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The design of complex digital hardware is challenging and error-prone. With short

design cycles and increasing complexity of designs, functional verification has be-

come the most expensive and time-consuming aspect of the digital design process.

Sequential equivalence checking (SEC) has been proposed as a verification frame-

work to perform a true sequential check of input/output equivalence between two

designs. SEC provides several benefits that can enable a faster and more efficient

way to design and verify large and complex digital hardware. It can be used to

prove that micro-architectural optimizations needed for design closure preserve de-

sign functionality, and thus avoid the costly and incomplete functional verification
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regression traditionally used for such purposes. Moreover, SEC can be used to

validate sequential synthesis transformations and thereby enable design and verifi-

cation at a higher-level of abstraction. Use of sequential synthesis leads to shorter

design cycles and can result in a significant improvement in design quality. In this

dissertation, we study the problem of sequential redundancy identification to enable

robust sequential equivalence checking solutions. In particular, we focus on the use

of a transformation-based verification framework to synergistically leverage vari-

ous transformations to simplify and decompose large problems which arise during

sequential redundancy identification to enable an efficient and highly scalable SEC

solution.

We make five main contributions in this dissertation. First, we introduce a

novel sequential redundancy identification framework that dramatically increases

the scalability of SEC. Second, we propose the use of a flexible and synergistic set

of transformation and verification algorithms for sequential redundancy identifica-

tion. This more general approach enables greater speed and scalability and identi-

fies a significantly greater degree of redundancy than previous approaches. Third,

we introduce the theory and practice of transformation-based verification in the

presence of constraints. Constraints are pervasively used in verification testbenches

to specify environmental assumptions to prevent illegal input scenarios. Fourth, we

develop the theoretical framework with corresponding efficient implementation for

optimal sequential redundancy identification in the presence of constraints. Fifth,

we address the scalability of transformation-based verification by proposing two

new structural abstraction techniques. We also study the synergies between various

transformation algorithms and propose new strategies for using these transforma-

tions to enable scalable sequential redundancy identification.
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Chapter 1

Introduction

Computers have become irreplaceable components of almost every facet of modern
life. They are central components of communication, medical and entertainment
devices, and computing systems control banking, manufacturing, transportation,
and many other operations. The design of complex digital hardware is challenging
and error-prone. The digital design process takes place in stages, starting from an
abstract specification and proceeding to a concrete implementation.

The first stage of the digital design process is the architecture stage, where
the behavior of the design is quantitatively described. The desired functionality
and performance is used to determine the type and number of logic components
needed to realize the design. The next stage is the implementation phase, where the
cycle-to-cycle behavior of the design is modeled in a hardware description language
based on the architecture level specification. Implementation is often done at the
RT-level specifying the placement of state elements. Logic synthesis is then applied
to refine the RT-level models to gate-level models, which are further refined down
to transistor-level models. The last stage involves physical design, where the design
is specified as a set of geometric objects corresponding to electrical devices etched
on silicon.

Verification is the process of validating that the design conforms to its spec-
ification and is performed at various stages of the digital design process. With
short design cycles and increasing complexity of designs, functional verification
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has become the most expensive and time-consuming phase of the digital design
process [Int04]. The complexity of functional verification is exacerbated by the it-
erative nature of the design process. For example, a failure to achieve timing, area,
power, testability and signal integrity goals (collectively known as design closure)
would necessitate redesign/optimization at the architecture or RT-level and another
iteration of the digital design process. The optimizations at the RT-level often result
in sequential changes to datapath and control, and can cause a sizable impact on
functional verification. Due to lack of a reliable method to validate that changes
needed for design closure do not alter functionality, such changes often require
time-consuming and incomplete regression of the functional verification process.

The regression of the functional verification process can be avoided if the
sequential optimizations to achieve design closure can be done through validated
logic synthesis transformations. Use of sequential transformations such as retim-
ing [LS91], state re-encoding [Koh78], state minimization [Koh78], and redun-
dancy removal using unreachability-based don’t cares can result in extensive logic
re-structuring and thus significant improvements in area, power and timing when
compared to traditional combinational transformations. At the end of sequential
synthesis process, the synthesis transformations needs to be validated. However,
combinational equivalence checking (CEC) [Arm66, Bra93], which is the typical
framework commonly used for validating logic synthesis, is appropriate only if the
logic synthesis transformations are restricted to altering combinational logic.

Functional verification is often done at the RT-level and it has been observed
that the number of bugs in the design is proportional to the number of lines of
RTL-code [Spi04]. This implies that the efficiency of functional verification may
be improved by increasing the level of abstraction in the implementation stage. The
final low-level implementation can then be automatically synthesized through se-
quential synthesis [ABBSV00] from the abstract implementation. Increasing the
level of abstraction not only improves the verification process, but also saves re-
sources for designers since the designs can now be expressed in a more behavioral
manner free from the clutter of low level design issues. However, to enable de-
sign at a higher-level abstraction, one must have the ability to verify the automatic
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sequential synthesis transformation from abstract models to low-level models.
Sequential equivalence checking (SEC) is a verification framework that has

been proposed to perform a true sequential check of input/output equivalence be-
tween two designs. SEC has several advantages when compared to CEC, the verifi-
cation framework commonly used for validating that logic synthesis does not alter
the functionality of the design. CEC does not perform any sequential analysis, it op-
erates by correlating primary inputs and state elements across the two designs and
proving that this pairing guarantees equivalence of all primary outputs and next-
state functions. While powerful, CEC is for the most part limited in applicability
to designs with 1:1 state element pairings. On the other hand, SEC performs se-
quential analysis and is not restricted to operation on designs with 1:1 state element
pairings. The benefits of SEC are manifold. Due to its ability to performs a true
sequential check of input/output equivalence, it can be effectively used to prove that
micro-architectural optimizations needed for design closure preserve design func-
tionality without the need for functional verification. Moreover, SEC is very well
suited to validate sequential logic synthesis transformations. SEC also enables a
more flexible set of applications than direct input/output equivalence checks. For
example, SEC can be used to check the equivalence of specific modes of operation

of a design, such as backward-compatibility modes of design evolutions. SEC can
also be deployed against designs that are not even strictly equivalent – but can be
made so by disabling initialization/test/debug logic, by ignoring output mismatches
during don’t care time-frames, by accounting for differing pipeline stages, etc.

1.1 SEC from designated initial states

The concept of applying same input sequence to two machines and comparing their
output sequences to check their equivalence was first proposed in [Moo56]. Nu-
merous notions of sequential equivalence have been proposed over the years. In
broad terms, these approaches can be categorized into two classes: (1) Approaches
that prove equivalence with respect to a specified initial state (e.g., [vE98]), (2) Ap-
proaches that attempt to demonstrate resetability across all states during the equiv-
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alence proof (e.g., [Pix92, SPAB01, KH03]).
In this dissertation, we focus on sequential equivalence checking from des-

ignated initial states as formalized in Definition 2.27 in Chapter 2. In this paradigm,
two designs are sequentially equivalent if and only if starting from their respective
initial state sets, they produce the same output sequence for every possible input
sequence. There are several compelling reasons for choosing this approach.

(1) Initialization data tends to be readily available in some form in most
industrial design methodologies. Once the design is mature, its initialization logic is
integrated, and its initialization sequence is known. Before the design is mature, it is
often implemented with some initial state set in mind. Furthermore, before a design
is mature, we have often observed that it has no reset logic incorporated, preventing
the use of alignability analysis. It is additionally noteworthy that optimal synthesis
requires initial state knowledge, since most states are actually unreachable states
which may be used as don’t cares during technology independent logic synthesis.

(2) The SEC problem given designated initial states is much more scalable
as opposed to alignability style of analysis. Though techniques for alignability style
of analysis have progressed substantially, e.g., through the use of SAT-based anal-
ysis [KH03], such approaches tend to be limited in applicability to designs with
hundreds of state elements, or in cases, to a few thousand. In contrast, techniques
for performing SEC against known initial states can readily scale up to designs with
10,000s of state elements [MBPK05]. This scalability implies dramatic reductions
in manual effort due to lesser need to manually partition large designs, in turn en-
hancing the applicability of SEC.

(3) For some of the sequential design transformations against which we care
to prove equivalence, traditional alignability-style analysis is inapplicable. Using
scan-based initialization schemes, for example, even optimizations such as retiming
may alter the necessary initialization mechanism to ensure equivalent functionality
of a design. This may preclude a common initialization sequence for the designs
being equivalence checked, even though independent initialization mechanisms do
render the designs into a state from which they are functionally equivalent.
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1.1.1 Challenges to Scalable SEC

A variety of algorithms have been proposed for scalable SEC from designated initial
states [vE00, SK97, HCC+00, BC00]. The key observation is that the two designs
being compared are related since one design is derived from the other through a se-
quence of transformations. Based on this observation, all these approaches try to ex-
ploit internal equivalences between the designs. Essentially, they all focus on identi-
fying sequentially redundant gates to make verification tractable. Another common
factor among these algorithms is that most of them rely on induction [SSS00] as the
base technique for sequential redundancy identification. Though powerful, there
are several challenges to the successful deployment of these techniques to verify
large and complex industrial designs.

Scalability: SEC is computationally very expensive and suffers from the
inherent state explosion problem. SEC, as opposed to CEC, does not assume 1:1
latch correspondence or 1:1 design hierarchy equivalence. This severely limits its
application to smaller design units and demands a fair amount of user sophistication
for successful application on larger design units.

Applicability: For effectiveness and industry-wide adoption SEC applica-
tions must enable equivalence proofs across a wide range of design transformations.
Induction-based techniques are incomplete even when applied to prove correctness
of retimed designs [RH07]. The range of transformations supported by SEC frame-
works must include a variety of techniques, from retiming and resynthesis to repli-
cation of subcircuitry for reduced propagation delay to redundancy removal based
on unreachability-based don’t cares to outright re-encoding of parts of the design.

Additionally, when applying SEC at the design unit level, the design envi-
ronment needs to be modeled correctly to avoid false fails due to illegal input sce-
narios. Modeling of design environments using constraints has gained widespread
industrial application, and most verification languages include constructs for spec-
ifying constraints. However, little prior research has addressed the applicability of
sequential redundancy identification algorithms to designs with constraints.

Motivated by the above challenges, we study the problem of sequential re-
dundancy identification. Though the main motivation for scalable and efficient
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sequential redundancy identification is improving SEC, techniques for identifying
sequential redundancies have many applications. Identification and removal of se-
quential redundancy has been shown to be very useful in improving the performance
of formal verification algorithms that are used for property checking [MBP+04].
Also, sequential redundancy identification and removal is a commonly used se-
quential logic synthesis optimization.

Improving the scalability and applicability of sequential redundancy identi-
fication is the focus of this dissertation. We further focus on overcoming the in-
complete nature of induction-based techniques through the use of the general and
modular transformation-based verification framework.

1.2 Transformation-based Verification

Transformation-based verification (TBV) was proposed in [KB01, Bau02] as a
framework wherein one may synergistically utilize the power of various transfor-
mation algorithms to iteratively simplify and decompose complex problems until
they become tractable for automated formal verification. All algorithms are en-
capsulated as engines, each interfacing via a common modular API. Each engine
receives a verification problem represented as a netlist, then performs some process-
ing on that problem. This processing could include an attempt to solve the problem
(e.g., with a bounded model checking [BCCZ99] or reachability [CBM89] engine)
or it could include an attempt to simplify or decompose the verification problem
using a transformation (e.g. with a retiming or redundancy removal engine). In the
latter case, it is generally desirable to pass the simplified problem to another engine
to further process that problem. Note that the problem transmitted by an engine is
generally not identical to the one received. Instead, as the problem flows from one
engine to another, it is iteratively transformed into a simpler problem. As verifica-
tion results are obtained on the simplified problem, those results propagate through
the sequence of engines in reverse order, with each transformation engine undo-
ing the effects of the transformations it performed to present its parent engine with
results that are consistent with the netlist that its parent transmitted. A particular
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Figure 1.1: Example flow of a transformation-based verification system

instance of a TBV system is depicted in Figure 1.1.
While the complexity of a verification problem is not necessarily related

to its size, the complexity class of verification algorithms indicates an exponential
worst-case relationship between these metrics, which is validated by practical expe-
rience. By resource-bounding any possibly costly BDD [Bry86] or SAT [MMZ+01]
based analysis, it is possible to limit the complexity of most transformations used
in a TBV system to polynomial while exploiting their ability to render exponential
speedups to the overall verification flow as noted in [KB01, Bau02].

TBV has several features that can enable scalable sequential redundancy
identification. In particular, transformations have the ability to automatically undo

many of the commonly employed high-performance micro-architecture and design
techniques such as pipelining and addition of redundant logic to minimize propa-
gation delays (e.g., replicating a lookup queue in two places in the circuit), which
otherwise make sequential redundancy identification using induction-based tech-
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niques incomplete. Moreover, TBV enables the application of a variety of different
complementary transformations to successively chip away at a complex problem
until it can be handled by a terminal decision procedure, and thus enhances the
scalability of redundancy identification.

1.3 Contributions

We make the following contributions in this dissertation,

• We introduce a novel and efficient sequential redundancy identification frame-
work in [MBPK05] which significantly increases the scalability of sequential
equivalence checking solutions.

• We propose the idea of using a flexible and robust set of transformation and
verification algorithms for sequential redundancy identification in [MBPK05,
MBP+06]. This more general approach enables greater speed and scalabil-
ity and identifies a significantly greater degree of redundancy than previous
approaches.

• We introduce the theory and practice of transformation-based verification in
the presence of constraints in [MBA05].

• We develop the theoretical framework with corresponding efficient imple-
mentation to enable the optimal sequential redundancy identification for de-
signs with constraints.

• We propose two new structural abstraction techniques: (a) structural repa-
rameterization, and (b) min-cut based localization in [BM05] for yielding a
netlist with minimal input count. We study the synergy that these transfor-
mations have with each other, and also with other transformations such as
retiming and redundancy removal. We also propose new strategies for using
these transformations to enable scalable sequential redundancy identification.
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1.4 Organization

This dissertation is organized as follows. We first define the syntax and semantics
of our netlist-based representation of the verification problem in Chapter 2. The
various transformation and verification algorithms used in our experiments are de-
scribed in Section 2.1. We discuss the topics of sequential redundancy identification
and redundancy removal in Chapter 3. This chapter extends results of collaborative
work with Jason Baumgartner, Viresh Paruthi, Robert Kanzelman and Geert Janssen
in [MBPK05, MBP+06]. We introduce two new transformations to improve scala-
bility of TBV framework and study the synergies between various transformations
in Chapter 4, extending the results of collaborative work with Jason Baumgartner
in [BM05]. The topic of optimal design simplification in the presence of constraints
is discussed in Chapter 5. This work was done in collaboration with Adnan Aziz
and Jason Baumgartner and details the extension of scalable assume-then-prove se-
quential redundancy removal frameworks [vE98, MBPK05] to optimally leverage
constraints. The final topic is exploiting constraints in a TBV framework and is
discussed in Chapter 6. In this Chapter, we introduce the theory and practice of
transformation-based verification in the presence of constraints and extend the re-
sults of collaborative work with Jason Baumgartner and Adnan Aziz in [MBA05].
We conclude the dissertation and discuss future research directions in Chapter 7.
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Chapter 2

Netlist:Syntax and Semantics

In this Chapter, we provide the formalisms used throughout the thesis. A reader
well-versed in hardware verification may wish to skip this chapter, using it as a
reference.

Our verification problem is expressed as a netlist. This netlist represents a
composition of the design under verification, and netlist-based representations of
its environment assumptions and property automata as illustrated in Figure 2.1.

As in [Bau02], we define our netlist based upon a directed graph model.

Definition 2.1. A directed graph G = 〈V,E〉 consists of a finite set of vertices V ,
and a set of directed edges between vertices E ⊆ V × V . For edge (u, v), we refer
to u as the source vertex and v as the sink vertex.

Definition 2.2. A directed cycle is an ordered set of vertices 〈v0, . . . , vn〉 such that
∀i ∈ [0, n− 1].

(

(vi ∈ V ) ∧
(

(vi, vi+1) ∈ E
)

∧ (v0 = vn)
)

.

Definition 2.3. We define inlist(u) = {v : (v, u) ∈ E} as the set of vertices sourc-
ing input edges to vertex u. We define the indegree of a vertex u by indegree(u) =

|inlist(u)|.

Definition 2.4. We define outlist(u) = {v : (u, v) ∈ E} as the set of ver-
tices sinking output edges from vertex u. We define the outdegree of vertex u by
outdegree(u) = |outlist(u)|.

10
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Figure 2.1: Netlist representation of Verification Problem

Definition 2.5. The fanin of vertex u = {u}
⋃

v∈inlist(u) fanin(v). Due to the
monotonicity of evaluation of this definition, and the finiteness of G, this set is
well-formed.

Definition 2.6. The fanout of vertex u = outlist(u)
⋃

v∈outlist(u) fanout(v). This
set is well-formed as per the analysis of Definition 2.5.

Definition 2.7. A netlist is a tuple N = 〈〈V,E〉, G, T, C, Z,O〉 comprising a finite
directed graph with vertices V and edges E ⊆ V × V . Function G : V 7→ types

represents a mapping from vertices to a set of gate types given in Definition 2.8.
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Function Z : V 7→ V is the initial value mapping Z(v) of each gate v. The set
of targets T ⊆ V corresponds intuitively to a set of properties to be checked, as
will be discussed in Definition 2.12; the set C ⊆ V represents the constraints,
the significance of which will be described in Definition 2.11. The set O ⊆ V

represents the set of primary outputs.

Definition 2.8. The set types (which is the range of function G) = { PRIMARY

INPUT, ZERO, INVERTER, AND, REGISTER}.
Hereafter we denote the set of vertices of type REGISTER as R, the set of

vertices of type PRIMARY INPUT as I , and the vertices of type INVERTER sourced
by vertices of type ZERO as constant ONE.

Definition 2.9. Well-formed netlists are required to satisfy the following constraints:

1. The indegree of each vertex is consistent with its specified type. Vertices
of type ZERO or type PRIMARY INPUT have indegree of 0, vertices of type
INVERTER or type REGISTER have indegree of 1 and vertices of type AND

have indegree of 2.

2. The netlist does not contain any combinational cycles: directed cycles in
〈V,E〉 comprising no vertices of type REGISTER.

3. The initial value mapping of gates of type REGISTER must be entirely com-
binational, i.e. fanin cone

(

Z(R)
)

∩ R = ∅.

Definition 2.10. The semantics of netlist N are defined in terms of traces: 0, 1

valuations to gates over time. We denote the set of all legal traces associated with a
netlist by P ⊆ [V × N 7→ {0, 1}], defining P as the subset of all possible functions
from V × N to {0, 1} which are consistent with the following rule. The value of
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gate v at time i in trace p is denoted by p(v, i).

p(v, i) =























































0 : v is ZERO

¬p(u1) : v is an INVERTER

si
vp

: v is a PRIMARY INPUT with sampled value si
vp

(

p(u1, i) ∧ p(u2, i)
)

: v is a 2-input AND gate

p(u1, i− 1) : v is a REGISTER and i > 0

p
(

Z(v), 0
)

: v is a REGISTER and i = 0

Term uj denotes the source vertex of the j-th incoming edge to v, implying that
(uj, v) ∈ E.

Netlists whose semantics are defined according to Definition 2.10 and which
consists of gate types defined in Definition 2.8 are sufficient to succinctly model se-
quential digital hardware. Note that any sequential hardware design can be mapped
onto a netlist representation containing only constants, PRIMARY INPUTs, two-
input AND gates, inverters, and REGISTERs, using straight-forward logic synthesis
techniques.

Definition 2.11. The length of a trace p is denoted as length(p), and defined as
min{i : ∃c ∈ C. p(c, i) = 0}. Throughout this thesis, we use the convention that
max{∅} = 0 and min{∅} = ∞. Thus if |C| = 0 or ∀i ∈ N. ∀c ∈ C. p(c, i) = 1,
then length(p) = ∞.

A trace is hereafter understood to be restricted to its valid prefix wherein
all constraint gates evaluate to 1. Practically, it is understood that a trace is to be
reasoned about with respect to finite prefix of interest, e.g., until the assertion of a
target.

Definition 2.12. A target t is said to be hit in a trace t at time i iff
(

p(t, i) =

1
)

∧
(

i < length(p)
)

. A target t is not hittable iff ∀p ∈ P.
(

∀i < length(p)
)

. p(t, i) =

0. We say that a target is reachable if there is a trace that hits the target, and one
which is not hittable is unreachable.
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Verification Goal: The verification goal associated with a netlist is to obtain a
trace illustrating an assertion of a target within its valid prefix (such a trace is here-
after referred to as a counterexample), or to prove that no such trace exists.

Definition 2.13. The cone of influence of vertex u is denoted as coi(u), and defined
as fanin(u)

⋃

v ∈ Z(R ∩ fanin(u))fanin(v).

Definition 2.14. The combinational fanin of vertex u is denoted as cfi(u), and de-
fined as u if u ∈ R, else u

⋃

v ∈ inlist(u)cfi(v) if u /∈ R. This set is well-formed as
per the analysis of Definition 2.5.

Definition 2.15. The combinational fanout of vertex u is denoted as cfo(u), and
defined as outlist(u)

⋃

v ∈ {outlist(u)\R}cfo(v). This set is well-formed as per the
analysis of Definition 2.5.

Definition 2.16. A state is a valuation to the REGISTERs of a netlist. A reachable

state is one which may occur in a trace, and an initial state is a reachable state
which may occur at time 0. A dead-end state is an unreachable state for which no
valuation to the PRIMARY INPUTs will satisfy the constraints.

Definition 2.17. A cut of a netlist is a partition of V into two sets: C and C = V \C.
A cut induces two sets of cut gates VC = {u∈C :∃v∈C.

(

((u, v)∈E)∨ (v∈R∧u=

Z(v))
)

}, and VC = {u∈C :∃v ∈ C.
(

((u, v)∈E) ∨ (v∈R ∧ u=Z(v))
)

}.

One may visualize a cut of netlist N as the composition [GL94] of netlists
NC ‖NC , with VC denoting inputs to NC which are closed under the composition,
and with VC denoting inputs to NC which are closed under the composition.

Definition 2.18. An s-t cut is a cut seeded with vertex sets s ⊆ C and t ⊆ C. An s-t

min-cut refers to an s-t cut where VC is of minimal cardinality.

Algorithmically, when computing an s-t min-cut, sets s and twill be selected
according to some application-specific criteria, and provided as constraints to the
min-cut solver. Numerous algorithms have been proposed for the efficient compu-
tation of s-t min-cut, in this thesis, we use the augmenting path algorithm [FF56].
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Definition 2.19. Gate sets A⊆ V and A′ ⊆ V ′ of netlists N and N ′, respectively,
are said to be trace equivalent iff there exists a bijective mapping ψ : A 7→ A′ such
that:

• ∀p ∈ P.∃p′ ∈ P ′.
(

∀i < length(p)
)

. ∀a ∈ A. p(a, i) = p′
(

ψ(a), i
)

• ∀p′ ∈ P ′.∃p ∈ P.
(

∀i < length(p′)
)

.∀a ∈ A. p(a, i) = p′
(

ψ(a), i
)

Definition 2.20. Netlists N and N′ are said to be trace equivalent with respect to
target sets T and T ′ respectively, iff there exists a bijective mapping ψ : T 7→ T ′

such that:

∀p ∈ P.∃p′ ∈ P ′.∀t ∈ T.
(

∀i < length(p)
)

. p(t, i) = p′
(

ψ(t), i
)

∀p′ ∈ P ′.∃p ∈ P.∀t ∈ T.
(

∀i < length(p′)
)

. p(t, i) = p′
(

ψ(t), i
)

Definition 2.21. A netlist transformation T : N 7→ N is a function from set of
all well-formed netlists N (as per Definition 2.9) to set of all well-formed netlists.
The netlist transformation T preserves property checking (said to be “property-

preserving”) iff ∀N ∈ N , N and T(N) are trace-equivalent with respect to target
sets TN and TT(N) respectively.

Definition 2.22. Given two netlists N and N′, we say that we say that N ′ trace-

contains N with respect to target sets T and T ′ respectively, iff there exists a bijec-
tive mapping ψ : T 7→ T ′ such that:

∀p ∈ P.∃p′ ∈ P ′.∀t ∈ T.
(

∀i < length(p)
)

. p(t, i) = p′
(

ψ(t), i
)

Lemma 2.1. If N is trace-equivalent or property-preserving trace-equivalent to N ′,
verifying N ′ in place of N is sound and complete: a proof that a target cannot be
asserted, or the generation of a counterexample, obtained on N ′ may be reused as
a result for the corresponding target in N . If N is trace-contained by N ′, verifying
N ′ in place of N is sound but incomplete: a proof that a target cannot be asserted
which is obtained on N ′ may be reused as a correct result for the corresponding
target of N , though a counterexample on N ′ may not be valid for N .

Definition 2.23. Vertices v and v′ of N are said to be equivalent iff ∀p ∈ P.
(

∀i <

length(p)
)

. p(v, i) = p(v′, i).
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Definition 2.24. A merge from gate g1 onto gate g2 consists of replacing every
fanout edge (g1, g3) ∈ E with (g2, g3). To facilitate subsequent reasoning (e.g.,
trace analysis), gate g1 is next made a buffer – an AND gate with both its inputs tied
together – which entails removing its fanin edges, and adding edge (g2, g1). Gate g1

is referred to as the merged from gate and g2 is referred to as the merged onto gate.
Without loss of generality we assume that g1 6≡ g2, and that merges will

yield valid netlists – i.e., be initiated only if no combinational cycles will result.

Definition 2.25. Given a netlist N , gates g1, g2 ∈ VN , a miter mg1,g2
over gates g1

and g2 is a gate representing the function g1 6≡ g2.

Definition 2.26. Consider two disjoint netlists N1 = 〈〈V1, E1〉, G, T1, C1, Z1, O1〉,
N2 = 〈〈V2, E2〉, G, T2, C2, Z2, O2〉, and bijective mappingsψ : I1 7→ I2, φ : O1 7→

O2, where I1 and I2 are the sets of PRIMARY INPUT vertices in N1 and N2 respec-
tively. The product netlist N1×2〈〈V1×2, E1×2〉, G, T1×2, C1×2, Z1×2, O1×2〉 is con-
structed as follows,

• V1×2 = V1 ∪ V2

• E1×2 = E1 ∪ E2

• Z1×2(v) = Z1(v) if v ∈ V1, else Z2(v)

• C1×2 = C1 ∪ C2

• O1×2 = ∅

• ∀i ∈ I1. merge
(

i, ψ(i)
)

• T1×2 = {mo,φ(o) : o ∈ O1}

Conceptually, the product netlist is formed as the union of N1 and N2, merging
corresponding PRIMARY INPUTS to ensure than an identical sequence of inputs are
applied to both N1 and N2, and adding miters over corresponding primary outputs
of N1 and N2 and labeling them as targets.
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Definition 2.27. Given two netlists N1 and N2, and the corresponding product ma-
chine N1×2, netlistN1 is sequentially equivalent to N2 iff ∀p ∈ P. ∀t ∈ T1×2.

(

∀i <

length(p)
)

. p(t, i) = 0. Conceptually, starting from the specified initial states, N1

is sequentially equivalent to N2 if N1 and N2 exhibit identical sequences of valu-
ations to their primary outputs under all possible sequences of valuations to their
primary inputs.

2.1 Transformation & Verification Algorithms

In this section, we describe the various transformation and verification engines used
in experimental results throughout the thesis. These engines are components of a
transformation-based verification framework.

• COM: a redundancy removal engine which uses combinational techniques
such as structural hashing and resource-bounded BDD- and SAT-based anal-
ysis (which are NP-complete sub-problems) to identify gates which are func-
tionally redundant across all states [KPKG02], as well as a variety of rewrit-
ing techniques [MCB06] to reduce netlist size.

• RET: a min-area retiming engine, which reduces the number of REGISTERs
by shifting them across combinational gates [KB01].

• CUT: a reparameterization engine, which replaces the fanin-side of a cut of
the netlist graph with a trace-equivalent, yet simpler, piece of logic [BM05].

• LOC: a localization engine, which isolates a cut of the netlist local to the
targets by replacing gates by primary inputs. LOC is an overapproximate
transformation, and uses a SAT-based refinement scheme to prevent spurious
counterexamples [BM05].

• ISO: a structural isomorphism detection engine, which equivalence-classes
isomorphic targets, such that only one representative target per equivalence
class needs to be solved by a child engine flow [MHB98].
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• MOD: a structural state-folding engine used to abstract certain clocking and
latching schemes, generalizing the techniques presented in [BK05, BTA+00].

• SAT: a hybrid-algorithm SAT solver based upon [KPKG02], which inter-
leaves redundancy removal and structural rewriting with BDD- and SAT-
based analysis.

• RCH: a BDD-based reachability engine [CBM89]

• IND: a SAT-based induction [SSS00] engine which uses unique-state con-
straints.

• BIG: a structural target-enlargement engine, which replaces a target by the
simplified characteristic function of the set of states which may hit that target
within k time-steps [BKA02].

• SCH: a semi-formal search engine, which interleaves random simulation
(to identify deep, interesting states) and symbolic simulation (using either
BDDs [PJW05] or the SAT engine) to branch out from states explored during
random simulation.

• EQV: a sequential redundancy removal engine based upon the algorithm de-
scribed in Section 3 [MBPK05].

• ITP: a SAT-based reachability engine, which performs unbounded reachabil-
ity analysis using interpolation [McM03].

18



Chapter 3

Sequential Redundancy

Identification

3.1 Overview

In this chapter, we focus on sequential redundancy identification. We are moti-
vated by the fact that scalable and efficient sequential redundancy identification
algorithms are at the core of a scalable sequential equivalence checking framework.
Moreover, it has been shown that sequential redundancy removal has a huge impact
on the performance of a variety of formal verification algorithms [MBP+04]. Once
a pair of redundant gates are identified, the netlist may be simplified by replacing
each reference to one gate by a reference to the other; i.e., by merging one of the
gates onto the other as per Definition 2.24.

Our general-purpose sequential redundancy identification framework is based
on the assume-then-prove [vE98, HCC+00, NPMJ03] paradigm. We generalize the
domain specific use of assumptions under the framework of speculative reduction

which results in a significant improvement to the scalability of sequential redun-
dancy identification. For redundancy identification, we propose the use of a larger
and more robust variety of synergistic transformation and verification algorithms.
This is in contrast to prior work which relied upon a smaller set of algorithms, such
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as induction[vE98, BC00, HCC+00] or approximate-reachability-based [HCC+00]
fixed-point computation. Experiments confirm that this more general approach en-
ables greater speed and scalability, and identifies a significantly greater degree of
redundancy, than previous approaches. We also discuss a more general paradigm
that allows us to exploit even redundancy that holds only for an initial bounded

time-frame, but not across all time-frames. This paradigm enables faster and deeper
exhaustive search and has benefits to both redundancy identification and falsifica-
tion of properties.

The rest of this chapter is organized as follows. In Section 3.2 we re-
view sequential redundancy identification framework and illustrate the technique
of speculative reduction. In Section 3.2.1, we prove the correctness of the use of
the speculatively-reduced model to identify redundancy. We address the use of a
variety of transformation and verification algorithms to identify redundant gates in
Section 3.3. In Section 3.4, we propose novel techniques to improve scalability
through intelligent refining of redundancy candidates. We propose the creation of
a transformation engine based on sequential redundancy removal in Section 3.5.
In Section 3.6, we discuss the use of the speculatively-reduced model for falsifica-
tion. We provide experimental results to illustrate the power of these techniques in
Section 3.7.

3.2 Redundancy Identification Framework

Given a netlist, redundancy identification frameworks based on the assume-then-
prove paradigm such as those of [vE98, HCC+00] operate as per the algorithm of
Figure 3.1 .This paradigm often begins with a redundant gate guessing approach as
in Step 1, using a variety of techniques which includes both functional and non-

functional approaches. Non-functional approaches approximate the set of truly re-
dundant gates using name- and structure-based comparisons [CP], hence are useful
in equivalence checking applications since often only a fraction of the circuit is
redesigned. However, they are often not applicable to identify redundancy to en-
hance property checking, and tend to break down within substantially redesigned
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1. Use an arbitrary set of algorithms to compute the redundancy candidates of N : Sets of
equivalence classes of gates, where every gate g in equivalence class Q(g) is suspected
to be equivalent to every other gate in the same equivalence class, along every trace.
Validate that the redundancy candidates are accurate in the initial states.

2. Select a representative gate R
(

Q(g)
)

from each equivalence class Q(g).

3. Construct the speculatively-reduced netlist N ′ from N by replacing the source gate g

of every edge (g, h) ∈ E by R
(

Q(g)
)

. Additionally, for each gate g, add a miter Tg ,
which is a target representing function g 6≡ R

(

Q(g)
)

.

4. Attempt to prove that each of the miters in N ′ is semantically equivalent to 0.

5. If any miters cannot be proven equivalent to 0 due to obtaining a trace illustrating their
assertion or due to an inconclusive result from the proof algorithm, refine the equivalence
classes to separate the corresponding gates and goto Step 2; else proceed to Step 6.

6. All miters have been proven equivalent to 0; return the accurate equivalence classes.

Figure 3.1: Sequential redundancy identification framework

sub-circuits. Functional approaches [CP, ADMS02] overapproximate the set of re-
dundant gates by analyzing traces produced by random simulation, approximate
symbolic search, semi-formal analysis, etc.. Note that semantic analysis is gener-
ally necessary for optimality; e.g., in case sequential redundancy was added to one
design, N :M (vs. 1:1) REGISTER grouping may be needed.

Once the redundancy candidate gates are guessed, the next step is to cre-
ate the model to be equivalence checked which incorporates redundancy candidate
assumptions and the checks to validate the assumptions (the “assume” step). We
introduce a novel technique called speculative reduction to perform the “assume”
step. A representative gate is selected for each equivalence class and every candi-
date gate in the equivalence class other than the representative is merged onto the
representative gate. Note that the selection of representatives must be performed
such that the speculatively-reduced netlist N ′ is well-formed as per Definition 2.9;
this is often accomplished by selecting the representative of each equivalence class
as an arbitrary topologically-shallowest gate with respect to combinational fanin
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Figure 3.2: Illustration of speculative reduction

DAGs. Next, to prove the correctness of the assumption, we add a miter checking
the exclusive-OR of the candidate gate and representative gate. An illustration of
speculative reduction is depicted in Figure 3.2. Finally, proof analysis is performed
on the speculatively-reduced model to attempt to validate the correctness of the
redundancy candidates (the “prove” step). This correctness is represented by the
unreachability of the miters added to validate the speculative merges.

Speculative reduction is very powerful and instrumental in enhancing the
scalability of sequential redundancy removal framework. Speculative reduction of-
fers several advantages.

• The speculative merging facilitates logic reduction in the fanout of the redun-
dancy candidates. Propagating these changes downstream often results in a
huge reduction in the size of the speculatively-reduced netlist and the number
of distinct miters to be solved. This greatly enhances proof algorithms such
as induction resulting in big speedups. Experiments confirm that the gain in
runtime due to speculative reduction can be several orders of magnitude on
large designs [MCBJ08].

• It plays a similar role to cut-pointing in CEC frameworks and often helps
reduce the complexity of identifying sequential redundancy from PSPACE-
complete to NP-complete.
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Figure 3.3: Failed proofs increase post-refinement complexity

• It enables the proof algorithms to focus on harder miters in the redesigned
portions of the netlist by trivializing the miters in the non-redesigned portions
of the netlist.

• It is the key to enable non-inductive proof algorithms to be used to discharge
the miters as described in Section 3.3.

Failed proofs, whether falsified or inconclusive (e.g., due to an ineffective al-
gorithm or insufficient resources), cause a refinement of the candidates and another
assume-then-prove iteration. There are two potential causes of failure to prove a
miter as unreachable in Step 4. First, some of the candidates may be incorrect,
i.e., not truly equivalent in all reachable states. This is reflected by the genera-
tion of a trace asserting the corresponding miters. Second, resource limitations
(or an incomplete proof technique) may preclude the solution of a subset of the
miters. For example, induction may become computationally expensive after a
particular depth, hence miters that are not provable within that threshold will re-
main unsolved. Discarding miters due to resource limitations not only immediately
prunes the equivalence classes, but also tends to result in a significant amount of
future resource-gated refinements. This is because, by diminishing the amount of
speculative merging, each refinement effectively weakens the redundancy induction

hypothesis – requiring greater resources to complete proofs across refinements.
To illustrate this problem, assume that we wish to perform sequential equiv-

alence checking over primary outputs for two versions of the netlist depicted in
Figure 3.3. Only the darkest-shaded portion of the circuit was redesigned, hence
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each gate outside of this region will have a unique correspondent in the modified
design. Only those miters over gates which have a source edge from the redesigned
region will initially be nontrivial; the others will be trivially of the form g 6≡ g

due to the speculative merging. If any of these cannot be solved due to resource
limitations, the subsequent refinement will cause a set of gates in the immediate
fanout of the refined gates to become nontrivial. Since their fanin gates were too
difficult to prove equivalent, these gates also are likely to be too difficult to prove.
This refinement ripples forward, increasing the resources needed for the subsequent
proofs, pushing more miters from provable to unsolvable. Ultimately, many gates
in the shaded region may remain unsolved, including some of the primary outputs
which are the goal of the equivalence check.

3.2.1 Correctness of the Speculatively-Reduced Model

In this section we discuss the correctness of the use of speculatively-reduced model,
constructed as per step 3 of the algorithm of Figure 3.1.1, for redundancy identifi-
cation. Theorem 3.1 provides the theoretical justification of how we may utilize the
speculatively-reduced model both for proofs and falsification, as will be discussed
in Section 3.6.

Theorem 3.1. Assume that we apply the same sequence of test vectors to the cor-
responding PRIMARY INPUTs of the original and the speculatively-reduced model.
This simulation process will expose its first mismatch within the equivalence classes
in the original design at time i if and only if it first asserts one or more miters in the
speculatively-reduced model at time i.

Proof. We prove this theorem by induction on the length of the trace produced by
the simulation run.

Base Case: In our framework, all gates are equivalent to their representa-
tives in the initial states. This implies that at time 0, all redundancy candidates are

1If both g and R
(

Q(g)
)

are REGISTERs, we instead create the miter over their next-state func-
tions to reduce the size of the speculatively-reduced model, similarly to [HCC+00].Our technique
also includes antivalent gates – which evaluate to opposite values in all reachable states – in the
equivalence classes, similarly to [vE98].
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correct – hence the speculative merging does not alter any gate’s valuation in the
trace at time 0, and no miter assertions may occur at time 0.

Inductive Step: By the induction hypothesis, assume that no mismatches nor
miter assertions occurred at times 0, . . . , j. We prove that the theorem holds at time
j + 1. If no mismatches are exposed, and no miters are asserted, this trend trivially
holds. Otherwise, first consider the case that at time j + 1, there is a nonempty set
of gates A which each differ from their representatives in the trace over the origi-
nal design. Consider the subset B ⊆ A such that for every b ∈ B, neither b nor
R

(

Q(b)
)

contain any other elements of A in their combinational fanin cones – the
set of gates which may be reached fanin-wise without traversing through a REGIS-
TER. Clearly B is non-empty: gate b cannot directly be speculatively merged, nor
transitively through a sequence of speculative merges, onto a representative which
lies in its combinational fanout without introducing a combinational cycle. Note
that any speculative merging in the fanin cone of b ∈ B and R

(

Q(b)
)

cannot alter
their valuation at time j+1, since that merging was correct for all such gates (other
than those in B themselves) at times 0, . . . , j + 1. Therefore, if the simulation ex-
poses a mismatch on set B in the original design at time j + 1, the miters TB must
be asserted in the speculatively-reduced model at time j+1. By the same argument,
if miters TA are asserted in the speculatively-reduced model at time j + 1, we may
similarly compute a nonempty subset B ⊆ A for which the simulation must expose
a mismatch in the original design at time j + 1.

3.3 Proving Redundancy Candidates

In this section, we discuss algorithms used in the “prove” step of assume-then-
prove paradigm. What is particularly novel in our framework vs. prior approaches
is the much richer set of algorithms that we use in the “prove” step. We propose
a more general scheme which leverages arbitrary synergistic transformation-based
verification (TBV) [KB01] flows to prove redundancy candidates.

Discarding redundancy candidates during refinement effectively weakens
the induction hypothesis of the assume-then-prove framework. Discarding can-
didates due to ineffective proof techniques thus precludes the leveraging of those
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internal equivalences to simplify the proof of other miters after the refinement,
which often ultimately avalanches into a failed proof of output equivalence as de-
picted in Figure 3.3. Simply stated, even within a single design component, every
miter is essentially a distinct verification problem. It is well-known that using the
proper set of algorithms for a given verification problem can be exponentially faster
than using an inferior set. Prior work has relied primarily upon induction for the
proof step [vE98, BC00], possibly augmented with localized reachability analysis
for redesigned regions which cannot be well-paired [HCC+00]. While such algo-
rithms are indeed key in our framework, we additionally may leverage a variety
of synergistic transformation and verification engines to attempt to discharge the
miters. Our TBV framework can thus be seen as a robust and flexible extension of
induction-based frameworks. Using a TBV framework to solve redundancy candi-
dates has several benefits.

First, TBV often substantially reduces the size of the speculatively-reduced
model, and the number of distinct miters therein. This tends to significantly reduce
resource requirements, regardless of the proof techniques used to solve the miters.

Second, the transformations themselves are sufficient to solve many of the
miters. For example, given two sub-circuits differing only by retiming and resyn-
thesis, polynomial-resource retiming and redundancy removal engines [MBP+04]
alone are often able to trivialize the resulting equivalence checking problem with-
out a need for more costly inductive analysis. Several techniques have been pro-
posed to simplify the verification of retiming- and resynthesis-optimized designs. In
[MS03], a technique is proposed for extracting a retiming invariant to be inductively
discharged more simply than could direct equivalence candidates. A SAT-based in-
ductive technique [RH07] has been proposed to enable scalable equivalence check-
ing if the design transformations are restricted to retiming+resynthesis+retiming.
An approach orthogonal to above approaches attempts to maintain synthesis his-
tory [BM07]. Keeping track of synthesis history enables generation of inductive
invariants to simplify redundancy identification. However, we have found our ap-
proach tends to be more robust, and a practical superset to the prior research in
several ways. The generation of inductive invariants [MS03] requires a prepro-
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cessing step on a rigidly-transformed intermediate version of the design, e.g., one
derived only through retiming with limited resynthesis. The approach in [RH07]
is only applicable to limited retiming and resynthesis transformations. In contrast,
many design evolutions intertwine such transformations [BK01] along with a va-
riety of other (often manually-performed) transformations such as state-machine
re-encoding. The approach of using synthesis history [BM07] is promising, how-
ever, it is inapplicable when synthesis history is not available. This is typically the
norm since most of the transformations are done manually and the sequential syn-
thesis tools do not yet have the ability to maintain the synthesis history. Overall, our
TBV approach is able to efficiently discharge these simpler retiming and resynthe-
sis subproblems without dedicated preprocessing, and also more generally scales to
efficiently compensate for more aggressive design modifications.

The third, and possibly greatest, benefit of the use of TBV for proving re-
dundancy candidates comes through the ability to leverage independent algorithm
flows on each individual miter. Different transformation and verification algorithms
are better-suited for different problems – often exponentially so [MBP+04]. Even
the most complex miter may often be rendered sufficiently small to be reliably
solved using a variety of proof techniques, instead of relying solely upon possibly
inconclusive induction or approximate analysis.

Localization for Identifying Redundancy

One particularly pronounced benefit we have noted lies in the use of localization in
the per-miter transformation flows. This is particularly useful when a redesigned
portion of the design relies upon satisfiability don’t-cares (SDCs) from its fanin
cone to ensure equivalence, and when the sequential depth of logic in that cone
precludes inductivity. By using a localization-refinement scheme to discharge the
miters in the speculatively-reduced model, only the subset of the cone of influence
necessary to ensure those SDCs will be included for proof analysis. Figure 3.4 illus-
trates an example problem, where only a portion of the two cones has actually been
redesigned. Each gate in the non-shaded region of the top design of Figure 3.4a has
a unique correspondent in the bottom design, resulting in trivial miters. Gate g has
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(b) Speculatively-reduced model.

g

g′

(a) Original designs.

g

g′

Localized circuit needed to prove
g ≡ g′ lightly shaded.

Redesigned subcircuit darkly shaded.

Figure 3.4: Use of localization to prune speculatively-reduced model

g′ as a correspondent, resulting in a nontrivial miter over the two darkly shaded re-
gions plus the original cone driving one of those regions as depicted in Figure 3.4b.
In cases, the redesign may not rely upon any SDC conditions in its fanin cone
to ensure this equivalence, hence localization may require no gates outside of the
darkly shaded region. Otherwise, localization may further reduce the amount of
logic from that cone needed to discharge the miter as depicted by the lightly shaded
region in Figure 3.4b. This localization often prunes the resulting subproblem to
tens or (few) hundreds of REGISTERs, regardless of the size of the corresponding
cone. The smaller subproblem is much more easier for a verification algorithm such
as reachability analysis or SAT-based interpolation to solve as compared to original
design.

TBV-based localization may be viewed as a generalization of using design
hierarchy boundaries [AMP04] or speculative merge points [HCC+00] to insert
cutpoints. TBV offers greater reduction potential through localization since it is
not limited to specific boundaries, and offers more robust refinement algorithms
(e.g., [Wan03]) in case the chosen cutpoints result in spurious mismatches. TBV
additionally enables a robust variety of synergistic transformations before and after
localization [MBP+04], unlike prior approaches.
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b) C1 ≡ C ′
1 – non inductive due to feedback

C1’

C1 C2

C2’

C2’

C2C1

C1’

C2’

C2C1

C1’

a) C1 ≡ C ′
1 – inductive

c) C1 ≡ C ′
1 – inductive due to speculative merging

C2 ≡ C ′
2 – non-inductive, amenable to TBV algorithms

C2 ≡ C ′
2 – non-inductive C2 ≡ C ′

2 – non-inductive

Figure 3.5: Advantages of applying TBV on spec-reduced design

TBV on the Original Design vs. Speculatively-Reduced Design

An interesting question is whether we need to run the transformation and verifica-
tion algorithms on the speculatively-reduced model. Would it not be equally pow-
erful to either apply transformations on the original design followed by induction-
based redundancy identification on the transformed design or perform induction-
based redundancy identification followed by the application of transformation and
verification algorithms on the simplified model? It is noteworthy that the benefits of
our technique to enhance redundancy identification cannot be fully realized without
the ability to process the speculatively-reduced model using TBV flows.

To illustrate the advantages of using speculative-reduction, consider the two
designs being equivalence checked in Figure 3.5(a). There are two components
C1 and C2. The changes made in C1 are such that induction-based techniques can
prove C1 ≡ C1’. However induction-based techniques cannot prove C2 ≡ C2’.
For the design in Figure 3.5(a), we can apply induction-based techniques to first
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merge the outputs of C1 and C2’ and have TBV algorithms tackle C2 ≡ C2’. Now
consider the design in Figure 3.5(b), where there is feedback from C2 to C1. In this
particular case, the equivalence check between C1 and C1’ is no longer inductive.
The inability to inductively prove the equivalence between C1 and C1’ will make it
doubly difficult for TBV algorithms since it now needs to prove both C1 ≡ C1’ and
C2 ≡ C2’. However, if we use speculative reduction as illustrated in Figure 3.5(c),
the feedback from C2 is no longer a bottleneck for induction to prove equivalence
between C1 and C1’.

Moreover, transformation and verification algorithms are more effective af-

ter the speculative merging. For example, in Figure 3.4, localization will not be able
to isolate the smaller redesigned portion for analysis without the speculative merg-
ing. Verification algorithms also face bottlenecks without speculative reduction.
Interpolation [McM03] is a verification algorithm that we have found to be very
useful to solve non-inductive miters. Experiments demonstrate that in the absence
of speculative reduction, interpolation rarely converges and has runtimes and mem-
ory consumption that are several orders of magnitude higher when compared to
application of interpolation in speculatively-reduced model. Speculative merging
also enables a pronounced synergistic increase in the reduction potential of other
transformations such as combinational rewriting [MCB06]. Rewriting techniques
can be used to find redundancies across both the designs being equivalence checked
if it is applied on the spec-reduced model. Rewriting techniques would be unable
to find such redundancies in the absence of speculative reduction.

Furthermore, certain methodologies may limit the type of transformations
which may be applied prior to the sequential redundancy identification. For ex-
ample, equivalence checking frameworks may use name- and structure-based com-
parisons to guess candidates [CP]. Prior transformations such as retiming with
intertwined resynthesis [BK01] may render such comparisons ineffective. As il-
lustrated in Figure 3.3, on the most complex problems it is imperative to lever-
age as robust a variety of transformation and verification algorithms as possible to
ensure that the truly correct candidates may be proven equivalent; otherwise, an
avalanche of resource-gated refinements may occur, resulting in suboptimal merg-
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ing. On such complex problems, we have found that either applying TBV only to
the sub-optimally-merged netlist (e.g., derived using induction alone to discharge
the miters) or applying TBV on the original model followed by induction-based
redundancy identification cannot compensate for the strength of applying TBV to
solve all miters of the speculatively-reduced model.

3.4 Refining the Redundancy Candidates

If a miter cannot be proven unreachable, its equivalence class must be refined to
separate the corresponding candidate from its representative. As discussed in Sec-
tion 3.2, there are two causes of such failed proofs: a miter is asserted (i.e., a trace
is generated which differentiates the corresponding candidates), or a miter cannot
be solved within the available resource limits.

As per Theorem 3.1, a trace asserting any of the miters in the speculatively-
reduced model must differentiate at least one pair of redundancy candidates in
the original design. Note, however, that the speculative merging may cause cer-
tain gates in the fanout of incorrectly-merged gates to either mismatch when they
should not, or to not mismatch when they should. An effective way to determine
precisely which candidates have been differentiated by the corresponding miter-
asserting trace is to simulate the original design with the input sequence illustrated
in that trace. By additionally injecting random stimulus to any don’t-cares therein
and extending the sequential length of that trace, we may obtain a useful set of pat-
terns from which we may refine all candidates. 2 However, if the processing of
a trace is not possible, the proof of Theorem 3.1 nonetheless indicates a minimal
subset of gates B ⊆ A which must be refined given only the knowledge of the set
A of gates whose miters have been asserted.

For miters which cannot be proven due to resource limitations, we may again
utilize the proof of Theorem 3.1 to choose a minimal subset of candidates to refine

2As noted in [Kue04], we have found that a trace showing how to differentiate one pair of re-
dundancy candidates often exposes an interesting corner-case behavior of the design which is also
of utility to further refine other candidates.
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by takingA to be the set of miters which could not be proven unreachable. However,
this subsetting tends to be of lesser practical utility since the gates in the fanout
of this refined subset will tend to become even more difficult to prove after the
refinement as illustrated in Figure 3.3, unless the subset B includes truly incorrect
candidates whose incorrectness was the cause of the difficulty of proving A \B.

3.4.1 Refinement Iterations

Based on the discussion above, poor equivalence classing due to incorrect candi-
date guessing or a very weak proof algorithm could result in a large number of
refinement loops in the algorithm of Figure 3.1. Excessive number of refinements
could be fatal to the scalability and conclusiveness of assume-then-prove paradigm,
especially when applied on netlists with millions of AND gates and hundreds of
thousands of REGISTERs. There are two approaches to avoid excessive number of
refinements:

1. If using a strong resource-intensive proof algorithm, it is important to obtain
a valid set of redundancy candidates from which the speculatively-reduced
model is constructed. This implies more resources to be allocated to identify
incorrect redundancy candidates through falsification using deeper symbolic
analysis and semi-formal runs. The techniques we discuss in Section 3.6 were
found to be particularly useful in such cases.

2. If using a faster and weaker proof algorithm such as k-step induction, it may
not be advisable to spent large amount of resources upfront trying to weed
out incorrect candidates. The highly inaccurate guessing in the beginning
implies that the speculatively-reduced model will be easier to analyze in the
earlier iterations. The approach is to make use of information from failed
proof attempts to infer future failed proofs and pro-actively refine equivalence
classes in the earlier iterations. We address these techniques in Section 3.4.2.
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3.4.2 Induction Counterexamples

A weaker proof algorithm such as k-step induction is often not resource intensive,
hence larger number of refinements is not necessarily a bottleneck when applying
induction in the “prove” step. However, to ensure scalability and applicability of
induction on designs with hundreds of thousands of gates, techniques nonetheless
must be utilized to speed up induction and reduce the overall number of refinement
iterations. K-step induction frameworks used to prove miters work as follows,

• Base Case - Validate that the miters are unassertable in the first k time-steps
starting from initial state.

• Inductive Case - Assuming that the miters are unassertable for the first k
time-steps starting from any state, check whether they can be asserted at time-
step k + 1.

The key observation is that when induction fails to prove a miter unassertable,
it will provide a trace starting from an inductive state showing how the miter can
be asserted. The original design may then be initialized into that inductive state,
then simulated using the input sequence from the counterexample [MCBJ08]. Any
PRIMARY INPUTs that were not assigned in the original induction trace can be ran-
domly assigned and this would provide us with an useful set of simulation patterns.
The simulation patterns can be used for two purposes.

• If the simulation pattern shows other miters also being asserted, we can refine
the particular redundancy candidates over which those miters were built with-
out relying upon a failed induction run on those miters. This saves significant
resources since simulation is often faster than induction.

• Secondly, refinement of a single equivalence class may lead to the creation
of multiple new equivalence classes. We can use the simulation patterns gen-
erated through simulating the induction trace to check if the gates in the new
equivalence classes can also be differentiated. Essentially, we are trying to

33



check whether an attempt to prove the gates in the newly generated equiva-
lence class would be destined to fail through induction during the next refine-
ment iteration. Every refinement weakens the induction hypothesis. If the
gates in the new equivalence classes can be differentiated using the prior sim-
ulation patterns, we can refine the new equivalence classes since a failed proof
attempt under a stronger induction hypothesis implies that proof attempts will
fail under a weaker induction hypothesis. This is referred to as proactive early

refinement since we are refining equivalence classes even without building
miters over the redundancy candidates in the new equivalence classes.

The induction counterexamples can be used for refining as noted above irrespective
of the nature of the SAT-solver used for induction, i.e., whether it is CNF-based
or circuit-based. In practice, we have observed that circuit SAT solver [KPKG02]
is much more powerful compared to a CNF-based SAT solver [MMZ+01] due to
its ability to produce minimal assignments to PRIMARY INPUTs in its counterex-
ample. The unassigned PRIMARY INPUTs can be randomly assigned which further
randomizes the inductive initial state. This enables a huge reduction in the number
of counterexamples generated by SAT-solver and thereby resources consumed by
SAT-solver. Without this capability, resimulation is often less effective, motivating
the use of approximating tricks such as distance-1 simulation [MCBE06]. Post-
processing CNF traces for minimal assignments [RS04] may be equally effective,
though at a considerable added cost.

3.5 Sequential Redundancy Removal Engine

Using the sequential redundancy identification framework, we may compute the ex-
act set of gates which are sequentially redundant. In theory, sequential redundancy
identification is capable of proving every unassertable target in the netlist, since the
unassertable targets correlate to gates which are semantically equivalent to 0. How-
ever, either due to computational resource limitations which result in suboptimal
redundancy identification, or due to targets which are truly assertable, some targets
may remain unsolved after the redundancy identification process.
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If any targets remain unsolved after the redundancy identification process,
one generally wishes to leverage the identified redundancy to simplify the netlist.
This process is called redundancy removal, wherein once a pair of redundant gates
are identified, the netlist is simplified by merging one of the gates onto the other.
We propose a transformation engine (EQV) as part of the TBV framework which
transforms the design through sequential redundancy removal. It is well known that
verification algorithms often benefit from netlist simplification based on sequential
redundancy removal [Kue04, MBP+04]. Examples of known algorithmic synergies
which benefit from redundancy elimination include: faster and deeper exhaustive
bounded search using SAT; greater reduction potential through transformations and
abstractions such as combinational rewriting, retiming, and localization reduction;
and enhanced inductiveness [MBP+04].

Encapsulating the sequential redundancy removal flow as a transformation
engine has many benefits. This enables us to apply an arbitrary sequence of engines
before EQV, to exploit characteristics of the problem which may enable alternate
algorithms such as structural symmetry detection engine ISO to more quickly re-
duce its domain – as well as after EQV, to leverage the sequential redundancy
removal as a synergistic preprocessing to subsequent engines. This flexibility is of-
ten critical for leveraging EQV in property checking, wherein redundancy removal
alone is often inadequate to solve the problem.

Encapsulating the sequential redundancy elimination flow as the EQV en-
gine has non-obvious benefits even within the “prove” step. For example, on very
large designs with millions of gates, the cost of computing an optimal set of equiv-
alence classes may become prohibitive. Additionally, if the design is non-inductive
(which is often the case), one would need expensive transformation and verification
algorithms to complete the proof. This implies that each refinement when would
be very expensive. It may thus be advantageous to start with a conservative, more
accurate, but incomplete set of equivalence classes. Starting with an accurate set of
equivalence classes will help avoid the most costlier refinements on the larger de-
sign. One can then perform redundancy identification in phases. E.g., we may first
instantiate an EQV that attempts only an accurate (yet incomplete) 1:1 REGISTER
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pairing. We may then leverage a more aggressive EQV instance on the suboptimal
speculatively-reduced model, attempting to find 1:1 gate pairings. This may be fol-
lowed by yet another EQV instance attempting to find general N :M gate pairings,
possibly leveraging a variety of other transformations in this flow to further reduce
the domain of the problem. For the largest designs, often the most efficient strategy
is that of finding efficient transformations that safely chip away at size, until more
exhaustive, albeit expensive, algorithms become applicable. In this example, we
may defer the need for heavy-weight proof analysis until the most deeply-nested
EQV instance when the problem domain is at its smallest, vs. suffer suboptimal
merging or prohibitive proof resources directly in the first EQV instance.

3.6 Falsification using Speculatively-Reduced Model

Theorem 3.1 implies that we may perform incomplete search upon the speculatively-
reduced model, and provided that none of the miters are asserted during that search,
the verification results obtained during that effort are directly valid for the corre-
sponding targets on the original design. This basically casts the miters from be-
ing assumption checkers [HCC+00] for a redundancy removal proof to being fil-

ters through which to confirm that any analysis performed upon the speculatively-
reduced model remains within the state-space for which the redundancy candidates
are correct – even if they are not correct in all reachable states. Note that such an
incomplete application is a generalization of the traditional use of these miters for
redundancy-removal proofs; any proven miter may be safely discarded, as it cannot
invalidate the analysis performed on the speculatively-reduced model.

For example, if we apply a sequence of test vectors to both models, and none
of the miters in the speculatively-reduced model are asserted during that simulation,
a target in the reduced model will be asserted if and only if that target is asserted
in the original design under that simulation. This observation in turn implies that
any number of symbolic evaluation steps – whether exact or underapproximate –
performed without asserting any of the miters preserves the results obtained upon
the targets during that analysis. This result allows us to exploit even redundancy
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that holds only for an initial bounded time-frame, but not across all time-frames,
to leverage the speculatively-reduced model for applications such as increasing the
depth to which bounded falsification may be performed on the targets. A notewor-
thy dual of this reduction is that of [Kue04], allowing unfoldings to exploit redun-
dancies that are proven to hold only after a certain number of time-steps. TBV
will yield such a reduction only if a technique such as retiming sufficiently skews
those gates to enable their merging. This result also allows us to construct and use
the speculatively-reduced model in alternative proof-incapable frameworks such as
simulators and hardware emulators. We have found several applications for this
theory.

First, we have found many cases where we could perform bounded falsifi-
cation on targets many times faster, and also deeper, on the speculatively-reduced
model than on the original design. Second, we have found this approach useful in
the candidate guessing process; after preliminary guessing via low-cost analysis of
the original design, we build a speculatively-reduced model and apply a sequence
of transformations to further reduce that model, and then apply more extensive
semi-formal analysis on that reduced model to further attempt to differentiate the
candidates.

Our third application allows us to reuse the knowledge that a and b cannot
be differentiated for times 0, . . . , i across refinements. In particular, if the equiv-
alence class containing a and b is unaltered, we may immediately infer that the
XOR of a and b cannot be asserted for times 0, . . . , i regardless of the refinement
of any other classes. Furthermore, if we refine the equivalence class containing a
and b resulting in miters (a XOR c) and (b XOR d), we may immediately infer that
these two new miters cannot be asserted for times 0, . . . , i. This optimization holds
because refinements only split a class into several new classes, but never group
gates from previously-incompatible classes. Practically, this application serves two
goals. First, it enables us to reuse the discharging of the induction hypothesis from
prior proof attempts to speed up later ones. Second, one may wish to intermix
semi-formal analysis to assert miters with proof analysis to demonstrate their un-
reachability; this optimization helps reuse falsification effort across refinements.
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Design Spec. Red. Spec. Red. Spec. Red. & Spec. Red. &
Info Disabled Enabled Cex Sim Cex Analysis

Name Gates Time (s) Time (s) Improve. Time (s) Improve. Time (s) Improve. Improve.
w.r.t. prev w.r.t. prev w.r.t. prev w.r.t. Col 3

IBUF 11424 9963.5 7525.1 1.32 × 1670.7 4.50 × 27 61.88 × 367.56 ×
SSC 16385 6493 5235 1.24 × 1121 4.67 × 74.5 15.05 × 87.15 ×
MIS3 18094 39752 6869 5.79 × 1156.7 5.94 × 88.9 13.01 × 447.45 ×
MIS1 21044 22928.2 1304.8 17.57 × 288.3 4.53 × 18.5 15.58 × 1240.05 ×
MIS2 22772 67861 1040.27 65.23 × 222.5 4.67 × 20.2 11.01 × 3353.91 ×
SDQ 26666 16736.3 7263.2 2.30 × 2082.6 3.49 × 84.8 24.56 × 197.14 ×
SBIU 30442 8408 4828 1.74 × 820.2 5.89 × 88.5 9.27 × 95.00 ×
DAA 31424 41027.9 32449.8 1.26 × 5926 5.48 × 199.4 29.71 × 205.14 ×
SMM 85574 846 83.5 10.13 × 81.6 1.02 × 8.5 9.6 × 99.20 ×
FIER 89943 158938 15028 10.57 × 9357.6 1.61 × 20.3 461.00 × 7845.16 ×
CIU 92232 6744.6 166 40.63 × 138.6 1.2 × 12.7 10.91 × 531.92 ×
L2 374977 172800 (4) 172800 (420) 105 × 28404.7 96.75 × 214.3 132.54 × 1346440 ×

Table 3.1: Induction-based redundancy identification results

In [NPMJ03], it is noted that one need not re-prove any miters that had no refined
gates in their fanin because the prior proof is guaranteed valid after the refinement.
We may extend our third application to generalize that of [NPMJ03] by noting that
the assertion of a miter over a and R

(

Q(a)
)

at time i only risks invalidating results
beyond time i for miters which contain a in their fanin.

3.7 Experimental Results

In this section we provide experimental results to illustrate the power of our tech-
niques. All experiments were run on a 2.1GHz POWER5 processor, using the IBM
internal transformation-based verification tool SixthSense [MBP+04].

We first provide experimental results for induction-based sequential redun-
dancy identification, focusing on the advantages of using speculative reduction and
proactive early refinement as described in Section 3.4.2 to improve scalability and
reduce runtime. The results for induction-based redundancy identification is pre-
sented in Table 3.1. The benchmarks include industrial sequential equivalence
checking examples as well as difficult industrial invariant checking examples. In
the sequential equivalence checking examples, designs optimized via manual or au-
tomatic sequential synthesis optimizations are compared against original circuits.
Four different flavors of SAT-based induction were run on these benchmarks for
redundancy identification. These include:
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1. SAT-based induction with speculative reduction disabled

2. SAT-based induction with speculative reduction enabled

3. SAT-based induction is done with speculative reduction enabled. In addition,
counterexample traces from induction are simulated on the original model
and the results of simulation are used to check for miters assertions [Kue04].

4. SAT-based induction is done with speculative reduction enabled. Counterex-
ample traces from induction are simulated on the original design. In addition
to using these traces to check if unsolved miters can be asserted, they are also
used to perform proactive early refinement as described in Section 3.4.2.

The first two columns in Table 3.1 indicate the name of the design and size of
the original netlist. Columns 3-9 indicate the runtime for each flavor of SAT-based
induction along with the improvement in runtime for each flavor as compared to
previous technique. Column 10 indicates the improvement in runtime when using
induction with speculative reduction and proactive early refinement compared to
default induction without speculative reduction.

Column 4 illustrates the importance of speculative reduction for improving
the scalability of induction-based redundancy identification. Speculative reduction
results in an order of magnitude speedup when compared to induction without spec-
ulative reduction. Simulation of induction counterexamples is surprisingly very
powerful. It enables 3–4 × speedup on average by transferring some of the burden
to solve the miters from SAT-based analysis to simulation-based analysis. Simula-
tion is often faster than SAT in asserting miters and counterexample simulation is
able to take advantage of this fact. The biggest surprise is the utility of proactive
early refinement, it enables an order of magnitude speedup over the use of coun-
terexample simulation. As illustrated through the experiments, combining specu-
lative reduction with counterexample simulation and proactive early refinement is
critical in improving the scalability of induction-based redundancy identification.

A particularly interesting testcase is L2. L2 is a property checking testcase
where certain features of the L2 cache are verified. The large arrays of the L2 cache
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Design Spec. Red. Spec. Red. Spec. Red. &
Info Disabled Enabled Cex Analysis

Name Gates Miters Miters Improvement Miters Improvement Improvement
Solved Solved w.r.t. prev Solved w.r.t. prev w.r.t. Col3

IBUF 11424 1970075 1588746 1.24 × 11978 132.64 × 164.47 ×
SSC 16385 1182197 794239 1.49 × 35554 22.34 × 33.29 ×
MIS3 18094 3351149 1374897 2.44 × 46505 29.56 × 72.13 ×
MIS1 21044 2850774 642594 4.44 × 13466 47.72 × 211.88 ×
MIS2 22772 3180878 351192 9.06 × 13784 25.49 × 230.94 ×
SDQ 26666 719262 567757 1.27 × 18456 30.76 × 39.07 ×
SBIU 30442 1705755 1054606 1.62 × 24062 43.83 × 71.00 ×
DAA 31424 4836934 4147228 1.67 × 44949 92.27 × 154.09 ×
SMM 85574 172579 161487 1.07 × 1944 83.07 × 88.88 ×
FIER 89943 40101056 5161148 7.77 × 7806 661.18 × 5137.37 ×
CIU 92232 334274 92709 3.61 × 4545 20.40 × 73.64 ×
L2 374977 6207648900 61660373 100.07 × 60234 1023.68 × 102439.66 ×

Table 3.2: Miters solved during induction-based redundancy identification

are blackboxed to enable formal analysis on the design. Since we are targeting
specific assertions to check certain properties of the design, some of the features of
L2 cache were turned off and this results in a large amount of redundancy in the
design. Using the techniques proposed in this dissertation, we were able to identify
all redundant gates that can be inductively proved in the design in approximately
214 seconds. If speculative reduction is disabled, we are only able to complete
4 iterations of the “assume-then-prove” meta algorithm before we hit the timeout
(which was set to 2 days or 172800 seconds). Based on the run which simulated
counterexamples to cancel unsolved miters, 6680 iterations are required to reach
the fixed-point. Since only 4 iterations were completed in 2 days, by extrapolating,
it would have taken almost 10 years to reach the fixed-point if we had continued
with the run without speculative reduction.

In order to understand the reason behind the improvement in runtimes through
the use of speculative reduction, counterexample simulation and proactive early re-
finement, we obtained more data from induction runs. In particular, we obtained
data on the total number of miters solved as well as the number of counterexamples
from induction during the whole process.

The data on total number of miters solved during induction-based redun-
dancy identification is presented in Table 3.2. For each benchmark (name and size
of original netlist listed in Columns 1 and 2), we present the total number of miters
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Design Spec. Red. Spec. Red. & Spec. Red. &
Info Enabled Cex Sim Cex Analysis

Name Gates Induction Induction Improvement Induction Improvement Improvement
Cexs Cexs w.r.t. prev Cexs w.r.t. prev w.r.t. Col 3

IBUF 11424 552623 13712 40.30 × 1561 8.78 × 353.83 ×
SSC 16385 202892 20974 9.67 × 1869 11.22 × 108.50 ×
MIS3 18094 368629 13060 28.23 × 2145 6.09 × 171.92 ×
MIS1 21044 230457 9310 24.75 × 1511 6.16 × 152.46 ×
MIS2 22772 136217 8275 16.46 × 1391 5.95 × 97.94 ×
SDQ 26666 177672 10827 16.41 × 1974 5.48 × 89.93 ×
SBIU 30442 372830 24403 15.28 × 4711 5.18 × 79.15 ×
DAA 31424 969845 49374 19.64 × 6118 8.07 × 158.49 ×
SMM 85574 157002 6097 25.75 × 380 16.04 × 413.03 ×
FIER 89943 5157805 638443 8.08 × 581 1098.87 × 8878.87 ×
CIU 92232 89946 8263 10.89 × 434 19.04 × 207.35 ×
L2 374977 29625219 271791 109.00 × 1756 154.78 × 16870.75 ×

Table 3.3: Induction counterexamples during redundancy identification

solved in each of the induction flavors and also indicate the improvement with re-
spect to previous technique listed in the table. A particular flavor of induction is
supposed to have 5 × improvement with respect to another flavor of induction if
the total number of miters solved by the different flavor is 5 × more than the total
number of miters solved by this induction flavor. We have not listed induction with
counterexample simulation in this table since the total number of miters solved us-
ing this flavor of induction is not different from the flavor of induction that just uses
speculative reduction.

As illustrated in Table 3.2, speculative reduction results in a 2 – 10 × re-
duction in the total number of miters solved by SAT. This is due to the fact that
speculative merging facilitates logic reduction in the fanout of the redundancy can-
didates. The propagation of these logic reduction changes results in reduction in
size of speculatively reduced netlist and number of distinct miters. The reduction
in total number of miters solved explains part of the speedup in induction obtained
through speculative reduction. Proactive early refinement further enables several
orders of magnitude reduction in the number of miters solved by SAT. There are
two reasons for this speedup, (1) Ability of early refinement to shield SAT from
even attempting to solve certain miters that are destined to fail through induction,
(2) The ability to prevent induction from solving the same set of unassertable miters
multiple number of times through reduction in the number of refinement iterations.
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Table 3.3 illustrates the advantage of using simulation to assert miters in-
stead of relying on SAT-based analysis. Columns 1 and 2 indicate design info,
Columns 3 – 8 provide details on number of counterexamples generated by SAT
during induction (which is the same as the number of miters asserted by SAT).
The columns also provide information on the improvement in terms of reduction in
the number of induction counterexamples when comparing between two different
flavors of induction. As illustrated in the table, use of counterexample simulation
enables an order of magnitude reduction in the number of counterexamples gen-
erated during induction. The reduction in number of counterexamples is due to
the ability of counterexample simulation to cancel unsolved miters. This reduces
the amount of work for SAT and explains the improvement in runtime when using
counterexample simulation in addition to speculative reduction. Proactive early re-
finement further reduces the number of induction counterexamples, in some cases
by several orders of magnitude. This is due to the ability to drastically reduce the
number of refinement iterations through early refinement of equivalence classes that
are destined to fail through induction.

The next set of experimental results illustrate the impact of using flexible
and robust set of transformation and verification algorithms to identify redundancy.
As our solution is more general than previous approaches, we have chosen our
experiments from difficult cases for which induction alone – even with variable-
depth unique-state constraints [BC00] – was inadequate to solve the targets. We
use the engines described in Section 2.1 as part of our TBV flow.

We present three sets of experiments in Table 3.4. The first set consists of
industrial sequential equivalence checking examples, where manually redesigned
circuits are compared against the original circuit. The redesigns include a variety
of techniques, from retiming and resynthesis to replication of subcircuitry for re-
duced propagation delay to outright re-encoding of portions of the design. FPU is a
floating-point unit; IFU is an instruction-fetch unit; SDQ is an issue queue; SMFC
is a memory flow controller; BIU is a bus interface unit; and FXU is a fixed point
unit. The second set consists of difficult industrial invariant checking problems.
SCNTL is an issue controller; and SMM is a memory management unit. The third
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Name / Original After Merging After Merging
Metric Model via Induction via TBV

FPU 135 s / 255 MB 2966 s / 789 MB
REGISTERS 29030 20470 11600
ANDs 336060 305000 166749
TARGETS 263 258 0

IFU 421 s / 412 MB 646 s / 832 MB
REGISTERS 80927 53402 33231
ANDs 645270 446579 296693
TARGETS 756 718 0

SDQ 1079 s / 128 MB 80 s / 98 MB
REGISTERS 3790 2765 1833
ANDs 22466 19224 10950
TARGETS 310 261 0

SMFC 2798 s / 357 MB 173 s / 523 MB
REGISTERS 39079 32797 17873
ANDs 270797 251273 151833
TARGETS 500 415 0

BIU 609 s / 326 MB 59 s / 448 MB
REGISTERS 27461 15018 11334
ANDs 150402 76830 61272
TARGETS 908 554 0

FXU 84 s / 236 MB 63 s / 274 MB
REGISTERS 12321 7395 4011
ANDs 76412 47935 31910
TARGETS 903 544 0

SCNTL 377 s / 192 MB 3065 s / 1113 MB
REGISTERS 12401 3195 2121
ANDs 57706 22983 15563
TARGETS 57 53 0

SMM 54 s / 448 MB 284 s / 295 MB
REGISTERS 2460 2214 1339
ANDs 70900 69611 45535
TARGETS 1 544 0

SYNTH1 9 s / 55 MB 18 s / 134 MB
REGISTERS 1998 1815 954
ANDs 14757 11396 5885
TARGETS 68 65 0

SYNTH2 2 s / 52 MB 15 s / 123 MB
REGISTERS 1568 924 720
ANDs 11649 8234 5733
TARGETS 242 72 0

SYNTH3 430 s / 388 MB 53 s / 175 MB
REGISTERS 5180 4192 3845
ANDs 64431 57753 51965
TARGETS 969 277 0

Table 3.4: Sequential Redundancy Removal results
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set, SYNTH1, SYNTH2, and SYNTH3, consists of sequential equivalence check-
ing problems, where the original circuits are compared to the result of applying
automatic retiming and resynthesis transformations using IBM’s internal sequential
synthesis tool.

The first column indicates the name of the corresponding design and the size
metric being tracked in the corresponding row. The second column reflects the size
of the target cones of the original, unreduced verification problem; simple struc-
tural hashing [KPKG02] was used to simplify them all. The sequential equivalence
checking targets represent miters over corresponding primary outputs. The third
column is the size of the original design after merging the gates proven equivalent
using only induction. The induction depths were chosen on a per-design basis to
minimize runtimes. The initial induction was limited to one hour to find the max-
imum depth at which any of the miters was proven; the reported results bounded
each induction run to that depth. We also disabled unique-state constraints [BC00]
if they did not yield greater merging. The fourth column is the size after merging
the gates proven equivalent using TBV flows, after a low-cost induction preprocess-
ing to eliminate the easier miters. The reported resources include all aspects of the
verification process, including candidate guessing.

These experiments clearly demonstrate that the TBV approach results in sig-
nificantly greater merging than possible with induction alone, and ultimately com-
pletes all unreachability proofs even though induction alone fails on most. Addi-
tionally, TBV is often faster than induction alone. Most of the TBV flows ultimately
relied upon using interpolation or the use of localization followed by reachability
analysis or interpolation to solve the more complex miters. Several exploited the
ability of transformations such as retiming and structural state folding to enhance
the inductiveness of targets [MBP+04]. Two flows relied upon identifying sequen-
tial redundancy in phases, starting with an accurate and conservative equivalence
classing, followed by transformations to further reduce the speculatively-reduced
model and another sequential redundancy identification using optimal equivalence
classing.

To illustrate the power of TBV in processing the speculatively-reduced model,
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FPU Initial LOC COM CUT LOC RCH
REGISTERS 11600 1008 959 927 29
ANDs 167347 23543 20409 18838 132 2875s
PRI. INPUTs 1091 1059 1058 726 38 789 MB
TARGETS 112 1 1 1 1 0
SDQ Initial COM ITP
REGISTERS 1833 1313
ANDs 11220 7728 70s
PRI. INPUTs 401 301 98 MB
TARGETS 61 52 0
SCNTL Initial EQV LOC CUT RET LOC RCH
REGISTERS 1605 1515 216 169 125 76
ANDs 11447 10572 819 690 540 312 3010s
PRI. INPUTs 183 183 153 60 189 52 1113 MB
TARGETS 62 44 1 1 1 1 0
SYNTH3 Initial COM MOD RET COM
REGISTERS 3856 2439 2437 7
ANDs 54701 32534 25196 39518 48s
PRI. INPUTs 854 428 428 1532 175 MB
TARGETS 701 294 294 294 0
SMFC Initial COM IND MOD COM MOD EQV
REGISTERS 17895 17888 17888 8678 8670 7062
ANDs 155992 123247 123207 71699 71000 60812 165s
PRI. INPUTs 523 522 522 363 325 275 523 MB
TARGETS 1044 745 707 117 117 106 0

Table 3.5: TBV results on speculatively-reduced model

we detail several TBV results in Table 3.5, where the columns indicate the size of
the problem after the corresponding transformation engine (indicated in the top
row) was run. Under the final engine in the TBV flow, the resources consumed by
the TBV flow on the speculatively-reduced model is listed. Note how the transfor-
mation engines synergistically reduce the size of the netlist [MBP+04]. For SDQ,
interpolation was sufficient to solve all the non-inductive miters. For FPU, iterative
application of localization renders three orders of magnitude reduction on the size
of one of the miters. For SYNTH3, state folding followed by retiming and resynthe-
sis is able to solve all the miters. Without the prior MOD, there are feedback loops
which preclude retiming from optimally retiming the netlist. For SMFC, the initial
EQV performed an accurate but incomplete redundancy candidate guessing. SAT-
based induction using the IND engine was then used to solve some of the miters.
The speculatively-reduced model was further simplified using an iterative applica-
tion of MOD engine. The simplified speculatively-reduced model now becomes
amenable to an aggressive application of induction-based sequential redundancy
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SDQ Spec. Red. ITP Spec. Red. ITP
Enabled Disabled

REGISTERS 1833 3655
ANDs 11220 51s 27429 178200 s
PRI. INPUTs 401 54 MB 401 10575.5 MB
TARGETS 61 0 2141 2141
IFU Spec. Red. LOC ITP Spec. Red. LOC ITP Spec. Red. ITP

Enabled Disabled Enabled
REGISTERS 33231 4 66421 15441 33231
ANDs 303620 22 646 s 686790 241461 178200s 303620 178200s
PRI. INPUTs 1371 10 832MB 1371 12156 1678 MB 1371 7184 MB
TARGETS 1035 1 0 33879 1 1 1035 435
SYNTH3 Original COM MOD RET COM EQV

Model
REGISTERS 5180 5180 5167 30 30 21
ANDs 64431 64408 49071 64952 47310 31590
PRI. INPUTs 854 854 930 6476 938 622
TARGETS 969 969 969 969 935 929
SYNTH4 Original COM MOD EQV Original COM EQV

Model Model
REGISTERS 4343 4343 4330 3370 4343 4343 3371
ANDs 53754 53688 40817 35111 53754 53688 52151
PRI. INPUTs 539 539 615 615 539 539 331
TARGETS 597 597 597 0 597 597 590
TLB Original COM ISO MOD EQV Original COM MOD EQV

Model Model
REGISTERS 58202 56766 3133 3122 1570 58202 56766 54042 28169
ANDs 609831 592728 20942 20935 19307 609831 592728 325575 247956
PRI. INPUTs 356 81 29 29 29 356 81 77 77
TARGETS 217 216 8 8 0 217 216 208 208

Table 3.6: Advantages of using speculatively-reduced model

removal and all the miters are solved.
To illustrate the advantage of applying the transformation and verification

algorithms on the speculatively-reduced model instead of the original model, we
performed a set of experiments which are detailed in Table 3.6. We also did a
couple of experiments to illustrate the utility of transformation algorithms in in-
creasing the scalability and applicability of sequential redundancy identification.
These results are also presented in Table 3.6. For SDQ, we ran the ITP engine
on both the speculatively-reduced model with miters and the original model with
miters. ITP was able to solve all the miters in the speculatively-reduced model in
51 seconds, consuming only 54 MB of memory. On the other hand, ITP was not
able to even solve one miter in the original model with miters, it hit the timeout of
48 hours and consumed a total of 10575 MB of memory. This clearly illustrates
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the advantage of utilizing the speculatively-reduced model for interpolation. For
IFU, we did three sets of experiments, (1) we ran localization followed by inter-
polation on the speculatively-reduced model, (2) we ran interpolation directly on
the speculatively-reduced model, (3) we ran localization on the original model with
miters. Localization enables several orders of magnitude reduction in the number
of REGISTERs for each miter (the statistics of only one such miter is shown in the
table) and this enables ITP to easily solve the miter. Though SDQ illustrated the
ability of interpolation to solve non-inductive miters, on bigger designs, the use of
ITP alone is not sufficient. This is illustrated in the application of ITP directly on
the speculatively-reduced model. ITP hits the timeout of 48 hours and there are 435
miters still unsolved at the time of the timeout. The advantage of utilizing specula-
tively reduced model for localization is illustrated through the size of the localized
model after the application of LOC on the original model with miters. Applying
LOC on the original design results in a localized design with 15,000 REGISTERs
as opposed to just 10 REGISTERs when applying LOC on the speculatively-reduced
model. Needless to say, ITP hits the timeout when applied on the localized model
obtained from applying LOC on the original design.

For SYNTH3, we apply the same sequence of transformations that was ap-
plied to the speculatively-reduced model (illustrated in Table 3.5) to the original
model followed by induction-based sequential redundancy removal using the EQV
engine. There are 929 targets still left unsolved after EQV engine illustrating the
advantage of applying TBV on the speculatively-reduced model. For SYNTH4 (a
sequential equivalence checking problem), we illustrate the advantage of using the
MOD engine to enable induction-based sequential redundancy removal.

TLB is a translation-lookaside buffer and is an equivalence checking prob-
lem where a simpler behavioral model of the TLB array used for simulation-based
functional verification is compared against the synthesized model of TLB array
consisting of large number of manual circuit design optimizations. Since arrays are
regular structures, we use the structural isomorphism detection engine (ISO) to first
equivalence-class isomorphic targets such that only representative target per equiv-
alence class needs to be solved by sequential redundancy removal engine. Use of
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Name Bounded Steps Completed Col. 4 Time to
Original Original Spec. Reduced Surpass Col. 2
Design with Miters with Miters Depth

FPU 17 12 24 604 s
IFU 12 8 14 795 s
SDQ 23 16 178 51 s
BIU 105 101 32082 10 s
SMFC 86 79 148 204 s
SCNTL 30 22 61 197 s
SMM 570 559 1131 591 s
SYNTH1 88 63 143 1092 s
SYNTH2 42 34 45 1716 s
SYNTH3 66 51 70 2508 s

Table 3.7: Search depths reached within one hour

ISO followed by MOD enables a huge reduction in the size of the netlist which en-
ables induction-based EQV engine to solve all the miters. Without ISO, the problem
is too big to be solved by induction-based EQV engine.

To illustrate the advantage of utilizing the speculatively-reduced model for
incomplete search, we performed experiments to assess the effectiveness of SAT-
based bounded analysis which are detailed in Table 3.7. We ran independently on
the targets of the original design (Column 2); on the miters validating the equiva-
lence classes on the original design without speculative merging, e.g., if using such
bounded analysis to guess the redundancy candidates (Column 3); and on the corre-
sponding miters of the speculatively-reduced model after a sequence of inexpensive
transformations (Column 4). Recall that the miters are a superset of the original
targets, and that our SAT-solver integrates redundancy removal algorithms; we ad-
ditionally ran COM on the designs of columns 2 and 3 prior to unfolding. These
columns indicate the bounded depth reached within a one-hour time limit, inclusive
of all transformations. The fifth column indicates how long it took to reach the
depth of the second column using the speculatively-reduced model. As expected,
the third column attains a lesser depth than the second, illustrating how SAT-based
candidate guessing tends to degrade due to the increased number of targets. Note
that the fourth column enables orders of magnitude deeper miter validation in cases,
in addition to significantly deeper validation of the original targets. The fifth col-
umn further illustrates the speed benefit of the fourth.
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3.8 Related Work

Techniques for identifying redundancy in combinational designs have become quite
robust, using an efficient hybrid of random simulation, BDD-based analysis, and
SAT-based analysis [KPKG02, Kue04, GPB00]. These techniques may be readily
extended to sequential designs to merge gates which may be demonstrated to be
redundant in any possible state (reachable or unreachable), effectively treating state
elements as PRIMARY INPUTs during their analysis. While such an approach is
useful for efficiently reducing the size of sequential designs, it is too weak to iden-
tify gates which are redundant in all reachable states, but do not appear redundant
in certain unreachable states.

There have been several approaches to compensate for the weakness of com-
binational redundancy removal upon sequential designs. For example, Huang et al.
proposed a heuristic approximate reachability approach to capture certain unreacha-
bility constraints in an equivalence checking framework [HCC+00]. The technique
of van Eijk uses BDD-based induction to demonstrate that suspected redundancy
candidate gates truly are redundant [vE98]. Bjesse et al. increased the scalability of
induction-based sequential redundancy removal by applying SAT instead of BDDs,
and by using a complete variant of induction [BC00]. These approaches help to
prevent spurious mismatches in unreachable states without suffering the computa-
tional expense of exact reachability analysis. However, some inconclusive results –
which must be conservatively treated as mismatches – are still a practical inevitabil-
ity with such techniques. Reachability analysis is computationally expensive, and
the approximation necessary for its scalability weakens its conclusiveness; resource
bounds weaken the conclusiveness of even complete techniques such as variable-
depth unique-state induction [BC00] on larger designs.

The approach of using speculative reduction to enable faster and scalable
induction-based sequential redundancy identification is also discussed in [MCBJ08,
LC06]. In [MCBJ08], the authors further discuss the use of induction counterex-
amples and REGISTER partitioning to improve the scalability of induction-based
sequential redundancy identification.
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Chapter 4

Structural Reparameterization and

Localization

4.1 Overview

As discussed in Chapter 3, use of a transformation-based verification framework
consisting of a robust variety of synergistic transformation and verification algo-
rithms is critical in ensuring the scalability and applicability of a sequential redun-
dancy identification framework. Of particular importance are REGISTER reduc-
ing transformations such as localization and retiming, whose application is often
unavoidable to identify all redundancy on designs with hundreds of thousands of
REGISTERs. Though retiming and localization can enable dramatic REGISTER re-
ductions, they have the drawback of increasing the PRIMARY INPUT count in the
transformed netlist [KB01, WHL+01, MBP+04]. Automatic formal verification
techniques generally require exponential resources with respect to the number of
PRIMARY INPUTs of a netlist. For example, the complexity of a transition rela-
tion may grow exponentially with respect to the number of PRIMARY INPUTS, in
addition to REGISTERs. The initial state encoding of a netlist may also grow expo-
nentially complex with respect to the number of PRIMARY INPUTs used to encode
that relation. Symbolic simulation – used for bounded model checking and induc-
tion – may require exponential resources with respect to the number of PRIMARY
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INPUTs multiplied by the unfolding depth. A large PRIMARY INPUT count may
thus render proof as well as falsification efforts inconclusive and thus can be bottle-
neck to scalable redundancy identification.

In this chapter, we propose a novel set of fully-automated techniques to en-
able maximal reduction of PRIMARY INPUTs in sequential netlists.

First, we present a novel form of reparameterization: as a sound and com-
plete structural abstraction. We prove that this technique renders a netlist with PRI-
MARY INPUT count at most a constant factor of REGISTER count, and discuss how
it heuristically reduces REGISTER count and correlation. These reductions may
thereby enhance the application of a variety of verification and falsification algo-
rithms, including semi-formal search and reachability analysis. More significantly,
our structural reparameterization enables synergistic application with various other
transformations such as retiming [KB01] and localization [WHL+01], which over-
all are capable of yielding dramatic iterative netlist reductions.

Second, we present a novel min-cut based localization refinement scheme
tuned for yielding an overapproximated netlist with minimal PRIMARY INPUT count.
Unlike traditional localization approaches which refine entire next-state functions
or individual gates, ours augments gate-based refinement by adding gates within a
min-cut over the combinational logic driving the localized cone to minimize local-
ized PRIMARY INPUT count. We also address the use of localization to simplify
initial value logic. Complex initial value cones arise in a variety of applications
such as retiming, and may otherwise be fatal to proof analysis. Localization re-
finement algorithms may be used to reduce the PRIMARY INPUT count of such
logic, effectively attempting to overapproximate the initial states of the design in a
property-preserving manner.

Third, we detail the synergy that these reparameterization and localization
transformations have with each other, and also with other transformations such
as retiming and redundancy removal [vE98, KPKG02, MBPK05]. For example,
the former approaches break interconnections in the design and reduce correla-
tion among its REGISTERS, enabling greater REGISTER reductions through sub-
sequent retiming and localization. Retiming and localization eliminate REGISTERS

51



which constitute bottlenecks to the reduction potential of reparameterization, en-
abling greater PRIMARY INPUT reductions through subsequent reparameterization.

4.2 Structural Reparameterization

In this section we discuss our structural reparameterization technique. We prove
the correctness and optimality of this fully-automated abstraction, and discuss the
algorithms used for performing the abstraction as well as for lifting abstract traces
to ones consistent with the original netlist.

Definition 4.1. Consider a cut NC ‖NC of netlist N where NC comprises PRIMARY

INPUTS and combinational logic but no REGISTERS or target gates. A structural

reparameterization of N is a netlist N ′ = N ′
C ‖ NC such that VC of N is trace-

equivalent to V ′
C of N ′ under the bijective mapping implied by the composition

onto NC .

Theorem 4.1. Let NC ‖ NC be a cut of netlist N , and N ′ = N ′
C ‖ NC be a struc-

tural reparameterization of N . The gates of NC in composition NC ‖NC are trace-
equivalent to those in N ′

C ‖NC under the reflexive bijective mapping.

Proof. By Definition 2.17, any gate u ∈ NC which sources an edge whose sink is in
NC , or is the initial value of a REGISTER in NC , is an element of VC . Definition 2.10
thus implies that we may evaluate NC of N from valuations to VC independently of
valuations to gates inNC \VC; similarly for N ′ and V ′

C . Since we compose each gate
of VC onto a trace-equivalent gate of V ′

C , this implies thatNC ofN is trace-equivalent
to NC of N ′.

Theorem 4.1 is related to the result that simulation precedence is preserved
under Moore composition [GL94]. This theorem establishes the soundness and
completeness of our structural reparameterization: we wish to replace NC by a
simpler netlist which preserves trace-equivalence, while ensuring that every tar-
get is in C and thereby preserving property checking. Numerous aggressive state-
minimization techniques have been proposed for such purposes such as bisimula-
tion minimization; however, such approaches tend to outweigh the cost of invariant
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1. Compute a cut NC ‖NC of N using an s-t min-cut algorithm, specifying the
PRIMARY INPUTs as s, and the initial value gates, next-state function gates,
REGISTERs, and target gates as t.

2. Compute the range of the cut as the set of minterms producible at VC as a
function of the REGISTERs in its combinational fanin.

3. Synthesize the range via the algorithm of Figure 4.2. The resulting netlist
N ′

C is combinational, and includes V ′
C

which is trace-equivalent to VC under composition with NC .

4. Replace each v ∈ VC by its correspondent in V ′
C , yielding abstract netlist

N ′ = N ′
C ‖NC .

Figure 4.1: Structural reparameterization algorithm

checking [FV99]. Structural reparameterization is a more restrictive type of ab-
straction, though one which requires only lower-cost combinational analysis and is
nonetheless capable of offering dramatic enhancements to the overall verification
process.

We use the algorithm depicted in Figure 4.1 to perform the structural repa-
rameterization. In Step 1, we compute an s-t min-cut of N . In Step 2, we compute
the range of the cut using well-known algorithms as follows. For each ci ∈ VC , we
introduce a distinct parametric variable pci

, and we denote the function of ci – over
REGISTERs and PRIMARY INPUTs in its combinational fanin – as f(ci). The range
of the cut is ∃I.

∧|VC |
i=1

(

pci
≡ f(ci)

)

. In Step 3, we compute the replacement logic
for NC from the range. The replacement gate rci

for ci may be computed using the
algorithm of Figure 4.2, assuming that the range is represented as a BDD.1 Note
that the approach of [KS00] may also be used for this synthesis; the algorithm of
Figure 4.2 is merely an alternative included herein for completeness, implemented
using common algorithms and applicable to BDDs with inverted edges. When com-
pleted, each produced gate rci

is trace-equivalent to ci.
1In [CCK04], it is proposed to perform the range computation for symbolic simulation using

SAT; their technique is also applicable in our framework for structural reparameterization.
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for (i = 1, . . . , |VC |) { // Process i in rank order of variables pci
in BDD range

bi = ∃pci+1
, . . . , pcn

.range ;
forced 0i = ¬bi|pci

=1;
forced 1i = ¬bi|pci

=0;

// SYNTH creates logic gates from BDDs. It creates a distinct PRIMARY INPUT to
// synthesize each pci

. It processes “forced” terms using a standard multiplexor-based
// synthesis, using rc1 , . . . , rci−1

as selectors for nodes over pc1 , . . . , pci−1
variables,

// and using REGISTERs as selectors for nodes over their corresponding variables.
// OR, AND, NOT create the corresponding gate types.
rci

= OR
(

SYNTH ( forced 1i ),
AND ( SYNTH (pci

),
NOT ( SYNTH ( forced 0i ) ) )

)

;
}

Figure 4.2: Range synthesis algorithm

Figure 4.3a illustrates an example netlist, where we wish to reparameter-
ize a cut at gates g1 and g2. Gate g1 has function i1 6≡ r1, and g2 has func-
tion i2 ∨ (i3 ∧ r2), where i1, i2, i3 ∈ I and r1, r2 ∈ R. The range of this cut is
∃i1, i2, i3.

(

(pg1
≡ (i1 6≡ r1)) ∧ (pg2

≡ (i2 ∨ (i3 ∧ r2)))
)

which simplifies to >. Re-
placement gates rg1

and rg2
are thus parametric inputs pg1

and pg2
, respectively, and

r1 and r2 are eliminated from the support of V ′
C as illustrated in Figure 4.3b. While

this abstraction is primarily intended for input elimination, this example illustrates
its heuristic ability to reduce correlation between REGISTERs, here breaking any
correlation through N1 between the next-state functions of r1 and r2 and their re-
spective present-state values. Additionally, note that if N2 does not depend upon
either of these REGISTERs (say r2), that REGISTER will be eliminated from the
abstracted netlist by reparameterization alone, illustrating the heuristic REGISTER

elimination capability of this technique. This correlation reduction synergistically
enables greater structural reductions through other transformation techniques such
as retiming, as will be discussed in Section 4.4.

Theorem 4.2. The maximum number of PRIMARY INPUTs of the abstracted netlist
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Figure 4.3: Reparameterization example

N ′ generated by the algorithm of Figure 4.1 is |T | + 2×|R|.

Proof. An s-t min-cut algorithm may be guaranteed to return a netlist cut with
|VC| ≤ min(|s|, |t|), as follows from the following analysis. The bound of |s| fol-
lows from the existence of a cut where C=s. Noting that the min-cut is seeded with
s=I , this guarantees that our algorithm cannot increase input count. The bound of
|t| follows by automatically preprocessing the netlist to ensure that each element of
t has indegree of one,2 and selecting C = t. The seeded set t comprises the target
gates, as well as the REGISTERs’ initial value and next-state function gates – a set
of cardinality |T | + 2 × |R|. The resulting cut VC may thus be upper-bounded in
cardinality by min(|I|, |T | + 2 × |R|). At most one input is required per element
of V ′

C in N ′, used in the synthesis of the parametric variable for that cut gate. The
structural reparameterization thus replaces the |I| PRIMARY INPUTs of NC with the
|V ′

C| PRIMARY INPUTs of N ′
C .

Though we also add R to t, this does not alter the above bound because the
2This preprocessing entails “splitting” a gate v into gates v1 and v2. Gate v1 has input connectiv-

ity and type identical to that of v, and fans out exclusively a new buffer gate v2, which in turn inherits
all fanout references of v (including fanout edges, as well as target and initial value references). A
similar approach is used to ensure that s ∩ t = ∅ in Step 1 of the algorithm of Figure 4.1, e.g., in
case a next-state function is also an input.
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only gates sourcing an edge into the REGISTERs – their next-state functions – are
seeded into C. This inclusion serves only to facilitate compositional reasoning, in
that REGISTERs in the support of the synthesized range will appear in N ′ – whereas
NC and N ′

C are disjoint.
Let U represent the set of gates which contain an input in their combinational

fanin. Straight-forward analysis will demonstrate that N ′ will have at most (|T ∩

U | + |{r ∈ R :Z(r)∈ U}| + |{r ∈R : ∃u1 ∈ U.(u1, r)∈E}|) PRIMARY INPUTs,
which often yields a significantly tighter bound in practice.

There are several noteworthy points relating to Theorem 4.2. First, note that
at most one parametric input may be required per REGISTER for abstract initial val-
ues. This illustrates the duality between structural initial values and reachable state
data, which is often represented with one variable per REGISTER. Certain tech-
niques have been proposed which lock reachability data into structural initial values.
For example, retiming [KB01] uses symbolic simulation to compute retimed initial
values. If an input is retimed by k time-steps, there may be k unfolded copies of
that input in the retimed initial values. Our structural reparameterization offsets this
input amplification within the initial value data, similarly to how reparameterizing
symbolic simulators operate [MKK+02, CCK04]. As another example, one may
underapproximate the reachable states (e.g., via symbolic simulation), then form a
new netlist by altering the initial values of the original netlist to reflect the resulting
state set [AS04, CCK04]. Second, aside from initial values, note that at most one
parametric input per REGISTER is necessary for abstract next-state functions. This
bound has significant potential for enhancing a variety of verification paradigms,
especially when coupled with synergistic REGISTER-reduction techniques (e.g., lo-
calization and retiming).

Because our abstraction preserves trace-equivalence of all targets in NC ,
demonstrating that a target cannot be asserted within a bounded or unbounded time-
frame on the abstracted netlist implies the same result on the original netlist. How-
ever, if a trace is obtained asserting a target in the abstracted netlist, that trace must
be lifted to indicate an assertion of the corresponding target in the original netlist.
Our algorithm for trace lifting is provided in Figure 4.4. In Step 1, we simulate
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1. Given partial trace p′ of N ′, fully populate that trace up to the necessary
length to assert the abstracted target, using binary simulation as per Def-
inition 2.10 and injecting arbitrary values to any don’t cares (unassigned
values) of any PRIMARY INPUTs.

2. Cast a satisfiability check over VC to obtain the same sequence of valuations
as witnessed to V ′

C in the populated trace p′. This check must be satisfiable
since V ′

C is trace-equivalent to VC under composition with NC , and yields
trace p′′.

3. Return trace p produced by composing values to NC from p′ with values to
NC from p′′.

Figure 4.4: Structural reparameterization trace lifting algorithm

the abstracted trace to ensure that we have adequate deterministic valuations to V ′
C

and R′ to enable the lifting. This is necessary because many verification algorithms
produce partial traces, where certain valuations may be omitted for certain gates
at certain time-steps. For example, in Figure 4.3b, parametric input rg1

replaced
gate g1 of function i1 6≡ r1, eliminating r1 from the support of V ′

C . The abstracted
trace p′ is thus less likely to include valuations to r1. In order to lift p′, and thereby
provide the proper sequence of valuations to i1 to yield an identical sequence of
valuations to VC, the trace-lifting process must be aware of the valuations to r1.
After simulation populates the necessary valuations to p′, a bounded satisfiability
check in Step 2 will yield a trace p′′ over NC which provides the identical sequence
of valuations to VC . This check tends to require only modest resources regardless of
netlist size, since REGISTER valuations in p′ effectively break the k-step bounded
analysis into k one-step satisfiability checks, each injecting the netlist into the state
reflected in the corresponding time-step of the trace. Step 3 splices p′ and p′′ to-
gether, producing a consistent trace over the original netlist asserting the original
target. This algorithm is similar to those for lifting traces over localized netlists
(e.g., [CGKS02]); its primary difference is the binary simulation step, which re-
duces satisfiability resources and is enabled due to the soundness and completeness

of our abstraction as per Theorem 4.1.
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Optimality. Note that the algorithm of Figure 4.2 uses a single parametric input
per cut gate. One may instead attempt a more aggressive synthesis of the range,
using dlog2me variables to directly select among them possible minterms on a per-
state basis (for maximal m), similarly to the approach proposed in [JG94]. While
this may yield heuristically lesser input count, we have found this approach to be
inferior in practice since dlog2me is often nearly equivalent to the cut-width due to
the density of the range, and since the resulting encoding tends to be of significantly
greater combinational complexity resulting in an increase in the analysis resources
needed by virtually all algorithms, including simulation, satisfiability, and BDD-
based algorithms (the latter was also noted in [AJS99]).

We may readily eliminate the |T | contribution of the bound proven in The-
orem 4.2 by using the structural target enlargement technique of [BKA02]. In par-
ticular, we may replace each target ti ∈ T by the synthesis of the characteristics
function of the set of states for which there exists an input valuation which asserts
that target, i.e., by ∃I.f(ti).

We utilize an s-t min-cut algorithm to ensure maximal input reductions as
per Theorem 4.2. However, the range computation of the resulting cut may in cases
be prohibitively expensive. It therefore may be desired to choose a cut with larger
cardinality, weakening reduction potential in favor of computational efficiency –
though iterative abstractions may be performed to ultimately converge upon the
min-cut with lesser resources. In [MKK+02] it is proposed to reparameterize a
group U of a candidate cut VC to eliminate PRIMARY INPUTs IU which are in the
combinational fanin of U but not VC \ U . This reduction may be accomplished in
our framework by selecting a cut of VC = U ∪ (I \ IU), noting that any PRIMARY

INPUTs in VC will merely be replaced by other PRIMARY INPUTs, hence may effec-
tively be treated as non-quantifiable variables when computing the range (similarly
to REGISTERs in NC). We have found that an efficient way to select suboptimal
cuts for incremental abstraction is to compute min-cuts over increasing subsets of
the desired cut, enabling the earlier abstractions to simplify later abstractions by
iteratively decreasing |I|.
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1. Begin with an initial abstraction A of N such that T ⊆ C.

2. Attempt to prove or falsify each target in A.

3. If the target is proven unreachable, this result is valid for N ; return this result.

4. If a trace is obtained asserting the target in A, search for a corresponding trace in
N . If one is found, return this result.

5. Otherwise, the trace over A is spurious. Identify a refinement of A – i.e., a set of
gates to move from C to C – to eliminate the spurious trace. Repeat Step 2 with
the refinement.

Figure 4.5: Localization refinement algorithm

4.3 Min-Cut Based Localization

Definition 4.2. A localization A of N is a netlist obtained by computing a cut of
N such that T ⊆ C, and by replacing VC by a set of PRIMARY INPUTs V ′

C of netlist
N ′

C , resulting in A = N ′
C ‖NC . This is referred to as injecting cut-points to VC .

Localization differs from the structural reparameterization of Section 4.2 in
that the localized netlist only trace-contains the original netlist. Thus verifying the
localized netlist in place of original netlist is sound but incomplete. Because the
overapproximation through localization may result in a spurious assertion of a tar-
get, refinement is often used to tighten the overapproximation by increasing the
size of C, e.g., using the algorithm of Figure 4.5. For larger netlists, the local-
ization may contain many thousands of PRIMARY INPUTs when using traditional
approaches of selecting VC to comprise only REGISTERs and PRIMARY INPUTs
(e.g., [WHL+01, GGYA03]), or of refining individual gates. This large input count
tends to render the BDD-based reachability analysis which is commonly used for
the proof analysis in Step 2 infeasible. In [WHL+01, Wan03], this problem is ad-
dressed by further overapproximating the localization by computing an s-t min-cut

between its PRIMARY INPUTs and sequentially-driven gates (i.e., gates which have
a REGISTER in their combinational fanin), and injecting cut-points to the resulting
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1. Select a set of gates to add to the refinement A′ of A using an arbitrary
algorithm. Let 〈C ′, C

′
〉 be the cut of N corresponding to A′.

2. Compute an s-t min-cut 〈C1, C1〉 over N , with all gates in C
′ as t, and

I ∪ (R ∩ C′) as s.

3. Add C1 to the refinement A′.

Figure 4.6: Min-cut based abstraction refinement algorithm

cut gates to significantly reduce localized PRIMARY INPUT count. When a trace is
obtained on the post-processed localization, an attempt is made to map that trace
to the original localization. If the mapping fails, in [Wan03] various heuristics are
proposed to select REGISTERs to add for the next localization refinement phase,
instead of directly addressing the causal post-process cut-point injection.

The min-cut based localization refinement scheme we have developed to
minimize PRIMARY INPUT growth is depicted in Figure 4.6. In Step 1, a new
localization A′ is created from A by adding a set of refinement gates, which may
be selected using any of the numerous proposed refinement schemes (e.g., [Wan03,
CGKS02]). For optimality, however, we have found that the refinement should be
at the granularity of individual gates vs. entire next-state functions to avoid locking
unnecessary complex logic into the localization. In Step 2, an s-t min-cut 〈C1, C1〉 is
computed over N . In Step 3, the gates of C1 are added to A′ to ensure that A′ has as
few PRIMARY INPUTs as possible while containing the original refinement of Step
1. Note that the newly-added gates are all combinational because all REGISTERs
not already in A′ are seeded into s, hence cannot be in the set (C1) added to A′.

Unlike the approach of [WHL+01, Wan03], which eliminates gates from
the logic deemed necessary by the refinement process hence is prone to introduc-
ing spurious counterexamples, our min-cut based localization adds combinational
logic to the refinement to avoid this risk while ensuring minimal PRIMARY INPUT

count. While the overapproximate nature of localization may nonetheless result
in spurious counterexamples, our approach avoids the secondary overapproxima-
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tion of theirs which is done without refinement analysis to heuristically justify its
validity. Our more general approach also avoids adding unnecessary REGISTERs
during refinement, since it has the flexibility to select which combinational logic to
include. In our experience, many refinements may be addressed solely by altering
the placement of the cut within the combinational logic. Additionally, our approach
is often able to yield a localization with lesser PRIMARY INPUT count due to its
ability to safely inject cut-points at gates which are sequentially-driven by REG-
ISTERs included in the localization, which their REGISTER-based localization does
not support and their combinational cut-point insertion disallows to minimize its in-
troduction of spurious counterexamples. Finally, our approach enables localization
to simplify complex initial value cones, as the inclusion of REGISTER r does not
imply the inclusion of its initial value cone. Only the subset of that cone deemed
necessary to prevent spurious counterexamples will be added during refinement.
This initial-value refinement capability has not been addressed by prior research,
despite its utility – e.g., when coupled with techniques which lock reachability data
into initial values such as retiming [KB01].

In a transformation-based verification framework [KB01, Bau02], one could
attempt to reduce the PRIMARY INPUT count of an arbitrarily-localized netlist by
using the structural reparameterization of Section 4.2 instead of using a min-cut
based localization refinement scheme, or of overapproximately injecting cut-points
to a combinational min-cut thereof as proposed in [WHL+01]. As per Theorem 4.2,
this synergistic strategy is theoretically able to reduce PRIMARY INPUT count to
within a factor of two of REGISTER count. This bound is only possible due to the
ability of reparameterization to abstract sequentially-driven logic. In contrast, the
min-cut approach of [WHL+01] is taken with t being the set of all sequentially-
driven gates, which is often much larger than the set of REGISTERs – hence PRI-
MARY INPUT count may remain arbitrarily larger than REGISTER count with their
approach. Reparameterization is thus a superior PRIMARY INPUT-elimination strat-
egy compared to the cut-point insertion of [WHL+01], and has the additional bene-
fit of retaining soundness and completeness. Nevertheless, the dramatic PRIMARY

INPUT growth which may occur during traditional localization approaches often
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entails exorbitant resources for reparameterization to overcome on large netlists.
We have therefore found that an PRIMARY INPUT-minimizing localization scheme
such as ours is necessary to safely minimize PRIMARY INPUT growth during local-
ization, to in turn enable the optimal PRIMARY INPUT elimination of reparameter-
ization with minimal resources.

4.4 Transformation Synergies

In a transformation-based verification (TBV) framework [KB01, Bau02], various
algorithms are encapsulated as engines which each receive a netlist, perform some
processing on that netlist, then transmit a new, simpler netlist to a child engine. If
a verification result (e.g., a proof or counterexample) is obtained by a given en-
gine from a child engine, that engine must map that result to one consistent with
the netlist it received before propagating that result to its parent – or suppress it
if no such mapping is possible. Synergistic transformation sequences often yield
dramatic iterative reductions – possibly several orders of magnitude compared to a
single application of the individual techniques [MBP+04]. In this section we detail
some of the synergies enabled and exploited by our techniques.

Theorem 4.2 illustrates that all REGISTER-reducing transformations (e.g.,
retiming [KB01], redundancy removal [KPKG02, MBPK05], localization [WHL+01],
and structural target enlargement [BKA02]) synergistically enable greater PRIMARY

INPUT reductions through structural reparameterization. For example, retiming
may find a minimal-cardinality REGISTER placement to eliminate reparameteri-
zation bottlenecks caused by their arbitrary initial placement. Localization injects
cut-points to the netlist, which when reparameterized enable reductions even at
deep gates which previously had no PRIMARY INPUTs in their combinational fanin.
Redundancy removal and rewriting may enable s-t min-cut algorithms to identify
smaller-cardinality netlist cuts.

In addition to its PRIMARY INPUT reductions, structural reparameterization
reduces REGISTER correlation as per Figure 4.3b. As with redundancy removal, this
often enables subsequent localization to yield greater reductions, since the heuristic
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abstraction algorithms are less likely to identify unnecessary REGISTERs as being
required to prevent spurious counterexamples. We have found iterative localization
and reparameterization strategies to be critical to yield adequate simplifications to
enable a proof or a counterexample result on many complex industrial verifica-
tion problems. The concept of iterative localization strategies was also proposed
in [GGYA03], leveraging the heuristics inherent in the SAT algorithms used for
the abstraction to identify different subsets of the netlist as being necessary across
the nested localizations, in turn enabling iterative reductions. Our TBV approach
enables significantly greater reduction potential, since it not only allows the use
of differing abstraction heuristics across nested localizations, but also allows ar-
bitrary transformations to iteratively simplify the netlist between localizations to
algorithmically – not merely heuristically – enable greater localization reductions.
In cases, the result enabled through our iterative reductions was a spurious local-
ization counterexample which could be effectively used by the causal prior local-
ization engine for refinement. This illustrates the utility of our synergistic transfor-
mation framework for the generation of complex counterexamples for abstraction
refinement, enabling a more general refinement paradigm than that of prior work,
e.g., [WHL+01, Wan03, GGYA03].

Retiming is limited in its reduction potential due to its inability to alter the
REGISTER count of any directed cycle in the netlist graph, and its inability to re-
move all REGISTERs along critical paths of differing REGISTER count between
pairs of gates [LS91]. Both reparameterization and localization are capable of elim-
inating such paths, enabling greater REGISTER reductions through retiming. This is
illustrated in Figure 4.3b, where reparameterization eliminates the directed cycles
comprising r1 and r2, enabling a subsequent retiming to eliminate those REGISTERs
in Figure 4.3c. Retiming has the drawback of increasing PRIMARY INPUT count
due to the symbolic simulation used to calculate retimed initial values [KB01]. Both
reparameterization and our min-cut based localization are capable of offsetting this
PRIMARY INPUT growth, enabling retiming to be more aggressively applied with-
out risking a proof-fatal PRIMARY INPUT growth, as we have otherwise witnessed
in practice.
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S4863 [vE98] Initial COM RET COM CUT Initial COM CUT RET Resources
REGISTERs 101 101 37 37 21 101 101 34 0 1 sec
PRI. INPUTs 49 49 190 190 37 49 49 21 21 34 MB

S6669 [vE98] Initial COM RET COM CUT Initial COM CUT RET
REGISTERs 303 186 49 49 0 303 186 138 0 1 sec
PRI. INPUTs 80 61 106 81 40 80 61 40 40 35 MB

SMM Initial COM LOC CUT LOC CUT LOC CUT
REGISTERs 36359 33044 760 758 464 167 130 129 229 sec
PRI. INPUTs 261 71 2054 666 366 109 135 60 291 MB

MMU Initial COM LOC CUT LOC CUT RET COM CUT
REGISTERs 124297 67117 698 661 499 499 133 131 125 1038 sec
PRI. INPUTs 1377 162 1883 809 472 337 1004 287 54 386 MB

RING Initial COM LOC CUT RET COM CUT LOC CUT LOC CUT LOC CUT
REGISTERs 20692 19557 266 262 106 106 106 65 65 49 48 47 35 745 sec
PRI. INPUTs 2507 2507 568 280 726 587 480 452 376 330 263 259 64 240 MB

BYPASS Initial COM LOC CUT LOC CUT LOC CUT LOC CUT LOC CUT
REGISTERs 11621 11587 311 306 265 265 216 212 164 154 127 124 240 sec
PRI. INPUTs 432 410 501 350 333 254 248 216 203 156 154 123 175 MB

Table 4.1: Synergistic transformation experiments

4.5 Experimental Results

In this section we provide experimental results illustrating the reduction potential
of the techniques presented in this paper. All experiments were run on a 2GHz Pen-
tium 4, using the IBM internal transformation-based verification tool SixthSense.
We use COM, RET, CUT and LOC engines in our experiments; each performs a
cone of influence reduction.

We present several sets of experiments in Table 4.1 to illustrate the power
of and synergy between these engines. The first column indicates the name of the
benchmark and the size metric being tracked in the corresponding row. The second
reflects the size of the original netlist; phase abstraction [BHSA03] was used to
preprocess the industrial examples. The successive columns indicate the size of the
problem after the corresponding transformation engine (indicated in the row labeled
with the benchmark name) was run.

The first two examples in Table 4.1 are sequential equivalence checking
proof obligations of SIS-optimized ISCAS89 benchmarks from [vE98]. The first
presented flow demonstrates how CUT offsets the increase in PRIMARY INPUT

count caused by RET, and also the REGISTER reduction potential of CUT it-
self. The second flow additionally illustrates how reparameterization enhances the
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REGISTER-reduction ability of RET, enabling retiming to eliminate all REGISTERs
from both benchmarks. CUT was able to eliminate significant REGISTER correla-
tion – and thereby critical paths – in these benchmarks due to logic of the form
(i1 6≡ r1) and i2 ∨ (i3 ∧ r2) as illustrated in Figure 4.3.

The remaining four examples are difficult industrial invariant checking prob-
lems. SMM and MMU are two different memory management units. RING vali-
dates the prioritization scheme of a network interface unit. BYPASS is an instruc-
tion decoding and dispatch unit. These results illustrate the synergistic power of
iterative reparameterization and localization strategies, coupled with retiming, to
yield dramatic incremental netlist reductions. The resulting abstracted netlists were
easily discharged with reachability analysis, though otherwise were too complex
to solve with reachability or induction. In SMM, the first LOC reduces REGISTER

count by a factor of 43, though increases PRIMARY INPUT count by a factor of 29 to
2054. Without our min-cut based localization, this PRIMARY INPUT growth is even
more pronounced. Refining entire next-state functions as per [WHL+01] yields
29221 PRIMARY INPUTs; their combinational cut-point injection may only elimi-
nate 54 of these, as most of the logic is sequentially driven. CUT could eliminate
28514 of these given substantial resources. If refining individual gates, we obtain
2755 PRIMARY INPUTs. In practice, we often witness an even more pronounced
PRIMARY INPUT growth through gate-based refinement vs min-cut based refine-
ment e.g., 3109 vs. 1883 PRIMARY INPUTs for MMU. In MMU, LOC and CUT

enable a powerful RET reduction with PRIMARY INPUT growth which is readily
contained by a subsequent CUT. RING is a difficult example which LOC and CUT

alone were unable to adequately reduce to enable reachability. RET brought REG-
ISTER count down to an adequate level, though increased PRIMARY INPUT count
substantially due to complex retimed initial values. A single CUT was unable to
contain that input growth with reasonable resources, though the ability to safely
overapproximate the initial value cones with LOC iteratively and synergistically
enabled CUT to eliminate all but a single PRIMARY INPUT per initial value cone.

Table 4.2 illustrates the utility of structural reparameterization prior to un-
folding. Column 2 and 3 illustrate the REGISTER and PRIMARY INPUT count of
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Benchmark |R| |I| |I ′| |R| ≤ |I| |R′| ≤ |I′| |I| Unfold |I′| Unfold |I| Unfold |I ′| Unfold
Orig. Reparam. Unfold Depth Unfold Depth Depth 25 Depth 25 Depth 100 Depth 100

LMQ 345 189 135 (29%) 6 8 3884 2735 (30%) 17309 12111 (30%)
DA FPU 6348 534 240 (57%) 24 39 7038 3120 (56%) 47088 21120 (55%)
SQMW 13583 1271 421 (67%) 23 47 16356 4538 (72%) 111681 36113 (68%)

Table 4.2: INPUT counts with and without reparameterization prior to unfolding

the corresponding redundancy-removed [KPKG02] netlists. Column 4 provides the
PRIMARY INPUT count of the reparameterized netlist; the numbers in parenthe-
ses illustrate percent reductions. Columns 5 and 6 illustrate the unfolding depth
at which PRIMARY INPUT count exceeds REGISTER count with and without repa-
rameterization. This is the unfolding depth at which one may wish to use repa-
rameterization within the symbolic simulator to guarantee a reduction in variable
count [CCK04]. Note that this depth is significantly greater for the abstracted than
the original netlist. Practically, a bug may be exposed by the symbolic simula-
tor between these depths, hence our approach may preclude the need for costly
reparameterization on the unfolded instance. More generally, the simplify once,

unfold many optimization enabled by our abstraction reduces the amount of costly
reparameterization necessary over greater unfolding depths, and enables shallower
depths to be reached more efficiently due to lesser variable count. Another note-
worthy point is that REGISTER count is significantly greater than PRIMARY INPUT

count in these netlists (as is common with industrial designs). Reparameterization
within symbolic simulators operates on parametric variables for the REGISTERs,
and on the unfolded PRIMARY INPUTs which become comparable in cardinality to
the REGISTERs. In contrast, our structural reparameterization operates solely upon
parametric variables for the cut gates (bounded in cardinality by the abstracted PRI-
MARY INPUT count, in turn bounded by the original PRIMARY INPUT count as per
the proof of Theorem 4.2), and on the original PRIMARY INPUTs: a set of signifi-
cantly lesser cardinality, implying significantly lesser resource requirements.

Note also that we did not perform more aggressive transformations such as
localization and retiming on the examples of Table 4.2. As illustrated by Table 4.1,
doing such is clearly a beneficial strategy in our synergistic framework. However,
the aim of this table is to demonstrate how our structural reparameterization alone
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benefits symbolic simulation. The final columns of this table show PRIMARY IN-
PUT count with and without reparameterization for unfolding depths of 25 and 100.

4.6 Related Work

Several techniques have been proposed to reduce the number of PRIMARY INPUTs
of a netlist for specific verification algorithms. For example, the approach of en-
hancing symbolic simulation through altering the parametric representation of sub-
sets of the input space via manual case splitting strategies was proposed in [JG94,
AJS99]. The approach of automatically reparameterizing unfolded variables dur-
ing symbolic simulation to offset their increase over unfolding depth has also been
explored, e.g., in [BO02, MKK+02, CCK04]. Various approaches for reducing
variable count in symbolic reachability analysis have been proposed, e.g., through
early quantification of PRIMARY INPUTs from the transition relation [MHF98], en-
hanced by partitioning [JKS02] or overapproximation [CCK+02].

Overall, our structural reparameterization technique is complementary to
this prior work: by transforming the sequential netlist prior to unfolding, we enable
a simplify once, unfold many optimization to bounded analysis reducing the amount
of costly reparameterization needed over unfolding depth. Nonetheless, PRIMARY

INPUT growth over unfolding depth is inevitable; while our technique reduces this
growth, a reparameterizing symbolic simulator may nonetheless be beneficial for
analysis of the abstracted netlist.

Our structural reparameterization approach is most similar to [MKK+02],
which computes a cut of a logic cone, then parametrically replaces that cut by
a simpler representation which preserves trace-equivalence. Unlike [MKK+02],
which seeks to improve the efficiency of BDD-based combinational analysis hence
retains all computations as BDDs, ours converts the reparameterized representation
to gates. We are the first to propose the use of reparameterization as a structural
reduction for sequential netlists, enabling its benefits to arbitrary verification and
falsification algorithms, in addition to enabling dramatic iterative reductions with
synergistic transformations as will be discussed in Section 4.4. Our approach also
enables an efficient trace lifting procedure, unlike the approach of [MKK+02].
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Chapter 5

Netlist Simplification in the Presence

of Constraints
5.1 Overview

Sequential equivalence checking as well as property checking often require the
specification of environmental assumptions to prevent reporting of uninteresting
failures due to illegal input scenarios. Consider the case where the execute stage of
an instruction pipeline is optimized based on the fact that the execute stage will not
receive an instruction with illegal opcodes from the decode stage. One may wish
to verify through sequential equivalence checking that the optimizations have not
changed the functionality of the execute stage. This would require modeling envi-
ronmental assumptions at the decode stage interface which guarantee the absence
of illegal instructions.

Specification of environmental assumptions is even more essential in prop-
erty checking. Consider the environment for an instruction buffer that models the
behavior of the instruction fetch unit and load-store unit. The assumptions the en-
vironment needs to satisfy would include requiring that instructions are not trans-
ferred into the buffer if doing so would overflow the buffer, and that flush opera-
tions initiated by the load-store unit due to operand lookup exceptions must target
instruction tags of previously-dispatched instructions within the buffer. Most en-
vironments require a substantial number of assumptions, many of which involve
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temporal handshaking with the outputs of the design.
There are two fundamental approaches to modeling environmental assump-

tions. First, one may utilize an imperative generator-style paradigm, where (possi-
bly sequential) filter logic is used to convert nondeterministic data streams into legal
input sequences. This filter logic is in turn composed with the design under veri-
fication [ZK03]. Second, one may utilize a declarative constraint-based approach,
wherein illegal scenarios are enumerated using specific language constructs, and the
verification toolset must ensure that these scenarios are not violated in any reported
counterexample [Pix99].

Constraint-based testbenches have several advantages over generator-based
approaches. In addition to the practical observation that declarative-style specifi-
cation is often simpler than imperative [YPA05], the checker-assumption duality

paradigm enabled by the use of constraints allows an assumption on the PRIMARY

INPUTs of one design component to be directly reused as a checker on the outputs of
an adjacent design component. This duality enables the guarantee of compositional
correctness by cross-validating assumptions across adjacent components [NT00].
Constraints may also be used to implement case-splitting strategies to decompose
complex verification tasks for computational efficiency [JG94, JWPB05]. Due to
their benefits, constraints have gained wide-spread acceptance, and most verifica-
tion languages provide constructs to specify constraints – e.g., through the assume

keyword of PSL [Acca] and the constraint keyword of SystemVerilog [Accb].
Given their pervasiveness, it is important for verification algorithms to lever-

age constraints to enhance the overall verification process. However, it is even
more critical to preserve constraint semantics during this process. In this chap-
ter, we study the applicability of sequential redundancy identification and redun-
dancy removal in the presence of constraints. We address the optimal simpli-
fication of netlists with constraints through redundancy removal. In particular,
we provide the theoretical foundation with corresponding efficient implementation
to extend scalable assume-then-prove sequential redundancy identification frame-
works [vE98, BC00, HCC+00, MBPK05] to optimally leverage constraints.
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(a) Original Netlist N1. Gate a1 is a constraint; a2 ≡ 0.

Figure 5.1: Combinational constraint example

5.2 Constraint Challenges to Redundancy Removal

Consider sequential redundancy removal, wherein gates which are functionally
equivalent in all reachable states may be merged to reduce design size. Because
constraints restrict the set of reachable states, they may enhance reduction potential
by enabling a pair of gates to be merged which are equivalent within the constrained
reachable state space, but may not be equivalent otherwise. Viewed another way, the
constraints imply a don’t care condition which may be exploited when attempting
to merge gates, similar to the exploitation of observability don’t cares for enhanced
reduction [ZKKSV06].

However, such merging risks weakening the evaluation of the constraints, re-
sulting in spurious property violations. To illustrate constraint weakening through
merging, consider the combinational netlist illustrated in Figure 5.1. In the original
netlist N1, gate a2 could evaluate to 1 (e.g., if i1 = 1 and i2 = i3 = 0) or 0 (e.g.,
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Figure 5.2: Constraint weakening through merging

if i1 = i2 = i3 = 0). However, labeling gate a1 as a constraint would force at least
two of i1, i2, i3 to evaluate to 1, in turn forcing gate a3 to evaluate to 1 and a2 to
evaluate to 0. For optimality one would like to simplify the netlist using redundancy
removal. In [KPKG02], a structural conjunctive decomposition of the constraint is
proposed, traversing each constraint gate fanin-wise through AND gates and stop-
ping at inversion points and other gate types, merging each of these terminal gates
to constant ONE. Applying this algorithm to netlist N1, gate a1 will be merged to
constant ONE. However, this merging fails to preserve constraint semantics as gate
a2 in the resulting netlist N2 could evaluate to 1 (if i1 = i2 = i3 =0).

Constraint weakening through merging is not restricted to combinational
netlists. To illustrate how constraints may be weakened through merging in a
sequential netlist, consider the example in Figure 5.2 which includes the Fetch-
Decode-Execute component of a processor. Assume that the testbench used to ver-
ify this component must prevent the Execute stage from encountering valid instruc-
tions with illegal opcodes. This may easily be achieved by constraining the output
of the Decode stage to be invalid if its opcode is illegal. Next assume that the logic
in the Fetch and Decode stages ensures that if the instruction in the Decode stage is
invalid, its opcode is illegal. Coupled with the constraint, which enforces (Valid3,
Illegal3) 6= (1,1), this satisfiability don’t care condition that (Valid3, Illegal3) 6=

(0,0) ensures that instructions in the Decode stage are invalid if and only if they
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are illegal, within all reachable states. This fact may be leveraged by a redundancy
removal algorithm, which may simplify fanout logic in the Execute stage accord-
ingly. However, this fact will also entail redundancies in the fanin of the constraint –
e.g., that the Valid and Illegal gates are antivalent – hence the redundancy removal
framework may wish to perform the corresponding merges. While the simplifica-
tion entailed by merging is often advantageous in reducing subsequent verification
resources, constraint-enabled merges within the fanin of constraints may result in
the constraints losing their ability to prevent invalid counterexamples. In this partic-
ular case, such merging could syntactically simplify the constraint gate to constant
one, precluding its ability to prevent valid yet illegal instructions from propagating
into the Execute stage.

Constraints pose several challenges to sequential redundancy identification
frameworks described in Chapter 3. We refer to redundancy identification as sound

if the identified gates are truly equivalent in all reachable states, and complete if
all functionally equivalent gates are identified. Sequential redundancy identifica-
tion frameworks based on “assume-then-prove” paradigm operate as per Figure 3.1.
The speculative merging performed in Step 3 is necessary for scalability, since se-
quential redundancy identification is a PSPACE-complete problem [JB06]. This
step requires additional consideration in the presence of constraints, since if the
redundancy candidates are not truly equivalent, the speculative merge may alter
constraint evaluation resulting in an unsound and incomplete procedure. We ad-
dress this problem in Section 5.3. When this algorithm terminates, it will reflect
all gates which are equivalent across all reachable states. However, in the presence
of constraints, additional analysis is necessary before they may be merged to avoid
violating netlist semantics. We address this topic in Sections 5.4 and 5.5.
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5.3 Optimal Redundancy Identification under Con-

straints

Key to the scalability of sequential redundancy identification is the process of spec-
ulative reduction described in Chapter 3.2 and illustrated in Figure 3.2. Speculative
reduction enables leveraging potentially equivalent gates to simplify the PSPACE-
complete problem of sequential redundancy identification. Key to the optimality
of redundancy identification in the presence of constraints is the ability to leverage
those constraints to prune reachable states, thereby exposing equivalences which
otherwise may not be identifiable. However, speculative merging in the presence of
constraints raises two concerns:

1. Even if the speculative merges are for truly equivalent gates, the merges
may weaken the constraints as per the examples of Figure 5.1 and 5.2. This
may entail incompleteness of the redundancy identification process, since un-
reachable states may become reachable under the speculative merges.

2. At the time of speculative reduction, the validity of the merges as reflecting
true redundancy has not been demonstrated. Thus, the speculative merges risk
arbitrarily altering constraint evaluation, which may weaken or strengthen

their evaluation, causing the redundancy identification framework to become
unsound since reachable states may become unreachable.

In the absence of constraints, the correctness of using speculative reduction
for sound and complete redundancy identification using assume-then-prove frame-
works depicted in Figure 3.1 has been proven in Chapter 3.2.1. However, as noted
above, in the presence of constraints, speculative reduction runs the risk of caus-
ing an unsound and incomplete redundancy identification. The following theorem
establishes the correctness of a slightly modified form of speculative reduction in
netlists with constraints, which ensures that miters for inequivalent redundancy can-
didates will remain assertable, and others will remain unassertable.
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Theorem 5.1. Given a netlistN , consider netlistN ′ formed by adding toN a repli-
cation of the combinational fanin of each constraint, and re-labeling the replicated
counterpart of each constraint gate as the constraint. Consider netlist N ′′, derived
by speculative reduction of N ′, though restricting merging to the original gates of
N . Using N ′′ as the basis of sequential redundancy identification is sound and
complete in identifying redundant gates in N .

Proof. Consider any trace p over N , and the corresponding trace p′′ obtained by
simulating the input sequence of p on N ′′. To demonstrate soundness and com-
pleteness of redundancy identification, we prove a stronger condition: that either p
illustrates no mismatches within any equivalence class and no miters are asserted
in p′′ (completeness), or that a nonempty subset of earliest-occurring mismatches
illustrated in p has a corresponding subset of earliest-occurring miter assertions in
p′′ (soundness). We prove this condition by induction on this earliest time-frame.

Base Case: Time 0. As discussed in Chapter 3, to ensure the soundness of
speculative reduction, all equivalence classes must be validated as accurate at time
0. Thus no mismatches may be illustrated in p. Additionally, if p is valid at time 0,
the speculative merging cannot alter any valuations in p vs. p′′ at time 0 hence there
can be no miter assertions at time 0. Furthermore, since there are no speculative
merges in the combinational fanin of the constraints, their evaluation and hence
their constraining power over REGISTERs and PRIMARY INPUTs cannot be altered,
and thus p is valid at time 0 if and only if p′′ is valid at time 0

Inductive Case: Time i + 1. By the induction hypothesis, assume that no
mismatches nor miter assertions occurred at times 0, . . . , i. We prove that the theo-
rem holds at time i + 1. If no mismatches in p nor miter assertions in p′′ manifest
at time i+ 1, our proof obligation is trivially satisfied. Otherwise, first consider the
case that there is a nonempty set of gates A which differ from their representatives
at time i + 1 in p. Consider the maximal subset B ⊆ A such that no element in
b ∈ B has any element of A\b in the combinational fanin of b or R(b). Clearly B is
non-empty: gate b cannot directly be speculatively merged, nor transitively through
a sequence of speculative merges, onto a representative which lies in its combina-
tional fanout without introducing a combinational cycle. Note that any speculative
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merging in the fanin of b or R(b) cannot alter their valuation at time i + 1, because
that merging did not alter the valuation of any gate at times 0, . . . , i by the induc-
tion hypothesis, nor at time i + 1 due to the construction of B. Thus, the miters
correlating to every gate in B must assert at time i + 1 in p′′. This same argument
can be used to demonstrate that a nonempty set B of miter assertions at time i + 1

in p′′ must have a corresponding set of mismatches in p.
We finally must demonstrate that p is valid at time i + 1 if and only if p′′ is

valid at time i+ 1. Note that the state of the REGISTERs in the combinational fanin
of the constraints must be identical across p vs. p′′ at time i+1, since their next-state
functions evaluated the same at times 0, . . . , i by the induction hypothesis. Since
there are no speculative merges in the combinational fanin of the constraints, any
mismatches at time i + 1 cannot affect their valuation at that time-frame, nor their
evaluation hence their constraining power over REGISTERs and PRIMARY INPUTs
cannot be altered. Thus p is valid at time i+1 if and only if p′′ is valid at time i+1.

We thus conclude that either no mismatches occur in p nor miter assertions
in p′′ at time i+1, or a nonempty set of speculatively merged gates B will illustrate
miter assertions in p′′ and mismatches in p at time i+ 1.

5.4 Redundancy Removal under Constraints

Using the framework discussed in Section 5.3, we may compute the exact set of
gates which are equivalent in the constrained reachable state space. In theory, this
framework is capable of proving every unassertable target in a testbench, since
they correlate to gates which are semantically equivalent to 0. However, either
due to computational resource limitations which result in suboptimal redundancy
identification, or due to targets which are truly assertable, some targets may remain
unsolved after the redundancy identification process.

If any targets remain unsolved after the redundancy identification process,
one generally wishes to leverage the identified redundancy to simplify the netlist so
that a subsequent verification strategy may benefit from that simplification [MBPK05,
Kue04, MBP+04]. Examples of known algorithmic synergies which benefit from
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redundancy elimination include: faster and deeper exhaustive bounded search us-
ing SAT; greater reduction potential through transformations and abstractions such
as combinational rewriting, retiming, and localization reduction; and enhanced in-
ductiveness [MBPK05, MBP+04]. In this section, we discuss how to optimally
leverage this identified redundancy.

It was demonstrated in [MBA05] that a merge of gate g1 onto g2 is guar-
anteed to preserve property checking as long as no constraint c1 in the fanout of
g1 was used to constrain the state space during the proof of g1 ≡ g2. This im-
plies that certain identified equivalent gates may be safely merged. However, this
approach is suboptimal since certain merges which do not adhere to this criterion
may nonetheless be performed while preserving property checking. As a trivial
example, if one adds a constraint to a netlist which does not restrict its reachable
states whatsoever, there is no reason that such a constraint preclude any merges
regardless of fanout connectivity. As another example, if one adds a constraint to
a netlist which has only unassertable targets, weakening those constraints through
merging equivalent gates cannot cause spurious counterexamples. In practice, it is
difficult to assess which of the identified redundancies is conditional upon which

of the constraints (e.g., vs. holding due to satisfiability don’t cares alone), without
performing numerous independent redundancy identification analyzes with differ-
ent subsets of constraints. Performing multiple redundancy identification analyzes
is computationally expensive, thus motivating our technique to optimally leverage
the redundancy identified using all constraints within a single run of the algorithm
of Figure 3.1.

The following theorem establishes that we may safely perform a greater de-
gree of merging than enabled by the results of [MBA05].

Theorem 5.2. Consider any set of gate pairs which have been proven equivalent
across all reachable states in netlist N , and whose merged from gates (vs. merged
onto gates) do not lie in the combinational fanin of any constraint. Performing the
corresponding merges to yield netlist N ′ will ensure that N ′ is trace-equivalent to
N .

Proof. Similarly to Theorem 5.1, since no gates within the combinational fanin
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of constraints are merged onto others, their evaluation and hence their constrain-
ing power over REGISTERs and PRIMARY INPUTs cannot be altered. The initial
states of N and N ′ are thus identical; any trace of length 1 in N is valid in N ′ and
vice-versa. Furthermore, since the merges have been verified to reflect equivalence
across the constrained reachable states, they cannot alter next-state function valua-
tions. Thus, by simple inductive reasoning relative to any trace prefix of length i,
any trace of length i+ 1 in N ′ is also valid for N and vice-versa.

Theorem 5.2 enables us to perform a significantly greater degree of merg-
ing than enabled by the results of [MBA05], particularly for highly cyclic netlists
where most of the netlist lies in the fanin of the constraints. However, we note that
the additional merging enabled by this theorem is itself suboptimal, since the com-
binational fanin of the constraints may be arbitrarily large and, as per the examples
preceding Theorem 5.2, there may still be verification-preserving merging possi-
ble therein. We now prove that general constraint-enhanced merging is sound but
incomplete.

Theorem 5.3. Consider any set of gate pairs which have been proven equivalent
across all reachable states in netlist N . Performing the corresponding merges to
yield netlist N ′ will ensure that N ′ trace-contains N .

Proof. The fact that the gate pairs have been proven equivalent across all reachable
states ensures that, within all trace prefixes which do not violate constraints in N ,
these merges do not alter the valuation of any gate whatsoever in N ′. Thus, every
constraint-satisfying trace prefix in N is also valid in N ′. However, the fact that
merging may be performed in the combinational fanin of the constraints means that
their evaluation relative to REGISTERs and PRIMARY INPUTs may be altered. In
particular, for extensions to valid trace prefixes inN – i.e., for time-frames i+j (for
non-negative j) where some constraint in N is violated at time i – the merges may
alter the evaluation of gates in their fanout. In doing so, these merges may cause
constraints in their fanout to evaluate to 1 in N ′ vs. to 0 in N . Thus, constraint-
satisfying trace prefixes in N ′ may violate constraints in N . Netlist N ′ thus trace-
contains N , but generally may not be trace-equivalent to N .
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Given: Netlist N ′ formed from N by merging equivalent gate pairs Gf 7→ Gt,
and traces p′1, . . . , p

′

i over N ′

1. Simulate each p′i on N to obtain trace pi

2. If pi asserts any target t in N , report that result as a valid counter-example and eliminate
t from T , the targets of N

3. If T is empty, exit
4. Identify the set of merged nodes D1 ⊆ Gf of N ′ which differ in valuation across any

pi and p′i within the prefix of p′i, ignoring constraint violations in pi

5. Construct netlist N ′′ from N , performing conditional merges for the differing subset of
Gf enumerated in set D1

6. Cast a SAT problem conjuncting over each p′

i, checking for the lack of an assertion of
targets in N ′′ under the input sequence of p′

i

7. Define causal merge set D2 as those whose selector is assigned to 0 from the SAT solution
8. Form refined netlist N ′′′ from N by merging Gf \D2

Figure 5.3: Trace refinement algorithm

Theorem 5.3 implies that, if a target t′ is proven as unassertable in N ′, the
corresponding target t must be unassertable in N – though counterexamples from
N ′ may be invalid on N . This theorem motivates an abstraction-refinement frame-
work conceptually similar to [CGJ+00], which retains those merges which do not
entail spurious counterexamples for efficiency of a subsequent verification strategy,
while discarding the others.

5.4.1 Abstraction-Refinement Framework

Definition 5.1. A conditional merge from gate g1 onto gate g2 consists of replac-
ing g1 by a multiplexor selected by a newly-created nondeterministic constant1 gate
ig1,g2

. If the selector evaluates to 1, the value of g2 is driven at the output of the
multiplexor. Otherwise, the original value of g1 is driven at the output of the multi-
plexor.

We present an algorithm in Figure 5.3 for identifying a set of merges (here-
after referred to as causal merges) to discard in response to a set of spurious coun-

1A nondeterministic constant may be represented in a netlist by a REGISTER whose next-state
function is itself (hence it never toggles), and whose initial value is a PRIMARY INPUT.
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terexamples. The abstracted netlist N ′ is formed by merging each gf ∈ Gf onto
the corresponding gt ∈ Gt as per the surjective mapping Gf 7→ Gt. While this
algorithm only requires a single trace to refine upon, it is generalized to operate
upon an arbitrary set of traces to enable optimal refinement as will be discussed in
Section 5.5. Step 1 of this algorithm maps each trace p′i obtained from N ′ to trace
pi over N , from which we may assess the behavior of N under the input sequence
demonstrated in p′i. Step 2 checks if any resulting trace constitutes a valid assertion
of any target in N . If so, the resulting trace is reported as a valid counterexample
and the corresponding target is eliminated from the set of unsolved targets T . If T
becomes empty, then the verification problem associated with the netlist has been
solved hence the algorithm exits in Step 3. Otherwise, the algorithm proceeds to
identify a set of merges which were responsible for the spurious counterexamples.
Step 4 discerns an overapproximation D1 of the set of causal merges, identifying
those merged gates whose valuations differ between any pi and p′i during the pre-
fix of p′i. Ideally, this trace is minimally assigned so as to illustrate the assertion
of a target in N ′. The set D1 may next be minimized in Steps 5-7 by casting a
SAT problem which seeks to avoid any target assertions under the input sequence
of each p′i within netlist N ′′ formed from N by performing conditional merges for
the potentially causal merges. Step 8 constructs a refined netlist, eliminating those
merges which were determined to cause the spurious counterexamples in N ′.

Theorem 5.4. Given trace p′i which is a counterexample to t′i of netlist N ′, the
algorithm of Figure 5.3 will either yield a valid counterexample pi to target ti of N ,
or produce a refined netlist N ′′′ which will not exhibit a spurious assertion against
the input stimuli of p′i.

Proof. This theorem is trivially true if the algorithm produces a counterexample on
N . Otherwise, we note that:

• When constructing D1, gate inequivalence is checked for all time-frames in
the prefix of p′i, which will illustrate the spurious assertion of t′i. This check
ignores constraint-based prefixing within pi to enable detecting which merges
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Given: Netlist N ; Initialize i = 1
1. Compute equivalence classes in N using a variant of the algorithm

of Figure 3.1 as per Theorem 5.1, yielding desired merges Gf 7→ Gt

2. Form N ′ by performing the subset of merges G′

f 7→ Gt which adhere to Theorem 5.2
3. Form N1 from N ′ by performing the remaining merges G′′

f 7→ Gt

4. Use an arbitrary set of algorithms to attempt to prove or falsify the targets in Ni

5. If any targets were proven unassertable on Ni, report the corresponding targets
unassertable for N

6. If a nonempty set of counterexamples Pi were obtained on Ni, use Figure 5.3
on netlist N∗ vs. N and trace set P ∗ to obtain a valid set of counterexamples
and / or a refined netlist Ni+1, else exit

7. Report any valid counterexamples that were obtained for N

8. If unsolved targets remain, increment i and goto Step 4, else exit

Figure 5.4: Abstraction-refinement framework. N ∗ = Ni and P ∗ = Pi in Step 4
implies standard abstraction-refinement; N ∗ = N1 and P ∗ =

⋃

j∈{1,...,i} Pj in Step
4 implies optimal abstraction-refinement.

in N ′ weakened the constraints in N . Thus D1 will include all merged gates
whose behavior was altered in p′i vs. pi.

• The SAT problem is satisfiable, since if the selector of each conditional merge
construct is set to 0, the SAT solution will be equivalent to pi which has been
demonstrated not to assert ti in N .

• Set D2 by construction enumerates the subset of merges which, if eliminated,
will prevent the assertion of t′′′, the counterpart of t′ in N ′′′.

As per Theorem 5.4, the refinement process of Figure 5.3 is adequate to en-
sure that the resulting netlist will not exhibit a spurious assertion against any coun-
terexamples used as the basis of the refinement. This result allows us to develop an
abstraction-refinement framework which is guaranteed to converge as presented in
Figure 5.4.

Theorem 5.5. The algorithm of Figure 5.4 (run in standard abstraction-refinement

mode) will converge upon a correct verification result for the original netlist N .
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Proof. We consider the individual steps of this algorithm.

• Step 1 computes the equivalence classes of gates, which are correct as per
Theorem 5.1. We may select an arbitrary set of desired merges consistent
with these equivalence classes, reflected by surjective mapping Gf 7→ Gt.

• Step 2 performs those subset of merges (denoted as G′
f 7→ Gt) which are

guaranteed to preserve trace-equivalence as per Theorem 5.2. Thus, if verifi-
cation were performed directly upon N ′, all results would be correct with no
need for refinement.

• Step 3 performs the remaining merges, denoted as G′′
f 7→ Gt, where G′′

f =

Gf \G′
f , to yield netlist N1.

• BecauseNi trace-containsN as per Theorem 5.3, any target proven unassertable
in Ni implies a corresponding unassertable target in N , hence any results re-
ported in Step 5 are correct.

• If counterexamples were obtained for Ni, they may be valid for N or they
may be spurious. The algorithm of Figure 5.3 is used to differentiate these
cases in Step 6. The result of this algorithm is a set of valid counterexamples
for N and / or a refined netlist Ni+1.

• By Theorem 5.4, any counterexamples reported in Step 7 will be valid.

• By Theorem 5.4, if any targets remain unsolved, refined netlist Ni+1 will not
exhibit a spurious assertion against traces Pi. Convergence of the refinement
loop is guaranteed noting that netlists are finite as per Definition 2.7, hence
|G′′

f | is finite and each refinement iteratively eliminates one or more elements
from G′′

f .
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5.5 Optimality of Reductions

Theorem 5.4 ensures the correctness and convergence of the overall abstraction-
refinement procedure. However, there are several points to consider regarding the
optimality of the resulting refined netlist, which may have a significant impact on
the resources required to compute counterexamples, as well as to prove targets
unassertable.

1. While the SAT solution obtained from Step 6 of the algorithm of Figure 5.3
identifies an adequate set of causal merges for refinement, it does not directly
attempt to obtain a solution with a minimal set of causal merges, as would be
necessary for optimality of the refined netlist.

2. Compatibility issues with don’t-care enabled merging entail that two sets
of merges may be independently but not jointly valid or vice-versa [MB05,
ZKKSV06]. The selection of causal merges may thus entail cumulative sub-
optimalities across refinement iterations, even if each individual iteration is
optimal.

Regarding the first issue: for optimal reductions, one would wish to elimi-
nate as few merges as possible during each refinement. A precise solution to this
problem may be attained by solving a max-sat problem [LS05] in Step 6 of the al-
gorithm of Figure 5.3, constructed from the original SAT instance augmented with
an additional clause for each conditional merge construct representing the selection
of the merged value. For enhanced runtime, we have found that a near-optimal
initial bound to the max-sat solution may be obtained using a standard SAT solver
augmented with a decision procedure which heuristically assigns 1 to PRIMARY

INPUTs before assigning 0. Recall that, due to enforcing the input sequence of
p′i, PRIMARY INPUTs correlating to the resulting SAT instance will occur within
conditional merge instances.

Regarding the second issue: to circumvent the risk that local choices at each
refinement iteration will entail global suboptimality across multiple iterations, it
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is necessary to re-compute refinement iterations relative to the initial maximally-
merged abstraction N1. This process is illustrated by the optimal abstraction-

refinement mode of the algorithm of Figure 5.4, where at a particular refinement
iteration, all prior counterexamples

⋃

j∈{1,...,i} Pj are used to refine relative to N1,
instead of merely using the final set Pi obtained upon the prior refined netlist Ni.
The following theorems demonstrate the correctness and optimality of this flavor of
the abstraction-refinement process.

Theorem 5.6. Assuming that a max-sat procedure is used in the refinement al-
gorithm of Figure 5.3, the algorithm of Figure 5.4 (run in optimal abstraction-

refinement mode) will converge upon a correct verification result for the original
netlist N .

Proof. The correctness of verification results follows from the proof of Theorem 5.5.
To guarantee convergence, we note that we cannot have two identical refined netlists
Ni = Nj for i > j. This follows from the observation that Ni is formed by refining
against all prior traces, including Pj which comprises a spurious counterexample
against Nj . By Theorem 5.4, we therefore cannot have Ni = Nj . Additionally,
since netlists and hence G′′

f are finite, there are a finite number of possible distinct
refined netlists.

Theorem 5.7. Assuming that a max-sat procedure is used in the refinement al-
gorithm of Figure 5.3, the algorithm of Figure 5.4 (run in optimal abstraction-

refinement mode) will at every iteration yield an optimal refined netlist which re-
tains as many of the desired merges as possible while not exhibiting a spurious
assertion against any counterexample obtained prior to that iteration.

Proof. This proof follows trivially by Theorem 5.6 and by the construction of the
max-sat formulation.

One additional point regarding optimality: the validity of don’t-care enabled
merges is generally neither symmetric nor transitive [ZKKSV06]. Thus, the se-
lection of desired merges from the computed equivalence classes in Step 1 of the
algorithm of Figure 5.4 may impact the size of the refined netlist. Clearly optimality
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would be achieved if the algorithm of Figure 5.4 were run upon every permutation
of desired merges consistent with the computed equivalence classes, and selecting
the result which retains the most merges. However, doing so would be computa-
tionally intractable, and likely run contrary to the use of the abstraction-refinement
framework to reduce overall verification resources. To partially offset this compu-
tational expense, we note that in reaction to a spurious counterexample, while the
causal merges must be eliminated, we may attempt to introduce alternate merges
from within the equivalence classes in their place. Such a framework may be used
to generate a refinement retaining an optimal number of merges, provided that the
procedure exhaustively attempt alternate merges before outright discarding any set
of causal merges. Convergence of such an alternate-merge introduction framework
may be guaranteed simply by ensuring that no refinement Ni+j repeat the same
set of merges reflected in an earlier refinement Ni. While computationally supe-
rior to the naı̈ve approach of exhaustive enumeration, since alternative merges need
only be explored on demand, this approach is also prone to be computationally
intractable in practice due to requiring the exploration of all cross-products of per-
missible merges for the identified causal merges. We thus introduce an efficient
technique to generate a nearly-optimal set of desired merges from the equivalence
classes in Section 5.5.1.

5.5.1 Incremental Elimination of Constraint-Weakening Merges

SAT-based analysis is often used to search for counterexamples, iteratively checking
for failures at time 0, 1, 2, . . . until some computational resource limitation is
exceeded. For efficiency, it is desirable to leverage incremental SAT [Hoo93] in this
process, first creating a SAT instance to check for a failure at time 0, then unfolding
an additional time-frame onto the existing SAT instance to check for a failure at
time 1, etc. Such incrementality enables the reuse of learned clauses from earlier
time-frames to speed up the SAT solution for later time-frames [Sht01].

In an abstraction-refinement framework, incrementality is more difficult to
achieve such that the same SAT instance may be utilized to find counterexamples
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across refinements. However, if utilizing the standard abstraction-refinement mode
of the algorithm of Figure 5.4, and utilizing the conditional merge construct in-
stead of outright performing the desired merges, incrementality may be achieved by
merely constraining the causal conditional merge selectors to 0. Such constraints
effectively eliminate the causal merges within the SAT instance and allow addi-
tional counterexamples to be identified therein. Practically, we have found that
devoting a small amount of computational resources to such an incremental SAT-
based procedure, and using the resulting counterexamples to jump-start the optimal
abstraction-refinement process, tends to substantially reduce overall resources to
arrive at a refined abstraction which is not prone to spurious counterexamples.

Furthermore, one mechanism that we have found to quickly converge upon a
nearly-optimal set of compatible merges from within the equivalence classes (Step 1
of the algorithm of Figure 5.4) is to utilize the preprocessing mechanism discussed
in the prior paragraph with a variant of the conditional merge which enables the
selection among all gates within an equivalence class. As spurious counterexam-
ples are obtained, we may disable the causal merges and preserve selection among
the rest. The desired merges may then be chosen from those which remain at the
termination of this preprocessing step, heuristically helping to ensure near-optimal
compatibility.

5.6 Experimental Results

In this section, we provide experiments to illustrate the redundancy removal en-
hancements enabled by our techniques. All experiments were run on a 2.1GHz
POWER5 processor, using the IBM internal transformation-based verification tool
SixthSense [MBP+04]. We applied our techniques on a variety of designs, includ-
ing a subset of the IBM FV Benchmarks [IBM] and four difficult industrial test-
benches. FXU is a testbench used to verify the control path of a fixed-point unit.
FPU is a floating-point unit. SCNTL is a testbench used to verify the control of an
instruction-dispatch unit. IBUFF is an instruction buffer. Each of these examples
has constraints which entail dead-end states.
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Benchmark Design Info Constraint-Safe Merging [MBA05] Constraint-Enhanced Merging
Gates Targets Gates Unsolved Resources Gates Refined Improvement Unsolved Resources

Merged Targets (s; MB) Merged Merges Targets (s; MB)
FXU 32903 8 2218 0 450; 146 2482 64 9.0% 0 400; 195
FPU 115037 1 2022 1 5465; 690 4928 0 143.7% 0 1140; 384
SCNTL 51504 551 6638 24 342; 133 6962 17 4.5% 0 1103; 383
IBUFF 19230 303 222 14 77; 91 831 20 260.8% 0 144; 160
IBM FV 11 4799 1 228 0 16; 64 747 4 225.9% 0 37; 69
IBM FV 24 13391 1 313 0 70; 119 793 7 151.1% 0 83; 137

Table 5.1: Sequential redundancy removal results

The enhanced redundancy removal of our approach is illustrated in Table 5.1.
The first 3 columns indicate the name of the benchmark, the size of the original
netlist and the number of targets in the original netlist. We first compare the redun-
dancy removal possible using prior techniques [MBA05] with that of our approach
(Columns 4 vs. 7), and then illustrate the impact of this additional reduction on the
verification process by using k-induction [ES03] to attempt to verify the targets on
the optimized designs (Columns 5 vs. 10). The resources reported in Columns 6
vs. 11 refer to the combined process of redundancy removal and induction. The
induction process was limited to 30 seconds and k ≤ 10 to avoid significant skew
of runtime for cases where targets were left unsolved.

As illustrated in Table 5.1, our approach identifies significantly more redun-
dancy resulting in an increased number of non-refined merges, often more than 2×

(indicated by a number greater than 100% in Column 9). The average increase
in non-refined merges across all of these designs is 132.5%. Our techniques also
enable the solution of more targets, some of which we were unable to find a suc-
cessful proof strategy for otherwise. We report the number of merges which were
refined during the algorithm of Figure 5.4 in Column 8 (which is a subset of Col-
umn 7), which is only a small percentage of the additional merges enabled by our
techniques. Our approach in cases entails moderate additional run-time due to the
larger set of equivalence candidates during the redundancy identification process,
though in other cases, such as the FPU, this results in significantly lesser runtime.
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5.7 Related Work

The work of [MBA05] discusses redundancy removal in the presence of constraints,
allowing gate merges in the fanin of a constraint provided that the proof of the
corresponding gate equivalence does not require the state-pruning power of that
constraint. Our approach lifts this restriction, enabling a greater degree of sim-
plification. It is noteworthy that the other constraint-preserving netlist transforma-
tions proposed in [MBA05] may synergistically enhance, and be enhanced by, our
constraint-based redundancy removal.

In [LC06], the authors propose to enhance an inductive SAT solver by per-
forming all merges enabled by the constraints representing the induction hypoth-
esis. To avoid the weakening of constraints entailed by such merging, they add
additional constraints over the fanin of the merged gates within the SAT solver.
However, unlike our approach, they do not address constraint-enhanced reduction
of sequential netlists; theirs is effectively a run-time optimization to the inductive
SAT solver, which our approach may complementarily use if relying upon induction
in Step 4 of the algorithm of Figure 3.1.

There are similarities between our approach and those that optimize rela-
tive to other types of don’t cares. However, ours is among the first to address a
framework for efficient exploitation of don’t cares across sequential logic bound-
aries. Additionally, our techniques efficiently allow concurrent global identifica-
tion and reduction of all redundancy candidates, unlike ODC-based techniques
which often probe for merge candidates one by one due to compatibility concerns
(e.g., [ZKKSV06]), and for efficiency often trade optimality for computational effi-
ciency using local analysis (e.g., [ZKKSV06, MB05]). Overall, there are numerous
complementary distinctions between our constraint-based optimization and frame-
works for exploiting other flavors of don’t cares, and we feel that there is promise
in exploring the use of our methods to extend other don’t-care based simplification
methods to the sequential domain.
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Chapter 6

Exploiting Constraints in

Transformation-Based Verification

6.1 Overview

In Chapter 5, we studied how a scalable assume-then-prove sequential redundancy
identification framework [vE98, BC00, HCC+00, MBPK05] can be extended to
optimally leverage constraints. However, to ensure the scalability and applicability
sequential redundancy identification frameworks, we also need to address the appli-
cability of various transformation and verification engines in a TBV framework in
the presence of constraints. In particular, we need to study how transformation and
verification algorithms can optimally leverage constraints to enhance verification
process and at the same time avoid violating constraint semantics.

To illustrate the challenges in applying transformation algorithms in the
presence of constraints, consider the netlist depicted in Figure 6.1. Constraint c

disallows precisely the input sequences that can evaluate t to 1. If j > i, then t can
evaluate to 1 as the constraint precludes such paths only at a later time-step. If on
the other hand j ≤ i, constraint c prevents t from ever evaluating to 1. This demon-
strates that temporal abstractions like retiming [KB01], which may effectively alter
the values of i and j, must take precautions to ensure that constraint semantics are
preserved through their transformations.
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Figure 6.1: Sequential constraint example

Additionally, we study constraint-preserving testcase generation for simula-
tion. This is a widely researched topic, e.g., [YSP+99, YAAP03]; however, the prior
solutions do not address preservation of dead-end constraints which entail states for
which there is no legal input stimulus. Dead-end constraints tend to reduce the ef-
ficiency of explicit-state analysis, as well as semi-formal search; when a dead-end
state is reached, the only recourse is to backtrack to an earlier state. Though dead-
end constraints are considered user errors in certain methodologies [YSP+99], they
are specifiable in a variety of languages, and in cases are powerful constructs for
modeling verification tasks and case-splitting strategies [JG94].

In this chapter, we discuss how various existing automated transformation
algorithms may be optimally applied in a property-preserving manner to designs
with constraints. We also introduce an efficient input stimulus generation algo-
rithm that is robust against dead-end states as well as fully-automated techniques
for eliminating, introducing, and simplifying constraints in a property-preserving
manner.

6.2 Constraint-Preserving Simulation

Constraint preserving simulation is critical not only for the efficiency of sequential
redundancy identification frameworks, but also plays an important role in enabling
successful application of verification algorithms such as semi-formal search. In
a sequential redundancy identification framework, random simulation along with
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semi-formal analysis plays a vital role in computing initial redundancy candidates.
By comparing valuations of the gates within simulation-generated traces, many
inequivalences may be identified with approximately linear runtime, which often
substantially reduces the number of unsuccessful proof attempts in the redundancy
identification process [vE98, Kue04].

Constraint-preserving input stimuli generation has been widely researched
by the simulation community, e.g., in [YSP+99, YAAP03]. However, the vast ma-
jority of this work is only applicable to netlists without dead-end states. While some
propose that testbench authors should avoid the use of constraints which entail dead-
end states [YSP+99], such constraints may readily be expressed in various specifi-
cation languages. In practice, we have often seen such constraints in use due to the
manual effort involved in attempting to map all constraints directly to PRIMARY

INPUTs; e.g., to convert the single-predicate constraint that illegal Decode-stage in-
structions imply invalidity in Figure 5.2 into a complex constraint over instructions
entering the Fetch stage. When a dead-end state is encountered during simulation,
the simulation process must halt and begin anew from a shallower state. While the
overhead of checkpointing and restoring states for simulation is somewhat undesir-
able, a more significant problem is that dead-end states may preclude the ability of
random simulation to reach deeper states in the design.

The inability to reach deeper states in the presence of dead-end states is a
major drawback for both redundancy identification and semi-formal search. In a
sequential redundancy identification framework, this may entail highly inaccurate
initial equivalence classes for gates which may only be differentiated by deep traces.
Highly inaccurate initial set of equivalence classes can cause major slowdowns in
the application of resource intensive algorithms to prove redundancy candidates.
The main aim of semi-formal search is to expose design flaws which are too deep
to reach with purely formal search. In semi-formal search, it is the job of simulation
to take the design to a state closer to the assertion of a target and thereby enhance
the ability of formal algorithms to expose the fail. Dead-end states can prevent
simulation from reaching deeper states and hence reduce efficiency of semi-formal
search.
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Figure 6.2: Sequential constraint example

for (i = 0; i < |C|; i++) {
K (ci) = sliding window depth (ci);

}
for (cycle = 0; cycle < num sim cycles; cycle++) {

Scurrent = State of Netlist N at time cycle

simulation patterns = satisfiability check (N , Scurrent, C, K);
Perform Random Simulation of Netlist N using simulation patterns;
if dead-end state reached, break;

}

Figure 6.3: Simulation Using Sliding Window Algorithm

To illustrate the challenge of stimulus generation in the presence of sequent-
ially-driven constraints, consider the example of Figure 6.2, where gate c is a con-
straint and r0, . . . , r2 are REGISTERs. The stimulus generator must assign values
to PRIMARY INPUTs in0, . . . , inn which prevent c from evaluating to 0 for the de-
sired duration of the simulation run. While the stimulus generator could assign 0 to
ini (for i ∈ {0, 1, 2}) at any time-frame j, doing so would result in violating c at
time j + i. The stimulus generator thus must perform assignments at time j which
preclude constraint violations at later time-frames.

Our solution for stimulus generation is based upon k-step satisfiability solv-
ing. At each time-frame j, we cast a satisfiability check from the current state of
the netlist to identify a set of PRIMARY INPUT valuations at time j which may be
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extended to satisfy each constraint for times j through j+k using a sliding window

approach. The algorithm to perform simulation using sliding window algorithm is
illustrated in Figure 6.3. For scalability, it is important to keep k as small as possible
because satisfiability checking is an NP-complete problem [Coo71]. Our solution,
as follows, thus performs design-specific analysis to determine a minimal value of
k which avoids dead-end states.

Definition 6.1. Given a simple directed path in 〈V,E〉, the delay of that path is
the number of gates of type REGISTER. The minimum input delay of a gate g is
defined as the minimum delay along any simple path from any PRIMARY INPUT

to g. The maximum input delay of a gate g is the minimum delay relative to the
deepest PRIMARY INPUT: the maximum value among any PRIMARY INPUT for
the minimum delay along any simple path from that PRIMARY INPUT to g.

Experimentally, we have found that setting k to the maximum input delay of
a corresponding constraint gate is adequate to prevent simulation from encountering
dead-end states. The use of maximum input depth for k is intuitive; it represents the
minimum delay at which some furthest PRIMARY INPUT may affect the evaluation
of a given constraint. Depending upon the nature of the design, a PRIMARY INPUT

may affect the constraint much later than the input delay, e.g., if the design has a
counter. However, we have not encountered any designs for which this depth is
inadequate, given a large set of industrial examples.

A related concern is whether this k is larger than necessary, since the perfor-
mance of the satisfiability solver is highly sensitive to this value. For example, if
the AND gates in Figure 6.2 are converted to OR gates, the minimum input delay of
0 is adequate to avoid dead-end states by assigning in0 to 1. In practice, the com-
putation of minimum adequate window depth is prohibitively expensive, requiring
a sequence of quantified Boolean formulas checking whether for every state, there
exists an input sequence of a particular depth which satisfies the constraint. Our
practical solution to this problem is to break the overall simulation run into a num-
ber of phases. We use a log2 search procedure within a minimum and maximum
range (initialized as the minimum and maximum input delay, respectively) to iden-
tify a minimal yet adequate sliding window depth to enable the desired simulation
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for (i = 0; i < |C|; i++) {
if (initial phase) {

min range (ci) = minimum input delay (ci);
max range (ci) = maximum input delay (ci);

}
K (ci) = min range (ci);

}
Sim: Simulate using sliding window algorithm described in Figure 6.3
if (dead-end state reached) {

for (i = 0; i < |C|; i++) {
if (ci evaluates to 0 during simulation) {

if (K (ci) == max range (ci)) {
min range (ci) = max range (ci) + 1;
max range (ci) = 2×max range (ci);
K (ci) = min range (ci);

} else {
min range (ci) = K (ci) + 1;
K (ci) = d

(

min range (ci) + max range (ci)
)

/ 2e;
}

}
}

Goto Sim:
} else {

max range (ci) = K (ci); Goto next phase:
}

Figure 6.4: Algorithm for choosing sliding window depth in each phase

run length as illustrated in Figure 6.4. At each phase, we generate stimuli using the
minimum range value as the window depth. If that fails (i.e., encounters a dead-end
state), we update the minimum range to the unsuccessful value plus one and repeat
the phase using a median depth between the minimum and maximum range. If suc-
cessful, we update the maximum range to the successful value and move on to the
next phase. Since the maximum input delay may be exponentially lesser than the
adequate value, if the maximum range is found inadequate at any phase, we double
it for the next iteration. This range analysis is performed on a per-constraint basis
for optimality; it is straightforward to identify which constraints were satisfied vs.
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Benchmark Design Info SimGen [YSP+99] Sliding Window SAT-only
Gates Valid Time Input Depth: Valid Time Valid Time

Time-Steps (s) Min; Max; Algo Time-Steps (s) Time-Steps (s)
FXU 32903 1 0.13 1; 2; 1 1000 2.6 165 1800
FPU 115037 5 0.39 5; 14; 10 1000 228 902 1800
SCNTL 51504 53 2.94 7; 14; 8 1000 87 72 1800
IBUFF 19230 57 1.05 5; 13; 6 1000 7.4 134 1800
IBM FV 11 4799 2 0.17 4; 8: 6 1000 2.6 337 1800
IBM FV 24 13391 2 0.59 4; 19; 4 1000 3.2 252 1800

Table 6.1: Constraint-preserving simulation results

violated within each phase.
To enable highest state coverage during simulation-based analysis, it is of-

ten desirable to avoid frequent repetition of PRIMARY INPUT valuations, instead
attempting to generate a good distribution across the constraint-satisfying valua-
tions [KK07]. We use a circuit SAT solver [KPKG02] which performs minimal
assignments in its solutions; PRIMARY INPUTs that are unassigned in the SAT so-
lution may be randomized. CNF SAT solvers may also be manipulated to obtain
minimally-assigned solutions, e.g., as in [RS04]. To provide further randomness to
the simulation process, e.g., to prevent the SAT solver from frequently yielding the
same valuation to a given set of PRIMARY INPUTs, one may add clauses to force
the SAT solver to generate a solution which differs in its selection of PRIMARY

INPUT assignments. If the result is unsatisfiable, then a previously-generated result
may be randomly selected.

The experiments of Table 6.1 illustrate the power of our sliding window al-
gorithm for constraint-preserving random simulation. The benchmarks include a
subset of the IBM FV Benchmarks [IBM] and four difficult industrial testbenches.
FXU is a testbench used to verify the control path of a fixed-point unit. FPU
is a floating-point unit. SCNTL is a testbench used to verify the control of an
instruction-dispatch unit. IBUFF is an instruction buffer. Each of these examples
has constraints which entail dead-end states.

The first two columns indicate the name of the benchmark and the size of
the original netlist. We compare the results of SimGen [YSP+99] (Columns 3-4)
which performs purely combinational constraint solving; our sliding window ap-
proach (Columns 5-7); and pure formal analysis using SAT to solve the constraints
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for the entire duration of the simulation run, using random stimulus generation for
unassigned PRIMARY INPUTs (Columns 8-9). Our goal is to simulate the designs
without encountering dead-end states for 1000 time-steps, within a time-limit of
1800 seconds. While fast, SimGen [YSP+99] results in constraint violations within
57 time-steps for each design, and often substantially lesser. The SAT-only ap-
proach times-out for every design, often completing substantially lesser than 1000
time-steps. In contrast, our sliding window approach is able to complete the desired
simulation for every design. The sliding window depth used varies across the de-
signs; in Column 5, we report the minimum and maximum input depth, followed
by the depth algorithmically converged upon by our log2 range analysis.

6.2.1 Related Work

Constraint-satisfying stimulus generation has been extensively studied, though the
vast majority of this work does not address dead-end states, e.g., [YSP+99, YAAP03].
The approach of [CDH+05] is one of the few that addresses dead-end states by us-
ing a BDD-based framework to manipulate a synthesized constraint automaton to
avoid dead-end states before they are reached. While demonstrated to be effective,
this approach is only applicable if the constraints are specified using temporal logic
to reason solely about PRIMARY INPUTs. If arbitrary design signals are referenced
by the constraints, as in our practical experience they frequently are, their approach
resorts to underapproximation, precluding the exploration of arbitrary reachable
states. Our techniques do not suffer this limitation.

6.3 Retiming

Retiming is a synthesis optimization technique capable of reducing the number of
REGISTERs of a netlist by relocating them across combinational gates [LS91].

Definition 6.2. A retiming of netlist N is a gate labeling r : V 7→ Z, where r(v)
is the lag of gate v, denoting the number of REGISTERs that are moved backward
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through v. A normalized retiming r′ may be obtained from an arbitrary retiming r,
and is defined as r′ = r − maxv∈V r(v).

In [KB01], normalized retiming is proposed for enhanced invariant check-
ing. The retimed netlist Ñ has two components: (1) a sequential recurrence struc-

ture Ñ ′ which has a unique representative for each combinational gate in the orig-
inal netlist N , and whose REGISTERs are placed according to Definition 6.2, and
(2) a combinational retiming stump Ñ ′′ obtained through unfolding, representing re-
timed initial values as well as the functions of combinational gates for prefix time-
steps that were effectively discarded from the recurrence structure. It is demon-
strated in [KB01] that each gate ũ′ within Ñ ′ is trace-equivalent to the correspond-
ing u within N , modulo a temporal skew of −r(u) time-steps. Furthermore, there
will be −r(u) correspondents to this u within Ñ ′′, each being trace-equivalent to u
for one time-step during this temporal skew. Property checking of target t is thus
performed in two stages: a bounded check of the time-frames of t occurring within
the unfolded retiming stump, and a fixed-point check of t̃′ in the recurrence struc-
ture. If a trace is obtained over Ñ ′, it may be mapped to a corresponding trace in N
by reversing the 〈gate, time〉 relation inherent in the retiming.

Theorem 6.1. Consider a normalized retiming where every target and constraint
gate is lagged by the same value −i. Property checking will be preserved provided
that:

1. the i-step bounded analysis of the retiming stump enforces all constraints
across all time-frames, and

2. every retimed constraint gate, as well as every unfolded time-frame of a con-
straint referenced in a retimed initial value in Ñ ′, is treated as a constraint
when verifying the recurrence structure.

Proof. Correctness of (1) follows trivially by the construction of the bounded anal-
ysis. Correctness of (2) follows from the observation that: (a) every gate lagged by
−i time-steps (including all targets and constraints) is trace-equivalent to the cor-
responding original gate modulo a skew of i time-steps, and (b) the trace pruning
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caused by constraint violations within the retiming stump is propagated into the re-
currence structure by re-application of the unfolded constraint gates referenced in
the retimed initial values.

The min-area retiming problem may be cast as a minimum-cost flow prob-
lem [LS91, HMB07]. One may efficiently model the restriction of Theorem 6.1
by renaming the target and constraint gates to a single vertex in the retiming graph,
which inherits all fanin and fanout edges of the original gates. This modeling forces
the retiming algorithm to yield an optimal solution under the equivalent-lag restric-
tion. While this restriction may clearly impact the optimality of the solution, it is
generally necessary for property preservation.

6.4 Structural Target Enlargement

Target enlargement [BKA02] is a technique to render a target t′ which may be as-
serted at a shallower depth from the initial states of a netlist, and with a higher
probability, than the original target t. Target enlargement uses preimage computa-
tion to calculate the set of states which may assert target t within k time-steps. A
transition-function vs. a transition-relation based preimage approach may be used
for greater scalability. Inductive simplification may be performed upon the k-th
preimage to eliminate states which assert t in fewer than k time-steps. The result-
ing set of states may be synthesized as the enlarged target t′. If t′ is unreachable,
then t must also be unreachable. If t′ is asserted in trace p′, a corresponding trace
p asserting t may be obtained by casting a k-step bounded search from the state
asserting t′ in p′ which is satisfiable by construction, and concatenating the result
onto p′ to form p. The modification of traditional target enlargement necessary in
the presence of constraints is depicted in Figure 6.5.

Theorem 6.2. The target enlargement algorithm of Figure 6.5 preserves property
checking.

Proof. The constraint-preserving bounded analysis used during the target enlarge-
ment process will generate a valid trace, or guarantee that the target cannot be as-

97



Compute f(t) as the function of the target t to be enlarged;
Compute f(ci) as the function of each constraint ci;
B0 = ∃I.

(

f(t) ∧
∧

ci∈C f(ci)
)

;
for (k = 1; ¬done ; k++) { // Enlarge up to arbitrary termination criteria done

If t may be asserted at time k−1 in trace p while adhering to constraints {
return p;

}
Bk = ∃I.

(

preimage(Bk−1) ∧
∧

ci∈C f(ci)
)

;
Simplify Bk by applying B0, . . . , Bk−1 as don’t cares;

}
Synthesize Bk using a standard multiplexor-based synthesis as the enlarged target t′;
If t′ is proven unreachable, report t as unreachable;
If trace p′ is obtained asserting t′ at time j {

Cast a k-step constraint-satisfying unfolding from the state in p′ at time j to assert t;
Concatenate the resulting trace p′′ onto p′ to form trace p asserting t at time k + j;
return p;

}

Figure 6.5: Target enlargement algorithm

serted at times 0, . . . , k − 1, by construction. To ensure that the set of enlarged
target states may reach the original target along a trace which does not violate con-
straints, the constraint functions are conjuncted onto each preimage prior to input
quantification. The correctness of target unreachable results, as well as the trace
lifting process, relies upon the fact that there exists an k-step extension of any trace
asserting t′ which asserts t as established in [BKA02], here extended to support
constraints.

There is a noteworthy relation between retiming a target t by −k and per-
forming a k-step target enlargement of t; namely, both approaches yield an ab-
stracted target which may be asserted k time-steps shallower than the correspond-
ing original target. Recall that with retiming, we retimed the constraints in lock-step
with the targets. With target enlargement, however, we retain the constraints intact.
There is one fundamental reason for this distinction: target enlargement yields sets
of states which only preserve the assertability of targets, whereas retiming more
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tightly preserves trace equivalence modulo a time skew. This relative weakness of
property preservation with target enlargement is due to its input quantification and
preimage accumulation via the don’t cares. If preimages were performed to en-

large the constraints, there is a general risk that a trace asserting the enlarged target
while preserving the enlarged constraints may not be extendable to a trace asserting
the original target, due to possible conflicts among the PRIMARY INPUT valuations
between the constraint and target cones in the original netlist. For example, a con-
straint could evaluate to 0 whenever a PRIMARY INPUT i1 evaluates to 1, and a
target could be assertable only several time-steps after i1 evaluates to 1. If we en-
larged the constraint and target by one time-step, we would lose the unreachability
of the target under the constraint because we would quantify away the effect of i1
upon the constraint.

6.5 Structural Reparameterization

Reparameterization techniques, as described in Chapter 4, operate by identifying
a cut of a netlist graph VC , enumerating the valuations sensitizable to that cut
(its range), then synthesizing the range relation and replacing the fanin-side of
the cut by this new logic. In order to guarantee property preservation, one must
generally guarantee that target and constraint gates lie on the cut or its fanout.
Given parametric variables pi for each cut gate V i

C , the range is computable as
∃I.

∧|VC |
i=1

(

pi ≡ f(V i
C )

)

. If any cut gate is a constraint, its parametric variable may
be forced to evaluate to 1 in the range to ensure that the synthesized replacement
logic inherently reflects the constrained PRIMARY INPUT behavior. This cut gate
will then become a constant ONE in the abstracted netlist, effectively being dis-
carded.

While adequate for combinationally driven constraints and a subset of se-
quentially driven constraints, this straight-forward approach does not address the
preservation of dead-end states. A postprocessing approach is thus necessary to
identify those abstracted constraints which have dead-end states, and to re-apply
the dead-end states as constraints in the abstracted netlist. Given a constraint gate
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ci that is used to constrain the range, the dead-end states represented by the con-
straint can be computed by evaluating ∃I.f(ci). If not a tautology, the result of
the existential quantification represents dead-end states for which no PRIMARY IN-
PUT valuations are possible, hence a straight-forward multiplexor-based synthesis
of the result may be used to create a logic cone to be tagged as a constraint in the
abstracted netlist.

To illustrate the importance of re-applying dead-end constraints during repa-
rameterization, consider a constraint of the form i1 ∧ r1 for PRIMARY INPUT i1 and
REGISTER r1. If this constraint is used to restrict the range of a cut, its replacement
gate will become a constant ONE hence the constraint will be effectively discarded
in the abstracted netlist. The desired byproduct of this restriction is that i1 will
be forced to evaluate to 1 in the function of all cut gates. However, the undesired
byproduct is that the abstracted netlist will no longer disallow r1 from evaluating
to 0 without the reapplication of the dead-end constraint ∃i1.(i1 ∧ r1) or simply r1.
Because this re-application will ensure accurate trace-prefixing in the abstracted
netlist, the range may be simplified by applying the dead-end state set as don’t

cares prior to its synthesis as noted in [YAAP03].
If there are multiple constraints in the netlist, computing of dead-end con-

straints individually with respect to each constraint gate ci used to constrain the
range may give wrong results. For example, consider two constraints c1 = i1 ∨ r1

and c2 = ¬ii ∨ r1. If we individually compute dead-end states with respect to each
constraint by computing ∃i1.(i1 ∨ r1) and ∃i1.(¬i1 ∨ r1), it would appear that there
are no dead-end constraints. However, both constraints c1 and c2 need to be satis-
fied simultaneously when evaluating the netlist and the only way to satisfy both the
constraints is by forcing r1 to evaluate to 1. This implies that we need to add r1

as a dead-end constraint to the netlist after reparameterization. Hence, rather than
computing the dead-end constraints with respect to each constraint, one must com-
pute dead-end constraint with respect to the conjunction of all the constraints that
are used to constrain the range as follows ∃I.

∧|C|
i=1 f(ci).

Theorem 6.3. Structural reparameterization is property-preserving, provided that
any constraints used to restrict the computed range are re-applied as simplified

100



dead-end constraints in the abstracted netlist.

Proof. The correctness of reparameterization without dead-end constraints follows
from prior work, e.g., [BM05]. Note that reparameterization may replace any con-
straints by constant ONE in the abstracted netlist. Without the re-application of the
dead-end states as a constraint, the abstracted netlist will thus be prone to allowing
target assertions beyond the dead-end states. The re-application of the dead-end
states as a constraint closes this semantic gap, enabling property-preservation.

6.6 Phase Abstraction

Phase abstraction [BHSA03] is a technique for transforming a latch-based netlist
to a REGISTER-based one. A latch is a gate with two inputs (data and clock), which
acts as a buffer when its clock is active and holds its last-sampled data value (or
initial value) otherwise. Topologically, a k-phase netlist may be k-colored such that
latches of color i may only combinationally fan out to latches of color

(

(i+1) mod

k
)

; a combinational gate acquires the color of the latches in its combinational fanin.
A modulo-k counter is used to clock the latches of color (j mod k) at time j. As
such, the initial values of only the (k−1) colored latches propagate into other latches.
Phase abstraction converts one color of latches into REGISTERs, and the others into
buffers, thereby reducing state element count and temporally folding traces modulo-
k, which otherwise stutter.

Phase abstraction may not preserve property checking for netlists with con-
straints as illustrated by the following example. Assume that we have a 2-phase
netlist with a target gate of color 1, and a constraint gate of color 0 which is un-
conditionally violated one time-step after the target evaluates to 1. Without phase
abstraction, the target may be unassertable since the constraint prefixes the trace
only on the time-step after the target evaluates to 1. However, if we eliminate the
color-0 latches via phase abstraction, the constraint becomes violated concurrently
with the target’s evaluation to 1, hence the target becomes unassertable. Nonethe-
less, there are certain conditions under which phase abstraction preserves property
checking as per the following theorem.
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Theorem 6.4. If each constraint and target gate is of the same color, phase abstrac-
tion preserves property checking.

Proof. The correctness of phase abstraction without constraints has been estab-
lished in prior work, e.g., [BHSA03]. Because every constraint and target gate are
of the same color i, they update concurrently at times j for which

(

(j mod k) = i
)

.
Phase abstraction will merely eliminate the stuttering at intermediate time-steps, but
not temporally skew the updating of the constraints relative to the targets. There-
fore, the trace prefixing of the constraints remains property-preserving under phase
abstraction.

Automatic approaches of attempting to establish the criteria of Theorem 6.4,
e.g., via padding pipelined latch stages to the constraints to align them with the
color of the targets, are not guaranteed to preserve property checking. The problem
is that such approaches unconditionally delay the trace prefixing of the constraints,
hence even a contradictory constraint which can never be satisfied at time zero –
which thus renders all targets unassertable – may become contradictory only at
some future time-step in the range 1, . . . , (k− 2). After phase abstraction, this
delay will be either zero or one time-step; in the latter case, we have opened a
hole during which phase abstracted targets may be asserted, even if they are truly
unassertable in the original netlist. Nonetheless, in most practical cases, one may
methodologically specify their desired verification problem in a way that adheres
to the criteria of Theorem 6.4.

6.7 C-Slow Abstraction

C-slow abstraction [BTA+00] is a state folding technique which is related to phase
abstraction, though is directly applicable to REGISTER-based netlists. A c-slow [LS91]
netlist has REGISTERs which may be c-colored such that REGISTERs of color imay
only combinationally fan out to REGISTERs of color

(

(i + 1) mod c
)

; a combina-
tional gate acquires the color of the REGISTERs in its combinational fanin. Unlike
k-phase netlists, the REGISTERs in a c-slow netlist update every time-step hence
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generally never stutter. Additionally, the initial value of every REGISTER may
propagate to other REGISTERs. C-slow abstraction operates by transforming all
but a single color of REGISTERs into buffers, thereby reducing REGISTER count
and temporally folding traces modulo-c. To account for the initial values which
would otherwise be lost by this transformation, an unfolding approach is used to
inject the retained REGISTERs into all states reachable in time-frames 0, . . . , (c−1).

As with phase abstraction, if the target and constraint gates are of differing
colors, this abstraction risks converting some assertable targets to unassertable due
to its temporal collapsing of REGISTER stages. Additionally, even the criteria of re-
quiring all target and constraint gates to be of the same color as with Theorem 6.4 is
not guaranteed to preserve property checking with c-slow abstraction. The problem
is due to the fact that c-slow netlists do not stutter mod c. Instead, each time-step
of the abstracted netlist correlates to c time-steps of the original netlist, with time-
steps i, c+ i, 2·c+ i, . . . being evaluated for each i < c in parallel due to the initial
value accumulation. Reasoning across mod c time-frames is intrinsically impossi-
ble with c-slow abstraction; thus, in the abstracted netlist, there is generally no way
to detect if a constraint was effectively violated at time a·c+ i in the original netlist
when evaluating a target at time (a + 1)·c + j for i 6= j. Even with an equivalent-
color restriction, c-slow abstraction thus risks becoming overapproximate in the
presence of constraints. Nonetheless, methodologically, constraints which are not
amenable to this state-folding process are of little practical utility in c-slow netlists.
Therefore, in most cases one may readily map an abstracted counterexample trace
to one consistent with the original netlist, e.g., using satisfiability analysis to ensure
constraint preservation during intermediate timesteps.

6.8 Approximating Transformations

Overapproximating Transformations. Various techniques have been developed
for attempting to reduce the size of a netlist by overapproximating its behavior. Any
target proven unreachable after overapproximation is guaranteed to be unreachable
before overapproximation. However, if a target is asserted in the overapproximated
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netlist, this may not imply that the corresponding target is assertable in the original
netlist. Localization [CGKS02, MA04] is a common overapproximation technique
which replaces a set of cut gates of the netlist by PRIMARY INPUTs. The abstracted
cut can obviously simulate the behavior of the original cut, though the converse
may not be possible.

Overapproximating transformations are directly applicable in the presence
of constraints. Overapproximating a constraint cone only weakens its constraining
power. For example, while the cone of target t and constraint c may overlap, af-
ter localizing the constraint cone it may only comprise localized PRIMARY INPUTs
which do not appear within the target cone, thereby losing all of its constraining
power on the target. Such constraint weakening is merely a form of overapprox-
imation, which must already be addressed by the overall overapproximate frame-
work. Both counterexample-based [CGKS02] and proof-based [MA04] localiza-
tion schemes are applicable to netlists with constraints, as they will both attempt
to yield a minimally-sized localized netlist such that the retained portion of the
constraint and target cones will guarantee unreachability of the targets.

Underapproximating Transformations. Various techniques have been devel-
oped to reduce the size of a netlist while underapproximating its behavior. For
example, unfolding only preserves a time-bounded slice of the netlist’s behavior;
case splitting (e.g., by merging PRIMARY INPUTs to constants) may restrict the set
of traces of a netlist. Underapproximating transformations may safely be applied to
a netlist with constraints, as underapproximating a constraint cone only strengthens
its power. For example, if a constraint is of the form i1 ∨ i2, underapproximating
by merging i1 to constant ZERO will force i2 to constant ONE in the underapproxi-
mated netlist even though a target may be asserted in the original netlist only while
assigning i2 to a 0. However, this restriction – which may cause unreachable results
for targets which were assertable without the underapproximation – must already
be addressed by the overall underapproximate framework. Assertions of targets
on the underapproximated netlist still imply valid assertions on the original netlist
even in the presence of constraints. Extensions to underapproximate frameworks to
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gate t′ is a target.
b) Netlist N ′ with no constraints;

c) Constraint elimination algorithm

r

Figure 6.6: Property-preserving constraint elimination

enable completeness – e.g., diameter bounding approaches for complete unfolding,
and complete case splitting strategies – are directly applicable in the presence of
constraints.

6.9 Constraint Elimination

Given the challenges that they pose to various algorithms, one may wish to elim-
inate constraints in a property-preserving manner. In Figure 6.6c, we introduce a
general constraint elimination algorithm.

Theorem 6.5. The constraint elimination algorithm of Figure 6.6c is a property-

preserving transformation.

Proof. Consider any trace p that asserts target t in netlist N at time i. Note that
netlist N ′ has the same set of gates as N in addition to gates c′, r, and t′. Consider
the trace p′ of N ′ where all common gates have the same valuations over time as in
p, and gates c′, r and t′ are evaluated as per Definition 2.10. Because t is asserted at
time i, ∀j ≤ i.

(

p(c, j) = 1
)

, and thus by construction of c′, ∀j ≤ i.
(

p′(c′, j) = 1
)

.
Because t′ = t ∧ c′, we also have ∀j ≤ i.

(

p(t, j) = p′(t′, j)
)

. It may similarly be
proven that for any trace p′ that asserts target t′ at time i, there exists an equivalent
trace p that asserts target t at time i.
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Performing the constraint elimination transformation in Figure 6.6 enables
arbitrary verification and transformation algorithms to be applied to the resulting
netlist without risking the violation of constraint semantics. However, this approach
could result in significant performance degradation for both types of algorithms:

• Transformation algorithms (particularly redundancy removal) lose their abil-
ity to leverage the constraints for optimal simplification of the netlist.

• Falsification algorithms may waste resources analyzing uninteresting states,
i.e., from which no target may subsequently be asserted due to c′ evaluating
to 0.

• The tactical utility of the constraints for case-splitting strategies is lost.

6.10 Constraint Introduction

It follows from the discussion of sequential redundancy identification in Chapter 5
that reduction potential may be increased by constraints. It may therefore be desir-
able to derive constraints that may be introduced into the netlist while preserving
property checking, at least temporarily to enhance a particular algorithm.

Theorem 6.6. Consider netlist N with gate g. If no target in T may be asserted
along any trace after gate g evaluates to 0, then g may be labeled as a constraint
while preserving property checking.

Proof. If gate g is labeled as a constraint, by Definition 2.10, we will only reason
about the prefix length of traces wherein gate g always evaluates to 1. Since no
target in T may be asserted along any trace after gate g evaluates to 0, by Defini-
tion 2.20, netlist N ′ formed from N by labeling gate g as a constraint is property-
preserving trace equivalent to N .

Taking the example netlist of Figure 6.6b, any of the gates c, c′, and r may
be labeled as a constraint provided that we may establish the corresponding condi-
tion of Theorem 6.6, effectively reversing the transformation of Figure 6.6c. While
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this proof may in cases be as difficult as property checking itself, we propose an
efficient heuristic algorithm for deriving such constraint candidate gates as follows.
Similar to the approach of [BK04], we may localize each of the targets, and use
a preimage fixed-point computation to underapproximate the number of time-steps
needed to assert that target from a given set of states. Any state not reached dur-
ing this fixed-point may never reach that target. The intersection of such state sets
across all targets represents the conditions from which no target may subsequently
be asserted. While the approach of [BK04] proposes only to use this set to steer
semi-formal analysis away from useless states, we propose to synthesize the result-
ing conditions as a constraint in the netlist to enhance reduction potential.

Note that these constraints are in a sense redundant because no target asserts
may occur after they evaluate to 0 anyway. Therefore, instead of forcing all algo-
rithms to adhere to these constraints which may have an associated overhead, we
may treat these as verification don’t cares so that algorithms may choose to either
use these constraints to restrict evaluation of the netlist, or to ignore them. Note that
certain verification algorithms, e.g., SAT-based search, may inherently learn such
conditions and direct their resources accordingly. Ours is a more general paradigm
which enables leveraging this information for arbitrary algorithms, particularly to
enhance reduction potential.

6.11 Constraint Simplification

In this section, we discuss a general approach to simplify constraints. We also
discuss an efficient implementation of this paradigm which attempts to replace a
constraint with its preimage, heuristically trying to reduce the size of the constraint
cone and enable the elimination of that constraint through reparameterization.

We define prop p(t, c) as the target gate resulting from applying the con-
straint elimination algorithm of Figure 6.6c specifically to target t and gate c.

Theorem 6.7. Consider a netlist N with constraint c1 and target set T . Let gate c2
be any arbitrary gate in the netlist. If ∀t∈T.

(

prop p(t, c1)≡ prop p(t, c2)
)

without
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while (¬done) { // Iterate until arbitrary termination criteria done

Apply structural reparameterization to simplify constraint c;
If constraint c has been eliminated by reparameterization, break;
// Else, note that c has been simplified to its dead-end states
If

(

prop p(t, c)≡prop p(t, struct pre(c))
)

c = struct pre(c);
else break; // constraint c cannot be safely replaced by its preimage

}

Figure 6.7: Heuristic constraint simplification algorithm

the trace-prefixing of constraint c1, then converting N into N ′ by labeling c2 as a
constraint instead of c1 is a property-preserving transformation.

Proof. Since ∀t ∈ T.
(

prop p(t, c1) ≡ prop p(t, c2)
)

without the trace-prefixing
entailed by constraint c1, this proof follows directly from Definition 2.20 and The-
orem 6.5.

Theorem 6.7 illustrates that in certain cases, we may modify the constraint
gates in a netlist while preserving property checking. Practically, we wish to ex-
ploit this theorem to shrink the size of the constraint cones and thereby effectively
strengthen their reduction potential. Note that the structural reparameterization
algorithm in Section 6.5 is able to eliminate constraints which have no dead-end
states. This is in a sense an optimal transformation, as the constraining power of
the constraints are thereafter reflected in the netlist structure itself and effectively
filters the input stimulus applied to the netlist. Given these motivations, we present
a heuristic constraint simplification algorithm.

Definition 6.3. The structural preimage of a gate uwhich has no PRIMARY INPUTs
in its combinational fanin, struct pre(u), is a logic cone obtained by replacing each
REGISTER gate v ∈R in the combinational fanin of gate u with its corresponding
next-state function.

The algorithm of Figure 6.7 attempts to iteratively simplify, and ultimately
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eliminate, the constraints in a property-preserving manner. At each iteration, repa-
rameterization is used to replace the current constraint by its dead-end states. Note
that this step will eliminate the constraint if it entails no dead-end states. Other-
wise, we attempt to simplify the resulting sequential constraint by replacing it with
its structural preimage, using Theorem 6.7 to validate that this replacement pre-
serves property checking. If this check fails (either through refutation or excessive
resource requirements), then the algorithm terminates. Otherwise, the algorithm
iterates with the resulting simplified constraint.

To illustrate how this algorithm works in practice, consider its application
on constraint c in the netlist of Figure 6.1. If j ≤ i, constraint c can be iteratively
replaced by its preimage until it becomes combinational, at which point reparam-
eterization will outright eliminate it. If j > i, constraint c can be simplified by
shrinking j to i+1, at which point the check based upon Theorem 6.7 fails causing
the iterations to terminate.

Practically, the equality check of Figure 6.7 tends to be computationally
expensive. However, this check can be simplified as per the following theorem.

Definition 6.4. The structural initialization of a gate u which has no PRIMARY

INPUTs in its combinational fanin, struct init(u), is a logic cone obtained by re-
placing each REGISTER gate v ∈ R in the combinational fanin of gate u with its
corresponding initial value function. The initial value constraint of u is defined as
init cons(u) = init r ∨ struct init(u), where init r is a REGISTER whose initial
value is ZERO and next-state function is ONE.

Theorem 6.8. Consider a netlistN with constraint c1. If ∀t ∈ T.
(

prop p(t, c1) =⇒

prop p(t, struct pre(c1))
)

in N with the trace-prefixing entailed by constraint c1,
then converting N into N ′ by labeling struct pre(c1) and init cons(c1) as con-
straints instead of c1 is a property-preserving transformation.

Proof. (1) The implication proof in N means that within the prefix of any trace,
either the two gates evaluate to the same value, or prop p(t, c1) evaluates to 0 and
prop p

(

t, struct pre(c1)
)

to 1. The latter condition cannot happen since within any
prefix, constraint c1 must evaluate to 1, which implies that t cannot evaluate to 1
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and prop p(t, c1) to 0 concurrently. The implication proof thus ensures that if t is
asserted within any prefix at time i, then struct pre(c1) must evaluate to 1 at times
0 to i.

(2) Since N and N ′ have the same set of gates, they also have the same set
of traces; only the constraint sets differ. The trace prefixing of N ′ is stricter than
that of N as follows. (a) All traces prefixed at time 0 because of constraint c1 in
netlist N are also prefixed at time 0 because of constraint init cons(c1) in N ′. (b)

All traces prefixed at time i+ 1 because of constraint c1 in netlist N are prefixed at
time i because of constraint struct pre(c1) in N ′.

(3) For property-preservation, we must only ensure that target t cannot be
asserted during time-steps that were prefixed in N ′ but not N . During such time-
steps, c1 evaluates to 1, and struct pre(c1) to 0, hence prop p

(

t, struct pre(c1)
)

must evaluate to 0. The proof of this implication check thus requires prop p(t, c1)

to evaluate to 0 at such time-steps, ensuring that t evaluates to 0.

Practically, we have found that the trace-prefixing of c1 substantially reduces
the complexity of the proof obligation of Theorem 6.8 vs. Theorem 6.7, e.g., by en-
abling low cost inductive proofs. This check tends to be significantly easier than
the property check itself, as it merely attempts to validate that the modified con-
straint does not alter the assertability of the target along any trace, independently
of whether the target is assertable or not. Additionally note that init r can readily
be eliminated using retiming.
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Chapter 7

Conclusion

In this chapter, we summarize the contributions of this dissertation, and discuss fu-
ture research directions. In this dissertation, we have made significant advances in
the area of sequential redundancy identification and this has enabled scalable and
efficient sequential equivalence checking across a wide variety of design modifi-
cations, and enhanced proofs we well as falsification in property checking. Our
contributions are three-fold.

Sequential Equivalence Checking

We introduced a novel and flexible redundancy identification framework based on
speculative-reduction in Chapter 3. This framework has enabled SEC solutions to
be highly scalable, scaling up to designs with 10,000s of state elements and beyond.
We also proposed the idea of using a flexible and synergistic set of transformation
and verification algorithms to help identify redundancy in Chapter 3. This has en-
abled SEC solutions to be applicable across arbitrary design transformations. The
development of highly scalable and widely applicable SEC solutions based on the
techniques presented in this dissertation has resulted in SEC becoming a standard
part of design methodologies at IBM. By becoming the main verification frame-
work for validating micro-architectural optimizations for design closure at IBM,
SEC has eliminated costly functional verification regression process and enabled
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shorter design cycles. SEC has also opened the door for automated sequential syn-
thesis through its ability to validate the sequential design transformations. Though
such automated synthesis transformations have been developed decades ago, until
the development of automated scalable SEC solutions, they have seen little use. Se-
quential synthesis is unavoidable if one wants to design high performance circuits at
a higher level of abstraction. Design at a higher level of abstraction is an inevitable
direction of digital design as it enables faster and more efficient design of complex
systems and significantly reduces functional verification complexity [Spi04].

Constraint-based Verification

To enable the application of SEC on designs with constraints, we have developed
the theoretical framework with corresponding efficient implementation to enable
the optimal sequential redundancy identification for designs with constraints in
Chapter 5. We propose new algorithms for constraint-preserving testcase gener-
ation for simulation in the presence of dead-end states in Chapter 6. We also dis-
cuss how various automated netlist transformations may be optimally applied while
preserving constraint semantics, including dead-end states.

Transformation-based Verification

Transformation-based verification (TBV) is the key in enabling SEC across arbi-
trary design transformations. We enhance the scalability of TBV by proposing two
new structural abstraction techniques in Chapter 4. We study the synergy that these
netlist transformations have with each other, and also with other transformations
such as retiming and redundancy removal. We also propose new strategies for us-
ing these transformations to enable scalable sequential redundancy identification.

While the focus of this dissertation is upon the benefits that the enhanced
sequential redundancy identification may bring to a verification framework such as
SEC or property checking, we note that the potential application domain of our
work is significantly broader.

The netlist reductions enabled by our solution may reduce resources in val-
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idation frameworks such as simulation and hardware emulation. They may also
be used to enhance technology-independent logic synthesis by using the enhanced
sequential redundancy removal techniques as a synthesis transformation.

Future Work

There are numerous future work directions to enhance the results reported herein.
It has been shown that observability don’t cares (ODC) can significantly enhance
combinational redundancy identification [ZKKSV06]. Use of ODCs to enhance se-
quential redundancy identification is still in the nascent stage and has great promise.

Clock gating is a well known concept for power saving and consists of shut-
ting off the clock to certain areas of the chip during known periods of inactivity.
Clock gating verification can be setup as a sequential equivalence checking problem
where we equivalence check the design with clock gating enabled vs. clock gating
disabled at time frames where these designs are equivalent to produce matching
outputs. Though the two designs are structurally similar, this is a very difficult SEC
problem since the gates across the two designs are equivalent only when clock is
active (care condition). The use of ODCs to enhance this SEC check is an obvi-
ous solution. It furthermore would be interesting to explore the automated use of
uninterpreted functions to transform the designs being equivalence checked.

As discussed in Chapter 3, transformation algorithms have the ability to
trivialize certain SEC problems. For example, if retiming is the only sequential
transformation that has been used during logic synthesis, a retiming engine as
part of a transformation-based verification framework maybe able to transform the
PSPACE-complete problem of SEC to a NP-complete problem of checking satisfi-
ability [MBPK05]. Development of new netlist transformations that are related to
the sequential synthesis transformations applied on the designs could be the key to
scalable validation of sequential synthesis.

With further improvements to the scalability and applicability of sequential
redundancy identification algorithms, we believe that extensive use of sequential
synthesis and thereby design and verification at higher levels of abstraction will
soon become a practical reality.
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