized source signature 

is the normalization factor
k
Q , which maps the source signature amplitudes IA , IIA , and 

IIIA onto their normalized amplitudes *
IA , *

IIA  , and *
IIIA , as shown in Equations (6.75) to 

(6.77) and can be expressed as: 

 *** ,, IIIIIIIIIIII AAAAAA →→→ . (6.98) 

Equation (6.98) applies to any mapping from the spectrum of the source signature to that 

of the normalized source signature. 



 200

As discussed in Chapter 5, the source signature is the superposition of the 

sinusoidal wavelet, the transient wavelet, and the trailing wavelet. The spectrum of the 

source signature is also the superposition of the spectra of the three wavelets, as shown in 

Equation (5.72) as: 

 )()()()( , ωωωω TIIIIII FFFF ++= , (6.99) 

where: )(ωIF , )(ωIIF , and )(, ωTIIIF are defined in Equations (6.100) to 

(6.102). 

The spectrum of the sinusoidal wavelet is Equation (5.104), and is expressed as: 
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The spectrum of the transient wavelet is Equation (5.114), and is expressed as: 
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The spectrum of the trailing wavelet is Equation (5.117), and is expressed as: 
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The spectrum of the twin wavelets is the superposition of Equations (6.101) and (6.102), 

and is given as: 
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 )()()( ,, ωωω TIIIIIIIIII FFF +=  (6.103) 

The spectrum of the U-wavelet is the superposition of Equations (6.100) and (6.103), and 

using dωϖ = gives: 

 )()()()( , ωωωω TIIIIIIU FFFF ++=  (6.104) 

The mapping defined in Equation (6.98) leads to the spectrum of the normalized source 

signature as: 

 )()()()( *
,

*** ωωωω TIIIIII FFFF ++= , (6.105) 

where: )(* ωIF , )(* ωIIF , and )(*
, ωTIIIF are defined in Equations (6.106) to (6.108). 

The spectrum of the normalized sinusoidal wavelet is mapped from Equation (6.100) as: 
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The spectrum of the normalized transient wavelet is mapped from Equation (6.101) as: 
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The spectrum of the normalized trailing wavelet is mapped from Equation (6.102) as: 
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The spectrum of the normalized twin wavelets is the superposition of Equations (6.107) 

and (6.108) as: 

 )()()( *
,

**
, ωωω TIIIIIIIIII FFF +=  (6.109) 

The spectrum of the normalized U-wavelet is the superposition of Equations (6.106) and 

(6.109), and using dωϖ = gives: 

 )()()()( *
,

*** ωωωω TIIIIIIU FFFF ++=  (6.110) 

The spectra of the normalized source signature are demonstrated in Figure 6.18 

through Figure 6.21. 

 

Figure 6.18 Displacement spectrum of source signature of the model test (excitation 
frequency 50 Hz, duration 0.1 sec, damped frequency 100 Hz, damping ratio 
25%) 
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Figure 6.19 Displacement spectrum of sinusoidal wavelet of the model test (excitation 
frequency 50 Hz, duration 0.1 sec, damped frequency 100 Hz, damping ratio 
25%) 

 

Figure 6.20 Displacement spectrum of transient and trailing wavelets of the model test 
(excitation frequency 50 Hz, duration 0.1 sec, damped frequency 100 Hz, 
damping ratio 25%) 
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Figure 6.21 Displacement spectrum of twin wavelets of the model test (excitation 
frequency 50 Hz, duration 0.1 sec, damped frequency 100 Hz, damping ratio 
25%) 

6.6 SPECTRUM OF THE NORMALIZED VELOCITY SIGNATURE 

The spectrum of the normalized velocity signature can be mapped from that of the 

normalized source signature. The following terms for initial time shift of velocity 

wavelets are defined as: 

 
ϖ
π

2, += IvI tt , (6.111) 

 vIIvII ttt +=, , (6.112) 

 vIIIvIII ttt +=, . (6.113) 

By comparing the amplitude and phase of the normalized source signature (Equation 

6.62) with those of the normalized velocity signature (Equation 6.90) and using the 

definitions in Equations (6.111) to (6.113), the following mapping relationships are 

obtained: 
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 vIIII ttAA ,
** , →−→ ϖ , (6.114) 

 vIIIIIIII ttAA ,
*

0
* , →−→ ω , (6.115) 

 vIIIIIIIIIIII ttAA ,
*

0
* , →−→ ω . (6.116) 

Equation (6.114) maps Equation (6.106) to the velocity spectrum of the normalized 

sinusoidal wavelet as: 
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Equation (6.115) maps Equation (6.107) to the velocity spectrum of the normalized 

transient wavelet as: 
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Equation (6.116) maps Equation (6.108) to the velocity spectrum of the normalized 

trailing wavelet as: 
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The velocity spectrum of the normalized twin wavelets is the superposition of Equations 

(6.118) and (6.119) and is expressed as: 
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 )()()( *
,

** ωωω TIIIIIT FFF &&& +=  (6.120) 

The velocity spectrum of the normalized U-wavelet is the superposition of Equations 

(6.117) and (6.119) and using dωϖ = is expressed as: 

 )()()()( *
,

*** ωωωω TIIIIIIU FFFF &&&& ++=  (6.121) 

The spectrum of the normalized velocity signature is the superposition of Equations 

(6.117) and (6.119) as: 

 )()()()( *
,

*** ωωωω TIIIIII FFFF &&&& ++=  (6.122) 

The spectra of the normalized velocity signature are demonstrated in Figure 6.22 

through Figure 6.24. 

 

Figure 6.22 Velocity spectrum of source signature of the model test (excitation 
frequency 50 Hz, duration 0.1 sec, damped frequency 100 Hz, damping ratio 
25%) 



 207

 

Figure 6.23 Velocity spectrum of sinusoidal wavelet of the model test (excitation 
frequency 50 Hz, duration 0.1 sec, damped frequency 100 Hz, damping ratio 
25%) 

 

Figure 6.24 Velocity spectrum of twin wavelets of the model test (excitation frequency 
50 Hz, duration 0.1 sec, damped frequency 100 Hz, damping ratio 25%) 

 



 208

6.7 SPECTRUM OF THE NORMALIZED ACCELERATION SIGNATURE 

The spectrum of the normalized acceleration signature can be mapped from that 

of the normalized source signature. The terms for initial time shift of acceleration 

wavelets are defined as: 

 aIIaII ttt +=, , (6.123) 

 aIIIaIII ttt +=, . (6.124) 

The amplitude and phase of the normalized source signature (Equation 6.62) are 

compared with those of the normalized acceleration signature (Equation 6.97). Using the 

definitions in Equations (6.123) and (6.124), the following mapping relationships are 

obtained: 

 IIII ttAA →−→ ,*2* ϖ  (6.125) 

 aIIIIIIII ttAA ,
*2

0
* , →→ω  (6.126) 

 aIIIIIIIIIIII ttAA ,
*2

0
* , →→ω  (6.127) 

Equation (6.125) maps Equation (6.106) to the acceleration spectrum of the normalized 

sinusoidal wavelet as: 
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Equation (6.126) maps Equation (6.107) to the acceleration spectrum of the normalized 

transient wavelet as: 
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Equation (6.127) maps Equation (6.108) to the acceleration spectrum of the normalized 

trailing wavelet as: 
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The acceleration spectrum of the normalized twin wavelets is the superposition of 

Equations (6.129) and (6.130) and is expressed as: 

 )()()( *
,

** ωωω TIIIIIT FFF &&&&&& +=  (6.131) 

The acceleration spectrum of the normalized U-wavelet is the superposition of Equations 

(6.128) and (6.131), and using dωϖ = is expressed as: 

 )()()()( *
,

*** ωωωω TIIIIIIU FFFF &&&&&&&& ++=  (6.132) 

The spectrum of the normalized acceleration signature is the superposition of Equations 

(6.128) and (6.131) as: 

 )()()()( *
,

*** ωωωω TIIIIII FFFF &&&&&&&& ++=  (6.133) 

The spectra of the normalized acceleration signatures are demonstrated in Figure 

6.25 through Figure 6.27. 
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Figure 6.25 Acceleration spectrum of source signature of the model test (excitation 
frequency 50 Hz, duration 0.1 sec, damped frequency 100 Hz, damping ratio 
25%) 

 

Figure 6.26 Acceleration amplitude spectrum of sinusoidal wavelet of the model test 
(excitation frequency 50 Hz, duration 0.1 sec, damped frequency 100 Hz, 
damping ratio 25%) 
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Figure 6.27 Acceleration spectrum of twin wavelets of the model test (excitation 
frequency 50 Hz, duration 0.1 sec, damped frequency 100 Hz, damping ratio 
25%) 

6.8 SUMMARY 

In this chapter, a new method for measuring the damping ratio and natural 

frequency of the vibrator-earth system is introduced. Damped free vibration as part of the 

vibratory source contains the finger print of the parameters of the system. Mapping of the 

measured free vibration signal to the theoretical free vibration curve in the frequency 

domain leads to the eventual identification of the source signatures for displacement, 

velocity and acceleration. Normalized source signatures are preferred because the scaling 

constant is irrelevant to the travel time analysis. 

The normalized source signature is relevant to four parameters: the excitation 

frequency, the duration of the excitation, the damping ratio and the natural frequency of 

the vibrator-earth system. The spectral analysis of the source signatures in this chapter is 

essential for the wavelet response analysis in the next chapter. 
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Chapter 7  Analysis of Wavelet Response 

7.1 INTRODUCTION 

In this chapter, the wavelet-response approach that is used in analyzing travel 

times is introduced. The wavelet-response approach was developed as part of this 

research. Wavelet response is generally the same as impulse response, except that the 

former takes into consideration the velocity dispersion for wavelets with discrete 

frequency contents. 

This work uses deterministic deconvolution method to extract source signature 

from the recorded signals, and to obtain a wavelet response for travel time analysis. A 

wavelet response is similar to an impulse response as noted earlier. The difference 

between a wavelet response and an impulse response lies in how to treat the velocity 

dispersion of the source signature. An impulse response neglects the phase shifts caused 

by velocity dispersion between different frequencies in the source wavelet, and assigns 

one spike to represent each reflection coefficient. The wavelet response decomposes a 

source wavelet into separate pure wavelets, each of which has a separate spike in the 

wavelet response. The wavelet response method is not practical for chirp sweeps because 

the frequency band in a chirp sweep is continuous rather than discrete. A wavelet 

response degenerates to an impulse response if a durational wavelet is treated as an 

impulsive wavelet and the wavelet velocity dependence on frequency is ignored. As a 

result, the relative separation of the wavelets within the source signature during 

propagation is considered as the expansion of the breadth of group energy. 

In this research, the source signature is divided into a few pure wavelets. The 

energy of the sinusoidal wavelet dominates the source signature. The advantage of the 

sinusoidal wavelet is that it has no time-varying wavelet envelope. Other pure wavelets 
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have negligible dispersion concerns within a wavelet because each pure wavelet carries 

only one frequency. As a result its frequency content does not vary with the propagation 

distance if only velocity anisotropy is considered. The frequency content of a pure 

wavelet remains stable during propagation. This is a unique and important feature of 

wavelet response analysis. The shape of each pure wavelet also remains relatively stable 

during propagation, especially for the sinusoidal wavelet even though it is subject to 

scaling when taking into account the attenuation anisotropy. 

A pure wavelet does not experience a phase shift caused by frequency content 

variation. Thus mixed-phase issues do not exist in contrast to other deconvolution 

techniques assuming signals are of zero-phase or minimum-phase. Wavelet response 

analysis does not cause differential phase shift between traces at different depths.  

The difference between a source signature and a normalized source signature is a 

constant amplitude scale, which does not affect the analysis of the phase shift related the 

travel time analysis. Hence, the normalized source signature is preferred.  

The normalized source signature in Equation (6.62) is divided into two pure 

wavelets:  

 )()()( *** tututu TI +=  (7.1) 

where the sinusoidal wavelet is: 

 )](sin[)]()([)( **
III ttTtUtUAtu −−−= ϖ  (7.2) 

and the twin wavelets or doublet are: 
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As seen from Equations (7.2) and (7.3), the sinusoidal wavelet has a carrier frequency 

ofϖ , while the twin wavelets have a carrier frequency of dω .  
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Dispersion may occur if wavelets have different frequencies. Different 

frequencies can travel at different speeds and will attenuate at different amplitude scales. 

To avoid possible dispersion, the optimum excitation frequency should satisfy: 

 dωϖ = , (7.4) 

which is applicable when the measured in-situ damped frequency dω  is within the 

excitation frequency range of the vibrator (Figure 3.3). Then the sinusoidal wavelet and 

the twin wavelets merge into one pure wavelet, specifically the U-wavelet: 
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For convenience, )(tu is used to express any pure wavelet in Equation (7.2) 

depending on context. Within the context of integration operation, any wavelet with a 

time delay 0t is expressed as a convolution of an impulse )( 0tt −δ  with the 

wavelet )(tu : 

 )(*)()( 00 tuttttu −=− δ  (7.6) 

7.2 WAVELET RESPONSE FOR U-WAVELET 

Equation (7.5) implies that all reflected waves and direct waves will travel at the 

same speed at the same frequencyϖ or dω due to ϖ = dω . The difference between the 

direct arrivals and the different reflections is the magnitude of the signal amplitude and 

its phase shift, because the time delay and amplitude attenuation vary with the lengths 

and traces of ray paths. Figure 7.1 demonstrates the wave propagation measured by four 

receivers, R1 to R4, in the same layer of geological material. Each spike (vertical line) 

represents the initial arrival time of a wave passing a receiver. The height of the spikes 

represents the wave amplitude. The solid vertical lines denote the downward wavelet 
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propagation; the dashed ones denote upward propagation.  All the downward reflection 

directions have the same slope as the direct arrival because the slope represents the 

velocity of the layer. All the upward reflections are also parallel and have the same 

absolute slope as that of the downward reflections. 

  

Figure 7.1 Illustration of amplitude attenuation and time delay of wave propagation 

As a convention in signal processing, each of these arrivals is called a component. 

Any component )(twi is a waveform similar to the source signature but is amplitude-

scaled by a real constant ia and is time-shifted by a real constant it  as expressed by: 

 )()( iii ttuatw −= , (7.7) 

where )(tu is the U-wavelet in Equation (7.5). The receiver signal )(tuR is thus a 

multi-component signal of the same frequency, or: 
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where: n is the total number of components. By substituting Equations (7.6) and 

(7.7) into the Equation (7.8), one obtains 
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The term in the square brackets in Equation (7.9) is defined as a new time series R(t) as: 

 ∑
=
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n

i
ii ttatR

1
)()( δ . (7.10) 

If the source wavelet )(tu is an impulsive wavelet or an impulse, )(tR is called 

the impulse response of a system, and the real coefficients ia are called reflection 

coefficients when the seismic signal )(tuR is measured on the ground surface and 

characterized by reflections. When dispersion exists, the dominant frequency content of 

the impulsive wavelet may vary with depth, especially in the case of the deep downhole 

test. Higher frequencies attenuate faster than lower frequencies. As waves propagate 

significantly long distances, higher frequencies will be replaced by lower frequencies. An 

impulse response tracks the energy of the dominant frequencies regardless of the 

frequency content shift. 

If the source wavelet )(tu is a pure wavelet (a single frequency), the location of 

the spikes in Figure 7.2 depends on the frequency of )(tu because of different frequency 

travels at a different speed. A source wavelet in a different frequency will result in a 

different response )(tR , thus )(tR  is termed the wavelet response for the purpose of 
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differentiating from the impulse response. The real coefficients ia are actually the arrival 

coefficients when the measurement is in a borehole. The first spike in Figure 7.2 is the 

direct arrival or transmitted wave coefficient. The later spikes are multi-path direct 

arrivals, same path but split wave direct arrivals, or indirect arrivals consisting of one or 

more reflections and transmissions during the mixed up-going and down-going trips. 

 

Figure 7.2 Noise-free single wavelet response 

When the source signal consists of two or more pure wavelets, different wavelets 

travel at different speeds (Figure 7.3). All the parallel solid lines denote wavelet b while 

parallel dotted lines denote wavelet c. The corresponding wavelet response R(t) is:  

 

Figure 7.3 Velocity dispersion of dual wavelets with time and depth 
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Figure 7.4 demonstrates the dispersion effect of different pure wavelets with time. 

The late arrival spikes in the time axis of the two wavelets (b and c) become increasingly 

separated because the later ones in time travel longer distances. Thus the dispersion effect 

accumulates with time delay. 

 

Figure 7.4 Noise-free dual wavelet response (upward reflections not shown) 

When the two wavelets have the same carrier frequency, they merge into the U-

wavelet which is a single wavelet. For the single wavelet case, the Fourier transform of 

the receiver signal in Equation (7.9) is: 
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where )(ωF is defined in Equation (5.123). 

If the discrete coefficients ia  are considered as discrete values of a continuous 

function )(ta , this situation can be expressed by: 
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By comparing Equations (7.13) and (7.10), )(ta  is determined as the wavelet response 

to a single wavelet and is represented by:  
 )()( tatR =  (7.14) 

Using the continuous wavelet response, Equations (7.9) and (7.12) become 

Equations (7.15) and (7.16), respectively, as: 

 )(*)()( tutRtuR =  (7.15) 
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 (7.16) 

The wavelet response R(t) is obtained using deconvolution. Rearranging Equation (7.16) 

yields: 
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{ˆ)( 1
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tuF

FtR R−= . (7.18) 

where: 1ˆ −F denotes the inverse Fourier transform. 

The receiver signal )(tuR  is an ideal noise-free multi-component signal. If 

)(~ tuR denotes the actual measured receiver signal, )(~ tnR denotes the noise, then the 

following is true for a linear system as: 

 )(~)()(~ tntutu RRR += . (7.19) 

By substituting Equation (7.18) into (7.17), one obtains: 
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As presented in Equation (7.20), noise )(~ tnR can be filtered significantly when 

the signal to noise ratio is high. In other words, the wavelet response R(t) can be obtained 

as long as the receiver signal )(~ tuR and the source signature )(tu  are available. 

7.3 WAVELET RESPONSE FOR DUAL WAVELETS 

When the excitation frequency and the damped frequency are not equal ( dωϖ ≠ ), 

wavelets in Equations (7.2) and (7.3) will travel at different velocities and eventually will 

separately attenuate (Figure 7.3). The receiver signal with n components of sinusoidal 

wavelet w1 and m components of twin wavelets w2 can be expressed as: 
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The number of components m and n may not equal due to different degrees of attenuation 

that may filter some of the components. This situation can be expressed as: 
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where: )(ωIF and )(, ωIIIIIF are defined in Equations (5.104) and (5.122), 

respectively. The terms 1w  and 2w are defined in Equations (7.2) and (7.3), respectively. 
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Similar to Equation (7.13), the discrete arrival coefficients in Equation (7.22) can 

be regarded as the discrete values of continuous functions and are expressed as: 
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where: )(tb is the sinusoidal wavelet response and )(tc is the twin wavelets 

response. Accordingly, the continuous version for Equation (7.22) becomes: 
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When the noise item in Equation (7.19) is considered, Equation (7.24) becomes: 

 )()}(~{ˆ)()}(~{ˆ)}(~{ˆ
, ωω IIIIIIR FtcFFtbFtuF ⋅+⋅=  (7.25) 

where )(~ tb and )(~ tc  are noised wavelet responses for )(tb  and )(tc , 

respectively. Two unknowns ( )(~ tb and )(~ tc ) are presented in Equation (7.25). Direct 

deconvolution is not available. The wavelet response for dual wavelets is 

 )(~)(~)( tctbtR +=  (7.26) 

The stringent wavelet response solution for Equation (7.25) requires obtaining 

Equation (7.26) which is left for future work. Except cross-correlation method, two other 
approximations are applicable considering the twin wavelets spectrum )(, ωIIIIIF  has 

much less energy contribution to the receiver signal )(~ tuR than the sinusoidal wavelet 

term. One approximation is to filter the twin wavelets and the other is to treat it as noise.  

The source signature defined in Figure 7.5 is characterized by excitation 

frequency 50 Hz, natural frequency 40 Hz, source duration 0.1273 sec, and damping ratio 

25%. Figure 7.6 is the amplitude spectrum of the source signature. The peak amplitude of 

the sinusoidal wavelet is 56 db, while that of the twin wavelets is 46 db, indicating a 10-

db difference in peak energy. If the areas covered under the peak amplitude lobes are 
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considered, the energy difference is much greater or the contribution of the twin wavelets 

is much smaller.   

 

Figure 7.5 Source signature and its wavelets (excitation frequency 50 Hz, natural 
frequency 40 Hz, duration 0.1273 sec, damping ratio 25%) 

The simplest way to approximate the wavelet response for Equation (7.25) is to 

filter the undesired twin-wavelet frequency, if possible, especially when the sinusoidal 

wavelet frequency and the twin-wavelet frequency significantly separate. A low pass 

filter is most appropriate when the twin wavelets have a distinctly higher frequency than 

does the sinusoidal wavelet. Otherwise a band-pass filter is applicable. Once the twin 

wavelets are eliminated, the dual wavelet propagation degenerates to the single wavelet 

problem as: 

 )()}(~{ˆ)}(~{ˆ ωIR FtbFtuF ⋅≈  (7.27) 
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Figure 7.6 Energy contribution of the sinusoidal wavelet and the twin wavelets defined 
in Figure 7.5 

The sinusoidal wavelet response is then obtained by: 

 
)(
)}(~{ˆ

)}(~{ˆ
ωI

R

F
tuFtbF ≈ , (7.28) 

or  }
)(
)}(~{ˆ

{ˆ)(~ 1

ωI

R

F
tuFFtb −≈ . (7.29) 

The twin wavelets can also be treated as correlated noise. Rearranging Equation (7.26) 

as: 
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The first item of addition on the right hand side of Equation (7.30) is the same as 

the U-wavelet approach discussed in the previous section. The second item is the 
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multiplication of a more noisy wavelet response [ )}(~{ˆ)}(~{ˆ tbFtcF − ] and the twin 

wavelets spectrum )(, ωIIIIIF . The contribution of the second item must be a noise-like 

signal that can be neglected. Equation (7.30) becomes: 
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Therefore, }
)(
)}(~{ˆ

{ˆ)(~ 1

ωF
tuF

Ftb R−≈  (7.32) 

Furthermore, if the duration of the excitation increases, the energy of the twin 

wavelets is negligible. As a result, for the purpose of wavelet response analysis, the 

longer the duration, then the closer the dual wavelet response is to the single wavelet 

response. However, for the waveform identification methods such as first break method 

and arrival identification method, the increase of excitation duration does not reduce 

waveform distortion. 

Figure 7.7 presents five cycles of a 50-Hz sinusoidal P-wave signal sampled at 

0.12207 ms intervals. The source signature is defined as a 50-Hz sine wave, of excitation 

duration 0.1 sec, natural frequency 40 Hz, and damping ratio 25%. Using the approach 

given by Equation (7.29) yields the wavelet response shown in Figure 7.8, where a spike 

near 0.12 sec denotes the arrival of the P-wave signal. Figure 7.9 shows the filtered 

wavelet response in Figure 7.8 by a 90-Hz low pass filter. 

 

Figure 7.7 P-wave signal of five cycles of a 50-Hz sine wave 



 225

 

Figure 7.8 The wavelet response of the P-wave signal in Figure 7.7 

 

Figure 7.9 The low-pass filtered wavelet response of the P-wave signal in Figure 7.7 

The amplitude spectra of two P-wave signals and their corresponding source 

signatures are presented in Figures 7.10 and 7.11. The spectra of the signals and the 

signatures both match well at frequencies below 90 Hz, even though the noise increases 

significantly from 90 Hz. The fact that the spectra of a signal and its source signature 

match very well within the significant frequency band justifies the source signature 

model in Chapter 5.  

 

Figure 7.10 Amplitude spectra of a P-wave signal recorded at a depth of 111 m (370 ft) 
and its SDOF source signature  
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Figure 7.11 Amplitude spectra of a P-wave signal recorded at a depth of 291 m (970 ft) 
and its SDOF source signature 

7.4 WAVELET RESPONSE FOR S-WAVE WITH NEGLIGIBLE ANISOTROPY 

S-wave signals are recorded by two horizontal and orthogonal components S1 and 

S2 in a given 3-D receiver. Disorientation occurs when there is no compass to provide 

tool orientation as happened in this research. Hence, the field receiver tool is arbitrarily 

oriented. For a vertical borehole, the orientation correction is only necessary on the 

horizontal plane because the vertical geophone is correctly oriented. 

Figure 7.12 is a hodograph that illustrates the particle trace of an S-wave motion 

on a horizontal plane. When the vibration is steady-state, the particle motion is along the 

outside ellipse. Point A and B denote the maximal amplitudes of the motion. When 

anisotropy is negligible, the particle motion can be simplified as along the straight line 

between points A and B, and angleθ denotes the correct polarization orientation of the 

particle motion. If one of the S-wave receiver components (S1 or S2) is aligned with the 
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polarization direction (denoted by P in Figure 7.12), the receiver tool box is correctly 

orientated. If two horizontal S-wave sensors S1 and S2 are aligned with the axes X and Y, 

respectively, the tool box is disoriented. 

 

Figure 7.12 Hodograph and polarization of S-wave recorded on a horizontal plane 

The particle motion )(tuR is defined by the convolution of source signature )(tu  

and wavelet response )(tR in Equation (7.15), or: 

 )(*)()( tutRtuR =  (7.33) 

When anisotropy is negligible, the particle motion is assumed to travel along a straight 

line AB (Figure 7.13). The measured components X(t) and Y(t) are the projections of 

)(tuR in terms of orientationθ and can be expressed as: 

 θcos)()( tutX R=  (7.34) 

and θsin)()( tutY R=  (7.35) 

The conventional methods must use X(t) and Y(t) in order to obtain the orientationθ . 

The wavelet response technique greatly simplifies the process. 
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Figure 7.13 Polarization of S-wave when anisotropy is weak 

By substituting Equation (7.33) into Equations (7.34) and (7.35), one obtains 
 θcos)(*)()( tRtutX =  (7.36) 

and θsin)(*)()( tRtutY =  (7.37) 

As can be seen from Equations (7.36) and (7.37), both X(t) and Y(t) contain the same 

source signature )(tu  that can be extracted to obtain the corresponding wavelet 

responses. If one defines the wavelet responses of X(t) and Y(t) as: 
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then by Fourier transforming both sides of Equations (7.36) and (7.37) and using 

definitions in Equations (7.38) and (7.39), one obtains: 

 θcos)()( tRtRX =  (7.40) 
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and θsin)()( tRtRY =  (7.41) 

Equations (7.40) and (7.41) demonstrate that the wavelet responses of both disoriented 

components X(t) and Y(t) are mapped to the correctly oriented wavelet response )(tR .The 

scaling constant θcos or θsin  simply changes the amplitude and sign of the wavelet 

response while the arrival time remains unchanged. In other words, either )(tRX or 

)(tRY can exactly reflect the arrival time defined by )(tR . the arrival coefficients 

of )(tRX and )(tRY appear in pairs and synchronized in the time domain (Figure 7.14) as: 

 

Figure 7.14 Wavelet response pairs of S-wave components 

For example, Figure 7.15 shows the two out-of-phase components of an S-wave 

receiver signal recorded at a depth of 114 m (380 ft) in Borehole C4993. Figure 7.16 

shows their corresponding spectra. Figure 7.17 presents the wavelet responses indicating 

the spikes are in pairs at the same arrival time but are of different signs. 

 

Figure 7.15 Two components of S-wave records at a depth of 114 m (380 ft) 
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Figure 7.16 Spectra of two components of the S-wave signal and the source signature 

 

Figure 7.17 The wavelet response of the two components of the S-wave signal recorded 
at a depth of 114 m (380 ft) 

An advantage of the wavelet response method is that the correction for the 

disorientation of the receiver tool is not required. The spikes of the wavelet responses are 
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in pairs and have the same arrival times. Whenever single spikes appear as singletons, the 

receiver tool is then correctly oriented (Figure 7.18). The wavelet response of one S-wave 

component should have dominant coefficient amplitudes or spike heights, while the other 

should have indistinct spikes or noise.  

 

Figure 7.18 Spike singleton indicates correct orientation 

The possibility of multi-polarization exists for S-wave motion due to the 

interference of preceding P-wave components as well as multi-path arrivals and S-wave 

splitting. Figure 7.19 demonstrates two separate polarizations P1 and P2 corresponding to 

θ 1 and θ 2, respectively. If P1 denotes the correct orientation, then conventional methods 

using the dominant motions or wave energy may obtain an incorrect orientation because 

other motions such as P-wave or SV-wave (as represented by P2) may control the motion 

if the polarizations can not be separated or decoupled effectively. 
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 t )(tRY  
 A 

 A 
 Indistinct amplitude or noise 

 Dominant amplitude 
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Figure 7.19 Multi-polarization hodograph of S-wave signal 

The wavelet-response method avoids direct evaluation on distorted waveforms. 

As shown in Figure 7.20, the wavelet responses of both S-wave components always 

appear in pairs. Different polarizations will correspond to different pairs of spikes as 

shown by P1 and P2 in Figure 7.20. P1 and P2 are identical to the polarization in Figure 

7.19. The correct orientation for first arrival corresponds to one pair of the spike pairs, 

not necessarily the first pair because P and SV waves can propagate faster than the SH 

wave. The correct spike pair can be distinguished from other spikes using the waterfall 

plot. When a singleton exists, the corresponding polarization is aligned with the receiver 

component. The receiver tool is correctly oriented. For example, P3 is aligned with the X 

component so that the spike at Y component disappears or appears similar to noise. 
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Figure 7.20 Wavelet response pair for multi-polarization S-wave signal 

7.5 WAVELET RESPONSE FOR S-WAVE WITH ANISOTROPY 

When anisotropy is obvious, the spike pairs in Figure 7.20 in the wavelet 

responses for the two S-wave components may appear shifted within the pair (Figure 

7.21).  

 

Figure 7.21 Shifted wavelet responses of the two components of the S-wave signal 

The time shift caused by anisotropy is illustrated in Figure 7.22, where the motion 

of one cycle of the vibration is simulated as an ellipse. Point D marks the peak amplitude 

point of the time series X(t) recorded by component S1. Point C denotes the peak 

amplitude point of the time series Y(t) recorded by component S2. Both points C and D 

are tangent points to the motion trajectory. The actual peak point of the orientation 

corrected time series P(t) should be at point A. Anisotropy causes very small shifts for the 

peaks (from A to C or from A to D). The desired actual peak A is between the two peaks 
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C and D. The peaks C and D correspond to a spike pair ( 2x at Dt  and 1y at Ct  in Figure 

7.23) in wavelet responses of X(t) and Y(t) if X(t) and Y(t) are centered with zero mean 

values as shown in Figure 7.22. The heights of the spikes for the wavelet responses are 

not necessarily equal to 2x or 1y  in that they can be scaled by any constant factor as long 

as each time the same scale is applied to both of them. 

 

Figure 7.22 Hodograph of S-wave signal with strong anisotropy 

 

Figure 7.23 Shifted wavelet responses of S-wave components 

The estimation of curve D to A to C as part of an ellipse does not require the 

whole trajectory to be an ellipse, nor does it imply the anisotropy is elliptical. However, 
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the assumption that the local curve from point D to A to C is part of an ellipse as shown 

in Figure 7.22 can greatly simply the estimation of the time shifts 1tΔ and 2tΔ in Figure 

7.23. Dt  represents the time at point D and Ct corresponds to the time at point C. 

Ct and Dt can be measured from the wavelet responses of both S-wave components in 

Figure 7.24. At  denotes the desired but unknown arrival time.  

 1tΔ = AC tt − , 2tΔ = DA tt −  

thus 1tΔ and 2tΔ are unknown, but the difference of the arrival times 

DC ttttt −=Δ+Δ=Δ 21  of the two spikes is known from the wavelet responses. The 

heights of the spikes 2x and 1y can also be measured from the wavelet responses. Using 

prior knowledge of 2x , 1y and tΔ , the arrival time at point A can be derived as follows: 

 

Figure 7.24 Relative time shift of wavelet responses of S-wave components 

For simplification, assume the time origin is at point A ( 0=t ) and the time at 

points C and D are 1t and 2t , respectively. Therefore, tΔ can be written as: 

 1t - 2t = tΔ . (7.42) 

Assuming the half length of the long axis of the ellipse is a  and that of the shorter one 

isb , then in the local coordinate system POQ (Figure 7.25) can be expressed as: 
 tap ϖcos=  (7.43) 

and  tbq ϖsin=  (7.44)  
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Figure 7.25 Relationship of local and general coordinate systems 

The elliptical equation in local coordinate system POQ is: 
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The relationship between the coordinate systems XOY and POQ is defined as: 
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Equation (7.47) is identical to: 
 θθ sincos yxp +=  (7.48) 

and θθ cossin yxq +−=  (7.49) 

By substituting Equations (7.48) and (7.49) into (7.45), one obtains: 
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b
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The following three steps bridge the three unknown elliptical parameters 

(a ,b andθ ) and three measured wavelet response parameters ( 2x , 1y and tΔ ). 

Step 1: Relationship between 1y and the ellipse 

Derivative of x for both sides of Equation (7.50) and let 0=
dx
dy  yields the 

tangent line at point C ( 1x , 1y ): 

 ykx 1=  (7.51) 

where 22

22

1 )tan(
tan)(
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bak
+

−
=

θ
θ  (7.52) 

By substituting Equation (7.52) into (7.50) and canceling x, one obtains: 

 
2121

1

)sincos()sincos(

1

b
k

a
k

y
θθθθ −

+
+

±

=  (7.53) 

The value 1y  is measured from )(tRY , the wavelet response of Y(t) component in Figure 

(7.23).  

Step 2: Relationship between 2x and the ellipse 

Derivative of y for both sides of Equation (7.50) and let 0=
dy
dx  yields the 

tangent line passing point D ( 2x , 2y ): 

 xky 2=  (7.54) 
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By combining Equation (7.54) and (7.50) and canceling y, one obtains: 
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The value 2x can be measured from )(tRX , the wavelet response of X(t) component in 

Figure (7.23). 

Step 3: Relationship between the time interval ( 21 tt − ) and the ellipse 

Dividing (7.44) by (7.43) leads to: 

 
pb
qat =ϖtan  (7.57) 

Equation (7.57) becomes: 
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aqt
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1tan =ϖ  (7.58) 

and  
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aqt

2

2
2tan =ϖ  (7.59) 

Equation (7.48) becomes: 

 )sincos(sincos 11111 θθθθ +=+= kyyxp  (7.60) 

and  )sin(cossincos 22222 θθθθ kxyxp +=+=  (7.61) 

Equation (7.49) yields: 

 )cossin(cossin 11111 θθθθ +−=+−= kyyxq  (7.62) 

and  )cossin(cossin 22222 θθθθ kxyxq +−=+−=  (7.63) 

By substituting Equations (7.60) and (7.62) into Equation (7.58) and using Equation 

(7.52) one obtains: 
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By substituting Equations (7.61) and (7.63) into Equation (7.59) and using Equation 

(7.55), one obtains: 
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Equations (7.64) and (7.65) yield: 
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 (7.66) 

The time interval tΔ  can be measured from the time difference between the two 

spikes of the wavelet responses in Figure 7.23, and the frequencyϖ is given in the field 

test. Therefore, the left hand side of Equation (7.66) is known. 

The three steps above yield Equations (7.53), (7.56) and (7.66), the combination 

of which can solve the three ellipse parameters a ,b andθ . Oncea ,b andθ  are known, 

then Equations (7.64) and (7.65) become: 

 )
tan

arctan(1
1 θϖ a

bt =  (7.67) 

and )tanarctan(1
2 a

bt θ
ϖ

−=  (7.68) 

The arrival time at point A is: 

 1ttt CA −=  (7.69) 

or  2ttt DA +=  (7.70) 

When the anisotropy is weak, 1<<
a
b , and 2)(

a
b can be neglected, or 

 0)( 2 ≈
a
b  (7.71) 

By substituting Equation (7.71) into Equations (7.53) and (7.56), one obtains: 

 θsin1 ay ≈  (7.72) 

and θcos2 ax ≈  (7.73) 
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The division of Equation (7.72) by (7.73) obtains: 

 
2

1tan
x
y

≈θ . (7.74) 

By substituting Equation (7.74) into (7.66), one obtains: 

 2
1

2
2

12 tan
yx

tyx
a
b

+
Δ

≈
ϖ . (7.75) 

By substituting Equations (7.74) and (7.75) into Equations (7.67) and (7.68), one obtains: 

 )tanarctan(1
2
1

2
2

2
2

1 yx
txt

+
Δ

≈
ϖ

ϖ
 (7.76) 

and  )tanarctan(1
2
1

2
2

2
1

2 yx
tyt

+
Δ

−≈
ϖ

ϖ
. (7.77) 

When relative time intervals are used, Equations (7.76) and (7.77) become 

 )tanarctan(1
2
1

2
2

2
2

1 yx
txt

+
Δ

≈Δ
ϖ

ϖ
 (7.78) 

and  )tanarctan(1
2
1

2
2

2
1

2 yx
tyt

+
Δ

≈Δ
ϖ

ϖ
. (7.79) 

For convenience, the wavelet responses of the two S-wave components are illustrated in 

Figure 7.26 without any assumptions for coordinate systems or time origin. 

 

Figure 7.26 Estimation of S-wave arrival time using two S-wave components 
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Equations (7.78) and (7.79) become: 

 )tanarctan(1
22

2

YX

Y
X hh

tht
+

Δ
≈Δ

ϖ
ϖ

 (7.80) 

and )tanarctan(1
22

2

YX

X
Y hh

tht
+

Δ
≈Δ

ϖ
ϖ

 (7.81) 

Equations (7.80) and (7.81) can be extended to estimate general trajectory without 

assuming that the local curve near point A is a part of an ellipsis. This extension is based 

on the fact that the ratio of the length of any local curve to the length of a whole cycle 

should be mapped to the ratio of their time spans because the pure wavelet vibrates at a 

single frequency. 

Equations (7.69) and (7.70) become: 

 XXA ttt Δ+=  (7.82) 

or  YYA ttt Δ−=  (7.83) 

Anisotropy is weak in most rocks of geophysical interests (Thompsen, 1986). 

Equations (7.80) and (7.81) display adequate accuracy in the estimation of the S-wave 

arrival time at point A without the correction of the disorientation of the receiver tool, 

which proves to be an advantage of the wavelet response method. 

7.6 NUMERICAL DECONVOLUTION AND WAVELET RESPONSE 

7.6.1 Zeros of source signature 

The spectrum of the source signature in Equation (5.123) is the addition of the 
spectra of the sinusoidal wavelet )(ωIF  and the twin wavelets )(, ωIIIIIF . As shown in 

section 6.5 through 6.7, both spectra of )(ωIF and )(, ωIIIIIF have periodic zeros. These 

zeros are the result of the finite excitation interval T that constitutes a truncation of a time 

series. As shown in Equations (5.102) and (5.103), the truncation of a time series in the 
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time domain is equivalent to a convolution of a sinc-function in the frequency domain. 

The periodic zeros of the sinc-function lead to zeros in the spectra of the source 

signatures. For example, the spectrum of the sinusoidal wavelet )(ωIF is associated with 

the truncated time series by a square pulse in )(ωIF as defined in Equation (5.104) as: 

}]2/)sin[(]2/)sin[({
2

)( )2/()2/(2/

ϖω
ϖω

ϖω
ϖωω ϖϖω

−
−

−
+
+

= −−−− TeTeejAF II tTjtTjTjI
I . (7.84) 

The locations of the zeros of )(ωIF can be obtained by substituting:  

 0]
2

)(sin[ =
+ Tϖω   (7.85) 

and 0]
2

)(sin[ =
− Tϖω   (7.86) 

into Equation (7.84) . The solution to Equations (7.85) and (7.86) is: 

 ϖπω ±=
T
k2 , L3,2,1,0 ±±±=k  (7.87) 

By substituting 
π
ω
2

=f  and
π
ϖ
2

=f into Equation (7.87), one obtains: 

 f
T
kf ±= , L3,2,1,0 ±±±=k  (7.88) 

The discrete frequencies determined by Equation (7.87) or Equation (7.88) are called 

comb frequencies herein. Given excitation frequency 50=f Hz and excitation duration 

T = 0.1 sec, Equation (7.88) gives the zeros at comb frequencies 5010 ±= kf Hz, as 

shown in Figure 6.18 through Figure 6.27. 

7.6.2 Deconvolution of synthetic signal 

The deconvolution in Equation (7.18) can be expressed as: 

 )(*}
)(

1{ˆ)( 1 tu
F

FtR Rω
−= . (7.89) 
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where: the asterisk “*” denotes a convolution. The term }
)(

1{ˆ 1

ωF
F − actually 

represents an inverse filter with complex gain. The zeroes of the amplitude spectrum 

of )(ωF will give the filter an infinite gain at the comb frequencies defined by Equations 

(7.87) or (7.88). The infinite gains at these comb frequencies look like a comb in the 

frequency domain. A conventional way to deal with this problem to make the inverse 

filter practical is called “adding white noise” (Mari, 1997), which is: 

 { } )()( |])(max[||)(|
1

|)(|
1

)(
1

ωϕωϕ ωαωωω ii eFFeFF +
≈=  (7.90) 

where: ϕ is the phase angle of )(ωF , and α is a real value constant presenting a 

ratio analogous to signal-to-noise ratio. Mari (1997) investigated the range of α values 

using a synthetic input trace. A very low constant 001.0=α  is suitable for signals 

without noise, 1.0≥α  is appropriate for the synthetic trace data. When 0)( →ωF , the 

right-hand side of Equation (7.90) approaches a complex constant as: 

 { } )()( |])(max[|
1

|])(max[||)(|
1

ωϕωϕ ωαωαω ii eFeFF
→

+
 (7.91) 

As an alternative to Equation (7.90), other strategies can be employed to deal with the 

infinite gain of an exact inverse filter. For example, a noise spectrum 2N can be assumed, 

either constant in frequency, or variable, depending on the bandwidth of the desired 

output. 
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≈=

ω
ω

ω
ω

ω
 (7.92) 

where: )(* ωF is the conjugate of )(ωF , and N is any appropriate real value 

constant that can also be expressed as: 
 |])(max[| ωα FN =  (7.93) 
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If  the noise term N is not white, it can act as a comb filter and low pass filter for the 

source signatures defined by Equation (5.123) or Equation (5.104), in that the right-hand 

side of Equation (7.92) approaches zero at the discrete comb frequencies and high 

frequencies where 0)( →ωF and 0)(* →ωF , which can be expressed as: 

 0)(
|)(|

)(
2

*

22

*

→→
+ N

F
NF

F ω
ω

ω  (7.94) 

To investigate the range of α values, a synthetic fixed-sine source signature )(tu  

shown in Figure 7.27 is used. The synthetic signature has an excitation frequency of 50 

Hz, natural frequency of 20 Hz, source duration 0.1 sec, and damping ratio 25%, which is 

expressed as: 

 )25.0sec,1.0,20,50|()( ===== ξTHzfHzftutu n  (7.95) 

 

Figure 7.27 Synthetic source signature (excitation frequency 50 Hz, natural frequency 
20 Hz, duration 0.1 sec, damping ratio 25%) 

A synthetic signal )(ts  is defined as the superposition of multiple shifts of the 

source signature )(tu , which is: 
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 )36.0()33.0()30.0()05.0()( −+−−−+−= tututututs . (7.96) 

Equation (7.96) is used to simulate a noise-free receiver signal that has a first arrival at 

0.05 sec, and multiple reflections at 0.30, 0.33 and 0.36 sec (see Figure 7.28). 

 

Figure 7.28 Synthetic signal s(t)  

The amplitude spectrum of the synthetic signal is shown in Figure 7.29. The twin 

wavelets at 20 Hz coincide with a comb frequency (where the amplitude is zero). The 

twin wavelets near 20 Hz have greater energy than the sinusoidal wavelet near 50 Hz.  

 

Figure 7.29 Amplitude spectrum of the synthetic signal s(t) in Figure 7.28 
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Figure 7.30 demonstrates that the spectrum of the synthetic signal matches well 

with that of the source signature. The synthetic signal is noise-free, but the comparison of 

the two spectra implies that a point to point perfect match is not necessarily. For example, 

there is a significant difference between the two amplitude spectra in the first lobe 

between 0 and 10 Hz, and the fourth lobe between 30 and 40 Hz.  

 

Figure 7.30 Comparison of the amplitude spectra of the synthetic signal s(t) and the 
synthetic signature )(tu  

The seemingly zeroes in linear scale (see Figure 7.30) at frequencies higher than 

100 Hz are represented digitally by the computer as different magnitude of decimals. In 

Figure 7.31, the zeroes can be essentially the same for 50 db and 100 db, but they can 

cause significant digital fluctuations or noise for deconvolution. Figure 7.32 is the 

deconvolution of the synthetic signal by the synthetic signature. Those tall spikes are 

digital noise cause by digital representation and numeric computations. Figure 7.33 

shows the same noise in decibel scale, and indicates the source of the digital noise is the 

zeros of the source signature. At low frequencies, the noise is typically lower, as shown 
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in Figure 7.34, because the “zeros” at lower frequencies have higher values in computer 

format than those at high frequencies. 

 

Figure 7.31 Amplitude spectrum of the synthetic signal s(t) below Nyquist Frequency  

 

Figure 7.32 Amplitude spectrum of the wavelet response in linear scale 
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Figure 7.33 Amplitude spectrum of the wavelet response in decibel scale 

 

Figure 7.34 Expanded view of amplitude spectrum in Figure 7.33 
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The wavelet response corresponding to Figure 7.32 is shown in Figure 7.35. The 

first arrival at 0.05 sec and three reflections at t = 0.30, 0.33 and 0.36 seconds are clearly 

shown. The digital noise can be filtered significantly by adding white noise. For the 

noise-free synthetic signal, α = 0.001 can attain a clear arrival coefficients (see Figure 

7.36). The increase of α does not help with the noise-free signal. Figure 7.37 is almost 

the same as Figure 7.36, though α  value varies dramatically. 

 

Figure 7.35 Wavelet response when α = 0 

 

Figure 7.36 Wavelet response when α = 0.001 

Figures 7.38 and 7.39 demonstrate that the wavelet response can also be achieved 

by using the sinusoidal wavelet as the source signature, though a constant and consistent 

phase shift is observed, which does not affect the relative travel times. The twin wavelets 
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can work as a source signature only when their energy is relative greater than undesired 

signals or noise, as shown in Figure 7.40 through 7.42. 

 

Figure 7.37 Wavelet response when α = 0.1 

 

Figure 7.38 Wavelet response using sinusoidal wavelet when α = 0.001 

 

Figure 7.39 Wavelet response using twin wavelets when α = 0.001 
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Figure 7.40 Wavelet response using twin wavelets when α = 0.1 

 

Figure 7.41 Spectrum of wavelet response using twin wavelets when α = 0.001 
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Figure 7.42 Wavelet response using twin wavelets when α = 0.001 and filtered by low 
pass 40 Hz 

Low pass filter works very well if none of the high spikes (digital noise) is in the 

low pass frequency range, otherwise, the survived spikes will smear the signal arrivals in 

the wavelet response (see Figure 7.43 to 7.45). Figure 7.45 and 7.46 demonstrate that 

error occurs if the low pass cutoff frequency is lower than 20 Hz. 

 

Figure 7.43 Wavelet response filtered by low pass 500 Hz 
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Figure 7.44 Wavelet response filtered by low pass 100 Hz 

 

Figure 7.45 Wavelet response filtered by low pass 20 Hz 

 

Figure 7.46 Wavelet response filtered by low pass 15 Hz 

7.6.3 Deconvolution of trace data 

A P-wave signal recorded at a depth of 291 m (970 ft) is shown in Figure 7.47.  
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Figure 7.47 P-wave receiver signal (5 cycles of 50-Hz sine wave) at a depth of 291 m 
(970 ft) 

The source signature for the P-wave signal is measured as: 

 )25.0sec,1.0,40,50|()( ===== ξTHzfHzftutu n  (7.97) 

 

Figure 7.48 Spectra of P-wave receiver signal (5 cycles of 50-Hz sine wave) at a depth 
of 291 m (970 ft) and its source signature 

The spectra of the P-wave signal and its signature are shown in Figure 7.48. Using α = 

0.1 leads to a spectrum of the wavelet response of the P-wave signal shown in Figure 

7.49, a low pass 90 Hz will yield a wavelet response shown in Figure 7.50. 
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Figure 7.49 Spectrum of wavelet response (α = 0.1) of P-wave receiver signal (5 cycles 
of 50 Hz sine wave) at a depth of 291 m (970 ft) 

 

Figure 7.50 Wavelet response of P-wave receiver signal (5 cycles of 50 Hz sine wave) at 
a depth of 291 m (970 ft) using source signature wavelet 
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Figure 7.51 Wavelet response of P-wave receiver signal (5 cycles of 50 Hz sine wave) at 
a depth of 291 m (970 ft) using sinusoidal wavelet 

 

Figure 7.52 S-wave receiver signals (5 cycles of 50 Hz sine wave) at a depth of 114 m 
(380 ft) 

 

Figure 7.53 Wavelet response of S-wave receiver signals (5 cycles of 50 Hz sine wave) 
at a depth of 114 m (380 ft) using source signature wavelet 
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Figure 7.54 Wavelet response of S-wave receiver signals (5 cycles of 50 Hz sine wave) 
at a depth of 114 m (380 ft) using sinusoidal wavelet 

7.7 P-WAVE WAVELET RESPONSE IN BOREHOLE C4993 

The source signature of the P-wave receiver signals is defined in Equation (7.97). 

The sinusoidal wavelet was used as the source signature to perform the deconvolution. A 

white noise ratio α = 0.1 is used. After the deconvolution, a 90-Hz low pass filter was 

applied to the 50-Hz signals, and a 50-Hz low pass was applied to the 30-Hz signals.  

The waterfall plots determined from the wavelet responses are shown in Figures 

7.55 through 7.60. These waterfall plots show a clear first peak for the P-wave 

measurement at each depth. The first peak has the dominant amplitude and clearly 

exhibits an independent waveform. 
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Figure 7.55 Wavelet response of 50-Hz P-wave receiver signals (370-515 ft) 
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Figure 7.56 Wavelet response of 50-Hz P-wave receiver signals (520-700 ft) 
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Figure 7.57 Wavelet response of 50-Hz P-wave receiver signals (700-870 ft) 
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Figure 7.58 Wavelet response of 50-Hz P-wave receiver signals (880-980 ft) 
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Figure 7.59 Wavelet response of 30-Hz P-wave receiver signals (980-1160 ft) 
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Figure 7.60 Wavelet response of 30-Hz P-wave receiver signals (1170-1400 ft) 

The comparison of the travel times between the arrival-identification method and 

the wavelet-response method is presented in Figure 7.61. The travel times interpreted by 

arrival-identification method are also presented in Chapter 4. The two methods match 

very well. All layers have less than 5% difference in P-wave velocities except the 

Elephant Mountain Member where the difference is 12%. Near the boundaries, the 

wavelet-response method has less deviation than the arrival-identification method in that 

the former has less waveform distortion. However, both methods can not avoid the 

velocity variation caused by the effect of the effective medium theory. The measured 

velocity is the velocity of the effective medium that covers all the layers within a 

thickness equal to a wavelength discussed in Chapter 4. The actual layers covered by the 
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effective medium within a wavelength vary with measurement depth. For example, when 

the measurement moves downward, if a new thin layer with a much lower average 

velocity joins the effective medium from the bottom, the measured velocity may 

decrease. If a thin layer on top of the effective medium moves beyond a wavelength of 

the thickness above the measurement depth, the thin layer is no longer a part of the 

effective medium, and the measured velocity may increase. The variation of the content 

of the effective medium causes the velocity variation within a geological layer. On the 

other hand, if a basalt layer with much higher velocity joins the effective medium, the 

measured velocity may increase. When the basalt layer is no longer in the top of the 

effective medium, and/or a new thin layer joins from the bottom, the measured velocity 

may decrease.  
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Figure 7.61 Comparison of relative travel times and interpreted Vp profiles in Borehole 
C4993 between arrival-identification method and wavelet-response method 
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7.8 S-WAVE WAVELET RESPONSE IN BOREHOLE C4993 

The source signature of the 30-Hz S-wave receiver signals is defined as: 

 )25.0sec,133.0,20,30|()( ===== ξTHzfHzftutu n  (7.98) 

 The sinusoidal wavelet was used as the source signature to perform the 

deconvolution. A white noise ratio α = 0.1 is used. After the deconvolution, a 50-Hz 

low-pass filter was applied to the wavelet responses of 30-Hz signals. 

The waterfall plots determined from the wavelet responses of the forward S-wave 

receiver signals are shown in Figures 7.62 through 7.64. These waterfall plots show the 

wavelet responses of the forward S-wave receiver signals below a depth of 270 m (900 ft) 

where signals with multiple polarizations pose a challenge to the arrival-identification 

method. The wavelet responses of the reverse S-wave signals are not shown. Two 

wavelet responses at each depth correspond to two orthogonal components (S1 and S2) of 

the disoriented S-wave receiver. The arrival times are picked on the wavelet responses 

prior to correction for disorientation and denoted by a small circle for one component (S1) 

and a small triangle (S2) for the other. The disorientation is corrected using the method 

presented in Sections 7.4 and 7.5.  

The wavelet-response method has higher resolution than the arrival-identification 

method for travel time analysis. The comparison of the travel times between the arrival-

identification method and the wavelet-response method is presented in Figure 7.65. The 

travel times interpreted by arrival-identification method are also presented in Chapter 4. 

The two methods match very well for measurements with 50-Hz S-wave signals above a 

depth of 297 m (990 ft) where all layers have less than 5% difference in S-wave 

velocities. The difference for measurements with 30-Hz S-wave signals below a depth of 

297 m (990 ft) is within 15%. The wavelet-response method has much less scatter than 

the arrival-identification method in that the former has less waveform distortion.  
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Figure 7.62 Wavelet response of 50-Hz forward S-wave signals of disoriented receiver 
(900–990 ft) 
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Figure 7.63 Wavelet response of 30-Hz forward S-wave signals of disoriented receiver 
(990–1110 ft) 
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Figure 7.64 Wavelet response of 30-Hz forward S-wave signals of disoriented receiver 
(1120–1300 ft) 

 



 269

900

950

1000

1050

1100

1150

1200

1250

1300

1350

1400

0.29 0.30 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.40 0.41 0.42 0.43 0.44

Time (sec)
D

ep
th

 (f
t)

Fixed Sine 50 Hz; Date 12/19/2006

Fixed Sine 30 Hz; Date 12/20/2006

Wavelet Response 50 Hz

Wavelet Response 30 Hz

Mabton Interbed

Priest Rapids Member

933
Cold Creek Interbed

1192

1094

Umatilla Member

2520 fps

8210 fps

7520 fps

2620 fps

990 990

950

1105

1192

1300

frequency changed
from 50 to 30 Hz

8210 fps

1353

7100 fps

2730 fps

8310 fps

 

Figure 7.65 Comparison of relative travel times and interpreted Vs profiles in Borehole 
C4993 between arrival-identification method and wavelet-response method 

7.9 SUMMARY 

Wavelet response is a unique feature of the fixed-sine source wavelet that is used 

in this research. In this chapter, the difference between impulse response and wavelet 

response is explained and its application in travel-time analysis as done in deep downhole 

testing is presented. Dual wavelets are more complicated. The differential velocity 

between the dual wavelets can affect the wave identification method and other methods 

that are sensitive to waveform distortions. This simplification of dual wavelets into single 

wavelet does not affect the travel time analysis using wavelet response method. 

The wavelet response method greatly simplifies the S-wave travel time analysis. 

The correction for disorientation of the receiver tool is sensitive to mode conversions, 

wave scattering and coupling, and especially multiple polarization skewing. Without 
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obtaining a correctly oriented S-wave signal, the arrival time corresponding to the true 

orientation at each depth can be calculated analytically by using the wavelet responses of 

the two orthogonal components of the S-wave records. The wavelet-response method 

demonstrates higher resolution than the arrival-identification method for travel time 

analysis. 
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Chapter 8  Summary, Conclusions and Recommendations 

8.1 SUMMARY 

In this research, the framework of a new method for deep downhole seismic 

profiling for earthquake engineering investigations was developed. Deep profiling is 

defined as depths exceeding 225 m (750 ft). The main purpose of seismic profiling in 

these investigations is the measurement of detailed Vp and Vs profiles, typically with 

spacings of 3 m (10 ft) or less between measurement points. Conventional VSP and 

downhole tests with chirp sweeps are not used for this purpose. Typically, measurement 

spacings are much larger and this approach involves measurement of group velocities 

which show velocity dispersion as the measurements go significantly deeper in the 

geologic strata. 

The framework of the new method for deep downhole testing involves five 

components. First, a fixed-sine forcing function that is readily available with a tri-axial 

vibratory named T-Rex. Second, the identification of the source signature created with a 

fixed-sine source signal. Third, the technique to measure the SDOF model parameters 

that are customized to the local vibrator-earth system. The local vibrator-earth system 

varies with site conditions and testing time when the system is subjected to prolonged 

repetitive vibrations. Fourth, the development of a wavelet-response technique that 

improves the resolution of the travel time analysis for engineering purposes. Fifth, a new 

method to correct the disorientation of the receiver tool for multi-component and multi-

polarization S-wave signals. 

A computer program named DeepSeis 2.1 was developed to visualize and process 

signals quickly on the test site for simplified travel time analysis using the wave 

identification method. Least-squares fitting was used for correction of disorientation of S-
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wave signals. DeepSeis 2.1 provides paneled plots and waterfall plots for various 

comparisons of signals such as forward and reverse, in-line and cross-line, P and S, and 

filtered and unfiltered. It was used at a site in Hanford, WA, and the velocity profiles 

were compared with results from suspension logging tests and laboratory tests. These 

comparisons show that DeepSeis 2.1 and the testing method work quite well. However, 

the wave identification method can not effectively separate multi-component signals such 

as multi-path arrivals, multi-reflections and multi-polarizations. Therefore DeepSeis 2.1 

was improved by integrating the wavelet-response technique that deals with all of these 

complications of multi-component signals as well as anisotropy. The improved software 

called DeepSeis 3.1 has a state-of-the-art preprocessing technique that enables quick in-

situ signal processing to aid decision-making to determine the best excitation frequency 

and source duration based on site conditions. The software also implements the newly 

developed method of correcting for disorientation of the S-wave signals. DeepSeis 3.1 

confirms that the wavelet-response technique is superior in handling multi-component 

signals for better resolution in velocity profiling. The wavelet-response technique was 

applied to the same site in Hanford, WA, and comparisons with the wave-identification 

method demonstrate the improvement in VSP resolution. 

Velocity dispersion is a factor that distinguishes wavelet response from the 

impulse response. The velocity varies with signal frequency and incident angle. When the 

incident angle is near vertical, the velocity dispersion is at its minimum. When the actual 

stratigraphy is not horizontally layered, velocity dispersion increases.  

The current test procedures can be improved for a higher signal quality by 

customizing the excitation frequency of the vibrator to the local damped natural 

frequency of the earth-vibrator system. This work proposes a method to measure the site 
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localized damping ratio and natural frequency. Properly increasing the duration of the 

source signal would also contribute to improving the quality of the receiver signal. 

The arrival-identification method as used in DeepSeis 2.1 is vulnerable to the 

waveform distortions caused by multi-path signals, strong reflectivity, velocity dispersion 

and anisotropy. This work suggests a frequency criterion to reduce the waveform 

distortion caused by velocity dispersion. 

Conventional travel time analyses for a vibratory source almost universally focus 

on impulsive sources or chirp sweeps. After a few tests with impulsive sources and chirp 

sweeps were compared with the durational sinusoidal source, the sinusoidal source was 

then chosen.  No data processing technique was found in the literature regarding trace 

data generated by a durational sinusoidal source wavelet. The work developed herein 

represents a new approach to identify the source signature of the sinusoidal source. 

The normalized source signature is relevant only to four parameters: (1) the 

excitation frequency, (2) the source duration, (3) the damping ratio, and (4) the natural 

frequency of the vibrator-earth system. Two of the parameters are designated input to the 

vibrator and the other two parameters can be measured in the field test using the proposed 

method in this work. 

Anisotropy is weak (approximately 10-20%) in most cases of interest to 

geophysicists (Thomsen, 1986). For P-wave velocity measurements, most seismic 

anisotropy is negligible for deep downhole testing or near-offset vertical profiling. S-

waves are more susceptible to anisotropy factors such as cracks, fissures, faults, and 

inclined layering. Further work is needed to investigate the effect of S-wave anisotropy in 

these measurements. 

To reduce effects such as mode conversion, scattering, coupling, and S-wave 

splitting, the vibrator is located as close to the borehole as possible to ensure a vertical 
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wave propagation. In addition, the vibrator is capable of separately generating three 

modes of vibration, which are P, in-line S and cross-line S, each along its projected wave 

polarization. During P-wave production, the vibrator moves vertically so that the three 

velocity surfaces do not have the same energy contribution at depth. The energy of the P 

mode dominates in this case and the energy for S modes is negligible. During in-line or 

cross-line S wave production, the energy for P modes is negligible. 

Effective medium theory may be of concern when thin layers exist in these tests. 

The relative relationship between the wavelength of the vibratory source signal and the 

thickness of the layers may contribute to velocity anisotropy. The wavelengths are in the 

same range as the thickness of major layers and greater than the thicknesses of most thin 

layers. Further consideration of the effect of the effective medium theory is necessary in 

the future. 

8.2 CONCLUSIONS 

1) The fixed-sine source signal is applicable and superior in dealing with high-

resolution deep downhole velocity profiling for earthquake engineering investigations 

with close receiver spacings. 

2) The wave identification method combined with fixed-sine source signals 

allowed the investigation to reach about 420 m (1400 ft) with the help of DeepSeis 2.1 at 

a site in Hanford, WA, with complex site conditions due to the alternating high contrasts 

in velocity of multi-layered geological materials. 

3) Improvement in resolution of the Vp and Vs profiles was made through the 

development of a method to identify the source signature of the fixed-sine source signals 

and by development of a new wavelet-response technique. A new method to correct for 

disorientation of the receiver tool is employed to significantly reduce the effect of 
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waveform distortion. These improvements increased the resolution in velocity profiling 

under conditions of multi-arrivals, multi-reflections, and multi-polarizations. 

4) A practical approach is explored to measure in-situ site conditions. Guidelines 

for excitation frequency and source duration for the test procedures are recommended. 

Excitation frequency and duration should be customized to site conditions. P waves and S 

waves should use different excitation frequencies if the measured site localized damping 

ratio is different for P and S modes. 

8.3 RECOMMENDATIONS 

Wavelet response for dual wavelets should be further explored, especially when 

the two wavelets have a similar energy contribution to the source signature.  

Effective medium theory should be studied to investigate the wavelength effect on 

thin layers. 

Attenuation anisotropy should be studied as complementary to the velocity 

anisotropy. 
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