
Copyright

by

Sanem Kabadayi

2008

The Dissertation Committee for Sanem Kabadayi

certifies that this is the approved version of the following dissertation:

Enabling Programmable Ubiquitous Computing

Environments: The DAIS Middleware

Committee:

Christine Julien, Supervisor

Tony Ambler

William Bard

William O’Brien

Dewayne Perry

Enabling Programmable Ubiquitous Computing

Environments: The DAIS Middleware

by

Sanem Kabadayi, B.S.E.E; B.S.Phy.; M.S.E.E.C.S.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

May 2008

To the memory of Mustafa Kemal Atatürk

and

to my family

Acknowledgments

I would like to thank my dissertation supervisor, Christine Julien, for her guidance

and valuable suggestions. She is living proof that wisdom and maturity are not

necessarily linked to age. I have learned a lot from her creativity and dedication.

I will always appreciate her treating us (all of her students) as colleagues. I am

grateful that she has given me a chance to work with her and will always be proud

to have been her student. Without her, this dissertation would never have been

possible. I am grateful to William Bard for always supporting me and his constancy

of character in all the eight years that I have known him. Without Tony Ambler’s

help, this dissertation would never have been possible, either. He truly cares about

each student in the department not only because he is the department chair, but

because they are fellow human beings, and he goes above and beyond the call of duty

to make sure they are treated fairly. I would also like to thank William O’Brien

and Dewayne Perry for always speaking very highly of my work and being very

encouraging. I am grateful to all these members of my dissertation committee for

their valuable feedback on this work.

In the department, I would like to thank Diana Perez for being such a kind

and caring person, Melanie Gulick for her smiling face, encouragement, and help,

and Charlotte Harris for all her help. I thank all of the Mobile and Pervasive

Computing (MPC) Group members for their support and encouragement. It has

truly been a pleasure working with Dr. O’Brien and his students, Thuy Nguyen

v

and Xiaowei Luo, on the application examples from the construction site domain

and Randy Hennig from the Faculty Innovation Center for the collaboration on the

CI-TEAM demo. I also appreciate all the help Loren Rittle (Motorola Labs) has

given me in understanding Melete.

I could not have completed this Ph.D. without the support of the great friends

I am truly lucky to have. I cannot thank Huihui Wang and Huijie Xu enough for

being like my family away from home and sharing their Ph.D. experiences with me;

I am proud to be their xiao-mei (“little sister”). I also appreciate all the support

I have received from Liping Feng, Shiju Wang, and Xiaohong Li. I am grateful to

Canay Tulunay-Riordan for sharing my undergraduate experience, as well as being

in Austin the first few years of my Ph.D., and constantly supporting me. I am truly

grateful to Hande Eren for being a confidante, meeting me for a coffee whenever

I needed to talk to a close friend, and always having nice things to say. I cannot

thank Claudine D’Annunzio enough for helping me get through the final stages of

writing this dissertation by studying with me and her encouraging “Belle, bonne et

capable!” motto. I am thankful to Ania Kacewicz for her encouraging words and

support. I am grateful to Ariton Xhafa for getting me started on being a referee

for conference papers; this experience has enabled me to put my own papers in a

different perspective. I am also grateful to Melis Ekinci, Burcu Hacıbaşıoğlu-Geniş,

Ece Saygun, and Melek Seyrekoğlu for having infinite trust in my capabilities and

their continuous support.

I am forever grateful to my family for their unconditional love and support.

They have taught me so much and always set the finest examples of professionalism.

In addition to my parents, my brother has also given me wonderful advice whenever

I needed it through my Ph.D. experience. They have always been on my side and

always given me things to look forward to. I am also grateful to Istanbul for always

inspiring me, for it is impossible to create anything new without a muse.

vi

Veni, vidi, ... vixi!

Sanem Kabadayi

The University of Texas at Austin

May 2008

vii

Enabling Programmable Ubiquitous Computing

Environments: The DAIS Middleware

Publication No.

Sanem Kabadayi, Ph.D.

The University of Texas at Austin, 2008

Supervisor: Christine Julien

Emerging ubiquitous computing scenarios involve client applications that dynam-

ically collect information directly from the local environment by leveraging sensor

network nodes opportunistically and unpredictably. Such scenarios deviate from

existing deployments of sensor networks which are often highly application-specific

and generally funnel information to a central collection service for a single pur-

pose. A significant barrier to the widespread development of such flexible sensor

network applications lies in the increased complexity of the programming task when

compared to existing distributed or even mobile situations. Ubiquitous computing

nodes are severely resource-constrained, in terms of both computational capabilities

and battery power, and therefore the application development task must inherently

viii

consider low-level design concerns, such as reducing power consumption, minimizing

communication in the network to extend the network’s lifetime, and handling the

variability of devices’ capabilities and constraints. This complexity, coupled with the

increasing demand for applications, highlights the need for programming platforms

(i.e., middleware) that simplify application development.

This dissertation reports on the DAIS (Declarative Applications in Immer-

sive Sensor networks) middleware platform that enables the development of adaptive

ubiquitous computing applications. Our approach focuses on minimizing commu-

nication and coordination to best ensure the network’s lifetime. DAIS attempts to

localize data collection and sensor interaction to only the regions of the network

required for the applications’ immediate data needs. At the programming interface

level, this requires exposing some aspects of the physical world to the developer, and

we accomplish this through novel programming abstractions that enable on demand

access to dynamic data sources. We develop a pair of intuitive grouping abstractions,

the scene (which enables local interactions) and the virtual sensor (which enables

automatic abstraction of heterogeneous data), to define a coordination model that

supports interactions in ubiquitous computing. We combine these abstractions with

an expressive programming interface to create the complete DAIS middleware.

ix

Contents

Acknowledgments v

Abstract viii

List of Tables xiii

List of Figures xiv

Chapter 1 Introduction 1

Chapter 2 Communication Underpinnings: The Scene Abstraction 7

2.1 Lightweight Grouping Mechanisms 8

2.2 Scenes: Abstractions of Local Data 10

2.2.1 Defining Scenes . 10

2.2.2 A Programming Interface for Scenes 14

2.2.3 Maintaining Scenes . 15

2.2.4 Defining Scenes Based on Physical Characteristics 17

2.3 Realizing Scenes on Resource-Constrained Sensors 20

2.3.1 A Structured Implementation Strategy 20

2.3.2 A Basic Instantiation . 21

2.4 An Example Scene . 26

2.5 Evaluation . 30

x

2.5.1 Simulation Settings . 31

2.5.2 Performance Metrics . 32

2.5.3 Simulation Results . 32

2.6 Chapter Summary . 34

Chapter 3 Virtual Sensors: An Intuitive Programming Abstraction 36

3.1 Related Work . 36

3.1.1 Homogeneous In-Network Aggregation 37

3.1.2 Heterogeneous Aggregation Outside the Network 37

3.1.3 Heterogeneous In-Network Aggregation 38

3.2 Virtual Sensors: Abstracting Data from Physical Sensors 39

3.3 Virtual Sensors Model . 40

3.3.1 Overview of the Model . 41

3.3.2 Creating a Virtual Sensor . 41

3.3.3 Using a Virtual Sensor . 43

3.3.4 Modeling Data Types Defining a Virtual Sensor 43

3.3.5 Defining the Region of a Virtual Sensor 45

3.3.6 Formalizing Virtual Sensors 45

3.4 Example Applications . 48

3.4.1 Construction domain example 49

3.4.2 Aware home domain example 52

3.5 Feasibility Study . 54

3.6 Chapter Summary . 56

Chapter 4 Remote Deployment of Virtual Sensors 58

4.1 Motivation and Problem Definition 59

4.2 Parameterized Middleware Approach 61

4.2.1 Implementation . 61

xi

4.2.2 Evaluation . 67

4.3 Mobile Code Approach . 74

4.3.1 Mobile Code in Sensor Networks 74

4.3.2 Implementation . 75

4.3.3 Evaluation . 78

4.4 Qualitative Comparison of the Two Approaches 81

4.5 Chapter Summary . 84

Chapter 5 The DAIS Middleware 85

5.1 Middleware Approaches . 85

5.2 The DAIS Middleware . 90

5.2.1 Communication Protocol Encapsulation 91

5.2.2 Processing Dynamic Queries: A Step-By-Step Example . . . 93

5.3 Chapter Summary . 99

Chapter 6 Conclusion 100

Bibliography 104

Vita 113

xii

List of Tables

2.1 Example scene definitions . 14

4.1 Example virtual sensor definition messages. For each example, we

give the abstract virtual sensor definition first written in standard

form, then in RPN. Finally, we give the definition written in the hex-

adecimal form. in which it is actually transmitted in our prototype.

The latter depends on the (static) list of types available for our ap-

plication domain and on the static mapping of operators to values as

shown in Section 4.2.1. 68

4.2 Melete group bitmasks . 77

xiii

List of Figures

1.1 Comparison of (a) existing operational environments and (b) immer-

sive sensor networks for ubiquitous computing 3

2.1 Distributed scene computation . 11

2.2 The API for the Scene class . 15

2.3 A C-network . 17

2.4 Accuracy of location-based scene calculations 19

2.5 Simplified software architecture . 21

2.6 Implementation of the scene on sensors 22

2.7 SceneMsg definition . 23

2.8 Scene construction flowchart . 24

2.9 First responder scene construction . 27

2.10 The scene . 27

2.11 Example first responder query construction 27

2.12 The query dissemination tree . 28

2.13 The responses from scene members 28

2.14 Dynamics within a scene. (a) The smoke cloud moves, changing re-

sponses; (b) The client moves, changing scene membership; (c) The

latency increases on one link, changing scene membership. 29

2.15 Simulation results . 33

xiv

3.1 Two different examples of virtual sensors for the construction site

domain . 40

3.2 Virtual sensor architecture . 44

3.3 The dynamics associated with user movement 48

3.4 Abstract depiction of a virtual sensor that uses n physical nodes . . 49

3.5 Aware home example . 52

3.6 The virtual sensor on a tower crane 55

3.7 The virtual sensor on a tower crane 56

4.1 Construction site domain examples 59

4.2 Simplified object diagram for the virtual sensor middleware 62

4.3 Virtual sensor architecture . 63

4.4 Packet formats for the TaskMsg and DataMsg messages 64

4.5 Flowcharts for message reception . 66

4.6 Two different types of virtual sensor deployments 71

4.7 Reduction in communication overhead when using a virtual sensor . 73

4.8 VSscript.py Python script . 80

4.9 group datasource.tsc script . 81

4.10 set timer.tsc script . 81

4.11 broadcast reading.tsc script . 82

4.12 broadcast heard.tsc script . 83

5.1 The high-level middleware architecture. The left-hand side shows

the components comprising the model on the component carried by

the user (e.g., PDA or laptop), and the right-hand side shows the

middleware components on the sensors. 91

5.2 Simplified object diagram for DAIS 92

5.3 Implementation of the QueryProcessor functionality on sensors . . . 97

xv

Chapter 1

Introduction

Ubiquitous (also called pervasive) computing environments entail a multitude of

ubiquitous, embedded devices that provide information about an environment.

These devices have limited computational and communication capabilities and gen-

erally provide highly-specialized functionality. Ubiquitous computing applications

themselves commonly run on “client” devices (e.g., handheld or laptop computers)

that users carry through the environment. As developers construct applications for

these environments, their code must be able to adjust to different physical devices

and explicitly handle discovery of and communication with embedded resources.

To date, much application development for ubiquitous computing environ-

ments has been limited to academic circles. Many new concerns arise in comparison

to existing distributed or mobile computing scenarios, increasing the complexity of

the programming task. This complexity, coupled with the increasing user demand

for flexible and expressive applications, highlights the need for a changed perspec-

tive on the computing environment and the encapsulation of this perspective in

programming platforms (i.e., middleware) that simplify application development.

Ubiquitous computing applications from domains such as intelligent con-

struction sites [20], aware homes [35], and pervasive office environments [56] involve

1

users immersed in the network accessing locally-sensed information on demand.

Such application scenarios motivate a view of the ubiquitous computing environment

that is device-agnostic. That is, applications, in general, do not care about devices

embedded in the environment but instead about information and resources available

locally. Logically, the ubiquitous environment appears as a world of embedded in-

formation available for immersed applications. To support this view, it is essential

to allow developers to distance themselves from explicit knowledge of devices and

communication capabilities of the underlying ubiquitous computing network and

instead focus on dynamically changing, locally available information.

In ubiquitous computing applications that rely on immersive sensor networks,

users with client devices need to interact directly with devices (or sensors) embedded

in their environments. This allows the client applications to operate over information

collected directly from the local area (as shown in Figure 1.1(b)). This is in con-

trast to existing sensor network deployments in which sensor networks are commonly

accessed through a central collection point (as shown in Figure 1.1(a)). The proto-

cols available to support communication and coordination on lightweight, resource-

constrained sensors are tailored to application situations like those in Figure 1.1(a).

This changing style of interaction is a direct motivation for a reexploration of pro-

tocol and coordination issues in immersive computing environments. More directly,

immersive sensor networks support ubiquitous computing applications (as in Fig-

ure 1.1(b)), not remote distributed sensing (as in Figure 1.1(a)). In such ubiquitous

computing environments, we differentiate client devices (those on which ubiquitous

computing applications run) from sensors (devices embedded in the environment).

The former commonly support users and have increased computational power, while

the latter are heavily resource-constrained.

The style of interaction apparent in ubiquitous computing and depicted in

Figure 1.1(b) differs from common uses of sensor networks, introducing several

2

(a) (b)

Figure 1.1: Comparison of (a) existing operational environments and (b) immersive
sensor networks for ubiquitous computing

unique challenges and heightening existing ones:

• Locality of interactions: An application interacts directly with local sensor

nodes. Since the interactions between the client device and the sensing nodes

no longer have to go through a distant central collection point or a gateway, and

redundant broadcasts from several sensors can be combined in the network, the

communication overhead and latency can be minimized. However, it can also

be cumbersome with respect to enabling the application to precisely specify

the area from which it collects information.

• Mobility-induced dynamics: While the sensor nodes are likely stationary (as

in many other deployments), the application interacting with them runs on

a device carried by a mobile user. Therefore, the device’s connections to

particular sensors and the area from which the application desires to draw

information are subject to constant change.

• Unpredictability of coordination: To support future ubiquitous computing en-

vironments, it is essential that the network be general-purpose. As such, few a

3

priori assumptions can be made about the needs or intentions of applications,

requiring the network to adapt to unexpected and changing situations.

• Complexity of programming: In addition, the desire to provide end-user appli-

cations (as opposed to more database-oriented data collection) increases the

demand for applications and the number of programmers that will need to

construct them.

The confluence of these challenges necessitates a flexible yet expressive pro-

gramming environment that enables ubiquitous computing application development

while paying careful attention to resource constraints of embedded devices. To

meet the needs of the intended applications, a middleware is required that allows an

application running on a user’s device to seamlessly connect to the resources embed-

ded in the local region, removing the requirement that physically distant resources

participate in a query’s resolution.

To address these issues, we have created a middleware platform

DAIS 1 (Declarative Applications in Immersive Sensor networks) that provides pro-

gramming abstractions tailored to ubiquitous applications. This is not a middleware

for sensor networks in the sense that it runs strictly on the sensors. Instead, it al-

lows developers to create applications that run on client devices (e.g., laptops or

PDAs) that interact directly with embedded networks. Our approach minimizes

the complexity of communication using a pair of intuitive abstractions: the scene,

which enables local interactions, and the virtual sensor, which enables automatic

abstraction of heterogeneous data.

The specific novel contributions that of this work can be categorized into

model-level and implementation-level contributions. A coordination model defined

by the two key abstractions is created to support interaction between client devices

and a ubiquitous computing environment. The model is realized in a middleware
1DAIS (dā′̆ıs): from the middle English word meaning “raised platform.”

4

implementation whose performance and usefulness is evaluated through simulation

and prototyping.

With respect to resolving the challenges enumerated above, the contributions

of this work are the following:

1. Basic protocols for scene construction and maintenance and their evaluation.

2. Formalization of a programming model for the specification of scenes by novice

developers.

3. Formal definition virtual sensors and their programming model.

4. Intelligent algorithms for deploying and dynamically redeploying virtual sen-

sors.

5. A coherent middleware that encapsulates both the virtual sensor and the scene

and provide an integrated high-level programming interface.

We focus on supporting applications in which client devices (e.g., laptops

or PDAs) interact directly with embedded sensor networks. While this style of

interaction is common in many application domains, we will refer to applications

from the intelligent construction site domain and the first responder domain, both

of which provide a unique and heterogeneous mix of embedded and mobile devices.

An intelligent construction site consists of users with mobile devices distributed over

the site and sensors embedded in equipment. Building applications for intelligent

construction sites presents substantial challenges to ubiquitous computing. In the

first responder application domain, the embedded devices include fixed sensors in

buildings and environments that are present regardless of crises and ad hoc deploy-

ments of sensors that responders may distribute when they arrive. Mobile devices

include those moving within vehicles, carried by responders, and even autonomous

robots that may perform exploration and reconnaissance.

5

Parts of this dissertation have been published in conferences and journals [27,

28, 30, 31, 34].

The remainder of this dissertation is organized as follows. Chapter 2 un-

dertakes the explanation of the development and implementation of the scene ab-

straction. Chapter 3 presents the virtual sensor model and two example example

applications. Chapter 4 explores mechanisms for remote deployment of virtual sen-

sors. Chapter 5 presents the resulting middleware, DAIS, detailing the model and

its implementation. Chapter 6 summarizes the work, provides a brief overview of

future work, and concludes this dissertation.

6

Chapter 2

Communication Underpinnings:

The Scene Abstraction

In ubiquitous computing applications, users move through instrumented environ-

ments and desire on-demand access to locally gathered information. The set of data

sources near a user changes based on the user’s movement. Furthermore, if the

network is well-connected, the user’s device will be able to reach vast amounts of

raw information that must be filtered to be usable. The application must be able to

limit the scope of its interactions to include only the data that matches its needs.

We encapsulate an application’s operating environment (i.e., the sensors and devices

with which it interacts) in an abstraction called a scene. This abstraction allows

local, multihop neighborhoods of heterogeneous devices surrounding an application,

supports mobility of the user by dynamically updating the scene’s participants in re-

sponse to environmental changes, and minimizes how much the application developer

must know about the implementation of the underlying network. In this chapter,

we first overview other approaches to defining similar relative neighborhoods. We

then briefly overview our work on the scene abstraction, which has demonstrated

the feasibility of providing changing local neighborhoods to application users. We

7

conclude this chapter by examining the research contributions with respect to the

scene abstraction in detail.

2.1 Lightweight Grouping Mechanisms

Previous work has investigated group and neighborhood abstractions in both mo-

bile ad hoc networks and sensor networks. In mobile ad hoc networks, the network

abstractions model [52] allows applications to provide metrics over network paths.

Nodes to which there exists a path satisfying the metric are included in the spec-

ifier’s network context, while those outside are excluded. This approach is overly

expressive for ubiquitous computing applications, making it difficult to specify sim-

ple metrics. In addition, the protocol does not function on resource-constrained

nodes. SpatialViews [49] abstracts properties of mobile ad hoc networks to enable

applications to be developed in terms of virtual networks defined by characteris-

tics of the underlying physical network. SpatialViews focuses on the distributed

computations that occur in the defined virtual networks, while we focus instead

on defining such virtual networks and on the underpinnings of communication that

hold those groups together. Collaboration groups, defined as part of state-centric

programming [40], abstract common patterns in application-specific communication

and resource allocation. However, the focus of collaboration groups is defining a

programming model, not the communication model necessary to efficiently support

such abstractions.

In sensor networks, several approaches provide neighborhood or regional ab-

stractions to scope applications’ interactions. Hood [59] allows sensor nodes to define

neighborhoods of coordination around themselves based on network properties. The

implementation only allows neighborhoods that extend a single hop, while we posit

that multiple-hop neighborhoods are necessary for expressive ubiquitous computing

interactions. In addition, Hood does not enable dynamic updates to a neighbor-

8

hood’s participants, making it unsuitable for supporting moving users and changing

environments. Abstract Regions [58] define regions of coordination and couple the

abstraction with programming constructs that allow applications to issue operations

over the regions. Likewise, logical neighborhoods [46] provide a communication in-

frastructure that logically groups similar nodes. This logical grouping of nodes is

based on a notion of proximity defined by the application, and it is not necessarily

a neighborhood based on underlying physical properties. These approaches do not

directly consider the dynamics of mobility, and they require proactive behavior by

all sensors all the time.

While the above approaches do not address dynamics, a few constructs have

begun to do so. Mobicast [23] defines a message dissemination algorithm for pushing

messages to nodes that fall in a region in front of a moving target. As the target

moves through a field of sensors, the protocol dynamically changes the field of re-

ceivers in response to the movement. MobiQuery [41] also supports spatiotemporal

queries and allows a query area to respond to a user’s announced motion profile.

These approaches require nodes to have a fine-grained knowledge of their physical

locations, which is not a reasonable assumption for future ubiquitous computing

networks in which the sensor nodes and their deployments must be inexpensive and

require minimal setup and administration. EnviroTrack [1] is tailored to provid-

ing object tracking by a dynamic group of sensor nodes. This system focuses on

identifying and labeling tracked objects so that they can be addressed using more

traditional communication. EnviroTrack has been extended by EnviroSuite [42]

and its associated communication protocol [4]. Communication again relies on each

node knowing its exact physical location. This is an acceptable assumption in these

systems, given that the goal is often to know the physical location of some tracked

object. In ubiquitous computing, however, relative locations often suffice to support

applications’ group formation. Supporting local interactions in ubiquitous comput-

9

ing environments requires specifying only the relation the nodes must have to the

user and is not concerned with the exact locations. For example, on an intelligent

construction site, a supervisor would be interested in the cranes on the site that are

a certain number of hops away from him, but not necessarily the cranes’ GPS coordi-

nates. Obtaining GPS coordinates would unnecessarily increase the computational

tasks and cost of a ubiquitous computing application.

Creating a communication paradigm that supports ubiquitous computing

applications requires a protocol that provides a facility for enabling direct, oppor-

tunistic interactions among heterogeneous devices and sensors. This protocol needs

to support the mobility of this regional abstraction without relying on knowledge of

absolute locations.

2.2 Scenes: Abstractions of Local Data

In our model, an application’s operating environment (i.e., the sensors with which

it interacts) is encapsulated in a novel abstraction we have developed, called a

scene [28]. Applications define scenes according to their needs, and each scene

constrains which particular sensors may influence the application. The constraints

may be on properties of hosts (e.g., battery life), of network links (e.g., bandwidth),

and of data (e.g., type). These types of constraints offer generality and flexibility

and provide a higher level of abstraction to the application developer.

2.2.1 Defining Scenes

The declarative specification defining a scene allows an application programmer

to flexibly describe the type of scene he wants to create, and multiple constraints

can be used to define a single scene. The programmer only needs to specify three

parameters to define a single scene constraint:

10

ci=COST_FUNCTION (METRIC(pi, i))

0

i

k

ck > THRESHOLD
∧∀j<k cj ≤ THRESHOLD

Figure 2.1: Distributed scene computation

• Metric: A property of the network or environment that defines the cost of a

connection (i.e., a property of hosts, links, or data).

• Path cost function: A function (such as sum, average, minimum, maximum)

that operates on a network path to calculate the cost of the path.

• Threshold : The value a path’s cost must satisfy for that sensor to be a member

of the scene.

Thus, a scene, S, is specified by one or more constraints, C1, C2, C3, ... Cn:

C1 = 〈M1, F1, T1〉, C2 = 〈M2, F2, T2〉, C3 = 〈M3, F3, T3〉, ... , Cn = 〈Mn, Fn, Tn〉

where M denotes a metric, F denotes a path cost function, and T denotes a threshold.

Figure 2.1 demonstrates the relationships between these components. This

figure is a simplification that shows only a one-constraint scene and a single network

path. The cost to a particular node in the path (e.g., node i) is calculated by

applying the scene’s path cost function to the metric. The latter can combine

information about the path so far (pi) and information about this node. Nodes along

a path continue to be included in the scene until the path reaches a node whose cost

(e.g., ck) is greater than the scene’s threshold. This functionality is implemented in

a dynamic distributed algorithm that can calculate (and dynamically recalculate)

scene membership. The application’s messages carry with them the metric, path

cost function, and threshold, which suffice to enable each node to independently

11

determine whether it is a member of the scene. Each node along a network path

determines whether it lies within the scene, and if so, forwards the message. It is

possible for a node to qualify to be within the scene based on multiple paths, and

the one with the least cost is chosen. The selected network paths correspond to

branches of a routing tree that is set up as part of the distributed calculation of

the scene. When a certain data source needs to relay a reply back to the user, the

reverse of the path on the routing tree the message took to get to that node can

be used. If a node receives a scene message that it has already processed, and the

new metric value is not shorter, the new message is dropped. If the new message

carries a shorter metric, then the node forwards the information again because it

may enable new nodes to be included in the scene.

This scene definition can be formalized in the following way:

Given a client node α, a metric M, and a positive threshold T, find the

set of all hosts Sα such that all hosts in Sα are reachable from α and,

for all hosts β in Sα, the cost of applying the metric on some path from

α to β is less than T. Specifically:

Sα = 〈set β: M (α, β) < T :: β 〉1

We note that the above formalization is for a scene that uses only one metric;

if the scene is specified by multiple metrics, the formalization must require that the

nodes in the returned set satisfy all of the metric/threshold pairs.

The scene concept conveys a notion of locality, and each application decides

how “local” its interactions need to be. A construction site supervisor coordinating

a team spread throughout the site may want to have an aggregate view of the
1In the three-part notation: 〈op quantified variables : range :: expression〉, the variables from

quantified variables take on all possible values permitted by range. Each instantiation of the vari-
ables is substituted in expression, producing a multiset of values to which op is applied, yielding
the value of the three-part expression. If no instantiation of the variables satisfies range, then the
value of the three-part expression is the identity element for op, e.g., true if op is ∀, or ∅ if op is set.

12

dangerous gas cloud conditions over the entire site. On the other hand, a particular

worker may want a scene that contains readings only from nearby sensors or sensors

within his path of movement. The scene for the supervisor would be “all gas sensors

within the site boundaries,” while the scene for the worker might be “all gas sensors

within 5m.” As a worker moves through the site, the scene specification stays the

same, but the data sources belonging to the scene may change.

To maintain the scene for continuous queries, each member sends periodic

beacons advertising its current value for the metric. Each node also monitors bea-

cons from its parent in the routing tree, whose identity is provided as previous hop

information in the original scene message. If a node has not heard from its parent

for a specified amount of time (the beacon interval), it disqualifies itself from the

scene. This corresponds to the node falling outside of the span of the scene due to

client mobility or other dynamics. In addition, if the client’s motion necessitates a

new node to suddenly become a member of the scene, this new node becomes aware

of this condition through the beacon it receives from a current scene member.

Table 2.1 shows examples of how scenes may be specified. These examples

include restricting the scene by the maximum number of hops allowed, the mini-

mum allowable battery power on each participating node, or the maximum physical

distance. As one example, SCENE HOP COUNT effectively assigns a value of one

to each network link. Therefore, using the built-in SCENE SUM path cost function,

the application can build a hop count scene that sums the number of hops a message

takes and only includes nodes that are within the number of hops as specified by the

threshold. The scene can be further restricted using latency as a second constraint.

Our contributions are the novel model of coordination and prototype proto-

cols for supporting that model. In the remainder of this section, we will first discuss

results of a feasibility study of this basic implementation and then the fundamental

research issues that we plan to undertake as part of this dissertation research.

13

Table 2.1: Example scene definitions
Hop Count Scene

Metric SCENE HOP COUNT
Aggregator SCENE SUM
Metric Value number of hops traversed
Threshold maximum number of hops

Battery Power Scene
Metric SCENE BATTERY POWER
Aggregator SCENE MIN
Metric Value minimum battery power
Threshold minimum allowable battery power

Distance Scene
Metric SCENE DISTANCE
Aggregator SCENE DFORMULA
Metric Value location of source
Threshold maximum physical distance

2.2.2 A Programming Interface for Scenes

To present the scene to the developer, we build a simple API that includes general-

purpose metrics (e.g., hop count, distance, etc.) and provides a straightforward

mechanism for inserting new metrics. Applications specify scenes through a Java

programming interface, and these specifications are translated into low-level sensor

code. Fig. 2.2 shows the Java API, which relies on a Query that the application pro-

vides when interacting with a Scene. This Query should be delivered to every member

of the Scene. The ResultListener interface used in the Scene API allows nodes who

are members of the scene to return responses to the client device. The Scene API

intentionally does not restrict what kind of application-level communication these

query and reply interactions can encode; this depends on the particular application

layer running on both the client device and the sensor. The scene abstraction simply

provides expressive connectivity among these components. In Section 2.4, we will

explore a simple application layer for a first responder application example.

From the application’s perspective, a scene is a dynamic data structure

containing a set of qualified sensors, which are determined by a list of con-

14

class Scene{
public Scene(Constraints[] c);
public void send(Query q, ResultListener rl);
public void maintain(Query q, ResultListener rl, int frequency);

}

Figure 2.2: The API for the Scene class

straints, Constraints[], and accessed through the latter two methods: send() and

maintain(). The send() method poses a one-time query to scene members to which

each recipient sends at most one reply. This is similar to a multicast, but the signif-

icant difference is that the receivers are dynamically determined by the parameters

defining the scene. The maintain() method sends a persistent query to the scene,

implicitly requesting that the scene structure be maintained, even as the participants

change. The frequency parameter in the maintain method indicates how often the

application expects responses.

The Scene API is intentionally simple. It focuses on providing access to the

scene constructs and not on incorporating client functionality into the scene commu-

nication components. We are motivated to keep the API as slim as possible to ease

the implementation on resource-constrained devices. By limiting the functionality

available to applications, we more closely match the capabilities of this underly-

ing constrained hardware. While only the one-time query behavior is essential, the

maintain operation enables a more efficient implementation of persistent queries.

This is especially important in resource-constrained networks, where minimizing

communication overhead is essential.

2.2.3 Maintaining Scenes

While a scene provides the appearance of a dynamic data structure, the implementa-

tion behaves on demand; no proactive behavior occurs. Only when the application

uses a scene does the protocol communicate with other local devices, reducing the

15

overall communication overhead. At first glance, this approach may appear to incur

an unpredictable latency for the first query posed to a scene. However, queries tra-

verse the same path as the scene construction messages, and the queries themselves

carry the scene construction information. Therefore, the on-demand construction

incurs no additional latency.

For one-time queries, a scene is created, and the scene information is not

stored or updated in any way. However, if the scene is to be used for a persistent

query, it needs to be maintained. To maintain the scene for such continuous queries,

each member sends periodic beacons advertising its current value for the metric.

Each node also monitors beacons from its parent in the routing tree, whose identity

is provided as previous hop information in the original scene message. If a node

has not heard from its parent for three consecutive beacon intervals, it disqualifies

itself from the scene. This corresponds to the node falling outside of the span of the

scene due to client mobility or other dynamics. In addition, if the client’s motion

necessitates a new node to suddenly become a member of the scene, this new node

becomes aware of this condition through the beacon it receives from a current scene

member.

Pervasive applications expect access to locally available resources. Consider

an application in an aware home. An application may connect to resources that

it can monitor and control within the room the user occupies. As the user moves

around the home, the scope of this control should change to match the user’s chang-

ing rooms. Therefore, we provide the automatic maintenance described above in-

stead of calculating a static scene when the application initially declares it. This

style of maintenance is particularly well-suited to pervasive computing applications,

which demand automated context-awareness.

16

2.2.4 Defining Scenes Based on Physical Characteristics

The metrics used to specify scenes can be divided into two categories: those

that define scenes based on properties of network paths or the devices on the network

paths (e.g., latency or battery power) and those that define scenes based on physical

characteristics of the environment (e.g., location or temperature).

Using a physical characteristic to calculate net- 50m from A

A

B

Figure 2.3: A C-network

work paths is plagued by the C-shaped network prob-

lem [30]. Consider the network shown in Fig. 2.3. Nodes

A and B are within 50m of each other, yet a discovery

from A to B must leave the region of radius 50m sur-

rounding A to find B. The only way to guarantee that

every device is discovered is to flood the entire network.

The network abstractions model [52] directly recognizes

this situation and guarantees that it calculates a correct

region by requiring applications’ region definitions to include metrics that strictly

increase along a network path. Absolute physical distance is not such a metric, so

to fit into this model, it must be combined with another metric that does satisfy

the requirement (e.g., hop count). Abstract Regions [58] implicitly addresses this

issue by enabling only geographic filters on neighborhoods first defined by hop count.

Hood [59] avoids this trouble altogether by limiting collection neighborhoods to one-

hop regions and arguing that such regions meet the demands of current applications.

In the types of pervasive computing applications we address, an application

may not be in direct communication with the devices with which it needs to inter-

act. In a first responder situation, safety applications may dictate that each user

has information about a region larger than a device’s communication radius, for

example to monitor the presence and movement of fire or gases. For this reason,

we focus on building the best multihop neighborhoods possible. For metrics that

17

measure physical characteristics, the question remains as to how to handle the am-

biguity separating the natural specification (e.g., “all devices within 50m”) and the

ability of a protocol to efficiently satisfy that specification (i.e., without flooding

the network). Given our experience with the complexity involved in creating region

specifications using network abstractions, we favor an approach that does not require

strictly increasing metrics. This makes the programming interface simpler, but in

the presence of configurations like that shown in Fig. 2.3, our approach may not find

some members of the specified scene even though they are transitively connected.

Figs. 2.4(a) and (b) show the results of experiments that demonstrate the

ramifications of this design decision. In these experiments, we generated random

network topologies in a 1000m2 space with the following parameters. The number of

nodes was randomly selected to be between 20 and 400, and each node was randomly

placed. We used a communication radius of 100m, i.e., any two nodes within 100m

of each other were considered “neighbors.” We constructed scenes based on physical

distances ranging from 100m to 500m. A 100m scene includes only nodes within the

requester’s communication range (i.e., within one-hop). In each graph, the x-axis

shows the average number of one-hop neighbors per node. Each point corresponds

to 500 samples, and 95% confidence intervals are given. For each sample, one node

was randomly selected to request a scene of the specified size.

Fig. 2.4(a) shows the percentage of actual scene members discovered by our

protocol. This includes every node within the specified physical distance radius,

even nodes to which no network connectivity exists. At low network density, the

quality of the scene construction was poor, especially as the physical size of the scene

increased. This is because the network was so sparsely connected that it was unlikely

that nodes were able communicate, especially when they desired to find other nodes

at large distances. However, with increasing density, our protocol found more than

90% of the actual scene members.

18

 1

 0.9

 0.8

 0.7

 0.6

 0.5

 0.4

 0.3

 0.2

 0.1

 12 11 10 9 8 7 6 5 4 3 2 1

P
e
rc

e
n
ta

g
e
 o

f
a
c
tu

a
l
s
c
e
n
e
 m

e
m

b
e
rs

 d
is

c
o
v
e
re

d

Average number of neighbors per node

Scene = 100m
Scene = 200m
Scene = 300m
Scene = 400m
Scene = 500m

(a)

 1

 0.9

 0.8

 0.7

 0.6

 0.5

 0.4

 0.3

 0.2

 0.1

 12 11 10 9 8 7 6 5 4 3 2 1

P
e
rc

e
n
ta

g
e
 o

f
a
c
tu

a
l
s
c
e
n
e
 m

e
m

b
e
rs

 d
is

c
o
v
e
re

d

Average number of neighbors per node

Scene = 100m
Scene = 200m
Scene = 300m
Scene = 400m
Scene = 500m

(b)

Figure 2.4: Accuracy of location-based scene calculations

19

Fig. 2.4(b) demonstrates even stronger motivation for our best-effort ap-

proach for scenes based on physical characteristics. This graph limits the error

expressed to only those scene members that were not discovered but were connected

by a finite number of network hops (i.e., those nodes reachable by flooding). The

percentage of scene members that our method did not discover is never more than

10% and is usually close to 0. The valley corresponds to cases when the network

was largely connected but connections were sparse. In these situations, roundabout

paths may exist when more direct routes do not. To the left of the valley, the net-

work was largely disconnected, so we do not miss many connected scene members; to

the right, the network was much more connected, and the direct approach is quite

successful.

The results demonstrate that our approach tends to find the vast majority

of the scene members under reasonable conditions. Therefore, we favor natural scene

specifications over complete accuracy of scene membership.

2.3 Realizing Scenes on Resource-Constrained Sensors

The model for both construction and maintenance of scenes described in the previous

section is tailored to the requirements of pervasive computing environments. In

creating applications for client devices, developers can leverage the Java interface

from Fig. 2.2, which allows them to use the scene communication abstraction to

interface with sensing devices. Software on these sensing devices must also support

the scene abstraction. In this section, we describe this implementation, showing how

the code is structured to support dynamic, opportunistic communication.

2.3.1 A Structured Implementation Strategy

Our implementation uses the strategy pattern [15], a software design pattern

in which algorithms (such as strategies for scene construction and maintenance) can

20

be chosen at runtime depending on system conditions. The strategy pattern provides

a means to define a family of algorithms, encapsulate each one, and make them

interchangeable. Such an approach allows the algorithms to vary independently

from the clients that use them. In the scene, the clients that employ the strategies

are the queries, and the different strategies are SceneStrategy algorithms. Fig. 2.5

shows the resulting architecture. We decouple the scene construction from the code

that implements it so that we can vary message dissemination without modifying

application-level query processing (and vice versa).

The remainder of this sec-
Scene

Application Programming Interface

Strategy Pattern Interface

SceneStrategy

BasicScene

SceneStrategy

TinyDBScene

javax.comm package

sensor network

Figure 2.5: Simplified software architecture

tion describes one implementa-

tion of the SceneStrategy, the

BasicScene, which provides a proto-

type of the protocol’s functionality.

Other communication styles can

be swapped in for the BasicScene

(for example one built around

TinyDB [44] or directed diffu-

sion [25]). By defining the SceneStrategy interface, we enable developers who are

experts in existing communication approaches to create simple plug-ins that use

different query communication protocols and yet still take advantage of the scene

abstraction and its simplified programming interface.

2.3.2 A Basic Instantiation

While the scene abstraction is independent of the particular hardware used

to support it, in our initial implementation, these software components have been

developed for Crossbow Mica2 motes [12] and are written for TinyOS [22] in the nesC

language [16]. Our nesC implementation of the scene abstraction (along with other

21

project information) is available at http://mpc.ece.utexas.edu/scenes/index.html.

In nesC, an application consists of modules wired together via shared interfaces to

form configurations. Fig. 2.6 depicts the components of the scene configuration and

the interfaces they share.

This implementation

SceneM

QueuedSend

GenericCommPromiscuous

Beacon BeaconTimer

Monitor MonitorTimer

SendMsg

StdControl

CommControl

Beacon

Monitor

Timer

Timer

ReceiveMsg

Receive

StdControl

Scene

ContextSource
ContextSource

ContextSource

ContextQuery

StdControl

StdControl
SendMsg

Figure 2.6: Implementation of the scene on sen-

sors

functions as a routing compo-

nent on each node, receiving

each incoming message and

processing it as our protocol

dictates. In this picture, we

show components as rounded

rectangles and interfaces as

arrows connecting components.

A component provides an inter-

face if the corresponding arrow

points toward it and uses an interface if the corresponding arrow points away it. If

a component provides an interface, it must implement all of the commands specified

by the interface, and if a component uses an interface, it can call any commands

declared in the interface and must handle all events generated by the interface.

The Scene configuration uses the ReceiveMsg interface (provided in TinyOS),

which allows the component to receive incoming messages from the radio (by han-

dling the receive event). Specifically, within the Scene configuration, the SceneM

component handles this event. SceneM implements most of the logic of the scene

implementation on the sensor. The structure of the messages received through this

process is shown in Fig. 2.7.

While the model allows a scene to be defined by multiple constraints, a sin-

gle SceneMsg contains only one constraint. This is a limitation of our proof-of-

22

http://mpc.ece.utexas.edu/scenes/index.html

typedef struct SceneMsg{
uint16 t seqNo

//message sequence number
uint8 t metric

//constant selector of metric
uint8 t costFunction

//constant selector of cost function
uint16 t metricValue

//current calculated value of metric
uint16 t threshold

//cutoff for metric calculation
uint16 t previousHop

//the parent of this node
uint8 t maintain

//whether the query is persistent
uint8 t data [(TOSH DATA LENGTH-11)]

//the query
}

Figure 2.7: SceneMsg definition

concept implementation that will be removed in a more mature implementation.

The SceneMsg contains a sequence number that uniquely identifies the message. The

sequence number is a combination of the unique client device id and the device’s

sequence number. This allows a receiving node to differentiate between scenes for

different client applications. A message contains two constants that instruct the

SceneM component in processing the message: the metric (e.g., SCENE DISTANCE or

SCENE LATENCY) and the path cost function (e.g., SCENE DFORMULA or SCENE MAX).

The use of constants to specify the metric and cost function makes the implemen-

tation a little inflexible because the set of metrics must be known a priori, but the

approach prevents messages from having to carry code. Future work will enable

this automatic code deployment. The metricValue in the SceneMsg carries the pre-

vious node’s calculated value for the specified metric and is updated at the receiving

node. In the case of a scene based on location, the metricValue may be the loca-

tion of the source node, while in the case of a metric based on end-to-end latency,

23

the metricValue may be the aggregate total latency on the path the message has

traveled. The previousHop in the SceneMsg allows this node to know its parent in

the routing tree and enables scene maintenance. The maintain flag indicates if the

query is long-lived (and therefore whether or not the scene should be maintained).

Finally, data carries the application message (i.e., the Query).

Fig. 2.8 shows how a scene mes-

Message received

New msg?

1. Pass msg to
 application
2. Forward to other
 nodes

No

Ignore message
No

Yes

One-time query

Maintain
set?

Yes

1. Send periodic
 beacons
2. Monitor beacons
 from parent

Persistent query

One-time query
proc. complete

Disqualify from
scene

No

Beacon
received?

Yes

No

Scene
condition

met?

Yes

Scene
condition still

met?

No

Yes

Figure 2.8: Scene construction flowchart

sage is processed at a receiving node.

When SceneM receives a message it has

not received before (based on the mes-

sage’s unique sequence number), it de-

termines whether the node should be a

member of the sceneby calculating the

node’s metric value based on the met-

ric and path cost function. Because

these fields are constants, SceneM can

lookup their meanings in a table and

determine how to calculate the new

metric value. Depending on the met-

ric, this may require ContextSources,

which provide relevant data for calcu-

lating a node’s value. For example, a

hop-count based scene requires no con-

text source; SCENE HOP COUNT indicates

that the local metric value is “1” and

the path cost function SCENE SUM indi-

cates that this value should be added to the metricValue carried in the message.

On the other hand, SCENE DISTANCE indicates the local metric value is the node’s

24

location, which is implemented as a ContextSource that stores the node’s location.

If necessary, context values are retrieved from the designated ContextSource through

the query command in the ContextQuery interface. If the metric demands a context

source that the node does not provide (e.g., the local device has no location sensor),

the device is not considered a part of the scene. When the necessary context values

have been retrieved, the costFunction from the message is invoked. For example

SCENE DFORMULA calculates the distance between this node and the originating node

(whose location is carried in the metricValue). The newly calculated value for the

metric is compared against the value of the threshold in the SceneMsg. If the new

value does not satisfy the threshold, then this node is not within the scene and the

message is ignored.

If this node is within the scene, the message is forwarded to allow inclusion

of additional nodes. The node replaces the previousHop field with its node id.

The metricValue field is populated according to the type of the metric; in the case

of SCENE HOP COUNT, the metricValue is the total number of hops traversed so far

(as calculated by adding one to the previous metricValue), while in the case of

SCENE DISTANCE, the metricValue is always the location of the originating node. This

new message is broadcast to all neighbors (using TOS BROADCAST ADDR as the

destination). The node also passes data to the application (through the Receive

interface shown in Fig. 2.6).

The scene also needs to be maintained in the case of a persistent query. If the

maintain flag is set, then SceneM must monitor changes that may impact the node’s

membership. For example, if the scene is defined by relative location and the user

is walking through the network, as he moves away from a sensor, the sensor will

need to be removed from the scene. The scene implementation on the sensors uses a

Beacon module to transmit periodically to other nodes. As the Monitor component

(described next) detects changes in the metric value, the value is updated (through

25

SceneM) and reflected in the beacons sent to neighbors. In addition, SceneM must

monitor incoming beacon messages from the parent. Such messages are received

in SceneM and passed to the Monitor. The Monitor uses beacons from the parent,

information about the scene (from the initial message), and information from the

context sources to monitor whether the node remains in the scene. In addition, the

MonitorTimer requires that the node has heard a beacon from the parent at least

once in the last three beacon intervals. If either the parent has not been heard

from or the received beacon pushes the node out of the scene, the Monitor generates

an event for SceneM that ultimately ceases the node’s participation in the scene,

including signaling the application to cancel its interactions with the client device.

2.4 An Example Scene

In this section, we tie the code that the application developer writes through the scene

communication protocol to what happens on the sensors. We follow a query from

the application developer’s hands into the network and back. Within this section,

we use an example application drawn from the first responder domain that assumes

personnel deployed on a dangerous site that may contain smoke clouds. Specifically,

we assume a first responder would like to periodically receive any reading within 5m

that can be delivered in less than 15ms in which the level of combustion products

in the air exceeds 3% obscuration per meter.

Step 1: Declare a Scene. This first step uses the interface described in

Section 2 to declare a scene. For example, in a first responder deployment, the code

in Fig. 2.9 defines a scene that includes every sensor (not just those measuring smoke

conditions) within 5m of the declaring device and with response latency less than

15ms.

Fig. 2.10 shows the nodes that will fall in the scene, if a message is distributed

to them.

26

Scene s = new Scene({new Constraint(Scene.SCENE DISTANCE,

Scene.SCENE DFORMULA,

new IntegerThreshold(5)},
{new Constraint(Scene.SCENE LATENCY,

Scene.SCENE MAX,

new IntegerThreshold(15)}) ;

Figure 2.9: First responder scene construction

Step 2: Create a query. The next step is performed by the application

developer using the Query data type in conjunc-

Figure 2.10: The scene

tion with the Scene instance just created. In

our example, the developer creates a Query with

two Constraints. For simplicity, we assume

the application-level processing uses constraints

similar to those used in scene definitions. In ac-

tuality, the scene protocol can deliver application

messages of any form to all scene members, in-

cluding, for example, middleware messages in a

sensor network middleware [32]. In our example

Query, the first of the constraints requires the

sensor used to support a smoke detector. The

second constraint limits the sensors that respond to the query to only those that

measure a smoke condition of more than 3% obscuration per meter. The code used

to construct this Query is shown in Fig. 2.11.

Query q = new Query(new Constraint(‘‘Sensor’’, Query.EQUALS OPERATOR,
‘‘Smoke’’),

new Constraint(‘‘Measurement’’, Query.GT OPERATOR,
‘‘3’’)});

Figure 2.11: Example first responder query construction

Every sensor in the scene that has a smoke sensor periodically evaluates the

27

query, but a sensor will only send a response to the client if and when the smoke

condition sensed exceeds 3% obscuration per meter. After creating this Query, the

application developer dispatches it using the previously created scene.

Step 3: Construct and Distribute

Figure 2.12: The query dissemi-

nation tree

Protocol Query. The scene implementation

transforms the application’s request into a pro-

tocol data unit for the scene. The resulting mes-

sage carries the information about scene mem-

bership constraints and the data query. By

its definition, the communication protocol en-

sures that the data query is delivered to only

those sensor nodes that satisfy the scene’s con-

straints.

Thus, exactly the sensors within 5m and

Figure 2.13: The responses from

scene members

with a latency less than 15ms will receive the

query. The query propagation stops once a node

is reached whose distance from the user exceeds

5m or whose latency exceeds 15ms. Fig. 2.12

shows the dissemination tree; nodes within the

dashed circle now know they are scene members.

Step 4: Scene Query Processed by

Remote Sensor. When the communication

protocol running on a remote sensor receives

and processes a scene message, if it determines

that the node lies within the scene, it passes the

received message to the application. In our ex-

ample first responder scenario, our simple application layer sends periodic responses

28

(a)

(b)

Latency increases

disqualifying
these nodes

from scene

on this link,

(c)

Figure 2.14: Dynamics within a scene. (a) The smoke cloud moves, changing re-
sponses; (b) The client moves, changing scene membership; (c) The latency increases
on one link, changing scene membership.

to the client if the value exceeds 3% obscuration per meter. These responses prop-

agate using basic multihop routing.

In Fig. 2.13, the red arrows indicate the return paths these sensors use to

return query responses to the client device. Since the first responder demands

periodic results so he can monitor changes in smoke density on a site, the scene

must be maintained in the face of changes. If the smoke condition is not originally

greater than the threshold, the node only starts responding if the 3% obscuration

per meter level is reached. Fig. 2.14(a) shows that this set of responding nodes may

change when the smoke cloud moves. When a node is no longer in a scene, the scene

communication implementation on that node creates a null message that it sends to

the application layer to ensure that it ceases communication with the client device.

Other changes in the network topology or physical environment can also cause scene

changes. In our example, if the node’s distance from the user exceeds 5m due to

client mobility (Fig. 2.14(b)), or the latency to a node on the path exceeds 15ms

(Fig. 2.14(c)), the scene membership may have to be recalculated. As demonstrated

in the figures, this may cause nodes to be removed from the scene or new nodes to

be added to the scene. We note that these increases in distance and latency could be

29

due to many factors, including the movement of the sensor nodes themselves. We

do not necessarily assume a static sensor network; we assume that sensor nodes are

usually static, but they may move occasionally.

Step 5: Result Received by Client Device. After propagating through

the underlying communication substrate, query replies will arrive at the client de-

vice’s sensor network interface. At the client device, the result is handled by the

scene implementation on the sensor and passed into the Java implementation. This

implementation demultiplexes the request and hands it back to the appropriate ap-

plication through the ResultListener that was provided as part of dispatching the

query to the scene. At this point, control for this query reply transfers back to

the client’s application and its ResultListener, which handles the query’s result (or

queries’ results if multiple matches existed). For persistent queries, as more results

arrive, the same process occurs for each received result.

As this example has demonstrated, the scene abstraction seamlessly supports

client mobility within an immersive sensor network. The abstraction automatically

adjusts the application’s view of data in response to changes in the network or the

physical environment. This context-awareness is essential to pervasive computing

applications that rely on localized interactions in large-scale networks. In the next

section, we provide some performance characterizations of the protocol implement-

ing the scene abstraction to show that it provides good scalability and overhead in

such resource-constrained networks.

2.5 Evaluation

Our implementation is written for TinyOS [22] in the nesC language [16]. We have

chosen TinyOS since it is a widely used, open source operating system for sensor

networks. TinyOS and programs for TinyOS are written in nesC, which is optimized

for the resource constraints of sensor nodes. In nesC, an application consists of

30

modules wired together via shared interfaces to form configurations.

We have created an implementation of a basic scene protocol that we have

evaluated using TOSSIM [39], a simulator that allows direct simulation of code

written for TinyOS. We note that this implementation of scene construction is purely

reactive; that is, scenes are created on demand, in response to an application’s

request for a new scene.

2.5.1 Simulation Settings

In generating the following results, we used networks of 100 nodes, distributed in a

200 x 200 foot area, with a single client device moving among them. We used two

types of topologies: 1) a regular grid pattern with 20 foot internode spacing and 2) a

uniform random placement. While the sensor nodes remained stationary, the client

moved among them according to the random waypoint mobility model [26] with a

fixed pause time of 0. To model radio connectivity of the nodes, we used TOSSIM’s

empirical radio model [58], a probabilistic model based on measurements taken from

real Mica motes [12]. In all cases, as the client moves, the scene it defines updates

accordingly. In the different simulations, the client either remains stationary or

moves at 2mph, 4mph, or 8mph (e.g., 4mph is a brisk walk). In these examples,

scenes are defined based on the number of hops relative to the client device, ranging

from one to three hops. Other metrics need to be easily exchanged for hop count;

we selected it as an initial test due to its simplicity. A final important parameter

in these measurements is the beacon interval. Recall that the beacon interval is the

specified amount of time over which each node monitors beacons from its parent

in the routing tree to maintain its own membership in the scene for continuous

queries. If the node does not hear from its parent during that beacon interval, it

disqualifies itself from the scene. The length of the beacon interval needs to be such

that the scene protocol can keep up with client mobility. We have currently set the

31

beacon interval to be inversely proportional to client speed. Since this approach

requires shared global knowledge, it is not reasonable, and this is not how beacon

intervals will actually be assigned in the future. Future work will investigate how

to dynamically determine the optimal beacon interval, and this information can be

included in the scene building packets, allowing nodes to adapt the beacon interval

depending on the application’s situation.

2.5.2 Performance Metrics

We have chosen three performance metrics to evaluate our implementation: (i)

the average number of scene members, (ii) the number of messages sent per scene

member, and (iii) the number of messages sent per unit time. We evaluate these

metrics for both grid and random topologies.

The first metric measures how well our selected beacon intervals perform.

The latter two metrics measure the scalability of the scene abstraction, i.e., how the

protocol will function in scenes of increasing sizes and client mobility. The number

of messages sent per scene member measures a sensor node’s cost of participation,

which also estimates the potential battery dissipation for the sensors that participate

in the scene (since energy expended is proportional to radio activity). The number

of messages sent per unit time is a measure of the network’s average activity. Since

the scene protocol operates on-demand, activity takes place only within the scene.

2.5.3 Simulation Results

Figures 2.15(a) and (d) show the average number of scene members as a function

of client device mobility and scene size for grid and random topologies, respectively.

The number of scene members is almost independent of the client node’s speed.

This means that the device is able to accurately reach the nodes that need to be

members of its scene and shows that setting the beacon frequency to be proportional

32

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 2 4 6 8

nu
m

be
r

of
 s

ce
ne

 m
em

be
rs

speed (mph)

 grid, one hop
 grid, two hops

 grid, three hops

(a)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 2 4 6 8

 n
um

be
r o

f s
ce

ne
 m

em
be

rs

speed (mph)

random, one hop
random, two hops

random, three hops

 Average Number of Scene Members vs. Speed
 for Random Topology

(b)

 0

 50

 100

 150

 200

 250

 300

 350

 0 2 4 6 8pa
ck

et
s

pe
r

sc
en

e
m

em
be

r
pe

r
10

0s
 o

f p
ar

tic
ip

at
io

n

speed (mph)

 grid, one hop
 grid, two hops

 grid, three hops

(c)

 0

 50

 100

 150

 200

 250

 300

 0 2 4 6 8pa
ck

et
s

pe
r

sc
en

e
m

em
be

r
pe

r
10

0s
 o

f p
ar

tic
pa

tio
n

speed (mph)

random, one hop
random, two hops

random, three hops

 Messages Sent per Scene Member vs. Speed
 for Random Topology

(d)

 0

 50

 100

 150

 200

 250

 300

 0 2 4 6 8

pa
ck

et
s

pe
r

se
co

nd
 o

f s
ce

ne
 r

eg
is

tr
at

io
n

speed (mph)

 grid, one hop
 grid, two hops

 grid, three hops

 Messages Sent per Second vs. Speed
 for Grid Topology

(e)

 0

 50

 100

 150

 200

 250

 300

 0 2 4 6 8

pa
ck

et
s

pe
r

se
co

nd
 o

f s
ce

ne
 r

eg
is

tr
at

io
n

speed (mph)

random, one hop
random, two hops

random, three hops

 Messages Sent per Second vs. Speed
 for Random Topology

(f)

Figure 2.15: Simulation results

33

to the client node’s speed accurately keeps track of the moving client. Setting a good

beacon interval without global knowledge is an open research problem that is left

for future work.

Figures 2.15(b) and (e) show the number of messages sent per scene member

as a function of client mobility and scene size. Because we have set the beacon

frequency to be directly proportional to the speed of the client node (e.g., if the

client speed is 4 mph, beacons are sent every 0.5s, if the client speed is 8 mph,

beacons are sent every 0.25s), beacons are sent more frequently as speed increases,

yielding the linear relationship. This shows how the battery dissipation for each

sensor that participates in the scene would scale with increasing client mobility.

Figures 2.15(c) and (f) show the number of messages sent per unit time as

a function of mobility and scene size. Beacons are sent more frequently as the

client node speed increases, causing more messages to be packed into a given time

interval. In addition, as the scene size increases, more nodes become scene members,

increasing the number of nodes that subsequently send beacon messages per unit

time.

These results demonstrate that even as the scene size increases, the overhead

of creating a local communication neighborhood is manageable and localized to a

particular region of interest. Since the scene protocol is an on-demand communi-

cation protocol, the activity in the network takes place only within the scene. The

nodes that do not satisfy the scene constraints are inactive. The average number

of scene members stays constant over changing client mobility for a specified scene

size.

2.6 Chapter Summary

In this chapter, we first discussed existing grouping protocols. Our goal is to sup-

port the types of pervasive computing applications that require direct, opportunistic

34

interactions among heterogeneous devices and sensors. To this end, we created a

communication paradigm consisting of an abstraction and implementing protocol.

This novel protocol constructs an application’s operating environment (i.e., the sen-

sors with which it interacts) based on a specification provided by the application.

The abstraction defines local, multihop neighborhoods surrounding a particular ap-

plication, supports mobility by dynamically updating the scene’s participants, and

minimizes how much the developer must know about the underlying implementation.

We defined a formal scene model, presented an implementation for the protocol, and

performed simulation evaluations that demonstrate that even as the scene size in-

creases, the overhead of creating a local communication neighborhood is manageable

and localized to a particular region of interest. In the next chapter, we present a

new in-network aggregation mechanism.

35

Chapter 3

Virtual Sensors: An Intuitive

Programming Abstraction

To support ubiquitous computing environments, sensor networks will need to sup-

port localized cooperation of sensor nodes to perform complicated application-

directed tasks and in-network processing to transform raw data into high-level

abstract information which is not necessarily a measurement the physical sensors

themselves can provide. We create an in-network aggregation model that can apply

arbitrary and complex user-specified functions to different types of data available

in the instrumented environment in an adaptive and decentralized manner, while

minimizing the amount of data transferred over the network. In this chapter, we

describe the virtual sensors model and implement some example applications. First,

however, we overview some existing work.

3.1 Related Work

As the main goal of this work is to provide heterogeneous in-network aggregation in

support of pervasive computing, we will overview a combination of related work that

36

have addressed homogeneous in-network aggregation, heterogeneous aggregation,

and heterogeneous in-network aggregation.

3.1.1 Homogeneous In-Network Aggregation

Several recent research efforts have focused on in-network data aggregation tech-

niques. Projects targeted directly for sensor networks have often explored represent-

ing the sensor network as a database. Two demonstrative examples are TinyDB [44]

and Cougar [61]. TinyDB includes an implementation of the Tiny Aggregation

(TAG) [43] framework for data aggregation using an SQL-like language. Generally,

these approaches create routing trees to funnel replies back to the root (the data

requester). As data flows up the tree, it is aggregated in the network using the

specified aggregation function.

The data aggregation scheme in [55] extends the types of of queries sensor

networks can answer. This scheme supports queries such as approximate quantiles

(median), most frequent data values, histograms, and range counting. It can also

handle changing data values and continuous monitoring.

VirtuS [9] offers temporal and spatial aggregation of homogeneous data types

and the transformation of a single type into another. It inserts a virtual sensor layer

between the user-defined application components and the sensor driver. Thus, it can

provide homogeneous readings when network nodes have different sensing boards.

3.1.2 Heterogeneous Aggregation Outside the Network

The Global Sensor Network (GSN) [2] supports an abstraction in which the user

can declaratively specify XML-based deployment descriptors. SQL queries over

local and remote sensor data sources can merge sensor network data. However,

GSN assumes that the sensor network uses one or more dedicated computers which

perform expensive data mining operations before returning results.

37

Semantic Streams [60] provides a service concept that allows the user to issue

queries over semantic values and to extract semantic information from raw sensor

data. The user does not have to specify the data or operations that should be used.

However, the approach focuses on fixed sensor infrastructures such as those in homes

and office buildings, where most of the sensors are powered and wired, or at most

one hop away from a base station.

The major drawback of the above approaches is the fact that they do not

perform the aggregation in the network.

3.1.3 Heterogeneous In-Network Aggregation

In [8], a user-specified aggregation function evaluated on a logical neighborhood [46]

results in a virtual node with attributes derived from data stored on the sensor nodes

in the neighborhood. This allows the abstraction of application-defined subsets of

nodes into a single, logical entity. However, this approach only uses functions like

average and threshold detection to trigger an event, and it is not possible to define

groups to contribute to a virtual sensor based on physical properties.

The Virtual Node Layer (VNLayer) [6] provides programmable, predictable

automata (or state machines), called virtual nodes. Several client nodes are as-

sociated with a virtual node and they reflect the behavior of the physical nodes.

The client nodes are allowed to fail unpredictably, and the set of client nodes in

a given region is unknown a priori and can change over time. However, the im-

plementation uses Python and is intended to run on powerful mobile devices (such

as PDAs or laptop computers) communicating with the 802.11 standard, and not

on the resource-constrained sensor nodes. The abstraction mainly targets control,

coordination, and location management applications for mobile ad hoc networks.

38

3.2 Virtual Sensors: Abstracting Data from Physical

Sensors

A virtual sensor is a software sensor as opposed to a physical or hardware sensor,

which builds on our initial work presented in [33, 34]. Virtual sensors provide indirect

measurements of abstract conditions (that, by themselves are not physically mea-

surable) by combining sensed data from a group of heterogeneous physical sensors.

For example, on an intelligent construction site, users may desire safe load indicators

on cranes that determine if a crane is exceeding its safe working capacity. Such a

virtual sensor would take measurements from physical sensors that monitor boom

angle, load, telescoping length, two-block conditions, wind speed, etc. [47]. Signals

from these individual sensors are used in calculations within the virtual sensor to

determine if the crane has exceeded its safe working load. Using fewer data types for

ease of presentation, Figure 3.1(a) depicts the connection to an application-defined

virtual sensor (represented by the dashed ellipse) on a tower crane. This virtual

sensor uses data from three physical sensors (represented by dots). The virtual sen-

sor aggregates the information from these sources into a higher-level reading that

represents the effective load on the crane and compares this against the safe working

load to warn the workers in case of danger. On the other hand, Figure 3.1(b) shows

a virtual sensor that calculates a “danger circle” using readings from two different

physical sensors, so that a worker walking on the site does not get hit by a mov-

ing crane boom. With the virtual sensors model, an application interacts with a

combination of physical and virtual devices embedded in the environment.

The physical sensors are the components of the model that provide the phys-

ical data types required to compute the desired abstract measurement. Creating a

virtual sensor requires defining a group of physical sensors that have some locality

relationship (i.e., belong to a local region, where “local” is defined by some property

of the network or environment). The resulting virtual sensor has an interface similar

39

Position sensor

Tension sensor
Accelerometer

Safe Working
Load?

(a) safe working load

BasePosition

DangerCircle

BoomPosition

Safe to walk?

(b) danger circle

Figure 3.1: Two different examples of virtual sensors for the construction site domain

to that of a physical sensor (from the application’s perspective).

The virtual sensor hides the explicit data sources from the application, mak-

ing them appear as one data source that provides the same type of interface as a

physical sensor. Our approach to creating a virtual sensor’s declarative specifica-

tion assumes applications and sensors share knowledge of a naming scheme for the

low-level data types the sensor nodes can provide (e.g., “location,” “temperature,”

etc.). The available data types are determined by the types of sensors deployed in a

network. The programmer, then, only needs to specify the following four parameters

for the virtual sensor:

3.3 Virtual Sensors Model

In this section, we discuss the virtual sensors model. Different implementations

of the virtual sensor model can provide in-network aggregation or out-of network

aggregation, depending on the particular network’s characteristics.

We will first give an overview of the model. We then detail the essentials

of virtual sensor creation, which include specifying the input data types, and the

40

resulting abstract data type. With the data types defined, the sensors that can

provide these types need to be discovered; since we do not want to flood the en-

tire network with messages for sensor discovery, we show how traditional scoping

abstractions can be applied to limit the reach of discovery messages. We then use

these building blocks to completely formalize the virtual sensor definition and end

by describing how virtual sensors are subsequently used by applications.

3.3.1 Overview of the Model

In our model, several sensors required to supply the desired application-level data

to the client application are encapsulated in a virtual sensor. A virtual sensor’s

declarative specification offers the ability to specify any desired function and leaves

the discovery of physical data sources to an underlying communication layer [50]. It

also provides a layer of abstraction for the application developer in comparison to

directly programming in the low-level language that the sensing devices use.

The physical sensors are the components of the model that provide the basic

data types required to compute a virtual sensor’s abstract measurement. Creating

a virtual sensor requires defining a group of sensors that have a defined locality

relationship (e.g., they belong to a local region, where “local” is defined by some

property of the network or environment). The resulting virtual sensor has an inter-

face that, from the application or user’s perspective, is similar to that of any other

sensor (e.g., the physical sensors used to construct it).

3.3.2 Creating a Virtual Sensor

To create the virtual sensor, our model requires a declarative specification that

describes the desired sensor’s behavior without requiring the application developer

to specify the underlying details of how the sensor network should support that

behavior. Most importantly, the virtual sensor specification hides the explicit data

41

sources from the application and the user, making them appear as one data source.

We assume applications and sensors share a naming scheme for data types

(e.g., they share a knowledge of how to access a “location” or “temperature” data

type). This implies some translation machinery deployed in the sensor network; this

will be discussed in detail in Chapter 4. The available data types are determined by

the types of sensors (both physical and virtual) deployed in a network. A program-

mer creating a new virtual sensor must then specify four components to completely

specify the virtual sensor:

• Input data types: the types required to compute the abstract measurement.

These can be provided by physical sensors or by other virtual sensors that

have already been constructed and deployed. Each input type also includes

the number of distinct sensors of this type that are required. This number

could be one, two, all, etc. This allows us to differentiate between requests for

“all of the concrete heat sensors” and “one concrete heat sensor.”

• Aggregator: a generic function defined to operate over the (possibly hetero-

geneous) input data types to calculate the desired measurement. When the

virtual sensor is deployed on a powerful client device, high-level code (e.g.,

written in Java) can be directly executed to evaluate the aggregator. In re-

mote deployments, aggregators can be dispatched to the resource-constrained

sensor network for evaluation.

• Resulting data type: the abstract type that results from evaluating the aggre-

gator over the input data types.

• Aggregation frequency: the frequency with which this aggregation should be

made. This determines how consistent the aggregated value is with actual

conditions (i.e., more frequently updated aggregations reflect the environment

more accurately but generate more communication overhead). This is similar

42

to the sample frequency of a physical sensor; at each interval, the virtual sensor

“samples” each sensor it uses and aggregates the results.

By providing these virtual sensor specifications, an application delegates

physical sensor discovery to the framework that supports the virtual sensor. There-

fore, if the data sources supporting the virtual sensor change over time, the virtual

sensor can adapt, but the application need not notice. We next explore in more

detail how data types are modeled in the virtual sensor framework, how a regional

abstraction supports the acquisition of data to support the virtual sensor, and how

data types are discovered in a distributed fashion.

3.3.3 Using a Virtual Sensor

Domain experts can create virtual sensors at any time. These virtual sensor defini-

tions are then placed in the repository shown in Fig. 3.2 until an application requires

the data type the virtual sensor provides. The virtual sensor’s definition includes an

aggregation frequency, but that does not mean that the virtual sensor sends updates

according to that frequency once it has been defined. Physical sensors are capable

of taking readings but usually do not do so until some application instructs them to.

Similarly, virtual sensors do not send responses back until they are actually queried

or used by an application.

3.3.4 Modeling Data Types Defining a Virtual Sensor

In our model, a data type may at times be provided by a physical sensor and at

other times by a virtual sensor (e.g., location provided by GPS (physical sensor)

or by triangulation (virtual sensor)). From the application’s perspective, this is a

single data type. This is mediated through a repository of data types that, for lack

of a better term, we refer to as the “data type ontology.” The structure and function

of this repository are described in more detail later, but, at the model level, it allows

43

VS Code
Repository

developer
(domain
expert)

VS definitions
(Section 4)

data type
ontology VS deployment

(Section 4)

application/user

virtual
sensor

Figure 3.2: Virtual sensor architecture

the architecture to be structured as shown in Fig. 3.2.

The figure shows two points of interaction with the virtual sensors. The first

is through the virtual sensor developer, a domain expert who can create new virtual

sensors and insert them into the virtual sensor code repository. This domain expert

possesses the knowledge necessary to create the domain-specific aggregator. For

example, an expert in the construction domain knows the equations for computing

the safe working load of the crane. Once this virtual sensor is created and made

available through the virtual sensor repository, its type can be listed in the data type

ontology. When an application or user wants to connect to a data type, whether it

be a physical type available directly from one or more sensors in the network or a

virtual sensor data type available through a piece of software defined in the virtual

sensor repository, the type is listed in the data type ontology. The two double arrow

lines indicate the discovery process that ensues to find the data type in the network,

and, if it is not already available, to cause a virtual sensor to be deployed if possible.

This discovery process is not the focus of this dissertation; many communi-

cation mechanisms exist to support this, and the virtual sensors architecture does

not commit to a particular underlying communication mechanism. We do, however,

44

briefly discuss this issue here and from an implementation perspective in the next

section.

3.3.5 Defining the Region of a Virtual Sensor

Restricting the physical devices that contribute to the resolution of the virtual sensor

queries requires that a coalition of related nodes support cooperative query resolu-

tion. Protocols for establishing relative local neighborhoods have been previously

explored for sensor networks [46, 50, 58, 59]. Instead of building in a dedicated

neighborhood formation algorithm, the virtual sensors architecture can incorporate

any one of these approaches that allows a node to form a local neighborhood around

itself. For the remainder of this dissertation, we assume the particular physical de-

vices contributing to the virtual sensor are known a priori; our implementation uses

an approach based on on-demand distributed evaluation of proximity functions to

determine the virtual sensor membership on the fly [50].

3.3.6 Formalizing Virtual Sensors

Abstractly, a virtual sensor is defined in terms of the physical devices that contribute

to its construction. Assuming the physical devices available in the neighborhood

described above can be represented as the set S, we can formalize the constraints

on the virtual sensor definition as:

Given the set of hosts S in the virtual sensor’s neighborhood, the required

physical data types, D1, D2, . . . , Dn, the aggregator, A, and the resulting

data type, Dres, the virtual sensor can be formalized as:

Dres = A(D1, D2, . . . , Dn), where:

45

〈∀Di : 1 ≤ i ≤ n :: 〈∃V : |V | = Di.count ∧ 〈∀s ∈ V : s ∈ S ∧Di.type B s〉〉〉1,2

In the above definition, the set V is the subset of S that defines which physical

devices contribute to the virtual sensor. V may not be exactly equivalent to S in

the case that extra nodes are required to provide communication connections among

the nodes in V . If the construct in the last line of the definition evaluates to false, it

is not possible to construct the specified virtual sensor. Recall from above that the

input data types (D1, D2, . . . , Dn) are defined by the type of data they request and

the number of independent readings of that type that are required. We assume the

former is expressed as Di.type and the latter is expressed as Di.count. For example,

the virtual sensor shown in Fig. 4.1(b) requires two data types and one sensor of

each type: a single crane base position and a single crane boom position. A virtual

sensor that generates the average temperature of a curing pad of concrete requires

temperature values from n temperature sensors. In this case, only one D is provided,

and its count value reflects the number of sensors to be polled. As we described

previously, the count value included in the declaration of the virtual sensor can be

a number (e.g., one as in the case of the crane sensors) or all, indicating that all

matching sensors in the virtual sensor’s neighborhood should be polled.

Dynamic sensor discovery, that is the discovery of the virtual sensor by the

application, takes place on the basis of the virtual sensor specification. Virtual

sensors provide the same interface to the user as physical sensors. The data type

ontology that was mentioned above exists at this interface and defines the data

types available to the application. Types of complex virtual sensors created by a

domain expert can be added to this ontology. Most importantly, the application
1In the three part notation: 〈op quantified variables : range :: expression, the variables

from quantified variables take on all possible values permitted by range. Each instantiation of the
variables is substituted in expression, producing a multiset of values to which op is applied, yielding
the value of the expression. If no instantiation of the variables satisfies range, then the value of the
three-part expression is the identity element for op, e.g., true if op is ∀.

2The “Di.type B s” construct denotes the fact that “sensor s can provide the data type specified
in Di.type.”

46

does not have to know that it is discovering a virtual sensor instead of a physical

sensor. The developer selects a data type listed in the ontology from a scene. If

that data type can be provided by a physical sensor, no virtual sensor construction

is necessary. Otherwise, the virtual sensor is activated and searches for supporting

physical sensors in the scene.

If a virtual sensor is being used to obtain periodic responses, it needs to be

dynamically refreshed. At every refresh interval specified by the virtual sensor’s

aggregation frequency, the virtual sensor gets new measurements from each physical

sensor contributing to it and recalculates the virtual measurement. During its life-

time, some sensors contributing to a virtual sensor may deplete their battery power

and become non-functional. In this case, the virtual sensor attempts to discover

a new sensor that can provide the data that sensor was providing; if another such

sensor does not exist in the scene, the virtual sensor fails.

Furthermore, while the sensor nodes used in ubiquitous computing environ-

ments are embedded (hence stationary), the application interacting with them runs

on a device carried by a mobile user. Therefore, the dynamics associated with user

movement may cause the physical sensors that comprise the virtual sensor to change

(see Figure 3.3). These changes need to be seamlessly handled without revealing the

underlying dynamics to the user. A dynamic maintenance is necessary that allows

the user to interact directly with a changing set of local information sources and the

virtual sensor needs to hide the underlying complexity from the user.

Figure 3.4 abstractly depicts n physical sensors, aggregated into a virtual

sensor which can run (a) locally (on the client) or (b) remotely (in the network).

The physical sensors are illustrated using circles, and the different shadings indicate

their heterogeneous nature. The sensors inside the large dashed circle contribute

to the virtual sensor, but only a few have been shown with arrows representing the

data they send back, for ease of presentation. The virtual sensor code can either run

47

Virtual sensor
at t0

Virtual sensor
at t1

User
movement

User
movement

Virtual
sensor at t

0

Virtual
sensor at t

1

Figure 3.3: The dynamics associated with user movement

locally on the client device or be deployed to a resource-constrained sensor within

the network. When deployed remotely, this code will be dynamically received by a

listener on the remote sensor and executed. If all of the physical sensors are in a

cluster, and that cluster is several hops away from the user’s device, then it may

make sense to send the virtual sensor out to the cluster. On the other hand, if each

of the sensors that make up the virtual sensor is within one hop of the user, then

the virtual sensor should run on the user’s device. With respect to the application

interface, it does not matter if the virtual sensor is deployed on the client’s device or

remotely in the network, but it might improve performance to use a certain option

depending on the application’s situation. The rest of the discussion in this chapter

assumes a local deployment, while Chapter 4 assumes a remote deployment.

3.4 Example Applications

In this section, we relate two complete application examples we have fully imple-

mented to demonstrate the use and performance of virtual sensors. To illustrate the

application-independent nature and the ability to support multipurpose networks

of virtual sensors, we have chosen application examples from the two different do-

48

Virtual Sensor

(a) n physical sensors, aggregated into a
virtual sensor which runs locally

Virtual Sensor

(b) n physical sensors, aggregated into a vir-
tual sensor which runs remotely

Figure 3.4: Abstract depiction of a virtual sensor that uses n physical nodes

mains, the first of which is the intelligent construction site we have introduced in

Chapter 1, and the second is an aware home domain. An aware home is a residential

environment that is able to obtain information about itself, as well as the locations

and activities of the people situated in that environment, through embedded sensors.

Each virtual sensor specification is provided to the middleware, which trans-

lates it into two components: the virtual sensor proxy and the virtual sensor. The

former runs on the user’s device; the latter can be written in either Java or nesC

and we will explore deploying it to a sensor in the network in Chapter 4.

3.4.1 Construction domain example

The virtual sensor we describe here allows the user to sense data of type

CraneDangerCircle for nearby cranes. This circle represents the area near a crane

where it is unsafe to walk and is centered at the base of the crane (which may move)

and has a radius defined by the position of the boom (which is even more likely

to move) (see Fig. 3.1(b)). As the boom moves along the crane arm, the size of

the danger circle should expand and contract accordingly. An application can use

49

this information to maintain a map of the construction site to ensure vehicles and

workers are always safe and to display warnings to a worker when he enters a danger

circle.

The virtual sensor programmer (a domain expert) possesses the application

knowledge (more specifically, knowledge of the data types that are available and

the functions that will be necessary to create the resulting data type) to create the

virtual sensor. Using our middleware, this programmer can use a high-level language

to create tailored sensing capabilities.

Our example virtual sensor (CraneVS) uses two data types available in the

sensor network, selected from an ontology for the construction site: BasePosition

and BoomPosition. This, too, is a simplification as these data types may themselves

be the result of a virtual sensor that aggregates basic location data with nearby

identity data (e.g., from an RFID tag) to determine that a particular location sensor

is located at the base of a crane. The CraneVS generates abstract data of the type

CraneDangerCircle which is delivered to the application. The code the application

programmer must write to construct such a sensor looks like:

VirtualSensor craneVS = new VirtualSensor({new BasePosition(),

new BoomPosition()},

new CraneAggregator(),

new CraneDangerCircle());

Within the application, BasePosition, BoomPosition, and CraneDangerCircle are

data types that extend the DataType class. The application may have to create the

CraneDangerCircle, but BasePosition and BoomPosition are likely to be common to

the domain and therefore reusable across applications. All three data types appear

in the domain’s ontology. In the constructor above, new instances of the classes

representing the types are constructed as placeholders.

This virtual sensor request is translated into a request for two different data

50

types (BasePosition, BoomPosition) from the same scene. If the query initiated is

persistent, these data types are encapsulated with the requested frequency and sent

to the sensor(s) which send back periodic responses. The number of sensors (in this

case, one of each type) that are expected to respond to the query are given in the

virtual sensor specification, along with the data type.

The domain programmer must also specify the mechanics behind the ag-

gregation within the CraneAggregator. This is accomplished by implementing the

Aggregator interface and providing an implementation of the aggregate() method:

class CraneAggregator implements Aggregator {

CraneDangerCircle aggregate(DataType[] inputs){

int radius = Math.sqrt((input[0].x - input[1].x) *

(input[0].x - input[1].x) +

(input[0].y - input[1].y) *

(input[0].y - input[1].y));

return new CraneDangerCircle(input[0], radius);

}

}

Our prototype implementation performs the virtual sensor aggregation in

Java on the client device. The virtual sensor created to support this specification

does two things. First, it calculates the radius based on the data values received

from the virtual sensor’s defining physical sensors. Second, it returns (in a single

message) values for anything referenced in the return statement (i.e., the calculated

radius and the (x,y) coordinates of the base of the crane, as indicated by the use

of input[0] in the return statement). The aggregate() function encapsulates it as

an object of the type the application expects (e.g., the CraneDangerCircle in the

example). In this virtual sensor, the circle is specified by its center (the location of

the crane base) and its radius.

51

Sound?

Motion?

Pressure?

Figure 3.5: Aware home example

3.4.2 Aware home domain example

The virtual sensor we describe here allows the user to sense data of type

RoomOccupancy for a room in an aware home. This data type indicates if there

is currently a person in the room or not, based on an aggregation of sound, pres-

sure, and motion readings obtained from the room, as shown in Figure 3.5. When

a person enters or exits the room, the room’s sound, pressure, and motion readings

will change. An application can use this information to make decisions based on

room occupancy, such as turning the lights on or off. We note that sound by itself

may not be enough, since there may a clock chiming in the room, the same is true

for pressure; a heavy crate may have been temporarily placed on the floor. As for

motion, there may be an open window in the room which may cause a curtain to

move occasionally due to wind.

Our example virtual sensor (OccupancyVS) uses three data types available in

the sensor network in the room: Sound, Pressure, and Motion. The OccupancyVS

generates abstract data of the type OccupancyIndicator which is delivered to the

application. The code the application programmer must write to construct such a

52

sensor looks like:

VirtualSensor occupancyVS = new VirtualSensor({new Sound(),

new Pressure(),

new Motion()},

new OccupancyAggregator(),

new OccupancyIndicator());

Within the application, Sound, Pressure, and Motion are data types

from the aware home data ontology. The application may have to create the

OccupancyIndicator, but Sound, Pressure, and Motion are likely to be reusable across

applications. The domain programmer must also specify the mechanics behind the

aggregation within the OccupancyAggregator. This is accomplished by implement-

ing the Aggregator interface and providing an implementation of the aggregate()

method:

class OccupancyAggregator implements Aggregator {

OccupancyIndicator aggregate(DataType[] inputs){

boolean occupancy = (input[0] > soundThreshold) &&

(input[1] > pressureThreshold) &&

(input[2] == motionDetected) &&

return new OccupancyIndicator(occupancy);

}

}

The above specification determines a combination of “sound,” “pressure”

on the floor, and “motion” to be “occupancy.” We note that different houses (or

different rooms in a house) could have different definitions for “occupancy.”

We have implemented virtual sensors code for the two application domains

discussed above (for more information on our virtual sensors code, see the Virtual

Sensors Home Page [57]).

53

3.5 Feasibility Study

To demonstrate the feasibility of virtual sensors, we implemented and deployed a

virtual sensor for an application example from the domain of the intelligent con-

struction site [31]. In our scenario, the user requests information about the region

around the base of a crane where it is unsafe to walk or drive. In this case, a virtual

sensor is constructed that dynamically discovers physical sensors attached to com-

ponents of a nearby tower crane (e.g., the base of the crane, the trolley along the

boom, the counterweight of a crane). The virtual sensor combines the information

collected from these distributed physical sensors to calculate the requested abstract

data type (i.e., a danger circle calculated using location estimates from sensors at-

tached to the crane). Once these sensors are discovered, the virtual sensor registers

persistent queries on these particular sensors and remains connected to them. As

the sensors generate and send updates, the virtual sensor automatically refreshes the

presentation of the abstract data type and displays the changes to the application,

so the worker receives a warning when entering a potentially dangerous area. This

example performs on-the-fly heterogeneous data fusion from multiple sensor streams

in the field.

Specifically, our application demonstration connects a set of Cricket motes [11]

(a location-aware version of MICA2 Motes [45]) attached to the crane to another

Cricket mote that represents a worker on the site. We simulate the situation using

a Lego crane [37] (as shown in Fig. 3.6). Changes in the worker’s position and crane

movement occur in real time in the demonstration to show different situations.

The virtual sensor on worker’s truck monitors the crane to determine if the

worker is inside the danger sector by combining the crane boom position, crane

counterweight position, and worker’s own location. Applications can use this infor-

mation to ensure workers and vehicles are always safe. A warning is displayed to

the worker when he enters the danger sector (i.e., the red LED of the truck’s sensor

54

Figure 3.6: The virtual sensor on a tower crane

turns on).

We use eight Crossbow Cricket motes, four of which are used simply for

obtaining the positions of the relevant sensors that contribute to the virtual sensors.

These act as beacons; on a real construction site, we would use GPS satellites

to obtain this information, but since GPS does not work well indoors, we had to

obtain position information using Cricket motes. The Cricket mote is a location-

aware version of the MICA2 mote. It uses an ultrasound transmitter/receiver for

time-of-flight ranging and provides centimeter-level accuracy. One mote acts as the

gateway to the laptop computer, where the data is aggregated. The remaining three

measure the boom, counterweight, and worker locations.

Figs. 3.7 demonstrate safe and dangerous situations that may arise as the

55

Truck Inside/Outside Danger Sector

10

 outside danger sector
 red LED off (safe)

 inside danger sector
 red LED on (in danger)

(a) Worker outside danger sector
(green LED on, i.e., safe)

Truck Inside/Outside Danger Sector

10

 outside danger sector
 red LED off (safe)

 inside danger sector
 red LED on (in danger)

(b) Worker inside danger sector
(red LED on, i.e., in danger)

Figure 3.7: The virtual sensor on a tower crane

current situation is assessed through the real-time aggregation running on the laptop

computer.

3.6 Chapter Summary

In this chapter, we defined a formal virtual sensor model designed to abstract data

from heterogeneous physical sensors by applying user-defined functions. We imple-

mented two complete application examples using a local deployment to demonstrate

the use and performance of virtual sensors. We demonstrated the implementation

and deployment of a virtual sensor as a feasibility study. The separation of the

specification of the sensing task from the sensing behavior allows a programmer to

describe the behavior of a virtual sensor, without having to specify the underlying

details of how it should be constructed. Virtual sensors offer a way to tailor a generic

sensing environment to specific applications. This will be especially necessary as sen-

sor networks become more widespread and general-purpose. In the next chapter,

we explore two mechanisms for enabling virtual sensors to be remotely deployed on

resource-constrained sensor nodes. The first is a parameterized middleware deploy-

56

ment that runs on the sensor nodes and accepts virtual sensor definition information

within TinyOS messages. The second is to use a mobile code deployment in which

the TinyOS messages directly carry code defining the virtual sensors, which can be

immediately loaded into the run-time environment at the sensor node.

57

Chapter 4

Remote Deployment of Virtual

Sensors

For virtual sensors, supporting the local deployment case shown in Fig. 3.4(a) of

Chapter 3, where each of the physical data types can be independently collected

from the network and then aggregated on the client device in a higher-level language

(e.g., Java), was discussed in Section 3.5. In this chapter, we consider the more

complicated situation depicted in Fig. 3.4(b) in which the virtual sensor is dispatched

into the network to execute on resource-constrained sensing devices. In this case, the

application’s definition of a virtual sensor in a high-level language must be translated

into a form understandable by the underlying resource-constrained sensor network.

This potentially limits the expressiveness of the virtual sensors that can be specified,

but it also has the potential to drastically reduce the overhead of heterogeneous

aggregation in sensor networks because it reduces the number of messages that

must be sent.

In this chapter, we will present two alternative styles of implementations

for remote deployment of virtual sensors. We will discuss the implementation and

performance characteristics for each.

58

Position sensor

Tension sensor
Accelerometer

Safe Working
Load?

(a)

BasePosition

DangerCircle

BoomPosition

Safe to walk?

(b)

Concrete

Temperature
sensor

Temperature
sensor

Temperature
sensor

Temperature
sensor

Cured?

(c)

Figure 4.1: Construction site domain examples

4.1 Motivation and Problem Definition

The tiny sensing devices that support pervasive computing environments have many

constraints. Limited energy is a major concern, and it is therefore essential to reduce

applications’ communication overhead. The amount of communication each sensor

must perform can be reduced through the use of in-network aggregation, so that not

all data has to be relayed back to a requesting node; instead, the necessary result

can be calculated en route through node cooperation. Existing solutions generally

provide only homogeneous aggregation. However, emerging user-level applications

will leverage capabilities from RFIDs, smart cell phones, sensors from different ven-

dors, etc. that provide vastly varying data types. Heterogeneous data aggregation

is important in combining this data into a single abstract measurement.

It will often be most efficient in terms of communication to perform such ag-

gregation remotely, in the network, as opposed to collecting all of the available data

59

and processing it offline. This task is significantly more complicated than this simple

statement implies; remotely deploying complex aggregation requires being able to

quickly load new functionality on remote, resource-constrained sensors. In addition,

sensor networks in support of pervasive computing must be reusable. Current efforts

create application-specific solutions, but the future will see multipurpose networks

deployed to support numerous and changing applications. The cost of physically vis-

iting each sensor to reprogram it is prohibitive, and therefore the ability to remotely

reprogram sensors to tailor them to particular applications will be essential. Some

existing approaches attempt to perform the remote code deployment [5, 14, 38], but

they have limitations with respect to how applications can tune the distribution of

the new code, what the code can do, and in which situations mobile code can be

used, as discussed in Chapter 3.

As sensor networks become widespread in their support of a variety of appli-

cations, the utility of an abstraction that addresses these challenges can be demon-

strated through many examples. We draw examples from the intelligent construction

site, where potentially mobile sensors embedded in equipment and structures can

support safety and management applications [20]. We introduce three examples and

revisit them throughout the remainder of the chapter.

Crane safe load sensor. On an intelligent construction site, users may

desire the cranes to have safe load indicators that determine if a crane is exceeding

its capacity. A safe load indicator would rely on measurements from physical sensors

that monitor boom angle, load, telescoping length, two-block conditions, wind speed,

etc. [47]. Using fewer data types for ease of presentation, Fig. 4.1(a) depicts the

connection to an application-defined safe-load sensor (represented by the dashed

ellipse) on a tower crane that uses data from three physical sensors (represented

by dots). The safe-load sensor aggregates the information from these sources into

a higher-level reading that represents the effective load on the crane and compares

60

this against the crane’s known safe working load.

Crane danger circle sensor. A danger circle represents the area near a

crane where it is unsafe to walk. It is centered at the base of the crane (which may

move) and has a radius defined by the position of the boom (which is even more

likely to move). Fig. 4.1(b) shows a software sensor that calculates such a “danger

circle” using two different physical sensors. As the boom moves along the crane

arm, the size of the danger circle should expand and contract accordingly.

Aggregate concrete cure sensor. A construction site supervisor coordi-

nating a team of workers spread throughout the site may want to have an aggregate

view of the concrete cure conditions over a concrete slab in the site. Fig. 4.1(c) shows

an aggregate concrete cure sensor that would allow the supervisor to be alerted when

the concrete is ready for use. While the first two examples provide heterogeneous

aggregation, this third application demonstrates homogeneous aggregation.

4.2 Parameterized Middleware Approach

In this section, we present the parameterized middleware implementation of the

virtual sensors abstraction and evaluate it.

4.2.1 Implementation

In this section, we describe the parameterized middleware implementation of the

virtual sensors abstraction [29]. We provide the domain expert with a Java ap-

plication programming interface and a set of operations that can be combined to

specify complicated virtual sensor behavior. The middleware that runs on the sen-

sors is written for TinyOS [22] in nesC [16] and programmed onto Crossbow MICA2

motes [12]. Our implementation code is available at [51]. Virtual sensor definitions

are encapsulated in TinyOS messages and distributed to sensor nodes. Instead of

sending new code when the developer wants to inject a new virtual sensor, a message

61

Application Programming Interface

Virtual Sensor Specification

Unicast (communication)Query domain protocol
(discovery)

Physical Sensors

Query Domain
Specification

Virtual Sensor

Specifications

API

Data processing

Communication

Network

Figure 4.2: Simplified object diagram for the virtual sensor middleware

is sent that contains the parameters for specializing a generic piece of code already

present within the middleware. This significantly reduces the communication and

computational costs associated with loading new functionality but also decreases the

flexibility of virtual sensor definitions. We evaluate these tradeoffs in later sections.

The messages are described in more detail later in this section; we first describe how

the developer perceives and interacts with the virtual sensors abstraction.

Application Programming Interface

Fig. 4.2 depicts the object diagram of the middleware from the developer’s perspec-

tive. The application developer uses this API to specify virtual sensors, and the

middleware then handles the necessary sensor network communication on behalf of

the application. The virtual sensor constructed as a result of these specifications

uses proximity functions [50] for sensor discovery. These query domains allow the

application developer to specify required relationships among all participants in the

virtual sensor (e.g., all physical sensors contributing to a virtual sensor must be

within a given distance of each other). Once these groups are created, the infras-

tructure uses a combination of groupcast and unicast communication to maintain

62

Java
application

sensor interface

To physical sensor

Data types

Available
virtual sensors

Ontology

To virtual sensor

Figure 4.3: Virtual sensor architecture

the virtual sensors and to aggregate and retrieve data.

The VirtualSensor object shown in Fig. 4.2 is maintained at the client

device and keeps a list of live queries. This allows a single virtual sensor to support

queries from multiple applications in the same way that a single physical sensor

can provide data for multiple applications. A virtual sensor is deployed only when

there are active queries, and the information from the virtual sensor is accessed

on-demand.

Fig. 4.3 shows the distributed virtual sensor architecture. The application

perceives a single interface to access to both physical and virtual sensors. The devel-

oper’s high-level code (written in Java) interfaces with the sensors using a data type

ontology that includes built-in general-purpose data types (e.g., temperature, loca-

tion, angle, etc.) and provides a straightforward mechanism for inserting additional

types. When the application needs to query the network for a data type that is not

directly provided by the physical sensors, the developer constructs and deploys a

virtual sensor using his knowledge of the available data types (as expressed in the

ontology). The application subsequently queries this virtual sensor directly, in the

same manner that it queries other physical sensors.

When defining new virtual sensors, the developer needs to specify the low-

63

REQFREQPERSISTENT

2 BYTES 1 BYTE 1 BYTE 2 BYTES

DATA

23 BYTES

CMDSOURCE

REQFREQPERSISTENT

2 BYTES 1 BYTE 1 BYTE 2 BYTES

DATA

20 BYTES

DATATYPE

1 BYTE 2 BYTES

MEASUREMENTCMDSOURCE

TASKMSG

DATAMSG

Figure 4.4: Packet formats for the TaskMsg and DataMsg messages

level data types and the relationships required to compute the desired abstract

measurement. This gives the developer the maximum amount of flexibility in spec-

ifying new data types and how they should be formed while hiding the underlying

implementation details from the end user, lending a powerful virtual sensor imple-

mentation.

Virtual Sensor Tasking

Domain experts define virtual sensors using a high-level programming language.

Our middleware translates these definitions into a specific format that is placed

in TinyOS messages and distributed within the sensor network. Specifically, to

create a virtual sensor and to obtain data from it, we use two different packet

formats, as shown in Fig. 4.4. The first of these, the task message, contains a

field that describes the operations the virtual sensor should perform. Since RPN

(Reverse Polish notation, also known as postfix notation) [54] provides a compact

representation that is machine-readable, we define the following grammar based on

RPN for the data field of the virtual sensor task messages:

E → E E bin op | datatype all set op | datatype # set op |

datatype datatype bin op | datatype # bin op | datatype un op

64

where:

bin op = {+,−, ∗,÷,POW, <, . . .}

set op = {MIN,MAX,SUM,AVG, . . .}

un op = {SQRT,COS,SIN, . . .}

and datatype refers to single instances of sensor types available in the network,

datatype all indicates a desire to apply a set operation to all available readings of

the indicated type, and # refers to an integer number (between 0 and 10).

This grammar defines unary operators (e.g., the square root), binary opera-

tors (e.g., addition), and set operators (e.g., minimum). As defined in the grammar

above, data types associated with an expression are interpreted differently depending

on the type of operator. For example, a task message containing the data [Tem-

perature all AVG] instructs the created virtual sensor to collect all of the available

temperature readings and average them, while [Temperature 5 AVG] instructs the

created virtual sensor to collect five temperature readings and average them.

Numbers, data types, and operators make up the alphabet of this grammar,

and we map each one to a reserved number to enable its transmission in a data

message:

• 0-10 : Numbers

• 11 : “All” (reserved to support additional functionality)

• 12-31 : Operators (set operators and binary operators)

• 32-143 : Data types (with the ability to specify the number of distinct sensors

that should provide a value)

• 144-255 : Data types “all” (this requires all sensors within the proximity that

65

Task message
received

VS
Coordinator

?

1. Parse the
 taskField
2. Extract the data
 in each buffer
 and perform
 the computation
3. Send result back
 to client device

No

Ignore message
No

Yes

Yes

VS timer
expired?

1. Parse data
 type/operator
 field extracting
 the data types
 required (and
save the operation
to be performed in
taskField)
2. Set up buffers
 for each data
 type that is
 required for the
 computation
(including VS
coordinator itself if
applicable).
3. Save the data
field and if the
requested data
type is ALL, save
its operation
indexed by data
type.
3. Send DataMsg
(with data field set
to the data types
requested)
 requesting data
 from sensors
 contributing the
 data types
4. Wait for all the
data to come back
5. When data
comes back, do
parsing
6. Extract the data

1. Extract required
 data types from
 message
2. Set up buffers
3. Save the data
 field in taskField
 (and if requested
 data type is ALL
 save its
 operation
 indexed by data
 type)
4. Send DataMsg
 requesting data
 from physical
 sensors

Yes

TaskMsg
received

 (while the end of
the task field is not
reached)
Using a stack,
- If the next symbol
is an operand (a
number or a
datatype), put it on
top of the stack
(number itself, or
the measurement
for the data type
pulled from the
buffer.
- If the next
symbol is an
operator, remove
the top two
numbers from the
stack, perform the
operation, and
place the result on
top of the stack.
Then, do opp:
Remove the
topmost element
from the stack and
set rightOperand
equal to it
If binary
operation:Remove
the topmost
element from the
stack and set
leftOperand equal
to it
Perform the
operation and push
the result back
onto the stack

Parse the task
field

(a) TaskMsg received

Data message
received

VS
Coordinator

?

No

Yes

If physical sensor:
1. Parse data
 type field
checking if this
node can provide
the requested data
type
2. If YES (can
provide), send data
back to VS
coordinator
If VS coordinator:
1. If single data
type, put received
measurement into
the buffer for this
data type
2. If ALL data type,
update the value in
the buffer for this
data type using
this currently
received
measurement until
all the data from all
the physical
sensors received

DataMsg
received

Update the value
in the buffer for
this data type
using this
measurement

No

Yes

Put received
measurement into
buffer for this data
type

Yes

Can
provide data

type?

No Ignore message

Yes

Data
type ALL?

Send data to
VS coordinator

(b) DataMsg received

Figure 4.5: Flowcharts for message reception

can provide this data type to respond)

Virtual Sensor Operation

The middleware running on the virtual sensor coordinator is tasked to provide an

abstract measurement through the necessary calculations that are stated in a task

message. To support the task, the virtual sensor coordinator sets up buffers for each

data type required for the computation and sends data messages to the contributing

physical sensors, asking for their data. When the data comes back from all the

physical sensors, the virtual sensor coordinator performs the operations in the order

stated in the task message (and if the query is continuous, this happens at every

periodic virtual sensor query interval).

66

Figs. 4.5(a) and (b) show the message processing flowcharts for the task

messages and the data messages, respectively.

Since the goal is to collect data and process it in the network as it arrives,

and since we use an RPN-based grammar for the task field, we use a stack to perform

the calculations while parsing the task message (shown Fig. 4.5(a)). Until the end

of the task field is not reached, the task field is parsed and all the operations are

performed in order:

• If the next symbol is an operand (a number or a data type), we place it (the

number itself or the measurement for the data type pulled from the buffer for

that data type) on top of the stack.

• If the next symbol is an operator, we remove the top elements from the stack,

perform the operation, and place the result on top of the stack.

The stack reduces the amount of data the virtual sensor coordinator must

store. It also allows a “running” operation that is computed on the fly and does

not need to store historical data. To summarize, the task message and the way it is

parsed allows any combination of binary and unary operations as well as comparison

operations on any type of data to transform it to an abstract data type, giving the

application developer flexibility and the ability to retask sensor nodes.

4.2.2 Evaluation

We evaluate four characteristics of the remote virtual sensor: the abstraction’s

expressive power, the complexity of applications created for the middleware, the

complexity of the middleware itself, and the communication overhead required to

support the abstraction.

67

T
ab

le
4.

1:
E

xa
m

pl
e

vi
rt

ua
ls

en
so

r
de

fin
it

io
n

m
es

sa
ge

s.
Fo

r
ea

ch
ex

am
pl

e,
w

e
gi

ve
th

e
ab

st
ra

ct
vi

rt
ua

ls
en

so
r

de
fin

it
io

n
fir

st
w

ri
tt

en
in

st
an

da
rd

fo
rm

,t
he

n
in

R
P

N
.F

in
al

ly
,w

e
gi

ve
th

e
de

fin
it

io
n

w
ri

tt
en

in
th

e
he

xa
de

ci
m

al
fo

rm
.

in
w

hi
ch

it
is

ac
tu

al
ly

tr
an

sm
it

te
d

in
ou

r
pr

ot
ot

yp
e.

T
he

la
tt

er
de

pe
nd

s
on

th
e

(s
ta

ti
c)

lis
t

of
ty

pe
s

av
ai

la
bl

e
fo

r
ou

r
ap

pl
ic

at
io

n
do

m
ai

n
an

d
on

th
e

st
at

ic
m

ap
pi

ng
of

op
er

at
or

s
to

va
lu

es
as

sh
ow

n
in

Se
ct

io
n

4.
2.

1.

A
p
p
li
ca

ti
on

V
ir

tu
al

S
en

so
r

D
efi

n
it

io
n

Sa
fe

W
or

ki
ng

L
oa

d
(A
c
t
u
a
l
L
o
a
d
∗
B
o
o
m
L
e
n
g
t
h
)

<
M
a
x
i
m
u
m
L
o
a
d
M
o
m
e
n
t

A
c
t
u
a
l
L
o
a
d
B
o
o
m
L
e
n
g
t
h
∗
M
a
x
i
m
u
m
L
o
a
d
M
o
m
e
n
t

<
2
4

2
5

0
E

2
6

1
6

0
.
.
.
0

D
an

ge
r

C
ir

cl
e

√ (B
a
s
e
P
o
s
i
t
i
o
n
X
−
B
a
s
e
P
o
s
i
t
i
o
n
Y
)2

+
(B
o
o
m
P
o
s
i
t
i
o
n
X
−
B
o
o
m
P
o
s
i
t
i
o
n
Y
)2

B
a
s
e
P
o
s
i
t
i
o
n
X
B
a
s
e
P
o
s
i
t
i
o
n
Y
−

2
P
O
W
B
o
o
m
P
o
s
i
t
i
o
n
X
B
o
o
m
P
o
s
i
t
i
o
n
Y
−

2
P
O
W

+
S
Q
R
T

2
0

2
2

0
D

0
2

1
0

2
1

2
3

0
D

0
2

1
0

0
C

1
1

0
.
.
.
0

C
ur

in
g

C
on

cr
et

e
P
ad

A
V
G
(C
u
r
e
R
a
t
e
,A
L
L
)

C
u
r
e
R
a
t
e
A
l
l
A
V
G

9
0

1
5

0
.
.
.
0

68

Expressive Power

The expressive nature of the virtual sensor allows applications to request arbitrary

functionality, making it flexible and useful in interacting with intermittently con-

nected sensor nodes. An application can create a virtual sensor directly tailored to

its needs. The application can also dynamically change the virtual sensor by sending

a new virtual sensor task message.

We demonstrate the virtual sensor abstraction’s expressive power using the

three application examples introduced in Section 4.1: a) a crane’s safe working load;

b) a crane’s danger circle; and c) a curing concrete pad. We have deployed each

application on four MICA2 motes running the virtual sensor middleware. Upon

receiving a TaskMsg from outside the network, one of the nodes becomes the virtual

sensor coordinator, gathers the required data from the other nodes, adds its own

data (if applicable), performs the calculation, and sends the aggregate result back

to the client device. Table 4.1 shows the data field of the TinyOS message for

each virtual sensor. For each virtual sensor, it takes an average of 1.031 seconds

to perform the calculation on the MICA2 mote, but this includes the one second it

takes for the virtual sensor to acquire all the data from the other motes contributing

to the virtual sensor.

Reduction of Application Complexity

Without the virtual sensors middleware, an application developer must construct

the entire behavior by hand. This includes querying each physical node and locally

aggregating the returned data values.

The more straightforward way of coding afforded by the virtual sensor sim-

plifies the programmer’s task. Instead of being concerned with low-level communi-

cation details, the programmer delegates complex coding to the middleware. The

developer relies on the programming interface described in the previous section to

69

provide the aggregation behavior which can be optimally placed in the sensor net-

work. In addition, the potential ability of the middleware to dynamically determine

the best location in the network for the remotely deployed virtual sensor can signif-

icantly reduce the communication overhead. For example, instead of retrieving the

sensor measurements from each node, then applying a threshold to each retrieved

value locally, filtering can be performed at the remote virtual sensor, limiting the

data that must be sent back. In a local virtual sensor deployment with four motes,

each mote would have to send a message back to the client device, resulting in a total

of 4 messages, but in a remote deployment, only one message has to be sent all the

way back to the client device (i.e., the result from the virtual sensor coordinator).

Middleware Complexity

We have quantified the overhead introduced by our middleware in terms of the

memory footprint. The MICA2 platform has 128KB of program memory (ROM)

and 4KB of primary memory (RAM). The virtual sensor code (written in nesC) for

the crane danger circle application yields the following memory footprint for TinyOS

and MICA2 motes:

• local deployment: occupies 15,872 bytes in ROM and 544 bytes in RAM.

• remote deployment: occupies 17,234 bytes in ROM and 1,303 bytes in RAM.

In comparison to computing virtual sensor measurements locally, remotely

deploying the virtual sensor does increase the memory footprint due to the need to

have a generic middleware deployed that can accept tailored virtual sensor defini-

tions. The middleware empowers remote nodes in the network to perform compli-

cated operations without having to send as much data back to a client node.

In terms of message size, the virtual sensors middleware fits all virtual sensor

definitions into 29 byte TinyOS messages. More complex virtual sensor definitions

70

Virtual
Sensor

(a) Physical sensors aggregated into a
virtual sensor which runs locally

Virtual
Sensor

(b) Physical sensors aggregated into
a virtual sensor which runs remotely

Figure 4.6: Two different types of virtual sensor deployments

than those given as examples here may become lengthy, requiring more than one 29

byte message to distribute the virtual sensor tasking information; support for this

multiple message format is saved for future work.

Reduction in Communication Overhead

The amount of communication in a sensor network directly relates directly to the

nodes’ energy expenditure and consequently to network lifetime. The key aspect of

the communication overhead is the amount of data (in bytes) that must be sent.

Without the virtual sensor, each data value from the remote physical sensors must

be sent back to the client device for processing.

Let a virtual sensor, V , require data from n distinct physical sensors, P1,

P2, ..., Pn. Let us assume that Pn is the physical sensor that is closest to the

client device from the set {P1, P2, ..., Pn} and choose that as the virtual sensor

coordinator. Assuming that Pn is hn hops away from the client device, and that

{P1, P2, ..., Pn−1} are h1, h2, ..., hn−1 hops away, respectively, from the virtual

sensor coordinator (see Fig. 4.6 for a simple example, where n = 4, h4 = 2, and

71

h1 = h2 = h3 = 1):

• A local deployment of such a virtual sensor would take h1 + h2 + ... + hn−1

transmissions for all the other physical sensors to send their data to node n.

Then, for this node to forward all of these data values and its own value would

require an additional n×hn transmissions, resulting in a total of nhn+
∑n−1

i=1 hi

transmissions.

• In the case of a remote deployment, it would take h1 + h2 + ... + hn−1 trans-

missions for all the other physical sensors to send their data to virtual sensor

coordinator. Since the virtual sensor coordinator aggregates all this data be-

fore sending it to the client device, it would take only hn transmissions there-

after to relay this data to the client node, resulting in a total of hn +
∑n−1

i=1 hi

transmissions.

Given the above, remotely deployed virtual sensors can reduce communica-

tion overhead significantly, especially as the number of physical sensors contributing

to a virtual sensor increases or as the number of hops between a client device and

the virtual sensor coordinator increases.

Fig. 4.7 show the measured communication overhead as a function of the

number of nodes in the network and of the number of nodes participating in the

virtual sensor (i.e., the size of virtual sensor), respectively. Using a virtual sensor in a

network of increasing size reduces the overhead compared to a traditional querying

approach. As the virtual sensor size increases, the difference in the amount of

overhead between the approach using a virtual sensor and the traditional querying

approach increases significantly.

72

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 40 60 80 100 120 140 160 180 200

O
ve

rh
ea

d
[b

yt
es

]

Number of nodes

Graph of Querying Overhead vs. Number of Nodes

Traditional Querying
Virtual Sensor

(a)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 2 4 6 8 10

O
ve

rh
ea

d
[b

yt
es

]

Number of nodes in virtual sensor

Graph of Querying Overhead vs. Size of Virtual Sensor

Traditional Querying
Virtual Sensor

(b)

Figure 4.7: Reduction in communication overhead when using a virtual sensor

73

4.3 Mobile Code Approach

In this section, we describe an implementation of the virtual sensors abstraction

that uses a mobile code deployment in which the network messages directly carry

code defining the virtual sensors, which can be immediately loaded into the run-

time environment at the sensor node. The user interface that runs on the client

device is written in Java. The virtual machine that runs on the sensors is written

for TinyOS [16] in nesC [16].

We will describe this dissemination process in more detail later in this sec-

tion; we first discuss some mobile code mechanisms that are available and give a

justification for our choice.

4.3.1 Mobile Code in Sensor Networks

Maté [38] is a virtual machine designed for sensor networks that divides event-based

applications into capsules that are flooded across the network. Maté assumes that

only one application runs in the sensor network, so all the sensor nodes execute

the same code. Deluge [24] reprograms the whole sensor network by flashing the

instruction memory of each mote and supports multihop reprogramming. However,

it takes a long time to transfer the new image (which is the same for all sensors).

Also, sending a large image to every mote in a wireless sensor network is limited

by the sensor hardware and the multihop nature of connections. Like Maté, Deluge

does not allow multiple applications to be installed on nodes. Agilla [14] is an

agent-based sensor network middleware that allows applications to inject agents

that migrate intelligently to carry out the applications’ tasks. SensorWare [5] injects

mobile executable scripts. Unlike Maté and Deluge, it allows multiple applications

to be running on the same node. However, SensorWare requires platforms with 1

MB of program memory and 128 KB of RAM, and the scripts support only weak

mobility in the network.

74

We have chosen Melete [63] to distribute the code that the virtual sensor

nodes need to run. Melete is based on the Maté virtual machine. However, unlike

Maté, Melete can run concurrent applications on one sensor node and allows code

injection to a subset of the network (not necessarily the whole network). Melete uses

the TinyScript language it inherits from Maté to form the grouping of this subset.

4.3.2 Implementation

In this section, we describe the mobile code implementation of the virtual sensors

abstraction. The user interface that runs on the client device is written in Java.

The virtual machine that runs on the sensors, Melete, is written for TinyOS in

nesC and simulated in TOSSIM. Virtual sensor tasks are written in TinyScript,

encapsulated in Melete code capsules, and distributed to sensor nodes. These code

capsules are described in more detail later in this section; we first describe how

the developer perceives and interacts with the virtual sensors abstraction. We note

that the application programming interface is the same as the one discussed in

Section 4.2.1.

Virtual Sensor Architecture

In this particular implementation, the virtual sensor consists of a coordinator and

subordinate nodes (the data providers).

1. Virtual Sensor Coordinator: One sensor node forms a local neighborhood

around itself. It is tasked with finding the necessary data sources and per-

forming operations on the data that comes back from all the physical sensors

that are involved in this computation. In this sense, the virtual sensor coordi-

nator actually acts as a centralized in-network processor when it is deployed

remotely.

75

2. Virtual Sensor Data Providers: The virtual sensor data providers are

physical sensors that have been discovered by the virtual sensor coordinator

and are able to provide the various data types that the virtual sensor coordi-

nator needs to be able to compute the final data type.

Virtual Sensor Tasking

Domain experts define virtual sensors using a high-level programming language.

Our middleware translates these definitions into a specific format that is placed in

TinyOS messages and distributed within the sensor network.

Tasking of the virtual sensor coordinator and the sensor nodes that provide

data to it can be implemented in two ways:

1. The user device sends all the code to the virtual sensor coordinator, and the

virtual sensor coordinator sends the code to the virtual sensor data providers,

OR

2. The user device sends the code to the virtual sensor coordinator, the virtual

sensor coordinator discovers the virtual sensor data providers, and then the

user device sends the code to the virtual sensor participants.

Due to the constraints of Melete, we use the first approach in this implemen-

tation. To support virtual sensor tasking, we use the group formation functionality

of Melete to group the data providers into one group. This way, the code they need

to run can be sent directly to them. The code that defines the tasks that the nodes

perform is encoded in a TinyScript script.

Virtual Sensor Operation

The virtual sensor coordinator is tasked to provide an abstract measurement through

the necessary calculations that are stated in the mobile code. To support the task,

76

the virtual sensor coordinator retrieves data from the contributing physical sensors.

When the data comes back from all the physical sensors, the virtual sensor coor-

dinator performs the operations in the order stated in the mobile code (and if the

query is continuous, this happens at every periodic virtual sensor query interval).

Table 4.2: Melete group bitmasks

Group 4 Group 3 Group 2 Group 1 Group 0

16 8 4 2 1

Table 4.2 shows the binary bitmasks for the Melete group specifications. As

examples, a bitmask of 4 corresponds to Group 2, a bitmask 5 corresponds to Group

0 and Group 2 (both), and a bitmask of 16 corresponds to Group 4. Melete uses

groups to support concurrent reuse of sensor nodes by different applications. As

a subset of sensor nodes that host an application, the group is a logical concept.

Groups may overlap, their members may be connected through multihop connec-

tions, and they are dynamically adjustable.

In Melete, Node 0 is a member of every group and Group 0 is the group that

includes all the nodes in the network. By convention, new groups are formed in

the “once” context of Group 0. A maximum of 16 groups is possible. For a node,

the number of simultaneously associated groups is constrained by its RAM capacity

(e.g., up to 5 applications on TelosB node). The node checks a constraint predicate

and the answer determines if should then join or leave a group in question. The

constraint check and action can be moved into a timer context. A sensor node can

specify a set of target groups as the receiver of a broadcast. This group specification

is encoded in the broadcasted message.

To support our virtual sensor abstraction, we build the Melete VM with the

77

following five contexts:

• Reboot: Runs the code after the VM reboots

• Timer0: Runs the code when timer0 fires (need to set timer with “reboot

reboot.txt” (e.g., settimer0(10))

• Timer1: Runs the code when timer1 fires (need to set timer with “reboot

reboot.txt” (e.g., settimer1(15))

• Once: Runs the code once (when it installs) (e.g., start timer0)

• Broadcast: Runs the code when the mote receives a packet broadcast by

another mote with the bcast() function

The function, bcast(), broadcasts to the one-hop neighbors of a node. As an

example, bcast(4, data), where 4 is the bit mask of Group 2. Also, this function

triggers the broadcast context of the target group to run. Melete also has a send()

function that routes to Node 0, but this is done using the routing layer below the

VM and the VM has no control over it. So, we use the bcast() function to send data

between the VMs running on the different nodes. Since send() sends only to mote

0 (i.e., it sends a buffer to the base station), we use this function in the very end

when the aggregated data is ready to be sent to the client device.

4.3.3 Evaluation

With respect to the mobile code implementation of the virtual sensors abstraction,

we evaluate two characteristics: expressive power, complexity of the virtual ma-

chine running on the nodes. As for the complexity of applications created for the

middleware and the communication overhead required to support the abstraction,

arguments made in Section 4.2.2 apply here as well.

78

Expressive power

The expressive nature of the virtual sensor allows applications to request arbitrary

functionality, making it flexible and useful in interacting with intermittently con-

nected sensor nodes. An application can create a virtual sensor directly tailored to

its needs. The application can also dynamically change the virtual sensor by sending

new virtual sensor code to the virtual sensor coordinator.

We demonstrate the virtual sensor abstraction’s expressive power using one

of the application examples introduced in Section 4.1, a crane’s safe working load.

In TOSSIM, code capsules are deployed onto motes running Melete. A part of the

Python script that runs the application is shown in Fig. 4.8. We note that cl is an

instantiation of the ScripterCommandLine that is used for injecting scripts. The

TinyScript code that is injected to form the group of virtual sensor data providers

is shown in Fig. 4.9. Then, the timer is set using the code shown in Fig. 4.10. The

virtual sensor data providers broadcast their readings when the timer expires (the

code is given in Fig. 4.11). When the virtual sensor coordinator receives these data

broadcasts, it aggregates them and sends the result back to the client device (the

code is given in Fig. 4.12).

In this example, we sample the temperature sensor; this can be easily ex-

trapolated to a crane safe load application, where Node 0 is the user device, Node

1 is the virtual sensor coordinator, Node 2 sends the actual load, Node 3 sends the

boom length, and Node 4 sends the maximum load moment. Or, for a homogeneous

aggregation application, Nodes 2-4 could all send the cure rate of a concrete slab.

Virtual Machine Complexity

We have quantified the overhead introduced by the virtual machine in terms of the

memory footprint. The MICA2 platform has 128KB of program memory (ROM) and

4KB of primary memory (RAM). The Melete virtual machine built to support virtual

79

File name: VSscript.py
Step 1: Create group 2 (which includes VS data sources)
cl.inject(‘‘group datasource.tsc’’, ‘‘once’’, 0)
Step 2: Make group 2 (VS data providers) sense and broadcast readings
bcast(integer, buffer): bitmap for target groups and a data buffer.
Broadcasts data buffer for target group to local radio neighbors.
Receiving broadcast triggers broadcast context of target group to run.
cl.inject(‘‘set timer.tsc’’, ‘‘once’’, 2)
cl.inject(‘‘broadcast reading.tsc’’, ‘‘once’’, 2)
Step 3: Make VS coordinator (Node 1) aggregate data heard from broadcast
of data providers
A program injected in the broadcast context runs when a node receives a
broadcast (sent by another node with the bcast() function).
cl.inject(‘‘broadcast heard.tsc’’, ‘‘broadcast’’, 0)

Figure 4.8: VSscript.py Python script

sensor functionality occupies 42,798 bytes in ROM and 7,417 bytes in RAM (for

MICA2 with 5 contexts: Reboot, Once, Broadcast, and two Timer contexts), so we

had to restrict our evaluations to simulation in TOSSIM. However, when the Melete

virtual machine is built to run on TelosB motes, the first application with these 5

contexts occupies approximately 3.1 KB memory, and each additional application

occupies approximately 1.46 KB, making 5 concurrent applications possible [63].

Since, a MICA2 only has 4KB of RAM, if an application exceeds approxi-

mately 3,500 bytes of RAM (stack space will be used as well and stack space varies),

it will run out of memory and the mote will simply not run. If the application uses

a lot of stack space, the program may not be able to run with anything over 3,000

bytes of RAM.

In comparison to computing virtual sensor measurements locally, remotely

deploying the virtual sensor does increase the memory footprint due to the need to

have a virtual machine running on each node that can accept virtual sensor tasks in

code capsules. The virtual machine allows remote nodes in the network to perform

complicated operations without having to send as much data back to a client node.

80

!! File name: group datasource.tsc
!! If data source (i.e., Node 2, 3, or 4), join group 2.
buffer data;
private nodeid;

data[] = temp(); !! set data equal to temperature reading
nodeid = id();
if (nodeid > 1 and nodeid < 5) then

joingrp(2);
led(2); !! turn on green LED

else
leavegrp(2);

end if

bclear(data);

Figure 4.9: group datasource.tsc script

!! File name: set timer.tsc
!! Set timer
buffer data;
private nodeid;
settimer0(5);

Figure 4.10: set timer.tsc script

The Melete virtual machine deploys code using 128-byte Maté code cap-

sules. Complex scripts defining virtual sensor tasks require more than one 128-byte

code capsule to distribute the virtual sensor tasking information; they are sent as

sequential chunks of code capsules.

4.4 Qualitative Comparison of the Two Approaches

In the previous two sections, we explored two different mechanisms for enabling

virtual sensors to be remotely deployed on resource-constrained sensor nodes. The

first was a parameterized middleware deployment that ran on the sensor nodes and

81

!! File name: broadcast reading.tsc

!! Can broadcast a buffer over the radio with the bcast function.
!! If the VM hears a broadcast packet, it triggers the Broadcast handler,
!! which can retrieve the buffer with the bcastbuf function.
!! Virtual sensor data providers (Nodes 2, 3, and 4) broadcast their readings

private reading;
private nodeid;
buffer buf;

nodeid = id();
if (nodeid > 1 and nodeid < 5) then

reading = int(temp()); ! set reading equal to int version of temperature
bclear(buf);
buf[0] = id();
buf[1] = reading;
! Triggers the broadcast context of the target group to run
! bitmask 1 = Group 0; bitmask 4 = Group 2
bcast(1, buf); ! 1 means we broadcast to Group 0

end if

Figure 4.11: broadcast reading.tsc script

accepted virtual sensor definition information within TinyOS messages. The second

approach used a mobile code deployment in which code capsules defining the virtual

sensor tasks were sent to sensors and these capsules could be immediately loaded

into the run-time environment at the sensor node.

If we compare the two approaches in terms of the message size, the param-

eterized middleware approach requires 29-byte TinyOS messages, while the mobile

code approach requires 128-byte code capsules (Maté’s default code capsule size,

CAPSULE SIZE, is 128).

In terms of simplifying programming for the application developer, the pa-

rameterized middleware approach has all the necessary code written in nesC; this

code is optimized for the specific application by extracting parameters from the

82

!! File name: broadcast heard.tsc
!! VM can broadcast a buffer over the radio with the bcast function.
!! If VM hears a broadcast packet, it triggers the Broadcast handler,
!! which can retrieve the buffer with the bcastbuf function.
!! Node 1 received broadcast from virtual sensor data providers
!! Single-hop communication primitive used to locally aggregate
!! sensor readings
private val;
buffer received;
private nodeid;
buffer buf;
nodeid = id();
if (nodeid = 1) then

received = bcastbuf();
val = int(received[1]);
led(4); ! turn on the yellow LED
bclear(buf);
buf[0] = 5;
send(buf);

end if

Figure 4.12: broadcast heard.tsc script

TinyOS message. In the mobile code approach, the virtual machine runs injected

TinyScript scripts.

As for memory requirements, the parameterized middleware occupies 17,234

bytes in ROM and 1,303 bytes in RAM (for the crane danger circle application) on a

MICA2 mote. The virtual machine built for a MICA2 in the mobile code approach

occupies 42,798 bytes in ROM and 7,417 bytes in RAM (built with 5 contexts to

support the crane safe load application).

In terms of code storage, the parameterized middleware approach requires

all the code to be stored on each node; this code is optimized and used as required

by the application. In the mobile code approach, a basic virtual machine is stored

on all nodes, and new code is uploaded as needed. The first approach stores some

unnecessary application code that may not be required for a specific application,

83

but has to reside there to support multiple applications.

In the mobile code approach, since nodes that run the Melete VM can only

broadcast to their immediate neighbors, the virtual sensor providers have to be

within one hop of the VS coordinator. The parameterized middleware approach

does not have such a requirement.

4.5 Chapter Summary

In this chapter, we investigated the remote deployment of virtual sensors through

two different mechanisms: middleware parameterization and mobile code. We have

shown through our evaluation that it is feasible to support remote deployment

through either one of these two approaches that accept tailored virtual sensor defi-

nitions to create new aggregation functionality in a sensor network on-demand. In

combination with a neighborhood definition scheme such as [50], the virtual sen-

sor provides a powerful abstraction that not only has the potential to reduce the

complexity of programming pervasive computing networks but can also increase the

efficiency with which such networks can respond to applications’ demands. Further-

more, the virtual sensor abstraction is not application-specific. In the next chapter,

we combine the scenes model from Chapter 2 and virtual sensors model from Chap-

ter 3 in a middleware implementation.

84

Chapter 5

The DAIS Middleware

As the ultimate goal of this dissertation, we create a middleware, which integrates

abstractions such as the scene and the virtual sensor to provide a complete system

that simplifies the development of ubiquitous computing applications.

Systems designed to address the specific challenges posed by sensor networks

and/or ubiquitous computing have recently been a topic of research discussions.

Existing work has highlighted several design tenets that a middleware for wireless

sensor networks must adhere to [62], and our middleware platform attempts to

follow these guidelines. Other projects have also undertaken similar efforts, and we

highlight a few of these systems.

5.1 Middleware Approaches

It is largely recognized that constructing applications for ubiquitous computing en-

vironments is a significant undertaking. Several approaches have made strides in

simplifying the kind of programming necessary for immersive networks. This section

provides a thorough comparative investigation into these existing techniques, from

middleware solutions to toolkits and programming languages.

85

One strong example of a middleware for ubiquitous computing, Gaia [53], in-

troduces active spaces as a programmable environment by encapsulating the hetero-

geneity of devices that are located in them. It abstracts user data and applications

into a user virtual space that has a dynamic mapping to the resources in the current

environment. Users always have their virtual space available, even as they move

across different active spaces. Furthermore, they can simultaneously interact with

multiple devices, dynamically reconfigure applications, pause and resume applica-

tions, and use context attributes to program application behaviors [53]. However,

this model assumes a centralized system structure which is in direct opposition to the

goal of deploying large numbers of applications over a widely dispersed immersive

sensor as described in the previous section.

In contrast, projects targeted directly for sensor networks more directly ad-

dress the desire to reduce computational and power requirements and to operate

in a more distributed fashion. Two demonstrative examples that have explored

representing the sensor network as a database are TinyDB [44] and Cougar [61].

Ubiquitous computing applications often require the use of many nearby sensors,

ultimately aggregating these disparate pieces of data into a cohesive piece of infor-

mation for the application or user. Therefore, despite the fact that moving data

across the network in approaches such as TinyDB and Cougar still requires cen-

tralized algorithms, they have much to offer in support of ubiquitous computing

applications in immersive sensor networks.

Other approaches have focused more specifically on the programmability of

ubiquitous computing environments. VM? [36] is a virtual machine approach that

can scale software components depending on the constraints of each device. This

allows application developers to better manipulate unpredictable environments with

a wide variety of devices but has limitations in that the virtual machine must know

about the applications in advance to be able to optimize resource usage. Tiny-

86

GALS [7] allows programmers to represent applications in terms of relatively high-

level components which are subsequently synthesized into the low-level, lightweight,

efficient programs that are deployed on the nodes. This eases the programming task

but does not allow arbitrary applications to access the immersive sensor network

and immediately start to use it. MiLAN [21] aims to enable applications to control

the network’s resource usage and allocation optimally to tune the performance of

an entire sensor network through the definition of application policies that are en-

acted on the network. MiLAN tries to maximize network lifetime as well as meet

the application’s quality-of-service requirements. While such approaches are highly

beneficial when the application is known and the networks are relatively application-

specific, they do not map well to immersive sensor networks where the nodes must

be able to service a variety of unpredictable applications.

More generalized approaches attempt to provide integrated suites of tools

that enable simplified programming of sensor networks. For example, EmStar [17]

provides a suite of libraries, development tools, and application services that focus

on coordinating microservers (e.g., sensing devices with computational power equiv-

alent to a PDA). However, EmStar functions only on Linux-based platforms such

as the Stargate. The Sensor Network Application Construction Kit (SNACK) [18]

consists of a set of libraries and a compiler that makes it possible to write very sim-

ple application descriptions that specify sophisticated behavior using components

written in nesC (the TinyOS programming language that runs on sensor motes).

While EmStar and SNACK are programming environments for individual nodes,

Agilla [14] is an agent-based middleware that allows applications to inject agents

into the sensor network that coordinate through local tuple spaces and migrate in-

telligently to carry out the applications’ tasks. Multiple autonomous applications

can run simultaneously over the sensor network. However, Agilla shares tuple spaces

transiently only on the same node and different nodes have different tuple spaces.

87

One approach that does map well to the operational picture shown in Fig-

ure 1.1(b) is TinyLime [13], a tuple space based middleware that enables mobile

computing devices to interact with sensor data in a manner decoupled in both space

and time. Applications create tuple templates to subscribe for data that is of in-

terest to them. The tuple spaces of a pair of devices are temporarily federated

whenever the devices are within a single hop of one another. TinyLime allows client

devices to connect to sensors available in the immediate environment but does not

enable multihop communication or aggregation. Another adaptation of the Lime

model, TeenyLIME [10], uses the abstraction of a shared tuple space that contains

the data of the local device and its one-hop neighbors. Since TinyLIME targets

sensor networks where users with mobile devices request data from sensors imme-

diately around them, the applications are deployed on the client devices and the

sensing devices are only data producers without any tuple spaces. On the other

hand, TeenyLIME applications are deployed directly on the sensing devices which

have their own tuple spaces and play an active role in distributed coordination.

State-centric programming [40] mediates between an application developer’s

model of physical phenomena and the distributed execution of sensor network appli-

cations. It uses the notion of collaboration of groups to abstract common patterns in

application-specific communication and resource allocation. Furthermore, it takes a

signal processing and control theory approach, where application developers write

applications as algorithms for state update and retrieval, with input supplied by

dynamically created collaboration groups. Consequently, these programs are more

invariant to system configuration changes and the resulting software is more mod-

ular and portable across multiple platforms. However, state-centric programming

has been implemented and evaluated only on the Pieces simulator (built in Java and

Matlab), which can not simulate certain important features of wireless communica-

tion such as message collision.

88

The Abstract Task Graph (ATaG) [3] methodology provides system-level

support for architecture-independent sensing application development. ATaG uses

a combination of imperative and declarative programming styles and has a data-

driven program flow. For example, in an environment monitoring application, it

allows the periodic computation and logging of the maximum pressure in the system,

and the periodic monitoring of temperature. However, it cannot combine these two

different types of data to arrive at an abstracted measurement.

EnviroTrack [1] is an object-based and data-centric middleware designed

specifically for embedded tracking applications. EnviroTrack associates a context-

label with each entity. Upon initial detection of the entity, the context-label is

dynamically created and logically follows the entity’s movement through the sensor

field. Application developers directly interact with the context label instead of a

continuously changing collection of nodes that detect the entity, through the help

of a directory service based on a geographic hash table. EnviroTrack relies on em-

bedded sensors with precise knowledge of their locations to locate and track mobile

objects.

Finally, Kairos [19] is a macroprogramming model that allows the specifica-

tion of the network’s global behavior through a centralized model. As such, it is not

adaptive or general-purpose, requiring deployment-time knowledge of the intended

application(s). Regiment [48] also employs a macroprogramming approach to pro-

gram sensor networks. A user writes a single program which is then distributed and

run across the sensor network. Kairos provides abstractions to facilitate this task,

while Regiment focuses on the suitability of functional programming to the sensor

network domain.

In summary, while these systems for ubiquitous computing have addressed

components of the problems associated with the operating environment described in

Chapter 1, other components of the problem definition are not completely satisfied

89

by these existing systems. In the next section, we introduce a new paradigm for im-

mersive sensor networks targeted directly towards the application of such networks

to the challenges posed by ubiquitous computing applications and their operating

environments.

5.2 The DAIS Middleware

In this section, we discuss the high-level middleware model [27, 32] that encapsulates

the previously outlined research issues and provides a cohesive environment for ubiq-

uitous computing application development. Figure 5.1 depicts the DAIS 1 (Declar-

ative Applications in Immersive Sensor networks) middleware model. This archi-

tecture consists of a handheld component (running on, for example, a laptop or a

PDA) and the immersive sensor environment (defined by a community of sensors).

The figure shows the explicit hierarchical model of the middleware, which enables

more powerful devices (i.e., client devices) to support more of the system’s func-

tionality than resource constrained devices (i.e., physical sensors). As Figure 5.1

shows, a client application runs with the support of both the scene abstraction and

the virtual sensors abstraction, in addition to several other components.

The types of queries enabled on a scene can be classified into one-time queries

(which return a single result from each scene member) and persistent queries (which

return periodic results from scene members). To support these types, we provide

two different methods for posing queries to the network. We also include versions

of these two methods that request processing of the retrieved data before the result

is handed back to the application. Furthermore, a virtual sensor could be created

in a scene for abstracting the necessary data.

The remainder of this section describes communication protocol encapsula-

tion envisioned for the middleware, how queries come from the application, and what
1DAIS (dā′̆ıs): from the middle English word meaning “raised platform”

90

Request Processor

Handheld Component

User-Interface Device

Sensor Connectivity

Client Application

Behavioral
Programming

Virtual Sensor
Specifications

Local Data
Proxies

Translation Machinery

D
A

IS
 a

bs
tr

ac
tio

n
Pr

ot
oc

ol
s

Scene
Building

Comm.
Protocol (2)

Radio

Sensor

Comm.
Protocol (1)

Comm.
Protocol (2)

Radio Sensor

In-Network Aggregation
Sensor

Comm.
Protocol (1)

Comm.
Protocol (2)

Radio Sensor

In-Network Aggregation
Sensor

Comm.
Protocol (1)

Comm.
Protocol (2)

Radio Sensor

In-Network Aggregation
Sensor

Scene
Building

Comm.
Protocol (2)

Radio Sensor

Query Processor/Aggregation

Communication

Figure 5.1: The high-level middleware architecture. The left-hand side shows the
components comprising the model on the component carried by the user (e.g., PDA
or laptop), and the right-hand side shows the middleware components on the sensors.

happens as they travel through the middleware in Figure 5.1. Figure 5.2 depicts a

simplified object diagram of the DAIS middleware layers. The names of the layers

on the right of the figure correspond to the layers in Figure 5.1.

5.2.1 Communication Protocol Encapsulation

As shown in Figure 5.2, our middleware makes use of the strategy pattern [15], a

software design pattern in which algorithms (such as strategies for query dissem-

ination) can be chosen at runtime depending on system conditions. The strategy

pattern provides a means to define a family of algorithms, encapsulate each one as

an object, and make them interchangeable. Such an approach allows the algorithms

to vary independently from clients that use them.

91

SceneView

QueryQueryQuery
QueryResultQueryResultQueryResult

Scene ResultListenerResultListenerResultListener

Application Programming Interface

Strategy Pattern Interface

SceneStrategy

BasicScene

SceneStrategy

TinyDBScene

javax.comm package

sensor network

Behavioral Programming
Abstractions

Local Data Proxies

Translation Machinery

DAIS Abstraction
Protocols

Figure 5.2: Simplified object diagram for DAIS

In DAIS, the clients that employ the strategies are the queries, and the

different strategies are the SceneStrategy algorithms. These algorithms determine

how a Query is disseminated to the Scene and how the QueryResult is returned. If a

particular dissemination algorithm other than the default is required for a specific

application, an appropriate SceneStrategy algorithm is instantiated.

Two principle directives of object-oriented design are used in the strategy

pattern: encapsulate the concept that varies, and program to an interface, not to an

implementation. Using the strategy pattern, we decouple the Query from the code

that runs it so we can vary the query dissemination algorithm without modifying

the Query class. The loose coupling that the strategy pattern enables between the

components makes the system easier to maintain, extend, and reuse.

The BasicScene refers to an implementation of a naive version of the scene ab-

straction from Chapter 2, in which all data aggregation is performed locally. Other

communication approaches can be swapped in for the BasicScene (for example one

built around TinyDB [44] or directed diffusion [25], although the implementations of

92

these approaches on the sensors may have to be modified slightly to accommodate

scene construction). By defining the SceneStrategy interface, we enable developers

who are experts in existing communication approaches to create simple plugins that

use different query dissemination and/or aggregation protocols. Different commu-

nication paradigms can be used in different environments or to support different

application domains depending on the resource constraints or domain-specific capa-

bilities of the devices in a particular domain.

Each SceneStrategy interacts with the javax.comm package to provide the

DAIS abstraction protocols that allow the portion of the middleware implemented

in Java (described above) to interact with the sensor hardware. Each SceneStrategy

requires not only a high-level portion implemented on the handheld device, but also

a low-level portion that runs on the sensors. In the next section, we detail the DAIS

middleware, through an example (that uses the BasicScene strategy).

5.2.2 Processing Dynamic Queries: A Step-By-Step Example

To describe the model of DAIS, we follow a query from the application developer’s

hands all the way into the network to the designated sensor and back. To present

the steps involved in the process, we use a single, specific application example taken

from the intelligent construction site domain. In the example we have selected, the

application’s user would like to receive a reading of any crane load within 100m

that exceeds 15 tons. The user would like this information to be updated every 10

seconds to ensure he has the most current information.

Step 1: Declare a Scene. This first step is performed by the application devel-

oper through the programming interface. Nothing happens involving network

communication until the application actually uses the scene. This is beneficial

in terms of reducing communication overhead. For our application example,

the developer uses the following code to invoke the constructor of a Scene ob-

93

ject that defines a scene that includes every sensor (not just those measuring

crane weight) within 100m of the declaring device:

Scene s = new Scene({ new Constraint(Scene.SCENE DISTANCE,

Scene.SCENE DFORMULA,

new IntegerThreshold(100)) });

When the application subsequently needs to query the constructed Scene, it

calls the getSceneView() method which returns a handle to a SceneView. The

application can then use this SceneView to send a Query over the Scene.

Step 2: Issue a query. This step is performed by the application developer using

the SceneView instance created and accessed in the previous step. In our

example application, the developer must first create the query:

Query q = new Query(new Constraint(‘‘Equipment’’,

Query.EQUALS OPERATOR,

‘‘Crane’’),

new Constraint(‘‘Weight’’,

Query.GT OPERATOR,

15)});

In this case, the Query is defined by two Constraints. The first requires the sen-

sor used to belong to a piece of equipment that has the label “Crane.” This

prevents the query from discovering weight sensors on, for example, dump

trucks. The second constraint limits the sensors that respond to the query to

only those that measure a load with a weight of more than 15 tons. As dis-

cussed in the subsequent steps below, every sensor receiving this query (i.e., all

sensors within 100m) that have weight sensors periodically evaluate the query,

but only respond if and when the load sensed exceeds 15 tons. After creating

the Query above and a ResultListener, r to receive the results (omitted for

brevity), the application developer dispatches it using the SceneView:

94

SceneView sv = s.getSceneView();

int receipt = sv.registerQuery(q, r, 10);

where 10 refers to the period with which the application wishes to sense crane

load weights. Upon receiving any query request, the SceneView object adjusts

its state in several ways. First, for every query, a table within the SceneView

is updated with a mapping from a unique query id generated for the query to

the ResultListener handle provided with the query. In addition, for persistent

queries, this unique id is returned as a receipt of registration that can be used

in subsequent interactions to deregister the query.

Step 3: Local Data Proxy is Created. From this point on, control passes from

the application developer to the middleware which is now responsible for en-

suring that the application’s ResultListener is called with the appropriate

data at the appropriate times. The first step requires DAIS to create a local

proxy for this query to handle return calls for this query. The local data proxy

is especially important in facilitating the translation between the low-level lan-

guage spoken by the sensors in the network and the high-level language the

application uses.

Step 4: Construct and Distribute Protocol Query. The local data proxy

within the DAIS middleware transforms the application’s request into a pro-

tocol data unit for the scene implementation in use. As shown in Figure 5.2,

several different protocols can provide the communication functionality as long

as they adhere to the specified strategy pattern interface. The scene im-

plementations handle both persistent and one-time queries. In our current

implementation of a scene communication protocol [28], the scene protocol

message carries the information about scene membership constraints and the

data query at the same time. This reduces the communication overhead by

constructing the scene on-demand. The details of the communication protocol

95

are omitted here; it suffices to say that, by its definition, the protocol ensures

that the data query is delivered to the set of sensor nodes that satisfy the

scene’s constraints. In our example application, this means that every sensor

within 100m will receive the data query constructed above.

Step 5: Scene Query Processed by Remote Sensor. We use TinyOS to im-

plement functionality on the sensors; when the communication protocol re-

ceives and processes a scene message, if it determines that the node is within

the scene, it passes the received message up to the application layer. In DAIS,

the application layer is defined by the QueryProcessor, again, implemented in

TinyOS. This is essentially a slimmed down version of our middleware that

is capable of running on the resource constrained device. An abstract rep-

resentation of the TinyOS implementation of the QueryProcessor is shown in

Figure 5.3. In TinyOS jargon, the picture shows components as rounded rect-

angles and interfaces as arrows connecting components. A component provides

an interface if the corresponding arrow points toward it and uses an interface

if the arrow points away from it. If a component provides an interface, it must

implement all of the commands in the interface, and if the component uses an

interface, it can call any commands in the interface and must handle all events

generated by the interface.

In our implementation, the QueryProcessor component provides the function-

ality shown at the top layer of the sensor portion of the architecture in Fig-

ure 5.1. The query arrives in the QueryProcessor through the receive event

of the Receive interface. If the query is a one-time query (as indicated by a

field in the TinyOS message), then the QueryProcessor simply connects to the

on-board sensor that can provide the requested data type (depicted as Sensor

in the figure) through the ADC interface. If the data request is for a sensor

type that is not supported on this device (i.e., the sensor table stored in the

96

QueryProcessorM

QueuedSend

GenericCommPromiscuous

SendMsg

StdControl

CommControl

Receive

StdControl

QueryProcessor

SensorADC

StdControl

QueryTimer

Timer

Figure 5.3: Implementation of the QueryProcessor functionality on sensors

QueryProcessor has no mapping to a sensor that can provide the specified data

type), then the message is ignored. The node is still included in the scene be-

cause it may be a necessary routing node connecting the requester to another

node that does have the required sensor.

If the query is persistent (as in our crane load example), then in addition to

immediately returning the requested value, the QueryProcessorM module also

initializes a QueryTimer using the request frequency specified in the data por-

tion of the received message. When the timer fires, QueryProcessorM retrieves

a value from the sensor and sends it back to the initial requester using the

sendMsg interface of the QueuedSend module.

When a node is no longer in a scene, the scene communication implementation

creates a null message that it sends to the QueryProcessor through the Receive

interface. The QueryProcessor takes this message as a sign to cease streaming

data back to the requester, and stops the QueryTimer.

97

Step 6: Query Processor Replies. If the query processor possessed the correct

sensor and the other components of the query are also satisfied (e.g., the

constraints on the data value), the query processor replies (and continues to

reply periodically to a persistent query. In our example application, a sensor

node’s QueryProcessor will reply every 10 seconds if the sensor is attached to

a crane, it has a weight sensor, and the value from the sensor is greater than

15 tons. If the weight is not originally greater than 15 tons, the sensor does

not reply unless the weight becomes greater than 15 tons. This reply is sent

through the SendMsg interface shown in Figure 5.3 and uses basic multihop

routing to return to the original requester.

Step 7: Result Received by Client Device. After propagating through the

underlying communication substrate, query replies will arrive at the client

device’s sensor network interface. At the client device, the result is demulti-

plexed by the Result Processor (shown in Figure 5.1) and handed off to the

appropriate local proxy. Again, the local proxy is automatically generated

and managed by the middleware. It translates the low-level query reply to

a high-level Result and invokes the application’s registered ResultListener’s

resultReceived method. It is important to note that, as shown in Figure 5.2,

multiple queries may be active over a single scene at any given time. For each

scene, the SceneView controls all of these queries and connects them to the

underlying implementation via the strategy pattern interface. At this point,

control transfers back to the application and its ResultListener which han-

dles the query’s result (or queries’ results if multiple matches existed). For

persistent queries, as more results arrive, the same process occurs until the

application deregisters the query.

98

5.3 Chapter Summary

In this chapter, we first gave an overview existing middleware systems. We then

realized the conceptual model from Chapter 2 and Chapter 3 in a middleware imple-

mentation. We also discussed the details of the implementation of the middleware,

and gave an example of its use by describing how the middleware handles the ap-

plication in steps. DAIS is a tiered middleware that allows developers to create

lightweight applications that run on client devices (e.g., laptops or PDAs) and in-

teract directly with an immersive sensor environment. Through the virtual sensor

and scene abstractions, application developers can declaratively specify the compo-

nents over which their interactions occur. These abstractions are necessary to sim-

plifying the application development task for ubiquitous computing environments,

which are beginning to demand rapid development and deployment of applications

in widely varying domains. By allowing different portions of the middleware to be

deployed on devices with differing capabilities, DAIS lends itself naturally to the

mixed ubiquitous computing environment. The abstractions present in the DAIS

middleware provide intuitive and easy-to-use wrappers for complex underlying in-

teractive behaviors. In summary, DAIS presents a unique view of programming

pervasive computing environments that in the future will include large numbers of

heterogeneous wireless sensors. By creating high-level programming abstractions

that encapsulate the locality of pervasive computing interactions, DAIS is a first

step in enabling novice programmers to create sophisticated pervasive computing

applications.

99

Chapter 6

Conclusion

This dissertation reports on an effort to simplify application development for pro-

grammers of sensor networks. The protocols currently available to support commu-

nication and coordination on lightweight, resource-constrained sensors are tailored

to application situations, in which sensor networks are commonly accessed through

a central collection point. The need to support emerging ubiquitous computing ap-

plications calls for a reexploration of protocol and coordination issues targeted for

immersive computing environments. In this dissertation, we created and evaluated

basic protocols, formalized a programming model for the specification of scenes by

novice developers, formally defined virtual sensors and their programming model,

as well as remote deployment of virtual sensors. We created a coherent middleware

for ubiquitous computing that encapsulates both the virtual sensor and the scene

and provides an integrated high-level programming interface.

We presented the scene data communication abstraction, a new communica-

tion paradigm tailored to immersive sensor networks that support pervasive comput-

ing. Specifically, the scene abstraction is the first to support dynamic client devices

roving among sensors. The scene abstraction and the protocol that implements it

utilize a high degree of context-awareness and adaptation. This allows an applica-

100

tion’s scene to consistently reflect its instantaneous operating environment. Using

the scene abstraction and protocol, an application has a direct view of the infor-

mation sources available in the immediate environment. In addition, our approach

combines this local perspective with a communication protocol for disseminating

client requests and returning replies from the scene participants. We presented the

abstraction, its implementation, and an initial feasibility study of its performance.

Future work will include a more complete evaluation to include measurements of the

approach’s expressiveness through a larger-scale real-world deployment on a mixture

of embedded and client devices.

We also defined a new virtual sensor model designed to abstract data from

heterogeneous physical sensors by applying user-defined functions. The separation of

the specification of the sensing task from the sensing behavior allows a programmer

to describe the behavior of a virtual sensor, without having to specify the underly-

ing details of how it should be constructed. We realized the model in a middleware

implementation for the creation of virtual sensors enabling adaptive and efficient

in-network processing that dynamically responds to an application’s needs. This

implementation was demonstrated to support applications in two different domains.

Virtual sensors offer a way to tailor a generic sensing environment to specific applica-

tions. This will be especially necessary as sensor networks become more widespread

and general-purpose.

Several directions can be envisioned that build directly on the work presented

in this dissertation. With respect to scenes, an interesting point of discussion is that

of the degree of adaptivity the scene abstraction provides. We motivated throughout

the dissertation that awareness of and adaptation to the surrounding environment

are crucial to enabling pervasive computing applications. The scene abstraction as

described in this dissertation already incorporates several points of adaptation, most

specifically allowing the participants in a scene to change over time in response to

101

client mobility or to changes in the network or physical environment. We discussed

such adaptation with respect to setting the scene’s beacon frequency to be sensi-

tive to the client mobility or a sensor node’s local perception of mobility. Future

work could explore additional adaptation points that could make the abstraction

even more responsive to pervasive computing applications. For instance, one could

imagine a scene’s threshold expanding or contracting based on the environmental

values sensed or the density of available readings.

With respect to remotely deploying virtual sensors, the optimality of the two

different approaches in different application situations could be further explored.

Another area for future work is to design the ability for a remotely deployed virtual

sensor to intelligently follow its creator’s device as it moves through the sensor

network. On a construction site, a supervisor may deploy a virtual sensor to monitor

the movement of the nearest crane. As the supervisor moves through the site, this

will require the remotely deployed virtual sensor to remain aware of the user or

application’s relative location and to adjust its location accordingly. Furthermore,

the input data types could be extended to carry more semantics than simply the

nature of the physical measure provided by a sensor. They could carry the physical

data type (e.g., “temperature”) and location context information (e.g., “on top of”,

“under”, etc.) to provide some sense of the relationship between these physical

temperature readings and the abstract measure we are trying to evaluate.

Other future work could focus on automatically generating virtual sensors

through the addition of simple functions in the ontology. A question that arises

in the context of a virtual sensor and physical sensor that can provide the same

data type is “If the user is outdoors and both triangulation and GPS are available,

which one should be used?” To make this decision on behalf of the user, some cost

metrics can be added to the ontology. Future work could also explore supporting

more complicated interactions such as what to do when high frequency queries are

102

combined with high frequency update rates. Moreover, various physical sensors may

have different update frequencies (and costs associated with obtaining and relaying

these updates), so the decision should depend on the total expected costs (calculated

most likely using some statistical properties).

103

Bibliography

[1] T. Abdelzaher, B. Blum, Q. Cao, Y. Chen, D. Evans, J. George, S. George,

L. Gu, T. He, S. Krishnamurthy, L. Luo, S. Son, J. Stankovic, R. Stoleru, and

A. Wood. EnviroTrack: Towards an environmental computing paradigm for

distributed sensor networks. In Proc. of ICDCS, pages 582–589, 2004.

[2] K. Aberer, M. Hauswirth, and A. Salehi. Middleware support for the “internet

of things”. In GI/ITG KuVS Fachgespräch “Drahtlose Sensornetze” (Expert

Talk on Wireless Sensor Networks), Universität Stuttgart, 2004.

[3] A. Bakshi, V. K. Prasanna, J. Reich, and D. Larner. The abstract task graph:

A methodology for architecture-independent programming of networked sensor

systems. In Proc. of the Wkshp. on End-to-end Sense-and-respond Sys., pages

19–24, 2005.

[4] B. Blum, P. Nagaraddi, A. Wood, T. Abdelzaher, S. Son, and J. Stankovic.

An entity maintenance and connection service for sensor networks. In Proc. of

MobiSys, pages 201–214, 2003.

[5] A. Boulis, C.-C. Han, and M. Srivastava. Design and implementation of a

framework for efficient and programmable sensor networks. In Proceedings of the

2nd International Conference on Mobile Systems, Applications, and Services,

pages 187–200, 2003.

104

[6] M. Brown, S. Gilbert, N. Lynch, C. Newport, T. Nolte, and M. Spindel. The

virtual node layer: a programming abstraction for wireless sensor networks.

SIGBED Rev. Special issue on the workshop on wireless sensor network archi-

tecture, 4(3):7–12, April 2007.

[7] E. Cheong, J. Liebman, J. Liu, and F. Zhao. TinyGALS: A programming model

for event-driven embedded systems. In Proc. of the 2003 ACM Symposium on

Applied Computing, pages 698–704, 2003.

[8] P. Ciciriello, L. Mottola, and G. P. Picco. Building virtual sensors and actuators

over logical neighborhoods. In Proc. of the 1st ACM International Workshop

on Middleware for Sensor Networks, 2006.

[9] P. Corsini, P. Masci, and A. Vecchio. VirtuS: A configurable layer for post-

deployment adaptation of sensor networks. In Proc. of the Int’l Conf. on Wire-

less and Mobile Comm., pages 8–13, 2006.

[10] P. Costa, L. Mottola, A. Murphy, and G.P. Picco. TeenyLIME: Transiently

shared tuple space middleware for wireless sensor networks. In Proc. of the In-

ternational Workshop on Middleware for Sensor Networks, pages 43–48, 2006.

[11] Crossbow Technology: Wireless Sensor Networks: Cricket. http://www.xbow.

com/Products/productdetails.aspx?sid=176, 2008.

[12] Crossbow Technologies, Inc. http://www.xbow.com, 2008.

[13] C. Curino, M. Giani, M. Giorgetta, A. Giusti, A. Murphy, and G.P. Picco.

Tinylime: Bridging mobile and sensor networks through middleware. In Proc.

of the 3rd Int’l. Conf. on Pervasive Computing and Communications, pages

61–72, 2005.

105

http://www.xbow.com/Products/productdetails.aspx?sid=176
http://www.xbow.com/Products/productdetails.aspx?sid=176
http://www.xbow.com

[14] C.-L. Fok, G.-C. Roman, and C. Lu. Rapid development and flexible deploy-

ment of adaptive wireless sensor network applications. In Proc. of the 25th Int’l.

Conf. on Distributed Computing Systems, pages 653–662, 2005.

[15] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison-

Wesley, 1995.

[16] D. Gay, P. Levis, R. vonBehren, M. Welsh, E. Brewer, and D. Culler. The nesC

language: A holistic approach to networked embedded systems. In Proc. of the

ACM SIGPLAN Conf. on Programming Language Design and Implementation,

pages 1–11, 2003.

[17] L. Girod, J. Elson, A. Cerpa, T. Stathopoulous, N. Ramanathan, and D. Estrin.

EmStar: A software environment for developing and deploying wireless sensor

networks. In Proc. of the 2004 USENIX Technical Conference, pages 283–296,

2004.

[18] B. Greenstein, E. Kohler, and D. Estrin. A sensor network application con-

struction kit (SNACK). In Proc. of the 2nd Int’l. Conf. on Embedded Networked

Sensor Systems, pages 69–80, 2004.

[19] R. Gummadi, O. Gnawali, and R. Govindan. Macro-programming wireless

sensor networks using kairos. In Proc. of the Int’l. Conf. on Dist. Comp. in

Sensor Sys., pages 126–140, 2005.

[20] J. Hammer, C. Julien, S. Kabadayi, W. O’Brien, and J. Trujillo. Dynamic

decision support in direct-access sensor networks: A demonstration. In Proc.

of the 3rd Int’l Conf. on Mobile Ad Hoc and Sensor Systems, pages 578–581,

2006.

[21] W. Heinzelman, A. Muprhy, H. Carvallo, and M. Perillo. Middleware to support

106

sensor network applications. IEEE Network Magazine Special Issue, 18(1):6–14,

2004.

[22] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister. System

architecture directions for networked sensors. In Proc. of the 9th Int’l. Conf.

on Architectural Support for Programming Languages and Operating Systems,

pages 93–104, 2000.

[23] Q. Huang, C. Lu, and G.-C. Roman. Spatiotemporal multicast in sensor net-

works. In Proc. of the 1st Int’l. Conf. on Embedded Networked Sensor Systems,

pages 205–217, 2003.

[24] Jonathan W. Hui and David Culler. The dynamic behavior of a data dissem-

ination protocol for network programming at scale. In Proc. of the 2nd Int’l.

Conf. on Embedded Networked Sensor Systems, pages 81–94, 2004.

[25] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heideman, and F. Silva. Di-

rected diffusion for wireless sensor networking. IEEE/ACM Transactions on

Networking, 11(1):2–16, February 2003.

[26] D. Johnson, D. Maltz, and J. Broch. DSR: The dynamic source routing protocol

for multi-hop wireless ad hoc networks. Ad Hoc Networking, pages 139–172,

2001.

[27] C. Julien and S. Kabadayi. Enabling programmable ubiquitous computing

environments: a middleware perspective. In S. K. Mostéfaoui, Z. Maamar, and

G. Giaglis, editors, Advances in Ubiquitous Computing: Future Paradigms and

Directions, chapter 5, pages 117–149. IGI Publishing, Hershey, PA, 2008.

[28] S. Kabadayi and C. Julien. A local data abstraction and communication

paradigm for pervasive computing. In Proc. of the 5th Annual IEEE Interna-

107

tional Conference on Pervasive Computing and Communications, pages 57–68,

2007.

[29] S. Kabadayi and C. Julien. Remotely deployed virtual sensors. In Technical

Report TR-UTEDGE-2007-010, 2007.

[30] S. Kabadayi and C. Julien. Scenes: abstracting interaction in immersive sensor

networks. Elsevier Pervasive and Mobile Computing: Special Issue on Selected

Papers from PerCom 2007, 3(6):635–658, December 2007.

[31] S. Kabadayi, C. Julien, W.J. O’Brien, and D. Stovall. Virtual sensors: A

demonstration. In 26th Int’l Conf. on Computer Communications: Demonstra-

tions Track, 2007.

[32] S. Kabadayi, C. Julien, and A. Pridgen. DAIS: Enabling declarative applica-

tions in immersive sensor networks. In Technical Report TR-UTEDGE-2006-

000, 2006.

[33] S. Kabadayi, C. Julien, and J. Trujillo. Virtual sensors: Heterogeneous aggre-

gation in pervasive networks. Technical Report TR-UTEDGE-2006-009, The

Center for Excellence in Distributed Global Environments, The University of

Texas at Austin, 2006.

[34] S. Kabadayi, A. Pridgen, and C. Julien. Virtual sensors: Abstracting data

from physical sensors. In Proc. of the 4th International Workshop on Mobile

Distributed Computing, pages 587–592, 2006.

[35] C. Kidd, R. Orr, G. Abowd, C. Atkeson, I. Essa, B. MacIntyre, E. Mynatt,

T. Starner, and W. Newstetter. The aware home: A living laboratory for

ubiquitous computing research. In Proc. of the 2nd Int’l. Workshop on Cooper-

ating Buildings, Integrating Information, Organization and Architecture, pages

191–198, 1999.

108

[36] J. Kosh and R. Pandey. VM?: Synthesizing scalable runtime environments

for sensor networks. In Proc. of the 3rd ACM Conf. on Embedded Networked

Sensor Systems, 2005.

[37] Lego Store - Building Crane. http://shop.lego.com/Product/?p=7905, 2008.

[38] P. Levis and D. Culler. Maté: A tiny virtual machine for sensor networks. In

Proc. of the 10th International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, pages 85–95, 2002.

[39] P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM: Accurate and scalable

simulation of entire tinyos applications. In Proc. of SenSys, 2003.

[40] J. Liu, M. Chu, J. Reich, J.J Liu, and F. Zhao. State-centric programming

for sensor-actuator network systems. IEEE Pervasive Computing, 2(4):50–62,

October-December 2003.

[41] C. Lu, G. Xing, O. Chipara, C.-L. Fok, and S. Bhattacharya. A spatiotemporal

query service for mobile users in sensor networks. In Proc. of the 25th Int’l.

Conf. on Distributed Computing Systems, pages 381–390, 2005.

[42] L. Luo, T. Abdelzaher, T. He, and J. Stankovic. EnviroSuite: an environmen-

tally immersive programming framework for sensor networks. ACM Transac-

tions on Embedded Computing Systems, 5(3):543–576, August 2006.

[43] S. Madden, M. Franklin, J. Hellerstein, and W. Hong. TAG: A tiny aggregation

service for ad hoc sensor networks. In Proc. of the 5th Symp. on Operating

Systems Design and Implementation, pages 131–146, 2002.

[44] S. Madden, M. Franklin, J. Hellerstein, and W. Hong. TinyDB: An acquisitional

query processing system for sensor networks. ACM Trans. on Database Systems,

30(1):122–173, 2005.

109

http://shop.lego.com/Product/?p=7905

[45] Crossbow Technology: Wireless Sensor Networks: MICA2. http://www.xbow.

com/Products/productdetails.aspx?sid=174, 2008.

[46] L. Mottola and G.P. Picco. Programming wireless sensor networks with logical

neighborhoods. In Proc. of InterSense, 2006.

[47] L. Neitzel, S. Seixas, and K. Ren. A review of crane safety in the construction

industry. Applied Occupational and Environmental Hygiene, 16(12):1106–1117,

2001.

[48] R. Newton and M. Welsh. Region streams: functional macroprogramming for

sensor networks. In Proc. of the 1st Int’l’ Workshop on Data Management for

Sensor Networks, pages 78–87, 2004.

[49] Y. Ni, U. Kremer, A. Stere, and L. Iftode. Programming ad-hoc networks of

mobile and resource-constrained devices. In Proc. of PLDI, pages 249–260,

2005.

[50] V. Rajamani, S. Kabadayi, and C. Julien. Query domains: Grouping heteroge-

neous sensors based on proximity. In Proceedings of the 3rd IEEE International

Workshop on Heterogeneous Multi-Hop Wireless and Mobile Networks, 2007.

[51] Remotely Deployed Virtual Sensors Implementation Code. http://mpc.ece.

utexas.edu/remotevirtualsensors/index.html, 2007.

[52] G.-C. Roman, C. Julien, and Q. Huang. Network abstractions for context-aware

mobile computing. In Proc. in the 24th Int’l. Conf. on Software Engineering,

pages 363–373, 2002.

[53] M. Roman, C. Hess, R. Cerqueira, A. Ranganathan, R. Campbell, and

K. Narstedt. A middleware infrastructure for active spaces. IEEE Pervasive

Computing, 1(4):74–83, 2002.

110

http://www.xbow.com/Products/productdetails.aspx?sid=174
http://www.xbow.com/Products/productdetails.aspx?sid=174
http://mpc.ece.utexas.edu/remotevirtualsensors/index.html
http://mpc.ece.utexas.edu/remotevirtualsensors/index.html

[54] RPN Calculator. http://home.att.net/∼srschmitt/script reverse polish.html,

2008.

[55] N. Shrivastava, C. Burgohain, D. Agrawal, and S. Suri. Medians and beyond:

New aggregation techniques for sensor networks. In Proc. of the 2nd Int’l. Conf.

on Embedded Networked Sensor Systems, pages 239–249, 2004.

[56] S. Voida, E. Mynatt, and B. MacIntyre. Supporting collaboration in a context-

aware office computing environment. In Proc. of the Workshop on Collaboration

with Interactive Walls and Tables, 2002.

[57] Virtual Sensors. http://mpc.ece.utexas.edu/virtualsensors/index.html, 2006.

[58] M. Welsh and G. Mainland. Programming sensor networks using abstract re-

gions. In Proc. of the 1st USENIX/ACM Symp. on Networked Systems Design

and Implementation, 2004.

[59] K. Whitehouse, C. Sharp, E. Brewer, and D. Culler. Hood: A neighborhood

abstraction for sensor networks. In Proc. of the 2nd Int’l. Conf. on Mobile

Systems, Applications, and Services, pages 99–110, 2004.

[60] K. Whitehouse, F. Zhao, and J. Liu. Semantic streams: A framework for

composable semantic interpretation of sensor data. In Proc. of EWSN, pages

5–20, 2006.

[61] Y. Yao and J. Gehrke. The cougar approach to in-network query processing in

sensor networks. ACM SIGMOD Record, 31(3):9–18, 2002.

[62] Y. Yu, B. Krishnamachari, and V.K. Pasanna. Issues in designing middleware

for wireless sensor networks. IEEE Network, 18(1):15–21, 2004.

[63] Y. Yu, L. J. Rittle, V. Bhandari, and J. B. LeBrun. Supporting concurrent

111

http://home.att.net/~srschmitt/script_reverse_polish.html
http://mpc.ece.utexas.edu/virtualsensors/index.html

applications in wireless sensor networks. In Proc. of the Fourth Int. Conf. on

Embedded Networked Sensor Systems, pages 139–152, 2006.

112

Vita

Sanem Kabadayi received her B.S. in Electrical Engineering and B.S. in Physics de-

grees from the University of Texas at Austin in 2000. She received her M.S.E.E.C.S.

from SabancıUniversity in 2002. While a Ph.D. student in the Department of Elec-

trical and Computer Engineering at the University of Texas at Austin, she was

a member of the Mobile and Pervasive Computing Group. Her current research

interests include wireless networking, sensor networks, and pervasive computing.

Permanent Address: 3487 Lake Austin Blvd Apt C, Austin, TX 78703

This dissertation was typeset with LATEX2ε
1 by the author.

1LATEX2ε is an extension of LATEX. LATEX is a collection of macros for TEX. TEX is a trademark of
the American Mathematical Society. The macros used in formatting this dissertation were written
by Dinesh Das, Department of Computer Sciences, The University of Texas at Austin, and extended
by Bert Kay, James A. Bednar, and Ayman El-Khashab.

113

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Chapter Introduction
	Chapter Communication Underpinnings: The Scene Abstraction
	Lightweight Grouping Mechanisms
	Scenes: Abstractions of Local Data
	Defining Scenes
	A Programming Interface for Scenes
	Maintaining Scenes
	Defining Scenes Based on Physical Characteristics

	Realizing Scenes on Resource-Constrained Sensors
	A Structured Implementation Strategy
	A Basic Instantiation

	An Example Scene
	Evaluation
	Simulation Settings
	Performance Metrics
	Simulation Results

	Chapter Summary

	Chapter Virtual Sensors: An Intuitive Programming Abstraction
	Related Work
	Homogeneous In-Network Aggregation
	Heterogeneous Aggregation Outside the Network
	Heterogeneous In-Network Aggregation

	Virtual Sensors: Abstracting Data from Physical Sensors
	Virtual Sensors Model
	Overview of the Model
	Creating a Virtual Sensor
	Using a Virtual Sensor
	Modeling Data Types Defining a Virtual Sensor
	Defining the Region of a Virtual Sensor
	Formalizing Virtual Sensors

	Example Applications
	Construction domain example
	Aware home domain example

	Feasibility Study
	Chapter Summary

	Chapter Remote Deployment of Virtual Sensors
	Motivation and Problem Definition
	Parameterized Middleware Approach
	Implementation
	Evaluation

	Mobile Code Approach
	Mobile Code in Sensor Networks
	Implementation
	Evaluation

	Qualitative Comparison of the Two Approaches
	Chapter Summary

	Chapter The DAIS Middleware
	Middleware Approaches
	The DAIS Middleware
	Communication Protocol Encapsulation
	Processing Dynamic Queries: A Step-By-Step Example

	Chapter Summary

	Chapter Conclusion
	Bibliography
	Vita

