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Many hydrocarbon reservoirs have sufficient porosity but low perme-

ability (for example, tight gas sands and coal beds). However, such reservoirs

are often naturally fractured. The fracture patterns in these reservoirs can

control flow and transport properties, and therefore, play an important role in

drilling production wells.

On the scale of seismic wavelengths, closely spaced parallel fractures

behave like an anisotropic media, which precludes the response of individual

fractures in the seismic data. There are a number of fracture parameters which

are needed to fully characterize a fractured reservoir. However, seismic data

may reveal only certain fracture parameters and those are fracture orientation,

crack density and fracture infill.

Most of the widely used fracture characterization methods such as S-

wave splitting analysis or amplitude vs. offset and azimuth (AVOA) analysis

vii



fail to render desired results in laterally varying media. I have conducted a

systematic study of the response of fractured reservoirs with laterally varying

elastic and fracture properties, and I have developed a scheme to invert for

the fracture parameters.

I have implemented a 3D finite-difference method to generate multicom-

ponent synthetic seismic data in general anisotropic media. I applied the finite-

difference algorithm in both Standard and Rotated Staggered grids. Stan-

dard Staggered grid is used for media having symmetry up to orthorhombic

(isotropic, transversely isotropic, and orthorhombic), whereas Rotated Stag-

gered grid is implemented for monoclinic and triclinic media. I have also

developed an efficient and accurate ray-bending algorithm to compute seismic

traveltimes in 3D anisotropic media.

AVOA analysis is equivalent to the first-order Born approximation.

However, AVOA analysis can be applied only in a laterally uniform medium,

whereas the Born-approximation does not pose any restriction on the subsur-

face structure. I have developed an inversion scheme based on a ray-Born

approximation to invert for the fracture parameters. Best results are achieved

when both vertical and horizontal components of the seismic data are inverted

simultaneously. I have also developed an efficient positivity constraint which

forbids the inverted fracture parameters to be negative in value. I have im-

plemented the inversion scheme in the frequency domain and I show, using

various numerical examples, that all frequency samples up to the Nyquist are

not required to achieve desired inversion results.
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Chapter 1

Introduction

1.1 Introduction

Recognition of fractures or fracture networks in a hydrocarbon reservoir

could be the key to its economic viability. The literature is full of examples

where understanding of fracture patterns helped save the potential reservoirs

from being abandoned (e.g., Aguilera, 1995; Nelson, 2001). Sometimes, the

hydrocarbon recovery is completely dependent on the exploitation of the nat-

ural fracture networks in a reservoir. Typical examples are tight gas reservoirs

and coalbed methane reservoirs.

Rocks in tight gas reservoirs are often characterized by sufficient poros-

ity, but they have very low matrix permeability (≤ 0.1 mD) which might render

gas production unprofitable. This type of reservoir, however, is often fractured

(Neves et al., 2003). These fractures provide the necessary open channels for

the flow of gas, and they may control the permeability of the reservoir (Bansal,

2003). A high density of naturally occurring fractures has been recognized as

a controlling factor for commercial success of production wells (e.g., Neves et

al., 2003).

Coal has negligible matrix porosity and permeability. Reservoir gases
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are not contained in granular pores; instead they are absorbed on the surface

of the coal. Although coal has an impermeable matrix, it has an anisotropic

fabric of natural fractures known as cleats. The cleat system is composed of

two orthogonal sets of fractures known as face cleats and butt cleats (e.g.,

Laubach et al., 1998). Exploitation of this cleat system is crucial for com-

mercial production of gas from the coalbed methane reservoirs (Shuck et al.,

1996).

Nelson (2001) lists the following reasons to understand the fracture

patterns in a reservoir: (1) Early assessment of reservoir’s potential, (2) Op-

timization of well locations and paths, (3) Accurate prediction of field rates

and recovery, and (4) Economic depletion of field.

To characterize the fractures, it is important to understand them. The

following are the two definitions of fractures given by two prominent geologists,

pioneers in fracture study:

“A natural fracture is a macroscopic planar discontinuity that results

from stresses that exceed the rupture strength of the rock” (Stearns, 1994).

“A reservoir fracture is a naturally occurring macroscopic planar dis-

continuity in rock due to a deformation or physical digenesis” (Nelson, 2001).

Fractures can be either man-made (e.g., hydraulic fractures, cracks de-

veloped while drilling) or naturally occurring in the reservoirs. For explo-

ration purposes, detection of naturally occurring fractures are preferred which

are proven conduit for oil and gas in low-porosity reservoirs (Aguilera, 1998).
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There are six main fracture parameters which might be relevant to a reservoir

geophysicist:

1. Fracture orientation: Fracture orientation may control the direction

of fluid flow in a reservoir and are taken into account in the derivation

of equivalent stiffness matrix (section 1.3) for the fractured media.

2. Fracture spacing: Fracture spacing or fracture density may be a major

factor while planning the location of the production wells in the field.

Drilling many wells on the same fracture network may lead to over pro-

duction and quick depletion of a reservoir. Fracture spacing is related

to fracture density (crack density), a parameter often used by geophysi-

cists in describing fractures. However, exact estimate of fracture spacing

cannot be made from crack density.

3. Fracture aperture: Fracture permeability is proportional to the cube

of fracture aperture (Laubach, 2003). Typical fracture aperture may

vary from 0.06 mm to 3 cm depending on the lithology and compaction.

In general, fracture aperture decreases with depth. Fracture apertures,

measured on outcrops, are not considered to be reliable enough to predict

the permeability in the subsurface. Fracture aperture measured from

core is also not considered to be very reliable because the core is not

under the same stress and strain conditions as it was originally in the

subsurface (Aguilera, 1998). I have not found any reference where the
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in-situ stresses and strain condition is simulated to measure the exact

aperture from the core.

4. Fracture area: Fractures could be either infinitely extensive or could

terminate into another fracture or bed rock. Well data or core data

cannot be used to determine the fracture area. This a is fundamental

problem in fracture analysis and only direct observation, so far, seems

to be a promising method to solve this problem.

5. Fracture porosity: Fracture porosities are mostly secondary porosi-

ties. Most of the fractures are considered to be only a conduit to the

hydrocarbon flow because of their low porosities which vary from 0.01

to 10% (Aguilera, 1998).

6. Fracture morphology: According to Nelson (2001) Fracture morphol-

ogy can be considered as open, deformed, mineral-filled, or vuggy. Open

fractures that are uncemented might have a positive effect on oil flow

but a negative effect on water or gas flow due to coning (Aguilera, 1998).

These fractures tend to close as reservoirs are depleted due to increase in

normal stress condition. Mineral-filled fractures could be either partially

mineralized or completely mineralized. Partially mineralized fractures

might provide a better conduit for hydrocarbon flow because they remain

open while reservoirs are depleted. Completely mineralized fractures are

not very useful for hydrocarbon production. Hence, recognition of these

completely mineralized fractures is important to avoid overly optimistic
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estimates of hydrocarbon recovery from reservoirs.

1.2 Motivation

In the past, detection of the fracture network in the subsurface has

been a very difficult task due to the lack of direct observation. Many times,

a reservoir is first developed and then the role of the fracture network is re-

alized by observing the discrepancies between the observed and the expected

production from the wells, instead of direct observations of fracture porosity,

size, and connectivity (e.g., Aguilera, 1998; Laubach, 2003).

Fractures can be detected by direct core observation from a wellbore.

However, it may sometimes be very difficult to maintain core integrity while

drilling. Drilling may introduce artificial fractures in the core which might be

confused with the natural fractures. There are, however, logging tools available

now, which can give better core samples and can image fractures in borehole

walls. These tools can provide correct but insufficient data to image fracture

networks on a regional scale. Moreover, most of the fractures in the subsur-

face are nearly vertical which is corroborated by the success of horizontal or

directional production wells in naturally fractured reservoirs (Aguilera, 1995).

Hence, there are very slim chances of intercepting vertical fractures with a ver-

tical well. This situation becomes worse in the case of large fractures (Laubach,

2003).

Surface seismic data can also be used to detect fracture patterns in

the subsurface. Aligned fractures or fracture swarms behave as anisotropic

5



media in the seismic frequency band. There are several examples in literature

where surface seismic data were successfully used to detect fracture patterns

in a reservoir (e.g., Hall and Kendall, 2003; Shen et al., 2002; Shuck et al.,

1996). However, surface seismic data may not be sufficient for detecting large

regional fractures. Moreover, the shape of fractures and spacing between them

cannot be appraised by surface seismic due to limitations of equivalent media

theories (section 1.3). Further, seismic data can reveal only certain parameters

which are called fracture parameters by the seismologists. Moreover, most of

the conventional seismic methods are limited to laterally homogeneous media

(section 1.5). Much of my dissertation research is aimed at extending the

existing seismic methods to laterally varying media to invert for fracture pa-

rameters that are resolvable from seismic data (namely, fracture orientation,

crack density and fracture infill).

In this chapter, I will review some of the popular equivalent or effective

media theories for cracks and fractures, I will explain the differences between

the HTI and VTI media, and I will give an overview of the conventional meth-

ods of estimation of fracture parameters. Finally, I will outline my research

objectives and describe the organization of the rest of my dissertation chapters.

1.3 Equivalent media theories for cracks and fractures

In continuum mechanics a hypothesis is made that, if a real material

with its atomic and molecular structure is replaced by an equivalent model

continuum, which remains a continuum no matter how much it is subdivided,
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the macroscopic mechanical properties of the material remain unchanged. This

is called the continuum hypothesis (e.g., Christensen, 1979; Hudson, 1991).

This hypothesis works as long as the scale of observation is much larger than

the scale-length of the molecular structure.

In a similar way, micro fractures, pores and other heterogeneities with

uniform statistical distributions can be replaced by an equivalent or effective

medium provided that the scale of the observation is much larger than the scale

of the heterogeneities. The replacement of the inhomogeneous media with an

equivalent continuum might make the material anisotropic. In exploration

seismology, this approach is favored due for reasons. First, the wave equation

for the homogeneous anisotropic media is easier to deal with than the wave

equation for the inhomogeneous media. Second, the scale of the observation, or

seismic wavelengths, is much larger than the scale length of the heterogeneities

present in the subsurface (Hudson, 1991).

The concept of equivalent media clearly implies that, if the stress, strain

or displacements are measured on a large enough scale, the values obtained

and the relationship between them will be that of homogeneous continuum

(e.g., Christensen, 1979). This implies some kind of spatial averaging process.

For instance, the average stress and strain would be defined as

σ̄ij =
1

V

∫

V

σijdV, (1.1)

and

ε̄ij =
1

V

∫

V

εijdV, (1.2)
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where V is the region large compared to the scale of the heterogeneities in the

region V . Similarly, other quantities such as the average stiffness tensor of the

material c̄ijkl can be used to relate the average stress and strain as

σ̄ij = c̄ijklε̄ij. (1.3)

One may construct a laboratory test (Hudson, 1991) or a mathematical model

(Grechka, 2003) by isolating V and imposing a static average stress and mea-

suring average strain in order to measure the average stiffness tensor. Although

no one has yet tried any laboratory measurements of average stress and strain

to yield overall average stiffness tensor (to the best of my knowledge), many

analytical solutions for average stiffness tensor have been derived using various

approaches.

Based on the averaging of the stress and strain, Backus (1962) de-

rived expressions for an equivalent stiffness tensor for a stack of homogeneous,

isotropic flat layers. Eshelby (1957), first, gave an analytical solution for the

stress and strain inside an ellipsoidal inclusion in an unbounded homogeneous

material for a static stress at infinity. Ellipsoid is a very versatile shape because

it can accommodate most kinds of heterogeneities ranging from spherical inclu-

sions to flat cracks. This model became instantly popular and Cheng (1978)

extended this model to derive the equivalent elastic properties of a cracked

isotropic host rock which turned out to be transversely isotropic. This model

was valid for only small concentration of the cracks and, unlike Hudson’s model

(section 1.3.3), could handle a range of defined aspect ratios of the cracks. Due
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to its limited applicability in the presence of multiple sets of cracks, this theory

is not taken into consideration here.

The most widely accepted equivalent media theories for fractured rocks

were given by Hudson (1980) for penny-shaped cracks and Schoenberg and

Douma (1988) for parallel planar discontinuities. Thomsen (1995) corrected for

anisotropy caused by fluid-flow between cracks and spherical (equant) pores.

Grechka (2003) numerically solved the wave equation for average stress and

strain in an inhomogeneous media for given boundary conditions in order to

estimate an average stiffness tensor of the material.

1.3.1 Linear slip theory

A perfectly welded interface requires that both the tractions and dis-

placements be continuous across the interface (e.g., Aki and Richards, 2002,

p. 128). An imperfectly welded interface requires that only traction be con-

tinuous, and the displacement field is not continuous across the interface (e.g.,

Schoenberg, 1980; Aki and Richards, 2002, p. 39). These imperfect bond-

ing surfaces can be called fractures (Schoenberg, 1980). Let this small vector

difference in displacement be [ui]. If there are a number of thin parallel frac-

tures, the traction σijnj applied on the face of fractures and extra slip across

the fractures per unit length in the direction of fracture normal is related by

the following linear relationship (Schoenberg and Douma, 1988):

nj
∂ui

∂xi

= Zijσjknk, (1.4)
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where nj is the fracture normal, σjk is the second-order stress tensor, and Zij

is defined as fracture system compliance tensor which is symmetric and

non-negative. Zij depends on fracture orientation, fracture density (or crack

dnesity, see section 1.3.3), fracture infill (fractures are fluid-filled or dry), and

fracture corrugation (e.g., Schoenberg and Douma (1988); Kachanov (1992)).

Schoenberg and Sayers (1995) derived an analytical expression relating second-

order fracture system compliance tensor Zij to fourth-order excess fracture

compliance tensor sijklf which can be written as

sijklf =
1

4
(Ziknlnj + Zjknlni + Zilnknj + Zjlnkni). (1.5)

Schoenberg and Sayers (1995) also showed that equivalent compliance sijkl of a

fractured medium is given by a summation of unfractured background medium

compliance sijklb and the excess fracture compliances sijklf ; i.e.,

sijkl = sijklb + sijklf . (1.6)

Schoenberg and Sayers (1995) and Schoenberg and Helbig (1997) assumed that

more than one set of intersecting parallel fractures in the same background,

do not affect the compliance of each other (figure 1.1). Moreover, equivalent

compliance of the medium can be given by summing the individual fracture

compliance to the background compliance; i.e.,

sijkl = sijklb +
∑

m

s
(m)
ijklf

, (1.7)

where s
(m)
ijklf

is the compliance of mth fracture set. It should be noted that all

fracture compliance tensors for different fracture sets and the background com-

pliance tensor should be transformed into common coordinate system before
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Figure 1.1: Maps of intersecting fractures on bedding surface of Rico Forma-
tion, southeastern Utah (Olson and Pollard, 1989): Linear slip theory suggests
that each fracture set can be treated individually without taking into account
any interaction between different fracture sets; i.e., compliances of each frac-
ture set can be estimated, indepedentely, by equation 1.5. Compliances of each
fracture set and background medium add up to give the equivalent compliance
of the fractured rock (equation 1.7).
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adding them. Moreover, only compliances add up to yield an equivalent com-

pliance tensor of a fractured rock, and the stiffness tensor should be calculated

by inverting the compliance tensor (Schoenberg and Douma, 1988).

1.3.2 Rotationally invariant fractures

If properties of a parallel fracture set remain unchanged while they

are rotated about their normal ni, they are called rotationally invariant

fractures (Schoenberg and Sayers, 1995). The fracture system compliance

tensor Zij of these types of fractures should satisfy the following condition:

Zij = ZNninj + ZT (δij − ninj) = ZT δij + (ZN − ZT )ninj. (1.8)

If there is one set of vertical rotationally invariant fractures embed-

ded in an isotropic background with a normal parallel to the x-axis, equa-

tions 1.6, 1.5 and 1.8 yield the following equivalent stiffness matrix c̃ of the

fractured medium is given as

c̃ = cb −

















M∆N λ∆N λ∆N 0 0 0
λ∆N r∆N r∆N 0 0 0
λ∆N r∆N r∆N 0 0 0

0 0 0 0 0 0
0 0 0 0 µ∆T 0
0 0 0 0 0 µ∆T

















, (1.9)

where cb is the stiffness matrix of the isotropic background, λ and µ are the

elastic Lame’s coefficients of the background, M = λ + 2µ, r = λ2

M
, ∆N =

ZNM
1+ZNM

, and ∆T = ZT µ
1+ZT µ

. The stiffness matrix c̃ suggests that the equivalent
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medium is transversely isotropic with a horizontal symmetry axis (HTI, see

section 1.4). The dimensionless quantities ∆N and ∆T are called the normal

and tangential weaknesses (Schoenberg and Douma, 1988), respectively.

The weaknesses vary from zero to one, with the zero value corresponding to

the unfractured medium and the unity corresponding to the highly fractured

medium. It should be noted that P-wave velocity vanishes across the fractures

for ∆N = 1, and S-wave velocity vanishes for ∆T = 1.

In the case of multiple sets of fractures in the background, fracture com-

pliances should be added to obtain the equivalent compliance of the media. It

can be verified that increasing the number of fracture sets lowers the symme-

try of the media. Table 1.1 summarizes the most common cases of anisotropy

caused by the presence of the fractures (Bakulin et al., 2000a; Bakulin et al.,

2000b; Bakulin et al., 2000c).

Special cases of anisotropy caused by presence of the vertical fracture
Background Number of fracture sets Equivalent Media

Isotropic 1 HTI
Isotropic 2 (orthogonal) Orthorhombic
Isotropic 2 (Non-orthogonal) Monoclinic

VTI 1 Orthorhombic
Isotropic > 1 (ZN = ZT ; any angle of intersection) Orthorhombic

Table 1.1: In this table, most common cases of anisotropy due to presence of
the vertical fractures are listed.
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1.3.3 Hudson’s model for aligned penny-shaped cracks

Hudson (1980, 1981) derived an analytical expression for the stiffness

tensor for aligned and randomly oriented flat (penny-shaped) microcracks

(where one of the semiaxes of the ellipsoidal cracks is much smaller than

other two axes), with semimajor axis a and semiminor axis c, embedded in an

isotropic background. The main assumptions for this formula to be valid are

that (1) concentration of the cracks in the subsurface is very dilute, and (2)

the radii or semimajor axes of the cracks are very small. To put this condition

in the condensed form, e = ν〈a3〉 ¿ 1, where ν is the number of cracks per

unit volume; i.e., ν = N/V , and 〈〉 denotes volume averaging. Parameter e

was defined by Hudson as crack density. Hudson (1980) also assumed that

concentration of the cracks in the background medium is homogeneous; cracks

are evenly distributed, which is a very reasonable assumption in the case of

dilute concentration of cracks.

If the cracks are aligned in the x-direction, then in condensed indices

notation (Hudson, 1981):

c̃ = cb −
e

µ

















M2U11 λMU11 λMU11 0 0 0
λMU11 λ2U11 λ2U11 0 0 0
λMU11 λ2U11 λ2U11 0 0 0

0 0 0 0 0
0 0 0 0 µ2U33 0
0 0 0 0 0 µ2U33

















+O(e2), (1.10)

where cb is the stiffness matrix of the isotropic background, U11 and U33 are

dimensionless quantities that depend on the boundary conditions of the crack
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faces, fracture infill, direction of cracks (Hudson, 1981), and M = λ + 2µ. It

should be noted that, yet again, equivalent stiffness matrix c̃ represents an

HTI medium. Assad et al. (1993) verified the Hudson’s theory by a phycial

model study. The reported that the Hudson’s theory was in agreement with

the lab measurement for crack densities less than or equal to 7%.

1.3.4 Comparison of Hudson’s and Linear-Slip model and signifi-
cance of fracture parameters

Schoenberg and Douma (1988) noticed that elastic stiffness matrices

for fractures (equation 1.9) and microcracks (equation 1.10) have the same

structure, and become identical if the following relationships are fulfilled:

∆N =
(λ+ 2µ)

µ
U11, (1.11)

∆T = U33e. (1.12)

The two approaches are completely different for distinct types of cracks or

fractures (Linear Slip theory assumes fractures to be planar discontinuities

whereas Hudson (1980) treats the cracks as flat ellipsoidal inclusions), but

they give the same elastic stiffness matrix c̃. This observation suggests that

it is impossible to distinguish the type of the discontinuity (cracks

and fractures) from seismic data; both cracks and fractures will have

identical signatures on the seismic data.

Hudson (1981) gave expressions for U11 and U33 for different types of in-

fill materials in cracks. In case of a weak solid inclusion with elastic coefficients
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k′ and µ′ (Schoenberg and Douma, 1988),

∆N =
4e

3g(1 − g)[1 + 1
πg(1−g)

(k′+4/3µ′

µ
)(a

c
)]
, (1.13)

and

∆T =
16e

3(3 − 2g)[1 + 4
π(3−2g)

(µ′

µ
)(a

c
)]
. (1.14)

The parameter g is defined as

g =
µ

λ+ 2µ
=
V 2

S

V 2
P

. (1.15)

For dry (gas-filled) cracks both elastic coefficients of infill material vanish (k ′ =

µ′ = 0), yielding

∆N =
4e

3g(1 − g)
, (1.16)

and

∆T =
16e

3(3 − 2g)
. (1.17)

If the cracks are filled with fluid, the shear modulus goes to zero (µ′ =

0), but the bulk modulus k′ for water or oil is almost equal to the shear

modulus µ of the medium. Hence, for very flat cracks (very small c/a),

[(k + 4/3µ′)/µ](a/c) À 1 and ∆N goes to zero. However, tangential weak-

ness ∆T remains unchanged:

∆N = 0, (1.18)

∆T =
16e

3(3 − 2g)
. (1.19)
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Figure 1.2: ∆N and ∆T in isotropic host rock for different values of fracture
density e and VS/VP : ∆N is plotted for completely dry fractures using equa-
tion 1.16. Notice that ∆N exceeds the value of 1 for small VS/VP and high
crack density e. Also notice that for same values of VS/VP and e, ∆T has much
smaller value than ∆N .

Table 1.2 summarizes the relationships of fracture weaknesses with mir-

crofracture properties in Linear-slip model and Hudson’s model. Figure 1.2

shows ∆N and ∆T for different values of fracture density e and VS/VP for dry

cracks. Notice that ∆N exceeds the value of 1 for small VS/VP and high crack

density e. Also notice that for same values of VS/VP and e, ∆T has much
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Fracture pa-
rameters

Linear-slip model
(Schoenberg and
Sayers, 1995)

Thin, penny-shaped, aligned
cracks (Hudson, 1980)

Normal weak-
ness, ∆N

(λ+2µ)ZN

1+(λ+2µ)ZN

4e
3g(1−g)

(dry), 0 (fluid-filled)

Tangential
weakness, ∆T

µZN

1+µZT

4e
3g(1−g)

(dry), 16e
3(3−2g)

(fluid-

filled)

Fluid indica-
tor ≈ g∆N

∆T

ZN

ZT

7
8
(1 + 5ς

a

2πf
b
)−1

aς represents the ratio of incompressibility of the inclusion fluid and the rock matrix.
bf is the aspect ratio of the cracks.

Table 1.2: Summary of relationships of fracture weaknesses with microfacture
properties in Linear-slip model and Hudson’s model for natural fractures in
hydrocarbon reservoirs (adapted from Shaw and Sen, 2006).
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Figure 1.3: Phase velocity surfaces in a fractured medium: Background
medium is isotropic with one set of vertical fractures oriented perpendicu-
lar to x-direction. Crack density e of the fractures is 8%. Notice that P-wave
and SV-wave velocities are different for dry and fluid-filled fractures.
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Figure 1.4: The phase velocity surfaces in an isotropic medium with two sets
of vertical fractures embedded in it; angle between the fracture sets is 30◦. The
crack densities of the fracture sets are 6% and 8%. Notice that velocities of all
three modes (P-, S1-, S2-waves) are different for dry and fluid-filled fractures.

smaller value than ∆N .

Figure 1.3 shows the phase velocity surfaces in a fractured medium.

Background medium is isotropic with one set of vertical fractures oriented per-

pendicular to x-direction. Crack density e of the fractures is 8%. Notice the

anisotropic behavior of all three modes (P-, SV- and SH-waves). Moreover, P-

and SV-wave velocities are significantly different in case of dry and fluid-filled

fractures. Appendix A explains how phase velocity surfaces in anisotropic me-

dia are calculated. Figure 1.4 shows the phase velocity surfaces in an isotropic

medium with two sets of vertical fractures embedded in it. The crack densities

of the fracture sets are 6% and 8%. Angle between the fracture sets is 30◦.

This type of medium falls into monoclinic symmetry (Table 1.1). There is a
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more detailed discussion on this type of medium in chapter 2.

1.3.5 Fluid indicator for cracks and fractures

Schoenberg and Sayers (1995) suggested that the ratio ZN/ZT (section1.3.2)

could be indicator of the fluid type in fractures. This ratio is obtained as

ZN

ZT

= g
∆N(1 − ∆T )

∆T (1 − ∆N)
. (1.20)

For fluid-filled cracks normal weakness vanishes to zero (∆N = 0), and

hence, the ratio ZN/ZT goes to zero. However, this is not always the case

(Thomsen, 1995). This issue is discussed in detail in appendix B.

In the limit of small weaknesses (∆N ¿ 1 and ∆T ¿ 1), above equation

reduces to

ZN

ZT

≈ g
∆N

∆T

. (1.21)

Substituting the values of ∆N and ∆T from equations 1.16 and 1.17 into equa-

tion 1.21, we get

ZN

ZT

≈
3 − 2g

4(1 − g)
= 1 − σ/2. (1.22)

For whole range of poisson’s ratio σ from 0 to 0.5, ZN/ZT varies from 1 to

0.75.

1.4 HTI and VTI media

A transversely isotropic (TI) medium has a single axis of rotational

symmetry. All seismic signatures in such media depend on the angle between
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the propagation direction and the symmetry axis. TI media can have either a

vertical axis of symmetry (VTI) or a horizontal axis of symmetry (HTI). A VTI

medium is generally found in thin sand-shale sequences (figure 1.5(a)). Thin

sand or shale bands are much thinner than the seismic wavelength. Hence, the

whole sequence of sand-shale beds acts like a VTI medium to seismic waves

(Backus, 1962). HTI media are mostly found in the subsurfaces with vertical

parallel fractures (figure 1.5(b)). Both VTI and HTI media have 5 independent

elastic coefficients and are given as follows:

c(VTI) =

















c11 c11 − 2c66 c13 0 0 0
c11 − 2c66 c11 c13 0 0 0

c13 c13c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c66

















, (1.23)

and

c(HTI) =

















c11 c13 c13 0 0 0
c13 c33 c33 − 2c44 0 0 0
c13 c33 − 2c44 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c66 0
0 0 0 0 0 c66

















. (1.24)

Although the general HTI media depends on five independent elastic coeffi-

cients, equivalent stiffness matrix c̃ of a fractured medium with one set of

vertical fractures is defined by only four independent elastic parameters: λ,

µ, and dimensionless quantities ∆N and ∆T (equation 1.9). Hence, it can

be shown that the stiffness coefficients should satisfy the following condition
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(Schoenberg and Sayers, 1995):

c11c33 − c213 = 2c44(c11 + c13). (1.25)

Figure 1.6 shows the group velocity surfaces (or wavefronts since the medium is

homogeneous) for P- and SV-waves in a VTI medium (Green River shale) with

the Thomsen parameters (Thomsen, 1986) α0 = 3.292 km/s, β0 = 1.768 km/s,

ε = 0.195, δ = −0.220, γ = 0.180. Notice that the group velocity surfaces are

symmetrical about vertical axis. Colorbar shows the polarization of particles

with respect to the slowness direction. Figure 1.7 shows the group velocity

surfaces for an HTI medium made of one set of vertical fluid-filled fractures

perpendicular to x-axis embedded in an isotropic background. Crack density

e of the fracture set is 8% and the background P- and S-wave velocities are

4 km/s and 2 km/s, respectively. Notice that the group velocity surfaces are

now symmetrical about x-axis. Figure 1.8 shows the group velocity surfaces

when the fractures are dry; rest of the parameters were kept the same as in the

previous case. Notice the change in the particle polarization and the change in

the group velocity surfaces due to the change in the fracture infill (fluid-infill

to dry). Appendix A explains how the group and phase velocity surfaces in

anisotropic media are calculated. Figure 1.9 shows the variation in reflection

coefficients with angles of incidence and azimuth in HTI and VTI media. The

top layer is isotropic with P- and S-wave velocities of 2.75 km/s and 1.25 km/s,

respectively. Density of the isotropic medium is 1.5 g/cc. (a) The bottom layer

has one set of dry fractures. Crack density e is 8%. Medium P-wave and S-wave

velocities are 4 km/s and 2 km/s, respectively. Medium density is 2.075 g/cc,
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(a) (b)

Figure 1.5: (a) VTI and (b) HTI models: VTI media are typically formed
due to layering of sand-shale sequence or due to the intrinsic anisotropy of
the sedimentary rocks (mostly shale) while HTI media are mostly formed due
to the presence of rotationally invariant vertical fractures in an isotropic host
rock.

(b) Bottom layer has one set of fluid-fill fractures. The rest of the parameters

are kept the same as in the previous case, and (c) Bottom layer is a VTI

medium (Taylor sandstone) with the Thomsen parameters (Thomsen, 1986)

α0 = 3.368 km/s, β0 = 1.829 km/s, ε = 0.110, δ = −0.035, γ = 0.255. Notice

the variation in the reflection coefficients with azimuth when the bottom layer

is fractured (HTI medium). Moreover, there is a significant difference in the

reflection coefficients between the cases when the fractures are dry and fluid-

filled, especially at large incidence angles.
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(a)

(b)

Figure 1.6: Group velocity surfaces in Green River shale for (a) P- and (b) SV-
waves: Notice that the group velocity surfaces are symmetrical about vertical
axis. Colorbar shows the polarization of particles with respect to the slowness
direction.
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(a)

(b)

Figure 1.7: Group velocity surfaces in an HTI medium for (a) P- and (b)
SV-waves: The medium has one set of fluid-filled vertical fractures perpen-
dicular x-axis. Notice that group velocity surfaces also symmetrical about
x-axis. Colorbar shows the polarization of particles with respect to the slow-
ness direction.
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(a)

(b)

Figure 1.8: Group velocity surfaces in an HTI medium (dry fractures) for
(a) P- and (b) SV-waves: The medium has one set of dry vertical fractures
perpendicular x-axis. Notice that group velocity surfaces also symmetrical
about x-axis. Colorbar shows the polarization of particles with respect to the
slowness direction.
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Figure 1.9: Variation of reflection coefficients with angles of incidence and
azimuth: (a) dry fractures, (b) one set of fluid-filled fractures, and (c) a VTI
medium. Notice that there is a significant difference in the reflection coef-
ficients between the cases when the fractures are dry and fluid-filled. Also
notice that there is no change in the reflection coefficients with azimuth when
the bottom layer is a VTI medium.
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1.5 Conventional methods of estimation of fracture pa-
rameters

The fracture parameters that can be estimated using seismic data are

(1) orientation of the fractures or cracks, (2) crack or fracture density, and

(3) fracture infill (dry or fluid-filled). As mentioned earlier, equivalent media

theory does not carry information on the shape of the cracks or the fractures

in the media. Hence, I do not expect to differentiate between the cracks and

fractures from the seismic data.

A number of techniques have evolved in the last two decades to estimate

the fracture parameters using seismic data, mainly using VSP and surface

seismic data. I realize that these techniques can be grouped into three broad

categories: S-wave splitting, P-wave NMO and AVOA analysis, and linearized

Born inversion for fracture parameters.

1.5.1 S-wave splitting

Let us assume that the subsurface has parallel vertical fractures strik-

ing parallel to y-direction. Stiffness matrix of this type of medium is given

by equation 1.9. S-wave propagating in a direction parallel to the fractures

(say, z-direction which is vertical in this case) will be polarized into direc-

tions perpendicular to the fractures (x-direction) and parallel to the fractures

(y-direction). S-wave velocity polarized parallel to the fractures (S‖) is given

by
√

µ/ρ, whereas velocity of S-wave polarized perpendicular to the fractures

(S⊥) is given by
√

µ(1 − ∆T )/ρ (these solutions are derived from Christoffel
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equation; see appendix A).† It is obvious that the S-wave polarized perpen-

dicular to the fractures travels slower than the S-wave polarized parallel to

the fractures. This phenomenon is called S-wave splitting. This property of

the S-wave has been exploited extensively in exploration seismology to detect

fracture orientation and density. Note that the vertically traveling S-waves do

not carry information on the fracture infill; velocities of the vertically traveling

S-waves are affected only by µ and µ(1 − ∆T ). So the only “fracture parame-

ter” that affects the S-wave velocities is tangential weakness ∆T . However, the

tangential weakness is immune to the fracture infill (equations 1.17 and 1.19).

This limitation on S-wave data, however, did not discourage the geophysicists,

and a number of approaches were proposed and used to determine the fracture

orientation and crack density using S-wave splitting.

An underlying idea in most of the approaches is to estimate the time

difference between S-wave arrivals S‖ and S⊥, and polarization of the faster

S-wave S‖. A number of rotation schemes to separate the fast and the slow

S-waves was suggested by various researchers. Some of the most popular tech-

niques are Alford rotation (Alford, 1986), Igel and Crampin rotation technique

(Igel and Crampin, 1990), and configuration of propagator matrix between two

geophones levels (used only in VSP) (Naville, 1986). A comprehensive review

of all these methods can be found in MacBeth and Crampin (1991).

†S-waves traveling parallel and perpendicular to the fractures are only denoted as S‖

and S⊥ as they are pure shear modes (particle motions are orthogonal to the propagation
direction of wave). In anisotropic media, pure modes (longitudinal or shear) rarely exist,
and the waves are normally denoted as qP, qS1 and qS2 (q stands for quasi).
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Alford rotation is the most widely used technique for rotation of S-wave

data. Alford (1986) proposed a technique that includes rotating, in a syn-

chronic way, source and geophone by linearly combining the two polarizations.

This is equivalent to rotating the medium and keeping source and receiver at

their original orientations. This method is applicable only for 2C× 2C (two

source components, two receiver components). S-wave zero-offset data are

needed as input for this technique. However, stacked data are used as sur-

rogate to the zero-offset data; although in anisotropic media, zero-offset data

are not equivalent to the stacked data. Four different configurations of the

stacked data are used: (1) sources oriented inline and receivers crossline, (2)

sources oriented inline and receivers inline, (3) sources oriented crossline and

receivers crossline, and (4) sources oriented crossline and receivers inline. This

configures a 2× 2 data matrix; a tensor rotation by angle θ is applied until

the energy is focused onto the principal diagonal stacks and the energy de-

tected on the off-diagonal stacks (inline source recorded on crossline receivers

and vice versa) is minimal. The final rotation angle θ is the orientation of

the fractures. The time delay between S‖ and S⊥ (in fact, these stacked data

are not pure S‖ and S⊥; most of the contribution in the stacked data comes

from qS1 and qS2) is found by observing the time shift between events on

each of the principal diagonals or by cross-correlating which yields the frac-

ture density in the media. A homogeneous medium is assumed between the

source and the receiver positions, and it works only for a single anisotropic

layer. Coarse-layer stripping techniques (e.g., Winterstein and Meadows,
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Figure 1.10: The subsurface
contains two fractured layers.
In case the orientations of frac-
tures are different in these lay-
ers, pure shear modes S‖ and
S⊥ entering second layer from
first layer will, again, split into
pure modes. This makes anal-
ysis of the S-wave data very
challenging. In coarse layer-
stripping, the goal is to re-
move or null the effects of first
layer while analysing the re-
flections from the bottom of
second layer (Thomsen et al.,
1999).

1991; Thomsen et al., 1999) are used to extend the application of Alford to a

layered media with a fracture set with a different azimuth in each layer.

Winterstein and Meadows (1991) reported that the subsurface rarely

has only one fractured layer; instead, many fractured layers with varying frac-

ture orientations are common. Alford rotation or any other rotation technique

is applicable in case of a single fractured layer. The problem is that each pure

shear mode splits into two modes as it enters the layers with a different orien-

tation of fractures (different orientation of symmetry axis; see figure 1.10). To

deal with this problem coarse-layer stripping techniques was introduced

by Winterstein and Meadows (1991), and was modified by Thomsen et al.

(1999). The idea behind the layer stripping is simple; first rotate and find the

time-difference between S‖ and S⊥ for the arrivals from the bottom of the first
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Figure 1.11: (a) Equal-area projection of the upper hemisphere of directions
representing polarizations of qS1 (solid bars) and qS2 (broken bars) as seen by
the horizontal instruments, after propagating through parallel vertical cracks
striking east-west. The position of each polarization pair is determined by the
angle of incidence θ and azimuth φ, such that the center point corresponds
to vertical propagation. (b) Squematic profile showing the raypath angles at
geophones 1, 2 and 3 mapped on the projection (a). The inner circle marks
the theoretical shear-wave window (angles smaller than the critical angle) at
about 35◦ for plane waves at a horizontal free surface (MacBeth and Crampin,
1991).

fractured layer, then subtract the one- or two-way time (depending on whether

the data is VSP or surface seismic) from the arrivals from the bottom of next

fractured layer and correct for dispersion and attenuation caused by the first

fractured layer. The procedure is repeated for subsequent fractured layers.

The main drawbacks of most of the rotation techniques and layer strip-

ping are that they rely on the orthogonality of the split S-waves (qS1 and qS2)
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particle motion at the receiver location which is not always the case. In an

azimuthally anisotropic media (e.g., HTI), the group direction (ray direction)

deviates significantly from the phase direction. Split S-waves particle motions

are orthogonal only for the same phase direction; these arrivals at the geo-

phone may belong to the different phase directions, and hence, may not be

orthogonal to each other. Unorthogonality of the split S-waves are illustrated

in figure 1.11. Notice that beyond incidence angle of 35◦, polarizations of qS1

and qS2 are significantly non-orthogonal.

Moreover, the amount of S-wave splitting in the data is dependent on

the thickness of the fractured layer. In a very thin fractured layer, it might be

very difficult to do any quantitative analysis on split S-wave arrivals. Many

times the slow S-wave wavelet completely rides over the fast S-wave that makes

it impossible to find the time-difference between these two arrivals. Moreover,

S-wave signals are significantly distorted by the free surface which might make

it very difficult to do any meaningful interpretation of the data.

1.5.2 P-wave NMO and AVOA analysis

P-wave NMO velocity in the horizontal plane of an HTI medium is el-

liptic in nature and is controlled by P-wave vertical velocity, fracture azimuth

and one of the Thomsen-style parameters§ δ(V ) (e.g., Tsvankin, 1997a). P-wave

§Tsvankin (1997a) proposed ‘Thomsen-style’ parameters for HTI media. These param-
eters are very similar to the parameters given by Thomsen (1986) for VTI media. Like
Thomsen parameters, Thomsen-style parameters are a set of five variables, namely ε(V ),
δ(V ), γ(V ), VPvert, VS⊥vert. These parameters, like Thomsen parameters, are a very handy
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NMO analysis at a minimum of three different azimuths can be inverted for

these parameters. Another Thomsen-style parameter ε(V ) can be estimated by

NMO analysis of dipping events (Contreras et al., 1999). These Thomsen-style

parameters, in turn, can be used to estimate normal and tangential weaknesses

∆N and ∆T . Rüger (1997) derived an analytical expression for the P-wave

AVO gradient for isotropic-HTI interface. The AVO gradient term B is com-

posed of azimuthally invariant isotropic term Biso and anisotropic term Bani

dependent on azimuthal angle φ (angle between fracture-normal and CMP

line), and is given as B = Biso + Bani cos2 φ. Rüger and Tsvankin (1997)

showed that AVO analysis at well seperated multiazimuth data can reveal the

fracture parameters.

The same approach with some modifications can be applied in the pres-

ence of more than one set of fractures with weak anisotropy approximation

(Bakulin et al., 2000a; Bakulin et al., 2000b; Bakulin et al., 2000c). In ad-

dition to P-wave NMO analysis, converted split S-wave NMO analysis is also

required in case of lower order of symmetry (Table 1.1); converted S-wave

NMO velocity for flat reflectors, like P-wave NMO velocity, turns out to be

elliptical in horizontal plane (Bakulin et al., 2000a), and can be inverted for

additional anisotropic parameters (lower order of anisotropic media are defined

by more elastic coefficients). Since the presence of higher number of parallel

fracture sets lowers down the symmetry of the media, they also require more

tool to visualize the relationships between horizontal and vertical P- and S-wave velocities
and strength of anisotropy. Moreover, these parameters are directly related to the fracture
parameters ∆N and ∆T (Bakulin et al., 2000a).
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parameters for an inversion, which requires solving more equations.

1.5.3 Linearized Born inversion of fracture parameters

Shaw and Sen (2006) introduced the direct inversion of wide-azimuth P-

wave AVOA data to invert the fracture parameters ∆N and ∆T . They derived

the following expression

Robs
PP (i, φ) − Riso

PP (i) = δRPP = GM, (1.26)

where i is the incidence angle, φ is survey azimuth, Robs
PP represents the ob-

served PP-reflection coefficients, and Riso
PP is the PP-reflection coefficient with-

out the fractures in the medium. G is the sensitivity matrix and M is the

model vector which is given as M = [∆N , ∆T ]T . Shaw and Sen (2006) derived

analytic expressions for the elements of the matrix G using first-order Born

approximation, which depend on i, φ, and g = V 2
S /V

2
P .

Least squares solution of Equation 1.26 can be written as

M = [GTG]−1GT δRPP . (1.27)

If information on the isotropic medium in which the fractures are embedded

and the fracture orientation are known a priori, or estimated by conventional

mathods (e.g., well log data, NMO velocity, or conventional AVO analysis),

δRPP and G can be computed. Once δRPP and G are known, equation 1.27

can be used to estimate M = [∆N , ∆T ]T . Finally, ∆N and ∆T can reveal the

crack density and the fluid-type in the fractures (equations 1.17 and 1.21).
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The main limitation of this scheme is that it is applicable only for later-

ally homogeneous media. Further, the information on the isotropic background

is needed as a priori. Table 1.3 summarizes all the conventional approaches to

estimate the fracture parameters.
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Summary of various fracture-parameters estimation approaches
Method Data Procedure Estimated Parameters

S-wave Split-
ting
layer strip-
ping

2C× 2C
stacked S-
wave surface
or VSP data

estimating the time-
difference between S‖

and S⊥, estimation of
orientation of S‖

Crack density e which is

given as e ≈
T

S⊥−T
S‖

T
S‖

.

fractures orientation φ.

Azimuthal
P-wave NMO
Analysis

P-wave CMP
data at mini-
mum of three
azimuths

P-wave NMO velocity
is estimated at three
different azimuths and
V 2

nmo = α2 1+2δ(V )

1+2δ(V ) sin2 φ
is solved for vertical
P-wave velocity α, az-
imuth φ and δ(V )

fractures orientation φ.
Combining with AVOA anal-
ysis, Thomsen’s parameter γ
can be extracted, which is
related to crack density e
through weak anisotropy ap-
proximation.

AVOA Analy-
sis

true am-
plitude
preserved
P-wave data
at minimum
of three
azimuths

AVO gradi-
ent is given as
B = Biso+Bani cos2 φ.
This equation is
solved for Biso, Bani

and azimuth φ

Fractures orientation φ (B
is either most positive or
most negative in direction of
fracture-normal; i.e., when φ =
0. Some kind of modeling
might be needed to resolve am-
biguous φ).
Combining with P-wave NMO
analysis, γ(V ) can be ex-
tracteda which is related to
crack density e through weak

anisotropy approximationb.
Linearized
Born inver-
sion

multi-
azimuth
P-wave data

M =
[GTG]−1GT δRPP

Normal weakness ∆N and tan-
gential weakness ∆T

ain case of gas-filled fractures, measurable azimuthal variation in AVO gradient is not
possible at small angle of incidence (Rüger and Tsvankin, 1997) which may inhibit the
estimation of γ.

bBani is given by a combination of δ(V ) and γ. Thus a direct estimate of γ from AVOA
analysis is not possible. However, in case of tight formation with no equant porosity and
thin fluid-filled cracks, δ(V ) = γ which facilitate the direct estimation of γ from AVOA.

Table 1.3: Four most widely used approaches to estimate the fracture param-
eters are listed: Note that other than Born inversion none of these methods
directly solves for normal- and tangential-weaknesses ∆N and ∆T which define
the stiffness matrix of a fractured medium (equation 1.9).
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1.6 Objectives and Organization

The main objective of my dissertation is to develop a new inversion

algorithm that can invert for fracture weaknesses ∆N and ∆T in laterally

varying media. My inversion scheme is based on ray-Born approximation and

uses both vertical and horizontal components of seismic data. I have also

developed a 3D forward modeling algorithm to generate synthetic data and

ray-bending algorithm to compute traveltime in general anisotropic media.

In chapter 2, 3D finite-difference modeling in general anisotropic media

is explained. I study shear-wave splitting for a number of cases (e.g., fracture

dip, angle between the fracture etc.) using finite-difference modeling scheme.

Chapter 3 deals with ray-bending in 3D general anisotropic media. To ac-

complish ray-bending in general anisotropic media, a new method based on a

search scheme is introduced to estimate the group velocity in a given group

direction. For practical application to modeling and migration, I employed

a hyperbolic interpolation scheme resulting in an efficient method for travel-

time computation in finely gridded models. Chapter 4 focuses on the ray-Born

inversion for fracture parameters in laterally varying media. Chapter 5 sum-

marizes the research and highlights the scope of future research.
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Chapter 2

Finite-difference modeling in anisotropic

media: An S-wave splitting study in fractured

reservoirs

2.1 Introduction

Accurate numerical simulation of wave propagation is essential for un-

derstanding the behavior of elastic waves in the subsurface. Synthetic data

provide the forward model for inverse problems, they help the interpretation of

field real seismic data, and they help to determine the lithology of the subsur-

face by attribute analysis. In addition to exploration seismologists, earthquake

seismologists also routinely use synthetic seismic data to characterize the type

and location of earthquakes.

Over the years, a number of methods have been developed to generate

synthetic seismograms, with each method having its own advantages and dis-

advantages. Kennett (1983) popularized reflection-matrix method to generate

seismic data in a stratified isotropic medium. This technique can account for

all kinds of waves (e.g., direct, surface waves, multiples) and is reasonably cpu-

efficient. These advantages encouraged others to use it for full waveform inver-

sion as a tool to generate forward models at each iteration (e.g., Sen and Stoffa,

1991). Booth and Crampin (1983) and Fryer and Frazer (1984) extended the
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reflectivity method to general anisotropic media. However, the generation of

synthetic seismograms using this method in azimuthally anisotropic media is

computationally intensive.

The second category of techniques are the asymptotic or ray-tracing

methods. The asymptotic algorithms are very efficient computationally, but

they cannot account for all types of seismic waves. Although this type of

technique can handle complex media, there are problems in the presence of

shadow zones and at caustics which precludes its wider application. An excel-

lent overview of these schemes can be found in Carcione et al. (2002).

The third category of methods is called integral-equation methods where

the wavefield is represented in an integral form and an analytical expression of

the Green’s function is sought. An overview of these schemes can be found in

De Hoop (1995). Although most of the schemes in this category can account

for all kinds of waves, their application in complex structures becomes tedious.

However, these methods can be used to study wave propagation in a specific

type of medium such as in a cracked or fractured medium (e.g., Liu et al.,

1997).

Finally, there are methods that numerically solve the wave equation,

which are sometimes called direct methods. These techniques can account for

all kinds of waves and can handle complex subsurfaces. There are a number of

numerical schemes that can solve the wave equation such as the finite-element

method, the pseudo-spectral method, and the finite-difference method. All

of these schemes have their own advantages and disadvantages. The finite-
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element method can handle irregular grids and boundaries. Serón et al. (1996)

and Padovani et al. (1994) give a good description of this scheme. The pseudo-

spectral methods use Fourier and Chebychev differential operators to estimate

the spatial derivatives. This scheme has been used by a number of geophysicists

to model wave propagation (e.g., Fornberg, 1988; Carcione, 1994; Tessmer and

Kosloff, 1994).

Finally, there are a number of finite-difference schemes available to sim-

ulate wave propagation. Kelly et al. (1976) showed how to generate synthetic

seismic data using a finite-difference scheme in 2D acoustic media. Virieux

(1984, 1986) introduced a staggered grid scheme to simulate wave propaga-

tion in 2D elastic media with a velocity-stress formulation. Levander (1988)

used fourth-order spatial derivatives to generate synthetic seismograms us-

ing a finite-difference scheme in 2D elastic media. Faria and Stoffa (1994a)

implemented a finite-difference scheme in 2D transversely isotropic media.

Although it was fairly straightforward to extend these 2D applications

to 3D, it was not implemented in 3D right away due to lack of enough com-

putational power. The advent of fast and cluster-based computers in the

mid-1990s prompted the implementation in 3D. Graves (1996) and Dong and

McMechan (1995) applied the standard staggered grid finite-difference scheme

in 3D for isotropic and anisotropic media, respectively. Igel et al. (1995) de-

rived dispersion relationships in general anisotropic media for the standard

staggered grid scheme in 3D. They also pointed out that some components of

the strain tensor will need to be interpolated to simulate wave propagation in
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general anisotropic media, which would introduce additional numerical errors

in a finite-difference scheme. Saenger et al. (2000) and Saenger and Bohlen

(2004) introduced a modified staggered grid scheme in which a rotated stag-

gered grid was used to simulate wave propagation in large contrast as well

as in general anisotropic media. Moczo et al. (2002) introduced wave propa-

gation in 3D isotropic heterogeneous medium utilizing volume harmonic and

arithmetic averaging of elastic parameters and density.

Ramos-Mart́ınez et al. (2000) generated synthetic seismograms in frac-

tured media using eighth-order spatial-derivatives to study shear-wave split-

ting arising from the presence of cracks in the subsurface. To generate zero-

offset S-wave data, they used a plane-wave shear source. They also used a stan-

dard staggered grid scheme to generate seismic data in all types of anisotropy.

They derived equivalent medium using the approach given by Hudson (1980).

This chapter has two parts. In the first part, I review the finite-

difference modeling in both conventional and modified staggered grids and

show some examples of forward modeling. I also show a comparison be-

tween the finite-difference generated synthetic seismograms and the reflectiv-

ity method generated synthetic seismograms in an azimuthally anisotropic

medium. In the second part, I use my finite-difference program to generate

synthetic data in fractured media and observe the splitting pattern in vari-

ous scenarios: namely, one set of rotationally invariant dipping fractures, two

non-orthogonal vertical fractures and one set of corrugated dipping fractures.

I observe the effects on S-wave splitting of the dip, the fracture infill (dry or
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fluid-filled) and the angle between the fractures .

2.2 Modeling Algorithm

2.2.1 Governing equations

For small deformations, the equation of motion is given as (Aki and

Richards, 2002, p. 18)

ρüi = σij,j + fi, (2.1)

and the constitutive relationship (Hooke’s law) for general anisotropic media

is written as

σij = cijklεkl, (2.2)

where ui is the particle displacement vector, σij is the second-order stress

tensor, εkl is the strain tensor, body force fi is the vector per unit volume

that represents the source, ρ is the density, and cijkl is the fourth-order elastic

stiffness tensor, which summarizes the elastic properties of the medium. A dot

over a variable denotes differentiation with respect to time. Equations 2.1 can

also be rewritten as

v̇i = b[σij,j + fi], (2.3)

where vi is the particle velocity and b = 1/ρ is the buoyancy. By taking the

time-derivative of equation 2.2, and using the relation εkl = 1/2(uk,l +ul,k) we

get

σ̇ij = cijklvk,l. (2.4)

Equations 2.3 and 2.4 are linear first-order coupled partial differential
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equations for particle velocity and stress. These equations can be solved di-

rectly using a finite-difference algorithm.

Time and spatial derivatives of the quantities in equations 2.3 and 2.4

are performed using a Taylor series expansion. Any order of the Taylor series

expansion in time and space can be performed. Higher order Taylor series in

time and space yields more accurate results (Marfurt, 1984), at the cost of

greater computational expense. Second- and fourth-order expansions in time

and space, respectively, are mostly preferred due to their balance of accuracy

and computation time (Levander, 1988). A detailed overview of numerical

implementation of velocity-stress formulation in 3D isotropic media can be

found in Graves (1996) and Minkoff (2002).

2.2.2 Sources and seismograms

Finite-difference schemes can handle numerous types of sources. For

example, the unidirectional point source fi acting in volume V can be repre-

sented as

fi = Fw(t)siδ(x − xs), (2.5)

where F is the magnitude of the force, w(t) is the source wavelet, si is the

source orientation and xs is the location of the force. In the same way, gener-

alized moment tensor mij acting within volume V can be written as

mij = Mijw(t)δ(x − xs), (2.6)

where Mij is the moment amplitude matrix. A source represented in the form

of a moment tensor first needs to be transformed into the equivalent distributed
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body forces before it can be introduced into the velocity-stress formulation

(equations 2.3 and 2.4). A very good description of its implementation can be

found in Frankel (1993) and Graves (1996).

A seismogram can represent either particle velocity v or pressure p. If

the receiver is oriented in the direction rk where rkrk = 1, the particle velocity

can be found as

v = vkrk = v1r1 + v2r2 + v3r3. (2.7)

The pressure seismogram can be represented as

p = −
1

3
σkk = −

1

3
[σ11 + σ22 + σ33]. (2.8)

2.3 Staggered grid finite-difference implementation

To implement the finite-difference scheme, all the quantities (cijkl, b,

σij, ui) in equations 2.3 and 2.4 need to be discretized. I will review two

types of discretization schemes: the conventional or standard staggered scheme

(SSG) and the rotated staggered scheme (RSG). The main advantage of using

a staggered grid is that the differential operators are centered at the same

point in both space and time which enables the calculation of the derivative

at half the grid size. Moreover, velocity and stress can be updated in time

independent of each other.

Virieux (1984, 1986) first described SSG for isotropic medium in 2D.

Figure 2.1 shows the discretization in a staggered grid scheme in 2D. Notice

that there are four individual grids overlapping each other. In 3D there are
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seven individual grids. Parameters are stored in the following manner: Normal

stresses are stored as σxx(xi, yi, zi), σyy(xi, yi, zi), and σzz(xi, yi, zi), where i

represents grid number. Notice that all the normal stresses are stored on the

same grids. Particle velocities are stored as vx(xi + h/2, yi, zi), vy(xi, yi +

h/2, zi), and vz(xi, yi, zi + h/2), where h represents the grid size (for the sake

of simplicity, I assume that the grid size in all directions is the same). Notice

that all the particle velocity components are stored on three different grids.

Off-diagonal stress terms are stored as σxy(xi+h/2, yi+h/2, zi), σxz(xi+

h/2, yi, zi + h/2), and σyz(xi, yi + h/2, zi + h/2). Notice that all the shear

stress components are stored on three different grids. The stiffness tensor and

the buoyancy are stored as cijkl(xi, yi, zi) and b(xi, yi, zi), respectively. This

requires the interpolation of b and some components of cijkl. b is interpolated

at the grids where the particle velocity components are defined. For instance,

b(xi + h/2, yi, zi) can be calculated as

b(xi + h/2, yi, zi) =
1

2
[b(xi, yi, zi) + b(xi+1, yi, zi)]. (2.9)

In the same way, the components of the cijkl which are needed to estimate the

shear stress components need to be interpolated at the grids where the shear

stress components are defined. For example, c1313(xi + h/2, yi + h/2, zi) can

be estimated as (Graves, 1996)

c1313(xi + h/2, yi + h/2, zi) = 4

[

1

c1313(xi, yi, zi)
+

1

c1313(xi+1, yi, zi)

+
1

c1313(xi, yi+1, zi)
+

1

c1313(xi+1, yi+1, zi)

]−1

. (2.10)
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Notice that the staggered grid scheme, discussed above, will also need the

interpolation of the components of vi,j if the medium has symmetry lower

than orthorhombic. To demonstrate this need, let us write down equation 2.4

for an orthorhombic medium in condensed indices:

















σ̇xx

σ̇yy

σ̇zz

σ̇yz

σ̇xz

σ̇xy

















=

















c11 c12 c13 0 0 0
c12 c22 c23 0 0 0
c13 c23 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66

































vx,x

vy,y

vz,z

vy,z + vz,y

vx,z + vz,x

vx,y + vy,x

















. (2.11)

Notice that σ̇i,i (i = 1, 2, 3) are dependent only on vi,i while σ̇i,j (i 6= j) are

controlled only by vi,j (i 6= j). This is true for any medium with symmetry

higher or equal to orthorhombic medium (for example, isotropic, HTI, VTI). In

the standard staggered grid scheme (SSG), σi,i and vi,i are defined at the same

location and so are σi,j and vi,j (figure 2.1). Thus, to evaluate equation 2.11

no interpolation of any component of vi,i and vi,j is necessary.

Now, let us write down the equation 2.4 for a monoclinic medium:

















σ̇xx

σ̇yy

σ̇zz

σ̇yz

σ̇xz

σ̇xy

















=

















c11 c12 c13 0 c15 0
c12 c22 c23 0 c25 0
c13 c23 c33 0 c36 0
0 0 0 c44 0 c46
c15 c25 c35 0 c55 0
0 0 0 c46 0 c66

































vx,x

vy,y

vz,z

vy,z + vz,y

vx,z + vz,x

vx,y + vy,x

















. (2.12)

Notice that σ̇i,i and σ̇i,j are no longer exclusively dependent on vi,i and vi,j ,
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respectively. For instance, σ̇xx = c11vx,x + c12vy,y + c13vz,z + c15(vx,z + vz,x).

However, in the SSG scheme, σxx, vx,z and vz,x are not defined at the same grid

locations which will necessitate the interpolation of vx,z and vz,x at the next

grid location where σxx is defined. Similarly, some other components of vi,i

and vi,j need to be interpolated to evaluate equation 2.12. This interpolation

introduces additional numerical errors in the estimation of the wavefield. In

fact, in the case of a triclinic medium, all the components of vi,i and vi,j need to

be interpolated. This will likely introduce a considerable amount of numerical

error in the computation.

To compute synthetic seismograms in monoclinic or triclinic media,

a better grid discretization is needed. To circumvent this problem, another

discretization scheme called rotated staggered grid (RSG) was proposed by

Saenger et al. (2000). Figure 2.2 shows the RSG in 2D. The medium is di-

vided into rectangular or square grids. There are only two staggered grids in

either 2D or 3D. All the components of the stresses are stored as σxx(xi, yi, zi),

σyy(xi, yi, zi), σzz(xi, yi, zi), σxy(xi, yi, zi), σxz(xi, yi, zi), and σyz(xi, yi, zi). All

the velocity components are stored as vx(xi + h/2, yi + h/2, zi + h/2), vy(xi +

h/2, yi + h/2, zi + h/2), and vz(xi + h/2, yi + h/2, zi + h/2). All the medium

properties are stored as cijkl(xi, yi, zi) and b(xi, yi, zi). The spatial derivatives

are evaluated along the diagonals of the grids and then projected back to the

sides of the grids. An excellent description can be found in Saenger et al.

(2000). Since all of the components of σij and vi,j are positioned at the same

location, wave propagation can be simulated in any kind of anisotropic medium

48



without interpolation of any components of vi,j. Moreover, there is no need for

interpolation of any component of cijkl using RSG which, unlike SSG, does not

introduce any numerical error in a high contrast medium. However, buoyancy

b(xi, yi, zi) still needs to be interpolated on the grids where the components of

particle velocity are stored. For instance, b(xi +h/2, yi +h/2, zi +h/2) can be

estimated as

b(xi + h/2, yi + h/2, zi + h/2) =
1

8
[b(xi, yi, zi) + b(xi+1, yi, zi) + b(xi, yi+1, zi)

+b(xi, yi, zi+1) + b(xi+1 + yi+1, zi)

+b(xi+1, yi, zi+1) + b(xi, yi+1, z + i+ 1)

+b(xi+1, yi+1, zi+1)]. (2.13)

The RSG scheme, however, requires the additional estimation of some of the

spatial derivatives which makes it computationally more expensive than SSG

schemes. Therefore, I used SSG for media having symmetry higher than or

equal to orthorhombic and RSG for media with monoclinic or triclinic sym-

metry.

The grid size is an important parameter in any finite-difference scheme.

A large grid size allows for the computation of large models, but a very large

grid size tends to push the numerical dispersion in the computation beyond

acceptable limits (e.g., Marfurt, 1984). Furthermore, a small grid size requires

small time-steps in computation to avoid numerical instability. Small time-

steps increase the number of time-steps to be computed, which should be

avoided in any finite-difference scheme as it takes a long time to compute each

49



bcijkl
zzxx

,

,,σσ

zv xzσ

xv

bcijkl
zzxx

,

,,σσ

bcijkl
zzxx

,

,,σσ

bcijkl
zzxx

,

,,σσ

xzσ

xzσ

xzσ

zv
zv

zv

xv xv

xv

Figure 2.1: Discretization scheme in a standard staggered grid (SSG) scheme in
2D: There are four different grids staggered to each other. Notice that stiffness
tensor cijkl and σxz are not defined at the same locations which necessitates the
interpolation of some components of cijkl. Similarly, buoyancy b and particle
velocity components vi are not defined at the same grid nodes which requires
the interpolation of b. vx,z also needs to be interpolated if the medium has
symmetry lower than orthorhombic.
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Figure 2.2: Discretization scheme in a rotated staggered grid (RSG) scheme
in 2D: There are only two different grids staggered to each other. All compo-
nents of stress tensor σij and stiffness tensor cijkl are collocated. Hence, no
interpolation of cijkl is required to estimate σij after each time step. b still
needs to be interpolated to estimate particle velocity components vi. No in-
terpolation of any spatial derivative of particle velocity vi,j is needed in any
kind of anisotropic media.
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time-step. Details of numerical stability and dispersion for SSG scheme are

very well explained in Marfurt (1984), and Moczo et al. (2000). Saenger et

al. (2000) and Saenger and Bohlen (2004) give detailed overview of dispersion

relationships and numerical stability conditions for RSG schemes.

2.4 Examples

2.4.1 Homogeneous anisotropic media

I simulated wave propagation in four different types of homogeneous

anisotropic medium with symmetries HTI, orthorhombic, monoclinic and tri-

clinic. In all the modeling examples, the source wavelet used is a Gaussian

(Sheriff, 2002, p. 158) with a dominant frequency of 15 Hz. The source type

in all the examples is an explosion and is injected in form of moment tensor

mij (m11 = m22 = m33 and mij = 0 if i 6= j). The source is placed exactly

at the centre of the model. All the homogeneous models have 450 grid points

with equal grid spacing of 10 m in all three directions. Time interval of 1 ms

was used in all the cases.

As an HTI example, I used Green River shale (Thomsen, 1986) with the

symmetry axis in the x-direction. The generic Thomsen parameters of Green

River shale are given as α0 = 3292 m/s, β0 = 1768 m/s, ε = 0.195, δ = −0.220,

and γ = 0.180. The density ρ of the medium is 2.075 g/cm3. Wave propa-

gation was simulated using SSG scheme. Figure 2.3 shows a snapshot of the

x-component of the particle velocity vx after 650 time steps (650 ms). Notice

that the wavelet is changed from the Gaussian to its 2nd derivative Ricker be-
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cause the source type is in form of the moment tensor mij (m11 = m22 = m33

and mij = 0 if i 6= j). On top of the wavefronts, I have also superimposed

the group-velocity contours. To match the group-velocity surfaces with the

wavefronts, group velocity surfaces were multiplied with a suitable multiplier.

Notice that there is a very good match between the wavefronts and the group

velocity surfaces in all three planes. Unlike in isotropic media, both P- and SV-

waves were generated due to an explosion source. In the yz-plane, which is an

isotropic plane, wavefronts are spherical while in the xz- and xy-plane, which

are symmetry planes, wavefronts are non-spherical. Due to strong anisotropy,

triplications in SV -wave can also be observed. Moreover, even though a Gaus-

sian wavelet was used as a source wavelet, resultant particle velocity wavelet

is its second derivative Ricker wavelet. The reason is that the particle velocity

is a function of second derivative of the moment tensor (Aki and Richards,

2002, p. 111, eq. 4.97).

Next, I simulated wave propagation in an orthorhombic medium using

SSG scheme. The orthorhombic medium is defined by the following Thomsen-

style parameters introduced by Tsvankin (1997b): α0 = 3000 m/s, β0 =

1500 m/s, ε(1) = 0.2, ε(2) = 0.45, δ(1) = −0.1, δ(2) = 0.2, δ(3) = −0.15,

γ(1) = 0.28, γ(2) = 0.15. Figure 2.4 shows a snapshot of vx after 650 time steps

(650 ms). All three types of waves qP, qS1 and qS2 were generated due to the

explosion. The group velocity surfaces were superimposed on the wavefronts

and there is an excellent match between them.

A tilted transversely isotropic (TTI) medium was used to simulate wave
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propagation using the RSG scheme. The medium is Green River shale, which

was rotated about the y-axis by 30◦ anti-clockwise. The resultant medium is

equivalent to a monoclinic medium. The stiffness matrix of the medium has

the same shape as written in equation 2.12. Figure 2.5 shows the snapshot

of vx after 650 time steps (650 ms). Notice that due to the rotation of the

symmetry axis, wavefronts are also rotated in the xz-plane. Only P- and SV-

wave were generated by the explosion source because the medium is inherently

TI. The group velocity surfaces were superimposed only on the xz-plane as

it is the only symmetry plane of all three planes. In other planes, group and

phase velocity vectors are not confined to the same planes, which makes the

estimation of group velocity surface in the plane impossible.

Next, wave propagation in a triclinic medium was simulated. The elas-

tic constants of the medium are as follows (the factor of 109 is omitted):

c11 = 10.0, c12 = 3.5, c13 = 2.5, c14 = −5.0, c15 = 0.1, c16 = 0.3, c22 = 8.0,

c23 = 1.5, c24 = 0.2, c25 = −0.1, c26 = −0.15, c33 = 6.0, c34 = 1.0, c35 = 0.4,

c36 = 0.24, c44 = 5.0, c45 = 0.35, c46 = 0.525, c55 = 4.0, c56 = −1.0, c66 = 3.0.

Figure 2.6 shows vx after 575 time steps (575 ms). All three types of waves

(qP, qS1, and qS2) are generated from an explosion source.
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Figure 2.3: A snapshot of x-component of particle velocity vx after 650 time
steps (650 ms) in Green River Shale with the symmetry axis in x-direction:
Wave propagation was simulated using SSG scheme. The model is a homo-
geneous block with 450 grid points (grid spacing 10 m) in all the directions.
Both P- and SV-waves were generated by an explosion source. Group velocity
surfaces (dashed) were superimposed on top of wavefronts. Triplications in
SV-wave can be observed in the symmetry planes (xy and xz).
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Figure 2.4: A snapshot of x-component of particle velocity vx after 650 time
steps (650 ms) in an orthorhombic medium: Wave propagation was simulated
in SSG. All three types of waves qP, qS1 and qS2 were generated by an explo-
sion. Group velocity surfaces (dashed) were superimposed on the wavefronts.
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Figure 2.5: A snapshot of x-component of particle velocity vx after 650 time
steps (650 ms) in Green River shale with symmetry axis rotated by 30◦ about
y-direction: Wave propagation was simulated in RSG. Due to the rotated
symmetry axis, wavefront is also rotated in xz-plane. zx-plane is the sym-
metry plane of the medium where group velocity surface (dashed) has been
superimposed on the wavefronts.
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Figure 2.6: A snapshot of x-component of particle velocity vx after 575 time
steps (575 ms) in a triclinic medium: Wave propagation was simulated in RSG.
All three types of waves qP, qS1 and qS2 were generated due to the explosion.
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2.4.2 Comparison between synthetic seismograms generated by finite-
difference method and reflectivity algorithm

In this section, I show comparison between the seismic data gener-

ated by the finite-difference method and by the reflectivity algorithm (Mallick

and Frazer, 1990a; Mallick and Frazer, 1990b) for an azimuthally anisotropic

medium. A three-layered model was used for comparison. Figure 2.7 shows the

model. The top and the bottom layers are isotropic whereas the middle layer

has one set of fluid-filled vertical fractures oriented normal to the x-direction

with crack density of 7%. The rest of the elastic properties of the model are

tabulated in table 2.1. The source wavelet used is a Gaussian (Sheriff, 2002)

Thickness Vp Vs Density
(m) (m/s) (m/s) (g/cm3)
710 3000 2000 1.3
1300 4100 2300 2.5
∞ 5200 3200 3.5

Table 2.1: Relevant elastic parameters of the three-layered model.

with a dominant frequency of 15 Hz. The source type is an explosion. A

number of receiver lines were collected in both the x- and y-directions.

Figures 2.8(a) and 2.8(b) show the x- and y-components, respectively,

of the synthetic seismic data generated by the finite-difference method. This

seismic line is 400 m away from the source in the y-direction. Notice the time

difference in the event PPSS in the x- and y-components. PPSS is the con-

verted S-wave (P-to-S) which was reflected from the bottom of the fractured

layer. While traveling through a fractured reservoir, PPSS is polarized perpen-
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Isotropic

HTI

Isotropic

Figure 2.7: Three-layered model used to generate seismic data using both the
finite-difference method and the reflectivity method. The model has three flat
layers. The middle layer has one set of fluid-filled vertical fractures normal to
x-direction.

dicular and quasi-parallel (at near-offset it is almost parallel) to the fractures,

which are recorded as the slower x-component and the faster y-component,

respectively.

Figure 2.9 shows a comparison between the seismic data generated by

the finite-difference method and by the reflectivity algorithm for all three com-

ponents at two azimuths and offsets. Notice that there is an excellent match

between the two sets of synthetics. Figures 2.10, 2.11, and 2.12 show the com-

parison between the seismic data generated by these two methods for an entire

seismic line.
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Figure 2.8: Seismic data generated using finite-difference method (a) x-
component of particle motion, and (b) y-component of particle motion: PP is
the reflected P-wave from top of second layer, PS is the converted S-wave (P-
to-S) from top of second layer, PPPP is the reflected P-wave from bottom of
the second layer and the PPSS is the converted S-wave (P-to-S) from bottom
of the second layer.
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Figure 2.9: Comparison between the seismic data generated by the finite-
difference method and by the reflectivity method at two azimuths and offsets:
(a) At azimuth 16◦ and offset 1080 m, and (b) at azimuth 21◦ and offset 1120 m.
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Figure 2.10: Comparison between the x-component of seismic data generated
by the finite-difference method and by the reflectivity method for a whole
seismic line: The line is 400 m away from the source in y-direction. The
traces plotted in blue and red were generated by the finite-difference and the
reflectivity methods, respectively.
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Figure 2.11: Comparison between the y-component of seismic data generated
by the finite-difference method and by the reflectivity method for a whole
seismic line: The line is 400 m away from the source in y-direction. The
traces plotted in blue and red were generated by the finite-difference and the
reflectivity methods, respectively.
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Figure 2.12: Comparison between the z-component of seismic data generated
by the finite-difference method and by the reflectivity method for a whole
seismic line: The line is 400 m away from the source in y-direction. The
traces plotted in blue and red were generated by the finite-difference and the
reflectivity methods, respectively.
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2.4.3 Seismic data generated for a complex subsurface model

I generated synthetic seismograms for a large subsurface model with

the symmetry varying from isotropic to orthorhombic (figure 2.13) using SSG

scheme. Layer 1 is isotropic with P-wave velocity of 2500 m/s, S-wave ve-

locity of 1700 m/s, and density of 1 g/cm3. Layer 2 has a VTI symmetry

with the following Thomsen’s parameters: α0 = 3300 m/s, β0 = 2300 m/s,

ε = −0.2, δ = 0.1, and γ = 0.2. The density of the medium is 2 g/cm3.

Layer 3 has one set of dry fractures with crack density e of 7%. The back-

ground medium has P-wave velocity of 4000 m/s, S-wave velocity of 2700 m/s,

and density of 3.0 gm/cm3. Layer 4 has an orthorhombic symmetry with

anisotropic parameters α0 = 5000 m/s, β0 = 3500 m/s, ε(1) = 0.25, ε(2) = 0.4,

δ(1) = −0.1, δ(2) = 0.2, δ(3) = −0.15, γ(1) = 0.28, γ(2) = 0.15. The density

of the medium is 4.0 gm/cm3. Layer 5 (basement) is isotropic having P-wave

velocity of 6100 m/s, S-wave velocity of 4100 m/s and density of 6.0 gm/cm3.

Source type is the same as described in the previous example. The source

is buried 10 m in the first layer of the model. Receivers are placed on top

of the first layer. Inline and crossline are located at distances of 1940 m and

2340 m from the source. The model has 460, 300, and 605 grids in the x-, y-

and z-directions. The grid spacing is kept 10 m in all three directions. Ab-

sorbing boundary condition was applied in all the directions. 8000 time steps

with sampling interval of 0.5 ms were calculated. Figure 2.14 shows the shot

gathers in inline and crossline directions.
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Figure 2.13: 3D model used to generate synthetic seismograms: Layer 1 is
isotropic, layer 2 has VTI symmetry, layer 3 has one set of dry fractures, layer
4 has orthorhombic symmetry, and basement is isotropic.
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Figure 2.14: Shot gathers generated for model shown in figure 2.13: (a) x-
component of velocity vx in inline direction, (b) y-component of velocity vy in
inline direction, (c) vx in crossline direction, and (d) vy in crossline direction.
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2.5 Shear-wave splitting study

Closely spaced parallel fractures behave like an anisotropic medium

(section 1.3) in the seismic frequency band. The type of anisotropy induced by

the fractures depends on a number of factors, namely fracture type (rotation-

ally invariant or corrugated), number of fracture sets present in the medium,

fracture orientation and fracture infill (fluid-filled or dry). According to the

linear slip theory (section 1.3.1), the compliance matrix S of the equivalent

medium can be estimated by the following equation:

S = Sb +
n
∑

i=1

Si
f , (2.14)

where Sb is the compliance matrix of the background. Si
f is the compliance

matrix of the ith fracture set and n is the total number of fracture sets. If

the fractures have non-zero azimuth φ and dip θ from the chosen coordinate

system, the equivalent fracture compliance matrix Sφ,θ
f can be obtained by

applying Bond transformation:

Sφ,θ
f = M(φ, θ)SfM

T (φ, θ), (2.15)

where M is 6 × 6 Bond transformation matrix (Auld, 1990, p. 75). Equa-

tion 2.14 can render equivalent medium which may exhibit symmetry varying

from HTI to monoclinic.

2.5.1 Background medium and source type

For my modeling experiment, I assume that the background medium

is isotropic. A three-layered subsurface model (Figure 2.15) was used for all

69



Figure 2.15: Subsurface model used to demonstrate shear wave splitting: In
all the experiments, background model remains same. Only the number of
fracture sets and fracture orientation changes. A plane-wave source is used.
Source is polarized at 45◦ from x-axis. Source and receivers are placed at each
grid location.

the experiments described here. Although the finite-difference algorithms are

capable of handling subsurface models with complex geometry, flat-layered

models are used here to study the S-wave splitting. Top and bottom layers

are isotropic, and the middle layer can have one or more sets of fractures. The

elastic properties of the background are listed in table 2.2.

Thickness Vp Vs Density
(m) (m/s) (m/s) (g/cm3)
700 3000 2000 1.3
1200 4700 2800 2.3
∞ 5000 3200 3.5

Table 2.2: Relevant elastic parameters of the background subsurface model.
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To simulate zero-offset S-wave response, a plane-wave shear source is

used. A source point is located over each receiver and the source motion is

polarized at 45◦ clockwise from x-axis; i.e., vx and vy are excited in phase

with equal amplitudes. Receivers record the data in x- and y-directions (fig-

ure 2.15).

2.5.2 Dipping rotationally invariant fractures

I first consider a set of rotationally invariant fractures (section 1.3.2)

embedded in an isotropic background and striking parallel to y-direction.

Wave propagation was simulated in the subsurface model with one set of dry

vertical fractures in the middle layer while the crack density was varying from

2% to 10% from left to right. Figure 2.16 shows the x- and y-components of the

particle velocity. Notice that the arrival time of the x-component is increas-

ing with increasing fracture density while the arrival time of the y-component

remains unchanged with changing fracture density. The x-component, which

is slower and is polarized perpendicular to the fractures, is conventionally de-

noted as S⊥ and the y-component which is polarized parallel to the fractures

is denoted as S‖.

If the fractures have strike in y-direction and are making a non-zero dip

with vertical, the resultant medium has monoclinic symmetry with a vertical

symmetry plane (x, z). The resultant stiffness matrix has the same form as

written in equation 2.12. A vertically traveling S-wave still splits into faster

and slower wave components. However, only one pure mode exists that is S‖
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Figure 2.16: Seismic sections generated using a plane-wave source: (a) x-
component of the particle motion (S⊥), and (b) y-component of the particle
motion (S‖). There is one set of dry vertical fractures in the middle layer of
the subsurface model (figure 2.15) with increasing crack density from left to
right of the model. Notice that arrival time of S⊥ is increasing with increasing
fracture density.
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which is polarized parallel to the fractures (Grechka and Tsvankin, 2004). The

other S-wave is polarized in the (x, z)-plane. The x-component of the receiver

records only a part of this mode which I still denote as S⊥.

For this experiment, I set the crack density e to be 7% in the middle

layer. The fracture set has varying dip with the vertical. The equivalent

medium for the middle layer was estimated using equations 2.14 and 2.15.

Figure 2.17 shows x- and y-components of the particle velocity vx and vy(or

S⊥ and S‖, respectively) for dry and fluid-filled fractures dipping 60◦ from

vertical. Notice that for dry fractures vx is traveling slower than vy while for

fluid-filled fractures vy is traveling slower than vx. Figure 2.18 shows the time-

difference between S⊥ and S‖ for both dry and fluid-filled fractures at varying

fracture dip. Notice that at non-zero dip, dry and fluid-filled fractures have

different traveltime-differences which suggests that S-wave splitting can give

some indication of fluid type in the dipping fractures. Notice that in case of

fluid-filled fractures after a certain dip, S⊥ becomes faster than S‖.
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Figure 2.17: Seismic sections generated using a plane-wave source for one
set of dry and fluid-filled fractures: Fractures are dipping 60◦ with vertical.
(a) x-component of velocity (vx or S⊥) for dry fractures, (b) y-component of
velocity (vy or S‖) for dry fractures, (c) x-component of velocity (vx or S⊥) for
fluid-filled fractures, and (d) y-component of velocity (vy or S‖) for fluid-filled
fractures. Notice that for dry fractures S‖ is traveling faster than S⊥ and
opposite is true for fluid-filled fractures.
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Figure 2.18: Time-difference between S⊥ and S‖ for both dry and fluid-filled
fractures: Time-difference is the largest when the fractures are vertical. As the
dip of the fractures is increased, time-difference for fluid-filled fractures starts
decreasing and after certain angle, S‖ becomes faster and S⊥ becomes slower.
For dry fractures, S⊥ and S‖ always remain faster and slower, respectively,
but the time-difference between the two starts decreasing after a certain dip.
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2.5.3 Two rotationally invariant vertical fracture sets

Next two non-orthogonal rotationally invariant fracture sets were con-

sidered. If the fracture sets are non-orthogonal the effective medium belongs

to monoclinic symmetry with a horizontal plane (x, y) of symmetry with the

following form of stiffness matrix:

c =

















c11 c12 c13 0 0 c16
c12 c22 c23 0 0 c26
c13 c23 c33 0 0 c36
0 0 0 c44 c45 0
0 0 0 c45 c55 0
c16 c26 c36 0 0 c66

















. (2.16)

For this modeling experiment, one fracture set is always perpendicular to the

x-axis with a crack density of 5% and the second fracture set has a crack density

of 7%. The second fracture set is oriented with a varying angle with respect to

first fracture set. Equivalent compliance is estimated by using equations 2.14

and 2.15. The recorded x- and y-components of particle velocity vx and vy

are mixed mode. A tensor rotation was applied to obtain the pure S1 and S2

modes. The angle of rotation θ was estimated as θ = 0.5 tan−1[2c45/(c44−c55)]

(Helbig, 1994, p. 165).

Figure 2.19 shows vx, vy and the pure modes S1 and S2 sections for

dry fractures making an angle of 30◦ with each other. Figure 2.20 shows

the time-difference between S2 and S1 waves reflected from the bottom of

the fractured layer. Both dry and fluid-filled fractures show the same time-

difference. Notice that as the angle between the two fractures is increases,
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time-difference decreases. After a certain angle, S1 becomes slower than S2.

2.5.4 Dipping corrugated fractures

Finally, I considered one set of dipping corrugated fractures to observe

S-wave splitting. Corrugated fractures occur when, unlike rotationally vari-

ant fractures, tangential and normal slips are not decoupled. This condition

introduces off-diagonal terms in the fracture compliance matrix. This causes

the equivalent medium to be monoclinic even if fractures are vertical. Bakulin

et al. (2000c) derived the stiffness matrix of the equivalent medium. They

introduced dimensionless compliances EN , EV , EH , and ENV which control

the fracture infill. They showed that fractures are dry if ENV = 0, and are

fluid-filled when E2
NV = ENEV . I used the same conditions here to define

dry and fluid-filled fractures. For our modeling purpose, I chose EN = 1.3,

EV = 0.25 and EH = 0.24.

As discussed previously, pure S‖ exists at all fracture dip, but pure

S⊥ exists only when fractures are vertical. This convention can still be used

to identify faster and slower S-waves. Figure 2.21 shows the time-difference

between faster (S‖) and slower (S⊥) S-waves. Notice that even if the fractures

are vertical, S-wave splitting is different for dry and fluid-filled fractures. After

certain dip, S-wave splitting starts to decrease for both dry and fluid-filled

fractures. Unlike fluid-filled rotationally invariant fractures, in the presence of

fluid-filled corrugated fractures S‖ always remains faster than S⊥.
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Figure 2.19: S-wave seismic sections for two dry vertical fracture sets making
an angle of 30◦: (a) x-component of velocity vx, (b) y-component of velocity
vy, (c) faster S1 mode, and (d) slower S2 mode. Notice the arrival at about
1.5 s is reflected from the bottom of the fractured layer. S-wave splitting is
evident.
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Figure 2.20: Time-difference between S2 and S1 waves reflected from the bot-
tom of the fractured layer (two sets of intersecting fractures): Notice that the
time-difference for both dry and fluid-filled fractures stays same for all angles.
With the angle between the two fracture sets increasing, time-difference is de-
creasing. After a certain angle pure faster S1 becomes slower and pure slower
S2 becomes faster.
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Figure 2.21: Time-difference between S⊥ and S‖ reflected from the bottom
of the fractured layer containing corrugated fractures: Notice that, unlike the
case of rotationally variant fractures, vertical dry and fluid-filled fractures have
different time-difference. Moreover, dry and fluid-filled fractures show different
time-difference as the fractures dip is increased. Dry horizontal fractures,
unlike fluid-filled fractures, do not show any shear-wave splitting.
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2.6 Discussion

I reviewed the finite-difference modeling algorithm for general anisotropic

media in standard staggered grid (SSG) and rotated staggered grid (RSG).

SSG should be used when the symmetry is higher than or equal to orthorhom-

bic and RSG should be used when the symmetry is lower than monoclinic. I

did not use the RSG schemes for all kinds of anisotropic media due to addi-

tional computational cost attached to RSG. I simulated wave propagation in a

number of homogeneous and complex anisotropic media using both SSG and

RSG schemes.

I showed a comparison between the finite-difference generated syn-

thetic seismograms and the synthetic seismograms generated by the reflectivity

method in an azimuthally anisotropic medium. There was an excellent match

between both the synthetic seismograms. To the best of my knowledge, this is

the first time a comparison has been made between the synthetic seismograms

generated by the finite-difference method and by the reflectivity method for

an azimuthally anisotropic medium.

I have also demonstrated that the S-wave splitting can reveal fracture

infill in the presence of dipping fractures. In the presence of two vertical

fracture sets, S-wave splitting is affected by the angle between the fractures.

This information can be used to get some idea about the angle between the

fractures. In case of vertical corrugated vertical fractures, S-wave splitting is

sensitive to the fracture infill.
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3D forward modeling with the finite-difference scheme is a computa-

tionally very expensive procedure. To run a realistic model in a reasonable

amount of time, finite-difference codes are usually parallelized. Parallelization

is done depending on the type of parallel machines available. Parallel ma-

chines can be broadly categorized in two types: (1) Multiple-processors shared-

memory systems (MPSM) and (2) multiple-processors distributed-memory

systems (MPDM). Common examples of MPSM are Cray SV1, IBM Popwer4

node. CPU clusters and Cray T3E are widely available MPDM machines.

MPDM machines are relatively cheaper than MPSM machines; at the same

expense more computational power can be bought in MPDM form than in

MPSM form. Moreover, MPDM machines are easier to scale to large number

of processors. However, it is relatively easier to program on MPSM machines

than on MPDM machines. All the variables have the same address space on

MPSM systems. On MPDM systems variables may have different address

spaces, which requires message passing to exchange the data between the pro-

cessors. Due to the necessity of passing the data between the processors on

MPDM systems, achieving a good performance is not trivial and depends on

a number of factors, for example, ingenuity of the programmer and speed of

the network. I ran all the models shown here on a four-processor MPSM.
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Chapter 3

Ray bending in anisotropic media

3.1 Introduction

An accurate estimation of traveltime is needed to map heterogeneity

in the earth’s subsurface. Traveltimes are also needed for seismic tomogra-

phy, variants of seismic migration, seismic modeling and inversion. In the

past, extensive progress has been made to estimate traveltimes in complex

and anisotropic media using a number of schemes. It is not possible to give

the details of all the schemes here. However, I will try to give a brief overview

of most of the schemes. Most of the traveltime computation schemes fall within

one of these two categories: (1) First-arrival traveltime, and (2) Ray-theory

based traveltime.

The first-arrival traveltime corresponds to the first arrival of the com-

plete wavefield at a specified receiver position. However, it is not a function

of the type of wave (e.g., head wave, direct wave etc.) to arrive first at the

receiver. The first-arrival traveltime does not have any shadow zone. How-

ever, the traveltime function may not be smooth, especially in case of large

velocity contrasts. Most of the schemes, which estimate first-arrival travel-

times, are based on the solution of eikonal equation. Vidale(1988, 1989, 1990)
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and van Trier and Symes (1991) proposed different versions of finite-difference

solution of the eikonal equation along expanding square (in 2-D) and along

an expanding cube (in 3-D) to compute first-arrival traveltimes in isotropic

media. Schneider et al. (1992) proposed a method based on Fermat’s principle

for traveltime computation in isotropic media that uses a local ray-trace solu-

tion of the eikonal equation. Faria and Stoffa (1994b) extended this algorithm

to compute traveltime in VTI media. Kumar et al. (2004) further extended

this scheme to calculate traveltime in tilted TI (TTI) media. Besides finite-

difference solution of the eikonal equation, there are various methods of net-

work shortest-path ray tracing that attempt to find the first-arrival traveltime

at a receiver position. This type of scheme was first proposed by Moser et al.

(1992) and Saito (1989). A very good overview on this kind of method can be

found in Nolet and Moser (1993).

The ray-theory traveltime is defined separately for individual elemen-

tary waves. Hence, the ray-theory traveltime can be a multivalued function

of a receiver location. Ray-theory traveltime is computed by ray tracing. Ray

tracing can be broadly classified into two categories: (1) Initial-value ray trac-

ing, and (2) Boundary value ray tracing. In initial-value ray tracing, a fan

of rays is shot from the source in the model and some kind of extrapolation

scheme is used to estimate the traveltime at a particular point in the model.

Paraxial extrapolation (Ĉervený, 1985) is one of the most popular methods

of traveltime extrapolation. Figure 3.1 shows an example of initial-value ray

tracing. However, these traveltime extrapolation methods fail in case of com-
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Figure 3.1: Initial-value ray tracing in Marmousi model.

plex media. To overcome the extrapolation problem, Vinje et al. (1993) and

Lambaŕe et al. (1996) proposed wavefront construction scheme to compute the

traveltime. Unlike the previous method, the number of rays in this method

is not fixed, but is adjusted at each wavefront using some criteria. Figure 3.2

shows an example of wavefront construction scheme. Notice how the extra

rays are being inserted to preserve the ray density. A variant of this method

was extended by Kaschwich and Gajewski (1993) for anisotropic media.

The most important case of boundary-value ray tracing is a two-point

ray tracing. In a two-point ray tracing, raypath is sought between two fixed

points S and R. The solution of two-point ray tracing may not be unique; mul-

tiple rays may connect the points S and R. Two-point ray tracing can be done

by either shooting method or by bending method. In the shooting method, the

initial-value ray tracing procedure is put within an iterative loop to find the
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Figure 3.2: An example of wavefront construction technique in a depth-
dependent velocity model: Notice that the extra rays are inserted after certain
times to maintain the ray density.

ray which starts from S and passes through R. In a ray bending method, an

initial raypath is guessed and then perturbed iteratively until the final solution

is attained. Figure 3.3 shows an example of bending method. Boundary-value

ray tracing has certain advantages over initial-value ray tracing. To trace rays

or to calculate traveltime using initial-value ray tracing is fast, but it requires

some kind of interpolation for a given source-receiver pair (e.g., Ĉervený, 2001,

p. 218). On the other hand, a boundary value problem such as a two-point
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ray tracing does not require any interpolation of the traveltimes. Two-point

ray tracing can be used in tomographic and earthquake studies and to image

reflectors in oil and gas exploration.

Um and Thurber (1987), Prothero et al. (1988) and Moser et al. (1992)

introduced variants of bending schemes for two-point ray tracing based on

Fermat’s principle. Guiziou et al. (1991) proposed ray bending through com-

plex triangulated surfaces. Farra (1992) developed a bending method using
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Hamiltonian formulation. Pšenč́ık and Farra (2005) and Farra (2005) derived

first-order ray tracing equations for qP- and qS-waves, respectively, in weakly

anisotropic media. Vesnaver (1996) applied ray bending to do two-point ray

tracing on irregular grids. Velis and Ulrych (2001) used a global optimization

scheme (simulated annealing) to determine minimum traveltime path between

two points in complex structures. Grechka and McMechan (1996) introduced

a two-point ray tracing for smoothly varying weak TI media. They approxi-

mated the raypaths and the medium by Chebyshev polynomials which limited

its applicability only in smoothly varying medium. Moreover, they estimated

group velocities in the medium, which are essential for two-point ray trac-

ing, by further linearizing the expressions given by Thomsen (1986) for weak

TI media. Surprisingly, I did not find numerous literature on two-point ray

tracing in anisotropic media.

Here I follow an approach similar to that of Moser et al. (1992). How-

ever, my algorithm addresses some of the fundamental stumbling blocks inher-

ent to two-point ray tracing in anisotropic media. I compute group velocities

using Fourier expansion (Byun et al., 1989) for weak VTI media which was

modified by Kumar et al. (2004) to estimate group velocities in the symmetry

plane of TTI media. I extend it to compute group velocities in any plane of

HTI and TTI media. For strong TI media and arbitrary anisotropy, I employ

a search method to estimate the phase direction for a particular group direc-

tion, which eventually yields the desired group velocity. Similar approach was

mentioned in Grechka and McMechan (1996), but to the best of my knowledge
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no one has applied it so far in arbitrary anisotropy.

3.2 Methodology of ray bending

Here I briefly outline the approach to ray bending. A comprehensive

overview can be found in Moser et al. (1992). Fermat’s principle states that

a raypath from a source to a receiver is stationary i.e., traveltime taken by a

ray from the source to the receiver is minimum or

T (r) =

∫

r

ds

V
−→ min, (3.1)

where r denotes the raypath. I define the raypath as a polygonal path con-

sisting of k + 1 points, numbered from 0 to k and connected by straight line

segments. If the location of these points in space is given by x, y, and z, we

can write r as an n-dimensional vector; i.e.

r = (x0, y0, z0, x1, y1, z1, · · · , xk, yk, zk), (3.2)

where n = 3(k+1). The goal of any two-point ray tracing scheme is to estimate

(or to invert) the vector r. Many optimization schemes have been applied over

the years to estimate r. The most popular and robust scheme is to apply a

method of conjugate gradient to estimate r.

The line integral in equation 3.1 can be approximated using trapezoidal

rule as

T (r) =
k

∑

i=1

1

2
(

1

Vi

+
1

Vi−1

)|xi − xi−1|, (3.3)
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where xi stands for (xi, yi, zi) and Vi is medium velocity. The integral in

equation 3.1 can be evaluated by more sophisticated schemes, for example,

Simpson’s rule or composite Simpson’s rule for better accuracy (e.g., Burden

and Faires, 1989, p. 175). The traveltime T (r) is minimized using a conjugate

gradient scheme (e.g., Press et al., 1987) which uses the gradient of time ∇T .

The gradient of time ∇T is also an n-dimensional vector and is evaluated at

each supporting point of the ray:

∇T (r) =

(

∂T

∂x0

,
∂T

∂y0

,
∂T

∂z0

,
∂T

∂x1

,
∂T

∂y1

,
∂T

∂z1

, · · · ,
∂T

∂xk

,
∂T

∂yk

,
∂T

∂zk

)

. (3.4)

For ray bending, we need to keep the end points fixed, and hence, the

corresponding components of time gradient ∇T need not be calculated. The

rest of the components of ∇T can be calculated by a central finite-difference

scheme; i.e.,

∇T (r) =
T (r + δr) − T (r − δr)

2δr
. (3.5)

In an isotropic medium, the above scheme can be implemented very

easily. However, its implementation in anisotropic media is not trivial since

we need to know the group velocity at each xi in direction of (xi − xi−1).

In anisotropic media, evaluation of the group velocity in the desired group

direction is not trivial. Next, I explain how to evaluate group velocity in a

desired direction in anisotropic media.
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3.3 Estimation of Group Velocity

3.3.1 Weak TI media

Here I discuss how to, accurately, estimate the group velocity in the

desired direction. This issue was first addressed by Thomsen (1986). He

showed that in weak TI media, although a particular group direction is not

the same as its corresponding phase direction, group velocity is equal to its

corresponding phase velocity. Hence, the phase direction corresponding to the

particular group direction needs to be estimated to calculate the group velocity.

One needs to solve nonlinear equations (see equation 22 in Thomsen, 1986) to

estimate the phase direction related to a particular group direction. Grechka

and McMechan (1996) made further linearized approximation to obtain the

expressions for the group slownesses in a form similar to the one given by

Byun et al. (1989), although they followed a different approach to derive their

group slowness formulae.

Byun et al. (1989) proposed to express the group velocity in TI media

by the following Fourier expansion:

1

V 2
g (ψ)

= a0 + a1 cos2 ψ + a2 cos4 ψ, (3.6)

where ψ is the angle between the ray (group direction) and the symmetry

axis. Constants a0, a1, a2 can be solved using group velocity information at

ψ = 0◦, ψ = 90◦, and at some other arbitrary angle where group velocity

can be found by any search scheme (section 3.3.2). The approximation in

equation 3.6 is known to work for weakly anisotropic or a nearly elliptically
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Figure 3.4: Comparison of group velocity computed with Fourier expansion
(equation 3.6) and the exact group velocity in Taylor sandstone: For P- and
SH-waves, the approximate curves closely follow the exact curves of velocity.
But for SV-wave, approximate group velocity curve deviates from the exact
velocity curve, especially at the oblique angles.

anisotropic medium (Byun et al., 1989). It should be mentioned that P-wave

group velocity surface is not perfectly elliptical, SV-wave group velocity surface

is rarely elliptical, and SH-wave group velocity surface is always elliptical.

Hence, we can expect the equation 3.6 to yield good results only in case of P-

and SH-waves.

Figure 3.4 shows the comparison between the exact and the Fourier ex-

pansion (equation 3.6) group velocities for all three modes in Taylor sandstone
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and the tilt θ of the symmetry axis with vertical.

(Thomsen, 1986) with Thomsen parameters α0 = 3368 m/s, β0 = 1829 m/s,

ε = 0.110, δ = −0.035, γ = 0.255. Notice that for P- and SH-waves, the group

velocities calculated by Fourier expansion closely follows the exact group ve-

locities. For SV-wave, the result is not very satisfactory as the velocity surface

for SV-wave is non-elliptical.

To implement the equation 3.6 in a TI media with symmetry axis of

arbitrary orientation, the angle ψ between the ray and the symmetry axis is

needed. If the symmetry axis makes an angle θ with vertical and is confined

in x1-x3 plane and the azimuth and the incidence angles of a ray are φ and β,
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respectively (Figure 3.5), we have

cosψ = sin θ sin β cosφ+ cos θ cos β. (3.7)

In the special case of HTI media θ becomes 90◦ and equation 3.7 reduces to

cosψ = sin β cosφ. If the azimuth φ of the ray is 0◦, equation 3.7 yields

ψ = β − θ. If the azimuth of the symmetry axis is φ0, φ in equation 3.7 needs

to be replaced by (φ − φ0). Equations 3.6 and 3.7 can be used together to

estimate group velocities in any type of TI media.

Dog Creek shale (Thomsen, 1986), rotated by 45◦ about y-axis, with

Thomsen parameters α0 = 1875 m/s, β0 = 826 m/s, ε = 0.225, δ = 0.110,

γ = 0.345 was used as a TTI medium to calculate the group velocities. Fig-

ures 3.6(a) and 3.6(c) show group velocities for P- and SV-waves at various

azimuths φ and incidence angles β calculated using equations 3.6 and 3.7.

For P-wave, Fourier expansion scheme yields group velocities close to the ex-

act group velocities; the maximun difference (Figure 3.6(b)) between the exact

and approximated group velocites is less than 5 m/s. For SV-wave, the Fourier

solution does not produce a very good match with the exact group velocity.

But error (Figure 3.6(d)) is still less than 10 m/s at most of the places. For

better computation of the group velocity, I propose to calculate the group

velocities for SV-wave using the search scheme discussed next.
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Figure 3.6: P- and SV-waves group velocities calculated using equations 3.6
and 3.7 for a TTI medium (Dog Creek shale rotated by 45◦ about y-axis) with
azimuth φ and incidence angle β of the group velocity vector (Figure 3.5): (a)
Group velocities for P-wave, (b) Difference between the exact and the Fourier
expansion group velocities for P-wave. (c) Group velocities for SV-wave, and
(d) Difference between the exact and the Fourier expansion group velocities
for SV-wave. Notice that velocities are varying both with β and φ.
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3.3.2 Strong TI media

Exact group velocities were calculated using the following formulae

(e.g., Auld, 1990, p. 212) by a constant increment in the phase angle:

[cijklljll − ρv2δik]Uk = 0, (3.8)

Vj =
1

ρv
cijklUiUkll, (3.9)

where cijkl is the fourth-order stiffness tensor, v is the phase velocity in phase

direction ll, Uj is the polarization vector of particles, ρ is the medium den-

sity, and Vj is the group velocity vector. The procedure to compute the group

velocity is very straightforward. Phase velocity v is first estimated in phase di-

rection ll by solving equation 3.8, and then equation 3.9 is used to estimate the

group velocity in phase direction ll. Therefore, estimation of group velocity in

arbitrary phase direction does not pose any problem in any kind of anisotropy.

Here, it is worth mentioning that in singular directions, polarization vectors

Uj become degenerated (eigenvectors in equation 3.8 cannot be uniquely de-

fined when two or more than two of the eigenvalues are nonunique) which

hampers the determination of group velocity in equation 3.9. Fortunately, in

exploration seismology S-wave singularity is the most common type of singu-

larity (both S-modes have the same phase velocity), but there are crystals in

which P-S singularity is also possible such as Calcium Formate. An elaborate

description of S-wave singularity can be found in Crampin and Yeldin (1981).

I discuss the problems caused by the S-wave singularity later in the text.
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For ray bending purpose, group velocity is needed in a particular ray

direction. Estimation of the group velocity in the desired ray direction requires

the evaluation of equations 3.8 and 3.9 in various phase directions ll until we

find the desired group direction (the group direction after each iteration can be

found using group velocity components V1, V2, and V3). This can be achieved

by a table lookup. However, I employed a more efficient scheme in which I use

an optimization scheme to minimize the following objective function

e = (φ− φc)
2 + (β − βc)

2, (3.10)

where φ and β are the azimuth and incidence angles of group vector, respec-

tively (Figure 3.5). φc and βc are computed using group velocity components

which are derived at each iteration until an optimum set is found. For fast

convergence of the solution, starting value of the phase direction l can be set

to be the same as the desired group direction. I use a conjugate gradient

scheme to minimize the error function e. It was noticed that the convergence

is attained in 2 to 3 iterations. If there is a triplication in the group velocity

surface, choice of the group velocity will be determined by the starting phase

direction.

Group velocity in TI media depends only on the angle ψ between ray

and the symmetry axis. Therefore, one has to minimize only the difference

between the desired ψ and computed ψc after each iteration. This reduces

the computational cost of group velocity estimation. For TI media with arbi-

trary symmetry axis orientation, equation 3.7 is used to compute equivalent
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ψ. Moreover, in TI media all three modes P-, SV-, and SH-waves are com-

pletely decoupled which helps handle the S-wave singularity. To compute the

group velocity for SV-wave in the singular direction, I simply use the SV-wave

polarization vector, and for SH-wave, SH-wave polarization is used. This ap-

proach was successfully applied by Shearer and Chapman (1989) to trace rays

in TI media using the analytical expressions for polarization vectors of SV-

and SH-waves.

Since in TI media all the planes containing the symmetry axis are

equivalent, I decided to apply the search scheme in [x1, x3]-plane for any type

of TI media. In [x1, x3]-plane l2 = 0 and l1 = sinϕ and l3 = cosϕ, where ϕ

is the starting value of the angle between the symmetry axis and the phase

direction (for quick convergence, I set ψ for ϕ). Moreover, for TI media I

use the following expression to calculate phase velocities for P- and SV-waves

(e.g., Thomsen, 1986; Tsvankin, 2001, p. 17)

ρv2(ϕ) = (c11 + c55) sin2 ϕ+ (c33 + c55) cos2 ϕ

±

√

[

(c11 − c55) sin2 ϕ− (c33 − c55) cos2 ϕ
]2

+4(c13 + c55)2 sin2 ϕ cos2 ϕ. (3.11)

Here, + stands for P-wave while − stands for SV-wave. Following are the

formulae to calculate the particle vibration direction Ui and the group velocity

components Vj.

U1

U3

=
(c13 + c55) sinϕ cosϕ

ρv2 − c11 sin2 ϕ+ c55 cos2 ϕ
, (3.12)

U2
1 + U 2

3 = 1, (3.13)
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V1 = [c11U
2
1 l1 + c13U1U3l3 + c55U

2
3 + c55U3U1l3]/(ρv),

V2 = 0, (3.14)

V3 = [c13U3U1l1 + c55U1U3l1 + c55U
2
1 l3 + c33U

2
3 l3]/(ρv).

For SH-wave, U1 = U3 = 0 and U2 = 1. Phase velocity v is given as

v =

√

c66 sin2 ϕ+ c55 cos2 ϕ

ρ
, (3.15)

and the components of group velocity are given as

V1 = c66l1/(ρv),

V2 = 0, (3.16)

V3 = c55l3/(ρv).

Estimated group direction ψc is given as tan−1 V1

V3
and the error function to

minimize is (ψ − ψc)
2.

Figure 3.7 shows the comparison between the exact group velocity,

group velocity computed by equation 3.6 and the group velocity derived by

search scheme for all three modes in Green River shale (Thomsen, 1986), with

Thomsen parameters α0 = 3292 m/s, β0 = 1768 m/s, ε = 0.195, δ = −0.220,

γ = 0.180. Fourier expansion completely fails to estimate group velocity of

SV-wave at oblique angles. In case of P-wave, Fourier expansion is unable to

deliver the satisfactory results at oblique angles. However, Fourier expansion

is predicting the accurate group velocity of SH-wave. The search scheme is
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Figure 3.7: Comparison between the exact group velocity, group velocity com-
puted by the Fourier expansion (equation 3.6), and the group velocity derived
by search scheme for P-, SV-, and SH-waves in Green River shale: Notice
that for P-wave, Fourier expansion solution is deviating from exact group ve-
locity trend at oblique angles. For SV-wave, the Fourier expansion solution
completely fails to predict the right group velocity at oblique angles. Search
scheme is predicting the group velocity precisely for all three modes. For
SV-wave, we get one of the three solutions at triplication.

predicting the perfect solutions for all three modes. However in case of SV-

wave, search scheme, as expected, is estimating the group velocity of only one

of the three branches of the triplication. This can be explained by the fact

that any of the three branches can minimize (ψ−ψc)
2. The solution converges

to one of the branches depending on the starting guess.
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Figure 3.8: Phase and Group angles in Green River shale for P-, SV- and
SH-waves: Notice that for SV-wave, three different phase angles have the
same group angle which causes the triplication in group velocity surface. The
search scheme solves for only one of the phase angles associated with a group
direction. Hence, the search scheme yields only one of the branches of the
triplication in figure 3.7.

Figure 3.8 shows the relationship between phase and group angles in

Green River shale. Notice that for SV-wave, three different phase angles exist

for some of the group angles. However, the search scheme solves only for one

of the phase angles associated with a particular group angle. However, if there

101



0 10 20 30 40 50 60 70 80 90
1800

1850

1900

1950

2000

2050

2100

Group Angle ψ (degree)

G
ro

up
 v

el
oc

ity
 (

m
/s

)

SV−wave in Taylor sandstone

α
o
=3368 m/s

β
o
=1829 m/s

ε=0.11
δ=−0.035
γ=0.255

Exact
Search Scheme

Figure 3.9: Comparison between the exact group velocity and the group ve-
locity computed by search scheme for SV-wave in Taylor sandstone: In the
absence of triplication, the search scheme accurately reproduces the whole
group velocity curve. Exact group velocity curve was computed by constant
increment in phase angle, but we can see that group velocity vectors are un-
evenly distributed due to focusing and defocusing of the energy. This is not
the case in group velocity curve produced by the search scheme.

is no triplication in SV-wave, the search scheme yields a unique solution.

Figure 3.9 shows the comparison for SV-wave between the exact group

velocities and the group velocities computed by the search scheme in Taylor

sandstone. The search scheme is able to reproduce the entire group velocity

curve. Exact group velocity curve was computed by a constant increment

in phase angle, but we can see that group velocity vectors are unevenly dis-
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tributed due to focusing and defocusing of the energy (Tsvankin, 2001, p. 32).

This is not the case in group velocity curve produced by the search scheme.

3.3.3 Arbitrary anisotropy

For anisotropic media with symmetry lower than TI, equations 3.8

and 3.9 can be directly used. Due to non-planar nature of the phase vec-

tor corresponding to a particular group direction, both the angles defining the

orientation of the phase vector need to be inverted for. If the initial guesses of

azimuth and incidence angle are φin and βin, respectively, initial components

of the phase vector can be written as l1 = cosφin sin βin, l2 = sinφin sin βin,

and l3 = cos βin.

Although the presented algorithm can produce group velocity in ar-

bitrary anisotropy, for the sake of simplicity I employed this scheme in an

orthorhombic medium. Since in orthorhombic media, S-waves are decoupled

into SH- and SV-waves only in the symmetry plane, I decided to distinguish

the two S-wave modes as faster (S1) and slower (S2) waves. The orthorhombic

medium was taken from Tsvankin (2001, p. 48), and is defined by the following

Thomsen-style parameters introduced by Tsvankin (1997b) for orthorhombic

media: α0 = 3000 m/s, β0 = 2000 m/s, ε(1) = 0.25, ε(2) = 0.15, δ(1) = 0.05,

δ(2) = −0.1, δ(3) = 0.15, γ(1) = 0.28, γ(2) = 0.15.

Figure 3.10 shows the phase and group velocity surfaces in the symme-

try planes of the orthorhombic medium. Notice the S-wave singularity present

in the yz-plane. Figure 3.11 shows the inverted group velocity with respect to
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Figure 3.10: Phase (a) and group (b) velocity surfaces of the orthorhombic
medium which was used as the test model to invert group velocities using
search scheme: Thomsen-style anisotropic parameters are α0 = 3000 m/s,
β0 = 2000 m/s, ε(1) = 0.25, ε(2) = 0.15, δ(1) = 0.05, δ(2) = −0.1, δ(3) = 0.15,
γ(1) = 0.28, γ(2) = 0.15.
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Figure 3.11: Comparison between the exact and the group velocities computed
by search scheme at various azimuths: Exact group velocity curves for 30◦

and 60◦ were not calculated due to the non-planar phase vector. Notice the
problems in estimation of group velocity close to S-wave singularity at oblique
azimuth 60◦.
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the ray incidence angle β (Figure 3.5) in the vertical planes oriented at various

azimuths φ. Notice that only at azimuths 0◦ (xz-plane) and 90
◦

(yz-plane),

I have the exact group velocity curves to compare with the inverted group

velocity curves. This is due to the non-planar orientation of the phase vectors

in the non-symmetry planes. Also notice that in the yz-symmetry plane (az-

imuth 90◦), we see better results at the S-wave singularity than at the oblique

azimuths. The reason behind this is that in the symmetry planes SV- and

SH-waves are decoupled, and hence, continuity in the polarization vector is

maintained while calculating group velocities using equation 3.9. However,

this was not done at the oblique azimuths hence, we see problems at the

singularity. Although Vavryčuk (2001) suggested a scheme to maintain the

continuity in the polarization vector while tracing rays in anisotropic media to

avoid problems at or near the S-wave singularity, I did not apply it here due

to the complexity associated with it in bending method.

3.4 Interpolation of Traveltime

Two-point ray tracing is inherently more expensive than the conven-

tional methods such as eikonal solver or wavefront construction. For practical

application of two-point ray tracing for migration or forward modeling, we can

compute traveltime on a coarse grid and then interpolate to a finer grid. We

can either do interpolation without taking into account of the wavefront curva-

ture such as trilinear and Fourier (sinc-) interpolation, or we may use more so-

phisticated interpolation schemes taking into account the wavefront curvature
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such as parabolic (paraxial) or hyperbolic interpolation. It is well established

that the latter class of interpolation schemes yields far superior results than

the former class of interpolation techniques (e.g., Brokeŝová, 1996; Gajewski,

1998). Vanelle and Gajewski (2002), later, established the superiority of the

hyperbolic interpolation over the parabolic interpolation. Gajewski (1998)

showed how to compute hyperbolic interpolation coefficients from traveltime

itself avoiding expensive dynamic ray tracing. But his algorithm was restricted

to only horizontal interpolation. Vanelle and Gajewski (2002) extended later

this scheme for vertical interpolation as well. This scheme produces excellent

results for any type of heterogeneous media. I give a short description of this

interpolation scheme in the appendix C.

To test the accuracy of this interpolation scheme, I implemented it on

a slowly varying anisotropic medium. The medium has 1001×1001 gridpoints

with 10 m of grid spacing in either direction. The vertical P-wave velocity

α0 at any depth z is given as 1000 + z/5 m/s. Other anisotropic (Thomsen)

parameters are kept constant with depth and are given as ε = 0.3 and δ = 0.1.

Traveltime was computed by a brute force scheme developed by Faria and

Stoffa (1994b) for VTI media. This traveltime was resampled back to a coarse

grid spacing of 100 m and interpolation was implemented to estimate the trav-

eltime at a finer grid of 10 m (figure 3.12). Figure 3.13 shows the relative error

(%) in interpolated traveltime compared to the traveltime directly computed

at the fine grid. The relative error close to the source (100 m in each direction)

was set to zero due to very small traveltime values near the source which may
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Figure 3.12: Traveltimes estimated with brute force scheme (Faria and Stoffa,
1994b) in a VTI medium with (a) and without (b) hyperbolic interpolation.
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Figure 3.13: Relative absolute error (%) caused by hyperbolic interpolation
for a VTI medium with vertical velocity α0 gradually increasing with depth.

cause a large relative error. It should be noted that the errors are very small

other than in the close vicinity of the source.

3.5 Ray Tracing Examples

I applied ray bending code in a 3D anisotropic model. The source

coordinates (in meters) are [2750, 2750, 250], and four receivers are located at

[250, 250, 5250], [250, 5250, 5250], [5250250, 5250], and [5250, 5250, 5250]. The
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subsurface is modeled as a heterogeneous HTI medium with symmetry axis

oriented towards x1-direction and described by the following generic Thomsen

parameters:
α = 1800 + 0.2(x2 + x3),
β = 870 + 0.2(x2 + x3),
ε = 0.25 + 2x3 × 10−4,
δ = −0.10 + 4x3 × 10−5,

γ = 0.1 + (x1 + x2 + x3) × 10−4.

The model has 110 grids in each direction with the grid spacing of 50 m.

Medium properties were linearly interpolated in the middle of the grid. Moser

et al. (1992) used a beta-spline (e.g., Newman and Sproull, 1981) algorithm for

interpolation purposes which, of course, increases the accuracy of computation.

Group velocities were calculated using the search scheme. The initial raypath

for each ray was guessed as a straight line with 20 equidistant points. The

convergence of the relative change in travel time to the machine precision was

used as the stopping criterion. All the traveltime calculations converged in less

than 40 iterations. I traced the rays in a comparable isotropic medium also.

Medium properties were defined by setting all the anisotropic parameters (ε,

δ, γ) to zero in equations 3.17. Figure 3.14 displays the raypaths for all three

kinds of waves. Figure 3.15 displays the traveltimes of all modes in HTI and

isotropic medium.

Next, I applied ray bending on a subsurface model (Figure 3.16) to com-

pute traveltime on each grid point with the hyperbolic interpolation (Vanelle

and Gajewski, 2002). The subsurface model contains a TI thrust sheet with
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Figure 3.14: Raypaths for (a) P-, SV-, and SH-waves in a smoothly varying
HTI media (equation 3.17) with symmetry axis in x1-direction: Initial raypaths
were guessed as a straight line joining source and receivers. Most of the results
converged in about 40 iterations. Raypaths for equivalent isotropic medium
are also displayed.
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Figure 3.15: Traveltime of P-, SV-, and SH-waves in HTI model. Traveltimes
in equivalent isotropic medium are also displayed.

variable tilt (0◦, 30◦, 50◦, and 60◦) embedded in a homogeneous isotropic

medium. Thomsen parameters for the thrust sheet are α0 = 3800 m/s, ε =

0.195, δ = −0.1. Other anisotropic parameters (β0, γ) were not considered be-

cause I show the result here only for P-wave. The P-wave velocity of the back-

ground is 2740 m/s. The model has 411 and 221 grids in x- and z-directions,

respectively with a grid size of 10 m in each direction. Source is located at

[250 m, 250 m]. P-wave traveltime was computed at every 10th grid in both

the directions. Group velocities were computed using Fourier expansion. Hy-

perbolic interpolation was used to compute the traveltime at other grid loca-
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Figure 3.16: The subsurface model with TI thrust sheet embedded into an
isotropic background: The thrust sheet is divided into four TI blocs with
varying angle of axis of symmetry with respect to the vertical axis.

tions (Figure 3.17(a)). For comparison, the traveltime was also computed by

the scheme developed by Kumar et al. (2004).

Figure 3.17(b) shows the relative difference in percentage in traveltimes

estimated by both the schemes. At most of the places, relative difference is

much less than 1%. Relative difference was set to zero close to the region

near the source (100 m in either direction) due to very small traveltime which

causes apparently a large relative difference. Figure 3.18 shows the traveltime

in 3D for the thrust model. The model was kept unchanged in the y-direction.

A source is located at [250 m, 750 m, 250 m]. Traveltime was again computed

on a gridsize of 100 m and then interpolated to the gridsize of 10 m.
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Figure 3.17: (a) Traveltime computed by two-point ray tracing and interpola-
tion, (b) Absolute relative difference in traveltime computed by ray bending
scheme and by method proposed Kumar et al. (2004).

114



0

500

1000

1500

2000

D
ep

th
 (

m
)

0 1000 2000 3000 4000
X (m)

0
500

1000
1500

Y (m
)

0.5 1.0 1.5
Time (s)
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model is not varying in y-direction.

3.6 Discussion

The ray bending algorithm can calculate traveltime and trace rays in

a general anisotropic medium. In the presence of multiplicity, ray bending

does not guarantee that the solution will converge to a particular arrival. The

shortest ray path technique (e.g., Moser, 1991) can provide a good initial guess

which almost guarantees that the algorithm converges to the global minima

(first-arrival). Another alternative is to use a computationally expensive global

optimization scheme (Velis and Ulrych, 2001) to minimize the travel time to

obtain the first arrival. Nonetheless, one has to be careful while applying a
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two-point ray tracing scheme in a complex structure.

The search scheme uses a method of conjugate gradient to estimate

group velocity. I applied this method because it is known to be robust and

reasonable in terms of computation costs (Fletcher, 1980). However, one can

apply any other optimization scheme such as Newton-Raphson, method of

steepest descent or 2nd order Newton’s algorithm (e.g., Burden and Faires,

1989, p. 49). The same is true while minimization of travel time is sought.

Precise estimation of group velocity has always been sought in many

application of exploration geophysics. For example, schemes to estimate first-

arrival travel time in anisotropic media, those proposed by Faria and Stoffa

(1994b) and Kumar et al. (2004), can be applied to strongly anisotropic media

by precise estimation of group velocities by the search scheme, although it will

make those schemes more expensive.

Care must be taken while tracing rays in media with symmetry lower

than TI. Due to the sudden change in the polarization vectors in S-wave modes

(right after the singularatiy), one may obtain false bending (Vavryčuk, 2001)

and sudden jumps in traveltime curves. The next step in improving this

method can be incorporation of an algorithm to maintain the continuity of

the S-wave polarization vectors while tracing the rays. However, I must men-

tion that this correction will pose some technical difficulties. One of the few

that stands out is that it will need a large number of supporting points to

guarantee that the algorithm does not miss the singular point in space.
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Chapter 4

Ray-Born inversion for fracture parameters

4.1 Introduction

As I discussed in chapter 1, the conventional methods of AVOA analy-

sis for the inversion of fracture parameters fail in the case of laterally varying

media. Shaw and Sen (2004) showed that the linearized reflection coefficients,

which are used for AVOA analysis, are equivalent to a first-order Born ap-

proximation. Using the first-order Born approximation, Shaw and Sen (2006)

derived analytical expressions for the sensitivity matrices for flat layers. These

matrices were then used to invert for the fracture parameters (in which AVOA

was parameterized by normal and tangential weaknesses ∆N and ∆T , respec-

tively; see section 1.5.3). However, the Born approximation is not limited to

only laterally uniform media, and in the past, it has been used to invert for

the acoustic and elastic properties of the scatterers from the background (e.g.,

Stolt and Weglein, 1985; Beydoun and Mendes, 1989; Jin et al., 1992).

Clayton and Stolt (1981), Keys and Weglein (1983) and Cohen et al.

(1986) used the Born approximation to invert for the acoustic properties.

Beydoun and Mendes (1989) introduced the theoretical basis of inversion for

isotropic elastic properties using a Born formulation. They used a single-step
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conditioned-gradient algorithm to minimize a misfit function between the ob-

served data and the synthetic data. Beylkin and Burridge (1990) proposed

linearized-inversion schemes for both acoustic and elastic media. Their inver-

sion scheme is based on an asymptotic inversion formula developed by Beylkin

(1985). Jin et al. (1992) developed a theory using the ray-Born approach to

invert for the elastic properties. They proposed using iterative quasi-Newton

inversion method to minimize the error function between the data and the

scattered wavefield. They also showed, using condition numbers of a Hes-

sian matrix, that this kind of inversion is ill-conditioned if only one scattering

mode is available. Thierry et al. (1999) used the ray-Born approach to mi-

grate/invert the true amplitude and the velocity of a 2D complex medium

(Marmousi model). Lambaré et al. (2003) and Operto et al. (2003) extended

this approach to 3D. Chapman and Coates (1994) generalized the concept of

Born scattering to anisotropic media. Eaton and Stewart (1994) developed

theoretical basis for ray-Born inversion in TI media. Using some very simple

test cases, they showed that their inversion scheme could estimate the locations

of the anisotropic scatterers. They cast the inversion as a discrete generalized

L2 optimization problem, which they solved using an iterative quasi-Newton

method. They also proposed choosing suitable model parameter which depend

on the type of TI media one is inverting for.

In this chapter, I develop the theoretical basis for a ray-Born inversion

of fracture parameters (∆N and ∆T ) in laterally varying media. I implement

the inversion in the symmetry plane of the fractured media. I outline the
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inversion procedure and propose a regularization scheme that reduces the non-

uniqueness from the inversion. I also demonstrate, using numerical examples,

that all the frequencies are not needed for a desired inversion result; in fact,

a very small number of frequency samples covering the whole spectrum is

enough for a good inversion result. I outline the foreseeable problems in the

application of this technique to a field dataset. I also detail the application of

an asymptotic expansion of the Born integral, which considerably reduces the

computation time (appendix E). I demonstrate application of the asymptotic

expansion on the foward modeling and the inversion using numerical examples

(appendix E).

4.2 Methodology

4.2.1 The linearized forward problem

Green’s tensor Gmk which satisfies the equation of motion can be writ-

ten as (Ĉervený, 2001, p. 15)

(cijklGml,k + ρω2Gmi) = −δmiδ(x − s), (4.1)

where cijkl is the stiffness tensor and ρ is the density. ω is the frequency

associated with the Green’s tensor Gmk. δ(x) is the Dirac delta function,

and δmi is the Kronecker delta. The Green’s tensor Gmk has the arguments

(s,x, ω); this notation signifies the k-component of particle displacement at

x due to a unit impulse at time zero (with the dimensions of force per unit

volume) in the m-direction at point s (Eaton and Stewart, 1994). Equation 4.1
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can be solved using any standard numerical technique (e.g., finite-difference).

However, an approximate solution can be obtained about a reference medium

using a first-order Born approximation.

The medium parameters and the Green’s tensor can be written as a

sum of two parts:

cijkl = c0ijkl + ∆cijkl, (4.2)

ρ = ρ0 + ∆ρ, (4.3)

and

Gmk = G0
mk + Umk, (4.4)

where c0ijkl and ρ0 are the stiffness tensor and the density of the reference

medium (or background), respectively. ∆cijkl and ∆ρ are the stiffness ten-

sor and the density of the scatterer or the heterogeneity embedded in the

background. G0
mk is the Green’s tensor in the reference medium. Umk, the

difference between the exact Green’s tensor and the reference Green’s tensor

is referred to as the scattered wavefield (due to an impulsive source). The

parameters for the reference medium, c0ijkl(x) and ρ0(x), have to be smooth

(differentiable) and continuous. The reference or background Green’s tensor

satisfies the following equation of motion:

(c0ijklG
0
ml,k + ρ0ω2G0

mi) = −δmiδ(x − s). (4.5)

After some algebra and making the assumption thatGmk(s,x, ω) = G0
mk(s,x, ω)
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(first-order Born approximation, see Ĉervený, 2001, p. 93–95), we get

Umn(s, r, ω) ≈

∫

D

[∆ρω2G̃0
mi(x, r, ω)Ĝ0

ni(x, r, ω)

+∆cijklG̃
0
mk,l(s,x, ω)Ĝ0

ni,j(x, r, ω)]dx. (4.6)

The tilde (˜) and hat (ˆ) denote the quantities associated with the inci-

dent and scattered wavefields, respectively. Equation 4.6 is the first-order

Born, or single-scattering approximation—multiple interactions between het-

erogeneities are not considered—for general anisotropic media. For equa-

tion 4.6 to be valid; |∆Cijkl/cijkl| ¿ 1 and |∆ρ/ρ| ¿ 1. It should be noted here

that Umk is the superposition of all single-scattered arrivals from all scatterers

embedded in the reference medium.

To solve equation 4.6, we need an analytical expression for the reference

Green’s tensor G0
mi which is not available for most of the non-trivial cases.

Hence, zeroth-order asymptotic ray theory is used to estimate the reference

Green’s tensor. In the ray-method, for each type of body wave denoted by Ω,

an approximate Green’s tensor can be written as (Eaton and Stewart, 1994)

ΓΩ
mk(s,x, ω) ≈ Agm(s)gk(x)eiωτ , (4.7)

where τ and A are the traveltime (from source to scatterer) and the amplitude

terms. gm(s) and gk(x) are the orientations of the source and the receiver,

respectively. Using equation 4.7, we can rewrite equation 4.6 as

Umn(s, r, ω) ≈ ω2
∑

Ω

g̃m(s)ĝn(r)

∫

D

dx[∆ρδik + ∆cijklp̃lp̂j]Ag̃kĝie
iωτ , (4.8)
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where A = ÃÂ and τ = τ̃ + τ̂ , respectively. Vectors pi and gi represent the

polarization and slowness of the particular wave type (P- or S-wave) at the

scatterer location. It should be noted that there is, in general anisotropic

media, full elastic coupling of the incident and scattered wavefields (i.e., nine

possible combinations of three incident and three scattered wave types).

The scalar quantity,

R(m0, p̃, p̂, g̃, ĝ) ≡ [∆ρδik + ∆cijklp̃lp̂j]g̃kĝi (4.9)

that appears in equation 4.8 is called the scattering function. It should be

noted that the scattering function for anisotropic media is dependent on the

properties of the background media through the slowness and polarization

vectors. m0 represents a model parameter vector, the components of which

are perturbations relative to the background medium expressed in terms of the

elastic coefficients and density. The goal of any inversion scheme is to estimate

m0.

If we assume that the background medium is isotropic, and if the

medium is not varying in one of the horizontal directions (say in the y-

direction), we can apply a two-and-half dimensional correction. After applying

two-and-half dimensional correction (or stationary phase approximation, e.g.,

Bleistein et al., 1987) on equation 4.8 in the y-direction, we get

Umn(s, r, ω) ≈ |ω|3/2(2π)1/2esign(ω)iπ/4
∑

Ω

g̃m(s)ĝn(r) ×

∫ x2

x1

∫ z2

z1

R(m0, p̃, p̂, g̃, ĝ)(τ,yy)
−1/2Aeiωτdxdz. (4.10)
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4.2.2 Inversion scheme

Equation 4.10 can be rewritten as

u = Gm, (4.11)

where u is the scattered wavefield, G describes the kernel of integral equa-

tion 4.10, and m is the model vector which contains all the model parameters

in the region of interest.

The objective of any inversion scheme is to estimate m. Although a

direct least squares solution of equation 4.11 exists, it is not used due to several

reasons. The large dimensions of the data and model vectors require the

calculation of the inverses of very large matrices. Moreover, due to insufficient

data and the presence of noise in the data, the inversion may become ill-

posed. To circumvent this problem, I use an indirect inversion scheme which

tries to minimize the error iteratively until some threshold is reached. The

error function is given as

E =
1

2
∆uT ∆u + εf(m), (4.12)

where ∆u = udata − usyn. Function f(m) is used to constrain the values

of the inverted model parameters (see section 4.3.1). The error function can

be minimized by either using a global optimization scheme such as genetic

algorithm or simulated annealing, or using a local optimization scheme such as

Gauss-Newton or conjugate gradient. I used the method of conjugate gradient

for the inversion because it is known to be robust and reasonably costly (Press
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et al., 1987). The conjugate gradient scheme needs the derivative of the error

function at each iteration which is given as

cj =
∂E

∂mj
= −GT ∆uj + ε

∂f(m)j

∂mj
, (4.13)

where cj is the derivative of the error function at iteration j. See appendix D

for a derivation of equation 4.13.

4.3 Implementation of inversion

Before implementing any inversion, it is very important that a suitable

model parameterization of the inverse problem has been carried out. Eaton

and Stewart (1994) proposed a transformation operator Lq such that

m0 = Lqmq, (4.14)

where m0 represents the fundamental model parameter vector, the elements

of which are the perturbations relative to the background expressed in terms

of elastic stiffnesses and density. mq is the new model vector in the desired

parameterization. If the medium is transversely isotropic, m0 can be written

as

m0 = [∆c11, ∆c33, ∆c13, ∆c44, ∆c66, ∆ρ]T . (4.15)

However, if the elastic properties of the background of the fractured medium

are know, the remaining unknown model parameters which need to be inverted

are ∆N and ∆T or mq = [∆N , ∆T ]T . It can be shown that for such a model
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parameterization Lq is given as (appendix D)

Lq =













−(λb + 2µb) 0

−
λ2

b

λb+2µb
0

−λb 0
0 −µb

0 0













, (4.16)

where λb and µb are the background isotropic elastic coefficients. Moreover,

the scattering function given in equation 4.9 can be rewritten as

R(m0, p̃, p̂, g̃, ĝ) = hm0 = hLqmq. (4.17)

For P- and SV-wave scattering (PP, PSV, SVSV, SVP), in the symmetry plane

of an HTI medium, vector h can be written as (Eaton and Stewart, 1994)

h = (p̂1p̃1ĝ1g̃1, p̂3p̃3ĝ3g̃3, p̂1p̃3ĝ1g̃3 + p̂3p̃1ĝ3g̃1, 0,

p̂1p̃1ĝ3g̃3 + p̂3p̃3ĝ1g̃1 + p̂1p̃3ĝ3g̃1 + p̂3p̃1ĝ1g̃3,−ĝig̃i). (4.18)

In the inversion program, there is a choice of inverting only a single component

or both the vertical and horizontal components simultaneously. All the data

(all the shot gathers) are inverted simultaneously. The data vector u is stored
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as follows:

u =
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, (4.19)

where < and = represent the real and the imaginary parts of data element

U , respectively. Subscripts V and H represent the vertical and horizontal

components of the seismic data, respectively. Superscripts s and r are the

indices for the sources and the receivers, respectively. rn is the total number

of receivers in each shot gather and sn is the total number of shots. Total

number of frequency samples used for the inversion depends on the source

wavelet. In section 4.3.3, I show that only a limited number of frequency

samples are sufficient to obtain satisfactory inversion results.

If there are n scatterers in the region of interest, the model vector is
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given as

m = [∆1
N , ∆1

T , ∆2
N , ∆2

T , . . .∆
i
N , ∆i

T , . . .∆
n−1
N , ∆n−1

T , ∆n
N , ∆n

T ]T . (4.20)

Notice that the total number of parameters that needs to be inverted is 2n.

The matrix G (equation 4.11) is arranged as

G = [G1
1, G1

2, G2
1, G2

2 . . .G
i
1, Gi

2 . . .G
n−1
1 , Gn−1

2 , Gn
1 , Gn

2 ]. (4.21)

Gi
1 and Gi

2 are computed using equations 4.10, 4.14 and 4.16. Following is

the flow diagram to compute Gi
1 and Gi

2 when a vertical force is used as the

source:

• Loop over all the shots

1. Calculate p̃i and g̃i.

2. Calculate Ã and τ̃ for all incident wave types (ÃP , ÃS, τ̃P , τ̃S).

– Loop over all the receivers

i. Calculate all p̂i and ĝi.

ii. Calculate all Â and τ̂ .

iii. Calculate Vector h (using equation 4.18) for all the scattered

wave types (hPP , hPS, hSS, hSP ).

iv. Compute a temporary variable tempPP as ÃP ÂP g̃3(s)hPP ∗L
q.

Similarly, compute tempPS, tempSS, and tempSP . All these

variables have a dimension of 2 × 1.
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v. Compute the quantity VVPP (V V stands for vertical force as

source and vertical receivers) as VVPP = tempPP ĝ3(r). Sim-

ilarly, compute VVPS, VVSS, and VVSP . If the horizontal

component data are also being used for the inversion, compute

VHPP , VHPS, VHSS, and VHSS (V stands for a vertical force

as the source and H stands for the horizontal receivers). For

example, VHPP can be computed as VHPP = tempPP ĝ1(r).

∗ Loop over all the frequencies

a. Compute the quantity CVVPP as CVVPP = VVPP e
iω(τ̃P +τ̂P ).

Similarly, compute CVVPS, CVVSS, CVVSP , and add

them all together to get CVV. Likewise, CVH can be

calculated for the horizontal component.

b. Store the first and second columns of CVV and CVH in

the column vectors G1 and G2, respectively.

∗ End loop over frequency

– End loop over receiver

• End loop over shots

4.3.1 Applied constraint

Inversion of elastic parameters using seismic data is known to yield

nonunique solutions. To reduce nonuniquess in the solutions, a suitable regu-

larization or constraint is applied to the model vector or error function while
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performing the inversion. The most popular way to introduce a constraint in

the inversion is to define f(m) in equation 4.12 appropriately. A common way

to define f(m) is as f(m) = [m−mpr]
TWm[m−mpr], where the prior model

vector mpr and weighting matrix Wm are chosen according to the inversion

problem and the type of constraint one wants to put in the inversion (e.g.,

Menke, 1984, p. 53). For example, if one wants the inverted model vector

to be close to an a priori model vector mpr, Wm needs to be defined as the

Identity matrix. Similarly, other types of constraints such as the smoothness

or flatness of model vectors can also be easily introduced in the inversion.

Another way to introduce constraint or bias in the inversion is through

preconditioned gradient methods. These methods are applicable only when

a gradient-based inversion scheme is used (e.g., conjugate gradient, Gauss-

Newton). In these techniques, the gradient of the error function is multiplied

with a suitable numerical value χ at each iteration, which forces the conver-

gence in a particular direction (e.g., Tarantola, 2005, p. 78). χ is determined

by trial and error and can be fixed for an entire inversion or can be updated

at each iteration. These methods have been successfully applied to many geo-

physical inverse problems (Tarantola, 2005, p. 203–223).

Finally, there are schemes where the function f(m) in equation 4.12 is

defined as an analytical function to introduce constraint or bias. The main

criterion for defining f(m) is that there must exist an analytical expression

for the slope of f(m). In the gradient-based schemes, the slope of the error

or objective function needs to be calculated at each iteration. In the absence

129



of an analytical expression for the slope of f(m), the slope of f(m) needs to

be calculated by finite-difference which will likely introduce additional error in

the inversion as well as additional computation time.

While testing my inversion algorithm with various types of models, I

noticed that the inverted model parameters ∆N and ∆T were negative at var-

ious locations which is not physically possible. I needed to introduce a type of

constraint in the inversion which would impose a very high penalty (or yield a

very large error) on the error as defined in equation 4.12 when model param-

eters ∆N and ∆T become negative. Furthermore, I also needed to make sure

that there was no or very little penalty on the error when model parameters

∆N and ∆T were greater than or equal to zero. Logarithimc barrier function

(e.g., Farguharson et al., 2003) is widely used to impose various types of con-

straint on the model parameters. However, I could not use it in my inversion

algorithm because the log function is not defined for negative arguements. I

found that the following expression for f(m) to be suitable to constrain the

inverted model parameters:

f(m) =
n
∑

i=1

(1 −mi)
4e−mi . (4.22)

A suitable value of multiplier ε (equation 4.12) is chosen by trial and error.

I call f(m) the positivity constraint. Figure 4.1(a) shows the plot of f(m)

with m. Only one model parameter m was used to plot f(m). Notice that as

m goes below zero, f(m) increases sharply, and as m goes above zero, f(m)

decreases rapidly. There exists an analytical form for the derivative of f(m)
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Figure 4.1: (a) Plot of f(m) against m: Notice that as the m goes below zero,
f(m) increases rapidly. (b) Plot of df(m)/dm against m: As m goes below
zero, the absolute value of df(m)/dm increases rapidly which indicates that
f(m) is increasing sharply as m turns more negative.

that is given by

df(m)

dm
=

n
∑

i=1

−e−mi(1 −mi)
3(5 −mi). (4.23)

Figure 4.1(b) illustrates the slope df(m)/dm of f(m) for one model parameter

m. Notice the large absolute value of df(m)/dm when m is less than zero,

which suggests that f(m) is rapidly increasing when m is less than zero.

The following example exhibits the importance of the application of the

constraint function explained above. Figures 4.2(a) and 4.2(b) show the input

model parameters ∆N and ∆T , respectively. Notice the syncline in the model;

an AVOA scheme will fail to invert the fracture parameters here. The top

layer does not have any fractures, and hence, ∆N = 0 and ∆T = 0 for it. The

middle and the bottom layers have one set of vertical fractures oriented normal
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to the x-direction. The ∆N and ∆T values in the middle layer are 0.3 and 0.1,

respectively, while those in the bottom layer are 0.5 and 0.2, respectively. The

background medium is kept isotropic and homogeneous. Background P- and

S-wave velocities are 3700 m/s and 2300 m/s. There are 46 receivers to collect

the data placed at intervals of 10 m. Three sources are used—placed at the

x-locations of 130 m, 230 m and 330 m. The source type is a vertical force.

Notice that the receivers are not moved when the source location is changed.

Both the vertical and horizontal components of the seismic data are used in

the inversion. Input seismic data for the inversion is generated by the ray-

Born modeling (using equation 4.10). All the possible modes (PP, PS, SS,

SP) were incorporated in the modelled data. Figure 4.3 shows the vertical and

horizontal component of the data for a shot located at the x-location of 230 m.

A 40 Hz Ricker wavelet is used as the source pulse. 512 time samples with 2 ms

interval were used for the inversion. All the frequencies up to the Nyquist were

employed in the inversion (i.e., 256 frequency samples were used). The total

scatterers inverted for in the x- and z-directions are 46 and 36, respectively.

Hence, the total number of model parameters inverted for is 2×46×36 = 3312.

1000 iterations were performed on the inversion before it was stopped; the final

error was less than 0.1% of the original error. Figure 4.4 shows the inverted ∆N

and ∆T without the positivity constraint f(m). Notice that even though the

subsurface structure has been recovered by the inversion, at many locations

∆N and ∆T are less than zero or far from the actual value. Next, the inversion

was performed using the constraint function f(m) defined in equation 4.22.
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By trial and error, I found the suitable values of multiplier ε to be 0.007 and

0.002 for ∆N and ∆T , respectively. Again, 1000 iterations were performed

before the inversion was stopped. The final error was less than 0.1% of the

initial error. Figure 4.5 displays the inverted model parameters. Notice that

the inversion results have improved; ∆N and ∆T values at all the locations are

positive or zero. Moreover, the values of the inverted model parameters are

closer to the original model parameters.

However, we do not always need to use the positivity constraint for a

good inversion result. To demonstrate this point, I implemented my inversion

algorithm on a flat-layered model with laterally varying fracture parameters.

Figure 4.6 illustrates the subsurface model. The top layer does not have any

fractures (∆N = 0, ∆T = 0). The middle layer has one set of vertical frac-

tures oriented normal to the x-direction. Fracture parameters ∆N and ∆T are

smoothly increasing from the left of the model to the right of the model. The

bottom layer has one set of vertical fractures oriented normal to the x-direction

with constant fracture parameters (∆N = 0.5, ∆T = 0.2). All the inversion

parameters and the acquistion geometry were kept identical to those used in

the previous model. A 15 Hz Ricker wavelet was used as the source pulse.

Figure 4.7 shows the vertical and horizontal component of the data for a shot

located at the x-location of 230 m. I did not apply the positivity constraint

(i.e., ε = 0 in equation 4.12) while performing the inversion. Figure 4.8 shows

the inversion results. Notice that the inversion algorithm is yielding ∆N and

∆T that are very close to the original model parameters (figure 4.6). At very
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few locations, we notice ∆N and ∆T are less than zero. Here, we can apply the

positivity constraint while performing inversion to suppress negative values of

∆N and ∆T . However, it may lead to overestimation of ∆N and ∆T at other

locations.
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Figure 4.2: Input model parameters: (a) ∆N and (b) ∆T . Note that the first
layer does not have any fractures, and hence ∆N = 0 and ∆T = 0. The middle
and bottom layers have one set of vertical fractures oriented normal to the
x-direction.
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Figure 4.3: (a) Vertical and (b) horizontal components of the data (shot
gather) for the model shown in figure 4.2. The shot is located at the x-location
of 230 m. All the scattering modes (PP, PS, SS, SP) were incorporated in the
modeling.
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Figure 4.4: Inverted model parameters without using any constraints in the
error function: (a) ∆N and (b) ∆T . Notice that at several locations ∆N and
∆T are less than zero which is not physically possible. Moreover, the inverted
model values are not close to the input model values (figure 4.2).
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Figure 4.5: Inverted model parameters with constraint function f(m) (equa-
tion 4.22) added in the error function: (a) ∆N and (b) ∆T . Notice that ∆N

and ∆T are no longer less than zero at any location. Moreover, the values
of the inverted model parameters are closer to the values of the input model
parameters (figure 4.2).
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Figure 4.6: Subsurface model with laterally varying fracture parameters: (a)
∆N and (b) ∆T . The top layer does not have any fractures, the middle layer has
one set of vertical fractures oriented normal to the x-direction with smoothly
varying fracture parameters. The bottom layer also has one set of vertical
fractures oriented normal to the x-direction with constant ∆N and ∆T .
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Figure 4.7: (a) Vertical and (b) horizontal components of the data (shot
gather) for the model shown in figure 4.6. The shot is located at the x-location
of 230 m. All the scattering modes (PP, PS, SS, SP) were incorporated in the
modeling.
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Figure 4.8: Inverted model parameters for the subsurface model displayed in
figure 4.6: (a) ∆N and (b) ∆T . Notice that the inverted ∆N and ∆T values
are very close to the original ∆N and ∆T . The constraint function was not
used in the inversion.
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4.3.2 Inversion using single component of seismic data

In most seismic experiments, only single component (mostly vertical)

seismic data is collected. To check the feasibility of inverting the fracture

parameters using only single component seismic data, I carried out some nu-

merical tests. Figure 4.9 shows the inversion results when only vertical com-

ponent data was inverted. Notice that the single component inversion results

are inferior to the inversion results obtained from the simultaneous inversion of

both components (figure 4.5). Figure 4.10 displays the inverted results when

only the horizontal component data was used. Again, the inverted results are

inferior.

These observations can be explained by the analysis of covariances of

the inverted solutions. The solution of an inverse problem is well determined if

the estimated solution has small variance (Menke, 1984, p. 58). The covariance

of a least squares solution m, assuming uncorrelated data with equal variance

σ2
d, can be written as

[covm] = σ2
d[G

TG]−1. (4.24)

Figure 4.11 displays the diagonal elements of the covariance matrices of ∆N

and ∆T in the region of interest when the vertical and horizontal components

of data are inverted simultaneously. Figures 4.12 and 4.13 show the covariances

when only the vertical and horizontal components of the data are seperately

inverted. Covariance matrices were determined by calculating matrix G (using

equation 4.21) for each case and then by multiplying it with with its transpose.

Variance σ2
d in the data was calculated assuming a normal distribution. The

142



covariances of ∆N and ∆T are at minimum when both the components of data

are inverted simultaneously. Also note that the covariances are the largest

when only the vertical component of data is inverted. Hence, we should ex-

pect the least resolved ∆N and ∆T when only the vertical component data is

inverted.

Figure 4.14 shows the inversion results for the subsurface model shown

in figure 4.6; only the vertical component data was inverted. Figure 4.15

displays the inversion results when only the horizontal component data was

inverted. Notice that, in both cases the inversion results have deteriorated

compared to the inversion results obtained by inverting both of the components

of the data simultaneously (figure 4.8).
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Figure 4.9: Inverted model parameters (a) ∆N and (b) ∆T using only vertical
component seismic data: Note that the inversion results have deteriorated
compared to the inversion results when both of the components of the data
are inverted simultaneously (figure 4.5). However, the syncline layer has been
imaged in both the sections.
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Figure 4.10: Inverted model parameters (a) ∆N and (b) ∆T using only horizon-
tal component seismic data: Notice that the inversion results have deteriorated
compared to the inversion results when both of the components of the data
are inverted (figure 4.5); the values of ∆N and ∆T have been overestimated in
second layer.
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Figure 4.11: Diagonal elements of the covariance matrices of ∆N and ∆T in
the region of interest when the vertical and horizontal components of the data
are inverted simultaneously.
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Figure 4.12: Diagonal elements of the covariance matrices of ∆N and ∆T in
the region of interest when only the vertical component data is inverted. The
covariances have increased many fold compared to the case when both of the
components of the data are inverted simultaneously.
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Figure 4.13: Diagonal elements of the covariance matrices of ∆N and ∆T in
the region of interest when only the horizontal component data is inverted.
The covariances are larger compared to the case when both of the components
are inverted simultaneously. However, the covariances are smaller than those
from the case in which only the vertical component is inverted.
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Figure 4.14: Inverted model parameters (a) ∆N and (b) ∆T using only the
vertical component data for the suburface model shown in figure 4.6. The in-
verted values are slightly deteriorated when compared to those values inverted
from both of the components of the data simultaneously.
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Figure 4.15: Inverted model parameters (a) ∆N and (b) ∆T using only horizon-
tal component data for the suburface model shown in figure 4.6. The inverted
values are slightly deteriorated when compared to those values inverted from
both of the components of the data simultaneously.
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4.3.3 Sensitivity of the inversion to the frequency content in the
data

I implemented the ray-Born inversion scheme in the frequency domain.

This gives us the flexibility of choosing only a limited number of frequencies

for the inversion. An inversion scheme implemented in the frequency-domain

is similar to the time-domain inversion if all of the frequencies are inverted

simultaneously (Pratt et al., 1998). In the past, a number of researchers have

demonstrated that reasonable inversion results can be obtained by using a

small number of frequencies. Pratt (1988) and Lo et al. (1988) used single-

frequency data to obtain seismic images through diffraction tomography. Pratt

and Worthington (1990) developed a non-linear inversion scheme to derive

seismic images using single-frequency wide-aperture cross-hole data. Liao and

McMechan (1996) studied multi-frequency viscoacoustic modeling and inver-

sion and demonstrated that a limited number of frequency samples can be used

to invert for the quality factor Q and the seismic velocity. Pratt (1999) applied

and evaluated a frequency-space domain approach to waveform inversion on a

physical scale model.

The inversion results I have shown in the previous sections were in-

verted using all of the frequency samples up to the Nyquist. Using all of

these frequency samples in the inversion requires a large amount of the mem-

ory (number of rows in matrix G are directly proportional to the number

of frequencies used in the inversion) and renders the inversion process very

computationally expensive. To check the feasibility of inversion using only a
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limited number of frequencies, I carried out a number of numerical tests each

with a smaller number of frequency samples. The tests were performed on the

subsurface model shown in figure 4.2. All of the inversion parameters, regular-

ization coefficients and the acquisition geometry were kept identical to those

which were used in the previous examples (section 4.3.1). A 40 Hz Ricker

wavelet was used as the source pulse. Instead of using all of the frequency

samples up to the Nyquist (250 Hz), I discarded all of the frequency samples

beyond 130 Hz; i.e. the maximum value of frequencies used for the inversion

was 130 Hz—amplitude spectrum of the 40 Hz Ricker wavelet is zero beyond

130 Hz (figure 4.16).

Figure 4.17 shows the inversion results when every other frequency

sample up to 130 Hz was used in the inversion. The total number of frequency

samples employed was only 67. Whereas, 256 frequency samples were used to

obtain the results shown in figure 4.5. Notice that the results are comparable.

Next, the inversion was performed using every third and fourth frequency

sample up to 130 Hz; 45 and 34 frequency samples were used, respectively.

Figures 4.18 and 4.19 show the inversion results. Notice that the inverted

values are still very close to the results shown in figure 4.5.

I also inverted ∆N and ∆T using a 30 Hz Ricker wavelet as a source

pulse. Of course, a lower frequency band would render the inversion results

with a lower spatial resolution. Figure 4.20 shows the amplitude spectrum of

a 30 Hz Ricker wavelet. Notice that beyond 96 Hz, the amplitude spectrum is

zero. Hence, I discarded all of the frequency samples beyond 96 Hz. Figure 4.21
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Figure 4.16: Amplitude spectrum of a 40 Hz Ricker wavelet: Notice that be-
yond 130 Hz, the amplitude spectrum is zero.

displays the inverted models when every frequency sample up to 96 Hz was

used for the inversion. Notice that the spatial resolution of both ∆N and ∆T

is reduced. Figure 4.22 shows the inverted models when every other frequency

sample up to 96 Hz was used in the inversion. Notice that the spatial resolution

is further reduced. Moreover, ∆N and ∆T values have been overestimated for

the second layer. Figure 4.23 displays the inversion result when every third

frequency sample was employed in the inversion; the results have deteriorated
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Figure 4.17: Inverted (a) ∆N and (b) ∆T using every other frequency sample
up to 130 Hz: Source pulse is a 40 Hz Ricker wavelet. Notice that the results
are very similar to the results shown in figure 4.5 which was generated using
all of the frequency samples up to the Nyquist.
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Figure 4.18: Inverted (a) ∆N and (b) ∆T using every third frequency sample
up to 130 Hz: Source pulse is a 40 Hz Ricker wavelet. Notice that the results
are very similar to the results shown in figure 4.5 which was generated using
all of the frequency samples up to the Nyquist.
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Figure 4.19: Inverted (a) ∆N and (b) ∆T using only every fourth frequency
sample up to 130 Hz: Source wavelet is a 40 Hz Ricker wavelet. Notice that
the inverted results have slightly deteriorated when compared to the results
shown in figure 4.5.
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Figure 4.20: Amplitude spectrum of a 30 Hz Ricker wavelet: Notice that be-
yond 96 Hz, the amplitude spectrum is zero.

further when compared to the results shown in figure 4.21.
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Figure 4.21: Inverted (a) ∆N and (b) ∆T using every frequency sample up
to 96 Hz: Source pulse is a 30 Hz Ricker wavelet. Notice that the spatial
resolution of the inverted models has gone down.
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Figure 4.22: Inverted (a) ∆N and (b) ∆T using every other frequency sample
up to 96 Hz: Source pulse is a 30 Hz Ricker wavelet. Notice that the spatial
resolution has further gone down. Moreover, ∆N and ∆T values have been
overestimated for the second layer.
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Figure 4.23: Inverted (a) ∆N and (b) ∆T using every third frequency sample
up to 96 Hz: Source pulse is a 30 Hz Ricker wavelet; the results have worsened
when compared to the results shwon in figure 4.21.
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4.3.4 Application of inversion on a finite-difference generated dataset

I implemented the ray-Born inversion on a dataset which was generated

using the 3D finite-difference code written for arbitrary anisotropy (chapter 2).

Figure 4.24 shows the subsurface model used for the experiment. The model

has two flat layers. The top layer does not have any fractures; whereas, the

bottom layer has one set of vertical fractures oriented normal to the x-direction

with the fracture parameters smoothly increasing from the left of the model to

the right of the model. The background properties of the model and the sur-

vey parameters are similar to those used in the first example in section 4.3.1.

The source wavelet is a 15 Hz Ricker; a vertical force was used as the source.

It must be mentioned here that the synthetic seismograms generated by my

finite-difference code represent particle velocity instead of particle displace-

ment (I implemented finite-difference algorithm using a velocity-stress formu-

lation; see chapter 2). Hence, while performing the inversion, I multiplied the

ray-Born data Umn (equation 4.10), which represents particle displacement, by

iω to convert to particle velocity. Figure 4.25 displays one of the shot gathers

generated by the finite-difference code. Direct waves were muted out. For

comparison, I also generated synthetic data using the ray-Born scheme before

performing the inversion. Figure 4.26 shows a comparison between the finite-

difference data and the ray-Born generated data at various offsets; there is a

reasonable match. We cannot expect a perfect match because the first-order

Born approximation generates the linearized reflection coefficients (Shaw and

Sen, 2004) while the finite-difference algorithm generates the true reflection

161



coefficients and includes multiple scattering.

Figure 4.27 shows the inversion results. The inversion has recovered

the general trend of ∆N and ∆T of the original model. While performing the

inversion, the positivity contraint was applied; I found the suitable value of

multiplier ε to be 0.15 for both ∆N and ∆T . At a few locations, the inversion

has predicted negative values of ∆N and ∆T . A higher value for multiplier ε

will prevent the inversion from yielding negative ∆N and ∆T at these locations.

However, it may cause an overestimation of ∆N and ∆T at other locations.

I also applied second-order Tikhonov regularization (or flatness constraint;

Menke, 1984, p. 53) in the z-direction to eliminate discontinuities from the

solution. Every other frequency sample up to 70 Hz (15 Hz Ricker wavelet has

zero amplitude beyond 70 Hz) was used in the inversion. 1000 iterations were

performed on the inversion before it was stopped. The final error was about

10% of original error.
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Figure 4.24: Subsurface model used to generate finite-difference data: (a) ∆N

and (b) ∆T . The top layer does not have any fractures. The bottom layer has
one set of vertical fractures oriented normal to the x-direction. ∆N and ∆T

are smoothly increasing from the left to the right in the model.
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Figure 4.25: One of the shot gathers generated by 3D finite-difference code:
(a) Vertical component (b) Horizontal component. The direct waves have been
muted out. The source type is a vertical force. Hence, in addition to the PP
and the PS arrivals, the SS arrival is also present.
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Figure 4.26: Comaprison between finite-difference data (red) and ray-Born
generated data: (a) Vertical component (b) Horizontal component. There is a
reasonable match between thse two data sets.
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Figure 4.27: Inverted model parameters (a) ∆N (b) ∆T : The general trend in
∆N and ∆T has been recovered. At a few locations, the values of ∆N and ∆T

are less than zero which can be avoided by setting a larger value for multiplier
ε. However, this may cause over estimation of ∆N and ∆T at other locations.
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4.4 Discussion and conclusions

I reviewed ray-Born modeling and inversion for general anisotropic me-

dia and derived new equations needed to implement these techniques in HTI

media. The main advantage of a ray-Born inversion is that it can be imple-

mented in laterally varying media where a conventional AVOA scheme is not

applicable. The main drawback of this inversion scheme is that an a priori

estimate of the background medium is needed before it can be implemented.

However, AVOA analysis also requires a priori knowledge of the background.

I also demonstrated that the best estimate of ∆N and ∆T is possible when

both the vertical and the horizontal component data are inverted simultane-

ously. Furthermore, a positivity constraint function (or regularization) may

be needed to obtain good inversion results. I also demonstrated by numerical

examples that a small number of frequency samples are sufficient to obtain

desired inversion results. Depending upon the peak frequency in the data,

every third or fourth frequency samples are sufficient for satisfactory results.

I also implemented an asymptotic expansion of the Born integral in

the depth domain (appendix E). Asymptotic expansion renders the ray-Born

modeling and inversion computationally far less expensive than the one that

is implemented without the asymptotic approximation. However, it requires

the knowledge of the precise location of the reflectors before the inversion can

be performed.

A real dataset will require some conditioning before the ray-Born ap-

proximation can be implemented on it—all the multiples present in the data
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will have to be eliminated since the first-order Born approximation does not

account for multiple scattering (or multiples). Moreover, true amplitudes of

the data will have to be preserved while processing it. An exact source wavelet

will also need to be derived before the inversion can be performed. A good

estimate of the background medium is also required to estimate traveltime

and amplitude of the rays which are essential for the computation of Green’s

function (equation 4.7).

The inversion scheme discussed in this chapter assumes that orienta-

tion of the fractures is known. Moreover, the inversion was performed in the

symmetry plane of the fractured medium. However, fracture orientation is

rarely known before the seismic data is collected over a region. Hence, there is

no guarantee that a seismic line will be passing through the symmetry plane

of the fractured media. Therefore, a practical application of this inversion

scheme will require that multiazimuth data be inverted simultaneously which

will invert for the fracture orientation as well. This will also eliminate the re-

quirement that a seismic data line is available over the symmetry plane. I did

not perform an inversion with multiazimuth data due to the excessive compu-

tational cost of a simultaneous inversion of such a large number of parameters.

It would also require enormous computer memory to store the matrix G. In

the inversion algorithm, I assumed that the reference medium (or background)

is isotropic for the purpose of the computation of the traveltimes and the di-

vergence losses—traveltimes and divergence losses are essential for estimating

the Green’s function for the reference medium. This is a reasonable approx-
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imation if the anisotropy is weak. However, in the case of strong anisotropy

one will have to treat the reference medium as anisotropic. It should also be

noted that all of the Green’s functions, and hence, the modeling and inver-

sion schemes were derived for a point force—a vertical or horizontal force used

as a source function. However, to apply the inversion scheme on a marine

dataset, the Green’s function for an explosion source should be used to derive

the expression for the scattered data usyn (equation 4.10).
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Chapter 5

Summary and Future Work

5.1 Summary

In chapter 1, I provided an overview of equivalent media theories for

cracks and fractures, and defined the fracture parameters which need to be

inverted for, in order to characterize a naturally fractured reservoir. I also

discussed the state of the art methods available to invert for the fracture

parameters.

In chapter 2, I implemented standard and rotated staggered grid finite-

difference schemes to simulate wave propagation in 3D general anisotropic me-

dia. The anisotropic media up to orthorhombic symmetry were modeled using

Standard Staggered Grid scheme (SSG) and beyond (monoclinic and triclinic)

using Rotated Staggered Grid scheme (RSG). The rationale of not using RSG

for all types of anisotropic media is that the RSG schemes are slightly more

expensive than SSG schemes. For a 1D azimuthally anisotropic medium, I

showed comparison between the seismic data generated by my finite-difference

code and by the reflectivity algorithm; they are in excellent agreement. I

also conducted a study on zero-offset shear-wave splitting using the finite-

difference modeling algorithm in a rotated staggered grid. Wave propagation
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was simulated for both rotationally invariant and corrugated fractures embed-

ded in isotropic background for one or more than one set of fluid-filled and

dry fractures. S-wave splitting was studied for dipping fractures, two verti-

cal non-orthogonal fractures and corrugated fractures. My modeling results

confirm that S-wave splitting can reveal the fracture infill for the case of dip-

ping fractures. S-wave splitting analysis also has the potential to reveal the

angle between the two vertical fractures. I also noticed that in case of vertical

corrugated fractures, S-wave splitting is sensitive to the fracture infill.

I developed an efficient ray bending scheme in 3D general anisotropic

media (chapter 3). The accuracy of the method is dictated by the accuracy in

computing group velocity in the group (ray) direction. I developed two schemes

for achieving this: one is based on a Fourier series expansion valid essentially

in weak TI media while the other scheme uses a conjugate gradient algorithm

to relate a group direction to its phase direction. Although the latter scheme

is valid for arbitrary anisotropy, the estimated phase direction for the desired

group direction is dependent on the starting phase direction. Finally, the

raypaths are calculated by using Fermat’s principle of minimum time. Starting

with a straight raypath I find the stationary path using a conjugate gradient

scheme. For practical application to modeling and migration, I implemented a

hyperbolic interpolation scheme resulting in an efficient scheme for travel time

computation in finely gridded models.

Chapter 4 is focused on the inversion for the fracture parameters in

laterally varying media. I developed the theoretical basis to invert for fracture
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parameters using a ray-Born approximation. I showed using numerical exam-

ples that the ray-Born approximation has the potential to invert the fracture

parameters in laterally varying media. I also demonstrated that both horizon-

tal and vertical components of seismic data are needed for desired inversion

results. Furthermore, I also showed that all the frequency samples up to the

Nyquist need not to be inverted for a good inversion results. In fact, inversion

of a very small number of frequency samples yields satisfactory results. I also

expanded Born integral in depth using asymptotic approximation. This ren-

ders the ray-Born based modeling and inversion algorithms computationally

very cheap.

5.2 Future work

Ray-Born inversion scheme can be extended to invert multiazimuth

data. However, the inversion will be very slow and one may run into severe

memory problem as there will be too many model parameters to be inverted for

simultaneously. However, one of the advantages is that the fracture orientation

can also be posed as a model parameter. This will eliminate the necessity

of knowing the fracture orientation prior to the inversion. In the inversion

scheme, I also assumed that the background medium is isotropic, which is a

reasonable approximation if the anisotropy is weak. However in the presence of

strong anisotropic media, background media need to be treated as anisotropic

media for the purpose of Green’s function estimation in the background. In my

inversion scheme, background information is a priori information. However,
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as a future work it should be tested if the background elastic properties can

also be inverted using ray-Born inversion scheme.

The ray bending algorithm, which I developed to estimate traveltime

in anisotropic media, does not pick a desired branch at a triplication (the

fastest or the most energetic one) rather the code selects a particular branch of

triplication depending on the given initial ray path. The code can be modified,

which would choose a particular branch at the triplication.

As a future work, 3D finite-difference code for general anisotropic media

can be modified to account for anisotropic attenuation. However, this will

render the modeling code computationally very expensive.

Most of the methods proposed in the past to invert the fracture pa-

rameters are based in the x–t domain. However in the x–t domain, in case of

anisotropic media, phase and group directions are different which renders the

analysis and the inversion of seismic data very difficult. Moreover, we need to

make certain approximations to implement most of the inversion techniques in

the x–t domain. For example, amplitude vs. offset and azimuth (AVOA) analy-

sis assumes that phase and group direction are same in the fractured reservoirs

which is a reasonable approximation if the anisotropy is weak. However, in

presence of strong anisotropy, it may lead to the wrong analysis. A better

domain to handle anisotropic media is plane-wave or τ–p domain. Sen and

Mukherjee (2003) used τ–p domain to nmo-correct the seismic data recorded

over a transversely anisotropic subsurface with a vertical axis of symmetry

(VTI). They also derived a convenient form of vertical slowness q as a func-
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tion of horizontal slowness p which in turn was used to compute τ–p curve for

VTI media. Baan and Kendall (2003) gave an exact expression for q(p) for

HTI media. However, due to its complexity it has not been used anywhere for

the modeling or inversion purposes.

I have modified the expressions for q(p) for HTI media which were de-

rived by Sen and Mukherjee (2003) originally for VTI media. These equations

have a more convenient form and can be used to invert for the fracture pa-

rameters. The first approximated equation (approximation 1) for q(p) for HTI

media is as follows:

q2(px) =
1

α2
vert

(

1 −
p2

xα
2
el

1 − 2η(V )p2
xα

2
el

)

− p2
y. (5.1)

Another equation (approximation 2) for q(p) can be written as

q2(px) =
1

α2
vert

(1 − p2
xα

2
el)

(

1 −
2η(V )p4

xα
4
el

1 − p2
xα

2
el

)

− p2
y, (5.2)

where αvert is vertical P-wave velocity, px and py are slownesses in x- and y-

directions, respectively. η(V ) = (ε(V ) − δ(V ))/(1 + 2δ(V )) and α2
el = α2

vert(1 +

2δ(V )). Notice that ε(V ) and δ(V ) are Thomsen-style parameters for HTI media

given by Tsvankin (1997a). These parameters can be easily written in terms of

fracture parameters (∆N and ∆T ) or fracture density (Bakulin et al., 2000a).

τ–p curve can be computed by using the equation τ(p) = 2zq(p). I tested the

accuracy of these equations in an HTI medium—background of the medium

is isotropic with one set of vertical dry fractures embedded in it. Crack den-

sity of the fracture set is 7%. P-wave velocity of the background medium is
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4 km/s. Thickness of the medium is 1 km. Figure 5.1 shows the comparison

between the exact τ–p-curve, τ–p-curves computed by using approximation1

and approximation2 at various azimuths. We see an excellent match between

the exact curve and the curve generated by the approximation1 whereas there

is a reasonably good match between the exact curve and the curve generated

by the approximation2. Notice that φ = 0◦ represents the symmetry plane and

φ = 90◦ represents the isotropic plane of the HTI medium. One still needs

to find out which of the approximations is more suitable for the inversion

purposes.
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Figure 5.1: Comparison between the exact τ–p curve and τ–p curves generated
by using the q(p) given in equations 5.1 and 5.2 which I call approximation1
and approximation2, respectively.
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Appendix A

Phase and group velocity calculation

Phase velocity v is calculated using the following Christoffel equation

(Musgrave, 1970) by a constant increment in the phase angle:

[cijknljln − ρv2δik]Uk = 0, (A.1)

where cijkn is the fourth-order stiffness tensor, v is the phase velocity in

phase direction ln, Uj is the polarization vector of particles, ρ is the medium

density. Equation A.1 is a typical eigenvalue equation whose solution yields

three eigen values corresponding with corresponding eigen vectors. The three

eigen values correspond to square of slownesses of three wave types and the

corresponding eigen vectors coincide with the polarization of particles with

the respect to the phase direction. In general anisotropic media, the most

common way to classify a wave type is by it’s speed. The three wave types

are P, S1 and S2. P is the fastest while the S2 is the slowest. If the medium

is TI or isotropic, waves can be classified as P-, SV-, and SH-waves which are

distinguished by polarization of particles with respect to the phase direction.

The Group Velocity vector Vj is computed by the following equation

(Musgrave, 1970):

Vj =
1

ρv
cijknUiUkln, (A.2)
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The procedure to compute the group velocity is straightforward. Phase veloc-

ity v is first estimated in phase direction ln by solving equation A.1, and then

equation A.2 is used to estimate the group velocity in the phase direction ln.
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Appendix B

Thomsen’s model of fractured porus media

The effect of equant porosity (i.e., isometric pores that are not charecter-

ized as being ‘thin and flat’ and not having any particular orientation) was not

considered while explaining equivalent media theories (section 1.3). At first

glance, it seems that the equant porosity should not introduce any further

anisotropy in a fractured or cracked medium due to their non-orientation in a

particular direction. However, Thomsen (1995) showed that there is an effect

on equivalent stiffness tensor of the rocks due to the fluid-flow between the

cracks and pores. He derived an expression called fluid influence factor Dcp

for hydraulically connected pores and cracks for ‘low’ and ‘moderately high’

frequencies. It is given as

Dcp(lo) = [1 −
k′

k
+

k′

k(φc + φp)
(Apφp + Ace)]

−1, (B.1)

and

Dcp(mh) = [1 −
k′

k
+

k′

kφc

Ace]
−1, (B.2)

for ‘low’ and ‘moderately high’ frequencies, respectively. Here k and k ′ are

the bulk moduli of the background medium and the fluid filling the cracks,

respectively. φp and φc are the fractions of volume occupied by pores and

cracks, respectively. Coefficients Ap and Ac are given as Ap = (3 − 2g)/(2g)
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and Ac = (4/9) × [(2 − 3g)/(1 − g)] where g = Vs/Vp. Note that the above

formulae is valid only when φp < 10%.

Here ‘low frequency’ means low enough for the fluid pressure to have

time to equilibrate. In other words, under the application of stress (i.e.,

during wave-propagation) the fluid can flow from the cracks to the equant

pores. In the seismic experiment, most of the frequency fall below this ‘low

frequency’. Hudson (1981) did not consider this phenomena in his derivation

for the equivalent stiffness coefficients for the fluid-filled cracks (equations 1.18

and 1.19). The ‘Moderately high’ frequency implies that fluid in the cracks did

not have enough time to flow to the pores during the wave-propagation. This

approximation is useful to analyse the ultrasonic data. In the limiting case

of zero equant porosity, equations B.1 and B.2 become identical, and hence,

in the seismic frequency range, equation B.2 can be used to analyse fluid-

effect on the anisotropy of the medium. Crack porosity φc can be expressed

as φc = (4πec)/(3a). It should be noted that for very low aspect ratio (c/a)

of the cracks (i.e., very low φc), ‘fluid influence factor’ for moderately high

frequencies Dcp(mh) goes to zero. Hence, the Hudson’s model for fluid-filled

cracks in the ultra-sonic range trurns out to be valid.

Bakulin et al. (2000a) showed that ∆N and ∆T can be related to the

’fluid influence factor’ in the following way:

∆N = q∆Hudson,dry
N , (B.3)

∆T =
16

3

e

(3 − 2g)
, (B.4)
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where q = (1 − k′

k
)Dcp(lo). The very first thing that can instantly be noticed

is that ∆T is immune to the fluid influence factor. Equations 1.9 and 1.18

suggest that in the absence of fluid influence factor, P-wave velocities across

and parallel to fluid-filled cracks in an isotropic background are equal which is

rarely the case (Thomsen, 1995) (Christoffel equation give P-wave velocities

perpendicular and parallel to fractures in an HTI as
√

c11/ρ and
√

c33/ρ,

respectively. In case of fluid-filled fractures, equation 1.18 deduce ∆N = 0,

which implies c11 = c33).
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Appendix C

Hyperbolic interpolation of traveltime

Here, we follow Vanelle and Gajewski (2002) for hyperbolic interpo-

lation of traveltime. Taylor expansion of τ 2 is carried out near the source

position vector s0 = (s1, s2, s3)
T and receiver position vector g0 = (g1, g2, g3)

T .

Let the variations in source and receiver positions be ∆s and ∆g such that

s = s0 + ∆s and g = g0 + ∆g. After expanding τ 2(s,g) upto second order, we

get

τ 2(s,g) = (τ0 − pT
0 ∆s + qT

0 ∆g)2 + τ0(−2∆sTN∆g − ∆sTS∆s

+∆gTG∆g) +O(3). (C.1)

In index notation, above equation can be written as (i, j = 1, 2, 3)

τ 2(si, gi) = (τ 2
0 − p0i∆si + q0i∆gi)

2 + τ0(−2∆si∆gjNij − ∆si∆sjSij

+∆gi∆gjGij) +O(3), (C.2)

where,

p0i =
∂τ

∂si

∣

∣

∣

∣

s0,g0

and q0i =
∂τ

∂gi

∣

∣

∣

∣

s0,g0

(C.3)
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are the slowness vectors at s0 and g0, respectively. The matrices S, G, and N

are given as

Sij = −
∂2τ

∂si∂sj

∣

∣

∣

∣

s0,g0

= Sji,

Gij =
∂2τ

∂gi∂gj

∣

∣

∣

∣

s0,g0

= Gji,

Nij = −
∂2τ

∂si∂gj

∣

∣

∣

∣

s0,g0

6= Nji (C.4)

All interpolation coefficients (p0i, q0i, Sij, Gij, Nij) are computed at every

grid location. If interpolation for source location is not required then only

q0i and Gij need to be computed. Input traveltime which is given on coarse

grid is used to compute interpolation coefficients. For details, see Vanelle and

Gajewski (2002).
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Appendix D

Derivation of some of the formulas used in

chapter 4

D.1 Derivation of equation 4.13

Error function is written as

E =
1

2
∆uT ∆u + εf(m), (D.1)

where ∆u = udata − usyn. Using equation 4.11, we can write D.1 as

E =
1

2
(udata − Gm)T (udata − Gm) + εf(m)

=
1

2
[uT

dataudata − (Gm)Tudata − uT
data(Gm) + (Gm)T (m)] + εf(m)

=
1

2
[uT

dataudata − 2(Gm)Tudata + (Gm)T (Gm)] + εf(m)

taking the derivative with respect to m

∂E

∂m
= [−GTudata + GT (Gm)] + ε

∂f(m)

∂m

= −GT [udata − Gm] + ε
∂f(m)

∂m

= −GT ∆u + ε
∂f(m)

∂m
(D.2)
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D.2 Derivation of Lq for vertical fractures (equation 4.16)

In the symmetry plane of HTI media, m0 is given as (equation 4.15)

m0 = [∆c11, ∆c33, ∆c13, ∆c66, ∆ρ]T . (D.3)

If the background is isotropic, equation D.3 can be rewritten as (using equa-

tion 1.9)

m0 =

[

(λb + 2µb)∆N ,
λ2

b

λb + 2µb

∆N , λb∆N , µb∆T , ∆ρb

]T

, (D.4)

where λb and µb are background elastic coefficients and ρb is background den-

sity. In my inversion scheme, I assume that λN , µb and ρb are known. Hence

the unkowns are ∆N and ∆T , i.e. mq = [∆N , ∆T ]T . Following equation need

to be solved to obtain Lq:

m0 = Lqmq, (D.5)

where m0 and mq are known. By simple algebra, it can be shown that the

following expression of Lq satisfy the equation D.5 (equation D.5 can have

many solutions as it is an underdetermined problem):

Lq =













−(λb + 2µb) 0

−
λ2

b

λb+2µb
0

−λb 0
0 −µb

0 0













, (D.6)
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Appendix E

A useful asymptotic approximation of Born

integral

Evaluation of equation 4.10 is computationally very expensive which

renders both forward modeling and inversion very time consuming. However,

an asymptotic expansion of equation 4.10 in depth allows one to evaluate it

only at the layer boundaries instead of computing it for the entire zone of

interest.

Here I follow Bleistein (1984, p. 73–76) for explaining the asymptotic

expansion of Fourier integrals with monotonic phase. Suppose that an integral

is given in the following form:

I(ω) =

∫ b

a

f(z)eiωφ(z)dz. (E.1)

By asymptotic expansion of zero-order equation E.1 can be rewritten as

I(ω) =
1

iω

f(z)

φ̇(z)
eiωφ(z)

∣

∣

∣

∣

z=b

−
1

iω

f(z)

φ̇(z)
eiωφ(z)

∣

∣

∣

∣

z=a

. (E.2)

If there are discontinuities in the integral E.1, it needs to be evaluated piece-

wise; i.e.,

I(ω) =

∫ b

a

f(z)eiωφ(z)dz =

∫ l1

a

f(z)eiωφ(z)dz

+

∫ l2

l1

f(z)eiωφ(z)dz + · · · +

∫ b

ln

f(z)eiωφ(z)dz. (E.3)
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Equation E.2 can be applied at each segment of integral in equation E.3.

Equation 4.10 has the same form as that of equation E.1; equivalent φ(z) and

f(z) are given as

φ(z) ≡ τ, (E.4)

and

f(z) ≡ |ω|3/2(2π)1/2esign(ω)iπ/4
∑

Ω

g̃m(s)ĝn(r)

×

∫ x2

x1

R(m0, p̃, p̂, g̃, ĝ)(τ,yy)
−1/2Adx. (E.5)

Hence, the relationship E.2 can be used in equation 4.10 to compute

the scattered filed Umn. Figure E.1 shows a subsurface model with a number

of layers (l1, l2, · · · ln). Instead of calculating equation 4.10 for each scatterer

in the subsurface which is computationally very expensive, one can implement

equation E.3 on equation 4.10 to compute the scattered wavefield or syn-

thetic seismic data in a relatively much shorter time. Here layer boundaries

(l1, l2, · · · ln) will act as discontinuities in the integral E.3.

To demonstrate the applicability of the asymptotic approximation, I

generated synthetic seismic data with and without the asymptotic approxi-

mation of equation 4.10. Figure E.2 displays the subsurface model used for

modeling. Layer 1 does not have any fractures in it whereas layer 2 and layer 3

have one set of vertical fractures. ∆N and ∆T values of the fracture set em-

bedded in layer 2 are 0.3 and 0.1, respectively, and those in layer 3 are 0.5

and 0.2. Background medium is homogeneous with P- and S-wave velocities
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of 3700 m/s and 2300 m/s, respectively. Density of the background is 2.3 g/cc.

The model has 400 and 350 scatterers in x- and z-directions, respectively. The

source type is a vertical force and the source pulse is a 40 Hz Ricker wavelet.

A single line of receivers was used to collect the data. Both vertical and hor-

izontal components were modelled, and all the wave modes (PP, PS, SS, SP)

were incorporated in the modeling. A taper was applied on the edges of the

model to suppress truncation phases from the edges. Figure E.3 shows the syn-

thetic seismograms generated with and without implementing the asymptotic

approximation (equation E.3) of equation 4.10. Figures E.3(a) and E.3(c)

display the vertical and horizontal components of synthetic data generated

without the asymptotic approximation. Figures E.3(b) and E.3(d) show ver-

tical and horizontal components of the synthetic data generated by applying

the asymptotic approximation. Notice that the synthetic data generated with

and without asymptotic approximation appear very similar. Figure E.4 dis-

plays the comparison between the seismic data generated with and without

the asymptotic approximation at various offsets; they are in excellent agree-

ment. It is worth mentioning here that the computation of synthetic data with

asymptotic approximation was about 300 times faster than the one which was

computed without asymptotic approximation.

Asymptotic approximation can also be used for the inversion purposes.

The computation time for such an inversion will be very cheap and less memory

intensive. However, we will need to know the exact location of the reflectors

before inversion can be implemented. Theoretically, it is possible to know
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the exact location of the reflectors once the depth imaging has been applied

on the data. Inversion procedure remains exactly the same as I described

in the previous sections. The only difference is that the model parameters

are defined only at the top of each layer (hence, a very small number of pa-

rameters needs to be inverted). Furthermore, the forward model usyn after

each iteration is generated using asymptotic approximation (equation E.3) of

equation 4.10. I demonstrate the applicability of this method on a three layer

model. Figure E.5 shows the model used to demonstrate the inversion. Top

layer does not have any fractures. Layer 2 has one set of vertical fractures

oriented normal to x-direction with ∆N = 0.3 and ∆T = 0.1. Layer 3 also

has one set of vertical fractures oriented normal to x-direction with ∆N = 0.5

and ∆T = 0.2. Inversion was performed using two types of survey geometries.

First survey had a single shot placed in the middle of survey line (at x-location

of 500 m). Receivers were placed in a split-spread fashion at a spacing of 10 m.

In the second survey, three shots were used; x-location of shots were 200 m,

400 m and 600 m. There were 100 receivers placed at an interval of 10 m. Re-

ceiver locations were not changed when the shots were moved. Source pulse

used was a 40 Hz Ricker wavelet and a vertical force was used as the source.

Both vertical and horizontal components data were inverted simultaneously.

Figures E.6(a) and E.6(b) show the inverted model parameters (∆N and ∆T )

for top of second layer (flat layer) and third layer (syncline), respectively. As

expected, better inversion results are obtained when multiple shots are used.
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Figure E.1: A typical subsurface with a number of layers (l1, l2, · · · ln).
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Figure E.2: Subsurface model used to generate synthetic seismic data. A
vertical force was used as the source. A single line of receivers was used to
collect the data. First layer is isotropic while second and third layers have one
set of vertical fractures oriented normal to x-direction.
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Figure E.3: Seismic sections generated for model shown in figure E.2: (a) Ver-
tical component generated without asymptotic expansion, (b) Vertical compo-
nent generated after applying asymptotic expansion, (c) Horizontal component
generated without asymptotic expansion, and (d) Horizontal component gen-
erated after applying asymptotic expansion.
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Figure E.4: Comparison between the synthetic data generated with and with-
out asymptotic approximation of equation 4.10: (a) Vertical component, (b)
Horizontal component. Notice that the synthetics are in excellent match.
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Figure E.5: A three layer model used to demonstrate the inversion by asymp-
totic approximation: First layer does not have any fractures in it. Layer 2 has
one set of vertical fractures oriented normal to x-direction with ∆N = 0.3 and
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Figure E.6: Inverted models ∆N and ∆T for top of (a) layer 2 (flat layer)
and (b) layer 3 (syncline) of the model shown in figure E.6. Notice that the
inversion results are much better when multiple shots are used.
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