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The data assimilation process of adjusting variables in a reservoir simulation 

model to honor observations of field data is known as history matching and has been 

extensively studied for few decades. However, limited success has been achieved due to 

the high complexity of the problem and the large computational effort required by the 

practical applications. An automatic history matching module based on the ensemble 

Kalman filter is developed and validated in this dissertation. 

The ensemble Kalman filter has three steps: initial sampling, forecasting through 

a reservoir simulator, and assimilation. The initial random sampling is improved by the 

singular value decomposition, which properly selects the ensemble members with less 

dependence. In this way, the same level of accuracy is achieved through a smaller 

ensemble size. Four different schemes for the assimilation step are investigated and direct 

inverse and square root approaches are recommended. A modified ensemble Kalman 

filter algorithm, which addresses the preference to the ensemble members through a non-

equally weighting factor, is proposed. This weighted ensemble Kalman filter generates 



 ix

better production matches and recovery forecasting than those from the conventional 

ensemble Kalman filter. The proposed method also has faster convergence at the early 

time period of history matching. Another variant, the singular evolutive interpolated 

Kalman filter, is also applied. The resampling step in this method appears to improve the 

filter stability and help the filter to deliver rapid convergence both in model and data 

domains. This method and the ensemble Kalman filter are effective for history matching 

and forecasting uncertainty quantification.  

The independence of the ensemble members during the forecasting step allows 

the benefit of high-performance computing for the ensemble Kalman filter 

implementation during automatic history matching. Two-level computation is adopted; 

distributing ensemble members simultaneously while simulating each member in a 

parallel style. Such computation yields a significant speedup. 

The developed module is integrated with reservoir simulators UTCHEM, GEM 

and ECLIPSE, and has been implemented in the framework Integrated Reservoir 

Simulation Platform (IRSP). The successful applications to two and three-dimensional 

cases using blackoil and compositional reservoir cases demonstrate the efficiency of the 

developed automatic history matching module.  
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Chapter 1: Introduction 

1.1 INTRODUCTION TO HISTORY MATCHING AND DEVELOPMENT OPTIMIZATION 

Reservoir simulation is an effective method for helping engineers estimate the 

underground oil and gas resources; nearly all major reservoir development decisions are 

in some way based on simulation results. In practice, reservoir simulation is comprised of 

reservoir model building, history matching, and forecasting. 

During a reservoir production life, data of different natures can be classified as 

static or dynamic depending on their association with the flow of fluids in the reservoir. 

Data that have originated from geology, electrical logs, core analysis, fluid properties, 

seismic and geostatistics can be generally classified as static, whereas the information 

originating from well testing, pressure shut-in surveys, production history, bottomhole 

pressure from permanent gauges, water cut, and gas-oil ratio can be classified as 

dynamic. Data assimilation stems from the need to improve the output of our model. In 

particular, we want to correct our reservoir model, reduce the parameter uncertainty, and 

increase prediction creditability by assimilating field production data.  

The data assimilation process of adjusting variables in a reservoir simulation 

model to honor observations of field data is known in the petroleum industry as history 

matching and has been studied extensively for a long time. History matching is utilized to 

improve reservoir characterization and to provide a better understanding of general flow 

mechanisms. It is not only mathematically and computationally challenging, but also 

non-unique. Classical history matching procedures whereby reservoir parameters are 

adjusted manually by trial-and-error can be tedious and inconsistent with the geological 

models. Automatic history matching was subsequently proposed with the intention of 

lessening manual work. Automatic history matching attempts to maintain the geological 
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model plausibility and estimate some uncertain reservoir variables, which may represent 

gridblock permeability, porosity and saturation, transmissibility or fluids relative 

permeability, or geometric variables that describe the shape, size and location of wells, 

while honoring observed field data. The basic process is to start from an initial parameter 

guess and to improve it by integrating field data in an automatic loop. The quality of the 

fit between measured and computed data is generally evaluated by using an objective 

function which includes both model mismatch and data mismatch parts.  

A great effort has been made to automate the history matching process, but with 

limited success due to the high complexity of the problem and the large computational 

effort required by the practical applications, either in objective function evaluation (non-

gradient based minimization method), or in gradient computation (gradient-based 

minimization methods). On the other hand, the increase in deployment of permanent 

sensors for monitoring pressure, temperature, or flow rate has added impetus to the 

related problem of continuous model updating. Since data output frequency in this case 

can be very high, integrating all the available data to generate a reservoir flow model is 

impractical. Instead, it has become important to incorporate the data as soon as they are 

obtained so that the reservoir model is always being updated. Therefore, it is no wonder 

that few processes could offer feasible solutions in practice. Automatic history matching 

remains a challenging research topic. 

The ensemble Kalman filter initially proposed by Evensen (1994) is a Monte 

Carlo approach, in which an ensemble of models is used to update the parameters 

sequentially according to the chronological order in which the data are acquired and 

assimilated. As a result, this method is free from tedious derivation and implementation 

of the complex adjoint equations required by efficient gradient-based history matching 

methods. Its implementation thus turns out to be significantly simpler and independent of 
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any reservoir simulator. The final multiple matched models are suitable for the non-

unique nature of ill-posed history matching and can be applied to uncertainty 

quantification for future predictions. In addition, the ensemble Kalman filter works 

sequentially and is suitable for real-time reservoir history matching. 

1.2 RESEARCH OBJECTIVES 

The ultimate goal of this proposed research is to develop and apply an efficient 

module for performing automatic history matching. The tasks that will be addressed in 

this research are as follows: 

1. An ensemble Kalman filter methodology will be comprehensively studied by 

integrating production measurements and geological model information for continuous 

reservoir model updating. 

2.  Improve the initial sampling through the singular value decomposition. 

3. Investigate various assimilation schemes for the assimilation step in the 

ensemble Kalman filter methodology.  

4. Propose and apply a modified ensemble Kalman filter algorithm, which 

addresses the preference to the ensemble members through a non-equally weighting 

factor.  

5. Explore a variation of the ensemble Kalman filter, singular evolutive 

interpolated Kalman filter, for history matching and quantify the forecasting uncertainty. 

6. Apply distributed and parallel high-performance computing to improve work 

efficiency. 

7. Develop an automatic history matching module to fulfill the above objectives, 

validate it through various cases, and add the module to reservoir management 

framework IRSP, Integrated Reservoir Simulation Platform (Jiang Zhang, 2005). 
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1.3 OUTLINE OF CHAPTERS 

In this work, automatic history matching using the ensemble Kalman filter will be 

studied. Chapter 2 presents a summary of previous work on automatic history matching. 

The performance evaluation of each method is also commented on in this chapter. 

Chapter 3 contains the theory of the ensemble Kalman filter, a sequential method 

formed by a time loop including two steps: forecasting and assimilation. The latter step 

involves the numerical solutions for the assimilation equation.  

Chapter 4 investigates several different approaches to calculating assimilation 

equation and compares their matched performances through the applications for a two-

dimensional two-phase waterflooding case. The assimilation interval and the dependence 

of measurement errors are also discussed.  

Chapter 5 extends the discussion of the ensemble Kalman filter by performing 

different strategies for the initial sampling. Rather than randomly picking up realizations, 

the singular value decomposition properly selects the important cases from a large 

sampling pool. The efficiency of this sampling strategy is demonstrated through 

implementing the two-dimensional case used in Chapter 4. The ensemble size and initial 

sampling fix issues are also discussed.  

Chapter 6 changes the algorithm of the ensemble Kalman filter and presents an 

alternative assimilation equation. Currently, the ensemble mean is averaged in an equal 

weight for each member. We propose a different approach, which weighs each member 

by the degree of its closeness to the observed data. We consequently change the 

covariance and assimilation equation. The comparison between the proposed method and 

the traditional ensemble Kalman filter is performed through a seventeen-layer reservoir 

case from primary to waterflooding with various well schedules. In addition, we also 
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investigate the issue of the uncertain geological information in the initial ensemble 

generating.  

Chapter 7 introduces a singular evolutive interpolated Kalman filter, a variation of 

the ensemble Kalman filter. The workflow using this method is then illustrated in detail. 

The ultimate goal of history matching is to guide our prediction. The uncertainty of the 

multiple history-matched models needs to be quantified. In this chapter, the singular 

evolutive interpolated Kalman filter and uncertainty quantification are studied in a three-

dimensional two-phase waterflooding case. We also run the same case by using the 

ensemble Kalman filter and make comparisons with the singular evolutive Kalman filter.  

Chapter 8 covers the distributed/parallel computing using our Linux cluster for a 

three-dimensional three-phase compositional reservoir case. The simulation results and 

distributed/parallel high performance computing are discussed.  

Chapter 9 presents the automatic history matching module developed in this 

dissertation. This chapter discusses the module structure, compilation, applications, and 

outlines procedures for using different reservoir simulators in conjunction with the 

module. 

Chapter 10 presents the summary, conclusions and recommendations for future 

work.   



 6

Chapter 2: Literature Review 

The objective of this chapter is to provide some background and a big picture on 

history matching. We will review the concept of history matching and the basic formula 

and development process of automatic history matching. The applications of gradient- 

and stochastic-based methods for history matching will then be summarized. 

2.1 HISTORY MATCHING 

With the increase in computational capability, numerical reservoir simulation has 

become an essential tool for reservoir engineering. In field applications, numerical 

reservoir models are constructed from available static and dynamic data. The goal of 

building reservoir models at different development stages is different. History matching 

is a process of tuning a reservoir model, or multiple reservoir models, such as estimations 

of unknown geological structure, rock and fluid properties, to honor the geologic and 

engineering data by reproducing the reservoir production history. The ultimate purpose of 

history matching is to enhance the prediction accuracy of future reservoir performance by 

maximally utilizing current sources and increasing the understanding of geological 

structure and fluid flow behavior. 

History matching involves the process of inversing the measurements into a large 

number of unknown parameters. Three straightforward challenges impede history 

matching performance.  

First, unknown parameters. For real field cases, the number of gridblocks ranges 

from a few thousand to several million. The rock properties, such as porosity and 

permeability in each gridblock, the fluid properties, such as saturation and pressure of 

each phase in each gridblock, and the rock-fluid interactive properties, such as capillary 

pressure curve and relative permeability curves, are generally unknown and need tuning 
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through history matching. In addition, reservoir heterogeneity intensifies the physical 

complexity and contributes to the uncertainty.  

Measurements are the second challenge. When building reservoir models, many 

sources of data are available and can be grouped as follows (Türeyen, 2005): 

1. Geological data: Any data related to the style of geological deposition: 

● Core data: porosity, permeability and relative permeability measurements 

● Well-log data: any suite of logs that indicates lithology, petrophysics and 

fluid types near the wellbore 

● Sedimentological and stratigraphic interpretation 

● Outcrop analog data 

2. Geophysical data: Any data originating from seismic surveys: 

● Surfaces and faults interpreted on three-dimensional seismic 

● Seismic attributes 

● Rock physics data 

● Time lapse four-dimensional seismic data 

3. Reservoir engineering data: Any data related to testing and production of the 

reservoir: 

● PVT data 

● Well test data 

● Production data 

Each piece of information has its own characteristics and no single source of 

information alone determines the reservoir absolutely. All the information combined only 

provides a part of the real reservoir. History matching in general is an ill-defined problem 

with non-unique solutions. Given production data from an actual field, it is possible to 

construct many reservoir models, which can differ significantly from each other. Even 
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though a history match can be achieved, the underlying geological continuity should 

always be taken into account. Accurate representation of the underlying geology is of 

great importance for reservoir development, particularly in determining the optimal well 

placements (Guyanguler and Horne, 2001; Yeten et al., 2002a) and optimizing well rate 

controls (Brouwer et al., 2001; Brouwer et al., 2002; Brouwer et al., 2004; Yeten et al., 

2002a; Yeten et al., 2002b; Sarma et al., 2005; Sarma et al., 2006). 

On the other hand, with the process of reservoir exploration and development, 

more and more information is provided with high frequency, thanks to the 

implementation of the advanced measurement technologies. It is then suitable to perform 

the work of history matching and reservoir model updating sequentially. The challenge is 

how to imitate the real sequential process, while at each stage the data with different scale 

and the level of accuracy and redundancy could be brought into a single model or 

multiple models effectively and consistently.  

The final problem is uncertainty quantification. It is always challenging to reduce 

and quantify reservoir prediction uncertainty. The non-uniqueness of history matching 

makes the forecasting more difficult and the incompleteness of information forces 

reservoir engineers to interpret beyond data. Such interpretations are subject to personal 

experience and intuition and are associated with a great deal of uncertainty. The 

challenge is how to quantify the uncertainty for the matched model(s) and obtain the 

conference interval for reservoir recovery predictions.  

2.2 AUTOMATIC HISTORY MATCHING 

Traditional history matching is done manually. The three challenges mentioned 

above make such an approach time consuming and subjective and make geological 

continuity difficult. Automatic history matching is proposed with the intention of 

alleviating manual work while honoring the information consistency.  
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The purpose of history matching is to minimize the discrepancies between 

observed data and simulated results. Typically, such discrepancy minimization is 

expressed by an objective function. In the early studies of history matching (Jacquard and 

Jain, 1965; Jahns, 1966; Carter et al., 1974; Chen et al., 1974; Chavent et al., 1975), only 

dynamic data were incorporated, and the objective function was simply defined by the 

weighted norm or distance between the observed production data dN
obsd R∈ , and 

predicted data, ( ) :dNg m R∈  

 

( ) [ ( ) ] [ ( ) ],T
obs d obsO m g m d W g m d= − −  (2.1) 

 

where dW  is an d dN N×  matrix, called the data weighting matrix, and dN  is the 

number of observed data. If dW  is chosen as the inverse covariance matrix of the 

measurement errors of the data integrated, 1
DC− , then minimizing the objective function 

given by Eq. (2.1) generates the maximum likelihood estimate of the reservoir model. In 

petroleum history matching, this is an underdetermined problem since the number of data 

is less than the number of model parameters adjusted. Therefore, a regularization term 

was introduced to obtain a unique solution (Jacquard and Jain, 1965). In general, the 

objective function with a regularization term is 

 

( ) [ ( ) ] [ ( ) ] [ ] [ ],T T
obs d obs o m oO m g m d W g m d m m W m m= − − + − −  (2.2) 

 

where mW  is an m mN N×  matrix, called the model weighting matrix, om  is a fixed 

mN  dimensional vector, and mN  is the number of model parameters.  

One approach to choosing dW , mW  and om  is based on probability theory. 

Assuming the prior model is a multivariate Gaussian random variable with mean and 
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covariance matrix MC , the conditional probability density function (pdf) or posteriori 

pbf for model m  given observation obsd  can be derived with an application of Bayes’ 

theorem (Gavalas et al., 1976; Jackson, 1979; Tarantola and Valette, 1982). This gives 

 
( | ) ( )( | )  exp[ ( )],

( )
obs

obs
obs

p d m p mp m d c O m
p d

= = −  (2.3) 

 

where c  is the normalizing constant, and ( )O m  is the objective function given by 

 
1 11 1( ) [ ( ) ] [ ( ) ] [ ] [ ].

2 2
T T

obs D obs prior M priorO m g m d C g m d m m C m m− −= − − + − −  (2.4) 

 

Eq. (2.4) has the physical meaning: under the framework of Bayesian inference, 

the solution of the history matching inverse problem is a posteriori pdf on the space of the 

reservoir model. This posteriori pdf includes two parts. The first part is a likelihood 

function, which involves the difference between the predicted data from a given model 

and the observed data. The second part is the priori distribution, which comes from the 

static data, such as geologic, core, well logs, and seismic data. Minimizing the objective 

function given by Eq. (2.4) yields the maximum a posterior (MAP) estimate, m∞ . In 

addition, sampling the posteriori pdf expressed in Eq. (2.4) can generate a set of 

realizations of reservoir parameters. In this way, the uncertainties in the observed data 

and model parameters can be integrated in the inverse procedure. 

It is difficult, however, to sample a posteriori pdf for non-linear problems. 

Markov chain Monte Carlo (MCMC) is a rigorous sampling method. Unfortunately, it 

appears to be computationally inefficient for practical applications even with 

modifications (Oliver et al., 1997). Oliver et al. (1996) and Kitanidis (1995) 
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independently proposed the randomized maximum likelihood (RML) method to generate 

an approximate sampling of a posteriori pdf. A conditional realization is generated by 

minimizing the objective function given by 

 
1 11 1( ) [ ( ) ] [ ( ) ] [ ] [ ],

2 2
T T

uc D uc uc M ucO m g m d C g m d m m C m m− −= − − + − −  (2.5) 

 

where ucm  is an unconditional realization defined by 

 
1/ 2  ,uc prior M Mm m C z= +   (2.6) 

 

and ucm  is obtained by adding noise to the observed data ucd , which is given by 

 
1/ 2  .uc obs D Dd d C z= +   (2.7) 

 

Here, Mz  and Dz , respectively, are mN  and dN  dimensional column vectors of 

independent standard random normal deviates; 1/ 2
MC  and 1/ 2

DC  denote the square root of 

MC  and DC . If DC  is diagonal, generating the square root simply takes the square root 

of the diagonal elements. A series of conditional realizations can then be generated by 

minimizing the objective function in Eq. (2.5) with different realizations of ucm  and 

ucd . It was found that the RML method produced distributions of reservoir properties 

compatible with those of MCMC in a single phase test case (Liu et al., 2001). 

In summary, we have discussed the theoretical formula for automatic history 

matching. Practically, minimizing the objective function by tuning a large amount of 

model parameters, and honoring the physical meaning within the capacity of 

computational time, is big challenge. 
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Since the computational time is very sensitive to the number of unknown 

parameters, reparameterization was explored to reduce the number of model parameters 

being adjusted. One commonly used method is zonation. This method divides the whole 

reservoir into a small number of zones. Inside each zone, the unknown parameters are 

treated as uniform (Jacquard and Jain, 1965; Jahns, 1966; Carter et al., 1974). This 

simplicity makes the zonation method easy to apply. However, the boundary divisions of 

the zones are questionable. Modeling errors may be introduced through these boundaries, 

and the discontinuity of rock properties at zonation boundaries after adjustment is another 

issue.  

If the eigenvalues of the covariance matrix of the prior model decay rapidly, such 

eigenvalues and eigenvectors can be truncated effectively reducing the number of model 

parameters (Gavalas et al., 1976; Oliver, 1996; Reynolds et al., 1996). Unfortunately, the 

decline of eigenvalues is very slow in the most commonly used variograms, such as 

spherical and exponential variograms. A nugget, if included in the variogram, also causes 

the problems (Reynolds et al., 1996). The value of the eigenvalue approach is thus trivial.   

Abacioglu et al. (2001) introduced another method of reparameterization called 

subspace method. This method requires the calculations of subspace vectors and the 

gradient of the objective function with respect to the subspace vectors. A small number of 

subspace vectors are used in the early iterations and then the number is increased 

gradually afterwards.  

The pilot point method was proposed by Marsily et al. (1984) to reduce the 

number of unknowns. The concept is that only rock properties at a small number of 

selected pilot point locations are perturbed to match production data. The rock properties 

at other grid blocks are then distributed with Kriging interpolation. This method has been 

applied in ground water hydrology (Kitanidis, 1995; RamaRao et al., 1995; Gómez-
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Hernánez, 1997) and in matching production data in petroleum industry (Bissell et al., 

1989; Roggero and Guerillot, 1996; Wen et al., 1997; Xue and Datta-Gupta, 1997). 

However, the number and location of pilot points is somewhat subjective and case 

dependent. Another drawback of the pilot point method is its convergence behavior. The 

tendency to generate realizations with extreme values (overshooting or over 

perturbation), and the consequent oscillation of the objective function as the iteration 

proceeds have been the primary limitations of using the pilot point method in reservoir 

characterization (Xue and Datta-Gupta, 1997; Liu et al., 2001). In addition, the number of 

pilot points is user-determined and can be a field-scale problem (Roggero and Hu, 1998). 

We have discussed the various approaches to reducing the number of parameters 

during history matching above. Automatic history matching has been investigated for at 

least a few decades, and there are abundant methods published in the petroleum literature. 

Generally speaking, such methods can be classified under two main categories: 

deterministic and stochastic algorithms, which will be explained in more detail in the 

following two sections. 

2.3 DETERMINISTIC ALGORITHMS 

The purpose of history matching is to minimize the discrepancies between 

observed data and simulated results (i.e. objective function). Deterministic algorithms use 

traditional optimization approaches and obtain one local-optimum reservoir model within 

the number of simulation iteration constraints. In implementation, the gradient of 

objective function is calculated and the direction of the optimization search is then 

determined.  

The methods for gradient calculation have been widely used. Such methods 

include adjoint method (Chen et al., 1974; Chavent et al., 1975; Makhlouf et al., 1993; Li 
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et al., 2001; He et al., 2002; Li et al., 2003) and other approaches for sensitivity 

coefficients (Alpak, 2005; Bissell et al., 1994; He et al., 1997; Vasco et al., 1999).  

2.3.1 Adjoint Method 

All deterministic methods need the calculation of sensitivity coefficients. 

Sensitivity coefficients are defined as the partial derivatives of the simulator output with 

respect to the parameters being adjusted. The adjoint method requires derivations and 

solutions of adjoint equations, which generate the sensitivity of each production datum 

with respect to all the reservoir model parameters. Such a system of adjoint equations is 

similar to but different from the system of finite-difference equations in the reservoir 

simulator. First, reservoir simulation runs forward in time, while the adjoint problem is 

solved backward and requires information from the simulation results. Secondly, the 

system of finite-difference equations for the forward problem is strongly nonlinear while 

the adjoint system is linear.  

The adjoint method was applied to a water-oil two-phase problem by Wu et al. 

(1999) and to three-dimensional three-phase problems by Makhlouf et al. (1993), Li et al. 

(2001) and Li et al. (2003). Rodrigues (2005) used the truncated singular value 

decomposition and adjoint method for sensitivity matrix calculation.  

Usually, the computational time for adjoint equations in each time step is less than 

the corresponding time required for the forward simulation equations. However, if the 

number of observed data is large, this method is computationally expensive and is 

impractical for real problems. Zhang et al. (2003) pointed out that if the number of 

production data to be history matched exceeds one hundred, calculation of all sensitivity 

coefficients by the adjoint method is computationally prohibitive. In general, the adjoint 

method is unfeasible for multiphase flow due to computational time and the need for 

sufficient length of production history.  



 15

2.3.2 Other Approaches for the Calculation of Sensitivity Coefficients 

Even if the adjoint method is efficient for large scale problems, it is still limited 

by the embedment into the source code of the reservoir simulator. Since the simulator 

source code is not easily reachable, there are other options for the calculation of 

sensitivity coefficients. Among them, the direct calculation method is a main approach. 

In this method, classical optimization algorithms such as Gauss-Newton, Levenberg-

Marquardt, steepest descent, conjugate gradient, and quasi-Newton typically converge 

fast and have been successfully applied.  

2.3.2.1 Gauss-Newton and Modified Levenberg-Marquardt Algorithms 

Suppose km  denotes the current most probable model parameters and 1kmδ +  is 

the search direction for the next step. The Gauss-Newton method gives the following 

iterative procedure:  

 

( ) ( )( )11 1 1 1
1 ,T T

k M k D k M k prior k D k obsm C G C G C m m G C g m dδ
−− − − −

+
⎡ ⎤⎡ ⎤= − + − + −⎣ ⎦ ⎣ ⎦  (2.8) 

 

where kG  denotes the matrix of sensitivity coefficients evaluated at km , that is, the 

derivatives of predicted data with respect to reservoir model parameters. The reservoir 

model parameters are then updated by 

 

1 1,k k k km m mμ δ+ += +   (2.9) 

 

where kμ  is the step size, usually obtained by the restricted step method (Fletcher, 

1987). 

If the number of model parameters is much larger than the number of observed 

data, Eq. (2.8) can be modified as 
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( )

( ) ( )( )
1

1
             .

k k prior

T T T
M k D k M k k k prior k obs

m m m

C G C G C G G m m g m d

δ +

−

= − +

⎡ ⎤⎡ ⎤+ − − −⎣ ⎦ ⎣ ⎦
 (2.10) 

 

Compared with Eq. (2.8), Eq. (2.10) changes the problem from the dimension of 

the number of model parameters into the dimension of the number of observed data. 

Thus, it will be more favorable than Eq. (2.8) during the real case application.  

Gauss-Newton approach has been reported for slow convergence or unacceptable 

matches of pressure data in cases of bad initial estimates (Wu et al., 1999; Li et al., 

2001). To solve such problem, Bi et al. (2000) introduced a modified Levenberg-

Marquardt algorithm 

 

( ) ( ) ( )( )

1

1

1

             1 ,
1

k prior
k

k

k k priorT T T
M k k D k M k k obs

k

m m
m

G m m
C G C G C G g m d

δ
λ

λ
λ

+

−

−
= +

+

⎡ ⎤−
⎡ ⎤+ + − −⎢ ⎥⎣ ⎦ +⎢ ⎥⎣ ⎦

(2.11) 

 

where kλ  is the Levenbergy-Marquardt parameter evaluated at the thk  iteration step. 

As computing all sensitivity coefficients is impractical if the amount of 

observation data and the number of model parameters are large, other alternatives which 

require only the gradient of the objective function could be considered, such as conjugate 

gradient algorithms and quasi-Newton algorithms. 

2.3.2.2 Conjugate Gradient Method 

The conjugate gradient method was originally proposed for solving linear 

systems, and then extended to nonlinear optimization. Gavalas et al. (1976) and 
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Makhlouf et al. (1993) applied this method to estimate gridblock permeabilities by 

history matching production data. However, it appears that the authors did not use a 

preconditioning process. Since the efficiency of the conjugate gradient method relies 

heavily on the selected preconditioner, Zhang and Reynolds (2002) tried two 

preconditioners. Although both improved the performance, the algorithms are still 

significantly less robust than the quasi-Newton method. The quasi-Newton method will 

be introduced briefly in the next section.  

2.3.2.3 LBFGS Algorithm 

The first and second derivatives of the objective function are known as the 

gradient and Hessian matrix of the objective function, respectively. Quasi-Newton 

methods, which are based on generating an approximation of the inverse of the Hessian 

matrix, require only the gradient of the objective function and thus avoid the computation 

of individual sensitivity coefficients needed to directly form the Hessian matrix. Among 

various quasi-Newton methods, the limited memory BFGS (Broyden-Fletcher-Goldfarb-

Shanno) is possibly the most promising and widely used.  

kH  and kg  denote the Hessian matrix and gradient of the objective function, 

respectively, and k  is the iteration index. ky  and ks , respectively, are the difference 

in the gradient 1k k ky g g+= −  and the model parameter difference in the iteration 

1k k ks m m+= − . In quasi-Newton methods, the inverse of the Hessian matrix 1
kH −  is 

approximated by a symmetric positive definite matrix 1
kH −� , which is updated through 

ky  and ks  from each iteration. The standard updating BFGS formula is constructed by  

 
1 1

1 1
1 1 ,

T T
Tk k k k k k

k k k k kT T
k k k k k

H y y H s sH H
y H y s y

γ υ υ
− −

− −
+ −

⎛ ⎞
= − + +⎜ ⎟

⎝ ⎠

� �� �
�  (2.12) 

 



 18

where kγ  is the scaling factor and  

 

( )
11/ 21

1 .T k k k
k k k k T T

k k k k k

s H yy H y
s y y H y

υ
−

−
−

⎛ ⎞
= −⎜ ⎟

⎝ ⎠

��
�  (2.13) 

 

The limited memory BFGS (LBFGS) uses a limited number of previous vectors to 

construct the approximation of the Hessian inverse at each iteration. LBFGS was applied 

by Zhang and Reynolds (2002), Zhang et al. (2003), and Gao and Reynolds (2006).  

2.3.3 Gradual Deformation Method 

Gradual deformation method was proposed by Roggero and Hu (1998), and Hu 

(2000). Unlike traditional deterministic methods, gradual deformation method does not 

require the calculation of the complicated gradient of objective function. It reduces the 

unknown parameter space of the reservoir model to a few combination coefficients. 

Calibrating the reservoir model by fitting these combination coefficients preserves 

reservoir model structure. This method can be applied to modify the whole reservoir 

model or only certain subdomains. Moreover, this method is not limited to Gaussian-

related models. Non-Gaussian models can be transformed to Gaussian models to meet the 

method requirement. 

The principal idea is that new realizations of random field can be written as the 

linear combination of a set of independent random Gaussian fields with expected mean 

μ  and covariance mC  

 

( )
1

( ) .
n

i i
i

y k k y μ μ
=

= − +∑   (2.14) 

 

The coefficients ik  are required to satisfy 
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n

i
i

k
=

=∑   (2.15) 

 

The algorithm searches the optimum combination of different realizations to 

generate the reservoir model parameters in Gaussian space. There are many different 

variations of gradual deformation algorithm. The most basic form uses two realizations in 

this way 

 

( ) ( ) ( )1 2cos sin ,y t y t y t= +   (2.16) 

 

where t  is the deformation parameter.  

The advantage of this algorithm is the transformation of the history matching 

problem into a one-dimensional optimization problem. The basic procedure starts to 

generate and combine two geostatistical realizations in Gaussian space. The combined 

realization is then transformed into real space for reservoir model input. The mismatch 

between the production response of the generated realization and the observation data is 

calculated. By using the optimization algorithm, a new value of deformation parameter t  

is derived and used for the combination of current realization with another new generated 

realization. The mismatch of production data is calculated again. If the mismatch is 

reduced, the recently combined realization replaces the old one. Otherwise, the previous 

one is retained for the next iteration. This is a loop and continues to incorporate new 

generated realization until the stopping criterion is reached. Figure 2-1 shows the 

flowchart of the gradual deformation method. 

Gradual deformation method has received wide attention. Caers (2003) combined 

gradual deformation method, multiple-point geostatistics, and streamline simulation for 
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history matching under a variety of geological scenarios. Liu and Oliver (2004) assessed 

gradual deformation method by comparing the distribution of conditional realizations for 

a small problem with the standard distribution from a MCMC method, and the results 

showed that gradual deformation method produced acceptable distribution. Hu and Jenni 

(2005) extended the application from pixel-based models (e.g., Gaussian-related 

stochastic models) to object-based models (e.g., Boolean models).  

2.4 STOCHASTIC ALGORITHMS 

Although automatic history matching has been investigated for a couple of 

decades, the studies are dominated by deterministic methods. The advantages of applying 

stochastic algorithms are impeded mainly by the huge computational time. Thanks to the 

rapid development of computer memory and computing speed, stochastic algorithms are 

receiving more and more attention. Stochastic algorithms have three main direct 

advantages. First, stochastic approach generates a number of equal probable reservoir 

models and therefore is more suitable to non-unique history matching problems. Second, 

it is straight forward to quantify the uncertainty of performance forecasting by using 

these equal probable models. Uncertainty quantification through stochastic history 

matching has become a hot topic at present. Last, unlike local solutions from all the 

deterministic algorithms, stochastic algorithms theoretically reach the global optimum.  

Several algorithms have been discussed widely and even commercialized. In this 

section, we select and briefly review the most representative methods, including genetic 

algorithms, simulated annealing, scatter and tabu searches, and Kalman filter algorithms.  

2.4.1 Genetic Algorithms 

Genetic Algorithm (GA) procedures were developed by John Holland in the early 

1970s, at the University of Michigan (Holland, 1975). Genetic algorithm is an imitation 
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of biological principals of evolution, or “survival of the fittest”. This means that the 

algorithm will continue the search around the best combinations of parameters to further 

improve the match and reject the bad ones. The method involves a population of 

chromosomes and possible solutions are called individuals. Each chromosome is 

typically encoded as a bit string and processed by “natural selection” from one generation 

to the next generation, associated with inheritance, mutation, selection, and crossover.  

Genetic algorithms find applications in computer science, engineering, 

economics, chemistry, physics, mathematics and other fields. We have seen a large 

number of papers about these methods on history matching in the petroleum industry 

(Romero et al., 2000; Lach et al., 2005; Jutila and Goodwin, 2006). In particular, genetic 

algorithms have been embedded in commercial software MEPO® (a registered trade 

mark of Scandpower Petroleum Technology) and EnABLE® (a registered trade mark of 

Energy Scitech, Roxar). BP’s “Top-Down Reservoir Modelling” approach was proposed 

by Williams et al. (2004) and implemented by Kromah et al. (2005). The approach uses a 

genetic algorithm as a global optimizer in conjunction with the reservoir simulator to 

achieve flexible and scaleable history matching and uncertainty quantification. Such a 

concept seems promising for practical application. Unfortunately, due to the computation 

cost arising from the slow convergence, genetic algorithm is still very limited in real 

problems.  

2.4.2 Simulated Annealing 

Simulated annealing is a probabilistic algorithm for global optimization problems, 

specifically locating a good approximation to the global optimum of a given function in a 

large search space. The name comes from annealing in metallurgy, a technique involving 

heating and controlled cooling of a material to increase the size of its crystals and reduce 

their defects. The heat causes the atoms to become unstuck from their initial positions 
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and wander randomly through states of higher energy. The slow cooling gives those more 

chances of finding configurations with lower internal energy than the initial one. By 

analogy with this physical process, each step of simulated annealing replaces the current 

solution by a random neighbor, chosen with a probability that depends on the difference 

between the corresponding function values. 

There have been many papers on simulated annealing in the petroleum industry. 

In particular, Panda and Lake (1993), Ouenes et al. (1993), and Portellaand and Prais 

(1999) have applied the simulated annealing technique into reservoir history matching.  

2.4.3 Scatter and Tabu Searches 

Parallel to the development of genetic algorithms, Fred Glover, at the University 

of Colorado, established the principles and operational rules for tabu search and a related 

methodology know as scatter search (Glover, 1977). Scatter search (Glover, 1994) is 

designed to operate on a set of points, called reference points, which constitute good 

solutions obtained from previous solution efforts. The approach systematically generates 

linear combinations of the reference points to create new points, each of which is mapped 

into an associated feasible point. Tabu search (Glover and Laguna, 1997) is an intelligent 

guidance for the search process in order to screen certain solutions from being chosen on 

the basis of information that suggests these solutions may duplicate or significantly 

resemble previous solutions. Such screening is often done by defining suitable attributes 

of moves or solutions, and by imposing restrictions on a set of the attributes according to 

the search history. Two prominent techniques for exploiting search history in tabu search 

are recency and frequency memories. Recency memory is typically (though not 

invariably) a short-term memory that is managed by structures or arrays called “tabu 

lists”, while frequency memory more often fulfills a long term search functionality. The 
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heart of tabu search lies in its use of adaptive memory, which makes it possible to use the 

search history to guide the solution process.  

A commercial implementation of scatter search and tabu search has been released 

under the name of OptQuest® engine, a software system developed by OptTek Systems, 

Inc. OptQuest® is bundled with Crystal Ball® (product of Decisioneering, Inc) and 

DMSTM (product of Landmark Graphics Corporation). 

In the petroleum industry, April et al. (2003a) introduced an optimizer containing 

scatter search, tabu search and neural networks into some simple examples in petroleum 

exploration and production. Cullick et al. (2003) used such an optimizer in multiple field 

scheduling and production strategy. April et al. (2003b) applied it to portfolio 

management. For history matching, Sousa et al. (2006) used scatter search for simple 

history matching cases. Cullick et al. (2006) combined scatter search with nonlinear 

neural network proxy for history matching problems with a small number of unknown 

parameters.  

2.4.4 Neighborhood Algorithm 

The neighborhood algorithm is a stochastic optimization algorithm initially aimed 

for seismic inversion problems (Sambridge, 1999a, 1999b). It is now applied for history 

matching problems (Christie et al., 2005; Suzuki and Caers, 2006). Similar to simulated 

annealing and genetic algorithms, it tries to find models of acceptable data in a 

multidimensional parameter space. The sampling of parameter space in this method is 

guided directly by the spatial properties of Voronoi cells. 

In particular, Christie and co-workers have applied to history matching and 

uncertainty quantification in some hydrocarbon production forecasts (Christie et al., 

2002; Subbey et al., 2003; Subbey et al., 2004; Litvak et al., 2005; Nicotra et al., 2005; 

Chriestie et al., 2006; Rotondi et al., 2006; Erbas and Christie, 2007).  
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2.4.5 Kalman Filter Methods 

The Kalman filter is the best known sequential data assimilation scheme. It was 

developed by Kalman (1960) for solving the linear problem. In the petroleum industry, 

Corser et al. (2000) applied Kalman filters for a real-time drilling monitor processing. 

Unfortunately, most cases have a nonlinear relationship between the measurements and 

the model parameters. In addition, the number of parameters is large: often two or more 

variables per grid block in the simulation study.  

The extended Kalman filter tries to solve the non-linear problem through 

linearization. Eisenmann et al. (1994) implemented the extended Kalman filter for 

measuring the flushed zone resistivity. Bloemen et al. (2006) reported the application of 

the extended Kalman filter for gas lift wells, in particular, the parameter estimations in 

the drift-flux model. However, this extended Kalman filter still has difficulties when used 

with highly non linear problems and may lead to a linear instability in the error 

covariance evolution (Evensen, 1994).  

In order to handle these difficulties, many variations of Kalman filters have been 

proposed. Among them, the ensemble Kalman filter (EnKF), a Monte Carlo approach, is 

promising. The EnKF, initially proposed by Evensen (1994), sequentially updates 

multiple models to capture the probability density function in the parameter map, such as 

the mean and variance of statistical information. The correlation between reservoir 

response (for example, production rates, gas-oil ratio, water cut, and bottom hole 

pressure) and reservoir model parameters (static parameters such as porosity and 

permeability, and dynamic parameters such as reservoir pressure and oil saturation in 

each gridblock) is approximated directly from the ensemble, which is different from the 

explicit evolution of the covariance matrix in the standard and extended Kalman filters. 
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Because of the EnKF’s simple formulation and easy implementation, it has gained 

popularity for weather forecasting, oceanography, hydrology, and petroleum engineering.  

Many applications successfully using the EnKF have been published in the 

petroleum industry. Nævdal et al. (2002) used the EnKF to update static parameters in 

near-well reservoir models by tuning the permeability field. Later, this approach was 

further developed to update the two-dimensional three-phase reservoir model by 

continuously adjusting both the static permeability field and dynamic saturation and 

pressure fields at each assimilation step (Nævdal et al., 2005). Gu and Oliver (2005) used 

the EnKF to update porosity and permeability fields, as well as the saturation and 

pressure fields, and then applied it to match three-phase production data for the three-

dimensional PUNQ-S3 reservoir model. Furthermore, Brouwer et al. (2004) and Nævdal 

et al. (2006) used the combination of EnKF for continuous model updating with an 

automated adjoint-based water flood optimization to optimize water flooding strategy.  

Results from previous studies have shown that the EnKF is very efficient and 

robust. Liu and Oliver (2005) evaluated the performance of the EnKF by comparing it 

with a gradient-based minimization method on history matching of geologic facies. They 

found that the EnKF method outperformed the gradient-based minimization method in 

both computation efficiency and applicability. Gao et al. (2005) used the randomized 

maximum likelihood method and the EnKF to quantify uncertainty for the PUNQ-S3 

problem. Wen and Chen (2005) presented a modified version of the EnKF. They added a 

“confirming” step to run reservoir simulation using the most recent updated static model 

parameters so that the updated static parameters and dynamic parameters are always 

consistent. Lorentzen et al. (2005) studied the robustness of the EnKF by running ten 

ensemble cases using the different initial conditions. They demonstrated that the EnKF is 

well-suited for forecasting with uncertainty. Zafari and Reynolds (2005) proposed a 
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theoretical relation between randomized maximum likelihood and the EnKF. They then 

showed two examples in which the EnKF does not properly perform. Interestingly, they 

used a linear case to show that the “confirming” step suggested by Wen and Chen (2005) 

is inappropriate. Reinlie (2006) used the traditional EnKF and further conditioned local 

permeability information around wellbore. Skjervheim et al. (2005) used the EnKF to 

incorporate four-dimensional seismic data. It showed that the EnKF could handle large 

seismic data and had a positive impact on matching the permeability field, even in the 

case with highly noisy measurement data. Dong et al. (2006) reported their study by 

using the EnKF for reservoir description to history match both production data and time-

lapse four-dimensional seismic data and had a conclusion similar to that identified by 

Skjervheim et al. (2005). Lorentzen et al. (2006) applied the EnKF as an optimization 

routine for controlling downhole chokes in smart wells with the aim of optimizing 

waterflooding. Their simple synthetic reservoir case demonstrated that the EnKF works 

robustly and the results are in good agreement with their reference. With a streamline 

simulator, Park and Choe (2006) studied two issues: the low value of the estimate error 

covariance after some history matching periods; and the number versus quality of the 

measurement data. They suggested a regeneration step when the estimate error 

covariance reaches one fifth level of the initial estimate error covariance. As for 

measurements, they found that water saturation measurements near the irreducible water 

saturation or residual oil saturation are not sensitive to reservoir static parameters and can 

be ignored. This ignorance and measurement selection helps to avoid ensemble deviation 

and improves the history matching of reservoir porosity and permeability. Arroyo-

Negrete (2006) used the EnKF, streamline assisted tool and proposed streamline 

covariance localization. This approach was reported to be without problems such as 

overshooting and non-Gaussian distribution. Haugen et al. (2006) presented a successful 
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application of the EnKF to a North Sea field case, using the real production data. 

Similarly, Evensen et al. (2007) studied a North Sea case and investigated more 

parameters, including initial fluid contacts, vertical transmissivity multipliers, and fault 

transmissivity multipliers. They discussed the non-Gaussian parameter distribution and 

pointed out that the EnKF is theoretically unrealistic if used directly on a multimodal 

prior, such as a reservoir consisting of channels. 

2.5 SUMMARY 

A comprehensive literature review on history matching theory, representative 

methods on deterministic and stochastic categories, and wide applications has been 

presented. The idea of using multiple models to capture the statistic map of reservoir 

properties is intuitively superior to the traditional method of selecting a single “best” 

matched model. A stochastic method to integrate both static and dynamic parameters 

with measurements is also desirable.  

The EnKF is a Monte Carlo approach, in which an ensemble of models, instead of 

one model as in traditional history matching methods and in other Kalman filter related 

methods, is promising in various areas and has been widely reported in the petroleum 

industry. By estimating the state error covariance function directly from the ensemble, the 

EnKF avoids computing the adjoint equations or derivatives of sensitivity coefficients. 

Thus, its implementation turns out to be significantly simpler and independent of any 

reservoir simulator. The final multiple matched models are suitable for the non-unique 

nature of ill-posed history matching and can be applied to uncertainty quantification for 

future predictions. Another benefit of the EnKF method is that it works sequentially and 

nicely mimics the reservoir development in a real-time fashion, making it applicable to 

high performance computing.  
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Figure 2-1: Flowchart of gradual deformation method. 
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Chapter 3: Theory of the Ensemble Kalman Filter 

Data assimilation stems from the need to improve the model output. In particular, 

by assimilating field production data, we want to correct our reservoir model, reduce the 

parameter uncertainty, and increase prediction creditability. Such data assimilation is 

typically called history matching in the petroleum industry. In the previous chapter, we 

have reviewed the current status of history matching and shown that the ensemble 

Kalman filter (EnKF) is very promising. We summarize the basic characteristics as 

follows: 

Traditional history matching updates only static quantities (such as porosity and 

permeability). It reruns the model iteratively until the match is reached: 

● Repeated flow simulations of the entire production history 

● Sensitivity coefficient calculations 

● Not fully automated 

● History matching repeated with all data when new data are available 

● Not suitable for real-time reservoir model updating 

● Difficult for uncertainty assessment 

The EnKF updates reservoir model sequentially for both static and dynamic 

quantities (such as pressure and saturations): 

● Suitable for updating non-linear reservoir simulation models on large scale 

● One flow simulation for each ensemble member, easy for distributed 

computing 

● No need of sensitivity coefficients 

● Fully automated 

● Production data assimilated sequentially in time 
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● Ensemble members updated sequentially in time and reflecting latest 

assimilated data 

● Uncertainty of prediction always up-to-date and straightforward from the 

ensemble members 

The objective of this chapter is to give the theory of the EnKF. Section 3.1 

explains the outline of the EnKF algorithm in reservoir history matching. In Section 3.2, 

implementation procedures, particularly the assimilation step, are investigated and 

different matrix inversion schemes are given. Section 3.3 shows the approaches to 

measuring the result quantification, followed by a summary in Section 3.4.   

3.1 OUTLINE OF THE ENKF ALGORITHM 

As shown in Figure 3-1, reservoir engineers traditionally build one simulation 

model from a “most representative” geological interpolation. Through incorporating the 

whole production history and modifying the reservoir model, one “best match” is 

obtained. This model is then applied for recovery predictions and parameter sensitivity 

studies.  

Kalman filter based methods perform sequentially and only update the model with 

the latest available data. An assimilation step is implemented to modify the model 

parameters, based on the difference between reservoir simulation responses and the data 

from the field. The updated model is then used to run forward until reaching the next 

measurement time, as shown in Figure 3-2.  

Different from the general Kalman filter, the EnKF runs multiple simulation 

models independently, assimilates only the new measurements, and updates the multiple 

models simultaneously. After each updating, the EnKF describes model parameters 

through two statistical properties: mean and variance, the first representing the most 

probable model and the second depicting the change range, i.e., uncertainty. Aside from 
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the initial sampling, the EnKF consists of two steps for each time-recursive process: a 

forecasting step based on current state variables (which solves the flow equations with 

current static and dynamic parameters) and an assimilation step (which updates the state 

variables). Figure 3-3 illustrates the basic workflow chart of the EnKF. The evolution of 

dynamic variables is outputted from the reservoir simulator, dictated by the flow 

equations.  

State variables include three types of parameters: (1) static parameters (e.g., 

permeability and porosity fields that are traditionally called static because they do not 

vary with time. However, in the EnKF, static parameters are updated with time. We use 

this traditional concept for convenience), (2) dynamic parameters (e.g., pressure and 

phase saturations of the entire model that are usually solutions of the flow equations), and 

(3) production data (e.g., well production rate, bottom-hole pressure, water cut, etc., 

which are usually measured at wells). State variables for each simulation model form a 

state vector and the ensemble of state variables forms an ensemble matrix. Thus, we have  

 

,

,

,
s

k j d

k j

m
y m

d

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

  (3.1) 

 
where ,k jy  is the j–th ensemble member of state vector at time kt . sm  and dm  are 

static and dynamic vectors, and d is the production data vector. In this dissertation, sm  

is the permeability at each cell of the reservoir model with dimension of N being the total 

number of active cells; dm  has the dimension of 2N and includes pressure and water 

saturation at each cell; and d includes measurements, such as bottom-hole pressure, oil 
production rate and water production rate at wells with dimension of ,d kN . The 

dimension of state vector is ,y kN , which is equal to ,3 d kN N+  and can change with 
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time kt  to account for the different amount of production data at the different time. 

Suppose there are a total of eN  number of models, we define the ensemble matrix 

holding the ensemble members yN
iy ∈ℜ  as 

 

( ),1 ,2 ,, , , ,
e

f f f f
k k k k NY y y y= …   (3.2) 

 
with the dimension of eky NN ×, .  

In the remaining parts, we drop out the superscript f and subscript k for 

convenience. The ensemble mean is stored in each column of Y , which is defined as 

 
1 ,

eNY Y=   (3.3) 

 

where 1 e eN N
eN ×∈ℜ  is the matrix where each element is equal to 1

eN
. We then define 

the ensemble perturbation matrix as 

 
' ( 1 ).

eNY Y Y Y I= − = −   (3.4) 

 
The ensemble covariance matrix ,

y yN N
y eC ×∈ℜ  can be defined as 

 

,
'( ') .

1

T

y e
e

Y YC
N

=
−

  (3.5) 

 

3.1.1 Measurement Perturbation 

Given a vector of measurements dNd ∈ℜ  with dN  being the number of 

measurements, we can define the eN  vectors of perturbed observations as 
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, 1,2, ,j j ed d j Nε= + = "   (3.6) 

 
which can be stored in the columns of a matrix 

 

1 2( , , , ) ,d e

e

N N
ND d d d ×= ∈ℜ"   (3.7) 

 

while the ensemble of perturbations, assumed to be unbiased and Gaussian with ensemble 

mean equal to zero, can be stored in the matrix 

 

1 2( , , , ) ,d e

e

N N
NE ε ε ε ×= ∈ℜ"   (3.8) 

 

from which we can construct the ensemble representation of the measurement error 

covariance matrix 

 

, .
1

T

d e
e

EEC
N

=
−

  (3.9) 

 
Note that ,d eC  is a diagonal matrix if the measurement errors are uncorrelated.  

Considering the construction of the state vector, the relationship between the 

observed data and the true state vector can be written as 

 

,true
obsd Hy ε= +   (3.10) 

 

where H  is a matrix operator, depending on the number of observations, which relates 

the sate vector to reservoir response data. Because the data are part of the state vector as 
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shown in Eq. (3.1), H  is a trivial matrix whose elements are only ones or zeros. 

Following the structure of Eq. (3.1), we can always arrange it as  

 

[ ]| ,H = 0 I   (3.11) 

 

where I  is an identity matrix.  

In implementation, the construction of H  is not essential. Pre-multiplied by H  

simply selects the corresponding rows of a matrix. Similarly, post-multiplied by TH  

chooses the corresponding columns of a matrix.  

Burgers et al. (1998) showed that observations must be treated as random 

variables to avoid a too-low variance after data assimilation. Random perturbations are 

added into the measured data, creating a suite of observation sets for the ensemble 

models. The relationship between the perturbed observation and the true state vector is 

written as 

 

, , , , ,
true

obs j k k k j k obs k j kd H y dε υ υ= + + = +  (3.12) 

 
where kε  is the unknown measurement error; ,j kυ  is the perturbation added to the 

noisy measured data, ,obs kd , to form the observations for the j–th ensemble members. 

Both kε  and ,j kυ  are Gaussian distributions with zero mean and , ,d e kC  error 

covariance, i.e., , , , ,
T T

k k j k j k d e kE E Cε ε υ υ⎡ ⎤ ⎡ ⎤⋅ = ⋅ =⎣ ⎦ ⎣ ⎦ ; the noise and perturbation are 

uncorrelated, i.e., , , 0T T
k j k j k kE Eε υ υ ε⎡ ⎤ ⎡ ⎤⋅ = ⋅ =⎣ ⎦ ⎣ ⎦  for all j and k. Here, k is the index for 

time kt . 
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3.1.2 Forecasting Step 

The EnKF is a sequential method, which means that the model is integrated 

forward in time, and whenever new measurements are available, these measurements are 

used to enrich the model before the further integration progresses. Within the framework 

of model integration, a reservoir simulator is employed for reservoir modeling. The state 
variables ,k jy  are advanced in time as 

 

( ), 1,           ( 1,2, , ),k j k j ey f y j N−= = "  (3.13) 

 

where f  represents reservoir flow equations, coded in the reservoir simulator.  

Note that in this forward step only the dynamic variables dm  (such as reservoir 

pressure and saturation in each gridblock) and corresponding response data are updated. 

The static variables sm  (such as permeability in each gridblock) are unchanged. Also 

note that the independence of the ensemble models at the forecasting step allows the 

benefit of distributed processing.  

3.1.3 Assimilation Step 

The assimilation equation, expressed in terms of the ensemble covariance 

matrices, is 

 
1

, , ,( ) ( )u T T
y e y e d eY Y C H HC H C D HY−= + + −  (3.14) 

  

( )1' ' ( ' ' ) .T T T T TY Y Y H HY Y H EE D HY−= + + −  (3.15) 

 
In Eq. (3.14), the term 1

, , ,( )T T
y e y e d eC H HC H C −+  is called Kalman gain. When 

the ensemble size, eN , is increased by adding random samples, the analysis computed 
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from this equation will converge towards the exact solution of Eq. (3.14) with ,y eC  and 

,d eC  replaced by the exact covariance matrices yC  and dC .  

A big assumption for the EnKF is that the model parameters are Gaussian 

distribution. Here, we explain this assumption within Bayesian statistical framework. 

Suppose at the end of time 1t , the probability density function (PDF) of the state vector 

is known. At the end of time of 2t , new measurements are available and the PDF up to 

2t  is regarded as the prior PDF. By using the assimilation step, the EnKF members are 

conditioned with these new measurements and the PDF turns into the posterior PDF. 

From this point of view, the solution provided by the EnKF is based on maximizing the 

posterior PDF of the state vector within the context of Bayesian inversion. It is 

equivalent to minimizing the variances of the posterior covariance matrix with the 

assumption that the variables including model errors, measurement errors and variables in 

the state vector are Gaussian distributions. Such distribution assumption makes the 

posterior PDF still Gaussian distribution. The sequential EnKF process within Bayesian 

frame is illustrated in Figure 3-4. 

Note that reservoir permeability is usually lognormally distributed and needs a 

transformation to meet the EnKF requirements. Also note that it is insufficient to describe 

a non-Gaussian distribution only by mean and covariance. The study of the EnKF on 

non-Gaussian model parameters is another important area which we will not discuss. In 

this dissertation, we assume all the parameters meet the EnKF assumption requirement.  

3.2 ENKF ASSIMILATION SCHEMES 

For the EnKF assimilation step, Evensen (2004) recommended the square root 

schemes. However, we have not seen clear and extensive discussion on the EnKF 

implementation. In this section, we provide four approaches to solve the assimilation step 
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described by Eq. (3.10): direct inverse calculation, standard EnKF assimilation 

calculation, and square root algorithms with and without measurement perturbations.  

3.2.1 Direct Inverse Calculation 

The intuitive way to solve Eq. (3.10) is to directly calculate and invert covariance 

matrices. We assume the independence among the measurement errors and 

( ), ,
T

y e d eHC H C+  is full rank and invertible. Hence, the measurement error covariance 

matrix ,d eC  is diagonal. The basic procedure for solving Eq. (3.10) is as follows: 

1. Construct ,
T

y eC H  and ( )D HY− ; 

2. Construct , ,
T

y e d eHC H C+ ; 

3. Compute 1
, ,( ) ( )T

y e d eHC H C D HY−+ −  with solving linear equations; 

4. Compute 1
, , ,( ) ( )T T

y e y e d eC H HC H C D HY−+ − ; 

5. Finally update Eq. (3.10): 1
, , ,( ) ( ).u T T

y e y e d eY Y C H HC H C D HY−= + + −  

3.2.2 Standard EnKF Assimilation Calculation 

For Eq. (3.15), the potential singularity of the inverse computation requires the 

use of a pseudo inverse. The traditional way is to compute the eigenvalue decomposition 

directly, 

 

' ' ,T T T THY Y H EE Z Z+ = Λ   (3.16) 

 

which has the inverse (or pseudo inverse if the matrix is singular) 

 

( ) 1 1' ' .T T T THY Y H EE Z Z
− −+ = Λ   (3.17) 
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The cost of the eigenvalue decomposition is proportional to 2
dN  and becomes 

unaffordable for large dN , where dN  is the number of measurements.  

An alternative solution for large dN  is to compute and store only the first eN  

columns of dN : 

With the assumption of uncorrelated reservoir responses and measurement errors, 

we have 

 

' 0THY E ≡  

 

( ) ( )' ' ' ' .TT T THY Y H EE HY E HY E+ = + +  (3.18) 

 

Compute the singular value decomposition: 

 

' ;THY E U V+ = Σ  

 
Then Eq. (3.18) becomes 

 

' ' .T T T T T T T THY Y H EE U V V U U U+ = Σ Σ = ΣΣ  (3.19) 

 

With comparison of Eq. (3.19) and Eq. (3.16), TΣΣ  and the singular vectors 

contained in U  are identical to Λ  and the first eigenvectors in Z , respectively. The 

benefit of this procedure is the efficient inversion computation in most practical 

situations. 

Eq. (3.15) then turns into 
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( ) ( )1' ' .Tu TY Y Y HY U U D HY−= + Λ −  (3.20) 

 

This can be implemented with the following steps: 

1. Compute the matrix 'HY  and the singular value decomposition 

( )'HY E+  to get U  and Σ ; 

2. Compute 1
1

TX U−= Λ ; 

3. Compute ( )2 1X X D HY= − ; 

4. Compute 3 2X UX= ; 

5. Compute ( )4 3' TX HY X= ; 

6. Finally update: 4' .uY Y Y X= +  

3.2.3 Square Root Algorithm with Measurement Perturbations 

Introducing the matrix holding the measurements of the ensemble perturbations, 

' d eN NS HY ×= ∈ℜ , we now define the matrix d dN NB ×∈ℜ  as 

 

( )1T
e dB SS N C= + −   (3.21) 

  

and its ensemble approximation eB  as 

 

( ) ,1 .T T T
e e d eB SS N C SS EE= + − = +  (3.22) 

 

Assuming that B  is of full rank such that 1B−  exists, we compute the 

eigenvalue decomposition TZ Z BΛ =  and obtain 

 
1 1 ,TB Z Z− −= Λ   (3.23) 
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where all matrices are of dimension .d dN N×  

A solution for the ensemble perturbations then is  

 

( )'
2 2 2' ,u T TY Y V I= − ∑ ∑ Θ   (3.24) 

 

where 2
d eN NX ×∈ℜ  as 

1
2

2
TX Z S

−
= Λ , and the singular value decomposition of 2X , 

2 2 2 2
TU V X∑ = , with 2

d dN NU ×∈ℜ , 2
d eN N×∑ ∈ℜ  and 2

e eN NV ×∈ℜ . 

Note that the additional multiplication with a random orthogonal matrix TΘ  can 

be easily constructed, by using the right singular vectors from a singular value 

decomposition of a random e eN N×  matrix. 

When B  is singular it is possible to compute the pseudo-inverse B+  of B . It is 

convenient to formulate the analysis schemes in terms of the pseudo-inverse, since the 

pseudo-inverse 1B B+ −≡  when B  is of full rank. The algorithm then is valid in the 

general case. 

Here we use an algorithm where the inverse is computed in the eN − dimensional 

ensemble space rather than the dN −dimensional measurement space. The key to this 

algorithm is a new approach for computing the inverse of B  in the case when 

1d eN N> − . The case when 1d eN N≤ −  is trivial since B  will have full rank. 

We assume that B  has rank equal to 1eN − , which will be the case if the 

ensemble is chosen properly and the measurement operator has full rank. The singular 

value decomposition of S  is:  

 

0 0 0 ,TU V S∑ =   (3.25) 
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with 0
d dN NU ×∈ℜ , 0

d eN N×∑ ∈ℜ  and 0 .e eN NV ×∈ℜ  

The pseudo-inverse of  S  is defined as 0 0 0
TS V U+ += ∑ , where 0

e dN N×+∑ ∈ℜ  is 

diagonal and defined as 1 1 1
0 1 2 1( ) ( , , , ,0)

eNdiag σ σ σ+ − − −
−∑ = " . The matrix product is 

0 0 1
d d

e

N N
NI ×+

−∑ ∑ = ∈ℜ� , where 1eNI −
�  has the first 1eN −  diagonal elements equal to one 

and the rest of the elements in the matrix are zero. 

Defining 0 0 0
TX U E+= ∑  which is an e eN N×  matrix with rank equal to 1eN − , 

we proceed with a singular value decomposition 1 1 1 0
TU V X∑ = , where all matrices are 

e eN N× . Through designating 2X  as 

 

( )
1

2 2
2 1 1 1 0 ,

e

T T
NX I U I V

−

−= + ∑ �   (3.26) 

 

we then end up with the same final update Eq. (3.24).  

For implementation, we give the following steps: 

1. Compute the singular value decomposition: 0 0 0
TU V S∑ = ; 

2. Form the matrix product: 0 0 0
TX U E+= ∑ ; 

3. Compute the singular value decomposition of 0X : 1 1 1 0
TU V X∑ = ; 

4. Form the matrix product: 1 0 0 1
TX U U+= ∑ ; 

5. Update the ensemble mean from the equation: 

( ) ( )12
1 1 1'u f T T fy y Y S X I X d Hy

−
= + + ∑ − ; 

6. Form the matrix product: ( ) ( )
1 1

2 22 2
2 1 1 1 1 1 0e

T T T
NX I X S I U I V

− −

−= + ∑ = + ∑ � ; 

7. Compute the singular value decomposition of 2X : 2 2 2 2
TX U V= ∑ ; 

8. Evaluate the analyzed ensemble perturbations from 

( )'
2 2 2'u T TY Y V I= − ∑ ∑ Θ  and add the mean to arrive at the final 

analyzed ensemble.  
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3.2.4 Square Root Algorithm without Measurement Perturbations 

Another approach is to use square root algorithm with the ensemble measurement 
error covariance matrix ,d eC  approximating dC . This method needs to specify ,d eC , 

which can be generated by first sampling the matrix of ensemble perturbations E  and 
then computing ,d eC  with Eq. (3.8).  

To implement this procedure, Eq. (3.25) and its pseudo-inverse are used: 

0 0 0
TU V S∑ =  and 0 0 0 .TS V U+ += ∑  ( )0 0 0 0 01 T T

e dX N U C U+ += − Σ Σ  is then computed.  

We proceed with an eigenvalue decomposition of 0X , 0
TZ Z XΛ = . After that, 

with the definition of 1 0 0
TX U Z+= Σ , the solution for the analysis ensemble perturbations 

can be expressed as  

 

( )'
2 2' ,u T TY Y I X X= − Θ   (3.27) 

 

where 2X  is defined as 

 

( ) ( )
1 1
2 2

2 1 1 0 .
e

T T T
NX I X S I Z I V− −

−= + Λ = + Λ �  (3.28) 

 

This approach is similar to the previous square root algorithm except that we first 

specify the measurement error covariance matrix.  

3.3 MEASUREMENTS OF THE ENKF PERFORMANCE 

It is highly desirable to quantify the matching results from the EnKF. Basically, 

the statistical information such as mean and variance describing the most likely trend and 

uncertainty, respectively, can be directly used for result quantification. Here, we discuss 
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the quantifications for the matching parameters and prediction results in two scenarios: 

one is for a synthetic case and the other is for the real field application. 

For a synthetic case, the reference is known and can be compared with the mean 

of ensemble by the root mean square (RMS) 

 

( )

( )

2

, ,
1

2

, ,
1 1

1RMS  

1 1          =  ,
e

N

mean i ref i
i

NN

i j ref i
i je

y y
N

y y
N N

=

= =

= −

−

∑

∑∑

  (3.29) 

 

where, i is the gridblock index; j is the index for ensemble members; N  is the total 

number of reservoir active gridblocks; eN  is the total number of ensemble members; 

,mean iy  is the mean value in the i–th gridblock of the matched ensemble; ,ref iy  is the 

“true” value in the i–th gridblock of the reference.  

In addition, it is easy to plot and compare the predictions of production rate for 

each well and overall cumulative oil recovery from the matching field with the 

corresponding results from the reference model.  

However, the reality is more difficult since we do not know the true answer. 

Fortunately, at the end of the final matching time, we can rerun the updated mean model 

from the beginning. By using the measurements from each well, similar to Eq. (3.29), the 

root mean square can be defined as 

 

( )
, ,, 2

, , , ,
1 1 1, , ,

1 1 1RMS  ,
w i jw it NNN

mean measure
i j k i j k

i j kt w i w i j

y y
N N N= = =

= −∑ ∑ ∑  (3.30) 
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where, i is time index; j is well index; tN  is the total number of measurement times; 

,w iN , the total number of wells at the i–th measurement time, varies over the different 

time periods; , ,w i jN , the total number of measurement data in the j–th well at the i–th 

measurement time, varies both in the different wells and over the different time periods; 

, ,
mean
i j ky  is the k–th simulation data in the j–th well at the i–th measurement time; , ,

measure
i j ky  

is the k–th measurement datum in the j–th well at the i–th measurement time. Note that 

the RMS is a scalar and we expect it is gradually smaller and smaller.  

For prediction quantification, we run each matched model and obtain the 

statistical information, such as P10, P50, and P90. In other words, if we finally get eN  

number of matched models, we run each case forward to the final time. During the 

prediction period, for any specified time, we have eN  number of prediction values and 

therefore we can calculate P10, P50, and P90 from the cumulative density function. 

Plotting all the P10 data with the prediction time gives P10 curve. Similarly, P50 and P90 

curves are available. Figure 3-5 shows the probability density curve and cumulative 

density curve, P10, P50, and P90 in the standard Gaussian distribution.  

Here, the cumulative density function is the cumulation of the probability of all 

the outcomes up to a given value. Similarly, the probability density function is the 

probability density of a continuous random variable.  

Note that P10, a pessimistic estimation, means the value of the real reservoir has 

10 percent possibility below this P10 value. In a similar way, P90, an optimistic 

estimation, means the value of the real reservoir has 90 percent possibility below this P90 

value.  

Also note that P50 shows the most likely trend while the interval of P10 and P50 

can be taken as the uncertainty band.  
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3.4 SUMMARY 

Chapter 3 has concentrated on the theory of the EnKF. The implementation 

flowchart, basic assumptions and relationship with Bayesian concept are illustrated. The 

EnKF is a Monte Carlo approach using multiple models sequentially. The initial 

realizations are usually generated randomly from the geological prior knowledge. A 

closed loop consisting of forecasting and assimilation steps follows. The forecasting step 

is implemented by running all the independent reservoir simulation models directly. Four 

different schemes for the assimilation step are studied in this chapter. The coding steps 

for each method are given in detail. The approaches for qualifying the matching results 

and predictions are also discussed.  

This chapter is a fundamental background for the following several chapters, 

where we will discuss the impact of different assimilation schemes, improve the initial 

random sampling strategy, and modify the EnKF method by using a weighted mean in 

the assimilation equation.  
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Figure 3-1: Traditional history matching using all the available data simultaneously and 
generating one “best matched” model. 
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Figure 3-2: Kalman filter based model continuously updated through sequential data 
assimilation.  
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Figure 3-3: Basic workflow chart of the EnKF. Reservoir model parameters are updated 
via the EnKF as new measurements are available. 

 

Figure 3-4: Illustration of the EnKF from the point view of Bayesian concept. 
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Figure 3-5: Schematic curves of cumulative density function (CDF) and probability 
density function (PDF) with P10, P50 and P90 for standard Gaussian distribution. The 
horizontal axis is the value of random event and vertical axis is either CDF or PDF. 
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Chapter 4: Investigation of Assimilation Schemes in the 
Ensemble Kalman Filter 

In the previous chapters, we have reviewed the current status of history matching 

and the basic theory of the ensemble Kalman filter (EnKF). In this chapter, we will apply 

the EnKF to a two-dimensional waterflooding case. The advantage of the EnKF is 

demonstrated and the different assimilation methods are investigated. In addition, the 

impacts of assimilation interval and the assumption of independent measurement errors in 

the history matching results are discussed.  

4.1 DESCRIPTION OF A TWO-DIMENSIONAL WATERFLOODING CASE 

Figure 4-1 shows a geostatistical permeability reference map of a two-

dimensional field (50×50×1 grid with cell size 20 feet×20 feet×2 feet), generated by 

the Sequential Gaussian Simulation method sgsim.exe from GSLIB package (Deutsch 

and Journel, 1998). The unit of permeability is millidarcy. After logarithm 

transformation, the permeability field, ln k , has a Gaussian histogram with mean 6.0 and 

variance 3.0. The variogram of ln k  is spherical with a range of 200 feet and 40 feet in 

the direction of 45 degree and 135 degree, respectively. All wells are vertical. In an aerial 

map, one injector (I) is in the center and four producers (P1 to P4 in anti-clockwise) are 

located in the four corners.  

Initially, the reservoir is oil saturated and the pressure is 6,000 psi at the top. The 

injector has a primary constraint with a constant injection rate of 700 STB/day and a 

secondary constraint with a maximum bottomhole pressure (BHP) of 10,000 psi. All 

producers are producing constantly with a total volume of 200 STB/day and will switch 

to BHP control if the BHP drops down to 4,000 psi. The mobility ratio of water and oil is 

10. Corey-type model with exponential 2 is used for relative permeability curves. For 

convenience, both oil and water have zero residual saturation. Compressibility and 
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capillary pressure are ignored. The commercial reservoir simulator ECLIPSE 100TM is 

used for reservoir simulation, running from 0 day up to 700 days. The results of BHP in 

each well, oil production rates (OPR) and water production rates (WPR) in producing 

wells are shown in Figures 4-2 through 4-4. 

The reference permeability field is considered as truth and its corresponding 

dynamic data (BHP, OPR and WPR) are measured directly from the simulation output 

every 30 days up to 300 days. The measurement errors obey Gaussian distributions with 

standard deviations of 3.0 psi, 1.0 STB, and 2.0 STB for BHP, OPR and WPR, 

respectively.  

Initial ensemble of 200 permeability models is generated unconditionally by the 

Sequential Gaussian Simulation method sgsim.exe with the same histogram and 

variogram as the reference field. Other parameters (porosity = 0.2, relative permeability 

curves, initial pressure = 6,000 psi, and initial waster saturation = 0.0) are assumed 

known without uncertainty. Each ensemble member is updated at every 30 days by 

assimilating the observed production data (BHP, OPR, and WPR), followed by a 

confirming step proposed by Wen and Chen (2005). Also note that the reservoir reference 

and operation schedules are identical to the case used by Wen and Chen (2005). 

There are totally 2,500 permeability values, unknown in each gridblock. We also 

have the same amount of unknown water saturation and pressure in each gridblock. 

Permeability is deemed as a static parameter while water saturation and pressure are 

dynamic parameters. Therefore, the state vector for the j-th ensemble member is formed 

in the following order 
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  (4.1) 

 
where, 1ln k  to 2500ln k , ,1wS  to ,2500wS  and 1P  to 2500P  denote lognormal 

permeability values, water saturations and reservoir pressures for the whole field, 

respectively. 1OPR  to 4OPR  and 1WPR  to 4WPR  are oil production rates and 

water production rates in four producers at the current observation time, respectively. 

1BHP  to 4BHP  and 5BHP  symbolize bottomhole pressures in four producers and one 

injector at the current observation time. 
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4.2 DISCUSSION ON ASSIMILATION SCHEMES 

With the same observation data and same initial realizations, we investigated the 

impact of different assimilation schemes on the matched results and their corresponding 

variances.  

First, we used direct inverse calculation. Figure 4-5 shows the evolution of mean 

(i.e., estimation) and variance fields (i.e., uncertainty) computed from the ensemble at the 

end of 0, 30, 60, and 300 days, respectively. At the beginning, no measurement 

information is available. The geological prior knowledge in this case is uniform. At the 

end of the first month, the first 13 observations are obtained and assimilated into 200 

ensemble models. The mean of these 200 updated models captures the main features of 

the reference permeability field, such as high and low permeability zones. At the same 

time, the uncertainty (shown as variance of the models) reduces, especially in the areas 

near well locations. At the end of 120 days, the permeability field has been well 

recovered and the variance decreases significantly. Later on, the field does not change 

much, which means that the useful information from the field measurements is less than 

that at the beginning time. Compared with the reference field, the matched result at the 

end of 300 days has the similar structure. However, the width of the high permeability 

band is smaller and looks a little bit messy.  

With the mean permeability fields updated from different times, we reran the 

cases from the beginning and performed the predictions up to 700 days. Figure 4-6 

presents well bottomhole pressures using the mean models updated at the end of 30, 60, 

120, and 300 days, respectively. By using the mean models assimilating only production 

data (e.g., 30, and 60 days) in the early time, the predicted well performances, although 

improved, still significantly deviate from the reference case. Hence, the assimilation 

production data up to 60 days is not sufficient to capture the real spatial structure. 
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However, the updated model at 120 days has results very close to the performance of the 

reference model. In addition, it is of interest to figure out how the EnKF works gradually 

on the basis of four plots in Figure 4-6. The model at 30 days has values too high for all 

the wells. The model at 60 days is then adjusted and turns out to be too small. The model 

is tuned again and achieves very good matches within the range of results from 30 days 

and 60 days. Therefore, the EnKF demonstrates its high capability for fast convergence 

with very limited observation numbers (13 values at every measurement time in this 

case). 

Similarly, Figure 4-7 and Figure 4-8 illustrate well oil production rates and water 

production rates by using the matched models at different times. Except for well P4, there 

is no significant difference between the curves from the matched models at the different 

times and the reference curves. At the end of 120 days, the model achieves good matches 

on both oil and water production rates at well P4. In particular, the peak of oil production 

rate and the water breakthrough time are well recovered. From Figure 4-6 to Figure 4-8, 

we see that the final model not only reproduces the production history, but also gives 

satisfactory predictions.  

Figure 4-9 presents the evolution of mean and variance fields updated by the 

EnKF with standard assimilation method at the end of 30, 60, 120, and 300 days. 

Comparing with Figure 4-6, we found that the value change in the mean permeability 

field at the different assimilation step is milder. In other words, there is no dramatically 

high permeability zone, nor extremely low permeability area. The whole map does not 

show clearly high and low permeability bands, either. These characteristics are further 

confirmed from the variance maps. In comparison with the picture in Figure 4-6 at the 

corresponding time, the variance changes more slowly and still has high values even at 

the end of 300 days. This indicates that the standard EnKF assimilation scheme has 
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slower convergence and higher uncertainty, compared with the performance from the 

direct inverse approach at the same time period. The standard EnKF has difficulty to 

acquire severely heterogeneous reservoir field. Consequently, the uncertainty, 

represented by the ensemble variance, still keeps a high level even at the late production 

period.   

In the similar procedure described previously, Figure 4-10 to Figure 4-12 lay out 

BHP, OPR and WPR by running the models updated from different times. Generally, we 

obtained acceptable matches for each well. However, these results are not as good as 

those obtained from the direct inverse approach. 

Figure 4-13 shows the evolution of mean and variance fields updated by using 

square root algorithm with measurement perturbations. Figure 4-14 to Figure 4-16 are the 

corresponding well production curves associated with the references. This method 

converges fast and has clearly high and low permeability zones at the end of 300 days. 

All the well bottomhole pressures and production rates have good agreement with the 

references.  

Figures 4-17 through 4-20 are results from the square root algorithm without 

measurement perturbations. This method also achieves satisfactory matches. Simply from 

the matched permeability fields and well data, we realized that the four methods all 

performed well. Roughly, direct inverse method, square root algorithms with and without 

measurement perturbation methods are better than standard EnKF assimilation method.  

The CPU times for EnKF assimilations are similar: all within one second. Since 

the number of observation data at each assimilation step (thirteen values) is quite small 

and less than the ensemble size (two hundred), we do not worry about the rank loss and 

easily inverse the covariance matrix. More generally speaking, as long as the number of 

observation data is smaller than the ensemble size, we can use direct calculation. 
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However, in the case of large data at each assimilation step, particularly with the 

installation of permanent sensors and four-dimensional time lapse seismic data, the direct 

inverse is time consuming and no longer practical. The square root algorithms with and 

without measurement perturbations look promising since they change the inverse 

calculation from the traditional dN − measurement space to the eN − dimensional 

ensemble space. Here, dN  denotes the number of unknown model parameters and eN  

represents the number of ensemble members. Typically, d eN N� . In addition, the 

square root algorithms are applicable for low-rank conditions. Hence, we recommend the 

square root algorithms for the assimilation step for the large scale observations.  

With mean models from different methods at the different assimilation times, we 

ran simulation from the beginning up to 700 days. The purpose is to illustrate and 

compare history matching (from 0 day to 300 days) and forecasting (from 300 days to 

700 days) behaviors with the reference results. We calculated the root man square (RMS) 

values of the differences between well production data with the references. Figure 4-21 

shows the RMS profiles of BHP, OPR, and WPR for direct inverse, square root with 

measurement perturbations, and square root without measurement perturbations. In 

Figure 4-21, these three methods have similar performances on well BHP, but square root 

algorithm with measurement perturbations has the best overall results for well OPR and 

WPR. From this point of view, we recommend this square root algorithm with 

measurement perturbations for the assimilation step in the EnKF implementation.  

However, Lawson and Hansen (2004) expressed a doubt on the performance of 

the square root algorithm in the severely nonlinear problem because this algorithm more 

easily diverges from the non-Gaussian distribution and causes the ensemble collapse. 

Similarly, Leeuwenburgh et al. (2005) evaluated the standard EnKF assimilation and the 

square root algorithm using an ocean general circulation model. They found that the 
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mean states produced with the standard EnKF are generally slightly better than those 

from the square root algorithm. They also showed that the ensembles after assimilation 

step are highly non-Gaussian introduced by the square root algorithm. The authors 

projected that this problem is possibly a consequence of using the singular value 

decomposition, and such decomposition makes the abnormal realization contribute 

greatly to the updated ensemble members. In this paper, the authors’ projection was 

confirmed by the skewness measure and 2χ  tests. Evensen (2007) reevaluated the 

square root schemes by a simple linear advection model and conjectured that the random 

rotation in the square root schemes had an undesirable impact on the results. Even for the 

linear system, such random rotation is necessary to ensure that a randomized ensemble 

which properly represents the error statistics will be obtained. Therefore, the real reason 

is still unclear. 

In our application, we did not face the problem addressed by Leeuwenburgh et al. 

(2005). Though further investigation is needed, since the square root algorithm strictly 

follows the idea of the Kalman filter, we believe this algorithm is a good approach. 

4.3 DISCUSSION ON ASSIMILATION INTERVAL 

The measurement data, utilized in the discrete style, is always associated with 

errors and leads to uncertainty. Meanwhile, the determination of measurement frequency 

always makes the engineer more fidgety. Ideally, we want to extract the important 

information only at certain critical times and update reservoir models while monitoring 

the remaining data for some possible analyses. A current trend with the advanced 

instruments is to obtain as many measurements as possible. For example, increasing 

deployment of permanent sensors leads to a high frequency of data output. If we update 

the reservoir model through history matching as soon as the new data is available, it will 

be very time consuming and implementation unfriendly because of the relative large 
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ensemble size in the EnKF method. On the other hand, production data may be redundant 

and correlated. No new information will be absorbed if the same type of data is observed 

in a too-short period. The smart interval could liberalize engineers from the heavy work 

of data measurement and assimilation into the reservoir model. In addition, the redundant 

data might result in unexpected trouble. Park and Choe (2006) stated that some unwanted 

measurements could cause a worse adjustment. Therefore, it is valuable to assess the 

impact of the assimilation interval and properly sample the data from the field leaving the 

measurements insensitive to the model updating. In this section, different assimilation 

intervals and corresponding effects on the updated results are discussed.  

For the same waterflooding case, we used the square root algorithm with 

measurement perturbation, but increased the assimilation interval from 30 days to 60 

days. The simulation output frequency was the same as previously, i.e., 30 days. Figure 

4-22 shows the evolution of mean and variance fields at the end of 60 days, 120 days, and 

300 days. We found that they are very similar to the results using an assimilation interval 

of 30 days, as shown in Figure 4-13. Figures 4-23 through 4-25 show the well 

performances using the permeability field at the end of 300 days. They are identical with 

the plots at the end of 300 days in Figures 4-14 through 4-16. This implies we can 

increase our assimilation interval save the time for data communication. 

Note that the increase of assimilation interval is based on our specific case. 

Theoretically, such an interval should be treated case by case. In practice, information 

such as water and gas breakthrough, increase or drop of water cut and gas-oil ratio, new 

operation schedule or pattern, and adding new well, is very important and should be 

measured and incorporated into model updating. On the other hand, the data in the 

plateau period of the curves contains less information and contributes less to history 

matching. Such data can be screened out.  
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4.4 DEPENDENCE OF MEASUREMENT ERRORS 

In the previous literature, measurement errors were assumed to be independent. In 

reality, however, the measurement errors from the same instrument at the different time 

should have certain correlations. Here, we try to analyze the impact of this assumption on 

the EnKF results.  

We ran two scenarios with the square root algorithm without measurement 

perturbation: one applies dependent measurement errors and the other assumes 

independent measurement errors. Figure 4-26 shows the obtained mean permeability 

fields at the end of 300 days. Intuitively, we found no significant difference in either 

mean permeability fields or associated variances.  

To further compare these two methods, we calculated the RMS between well 

production data and the references. Figure 4-27 shows the RMS plots of the 

performances. For the BHP plots in four wells, the RMS in the dependence of 

measurement errors drops faster and outperforms independence of measurement errors. 

Results from the independent measurement errors for the OPR in well P1 converge faster 

at the beginning and turn worse later. In the end, both methods have similar RMS values. 

The method of dependent measurement errors has a better performance on the OPR in 

wells P2 and P4, while the method of independent measurement errors is superior to the 

dependent case on the OPR in well P3. Observations similar to the OPR are illustrated in 

RMS plots for the WPR values in wells P1, P2, P3 and P4. Overall, except the OPR and 

WPR results in well P3, the performances of the dependent measurement errors are better 

than those from the independent measurement errors.  

Hence, the assumption of independent measurement errors has a negative impact 

on the final matching results while the dependent measurements improve the 
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performance. Note that we use the dependence of measurement errors from Figure 4-17 

to Figure 4-20.  

Simulations were performed using 10% noise in the measurements. The results of 

the simulations were in good agreement with the reference permeability map. However, 

when we performed the simulations with 20% noise, the results did not agree well with 

the reference data.   

4.5 SUMMARY 

It has been shown that after several sequential data assimilations, the updated 

models from the EnKF, though quite different from the early models are still consistent 

with the early data and that the material balance errors are small in comparison to the 

uncertainty in the actual values (Gu and Oliver, 2006). In this sense, the EnKF in the 

sequential manner, which only utilizes the latest data while honoring all the previous 

information, is encouraging for reservoir history matching. 

Chapter 4 has concentrated on the demonstration and studies of a waterflooding 

synthetic case by using the EnKF. With limited measurements, the EnKF is promising in 

its fast convergence and reasonable matching results. The results from four assimilation 

methods are discussed. The influences of the assimilation interval and the assumption of 

independent measurement errors are also addressed.  

With the same initial realizations and same measurement data, we studied four 

methods extensively: direct inverse, standard EnKF assimilation, and square root 

algorithms with and without measurement perturbations. The results show that direct 

inverse method, square root algorithms with and without measurement perturbation 

methods are better than the standard EnKF assimilation method. For a small number of 

observations, direct inverse is convenient. For the consideration of algorithm generality, 

we recommend the square root approaches.  
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It is desirable to investigate when we should assimilate data and implement 

history matching. In order to explore the impact of assimilation interval on the results, we 

doubled the assimilation interval time in the study and still obtained the same level of 

accuracy for the final results. Therefore, the data in the stable period can be sampled in a 

large time interval. On the other hand, it is always helpful to analyze and validate the 

measurements to capture the useful data such as water breakthrough, dramatic change of 

water cut and gas-oil ratio, and new well pattern replacement.  

Measurement errors in the literature were assumed to be independent. In this 

chapter, we found that the consideration of correlation among measurement data 

improved the matching performance. In practice, it is reasonable to take the 

measurements to be dependent, especially for the same type of data in the same well or 

even from different wells.  

This chapter focused on the issues on the assimilation step in the EnKF 

implementation. The initial realization sampling and improved strategy will be discussed 

in the next chapter.  
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Figure 4-1: Reference permeability field after the lognormal transformation for a two-
dimensional waterflooding synthetic case. The legend unit is milidarcy with the range 
from 0 (dark blue) to 9 (dark red). The orientation of the field is 45 degree with clear high 
and low permeability channel zones. 
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Figure 4-2: Bottomhole pressure for one injector and three producers in the reference 
field. 
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Figure 4-3: Oil production rate for four producers in the reference field. 
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Figure 4-4: Water production rate for four producers in the reference field. 
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t = 0 days                              t = 30 days 

    

t = 60 days                             t = 120 days 

 

t = 300 days 

    

Figure 4-5: The evolution of mean (left hand side) and variance (right hand side) fields 
updated by the EnKF with direct inverse calculation method at selected times. 
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(a) BHP at Injector                          (b) BHP at Well P1 
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(c) BHP at Well P2                          (d) BHP at Well P3 
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Figure 4-6: Well bottomhole pressures simulated from the mean permeability model 
updated by the direct inverse method at different times. 
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(a) OPR at Well P1                         (b) OPR at Well P2 
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 (c) OPR at Well P3                        (d) OPR at Well P4 
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Figure 4-7: Well oil production rates simulated from the mean permeability model 
updated by the direct inverse method at different times. 

 

 

0

40

80

120

160

200

0 100 200 300 400 500 600 700

Time, days
O

PR
,  

ST
B

Reference

30 Days

60 Days

120 Days

300 Days

0

40

80

120

160

200

0 100 200 300 400 500 600 700

Time, days

O
PR

,  
ST

B

Reference

30 Days

60 Days

120 Days

300 Days



 67

 

(a) WPR at Well P1                         (b) WPR at Well P2 
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 (c) WPR at Well P3                         (d) WPR at Well P4 
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Figure 4-8: Well water production rates simulated from the mean permeability model 
updated by the direct inverse method at different times. 
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               t = 30 days                              

     

               t = 60 days 

     

               t = 120 days 

     

               t = 300 days 

     

Figure 4-9: The evolution of mean (left hand side) and variance (right hand side) fields 
updated by the EnKF with standard assimilation method at selected times. 
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(a) BHP at Injector                         (b) BHP at Well P1 
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(c) BHP at Well P2                         (d) BHP at Well P3 
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Figure 4-10: Well bottomhole pressures simulated from the mean permeability model 
updated by standard EnKF assimilation method at different times. 
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(a) OPR at Well P1                        (b) OPR at Well P2 
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(c) OPR at Well P3                        (d) OPR at Well P4 
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Figure 4-11: Well oil production rates simulated from the mean permeability model 
updated by standard EnKF assimilation method at different times. 
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(a) WPR at Well P1                        (b) WPR at Well P2 
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(c) WPR at Well P3                        (d) WPR at Well P4 
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Figure 4-12: Well water production rates simulated from the mean permeability model 
updated by standard EnKF assimilation method at different times. 
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               t = 30 days 

     

               t = 60 days 

     

               t = 120 days 

     

               t = 300 days 

     

Figure 4-13: The evolution of mean (left hand side) and variance (right hand side) fields 
updated by using square root algorithm with measurement perturbations at selected times. 
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(a) BHP at Injector                        (b) BHP at Well P1 
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 (c) BHP at Well P2                        (d) BHP at Well P3 
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Figure 4-14: Well bottomhole pressures simulated from the mean permeability model 
updated by using square root algorithm with measurement perturbations at selected times. 
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(a) OPR at Well P1                          (b) OPR at Well P2 
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 (c) OPR at Well P3                         (d) OPR at Well P4 
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Figure 4-15: Well oil production rates simulated from the mean permeability model 
updated by using square root algorithm with measurement perturbations at selected times. 
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(a) WPR at Well P1                          (b) WPR at Well P2 
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 (c) WPR at Well P3                        (d) WPR at Well P4 
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Figure 4-16: Well water production rates simulated from the mean permeability model 
updated by using square root algorithm with measurement perturbations at selected times. 
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               t = 30 days 

     

               t = 60 days 

     

               t = 120 days 

     

               t = 300 days 

     

Figure 4-17: The evolution of mean (left hand side) and variance (right hand side) fields 
updated by using square root algorithm without measurement perturbations at selected 
times. 
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(a) BHP at Injector                          (b) BHP at Well P1 
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 (c) BHP at Well P2                         (d) BHP at Well P3 
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Figure 4-18: Well bottomhole pressures simulated from the mean permeability model 
updated by using square root algorithm without measurement perturbations at selected 
times. 
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(a) OPR at Well P1                          (b) OPR at Well P2 
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 (c) OPR at Well P3                         (d) OPR at Well P4 
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Figure 4-19: Well oil production rates simulated from the mean permeability model 
updated by using square root algorithm without measurement perturbations at selected 
times. 
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(a) WPR at Well P1                          (b) WPR at Well P2 

0

40

80

120

160

200

0 100 200 300 400 500 600 700

Time, days

W
PR

, S
TB

Reference

30 Days

60 Days

120 Days

300 Days

        

(c) WPR at Well P3                          (d) WPR at Well P4 
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Figure 4-20: Well water production rates simulated from the mean permeability model 
updated by using square root algorithm without measurement perturbations method at 
selected times. 
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(a) BHP at Well I                            (b) BHP at Well P1 
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(c) BHP at Well P2                          (d) BHP at Well P3 
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(e) OPR at Well P1                         (f) OPR at Well P2 
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(g) OPR at Well P3                         (h) OPR at Well P4 
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(i) WPR at Well P1                          (j) WPR at Well P2 
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(k) WPR at Well P3                         (l) WPR at Well P4 
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Figure 4-21: RMS profiles of BHP, OPR, and WPR for direct inverse, square root with 
measurement perturbations, and square root without measurement perturbations. 
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               t = 60 days 

     

               t = 120 days 

     

               t = 300 days 

     

Figure 4-22: The evolution of mean (left hand side) and variance (right hand side) fields 
updated by using square root algorithm with measurement perturbation method at 
selected times. The assimilation interval is taken as 60 days. 
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(a) BHP at Injector                         (b) BHP at Well P1 
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(c) BHP at Well P2                         (d) BHP at Well P3 
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Figure 4-23: Well bottomhole pressures simulated from the mean permeability model 
updated by using square root algorithm with measurement perturbation method at 
selected times. The assimilation interval is taken as 60 days. 
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(a) OPR at Well P1                          (b) OPR at Well P2 
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(c) OPR at Well P3                          (d) OPR at Well P4 
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Figure 4-24: Well oil production rates simulated from the mean permeability model 
updated by using square root algorithm with measurement perturbation method at 
selected times. The assimilation interval is taken as 60 days. 
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(a) WPR at Well P1                         (b) WPR at Well P2 
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(c) WPR at Well P3                         (d) WPR at Well P4 
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Figure 4-25: Well water production rates simulated from the mean permeability model 
updated by using square root algorithm with measurement perturbation method at 
selected times. The assimilation interval is taken as 60 days.  
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(a) Mean permeability field and variance with dependence measurement errors 

 

(b) Mean permeability field and variance with independence measurement errors 

 

Figure 4-26: Mean permeability fields and corresponding variances obtained at the end of 
300 days from square root algorithm without measurement perturbation, with the 
assumption of the dependence and independence of measurement errors, respectively. 
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(a) BHP at Well I                          (b) BHP at Well P1 
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(c) BHP at Well P2                         (d) BHP at Well P3 
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(e) OPR at Well P1                           (f) OPR at Well P2 
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(g) OPR at Well P3                           (h) OPR at Well P4 
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(i) WPR at Well P1                         (j) WPR at Well P2 
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(k) WPR at Well P3                        (l) WPR at Well P4 
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Figure 4-27: RMS profiles of BHP, OPR, and WPR for dependent and independent 
measurement errors using square root without measurement perturbation method. 
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Chapter 5: Improved Initial Sampling Strategy in the Ensemble 
Kalman Filter 

Time cost is a major concern in reservoir simulation. The ensemble Kalman filter 

(EnKF) requires multiple members and consequently runs multiple simulations during 

history matching. Therefore, the number of ensemble size directly relates to the overall 

efficiency of the EnKF. In general, the ensemble members are randomly sampled and a 

large number of realizations are needed. Without selection, however, the sampled 

realizations possibly have high correlations and impair the method performance. It is 

desirable to investigate the possible ways to reduce the number of ensemble members 

while retaining the high level of accuracy.  

The objective of this chapter is to improve the initial sampling strategy by using 

the concept of singular value decomposition (SVD). The idea is that we cleverly generate 

the initial sampling and abate the interdependences. We first address the issue of 

ensemble size, and then the SVD theory and its implementation in the initial sampling are 

introduced. Through a synthetic case, Section 5.4 provides a comparison of different 

initial sampling strategies and different numbers of ensemble size, followed by a 

summary in Section 5.5. 

5.1 ENSEMBLE SIZE 

Because the whole unknown space is represented by a limited number of 

realizations, random sampling is always an issue for the Monte Carlo approaches. In 

order to acquire the representative space, a large number of realizations are usually 

required. Meanwhile, the feature of randomization leads to the possibility of high 

dependences among these members, which greatly reduces the sampling efficiency. As a 

Monte Carlo approach, the EnKF has the above discussed problem and relies heavily on 
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the large number of ensemble size to maintain the required statistics. As a result, there are 

two closely related issues. First, the realizations are generated randomly. This limited 

number of random realizations narrows the unknown space and underestimates the 

uncertainty of the real problem. Second, in history matching approximately 200 

realizations are needed to maintain stability because a too-small size does not represent 

the statistical information and results in filter divergence or even collapse. Since each 

simulation case runs from a few minutes to a couple of days, the number of simulation 

cases needed during history matching is sensitive.  

Liu and Oliver (2005) and Gu and Oliver (2005, 2006) reported a relative small 

ensemble numbers (40 in their studies) if the uncertainty study was not a primary goal. 

However, Wen and Chen (2005) addressed this issue and found that 200 ensemble were 

needed for their case. We believe that the number of ensemble size is dependent on the 

complexity of the reservoir case. Since most reservoir models have a large number of 

unknown parameters with high heterogeneity, 200 realizations are typically required, 

particularly in the cases we investigated. Therefore, 200 simulation runs are definitely a 

computational burden.  

Two directions can be considered to alleviate the computation stress. One 

proposal is to save simulation time, such as grid reduction technique, fast proxy instead 

of full reservoir model, and parallel/distributed high performance computing. However, 

this approach does not solve the core issue, i.e., the possible correlation among 

realizations. The second solution is to selectively sample the unknown space. Methods 

for sampling a given random variable for efficient uncertainty propagation are available, 

such as the polynomial chaos expansion, Karhunen-Loeve expansion, and principal 

component analysis (Reynolds et al., 1996; Xiu and Karniadaskis, 2003; Zhang et al., 

2005; Yadav, 2006; Sarma et al., 2007). Unfortunately, such methods are usually 
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computationally slow for reservoir cases because of the eigenvalue and eigenvector 

calculations. In this chapter we use the SVD to reduce the possible correlations aroused 

during the EnKF initialization stage. We first generate a very large sampling pool. Based 

on this pool, we properly generate a small number of realizations using the SVD. With 

this small number of realizations, we demonstrate that the same level of accuracy 

compared to the results from the conventional approach is achieved.  

5.2 SINGULAR VALUE DECOMPOSITION 

The SVD, related to the concept of orthogonality, is extremely useful in matrix 

computation and matrix rank problem. It is also widely applied in satellite data storage 

and digital image processing. Here, a brief mathematical explanation is given.  
A set of vectors 1{ , , }px x"  in mℜ  is orthogonal if 0T

i jx x =  whenever i j≠  

and orthonormal if T
i j ijx x δ= . Orthogonal vectors are maximally independent because 

they point in totally perpendicular directions. A matrix m mQ ×∈ℜ  is said to be 

orthogonal if ,TQ Q I=  where I  is an identity matrix. 

If A  is a real m-by-n matrix then there exist orthogonal matrices 

[ ]1, , m m
mU u u ×= ∈ℜ"  and [ ]1, , n n

mV v v ×= ∈ℜ" , such that  

 

1( , , )          min{ , },T m n
pU AV diag p m nσ σ ×= ∈ℜ ="  (5.1) 

 
where 1 2 0.pσ σ σ≥ ≥ ≥ ≥"  

In other words, if A  is a real m-by-n matrix with m n≥  then the SVD can be 

expressed as 

 

,TA U V= Σ   (5.2) 
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where U  and TV  are orthogonal and Σ  is diagonal. That is, T
mU U I= , T

nVV I= , 

U  is an m-by-m orthogonal matrix, V  is an n-by-n orthogonal matrix, and  
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n

σ
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σ
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−
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⎜ ⎟
⎝ ⎠0

%
 

 

is an m-by-n diagonal matrix. In addition, 1 2 0.nσ σ σ≥ ≥ ≥ ≥"  The quantities iσ  are 

called the singular values of A , and the columns of U  and V  are called the left and 

right singular vectors. The number of non-zero singular values is equal to the rank of the 

matrix. Thus, if A  is singular then at least 0.nσ =  In practice, singular values are 

rarely exactly zero, but if A  is “nearly singular” some of the singular values will be 

small. The ratio of 1nσ σ  can be regards as a condition number of the matrix A . If the 

ratio is close to 1, then the columns of A  are very independent; if the ratio is large, then 

the columns of A  are nearly dependent.  

Note that the matrices TAA  and TA A  have the same nonzero eigenvalues and 

that the singular values of A  are the positive square roots of these eigenvalues. 

Moreover, the left and right singular vectors are particular choices of the eigenvectors of 
TAA  and TA A , respectively. 

More details about orthogonality and the SVD can be referred to Golub and Van 

Loan (1989), Kahaner et al. (1989) and Forsythe et al. (1977). 
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5.3 IMPROVED INITIAL SAMPLING STRATEGY 

In aerospace engineering, the satellite digitizes the picture by subdividing it into 

picture elements called pixels, and each pixel is represented by a single number. If each 

photograph were divided into 500 500×  pixels, the satellite would have to send 250,000 

numbers for each picture, which would take a great deal of time for transmission and 

affect the satellite efficiency. Thus, data compression is needed.  

The idea of data compression is that we can consider this 500 500×  array of 

numbers as a matrix A  and approximate this matrix with a “simpler” matrix which 

requires fewer numbers through the SVD. Suppose iu  and iv  are the i-th columns of 

U  and V , respectively, Eq. (5.2) can be written as 

 

1

.
n

T T
i i i

i

A U V u vσ
=

= Σ = ∑   (5.3) 

 

To compress the data, the smaller singular values are set to zero. If only 10 

singular values are used, the approximation is 

 
10

1 1

.
n

T T T
i i i i i i

i i

A U V u v u vσ σ
= =

= Σ = ≈∑ ∑   (5.4) 

 

Thus, the approximate picture depends only on the first 10 columns of U  and 

V  and the rest are zero. Instead of 250,000 numbers, the approximate picture relies on 

only 10,000 numbers.  

Figure 5-1 shows the approximate pictures with the SVD for fingerprint (Kahaner 

et al., 1989), which captures almost all the features of the original data by using only 10 
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singular values. Such capability of SVD motivates our modification on the EnKF initial 

sampling strategy in this chapter.  

In practice, we first generate a large number of random realizations and form a 

matrix A , which represents the whole unknown reservoir property space. Then, using 

the SVD, we take a small number of singular values and singular vectors to form a new 

matrix while maintaining the main structure of the matrix A , especially the mean and 

variance of each column.  
Recall that state vector ,k jy  is the j-th ensemble member at time kt . The 

dimension of state vector is ,y kN , which can change with time kt  to account for 

different amounts of production data at different times. With ignorance of time step, the 
ensemble matrix holding eN  ensemble members is defined as ( )1 2, , , ,

e

f f f f
NY y y y= …  

with dimension of ,y k eN N× . For simplification, we drop out time index k  in the later 

discussion. 

The ensemble mean is stored in each column of Y  and the ensemble 

perturbation matrix is defined as 'Y Y Y= − . Therefore, the ensemble covariance matrix 

,
y yN N

y eC ×∈ℜ  is expressed as 

 

,
'( ') .

1

T

y e
e

Y YC
N

=
−

  (5.5) 

 
Suppose the real error covariance matrix is yC , we can compute the eigenvalue 

decomposition 

 

,T
yC Z Z= Λ   (5.6) 
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where the matrices Z  and Λ  contain the eigenvectors and eigenvalues of yC . Now 

approximating the error covariance matrix with its ensemble representation, i.e., 

,y e yC C≈ , we can write 

 

( ) 2
,

1 1 1' ' ,
1 1 1

T T T T
y e

e e e

C Y Y U V V U U U
N N N

= = ∑ ∑ = ∑
− − −

 (5.7) 

 

where, U , ∑ , and TV  result from a SVD and contain the singular vectors and singular 

values of 'Y . In the limit when the ensemble size goes to infinity, the yN  singular 

vectors in U  will converge towards the yN  eigenvectors in Z  and the square of the 

singular values, 2∑ , divided by ( )1eN − , will converge towards the eigenvalues, Λ . 

This shows that there are two strategies for the approximation ,y e yC C≈ : 

We can increase the ensemble size, eN , by sampling additional model states and 

adding these to the ensemble. As long as the addition of new ensemble members 

increases the space spanned by the overall ensemble, this will result in a more accurate 
representation of yC  by an ensemble covariance, ,y eC .  

Alternatively, we can improve the condition number of the ensemble matrix by 

ensuring that the first eN  singular vectors in U  are similar to the eN  first 

eigenvectors in Z . Thus, with a given moderate ensemble size, the absolute error in the 
representation ,y eC  of yC  will be smaller for ensembles generated by such an 

improved sampling than that for random ensembles. 

The first approach is the standard Monte Carlo method used in the traditional 

EnKF where the convergence is slow. The second approach has a selection process 

through which ensemble members have less dependence and span a larger space. These 

two strategies are, of course, used in combination when the initial ensemble is created in 
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the EnKF: generate a large sample pool with the first approach and then select important 

ones using the second approach. In this way, an eN  member ensemble with better 

conditioning is generated while the computation of yC  eigenvectors, which is too large 

to allow the direct computation, is avoided. In more detail, such a concept is illustrated in 

Figure 5-2: first generate a large ensemble eNβ  (β  is a natural number and greater 

than 1), and then resample eN  members along the first eN  dominant singular vectors 

of this larger start ensemble. Note that, in application, an extra scaling step is needed to 

retain the correct variance in the new ensemble. 

Evensen (2004) proposed a sampling strategy in the EnKF on an oceanography 

application. Based on his proposal, we apply the following sampling procedures for 

reservoir history matching process.  

1. Sample a large ensemble of reservoir states with eNβ  members and store 

the ensemble perturbations in ' ;y eN NY β×∈ℜ  

2. Compute the SVD, ˆˆ ˆ ˆ' TY U V= ∑ ; 

3. Retain only the first e eN N×  quadrant of ∑̂  which is stored in 

e eN N×∑∈ℜ ; 

4. Scale the non-zero singular values with β ; 

5. Generate an eN  ensemble using only the first eN  singular vectors in Û  

and store in U ; 

6. Generate a random orthogonal matrix 1
e eN NTV ×∈ℜ  by the SVD of a 

random ee NN ×  matrix, 1 1 1
TM U V= ∑ ; 

7. Obtain the improved sampling members 1
1' ;TY U V
β

= ∑  

8. Rescale the ensemble perturbation 'Y  to ensure the zero mean and 

specified variance. 
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5.4 CASE STUDY AND DISCUSSION 

The two-dimensional waterflooding case in Chapter 4 is used continuously here. 

We will delve into two main concerns of the initial sampling in the EnKF application: 

one is whether the mean and variance of the initial random sampling members should be 

fixed to the specified mean and variance; the other is how to improve the initial sampling 

strategy with limited ensemble numbers. 

5.4.1 Property Adjustments of the Initial Sampling  

In the previous chapter, 200 permeability fields are initially sampled using the 

Sequential Gaussian Simulation method sgsim.exe (Deutsch and Journel, 1998). For the 

limited ensemble size, the mean and variance of each sample are not exactly same as 

those specified, and will fluctuate to some extent. To investigate the influence of this 

fluctuation on the updated results, we ran two cases by using the direct inverse 

calculation for the EnKF assimilation step. In the first case, we generated 200 initial 

ensembles from sgsim.exe and used them directly for permeability fields. In the second 

case, based on initial ensemble realizations from sgsim.exe, we corrected their means and 

variances. For each realization, this was done by subtracting the mean and then dividing 

the number of gridblocks by the square root of the ensemble variance. We then 

transformed the logarithm permeability with mean 6.0 and variance 3.0 to the real field. 

Figure 5-3 shows the mean permeability fields with and without sampling fix at the end 

of 300 days. The results from the two approaches are almost the same. With these 

matched fields, we reran the cases from the beginning. No significant differences were 

found in the production histories from the two cases and the reference, i.e., well 

bottomhole pressures, water rates and oil rates. Figure 5-4 presents oil and water rates at 

well P3 by the mean permeability fields shown in Figure 5-3. We have not seen any big 

differences in the results with and without initial sampling fix process.  
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The results also indicate that it is not critical whether the initial sampling 

members have exactly the same statistical information as the reference field, such as 

mean and variance. Therefore, the EnKF is pretty robust and does not have a strict 

requirement for the initial samplings.  

5.4.2 Initial Sampling with the SVD 

We now compare the results from different ensemble numbers: (1) 100 random 

realizations, (2) 200 random realizations, and (3) 100 realizations generated by the SVD 

from 400 random realizations.  

Figure 5-5 shows logarithm permeability fields of the reference and three history 

matching results using the above different ensemble numbers at the end of 300 days. In 

this figure, 100 random realizations are insufficient to represent the unknown model 

space and the results deviate from the references to some extent. The performance is 

improved when the ensemble number is doubled. On the other hand, the permeability 

field generated by 100 realizations with the SVD is identical to the field generated by 200 

realizations without the SVD. Both of them capture the main feature of the reference field 

and are better than the results from 100 random realizations. In particular, many thin and 

high permeability strips and dots exist in the field from 100 random realizations and have 

the potential for computational convergence problems. Compared with the reference map, 

the results from 200 realizations and 100 realizations with the SVD have clearer 

configuration for high and low zones. This suggests that a large number of realizations is 

needed if sampled randomly, and that the SVD sampling strategy has a positive impact 

on the matching result.  

For each of these permeability fields, we ran one simulation from the beginning 

up to 700 days and plotted well production curves. Figure 5-6 illustrates the BHP of wells 

P1 and P2, OPR and WPR of well P4. For BHP in well P1 and P2, the results from 100 
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realizations drop earlier and faster than the reference curves and generally underestimate 

the bottomhole pressure. The performances from 200 random realizations and 100 

realizations with the SVD are very close to the references, and 100 realizations with the 

SVD are even superior to 200 random realizations. Similar observations are obtained 

from OPR at well P4. The results from 200 random realizations and 100 random 

realizations overestimate and underestimate the oil production, respectively. The curve 

from 100 realizations with the SVD lies between the reference and the curve from 200 

random realizations. As for water cut at well P4, the curve from 100 random realizations 

is higher than the reference while the breakthrough from 200 random realizations is 

postponed.  

Therefore, with some overhead time at the beginning to generate 100 realizations 

from 400 random initializations, the results from 100 realizations with the SVD perform 

comparably with those from 200 random realizations. The half deduction of the ensemble 

size saves much time since the most time is spent in the simulation running in the real 

practice.  

5.5 SUMMARY 

The initial sampling is a big issue for all Monte Carlo methods. Traditionally, the 

number of realizations is too large to be practical. This Monte Carlo method needs a large 

number of realizations to get stable results and therefore requires a large amount of 

computational time. For history matching, the realizations are randomly generated with 

geostatistical constraints. These randomly selected realizations may have a high 

correlation and affect the representation of the sampling space. Also, the random feature 

creates stability problems. In this paper we have investigated the initial sampling strategy 

for the EnKF and introduced an improved sampling approach based on the SVD: we 
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sample a large number of realizations and then use the SVD to resample a small group of 

realizations with less linear dependence. In more detail, we have done three aspects. 

First, we consider ensemble size. It is difficult to find the proper number of 

realizations for the EnKF during history matching. Through a two-dimensional case, we 

found that 100 random realizations are insufficient to represent the whole unknown space 

of reservoir model parameters. Two hundred realizations generate better results; however, 

the total simulation time is doubled. Of course, this conclusion is based only on our 

specific case. Considering the strong nonlinearity and heterogeneity in the reservoir, we 

suggest that if the initial random sampling is used, 200 realizations are required to ensure 

a good capture of the initial uncertainty. 

Second, we consider the sampling fix. Supposing we know the mean and variance 

of the initial reservoir model from the geological knowledge, the sampled multiple 

realizations are not guaranteed to have the exact mean and variance. Our study 

demonstrates that there is no big difference in the matching performances from random 

realizations with and without sampling fix for the desired mean and variance. This means 

that the EnKF itself is robust. More importantly, since it is impossible to accurately know 

the mean and variance of the reservoir in reality, we do not need to care much the mean 

and variance of the initial realizations.  

Third, we consider an improved sampling strategy with the SVD. We used the 

sampling strategy with the SVD to study the permeability field and found that the 

modified sampling strategy has a positive impact on the matched results. In our example, 

by using 100 realizations, we achieved the same level of accuracy compared to the results 

from the conventional approach using 200 realizations. Considering the cost of reservoir 

simulation for each realization, this reduction of realizations can save a significant 

amount of time and expense.  
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Figure 5-1: Approximating pictures with the SVD (Kahaner et al., 1989). 

 

Figure 5-2: Illustration of the improved sampling strategy through the SVD. 

y eN Nβ×ℜ

y eN N×ℜ
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(a) Mean ln( )k  and variance with the sampling fix at then end of 300 days 

      
 

(b) Mean ln( )k  and variance with the sampling fix at then end of 300 days 

     

Figure 5-3: Mean permeability fields and the associated variance maps at the end of 300 
days with and without initial sampling fix. 
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(a) OPR at well P3 
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Figure 5-4: Well oil and water production rates simulated from the mean permeability 
model updated with and without the initial sampling fix, respectively, along with the 
reference curves. 
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(a) Reference                          (b) 100 Random Realizations 

   

 

(c) 200 Random Realizations              (d) 100 Realizations with the SVD 

      

Figure 5-5: Logarithm permeability fields of reference, and three updated results at the 
end of 300 days using 100 realizations, 200 realizations, and 100 realizations with the 
SVD, respectively. 
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(a) BHP at well P1 
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(b) BHP at well P2 
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(c) OPR at well P4 
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(d) WPR at well P4 
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Figure 5-6: Well performances from different updated permeability fields with the 
comparisons with the references.
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Chapter 6: Improved Assimilation Algorithm in the Ensemble 
Kalman Filter 

The ensemble Kalman filter (EnKF) involves the initial sampling, forecasting and 

assimilation steps. It tunes multiple members sequentially and updates the statistical 

mean and variance of the model. Many applications have been reported in various 

literatures. Unfortunately, we have not seen much information on the modification of the 

EnKF algorithm. As we know, the forecasting step is implemented by running the 

reservoir model simulator. In the previous chapters, the improved initial sampling 

strategy and different approaches to solving the assimilation equation have been 

addressed. In the assimilation equation, the ensemble mean is calculated through equally 

weighing all the members. Therefore, the contribution factor to the mean from each 

member is the same. The purpose of this chapter is to propose a modified assimilation 

equation by introducing a weighting factor for each ensemble member. We also 

investigate the EnKF application for a modified field case of a complex seventeen-layer 

reservoir which has a strong heterogeneity. Throughout this case, the performances of the 

EnKF on production history match and forecasting, field permeability match, dynamic 

reservoir saturation and pressure are discussed. In addition, we investigate the impact of 

geological uncertainty in the initial ensemble generation on the final matching results. 

Two scenarios which have the same semivariogram as the reference field are 

implemented and their results are discussed.   

We first give a detail discussion of the EnKF assimilation equation and other 

stochastic methods used in the engineering and science fields. Section 6.2 presents the 

proposed algorithm through modifying the mean and consequently reshaping the Kalman 

gain. A case study where the geologic information is estimated in the initial ensemble 
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members is demonstrated in Section 6.3, followed by another case study where the true 

geologic information is applied in the initial ensemble generation. Section 6.5 presents a 

summary of the chapter. 

6.1 INTRODUCTION 

From a statistical point of view, Bayes’ theorem illustrates that the probability 

density of an unknown parameters ψ  given a new set of observations d  is expressed 

by 

  
( | ) ( )( | ) .

( | ) ( )
d m

m
d m

f d ff d
f d f d

ψ ψψ
ψ ψ ψ

=
∫

  (6.1) 

 

This means the probability density function (pdf) of the model given the observations is 

expressed by the product of the prior pdf of the model and that of the observations given 

to the model. The denominator is a constant for normalization. The equation also presents 

such a simple formulation for data assimilation that the posterior pdf can be obtained by 

simply multiplying the densities of model and observations.  

However, the highly nonlinear nature of reservoir structure and fluid flow 

together with the relatively sparse observations make the history matching problem 

nonlinear. The EnKF allows the errors evolve with the nonlinear model equations by 

performing an ensemble of model runs. The ensemble members are a certain 

representation of the prior model pdf and the posterior pdf is represented by a weighting 

of these ensemble members. This weighting is dependent on the value of the observations 

given an ensemble member. Consequently, everything seems straightforward. 

Unfortunately, all the Kalman-based methods assume at the assimilation step that either 

the model is linear or that the pdf of the model parameters is a Gaussian distribution. For 
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observations, the assumption is that the pdf is a Gaussian distribution and that the 

measurement operator, which produces the model equivalent of an observation, is linear. 

Through reported applications, we have seen most cases obtained acceptable matching 

results even though the above-mentioned assumptions were not fulfilled. The problem is 

that the EnKF can produce unbalanced model parameters at assimilation steps because 

each updated ensemble member is just a linear combination of the prior ensemble. For 

example, negative water saturations or unbalanced dynamic parameters can occur. This is 

due to the Gaussian assumption on the pdf, while water saturation, for example, does not 

meet that assumption. The research on non-physical updated values and non-Gaussian 

pdf such as multimodal distribution of model parameters is not in the scope of this 

dissertation and we assume the unknown parameters satisfy the EnKF requirements. We 

are more interested in the information utilization of multiple members in the assimilation 

equation. 

Two interesting aspects of the assimilation equation are its formulation and 

implementation, respectively. All the implementations of the Kalman-filter-based 

methods need the matrix inversion, which involves the sizes of ensemble members and 

the number of observations. This has been comprehensively discussed in the previous 

chapters. As for the assimilation equation, the key concept of the EnKF is that this 

method captures second-order moment, i.e., mean and variance, through simplifying the 

model parameters and observations as the Gaussian distributions. The mean is the most 

probable model and is taken by averaging all the ensemble members. The contribution of 

each member is equal. However, we know that the closeness of all the members to the 

true field is different. Some are close and some are far away. In other words, some 

ensemble members have little to do with the observations while some are close to the true 

model. Ideally, when calculating the mean, we want to give more weight to the close 



 112

members while giving less favor to others. This is the motivation of the formulation 

modification of the EnKF assimilation equation in this chapter.  

In literature, the research on sequential importance sampling (Doucet et al., 2001) 

provides us with an idea. In this method, the prior pdf represented by multiple particles is 

multiplied with the observation pdf to obtain the posterior pdf represented by the new 

multiple particles. This posterior pdf is then randomly sampled to give each particle equal 

weight. Such random sampling introduces an additional Monte Carlo variation which is 

unnecessary. According to the concept of the survival of the fittest, a weighted sampling 

directly based on the posterior pdf is needed to amplify and diminish some particles in 

the population. Sequential importance resampling (Doucet et al., 2001; van Leeuwen, 

2003) adds a partly deterministic scheme to condition the sampling so that the expected 

number selected from each particle is proportional to the multiplication of the particle 

weight and the population number. Therefore, particles with very low weight have a very 

low probability of being drawn, while particles with large weights can be drawn more 

than once. This is nothing more than abandoning those members that contain no 

information and stressing those that have.  

Therefore, for the EnKF, we can modify the assimilation in a similar way: we first 

create an ensemble of realizations, run that ensemble forward until observations become 

available, weigh each ensemble member through the difference between its response and 

real observations, and continue the integration. 

6.2 WEIGHTED ENKF 

Recall that the assimilation equation was explained in Chapter 3. Each ensemble 

member can be updated using the previous one and a weighted difference between the 

observation data and model response. The weighting matrix is called the Kalman gain 
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and is denoted as ,e kK , where k  is the index for the assimilation time. The assimilation 

equation for the j-th ensemble member is then expressed by 

 

( ), , , , , , ,u p p
k j k j e k obs k j k k jy y K d H y= + −  (6.2) 

 

( ) 1

, , , , , , , ,p T p T
e k y e k k k y e k k d e kK C H H C H C

−
= +  (6.3) 

 
where, , ,y e kC  and , ,d e kC  are ensemble covariance matrix and measurement error 

covariance matrix, respectively. , ,obs k jd  is the measurement vector for the j-th member at 

the k-th assimilation time. p  and u  represent prior and updating, respectively. H  is 

a matrix operator and [ ]| .0 IH =  The subscript e  means values represented by the 

ensemble members. T  is the matrix transpose operator.  
Any element , ,k m ic  in the covariance matrix , ,y e kC  is computed as follows 

 

( ) ( ), , , , , , , ,
1

1
1

                                     ( 1,2, , ;  1,2, , ).

eN

k m i k m h k m k i h k i
he

y y

c y y y y
N

m N i N
=

= − −
−

= =

∑
" "

 (6.4) 

 
Above, , ,k m ic  is the covariance between the parameters in the m-th and i-th rows 

in the ensemble matrix at the k-th time index. , ,k m hy  and , ,k i hy  are the m-th and i-th 

parameters in the stator vector for the h-th ensemble member at the k-th time index, 

respectively. h  is the index for the number of ensemble members and 1,2, , .eh N= "  

yN  is the dimension of the state vector. At the k-th time index, ,k my  and ,k iy  are the 

averages of the m-th and i-th rows in the ensemble matrix at the k-th time index, 
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respectively. ,k my  is deemed the most probable value for the m-th parameter in the 

reservoir model at the k-th time index and is calculated by 

 

, , ,
1

1 .
eN

k m k m h
he

y y
N =

= ∑   (6.5) 

 

Rather than evaluating each member equally with 1

eN
, we introduce a weighting 

factor hw  to adjust the contribution of the state vector for the h-th ensemble member 

according to the difference between its simulation responses and the observation data.  

Suppose that at the k-th time index, we are operating wellN  wells and each well 

has prN  observation data, such as bottomhole pressure, oil and water rates. We then 

define a dimensionless factor for the h-th ensemble member as 
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which is between 0.0 and 1.0. , ,obs l qd  and , ,resp l qd  denote the observation and simulation 

response for the l-th datum in the q-th well. When the observation and simulation data are 

exactly the same, the factor is 1.0, while it turns into 0.0 if all the responses are 0.0.  

Since we have eN  ensemble, we need the normalization of the weighting factor 

for each member. We then define the following weighting factor expression for the h-th 

ensemble member: 
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We therefore redefine Eq.(6.5) as 

 

( ), , ,
1

.
eN

k m h k m h
h

y w y
=

= ∑ i   (6.7) 

 

Consequently, we modify the covariance matrix expressed by Eq. (6.4), Kalman 

gain in Eq. (6.3) and eventually the assimilation equation in Eq. (6.2). 

6.3 FIRST CASE STUDY AND DISCUSSION 

A three-dimensional reservoir model has sizes of 1660.14ft-by-1886.48ft-by-

38.5ft, modified from a section of a real large reservoir. After discretization, it is modeled 

by 22-by-25-by-17 gridblocks with various grid sizes in each direction. The average 

porosity is 0.285. The average permeability in X direction is 1330mD with Dykstra 

Parsons coefficient 0.702 while the average permeabilities and Dykstra Parsons 

coefficients are 1336mD and 0.703 in Y direction and 669mD and 0.736 in Z direction. 

Ten to twelve layers are high permeability layers. The porosity and permeability in X 

direction are shown in Figure 6-1 and Figure 6-2, respectively. The average top depth is 

2000 ft with reference pressure 550psi. Initial water saturation is 0.2.  
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During primary recovery, only two wells, producers P1 and P4 are operated with 

a constant production rate of 600ft3/day for each well. At the end of 150 days, wells P1 

and P4 are shut down. Producers P2 and P5 are operated with a constant production rate 

of 600ft3/day for each well till 240 days.  

After 240 days, a five-spot well pattern is used for waterflooding. Producers P1, 

P2, P4, P5 and the injector I1 are open. Each producer has a constant production rate of 

1200ft3/day and the injector has a constant injection rate of 600ft3/day.   

After 600 days, we open 10 producers and 7 injectors, seventeen wells in total for 

an inverted-seven-spot well pattern. All producers are operated with the constant 

bottomhole pressure of 300psi. All injectors have constant injection rates. The injection 

rate of the well in the center is 30,000ft3/day while all the other wells have 15,000ft3/day. 

The waterflooding is ended at 1500 days. All the wells are vertical and fully perforated. 

Well configurations are shown in Figure 6-3. Tables 6-1 and 6-2 give well locations in X 

and Y directions, and measured permeability values in each layer, respectively.  

Basically, the total amount of observation time is 36 with various observation 

frequencies. The observation data include oil production rate, water production rate, 

bottomhole pressure in each layer in producers, injection rate, and injection bottomhole 

pressure in each layer. Table 6-3 gives the details. Two hundred ensemble members are 

implemented.  

6.3.1 Creation of the Initial Geostatistical Model 

The information of reservoir initialization from geologists is the precondition for 

reservoir engineering, especially for history matching. However, the geostatistical 

information in most cases is not directly obtainable. The purpose of our work in this 

section is to integrate reservoir characterization and reservoir engineering and illustrate 

how to combine them during history matching.  
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As we know, geological features and associated petrophysical properties are 

generally not distributed isotropically within a depositional environment. Geostatistics 

provides a method for identifying and quantifying anisotropic behavior in data with 

metrics that are used during interpolation to preserve directions and scales of continuity 

(Yarus and Chambers, 2006). This method is called variography, and the set of metrics it 

produces is identified from a graph called semivariogram. Variography is an interpolation 

method for an unsampled location, embracing the distance and directional-weighting 

issues. The concept of the semivariogram is to compare pairs of data at regular separation 

distances and to determine the degree of interdependency. Semivariogram consists of the 

sill, range and nugget three components. The inflection point at which the semivariogram 

flattens is called the sill and is theoretically equal to the true variance of the data. The 

distance at which the sill is reached is called the correlation range, or scale, and defines 

the distances within which there is a predictable relationship with variance. Beyond the 

inflection point, the data are not correlated, and no predictable relationship can be 

defined. The nugget effect occurs when the slope of the semivariogram intersects the Y-

axis above the origin, suggesting the presence of random or uncorrelated noise at all 

distances.  

To generate a semivariogram in this case study, values in the seventeen well 

locations and additional twenty sampled places are used. The reference map is analyzed 

and a permeability trend with a counterclockwise 135 degree is estimated. For these 

irregularly spaced data, a GSLIB (Deutsch and Journel, 1998) variogram program, 

GAMV, generates output file “gamv.out” with semivariograms in three directions. 

Further analysis of these semivariograms reveals that the reservoir has only one structure. 

The results in “gamv.out” are then taken as the experimental data to gauge the regression 

process of the semivariogram modeling. In the regression, a type of semivariogram model 
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with parameters including sill, correlation range and nugget effect are determined. 

VMODEL, a program in GSLIB, offers a tool for fast regression. Through trial and error, 

the exponential model is selected and correlation ranges 12, 5 and 1 (unit: grid size) in 

three directions are determined by data regression. The next step is to plot the results by 

using GSLIB program VARGPLT, as shown in Figure 6-4. VARGPLT takes the special 

output format used by the semivariogram programs GAMV and VMODEL and creates 

graphical displays. We can see they are well matched, especially within the correlation 

range, while the uncorrelated part (sill) does not need to be taken in consideration. In this 

respect, the parameters required for permeability simulation are generated.  

Kriging is the approach to interpolating the permeability field for the reservoir 

characterization onto a grid by using the conditional data and the spatial model, i.e., 

semivariogram. A major advantage of kriging over other interpolation algorithms is the 

ability to use more than one variable simultaneously to predict the value at an unsampled 

location. Conditional simulation reflects the proper spatial relationships among the 

various geological elements and their petrophysical properties as well as the 

heterogeneous nature of those properties. The key point for conditional simulation is that 

it captures the heterogeneity. In our case application, the data in seventeen well locations 

are assumed measured and ordinary kriging is selected. The conditional SGSIM can 

directly generate the three-dimensional permeability map for the whole reservoir without 

any further mean or variance transformation.  

Once the initial realizations are generated, a transformation from the coordination 

system in geostatistics to the reservoir system is needed. For a reservoir with dimensions 

X Y ZN N N× × , suppose three directions in geostatistics and reservoir are gI , gJ , gK  

and rI , rJ , rK , respectively. If the difference of half block size due to the block-
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centered and point-centered discretizations is ignored, it is easy to derive the 

transformation formula 

 

1 .
1
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  (6.8) 

 

6.3.2 Type of Measurement Data 

In intuition, more measurements bring about more information and hence lead to 

more accurate recognition of the research object. In reality, however, a large amount of 

data can be available continuously while not all the data are informative. Instead, the 

value of information needs evaluation. The aim of this section is to investigate the impact 

of different amounts of measurement data on the matching results.  

In this case study, when the time is greater than 600 days, ten producers and seven 

injectors are operating with a constant bottomhole pressure and a constant injection rate, 

respectively. Two scenarios are considered. In the first one, only oil and water rates in 

each producer are measured. There are a total of 20 data points at each observation time. 

In the second scenario, bottomhole pressure in each layer in each injecting well is also 

accounted for. There will be 119 (17 × 7) more data and totally 139 (20 + 119) data 

points are collected at each observation time. All the other information, such as 

everything before 600 days and the direct inverse assimilation method for solving 

assimilation equation, is kept exactly the same in these two scenarios.  

Figures 6-5 through 6-7 show the matching permeability results of each layer by 

using two types of measurement data at the time of 620 days, 640 days and 660 days, 

respectively. At the time of 620 days, layers 5 through 7 and 9 through 17 are identical 
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while there are observable differences in layers 1 through 4 and layer 8. However, the 

overall shape including high and low permeability locations is similar in the results from 

the two measurement scenarios. At the time of 640 days, new measurement data are 

further incorporated into the ensemble in the two scenarios. Figure 6-6 represents that the 

matching results from the two scenarios are approaching to the same direction and have 

not much difference, except the discrepant magnitudes of low permeability values in 

layers 6, 12 and 15. At the time of 660 days, though there are some mismatches of high 

and low permeability areas in some layers, each layer profile is very similar. Note that in 

the areal coordinate system the original point is located at the left-bottom corner, the X 

axis is towards right while the Y axis towards up.  

Figures 6-5 through 6-7 indicate that the matching results using 20 production 

rates have the same level of accuracy with the results from 20 production rates plus 119 

bottomhole pressures in seven injectors. Consequently, in this case the EnKF history 

matching is not sensitive to bottomhole pressures in injecting wells. In other words, 

adding more pressure data does not bring obviously better or worse matching results.  

6.3.3 Sensitivity Study of Measurement Interval 

In our case study, when the time is greater than 600 days, inverted-seven-spot 

well pattern with 10 producers and 7 injectors is implemented. Through running the 

reference case, we notice that from 600 days to 1500 days, oil rates soar drastically from 

the low rates before 600 days, and then drop quickly. Correspondingly, the trend of the 

water rate rises and reaches a plateau. Between 800 days and 1500 days, production rates 

are almost stable and the information should be less valuable. Since the sampling interval 

is important for a good history matching, we focus on the time period between 600 days 

and 800 days, and investigate two scenarios with different measurement intervals. Table 

6-4 gives the sampling frequencies with time intervals in details. Therefore, from 0 day 
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through 1500 days, the first scenario has a total of 36 times of observation while the 

second has 64 times. As for the measurement type, the first scenario is the same as the 

first scenario in Section 6.3.2, using data types listed in Table 6-3; while the second 

scenario is the same as the second one in Section 6.3.2, using 139 data in the time interval 

between 600 days and 1500 days. 

Figures 6-8 to 6-10 show the matching permeability results of each layer from 

these two scenarios at the time of 620 days, 700 days and 800 days, respectively. In 

Figure 6-8, plots in layers 1, 3, 5, 6 and 13 from two different scenarios have major 

differences. The figures for the remaining 14 layers have similar shapes while each plot 

from the second scenario (high sampling frequency) has a larger contrast: the high 

permeability is larger and the low permeability is smaller than the corresponding values 

in the plot from the first scenario (low sampling frequency). Consequently, the results in 

the high sampling frequency are more heterogeneous. Note that the high permeability 

layers 10 through 12, which are the main contributor for the production matching, are 

almost the same in both scenarios. Also note that the coordinate systems here are same as 

in Figure 6-5.  

Similar observations are shown in the plots in Figure 6-9. However, there exist 

obvious differences in layers 4, 6, 8, 13 and 15. In particular, the structures in layers 13 

and 15 from two sampling strategies are very different. In Figure 6-10, however, the 

differences are smaller. Only layers 4, 13 and 15 show the discrepancy while all the plots 

in other layers are much identical, both in structure shapes and value magnitudes. This 

implies that with time increasing, useful information can be obtained in the first scenario 

even though this information is missing at the beginning because of the sparse data 

sampling. In this sense, the importance of very frequent data sampling is weakened, 

especially considering the implementation cost to get the data. 
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Meanwhile, since the data in the second scenario not only has a dense sampling 

interval but also includes the 119 bottomhole pressure data points from seven injectors, 

the differences between the two scenarios are attributed to the combined effect of these 

two factors.  

Therefore, history matching in this case is not very sensitive to high frequency 

sampling if the production history is pretty long. In our case, the 20-day or 30-day 

frequency leads to results similar to those from a high frequency such as one day.  

6.3.4 Comparisons between Conventional EnKF and Weighted EnKF 

Based on the understanding from Sections 6.3.1-6.3.3, we implement two history 

matching approaches using conventional EnKF and weighted EnKF. Here, the 

conventional EnKF refers to the direct inverse assimilation scheme. The initial ensemble, 

measurements, reservoir and fluid properties are exactly same as the first scenario in 

Section 6.3.3. The simulation period is from 0 day up to 1500 days. The observation data 

and sampling intervals during the simulation time are presented in Table 6-3 and Table 6-

4 (Scenario 1), respectively.  

6.3.4.1 Evolution of a Matched Permeability Field 

Figures 6-11 through 6-27 show the matching permeability results of each layer 

from these two scenarios at the time of 0 day, 150 days, 240 days, 600 days, 800 days, 

and 1500 days, respectively. For easy comparison, the reference is given first, followed 

by the initial model averaged by 200 ensemble members. Note that the same initial model 

is used in the two approaches to demonstrate the impact of two different assimilation 

methods. The coordinate systems in these figures are same as in Figure 6-5.  

Some similarities exist in these figures. At the early time, 150 days and 240 days, 

the model does not change much because only two producers operate and the available 
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information is confined within a small area around the reservoir center. From 240 days to 

600 days, a five-spot well pattern which covers the whole reservoir is implemented, and 

more information contributes to more change in the matched model. After 600 days, all 

seventeen wells open and big changes appear in all layers: the low permeability area is 

shown in blue and the high permeability area shown in red. This phenomenon not only 

matches the idea of sequential data assimilation in the EnKF, but indicates that a 

sufficient production history is needed in order to collect enough observation data. 

Excitingly, the high permeability layers such as 10-12 are recovered pretty well in 

each method. Meanwhile, we notice the mismatches between the reference maps and the 

results in several layers generated after 800 days. For instance, the reference values in 

low permeability areas are higher than the matches from 800 days and 1500 days in both 

methods. Similar phenomena are observed in layers 2, 3, 4, 7, 8, 13, 14, and 15. The 

matched layers are obviously more heterogeneous than the references. One possible 

reason is that we treat all the seventeen layers as one geological structure expressed by 

one semiviogram while the high permeability layers such as 10-12 seem to have more 

complex structures than other relatively homogeneous layers. When the EnKF methods 

blindly modify all the layers simultaneously, the low permeability layers are changed in 

more heterogeneous way with undesired high fluctuation.  

When we simply compare the matching maps from the two different methods in 

each low-permeability layer, it is hard to tell which one is better, since the references are 

relatively homogeneous while both matching results, though different shapes, have 

obvious high- and low-permeability contrasts. In layer 5, the weighted EnKF generates a 

worsened low-permeability structure after 800 days, compared with corresponding 

conventional EnKF results. In layer 6, both methods recover some low-permeability areas 

but fail to capture the locations of these areas. Similarly, in layer 7, undesired low-
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permeability zones appear in both methods. It also seems that the trend of the low 

permeability zone is totally different in the reference and in the results from the two 

methods. This might be explained by the simplification of the initial reservoir model. In 

layers 10 and 11, we see both low- and high-permeability structures and the locations are 

better captured in the weighted EnKF than in those from the conventional EnKF in the 

corresponding times. In layer 12, the basic shapes in both methods are good but both fail 

to capture the high-permeability structure at the right bottom corner.  

In summary, both methods almost capture the main reservoir features in each 

layer. However, we could not evaluate them by eyes simply from the permeability 

figures. The investigation of other properties is needed.  

6.3.4.2 Evolution of a Matched Pressure Field 

Since reservoir pressure is included in the state vector of the EnKF and changed 

gradually at each assimilation step, we will plot the matched pressure maps. Before 240 

days, the reservoir is operating in a natural depletion mode with constant well production 

rates. After that, an injector with constant bottomhole pressure is applied. Hence, 

reservoir pressure drops fast during the natural depletion period. Layer and three-

dimensional pressure maps after the assimilation steps at the end of 150 days and 240 

days are illustrated in Figures 6-28 through 6-31, associated with the pressure maps from 

the reference model at the corresponding times. Note that the coordinate system in these 

figures is different from previous figures: the gridding starts from the top left corner; the 

X axis increases from left to right and the Y axis increases from top to bottom, as shown 

in Figure 6-3.  

From these plots, we see that after the assimilation step, the pressure map in each 

layer matches very well with the reference. This demonstrates the EnKF’s capability of 

handing multiple parameters simultaneously. After 240 days, constant bottomhole 
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pressure is implemented in the injecting well. Pressure fields, gradually stable with time, 

are easy to match and the comparisons are ignored here.  

6.3.4.3 Evolution of Matched Saturation Field 

After the natural depletion period, water injection begins and reservoir water 

saturation increases. We select the maps after the assimilation steps at the end of 600 

days, 700 days, 800 days, and 1500 days, respectively. To save space, each layer 

comparison is shown only at 800 days, while several cross-sectional profiles and three-

dimensional maps are presented at 600 days, 700 days and 1500 days. Figure 6-32 

illustrates that good matches are achieved at the end of 600 days: three sections crossing 

injector I1 are shown. We find that the high water saturation values surrounding injector 

I1 are well recovered in both conventional EnKF and weighted EnKF. On the other hand, 

the number of low water saturation blocks, shown in blue in the plots, is smaller in these 

two methods than in the reference. Such discrepancy is improved in Figure 6-33. With 

time increasing, the number of low water saturation blocks is reduced. Cross-sectional 

profiles illustrate good matches at low and high water saturation blocks. Such matches 

are also illustrated in the three-dimensional slab views. 

Next, we plot the comparison of each layer at the end of 800 days, shown in 

Figure 6-34. Again, we see exciting matches in each layer. In layers 1 through 8, the high 

water saturation blocks are similar in two methods and the low water saturation areas in 

the weighted EnKF are better than in the conventional EnKF. Overall water saturation in 

layers 9 through 17 is higher than that in layers 1 through 8. The shapes of high water 

saturation areas in these layers 9 through 14 are visually better in the weighted EnKF 

than those from the conventional EnKF. In addition, Figures 6-35 and 6-36 give the 

cross-sectional profiles of P6-I1 and P1-P5, as well as three-dimensional slab views, at 

the end of 800 days and 1500 days, respectively. These plots also demonstrate good 
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matches with the references. For the high and low water saturation values, the results 

from the weighted EnKF are better than those from the conventional EnKF. 

6.3.4.4 Production History Matching and Recovery Forecasting 

In order to evaluate the matching results, we rerun the case from 0 day to 1800 

days by using the permeability models obtained at the beginning, at 150 days, 240 days, 

700 days, 800 days and 1500 days. Note that we have two sets of reservoir models at 

each time: one is from the conventional EnKF and the other is from the weighted EnKF. 

Water and oil rates versus time are plotted for each producing well. In addition, reservoir 

cumulative oil production in terms of the percent of original oil in place versus time and 

reservoir overall water cut versus time are plotted.  

Figure 6-37 shows the oil rates in well P1 by using the permeability models 

generated at different times. The reference curve is also plotted. We find that the oil rate 

from the initial model has a large deviation from the reference, especially for the peak 

production. At the time of 150 days, the rate from the conventional EnKF is almost 

unchanged while the result from the weighted EnKF is much improved. This means that 

the weighted EnKF converges faster than the conventional EnKF at the early time period 

of history matching. At the end of 600 days, however, the peak from the conventional 

EnKF is just slightly higher than that from the weighted EnKF. Oil rates from both 

methods are similar and are very close to the reference curve due to more information 

gathered. The only large difference from the reference lies in the period from 600 days to 

1000 days. Such a difference is alleviated in Figure 6-37 (d), where the plots are provided 

from models in 1500 days. This indicates that EnKF is continuously modifying and we 

have not seen the divergence at late time though the permeability maps in 800 days and 

1500 days seem different from the reference maps. Similarly, the improvement of the 

peak value and the period between 600 days and 1000 days can be found in Figures 6-38 
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and 6-39. The better performance of the weighted EnKF is also demonstrated. For the 

remaining oil rate plots in other producing wells, we see that the weighted EnKF 

converges faster than the conventional EnKF before 240 days and both gradually adjust 

to the reference. During the late time (i.e., after 800 days), the weighted EnKF is still 

slightly superior to the conventional EnKF. Another other finding is that the 

improvement continues even at the late simulation time and no divergence is actually 

found.  

Figures 6-40 through 6-42 present water rate curves in wells P1, P2 and P3 by 

reservoir models from difference assimilation times in the conventional EnKF and the 

weighted EnKF, respectively. The reference is also presented for easy comparison. The 

superior performance of the weighted EnKF is pretty obvious in these groups of figures. 

Before 240 days, the results from the weighted EnKF are closer to the reference. This 

means the weighted EnKF has faster convergence to the reference at the early period of 

history matching. At the late time, for example, after 800 days, the weighted EnKF 

reaches better matches than the conventional EnKF. Again, no divergence is found even 

at the end of 800 days and 1500 days. This confirms that even though the permeability 

fields generated by the two EnKF methods have visual differences from the reference 

field, shown in Figures 6-11 through 6-27, we have good matches in reservoir water 

saturation, shown in Figures 6-32 through 6-36, and production history, shown in Figures 

6-37 through 6-42. Note that in Figures 6-37 through 6-42, we have 300-day recovery 

forecasting from 1500 days to 1800 days. Good forecast matching is illustrated in these 

figures.  

Further, we plot cumulative oil recovery in terms of original oil in place with time 

by using both the conventional and weighted EnKF at the end of different assimilation 

times, shown in Figures 6-43 through 6-45. At the first several assimilation times, 
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including the initial, 150 days, 240 days and 600 days, the plots are too close to 

differentiate, as seen in Figure 6-43. The enlarged windows of cumulative oil recovery 

are shown in Figures 6-44 and 6-45. We see that the weighted EnKF is better than the 

conventional EnKF though both are close to the reference curve.  

In addition, with time increasing, the matches from both production history and 

recovery forecasting improve. Therefore, the root mean square of each layer should drop 

continuously with time if the root mean square is an effective method of quantifying 

history match. Interestingly, the root mean square of each layer keeps rising with time 

increasing in the overall trend. One typical plot is shown in Figure 6-46, where the final 

values are higher than the initialization. We think the reason for this is that many high 

and low channels appearing in the matched results do not exist in the corresponding 

locations in the reference, even though the overall shape is similar. As a result, the 

calculation method in the root mean square makes the differences in each block larger. In 

this sense, the root mean square is not sufficient to calibrate the matching performance of 

reservoir permeability, at least when the high and low permeability channels appear. We 

believe that the production history, such as oil and water rates in wells and in the overall 

field, is the most effective quantification of the matching performance.  

6.4 SECOND CASE STUDY AND DISCUSSION 

The EnKF starts from the ensemble members, representing reservoir initial 

recognition and large uncertainty. Currently, all the ensemble members are generated 

from the geostatistic information, which needs the semivariogram. In reality, however, an 

accurate semivariogram is not easy to obtain especially at the early beginning. It is also 

not uncommon during the reservoir exploration that the geologic structure, such as 

fracture, initial oil-water contact and fault, is found only gradually. Therefore, the initial 
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ensemble members could not represent such features. In this section we will investigate 

the impact of geological recognition on the final matching results.  

Following a brief introduction, we give our second case study and discussion. The 

results where the semivariogram is known are compared with the results where the 

semivariogram is estimated. The accurate semivariogram leads to a higher quality of the 

matching permeability field than that from the case with the approximated 

semivariogram. However, in both scenarios, production history is well matched. 

6.4.1 Exact or Approximated Reservoir Geologic Information 

As more data is accumulated, an understanding of the reservoir characterization 

becomes clear with time. During a relatively long period at the beginning, reservoir 

structures, such as high permeability zone, fault, aquifer size, and water-oil contact, are 

not well determined. Even basic geostatistic information, such as correlation lengths and 

angles for semivariogram, are unclear. On the other hand, we need these reservoir 

structures and geostatistic information to generate the initial set of ensemble members. 

The only way to do this is to make a guess about the required information and then 

modify it during later production history. As for the EnKF, the question is to what extent 

such a guess affects the convergence of the history matching toward the real reservoir 

field.  

Specifically, for the case we discussed in Section 6.3, the exact semivariogram of 

the reference is not available. We guessed the basic trend of permeability field and 

plotted the semivariogram using one geological structure on the basis of limited sampled 

permeability data. The final results match well with the well production history. 

However, the permeability map in each layer does not match our reference well. Except 

for the nature of the non-uniqueness, we believe that the uncertainty of reservoir 

semivariogram is another reason. If we understand the reservoir structure including all 
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the reservoir characterization information correctly, will the matching permeability field 

improve?  

A new case will be investigated in this section, in which all the reservoir 

information and well operation are same as the case used in Section 6.3, except that the 

reference permeability field is changed to have the same semivariogram as the initial 

ensemble member. 

6.4.2 Case Description and Results Discussion 

Except for the permeability field, the three-dimensional reservoir model used here 

is exactly same as that in Section 6.3. Well operations and observation frequency are also 

unchanged, as shown in Tables 6-1 through 6-3. Bottomhole pressure data in all injectors 

after 600 days are included in the observation data. The total simulation period is from 0 

day to 1000 days.  

In Section 6.3, the reference permeability field, generated from other sources, was 

used directly. Here, we adopt the semivariogram result from Section 6.3.1. Though we 

have replaced the reference, we let it have the same semivariogram as the initial 

ensemble members. The 200 initial ensemble members are the same as those used 

previously. The conventional and weighted EnKF are run and the evolution of 

permeability layers with time is plotted together with the reference layer.  

Figures 6-47 through 6-63 show the evolution of the permeability profile in each 

layer with time, together with the reference map. In Figure 6-47, at the end of 800 days, 

both the conventional and the weighted EnKF have already captured the main features of 

the first layer. However, we clearly see that the results from the weighted EnKF, 

especially at the end of 1000 days, show the high permeability area at the left bottom 

corner. The structure of low permeability in the weighted EnKF is also better than that 

from the conventional EnKF. Similar observations can be found in layers 2-5. In 
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particular, the weighted EnKF has a better low permeability area at the right bottom 

corner in the fourth layer at the end of 1000 days, shown in Figure 6-50. Both methods 

have a similar performance in the fifth, sixth and seventh layers, shown in Figures 6-51 to 

6-53. Figure 6-54 illustrates that the weighted EnKF performs better in the high 

permeability areas located in the middle of the left boundary and right bottom corner. 

However, both methods have difficulty recovering the low permeability spots at the top 

section in the reference map. The shape from the weighted EnKF at 1000 days, where the 

left part is well recovered, is better than the conventional EnKF in the ninth layer. The 

results in the eleventh layer are identical. The right bottom corner is also better in the 

weighted EnKF. In the high permeability layers 12 and 13, the weighted EnKF generates 

almost the same maps as the references. Too many low permeability areas are 

demonstrated in the conventional EnKF at the end of 1000 days in the fourteenth layer 

compared with both the reference and the weighted EnKF. The results in layers 15 

through 17 are similar in both methods. 

Figures 6-47 through 6-63 demonstrate that both the conventional EnKF and 

weighted EnKF generate comparable results, which capture all the geologic structures in 

the reference. The similarities of these matched results to the reference are closer to the 

results we got in Figures 6-11 through 6-27. This indicates that if the initial ensemble 

members embrace the correct geostatistic information such as semivariogram, more 

accurate permeability results can be expected, in turn improving the future development 

decision. However, it is a paradox since the accurate knowledge of reservoir geologic 

information is impossible at the beginning. The impact of the approximation of geologic 

information on history matching deserves further investigation.  

Another finding is that we clearly see that the weighted EnKF in each layer has 

better convergence to the reference than the conventional EnKF at the end of each 
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assimilation time. It is very encouraging that the permeability from the weighted EnKF is 

comparable to the reference, not only the overall geological structures but also the 

locations of the high and low permeability areas. The group results in Figures 6-47 to 6-

63 again confirm the advantage of the weighted EnKF over the conventional EnKF. 

In the above studies, the 200 initial realizations were conditioned by permeability 

data in 17 well locations. Another scenario was implemented where the initial 

realizations were not conditioned. In this case we used the average permeability of 

1330mD. The results for the twelfth layer are plotted in Figure 6-64. Both simulations 

used the weighted EnKF. Although a uniform average realization was used at initial time, 

the permeability map at the end of 800 days agrees well with the reference map and 

captures the main structure. However, the results for the simulation using conditioned 

well data display much better agreement with the reference map.  

Investigating the twelfth-layer maps in Figure 6-58, we notice that the structures 

are well recovered in both the weighted EnKF and the conventional EnKF after 800 days, 

as shown in Figure 6-58 (e) and (f). Also notice that at the end of 600 days, the result in 

the weighed EnKF has started to display a relatively low permeability area in the middle 

of the left hand side, shown in Figure 6-58 (d). Such a low permeability area is later 

confined and regressed to the shape of the reference, as shown in Figure 6-58 (e) and (f). 

The low permeability zones located at the right corner are captured in both methods and 

are very close to the reference. We can see that the methods are tuning the permeability 

layer with time and gradually approaching the reference. The final maps present good 

shapes. Figure 6-65 shows the root mean square of the matched results of this layer with 

the reference. Interestingly, before 600 days both methods are stable and almost 

unchanged. The value from the weighted EnKF even rises. After 600 days, the value in 

the conventional EnKF first drops and then rises. The final value is higher than the initial 



 133

value. This curve indicates that the matched results in the conventional EnKF are getting 

worse as time increases and the initial model before history matching is the best one, 

which is contrary to the observation we get in Figure 6-58. On the other hand, after a 

plateau period, the result from the weighted EnKF starts to drop. At the end of matching, 

the value is already very low. This is consistent with our observation in Figure 6-58, 

which implies that the weighted EnKF achieves good matches at the end. Bringing the 

curves of the conventional EnKF and the weighted EnKF together, we conclude that it is 

controversial to use the root mean square of the permeability field as a matching 

criterion. In particular, like our case, when high and low permeability channels appear, 

the results may not match the corresponding areas in the reference. Therefore, the value 

from the root mean square is still high or even higher than the initialization, though the 

whole structure of the field can be captured well. 

6.5 SUMMARY 

This chapter is a detailed application of the EnKF in a synthetic complex 

reservoir. A weighted EnKF is proposed and demonstrates the better performance than 

the conventional EnKF.  

Through geostatistic software package, we first build the suitable semivariogram 

systematically by using the hard information from the sampled locations. The type of 

measurement data is then studied. In the case study, we find that it is not critical to 

include the bottomhole pressure data in injectors. The production rates are more sensitive 

to the overall change of the permeability structure. Similarly, we also compare the results 

from different sampling frequency. As we know, the knowledge of the sampling interval 

is very important to us since we do not want to miss any valuable information, while we 

also do not want to over-sample too much data considering the time and money costs. In 

our study, we use very dense sampling, (i.e., one day interval). The compared results 
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illustrate that as long as we have a long matching period, the 20-day sampling interval 

still gives us reasonable matching results which are almost identical to those from the 

high frequency sampling case at the late time though some structure fails to recover at the 

early beginning.  

The matched permeability field is continuously updating as more measurements 

are available, even at very late time when the water cut is above 95 percent. The field 

pressure and water saturation maps show that both the conventional EnKF and the 

weighted EnKF give an amazing match of the field pressure and water saturation at the 

end of each assimilation step.  

Well production history matching curves demonstrate that despite some reported 

divergence, both EnKF methods keep improving even at late time. The well production is 

matched reasonably even though the permeability field maps are somehow different from 

the references. Their non-uniqueness may cause this phenomenon. Another reason is that 

the inaccurate reservoir geological structure such as the semivariogram leads to the visual 

drift away of the permeability field, which is confirmed in the other case study in this 

chapter. 

The weighted EnKF generates better matches for oil and water production rates in 

the producer and give closer cumulative oil recovery in terms of original oil in place. The 

recovery forecasting from the weighted EnKF is also better than that from the 

conventional EnKF. Additionally, we notice that the weighted EnKF demonstrates faster 

convergence at the early assimilation time periods.  

Further, two scenarios were studied where geological information such as 

semivariogram is known and used in the initial ensemble generation. Better matching 

structures are obtained in both the conventional EnKF and the weighted EnKF methods, 

if the semivariogram is known, than those in which the semivariogram is unknown. 
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Again, the weighted EnKF exhibits a performance superior to the conventional EnKF. 

This means that the initial geologic information is important to the EnKF performance. 

However, to what extent such impact on the final result is hard to measure. 

Another interesting finding is that when the high and low permeability channels 

appear, the root mean square is not sufficient to calibrate the matching performance. 

Production history, such as oil and water rates, can be deemed the most effective 

approach for the matching quantification.  
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Table 6-1  Producer locations and corresponding permeabilities 

Well 1 2 3 4 5 6 7 8 9 10 

X 8 15 18 15 8 5 5 18 18 5 

Y 7 7 13 19 19 13 1 1 25 25 

Layer 1 602.51 488.79 1134 850.12 1063.6 619.37 441.41 1183.3 861.5 982.72

Layer 2 828.79 1208.9 2718 4086.4 1214.8 2634.4 1004.8 1406 1555.5 1829.5

Layer 3 2141.1 232.04 1978.1 2292.7 484.15 1328.5 1414.9 299.44 3350.3 1768.8

Layer 4 2103.5 354.92 2106.7 366.95 615.18 488.26 1982.9 407.42 905.51 1960.4

Layer 5 393.98 412.75 185.13 478.74 343.84 243.04 480.88 467.25 325.24 1913.5

Layer 6 309.35 555.69 1151 1267 225.19 395.26 379.55 379.62 822.95 817.87

Layer 7 766.81 554.56 831.76 536.65 4416.3 460.41 434.96 911.9 1719 852.16

Layer 8 2876.2 2050.8 1071.8 448.8 553.48 2396.3 574.67 1001.4 1960.9 1127

Layer 9 3562.3 1129.4 508.81 466.37 5267.8 1340.8 596.86 6013.3 127.75 317.41

Layer 10 20054.2 10677.8 21527.2 867.38 3476.5 921.22 8608.8 17005.4 25122.5 869.4

Layer 11 25796.5 8795.5 1516.7 213.72 531.63 17625 20684.5 994.36 785.71 17588.6

Layer 12 15214.2 225.31 236.77 1729.2 19797 17697.3 9894.4 20667.8 3929.2 9986.9

Layer 13 4562.3 8304.4 5086.2 628.69 2793 3257.3 15867.7 393.03 4118.5 19756.3

Layer 14 364.45 792.61 2220.2 3514.6 389.54 2712.9 726.32 391.12 3087.7 1476.8

Layer 15 115.41 2166.5 7298.3 3444.6 111.18 630.17 1469.7 365.93 449.61 4303.9

Layer 16 1303.2 2926.7 2766.7 1165.1 1130.6 676.68 3236.8 696.4 1370.5 575.7

Layer 17 305.79 1227.6 534.62 970.89 288.53 1412.2 1074.6 1014.7 119.72 1579.5
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Table 6-2  Injector locations and corresponding permeabilities 

Well 11 12 13 14 15 16 17 

X 11 11 22 22 11 1 1 

Y 13 1 7 19 25 19 7 
Layer 1 478.9 569.4 484.4 1111.6 975 728.4 549.3 

Layer 2 920.2 1153 523.1 1596.6 1883.9 2021 1758.4 

Layer 3 1099.1 2228.1 1058.1 3318.6 1042.6 3951.3 294.9 

Layer 4 295.7 1005.4 482.6 427.4 1013.2 1708.7 1778.3 

Layer 5 266.3 316.4 353.9 296.7 485.8 1517 754 

Layer 6 470.7 347.4 413.6 280.7 319.4 575.1 244.4 

Layer 7 1176.5 200.7 1605.6 137.2 515.1 590.8 201.2 

Layer 8 1357.6 2732.4 2184 324.9 529.8 1672.5 1122.3 

Layer 9 800.8 823.6 14300.5 385.2 3161.6 4955.3 3081.3 

Layer 10 17064.3 1256.2 2041.6 4475.4 3781.2 1031.6 6153.9 

Layer 11 11516.3 10937.4 1140.9 219.8 19096.6 20420.4 19945.4 

Layer 12 16054.1 315.3 139.7 2238.7 21172.9 17805.2 4756.2 

Layer 13 1241.4 4809 232.7 875.5 1002.1 1329.9 4749.2 

Layer 14 5555.7 740.6 1867.3 6635.7 443.9 726 618.7 

Layer 15 3230.3 2501 1222 3569.3 639.3 3116.9 164.7 

Layer 16 1172.8 1776 1690.4 492.4 448.9 1551.4 2413.3 

Layer 17 1310.2 464.9 1142.2 259.2 148.5 818.2 1185.7 
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Table 6-3  Observation data during the simulation time 

Time(days) Oil Rate Water Rate Bottomhole Pressure Injection Rate Total 

[0-150] 2×1 2×1 2×17 0 38 

(150-240] 2×1 2×1 4×17 0 72 

(240-600] 4×1 4×1 4×17 1 77 

(600-1500] 10×1 10×1 0 0 20 

 

 

Table 6-4  Different sampling intervals in two scenarios 

Sampling Interval (days) 
Time (days) 

Scenario 1 Scenario 2 

[0-150] 30 30 

(150-240] 30 30 

(240-600] 30 30 

(600-610] 1 

(610-700] 5 

(700-800] 

20 

10 

(800-1000] 50 50 

(1000-1200] 200 200 

(1200-1500] 300 300 
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Figure 6-1: Three-dimensional view of reservoir porosity. 

 

Figure 6-2: Three-dimensional view of reservoir permeability in X direction with the mD 
unit. 



 140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
1 ●7 ▼12 ●8
2
3
4
5
6
7 ▼17 ●1 ●2 ▼13

8
9

10
11
12
13 ●6 ▼11 ●3
14
15
16
17
18
19 ▼16 ●5 ●4 ▼14

20
21
22
23
24
25 ●10 ▼15 ●9

 

Figure 6-3: Areal view of well configurations, where ● denotes producers and ▼ 

represents injectors. 

 

Figure 6-4: Experimental data (points) and the matched exponential semivariogram 
model (curve). The vertical scale is normalized and the horizontal unit is the number of 
grid sizes.  
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  (a) First layer                          (b) Second layer 

  

  (c) Third layer                         (d) Fourth layer 

  

  (e) Fifth layer                         (f) Sixth layer 

  

  (g) Seventh layer                       (h) Eighth layer 

  

  (i) Ninth layer                         (j) Tenth layer 
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  (k) Eleventh layer                      (l) Twelfth layer 

  

  (m) Thirteenth layer                     (n) Fourteenth layer 

  

  (o) Fifteenth layer                      (p) Sixteenth layer 

  

  (q) Seventeenth layer                      

 

 

Figure 6-5: At the time of 620 days, logarithm permeability fields of averages of 
ensemble members from two measurement scenarios by using direct inverse assimilation 
method. Left hand side is results from 20 measurements while right hand side is results 
from 130 measurements. Legend scale is the same for every profile, from 4.5 (blue) 
through 10.3 (red) with an increment of 0.5. 
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  (a) First layer                          (b) Second layer 

  

  (c) Third layer                         (d) Fourth layer 

  

  (e) Fifth layer                          (f) Sixth layer 

  

  (g) Seventh layer                       (h) Eighth layer 

  

  (i) Ninth layer                         (j) Tenth layer 
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  (k) Eleventh layer                      (l) Twelfth layer 

  

  (m) Thirteenth layer                    (n) Fourteenth layer 

  

  (o) Fifteenth layer                      (p) Sixteenth layer 

  

  (q) Seventeenth layer                      

 

 

Figure 6-6: At the time of 640 days, logarithm permeability fields of averages of 
ensemble members from two measurement scenarios by using direct inverse assimilation 
method. Left hand side is results from 20 measurements while right hand side is results 
from 130 measurements. Legend scale is the same for every profile, from 4.5 (blue) 
through 10.3 (red) with an increment of 0.5. 
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  (a) First layer                         (b) Second layer 

 

  (c) Third layer                         (d) Fourth layer 

 

  (e) Fifth layer                         (f) Sixth layer 

 

  (g) Seventh layer                      (h) Eighth layer 

 

  (i) Ninth layer                         (j) Tenth layer 
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  (k) Eleventh layer                      (l) Twelfth layer 

 

  (m) Thirteenth layer                    (n) Fourteenth layer 

 

  (o) Fifteenth layer                      (p) Sixteenth layer 

 

  (q) Seventeenth layer                      

 

 

Figure 6-7: At the time of 660 days, logarithm permeability fields of averages of 
ensemble members from two measurement scenarios by using direct inverse assimilation 
method. Left hand side is results from 20 measurements while right hand side is results 
from 130 measurements. Legend scale is the same for every profile, from 4.5 (blue) 
through 10.3 (red) with an increment of 0.5. 
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  (a) First layer                          (b) Second layer 

 

  (c) Third layer                         (d) Fourth layer 

 

  (e) Fifth layer                         (f) Sixth layer 

 

  (g) Seventh layer                       (h) Eighth layer 

 

  (i) Ninth layer                         (j) Tenth layer 
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  (k) Eleventh layer                      (l) Twelfth layer 

 

  (m) Thirteenth layer                    (n) Fourteenth layer 

 

  (o) Fifteenth layer                      (p) Sixteenth layer 

 

  (q) Seventeenth layer                      

 

 

Figure 6-8: At the time of 620 days, logarithm permeability fields of averages of 
ensemble members from two sampling scenarios by using direct inverse assimilation 
method. Left hand side is results from 20 measurements while right hand side is results 
from 130 measurements. Legend scale is the same for every profile, from 4.5 (blue) 
through 10.3 (red) with an increment of 0.5. 
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  (a) First layer                         (b) Second layer 

 

  (c) Third layer                         (d) Fourth layer 

 

  (e) Fifth layer                         (f) Sixth layer 

 

  (g) Seventh layer                      (h) Eighth layer 

 

  (i) Ninth layer                         (j) Tenth layer 
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  (k) Eleventh layer                      (l) Twelfth layer 

 

  (m) Thirteenth layer                    (n) Fourteenth layer 

 

  (o) Fifteenth layer                      (p) Sixteenth layer 

 

  (q) Seventeenth layer                      

 

 

Figure 6-9: At the time of 700 days, logarithm permeability fields of averages of 
ensemble members from two sampling scenarios by using direct inverse assimilation 
method. Left hand side is results from 20 measurements while right hand side is results 
from 130 measurements. Legend scale is the same for every profile, from 4.5 (blue) 
through 10.3 (red) with an increment of 0.5. 
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  (a) First layer                         (b) Second layer 

 

  (c) Third layer                         (d) Fourth layer 

 

  (e) Fifth layer                         (f) Sixth layer 

 

  (g) Seventh layer                       (h) Eighth layer 

 

  (i) Ninth layer                         (j) Tenth layer 
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  (k) Eleventh layer                      (l) Twelfth layer 

 

  (m) Thirteenth layer                    (n) Fourteenth layer 

 

  (o) Fifteenth layer                      (p) Sixteenth layer 

 

  (q) Seventeenth layer                      

 

 

Figure 6-10: At the time of 800 days, logarithm permeability fields of averages of 
ensemble members from two sampling scenarios by using direct inverse assimilation 
method. Left hand side is results from 20 measurements while right hand side is results 
from 130 measurements. Legend scale is the same for every profile, from 4.5 (blue) 
through 10.3 (red) with an increment of 0.5. 
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(a) Reference and initialization             (b) At 150 days 

  

  (c) At 240 days                        (d) At 600 days 

  

  (e) At 800 days                        (f) At 1500 days 

  

 

Figure 6-11: First-layer logarithm permeability field of averages of ensemble members 
after several selected assimilation times by using the conventional EnKF and the 
weighted EnKF, respectively. (a) Left hand side is the reference and right hand side is the 
initialization; (b)-(f) Left hand side is results from the conventional EnKF while right 
hand side is results from the weighted EnKF. Legend scale is the same for every profile, 
from 4.5 (blue) through 10.3 (red) with an increment of 0.5. 
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  (a) Reference and initialization             (b) At 150 days 

  

  (c) At 240 days                        (d) At 600 days 

  

  (e) At 800 days                        (f) At 1500 days 

  

 

Figure 6-12: Second-layer logarithm permeability field of averages of ensemble members 
after several selected assimilation times by using the conventional EnKF and the 
weighted EnKF, respectively. (a) Left hand side is the reference and right hand side is the 
initialization; (b)-(f) Left hand side is results from the conventional EnKF while right 
hand side is results from the weighted EnKF. Legend scale is the same for every profile, 
from 4.5 (blue) through 10.3 (red) with an increment of 0.5. 
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  (a) Reference and initialization            (b) At 150 days 

  

  (c) At 240 days                        (d) At 600 days 

  

  (e) At 800 days                        (f) At 1500 days 

  

 

Figure 6-13: Third-layer logarithm permeability field of averages of ensemble members 
after several selected assimilation times by using the conventional EnKF and the 
weighted EnKF, respectively. (a) Left hand side is the reference and right hand side is the 
initialization; (b)-(f) Left hand side is results from the conventional EnKF while right 
hand side is results from the weighted EnKF. Legend scale is the same for every profile, 
from 4.5 (blue) through 10.3 (red) with an increment of 0.5. 
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  (a) Reference and initialization            (b) At 150 days 

  

  (c) At 240 days                        (d) At 600 days 

  

  (e) At 800 days                        (f) At 1500 days 

  

 

Figure 6-14: Fourth-layer logarithm permeability field of averages of ensemble members 
after several selected assimilation times by using the conventional EnKF and the 
weighted EnKF, respectively. (a) Left hand side is the reference and right hand side is the 
initialization; (b)-(f) Left hand side is results from the conventional EnKF while right 
hand side is results from the weighted EnKF. Legend scale is the same for every profile, 
from 4.5 (blue) through 10.3 (red) with an increment of 0.5. 
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  (a) Reference and initialization            (b) At 150 days 

  

  (c) At 240 days                        (d) At 600 days 

  

  (e) At 800 days                        (f) At 1500 days 

  

 

Figure 6-15: Fifth-layer logarithm permeability field of averages of ensemble members 
after several selected assimilation times by using the conventional EnKF and the 
weighted EnKF, respectively. (a) Left hand side is the reference and right hand side is the 
initialization; (b)-(f) Left hand side is results from the conventional EnKF while right 
hand side is results from the weighted EnKF. Legend scale is the same for every profile, 
from 4.5 (blue) through 10.3 (red) with an increment of 0.5. 
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  (a) Reference and initialization            (b) At 150 days 

  

  (c) At 240 days                        (d) At 600 days 

  

  (e) At 800 days                        (f) At 1500 days 

  

 

Figure 6-16: Sixth-layer logarithm permeability field of averages of ensemble members 
after several selected assimilation times by using the conventional EnKF and the 
weighted EnKF, respectively. (a) Left hand side is the reference and right hand side is the 
initialization; (b)-(f) Left hand side is results from the conventional EnKF while right 
hand side is results from the weighted EnKF. Legend scale is the same for every profile, 
from 4.5 (blue) through 10.3 (red) with an increment of 0.5. 
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  (a) Reference and initialization            (b) At 150 days 

  

  (c) At 240 days                        (d) At 600 days 

  

  (e) At 800 days                        (f) At 1500 days 

  

 

Figure 6-17: Seventh-layer logarithm permeability field of averages of ensemble 
members after several selected assimilation times by using the conventional EnKF and 
the weighted EnKF, respectively. (a) Left hand side is the reference and right hand side is 
the initialization; (b)-(f) Left hand side is results from the conventional EnKF while right 
hand side is results from the weighted EnKF. Legend scale is the same for every profile, 
from 4.5 (blue) through 10.3 (red) with an increment of 0.5. 
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  (a) Reference and initialization            (b) At 150 days 

  

  (c) At 240 days                        (d) At 600 days 

  

  (e) At 800 days                        (f) At 1500 days 

  

 

Figure 6-18: Eighth-layer logarithm permeability field of averages of ensemble members 
after several selected assimilation times by using the conventional EnKF and the 
weighted EnKF, respectively. (a) Left hand side is the reference and right hand side is the 
initialization; (b)-(f) Left hand side is results from the conventional EnKF while right 
hand side is results from the weighted EnKF. Legend scale is the same for every profile, 
from 4.5 (blue) through 10.3 (red) with an increment of 0.5. 
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  (a) Reference and initialization            (b) At 150 days 

  

  (c) At 240 days                        (d) At 600 days 

  

   (e) At 800 days                       (f) At 1500 days 

  

 

Figure 6-19: Ninth-layer logarithm permeability field of averages of ensemble members 
after several selected assimilation times by using the conventional EnKF and the 
weighted EnKF, respectively. (a) Left hand side is the reference and right hand side is the 
initialization; (b)-(f) Left hand side is results from the conventional EnKF while right 
hand side is results from the weighted EnKF. Legend scale is the same for every profile, 
from 4.5 (blue) through 10.3 (red) with an increment of 0.5. 
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  (a) Reference and initialization            (b) At 150 days 

  

  (c) At 240 days                        (d) At 600 days 

  

  (e) At 800 days                        (f) At 1500 days 

  

 

Figure 6-20: Tenth-layer logarithm permeability field of averages of ensemble members 
after several selected assimilation times by using the conventional EnKF and the 
weighted EnKF, respectively. (a) Left hand side is the reference and right hand side is the 
initialization; (b)-(f) Left hand side is results from the conventional EnKF while right 
hand side is results from the weighted EnKF. Legend scale is the same for every profile, 
from 4.5 (blue) through 10.3 (red) with an increment of 0.5. 
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  (a) Reference and initialization            (b) At 150 days 

  

  (c) At 240 days                        (d) At 600 days 

  

  (e) At 800 days                        (f) At 1500 days 

  

 

Figure 6-21: Eleventh-layer logarithm permeability field of averages of ensemble 
members after several selected assimilation times by using the conventional EnKF and 
the weighted EnKF, respectively. (a) Left hand side is the reference and right hand side is 
the initialization; (b)-(f) Left hand side is results from the conventional EnKF while right 
hand side is results from the weighted EnKF. Legend scale is the same for every profile, 
from 4.5 (blue) through 10.3 (red) with an increment of 0.5. 
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  (a) Reference and initialization            (b) At 150 days 

  

  (c) At 240 days                        (d) At 600 days 

  

  (e) At 800 days                        (f) At 1500 days 

  

 

Figure 6-22: Twelfth-layer logarithm permeability field of averages of ensemble 
members after several selected assimilation times by using the conventional EnKF and 
the weighted EnKF, respectively. (a) Left hand side is the reference and right hand side is 
the initialization; (b)-(f) Left hand side is results from the conventional EnKF while right 
hand side is results from the weighted EnKF. Legend scale is the same for every profile, 
from 4.5 (blue) through 10.3 (red) with an increment of 0.5. 
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  (a) Reference and initialization            (b) At 150 days 

  

  (c) At 240 days                        (d) At 600 days 

  

   (e) At 800 days                       (f) At 1500 days 

  

 

Figure 6-23: Thirteenth-layer logarithm permeability field of averages of ensemble 
members after several selected assimilation times by using the conventional EnKF and 
the weighted EnKF, respectively. (a) Left hand side is the reference and right hand side is 
the initialization; (b)-(f) Left hand side is results from the conventional EnKF while right 
hand side is results from the weighted EnKF. Legend scale is the same for every profile, 
from 4.5 (blue) through 10.3 (red) with an increment of 0.5. 
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  (a) Reference and initialization            (b) At 150 days 

  

  (c) At 240 days                        (d) At 600 days 

  

   (e) At 800 days                       (f) At 1500 days 

  

 

Figure 6-24: Fourteenth-layer logarithm permeability field of averages of ensemble 
members after several selected assimilation times by using the conventional EnKF and 
the weighted EnKF, respectively. (a) Left hand side is the reference and right hand side is 
the initialization; (b)-(f) Left hand side is results from the conventional EnKF while right 
hand side is results from the weighted EnKF. Legend scale is the same for every profile, 
from 4.5 (blue) through 10.3 (red) with an increment of 0.5. 
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  (a) Reference and initialization            (b) At 150 days 

  

  (c) At 240 days                        (d) At 600 days 

  

  (e) At 800 days                        (f) At 1500 days 

  

 

Figure 6-25: Fifteenth-layer logarithm permeability field of averages of ensemble 
members after several selected assimilation times by using the conventional EnKF and 
the weighted EnKF, respectively. (a) Left hand side is the reference and right hand side is 
the initialization; (b)-(f) Left hand side is results from the conventional EnKF while right 
hand side is results from the weighted EnKF. Legend scale is the same for every profile, 
from 4.5 (blue) through 10.3 (red) with an increment of 0.5. 
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  (a) Reference and initialization            (b) At 150 days 

  

  (c) At 240 days                        (d) At 600 days 

  

  (e) At 800 days                        (f) At 1500 days 

  

 

Figure 6-26: Sixteenth-layer logarithm permeability field of averages of ensemble 
members after several selected assimilation times by using the conventional EnKF and 
the weighted EnKF, respectively. (a) Left hand side is the reference and right hand side is 
the initialization; (b)-(f) Left hand side is results from the conventional EnKF while right 
hand side is results from the weighted EnKF. Legend scale is the same for every profile, 
from 4.5 (blue) through 10.3 (red) with an increment of 0.5. 
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  (a) Reference and initialization            (b) At 150 days 

  

  (c) At 240 days                        (d) At 600 days 

  

  (e) At 800 days                        (f) At 1500 days 

  

 

Figure 6-27: Seventeenth-layer logarithm permeability field of averages of ensemble 
members after several selected assimilation times by using the conventional EnKF and 
the weighted EnKF, respectively. (a) Left hand side is the reference and right hand side is 
the initialization; (b)-(f) Left hand side is results from the conventional EnKF while right 
hand side is results from the weighted EnKF. Legend scale is the same for every profile, 
from 4.5 (blue) through 10.3 (red) with an increment of 0.5. 
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(a) First layer                           

    

(b) Second layer 

    

(c) Third layer                          
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(d) Fourth layer 

    

(e) Fifth layer                          

    

(f) Sixth layer 
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(g) Seventh layer                        

    

(h) Eighth layer 

    

(i) Ninth layer                          
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(j) Tenth layer 

    

(k) Eleventh layer                       

    

(l) Twelfth layer 
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(m) Thirteenth layer                     

    

(n) Fourteenth layer 

    

(o) Fifteenth layer                       
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(p) Sixteenth layer 

    

(q) Seventeenth layer                      

    

 

Figure 6-28: At the time of 150 days, from left to right in each layer, pressure maps of 
reference and averages of ensemble members from the conventional EnKF and the 
weighted EnKF, respectively. Legend scale is the same for every profile, from 214.5368 
psi (blue) through 248.34 psi (red). 
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Figure 6-29: At the time of 150 days, from top to bottom, three-dimensional pressure 
views of the reference and averages of ensemble members from the conventional EnKF 
and the weighted EnKF, respectively. Legend scale is the same for every profile, from 
214.5368 psi (blue) through 248.34 psi (red). 
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(a) First layer                           

     

(b) Second layer 

    

(c) Third layer                          
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(d) Fourth layer 

     

(e) Fifth layer                          

     

(f) Sixth layer 
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(g) Seventh layer                        

     

(h) Eighth layer 

     

(i) Ninth layer                          
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(j) Tenth layer 

     

(k) Eleventh layer                       

     

(l) Twelfth layer 

     

 

 

 

 



 181

(m) Thirteenth layer                     

     

(n) Fourteenth layer 

     

(o) Fifteenth layer                       
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(p) Sixteenth layer 

    

(q) Seventeenth layer                      

     

 

Figure 6-30: At the time of 240 days, from left to right in each layer, pressure maps of 
reference and averages of ensemble members from the conventional EnKF and the 
weighted EnKF, respectively. Legend scale is the same for every profile, from 17.886 psi 
(blue) through 52.013 psi (red). 
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Figure 6-31: At the time of 240 days, from top to bottom, three-dimensional pressure 
views of the reference and averages of ensemble members from the conventional EnKF 
and the weighted EnKF, respectively. Legend scale is the same for every profile, from 
17.886 psi (blue) through 52.013 psi (red). 
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(a) Cross-sectional profiles for P6-I1                      

   

 (b) Cross-sectional profiles for P1-I1 

     

(c) Cross-sectional profiles for P2-I1                      

   

 

Figure 6-32: At the time of 600 days, water saturation maps of reference and averages of 
ensemble members from the conventional EnKF and the weighted EnKF, respectively: 
(a) cross-sectional profiles for P6-I1; (b) cross-sectional profiles for P1-I1; (c) cross-
sectional profiles for P2-I1. Legend scale is the same for every profile, from 0.0 (blue) 
through 1.0 (red). 
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(a) Cross-sectional profiles for P6-I1                      

   

 (b) Cross-sectional profiles for P1-P5 

   

(c) Three-dimensional slab views 

   

 

Figure 6-33: At the time of 700 days, water saturation maps of reference and averages of 
ensemble members from the conventional EnKF and the weighted EnKF, respectively: 
(a) cross-sectional profiles for P6-I1; (b) cross-sectional profiles for P1-P5; (c) three-
dimensional slab views. Legend scale is the same for every profile, from 0.0 (blue) 
through 1.0 (red). 
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(a) First layer                           

    

(b) Second layer 

    

(c) Third layer                          
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(d) Fourth layer 

    

(e) Fifth layer                          

    

(f) Sixth layer 
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(g) Seventh layer                        

    

(h) Eighth layer 

    

(i) Ninth layer                          
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(j) Tenth layer 

    

(k) Eleventh layer                       

    

(l) Twelfth layer 
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(m) Thirteenth layer                     

    

(n) Fourteenth layer 

    

(o) Fifteenth layer                       
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(p) Sixteenth layer 

    

(q) Seventeenth layer                      

    

 

Figure 6-34: At the time of 800 days, from left to right in each layer, water saturation 
maps of reference and averages of ensemble members from the conventional EnKF and 
the weighted EnKF, respectively. Legend scale is the same for every profile, from 0.0 
(blue) through 1.0 (red). 
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(a) Cross-sectional profiles for P6-I1                      

   

 (b) Cross-sectional profiles for P1-P5 

   

(c) Three-dimensional slab views 

     

 

Figure 6-35: At the time of 800 days, water saturation maps of reference and averages of 
ensemble members from the conventional EnKF and the weighted EnKF, respectively: 
(a) cross-sectional profiles for P6-I1; (b) cross-sectional profiles for P1-P5; (c) three-
dimensional slab views. Legend scale is the same for every profile, from 0.0 (blue) 
through 1.0 (red). 
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(a) Cross-sectional profiles for P6-I1                      

   

 (b) Cross-sectional profiles for P1-P5 

   

(c) Three-dimensional slab views 

   

 

Figure 6-36: At the time of 1500 days, water saturation maps of reference and averages of 
ensemble members from the conventional EnKF and the weighted EnKF, respectively: 
(a) cross-sectional profiles for P6-I1; (b) cross-sectional profiles for P1-P5; (c) three-
dimensional slab views. Legend scale is the same for every profile, from 0.0 (blue) 
through 1.0 (red). 

 

 

 

 

 



 194

(a) Oil rate plots from reference, initial, and 150 days 
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(b) Oil rate plots from reference and 600 days 
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(c) Oil rate plots from reference and 800 days 
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(d) Oil rate plots from reference and 1500 days 
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Figure 6-37: Oil rate in well P1 vs. time by using reservoir models from different 
assimilation times in two methods, the conventional EnKF (detonated as “oldenkf”) and 
the weighted EnKF (denoted as “weighted”), and the reference (denoted as “true”). 
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(a) Oil rate plots from reference, initial, and 150 days 
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(b) Oil rate plots from reference and 240 days 
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(c) Oil rate plots from reference and 800 days 
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(d) Oil rate plots from reference and 1500 days 
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Figure 6-38: Oil rate in well P2 vs. time by using reservoir models from different 
assimilation times in two methods, the conventional EnKF (detonated as “oldenkf”) and 
the weighted EnKF (denoted as “weighted”), and the reference (denoted as “true”). 
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(a) Oil rate plots from reference, initial, and 150 days 
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(b) Oil rate plots from reference and 240 days 
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(c) Oil rate plots from reference and 800 days 
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(d) Oil rate plots from reference and 1500 days 
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Figure 6-39: Oil rate in well P4 vs. time by using reservoir models from different 
assimilation times in two methods, the conventional EnKF (detonated as “oldenkf”) and 
the weighted EnKF (denoted as “weighted”), and the reference (denoted as “true”).  
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(a) Water rate plots from reference, initial, and 150 days 
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(b) Water rate plots from reference and 600 days 
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(c) Water rate plots from reference and 800 days 
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(d) Water rate plots from reference and 1500 days 
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Figure 6-40: Water rate in well P1 vs. time by using reservoir models from different 
assimilation times in two methods, the conventional EnKF (detonated as “oldenkf”) and 
the weighted EnKF (denoted as “weighted”), and the reference (denoted as “true”).  
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(a) Water rate plots from reference, initial, and 150 days 
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(b) Water rate plots from reference and 240 days 
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(c) Water rate plots from reference and 800 days 
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(d) Water rate plots from reference and 1500 days 
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Figure 6-41: Water rate in well P2 vs. time by using reservoir models from different 
assimilation times in two methods, the conventional EnKF (detonated as “oldenkf”) and 
the weighted EnKF (denoted as “weighted”), and the reference (denoted as “true”).  
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(a) Water rate plots from reference, initial, and 150 days 
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(b) Water rate plots from reference and 600 days 
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(c) Water rate plots from reference and 800 days 
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(d) Water rate plots from reference and 1500 days 
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Figure 6-42: Water rate in well P3 vs. time by using reservoir models from different 
assimilation times in two methods, the conventional EnKF (detonated as “oldenkf”) and 
the weighted EnKF (denoted as “weighted”), and the reference (denoted as “true”).  
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(a) Cumulative oil recovery plots from reference, initial, 150 days, and 240 days 
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(b) Cumulative oil recovery plots from reference and 600 days 
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Figure 6-43: Cumulative oil recovery in terms of original oil in place from initial, 150, 
240, and 600 days in the conventional EnKF method (detonated as “oldenkf”) and the 
weighted EnKF method (denoted as “weighted”), and the reference (denoted as “true”).  
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(a) Cumulative oil recovery plots from reference and 800 days 
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(b) Enlarged part of plot (a) 
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Figure 6-44: Cumulative oil recovery in terms of original oil in place from 800 days in 
the conventional EnKF method (detonated as “oldenkf”) and the weighted EnKF method 
(denoted as “weighted”), and the reference (denoted as “true”).  



 208

(a) Cumulative oil recovery plots from reference and 1500 days 
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(b) Enlarged part of plot (a) 
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Figure 6-45: Cumulative oil recovery in terms of original oil in place from 1500 days in 
the conventional EnKF method (detonated as “oldenkf”) and the weighted EnKF method 
(denoted as “weighted”), and the reference (denoted as “true”).  
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Figure 6-46: Root mean square in the eleventh layer versus time in two methods, the 
conventional EnKF method (detonated as “Conventional EnKF”) and the weighted EnKF 
method (denoted as “Weighted EnKF”). 
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(a) Reference and initialization            (b) At 150 days 

  

  (c) At 240 days                        (d) At 600 days 

  

  (e) At 800 days                        (f) At 1000 days 

  

 

Figure 6-47: First-layer logarithm permeability field of averages of ensemble members 
after several selected assimilation times by using the conventional EnKF and the 
weighted EnKF, respectively. (a) Left hand side is the reference and right hand side is the 
initialization; (b)-(f) Left hand side is results from the conventional EnKF while right 
hand side is results from the weighted EnKF. Legend scale is the same for every profile, 
from 4.5 (blue) through 10.3 (red) with an increment of 0.5. 
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  (a) Reference and initialization            (b) At 150 days 

  

  (c) At 240 days                         (d) At 600 days 

  

  (e) At 800 days                        (f) At 1000 days 

  

 

Figure 6-48: Second-layer logarithm permeability field of averages of ensemble members 
after several selected assimilation times by using the conventional EnKF and the 
weighted EnKF, respectively. (a) Left hand side is the reference and right hand side is the 
initialization; (b)-(f) Left hand side is results from the conventional EnKF while right 
hand side is results from the weighted EnKF. Legend scale is the same for every profile, 
from 4.5 (blue) through 10.3 (red) with an increment of 0.5. 
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  (a) Reference and initialization            (b) At 150 days 

  

  (c) At 240 days                        (d) At 600 days 

  

  (e) At 800 days                        (f) At 1000 days 

  

 

Figure 6-49: Third-layer logarithm permeability field of averages of ensemble members 
after several selected assimilation times by using the conventional EnKF and the 
weighted EnKF, respectively. (a) Left hand side is the reference and right hand side is the 
initialization; (b)-(f) Left hand side is results from the conventional EnKF while right 
hand side is results from the weighted EnKF. Legend scale is the same for every profile, 
from 4.5 (blue) through 10.3 (red) with an increment of 0.5. 
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  (a) Reference and initialization            (b) At 150 days 

  

  (c) At 240 days                        (d) At 600 days 

  

  (e) At 800 days                        (f) At 1000 days 

  

 

Figure 6-50: Fourth-layer logarithm permeability field of averages of ensemble members 
after several selected assimilation times by using the conventional EnKF and the 
weighted EnKF, respectively. (a) Left hand side is the reference and right hand side is the 
initialization; (b)-(f) Left hand side is results from the conventional EnKF while right 
hand side is results from the weighted EnKF. Legend scale is the same for every profile, 
from 4.5 (blue) through 10.3 (red) with an increment of 0.5. 
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  (a) Reference and initialization            (b) At 150 days 

  

  (c) At 240 days                        (d) At 600 days 

  

  (e) At 800 days                        (f) At 1000 days 

  

 

Figure 6-51: Fifth-layer logarithm permeability field of averages of ensemble members 
after several selected assimilation times by using the conventional EnKF and the 
weighted EnKF, respectively. (a) Left hand side is the reference and right hand side is the 
initialization; (b)-(f) Left hand side is results from the conventional EnKF while right 
hand side is results from the weighted EnKF. Legend scale is the same for every profile, 
from 4.5 (blue) through 10.3 (red) with an increment of 0.5. 
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  (a) Reference and initialization            (b) At 150 days 

  

  (c) At 240 days                        (d) At 600 days 

 

  (e) At 800 days                        (f) At 1000 days 

  

 

Figure 6-52: Sixth-layer logarithm permeability field of averages of ensemble members 
after several selected assimilation times by using the conventional EnKF and the 
weighted EnKF, respectively. (a) Left hand side is the reference and right hand side is the 
initialization; (b)-(f) Left hand side is results from the conventional EnKF while right 
hand side is results from the weighted EnKF. Legend scale is the same for every profile, 
from 4.5 (blue) through 10.3 (red) with an increment of 0.5. 
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  (a) Reference and initialization            (b) At 150 days 

  

  (c) At 240 days                        (d) At 600 days 

  

  (e) At 800 days                        (f) At 1000 days 

 

 

Figure 6-53: Seventh-layer logarithm permeability field of averages of ensemble 
members after several selected assimilation times by using the conventional EnKF and 
the weighted EnKF, respectively. (a) Left hand side is the reference and right hand side is 
the initialization; (b)-(f) Left hand side is results from the conventional EnKF while right 
hand side is results from the weighted EnKF. Legend scale is the same for every profile, 
from 4.5 (blue) through 10.3 (red) with an increment of 0.5. 
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  (a) Reference and initialization            (b) At 150 days 

  

  (c) At 240 days                        (d) At 600 days 

  

  (e) At 800 days                        (f) At 1000 days 

  

 

Figure 6-54: Eighth-layer logarithm permeability field of averages of ensemble members 
after several selected assimilation times by using the conventional EnKF and the 
weighted EnKF, respectively. (a) Left hand side is the reference and right hand side is the 
initialization; (b)-(f) Left hand side is results from the conventional EnKF while right 
hand side is results from the weighted EnKF. Legend scale is the same for every profile, 
from 4.5 (blue) through 10.3 (red) with an increment of 0.5. 
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  (a) Reference and initialization            (b) At 150 days 

  

  (c) At 240 days                        (d) At 600 days 

  

  (e) At 800 days                        (f) At 1000 days 

  

 

Figure 6-55: Ninth-layer logarithm permeability field of averages of ensemble members 
after several selected assimilation times by using the conventional EnKF and the 
weighted EnKF, respectively. (a) Left hand side is the reference and right hand side is the 
initialization; (b)-(f) Left hand side is results from the conventional EnKF while right 
hand side is results from the weighted EnKF. Legend scale is the same for every profile, 
from 4.5 (blue) through 10.3 (red) with an increment of 0.5. 
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  (a) Reference and initialization            (b) At 150 days 

  

  (c) At 240 days                        (d) At 600 days 

  

  (e) At 800 days                        (f) At 1000 days 

  

 

Figure 6-56: Tenth-layer logarithm permeability field of averages of ensemble members 
after several selected assimilation times by using the conventional EnKF and the 
weighted EnKF, respectively. (a) Left hand side is the reference and right hand side is the 
initialization; (b)-(f) Left hand side is results from the conventional EnKF while right 
hand side is results from the weighted EnKF. Legend scale is the same for every profile, 
from 4.5 (blue) through 10.3 (red) with an increment of 0.5. 

 

 

 

 

 



 220

  (a) Reference and initialization            (b) At 150 days 

  

  (c) At 240 days                        (d) At 600 days 

  

  (e) At 800 days                        (f) At 1000 days 

  

 

Figure 6-57: Eleventh-layer logarithm permeability field of averages of ensemble 
members after several selected assimilation times by using the conventional EnKF and 
the weighted EnKF, respectively. (a) Left hand side is the reference and right hand side is 
the initialization; (b)-(f) Left hand side is results from the conventional EnKF while right 
hand side is results from the weighted EnKF. Legend scale is the same for every profile, 
from 4.5 (blue) through 10.3 (red) with an increment of 0.5. 
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  (a) Reference and initialization            (b) At 150 days 

  

  (c) At 240 days                        (d) At 600 days 

  

  (e) At 800 days                        (f) At 1000 days 

  

 

Figure 6-58: Twelfth-layer logarithm permeability field of averages of ensemble 
members after several selected assimilation times by using the conventional EnKF and 
the weighted EnKF, respectively. (a) Left hand side is the reference and right hand side is 
the initialization; (b)-(f) Left hand side is results from the conventional EnKF while right 
hand side is results from the weighted EnKF. Legend scale is the same for every profile, 
from 4.5 (blue) through 10.3 (red) with an increment of 0.5. 
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  (a) Reference and initialization            (b) At 150 days 

  

  (c) At 240 days                        (d) At 600 days 

  

  (e) At 800 days                        (f) At 1000 days 

  

 

Figure 6-59: Thirteenth-layer logarithm permeability field of averages of ensemble 
members after several selected assimilation times by using the conventional EnKF and 
the weighted EnKF, respectively. (a) Left hand side is the reference and right hand side is 
the initialization; (b)-(f) Left hand side is results from the conventional EnKF while right 
hand side is results from the weighted EnKF. Legend scale is the same for every profile, 
from 4.5 (blue) through 10.3 (red) with an increment of 0.5. 
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  (a) Reference and initialization            (b) At 150 days 

  

  (c) At 240 days                        (d) At 600 days 

  

  (e) At 800 days                        (f) At 1000 days 

  

 

Figure 6-60: Fourteenth-layer logarithm permeability field of averages of ensemble 
members after several selected assimilation times by using the conventional EnKF and 
the weighted EnKF, respectively. (a) Left hand side is the reference and right hand side is 
the initialization; (b)-(f) Left hand side is results from the conventional EnKF while right 
hand side is results from the weighted EnKF. Legend scale is the same for every profile, 
from 4.5 (blue) through 10.3 (red) with an increment of 0.5. 
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  (a) Reference and initialization            (b) At 150 days 

  

  (c) At 240 days                        (d) At 600 days 

  

  (e) At 800 days                        (f) At 1000 days 

  

 

Figure 6-61: Fifteenth-layer logarithm permeability field of averages of ensemble 
members after several selected assimilation times by using the conventional EnKF and 
the weighted EnKF, respectively. (a) Left hand side is the reference and right hand side is 
the initialization; (b)-(f) Left hand side is results from the conventional EnKF while right 
hand side is results from the weighted EnKF. Legend scale is the same for every profile, 
from 4.5 (blue) through 10.3 (red) with an increment of 0.5. 
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  (a) Reference and initialization            (b) At 150 days 

  

  (c) At 240 days                        (d) At 600 days 

  

  (e) At 800 days                        (f) At 1000 days 

  

 

Figure 6-62: Sixteenth-layer logarithm permeability field of averages of ensemble 
members after several selected assimilation times by using the conventional EnKF and 
the weighted EnKF, respectively. (a) Left hand side is the reference and right hand side is 
the initialization; (b)-(f) Left hand side is results from the conventional EnKF while right 
hand side is results from the weighted EnKF. Legend scale is the same for every profile, 
from 4.5 (blue) through 10.3 (red) with an increment of 0.5. 
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  (a) Reference and initialization            (b) At 150 days 

  

  (c) At 240 days                        (d) At 600 days 

  

  (e) At 800 days                        (f) At 1000 days 

  

 

Figure 6-63: Seventeenth-layer logarithm permeability field of averages of ensemble 
members after several selected assimilation times by using the conventional EnKF and 
the weighted EnKF, respectively. (a) Left hand side is the reference and right hand side is 
the initialization; (b)-(f) Left hand side is results from the conventional EnKF while right 
hand side is results from the weighted EnKF. Legend scale is the same for every profile, 
from 4.5 (blue) through 10.3 (red) with an increment of 0.5. 
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   (a) Reference                         (b) Initialization 

                    

   (c) At 150 days                       (d) At 240 days 

  

   (e) At 600 days                       (f) At 660 days 

  

    (g) At 720 days                      (h) At 800 days 

 

 

Figure 6-64: Twelfth-layer logarithm permeability field of the averages of ensemble 
members after several selected assimilation times by using the weighted EnKF, 
respectively. (a) Reference; (b)-(h) Left hand side is results from conditional realizations 
while right hand side is results from unconditional realizations. Legend scale is the same 
for every profile, from 4.5 (blue) through 10.3 (red) with an increment of 0.5. 
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Figure 6-65: Root mean square in the twelfth layer versus time in two methods, the 
conventional EnKF method (detonated as “Conventional EnKF”) and the weighted EnKF 
method (denoted as “Weighted EnKF”).
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Chapter 7: A Singular Evolutive Interpolated Kalman Filter for 
Uncertainty Quantification 

Inherent data and model uncertainties make the history matching non-unique. 

Therefore, a reliable uncertainty quantification framework for predicting reservoir 

dynamic performance requires multiple reservoir models that match field production 

data. It has been demonstrated that the ensemble Kalman filter technique can be used for 

this purpose. In this technique, an ensemble of reservoir models is evolved by means of a 

stochastic nonlinear filtering procedure to agree with the observed production data. An 

efficient variant of the ensemble Kalman filter, namely, Singular Evolutive Interpolated 

Kalman Filter (SEIKF) (Pham et al., 1998a) is applied to the multi-model history-

matching problem in this work. This novel technique operates in three steps: resampling, 

forecasting, and assimilation. Unlike the ensemble Kalman filter, where the members of 

the model ensemble are operated by forecasting and assimilation, in SEIKF the members 

of the model ensemble are selected in the main orthogonal directions of a functional 

space described by an approximation of the error-covariance matrix. This enhanced 

sampling strategy, embedded into the resampling step, improves the filter stability and 

delivers rapid convergence. 

In this chapter, SEIKF is applied to a three-dimensional proof-of-concept 

waterflooding case where reservoir permeability is calibrated to production data (Liang et 

al., 2007). Accuracy and convergence of history match, as well as the uncertainty of 

dynamic predictions yielded by the final model ensemble, are used as criteria to evaluate 

the performance of SEIKF. In terms of accuracy and uncertainty reduction, SEIKF 

performs comparably to a conventional ensemble Kalman filter.  
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The organization of this chapter is as follows: We first provide a brief 

introduction of uncertainty study and mathematical description of SEIKF. A workflow 

for the ensemble based history matching with SEIKF will be introduced. In this context, 

we will point out the main differences and similarities between SEIKF and EnKF 

workflows. Next, we will describe a three-dimensional synthetic example. This example 

serves as a laboratory for our uncertainty quantification workflow where we navigate 

through the entire uncertainty quantification process from real-time data integration to 

recovery forecasts. In order to establish a direct measure of comparison for our workflow, 

we also apply EnKF to the proof-of-concept test case. Calibrated reservoir models are 

subsequently used to quantify the uncertainty in the recovery forecasts. A discussion 

section will provide a critical evaluation on the results obtained by use of SEIKF and 

EnKF techniques from the viewpoint of accuracy, robustness, and convergence. Finally, 

the chapter will close with the summary. 

7.1 INTRODUCTION 

The optimization of a reservoir development strategy is measured by its 

robustness under the influence of uncertainty. In addition to economic unknowns, 

uncertainties in reservoir characterization constitute a large component of the financial 

risk. The practice of forecasting hydrocarbon recovery performance through dynamic 

reservoir modeling is therefore an integral component of risk analysis and uncertainty 

reduction strategies. Emerging technologies such as geophysical reservoir monitoring 

(i.e., permanent sensors, 4D seismic) and optimal reservoir management (i.e., smart 

completions) also rely heavily on dynamic modeling. From this perspective, future 

forecasts of reservoir performance are used to optimize reservoir management decisions. 

The quality of the oil reservoir model is therefore of essential importance for performing 
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robust and accurate predictions of recovery potential and, in turn, making decisions based 

on correct premises. 

It is very desirable to constrain the dynamic model to all available data and reduce 

uncertainties. The most direct information about the physics of fluid flow in the dynamic 

model is embedded in the production data. The type of production data, in turn, is a 

function of the recovery mechanism. More precisely, flowing phases and 

injection/production constraints associated with a given recovery mechanism determine 

the types of available production data. An arbitrary combination of water, oil, and gas 

production rate, as well as wellbore pressure, may constitute the individual components 

of a production data set. As a direct measure of the reservoir response, integration of 

production data to dynamic reservoir models is the primary driver for history-matching. 

In a history matching exercise, model parameters are adjusted in such a way that the 

dynamic simulation response reproduces the historical production record as accurately as 

possible. This is achieved either by manually adjusting the parameters of the dynamic 

model or permitting an automatic process to propose adjustments. 

It is of central importance to recognize the fact that, from the mathematical 

perspective, integrating production data to subsurface dynamic models is an ill-posed, 

inverse problem. Thus, there exists an ensemble of models which satisfy the production 

measurements to a sufficient degree of accuracy. There are additional factors 

compounding the non-uniqueness of the history matching problem: (1) Virtually all types 

of hard (static and dynamic) measurements acquired in hydrocarbon reservoirs carry 

attached error bars. (2) In many cases, the geologic blueprints of the dynamic models rely 

on an incomplete, qualitative understanding of the subsurface. (3) Both dynamic and 

static measurements are spatially sparse. Often dynamic measurements are temporally 

sparse as well. (4) Different measurements have different resolution. In general, there 
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exist spatial scales at which the reservoir model is unresolved by any of the available data 

types. Seeking a single, deterministic best history-matched model may lead to misleading 

predictions of future recovery. In fact, a perfectly history-matched model may lead to 

spectacularly erroneous forecasts of recovery (Tavassoli et al., 2994). There is a clear 

need for history matching algorithms that can efficiently generate multiple history-

matched models (ensemble) while retaining geologic consistency. Predictions performed 

with ensemble members help quantify uncertainty in the recovery forecast. The accuracy 

of the forecast statistics, in turn, is controlled by the exploratory nature of the history 

matching algorithm. The more effectively the history matching processes sample the 

uncertainty space, the more accurate the statistics of the recovery forecast. 

In this chapter, we implement an efficient variant of the ensemble Kalman filter. 

The Kalman filter is a statistically optimal sequential-estimation procedure for linear 

dynamical systems (Kalman, 1960). In a Kalman filter, observations are fed to a 

numerical flow model with weights to minimize error variance. The information content 

of observations is advected from data-rich areas to data-poor areas with the help of an 

optimally estimated error-covariance matrix. The latter is propagated in time together 

with the flow model. The ensemble Kalman filter (EnKF), introduced by Evensen (1994), 

handles nonlinear problems by integrating an ensemble of model trajectories from which 

error-covariance estimates (and thus a gain matrix) can be calculated. EnKF has found 

widespread applications in the areas of weather forecasting, oceanography and 

hydrology, because of its simple formulation and relative ease of implementation.  

The singular evolutive extended Kalman filter (SEEKF) is proposed by Pham et 

al. (1998b) as an alternative to EnKF. A singular low-rank matrix is used to approximate 

the error covariance matrix. This strategy introduces corrections only in the directions for 

which the error is not sufficiently attenuated by the nonlinear system. These directions 
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evolve in time consistent with the underlying dynamics of the system. However, as in the 

case of the extended Kalman filter, strong model nonlinearities may lead to instabilities 

and eventually impede convergence, as noted by Evensen (1992). Pham et al. (1998a) 

introduced a variant called singular evolutive interpolated Kalman filter in which the 

linearization used in SEEKF is replaced by a linear interpolation. The implication of this 

strategy is the mitigation of error for large deviations. The resulting filter has been 

applied to realistic problems of oceanography with satisfactory results (Hoteit et al., 

2002; Triantafyllou et al., 2003; Nerger et al., 2007). In this paper, we compare the 

accuracy and convergence behavior of SEIKF and EnKF with an improved assimilation 

strategy on a three-dimensional history matching problem. Multiple history-matched 

models are used to forecast future oil recovery. 

7.2 SINGULAR EVOLUTIVE INTERPOLATED KALMAN FILTER 

The overall uncertainty quantification workflow is shown in Figure 7-1. The 

amount of available dynamic data volume increases as a function of the progress in 

recovery. Knowledge embedded in the dynamic data needs to be integrated to the 

subsurface model in real time to close the gap between the model predictions and the 

actual response of the reservoir. This is the point where dynamic filter based history 

matching or data integration techniques such as SEIKF and EnKF enter into the 

workflow. A number of equally probable reservoir models could match the production 

data. Thus, ideally a large ensemble of subsurface models needs to be evolved in time. 

Advancing a large ensemble of subsurface models through the entire lifecycle of the 

reservoir is a computationally demanding task. As such, it emerges as one of the key 

blockers for the widespread use of nonlinear filters in history matching problems. 

Additionally, carrying along a large number of ensemble members that do not exhibit 

consistency with the observed data can lead to a low rate of convergence and reduce the 
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efficiency of the history matching (data integration) process. Thus, it is very desirable to 

devise an evolution strategy that readily allows retaining only the ensemble members that 

lead to rapid convergence. As will be elaborated later in this paper, SEIKF possesses 

promising features in this context. Our objective is to evaluate SEIKF in a controlled 

numerical experiment and shed light on its strengths and weaknesses. Prior to this, 

however, we would like to provide a formal mathematical introduction to SEIKF. 

Initialization process aside, SEIKF proceeds in three stages: resampling, 

forecasting and assimilation. The resampling step is to generate the ensemble 

realizations, namely permeability fields. This resampling procedure makes use of a 

minimum second-order exact sampling technique (Triantafyllou et al., 2003). The 

forecast step advances the state vectors from the current time step to the next time step. In 

reservoir simulation, the forecast step is performed by use of a reservoir simulator. The 

state vector contains the variables required to describe the system. It typically includes 

the values of permeability, oil pressure, and oil saturation in each gridblock. Well-by-

well measurements such as bottomhole pressures, fluid rate, gas oil ratio, and water cut 

are also included in the state vector. To that end, if the number of grid blocks equals Nm, 

and the number of computed data equals Nd, the dimension of the state vector Y is given 

by 3× Nm + Nd for the immiscible flow of two fluid phases such as the one that arises in 

waterflooding applications. The assimilation step introduces corrections to the variables 

in the state vectors to honor the new observed data. 

A schematic diagram describing the history matching procedure with SEIKF is 

shown in Figure 7-2. A large ensemble of equiprobable realizations of permeability maps 

is generated using a geostatistical modeling algorithm. The large initial ensemble is 

distilled into a reduced ensemble with a low degree of inter-member correlation. This is 

accomplished by means of the singular value decomposition (SVD) technique. The 
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ensemble is advanced forward in time by means of a reservoir simulator until the moment 

when the first set of observations (production data) is acquired. In the assimilation step, 

the discrepancy between observed data and the simulation response is quantified. In turn, 

the variables that describe the state of the dynamic system are calibrated to render the 

system response consistent with the observed data. Multiple realizations of model 

parameters (permeability maps) are then resampled. We shall elaborate more on the 

resampling step further in the paper. The resampling step is followed by the forecasting 

and assimilation steps. The sequence of resampling, forecasting, and assimilation steps is 

repeated until the final time of history matching is reached. Multiple history-matched 

permeability maps constitute a subset of the ensemble state variables at the final time and 

can be extracted from the filter in straightforward fashion. In turn, simulation based 

forecasts can be performed using multiple history-matched permeability maps. Outcome 

of such forecasts can be used to obtain a first-order description of the uncertainty in 

future hydrocarbon recovery. 

The innovative feature of SEIKF lies in the resampling step. This step involves an 

interpolation procedure applied to the randomly drawn state vectors at every filtering 

step. Subsequent to an assimilation step, ensemble state vectors are used to compute an 

analysis state vector and its error covariance matrix. By using this information, 

interpolated states are generated. Interpolated states are then fed into the forecast step. 

The analysis state vector and its error covariance matrix are used to retain the central 

tendency and the covariance matrix over the course of the interpolation process of the 

resampling step. 

Let 1 2( ), ( ), , ( )a a a
k k N kY t Y t Y t"  denote the interpolating states. Here, Ne is the total 

number of interpolating states (or the total number of ensemble members). The analysis 

state vector and its error covariance matrix are described by the following equations: 
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Use of ensemble states in SEIKF is analogous to EnKF. There are, however, 

important differences. SEIKF attempts to use the smallest possible number of 

interpolating states. Also, a constrained drawing process is applied honor Eq. (7.1) and 

Eq. (7.2). SEIKF consists of three processes for each time step: resampling, forecasting, 

and assimilation. An initialization step replaces the resampling step at the beginning of 

the data integration process. 

7.2.1 Initialization 

In the absence of available production data at the time of initialization, an 

ensemble of permeability fields is randomly generated subject to geostatistical 

constraints. Dynamic variables of the initial ensemble such as initial pressures and 

saturations are assumed known with absolute accuracy and imposed to be the same for all 

ensemble members. Quantitative information on model statistics is derived from this 

initial ensemble of realizations. 

It is worthwhile to highlight the fact that sole use of random realizations may give 

rise to an ensemble with highly correlated members. This can potentially lead to an 

inaccurate representation of the uncertainty space. Our experience also indicates that use 

of an ensemble with highly correlated members creates a significant hurdle for filter 

convergence. To circumvent this predicament, in this paper, we apply an improved 

sampling strategy for generating the initial ensemble (Evensen, 2004). We first generate a 
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large number of equiprobable realizations. Subsequently, by use of SVD a small number 

of significant realizations are selected for inclusion in the initial ensemble. This 

procedure ensures that the initial ensemble retains geological soft-knowledge and 

ensemble members exhibit a low degree of correlation. 

7.2.2 Resampling 

SEIKF marches a dynamic system forward in time while assimilating observed 

information and calibrating the state variables to be consistent with the observations. The 

resampling step of SEIKF operates between the assimilation step of the previous point in 

time, 1,kt −  and the forecast step of the current point in time, .kt  Unlike EnKF, SEIKF 

does not make a direct use of the outcome of the assimilation step of 1.kt −  Rather, the 

resampling step generates perturbations of the 1kt −  assimilation results to locally widen 

the exploratory characteristics of the filter. Here, information derived from previous 

interpolation states, namely mean and the covariance of the previous interpolating states, 

plays a central role in enforcing consistency. At 1kt − , an analysis state 1( )a
kY t −  and its 

pertinent error covariance matrix 1( )a
kP t −  is computed. The error covariance matrix is 

stored in a factorized form described by 1 1 1.
T

k k kL U L− − −  Here, 1kL −  and 1kU −  are matrices 

derived from the assimilation step and the superscript T denotes matrix transpose. The 

interpolating states are expressed via 

 
1

1 1 1 1, 1( ) ( ) 1 ( ) ,a a T
i k k k k i kY t Y t r L C−

− − − − −= + + Ω   (7.3) 

 

where 1 1i r≤ ≤ + , and r  denotes the rank of the error covariance matrix. The term 1r +  

represents the smallest possible number in the ensemble. Here, 1kC −  denotes the 

Cholesky decomposition of 1
1kU −
− , and kΩ  represents any ( 1)r r+ ×  matrix with 

orthonormal columns and zero column sums, randomly selected following the procedure 
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described by Hoteit et al. (2002). In Eq. (7.3) 1,k i−Ω  denotes the i-th row of 1k−Ω . The 

above expression reinforces that the error covariance matrix of the state, 1( ),a
kP t −  is 

honored. 

7.2.3 Forecasting 

Based on the current ensemble state vectors, a simulation is performed for each 

realization. The simulation is run up to the time of the next measurement acquisition. In 

this step, dynamic simulation and well-by-well production data are rendered consistent 

with the model parameters of the ensemble state vector. The forecasting step can be 

stated via 

 

1( ) ( ( )),   1,2, , 1.p a
j k j kY t f Y t j r−= = +"   (7.4) 

 

where p denotes “predicted”, a denotes “assimilated”, f denotes the reservoir simulator, k 

is the time step index, j is the ensemble member index, ( 1)r +  is the number of ensemble 

members, 1( )a
j kY t −  is the j-th assimilated state vector after the data assimilation at the 

timestep 1k − , and ( )p
j kY t  is the predicted state vector based on all available information 

prior to the time step k. Note that only dynamic variables, i.e. gridblock pressures and 

saturations, and production data are represented by indices 1k −  and k. The static 

variables, i.e. gridblock permeabilities, remain unchanged. Adjustment of static variables 

occurs at the assimilation step together with the dynamic variables. In the forecasting 

step, the state forecast ( )a
kY t  will be taken as the average of ( )a

j kY t . Thus, the prediction 

error covariance matrix could be approximated by 
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This matrix could also be represented by 

 
1
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⎡ ⎤= +⎣ ⎦   (7.6) 

 

where, 

 

1 1( ), , ( ) .p p
k k r kS Y t Y t W+⎡ ⎤= ⎣ ⎦"   (7.7) 

 

In Eq. (7.7) W  is a ( 1)r r+ ×  full rank matrix with zero column sums. A suitable choice 

for W  can be found in Hoteit et al (2002). 

In our implementation of SEIKF, the forecasting step makes use of UTCHEM 

simulator (Delshad, 1996). UTCHEM is a three-dimensional, multiphase, 

multicomponent simulator, particularly suitable for water and chemical flooding 

applications, which has been used extensively and validated with laboratory and field 

data. 

7.2.4 Assimilation 

The assimilation step of SEIKF exhibits noteworthy differences when compared 

to EnKF. Instead of the state vectors of each ensemble member, the analysis state vector 

and its associated covariance matrix is propagated from the forecast step. Newly acquired 

observations are assimilated to correct the analysis state vector and guide the dynamic 

system to the next resampling step. The new observation obsd  and observation error 

covariance R  at time kt  are used to correct the forecast according to 

 
1( ) ( ) ( ) ( ) ,a p T p

k k k k k k obs k kY t Y t S V H S R d H Y t− ⎡ ⎤= + −⎣ ⎦  (7.8) 
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where, 

 

1 1( ) ( ), , ( )p p
k k k k r kH S H Y t H Y t W+⎡ ⎤= ⎣ ⎦"   (7.9) 

 

and kV  computed from 

 
1 1( 1) ( ) ( ) .T T

k k k kV r T T H S R H S− −= + +   (7.10) 

7.3 A THREE-DIMENSIONAL NUMERICAL EXAMPLE 

In this section, we compare the quality of history matching and forecasting results 

obtained with SEIKF and EnKF. The impact of different sampling and assimilation 

strategies pertinent to these nonlinear filters is investigated from the viewpoints of (1) 

accuracy of the reconstructed permeability fields, (2) history of filter convergence, and 

(3) uncertainty reduction. 

7.3.1 Model Description 

A simple three-dimensional reservoir model is constructed as a virtual laboratory 

to conduct proof-of-concept numerical examples. The reservoir simulation model 

encompasses 1,083 (19×19×3) gridblocks. The permeability field is generated using of a 

geostatistical reservoir modeling algorithm called Matrix Decomposition Method 

(MDM), (Yang, 1990). In simple terms, MDM operates as a weighted-averaging method 

in which the weighting matrix is related to a covariance matrix. In our case, the 

covariance matrix is derived by use of a spherical variogram and a lognormal 

permeability distribution. The correlation length is 460 ft along both horizontal directions 

(X and Y). Along the vertical direction (Z) a shorter correlation length of 46 ft is 
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enforced. The mean value for permeability is 350 mD and the vertical-to-horizontal 

permeability ratio equals to 0.1. Dykstra-Parsons coefficient, a measure of heterogeneity, 

is 0.8 indicating a considerably heterogeneous porous medium. Table 7-1 provides the 

remaining rock, fluid, and geometrical properties. Injector and producer wells are both 

operated with a constant rate constraint. Over the course of the production both injection 

and production rates are varied. 

Layer-by-layer permeability maps of the numerical example are shown in Figure 

7-3. Hereafter, we will refer to these permeability maps as the reference maps. Injection 

and production well locations are indicated on the permeability map of Layer #1 (top 

layer). Permeabilities cover the range from 1 mD to 4313 mD and are transformed to the 

logarithmic domain. Red color indicates high and blue color low values of permeability. 

The waterflooding project is operated via five injection and nine production wells. 

Producers are denoted with black dots and injectors are denoted with both black dots and 

a through-going line. All wells are fully penetrated through the 40 ft-thick reservoir. The 

production data set is derived by simulating a reference case for 500 days. Well-by-well 

oil and water production rates and wellbore pressures are recorded. The data set is 

reduced so that each data record will contain measurements acquired every 50 days. 

Subsequently, all data records are contaminated with varying levels of zero-mean random 

Gaussian noise. 

7.3.2 Accuracy and Convergence of Model Domain Reconstruction 

One hundred initial realizations of the permeability field are selected through 

SVD from a pool of two hundred geostatistically constrained realizations. Let us first 

discuss the results obtained with SEIKF. The evolution of the mean permeability field 

populating Layer #1 is illustrated in Figure 7-4 along with the reference map. Snapshots 

are shown for the initial time, 50, 150, 300, and 500 days (final time for history 
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matching). Similar plots for Layer #2 and Layer #3 are shown in Figures 7-5 and 7-6, 

respectively.  

Main features of the mean permeability field are successfully captured by the 

SEIKF history-matching workflow. Accuracy of model domain reconstruction is 

remarkably higher for Layers #2 and #3. Geologic features start to emerge between 50 to 

150 days of data integration. After 500 days of history-matching the highest quality of 

mean-field reconstruction is attained for Layer #3 and the lowest for Layer #1. The 

history-matching process appears to encounter difficulties in extracting permeable 

features in the upper-left corner of Layer #1. Simulated model responses in general 

exhibit good agreement with the noise-contaminated synthetic production measurements. 

7.3.3 Comparison of SEIKF and EnKF Results 

In order to validate the application of SEIKF to history matching problems, the 

proof-of-concept numerical test is extended to include EnKF. Both SEIKF and EnKF 

methods are put into equal footing by use of the same initial realizations of the 

permeability field and the same time-interval for production data acquisition. An example 

of model domain convergence with EnKF is shown in the panels of Figure 7-7 for Layer 

#3. The comparison of Figures 7-6 and 7-7 indicates that, for the investigated proof-of-

concept example, SEIKF protocol yields a more rapid and stable model domain 

convergence than EnKF.  

Figure 7-8 depicts a comparison of permeability maps obtained after 500 days of 

data integration using SEIKF and EnKF for each layer. Pertinent reference permeability 

maps are also shown. For Layer #1 both methods encounter difficulties in capturing the 

mean permeability structure, especially the portion shown in the left-half of the reference 

map. Nevertheless, EnKF appears to yield a slightly more accurate reconstruction of the 

mean permeability populating Layer #1. For Layer #2, with regard to the macro-scale 
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mean permeability structure, both methods perform almost equally well. The needle of 

the balance, however, tips slightly in favor of SEIKF. For Layer #3, again, both methods 

successfully capture the large-scale features of the mean permeability. Root Mean Square 

(RMS), which is the distance between the mean of multiple matched models and the 

reference, is an effective tool to measure the match performance. RMS is defined as 
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where Nm is the number of gridblocks. Ymean,i and  Yref,i are the matched average value 

and the reference value of the i-th gridblock, respectively. With the mean permeability 

fields at the end of the history-match from SEIKF and EnKF, Table 7-2 gives the RMS 

results, which confirm our observations from Figure 7-8. SEIKF yields a more accurate 

reconstruction than EnKF. Results of the proof-of-concept example confirm that SEIKF 

offers a viable alternative to EnKF in terms of accuracy of model reconstruction. 

7.3.4 Quantification of Forecast Uncertainty 

Going once through the ensemble history-matching workflow yields multiple 

reservoir models that honor the up-to-date production data. In turn, these multiple models 

may be deployed for conducting future forecasts of hydrocarbon recovery. Recovering a 

family of multiple history-matched models within one automatized and non-repetitive 

workflow is a characteristic feature of nonlinear filter-based history-matching techniques, 

i.e. SEIKF and EnKF. Clearly, this ubiquitous feature streamlines the uncertainty 

quantification process. 

At this point, it is worthwhile to emphasize that in terms of history-matching and 

quantification of forecast uncertainty, we make a number of critical assumptions. First 
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and foremost, we assume that the only source of uncertainty is the permeability field. In 

real applications, there are almost always a number of other rock, fluid, stratigraphic, and 

structural parameters that can strongly influence the production behavior. Ideally, these 

parameters should be included in the entire uncertainty quantification workflow. Our 

objective is, however, to understand, evaluate, and validate a novel history-matching 

technique within the framework of an uncertainty quantification workflow. Therefore, we 

justifiably work on a simplified proof-of-concept problem. 

With regard to forecast uncertainty, we assume that 100 history-matched 

realizations of the permeability field provide an accurate coverage of the a posteriori 

uncertainty space. In accordance, using the dynamic responses of these permeability 

fields, we assume that we can construct a reliable statistical description for the progress 

of cumulative oil recovery. In theory, however, there may be a significant number of 

permeability fields that can honor the production data and geostatistical soft-constraints 

but that are left out due to the random nature of the sampling process. Therefore, dynamic 

recovery responses of such permeability fields will never be accounted for. We attempt to 

mitigate the impact of this fact by selectively choosing the members of the initial 

ensemble so that each member will bring a separate piece of information to the history-

matching process. This is accomplished by the use of SVD as elaborated earlier. 

Recovery forecasts are conducted for the next 1500 days by simulating multiple 

realizations of the permeability field obtained from 500 days of data integration. Thus, 

the total time of forecasting is 2000 days. Simulations are performed using all 100 

realizations obtained via SEIKF. The same process is repeated for realizations that 

emanate from the use of EnKF. Outcomes of future recovery prediction are quantified in 

terms of the cumulative oil production volume. Forecast results are reported in the panels 

of Figure 7- 9 for models stemming from SEIKF and EnKF workflows. The history 
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matching period and the final spread in the recovery forecast are clearly marked. 

Predicted progress of oil recovery for the ground-truth reference model is also shown in 

the panels of Figure 7- 9. 

A comparison of the panels in Figure 7-9 reveals a number of intriguing results. 

For both SEIKF and EnKF at the later times of the history matching period, cumulative 

oil production derived from some of the history-matched models diverges from the 

reference model response. The amount of spread at the final time of the history match 

appears to be slightly larger for EnKF than for SEIKF. This behavior appears to translate 

consistently into the forecast period. As a matter of fact, in the forecast mode, the spread 

in the recovery predictions grows rather rapidly for both methods consistent with the non-

unique nature of the history matching problem. However, the magnitude of the growth in 

this spread is different for models obtained via SEIKF and EnKF. For the models 

stemming from the application of SEIKF, the cumulative oil recovery curves tend to 

cluster more around the reference model response. For models inherited from the use of 

EnKF, the overall as well as the final spread in the recovery predictions is slightly larger 

than their counterparts derived from the application of SEIKF. We attribute this behavior 

to the resampling step of SEIKF. Resampling appears to guide the filter to assess a 

widened spectrum of possibilities in its progress towards convergence. This, in turn, 

plays a crucial role in giving an opportunity to the assimilation step for executing a more 

accurate calibration of the state parameters. In turn, the final ensemble is a product of a 

diverse assessment and efficient calibration process. 

Forecast simulations are analyzed statistically to identify the central tendency and 

the probabilistic range for the low- and high-case scenarios. Recovery statistics are 

derived from 100 dynamic simulations performed with models derived via SEIKF and 

EnKF. At any time, there exist 100 realizations of cumulative oil recovery for a given 
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family of models which honor the production data. The central tendency is described by 

the mean (P50) value of the cumulative oil recovery time-function. While an interval of 

confidence for the recovery predictions is described by the “subjectively imposed” P10 to 

P90 range, in our notation P10 corresponds to the low-risk case and P90 describes the 

high-risk case. Results of this probabilistic assessment of recovery forecasts are shown in 

the panels of Figure 7-10. For the investigated proof-of-concept example, SEIKF does a 

comparable job to EnKF in reducing the forecast uncertainty. The central tendency of 

cumulative oil recovery derived by use of SEIKF is slightly more accurate than the one 

obtained via use of EnKF. 

7.4 SUMMARY 

An efficient variant of the ensemble Kalman filter, namely, Singular Evolutive 

Interpolated Kalman filter (SEIKF) is applied to the multimodel history-matching 

problem. SEIKF operates with an enhanced sampling strategy embedded into its 

resampling step, which appears to improve the filter stability and help the nonlinear filter 

to deliver rapid convergence both in model and data domains. 

SEIKF is applied to a three-dimensional proof-of-concept waterflooding test 

example. Multiple history-matched models are generated for the reservoir permeability 

field. Model domain accuracy and convergence of the history matches as well as the 

uncertainty of dynamic predictions rendered by the final model ensemble are used as 

criteria to evaluate the performance of SEIKF. The outcome of the proof-of-concept 

studies quantitatively demonstrates that SEIKF exhibits a rapid convergence behavior. In 

terms of accuracy and uncertainty reduction, SEIKF performs comparably to EnKF. 

SEIKF is validated as a rapid and reliable framework for automatic multimodel history 

matching. Our proof-of-concept numerical test case quantitatively demonstrated that 

SEIKF has considerable potential in streamlining uncertainty quantification workflows. 
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Our analysis is based on one application. Further study on SEIKF is needed. The 

results also demonstrate that EnKF is still an effective tool for forecasting uncertainty 

quantification.  

The only concern about this method is the computational cost of covariance 

matrix during the resampling step. 
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Table 7-1  Reservoir rock, fluid, and geometrical properties  

Property Value 
Reservoir size 623.2×623.2×40            [ft] 
Reservoir gridblock sizes 
      Layer #1 
      Layer #2 
      Layer #3 

 
32.8×32.8×10              [ft] 
32.8×32.8×20              [ft] 
32.8×32.8×10              [ft] 

Number of gridblocks 19×19×3 
Porosity 0.3 
Permeability X and Y directions: kx = ky 

Z direction: 0.1×kx 
Dykstra-Parsons coefficient 0.8 
Initial pressure Variable on a gridblock basis 
Initial water saturation Variable on a gridblock basis 
Water viscosity 0.46                      [cp] 
Oil viscosity 40.                   [cp] 
Water specific gravity 0.433                   [psi/ft] 
Oil specific gravity 0.368                   [psi/ft] 
Relative permeability model Modified Corey model 
Endpoint relative permeabilities 0.2 [water], 0.95 [oil] 
Phase relative permeability exponents 3.0 [water], 2.0 [oil] 

 

 

 

 

Table 7-2  RMS of permeability fields from SEIKF and EnKF 

Layer SEIKF EnKF 
#1 0.81 0.80 
#2 1.33 1.58 
#3 0.79 0.83 
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Figure 7-1: Uncertainty quantification workflow. 
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Figure 7-2: Workflow of real-time data integration using SEIKF. 
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Layer #1                               Layer #2 

    

 

                   Layer #3 

 

Figure 7-3: Layer-by-layer permeability maps for the reference reservoir. Permeabilities 
are transformed into the logarithmic domain. Areal locations of injector (dot + through-
going line) and producer (dot) wells are shown on the permeability map Layer #1. 
Permeabilities range from 1 mD (blue) to 4313 mD (red). 
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     Reference                       Initial 

     

     At 50 days                       At 150 days 

  

     At 300 days                      At 500 days 

  

Figure 7-4: Evolution of the mean permeability field in Layer #1. Results obtained by use 
of SEIKF. 
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     Reference                       Initial 

     

     At 50 days                      At 150 days 

 

     At 300 days                     At 500 days 

 

Figure 7-5: Evolution of the mean permeability field in Layer #2. Results obtained by use 
of SEIKF. 
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     Reference                       Initial 

     

     At 50 days                      At 150 days 

 

     At 300 days                     At 500 days 

 

Figure 7-6: Evolution of the mean permeability field in Layer #3. Results obtained by use 
of SEIKF. 
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     Reference                       Initial 

     

     At 50 days                      At 150 days 

 

     At 300 days                      At 500 days 

 

Figure 7-7: Evolution of the mean permeability field in Layer #3. Results obtained by use 
of EnKF. 
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Layer #1 

Reference                SEIKF                 EnKF     

    

Layer #2 

Reference                SEIKF                 EnKF     

    

Layer #3 

Reference                SEIKF                 EnKF     

    

Figure 7-8: Layer-by-layer comparison of mean permeability fields at the end of the 
history-match. 
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Forecast results with permeability models obtained via SEIKF 
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Forecast results with permeability models obtained via EnKF 
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Figure 7-9: Comparison of cumulative oil production forecasts conducted using 100 
history-matched models obtained via SEIKF and EnKF. The red curve signifies the 
reference model response. 
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Forecast results with models obtained via SEIKF 
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Forecast results with models obtained via EnKF 
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Figure 7-10: Quantification of forecast uncertainty. 
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Chapter 8: Automatic History Matching with Distributed and 
Parallel Computing 

Over the past two decades, computer performance has advanced tremendously. 

However, current performance is limited by speed-of-light and material-size limitations. 

Automatic history matching is still time consuming through the single-processor 

sequential computing because of the large number of variables, high degree of 

uncertainties, high-resolution mega-cell reservoir models, modeling complexity and long 

production history. Fortunately, the independence of the ensemble members during the 

forecasting steps provides the possibility of distributed processing for the ensemble 

Kalman filter (EnKF) such that the computational cost is significantly reduced. In 

addition, parallel reservoir simulation has gradually moved from research to industry 

application. Commercial reservoir simulators with parallel capability are available. The 

purpose of this chapter is to efficiently implement automatic history matching through 

high-performance computing. Two-level computation is adopted, distributing ensemble 

members simultaneously while simulating each member in a parallel style.  

We first give an introduction to distributed and parallel computing, followed by a 

synthetic case operating from primary, waterflooding to water-alternating-gas flooding. 

Under different scenarios, the ensemble numbers are distributed and/or parallelized. The 

history matching results and the computation costs are then analyzed. The last section 

presents a summary. 

8.1 DISTRIBUTED, PARALLEL COMPUTING AND PORTABLE BATCH SYSTEM 

Generally, distributed computing is a method of computer processing in which 

parts of a program run simultaneously on two or more computers that are communicating 

with each other over a network. A cluster consists of multiple stand-alone machines 



 260

working in parallel across a local-high-speed network. In our history matching work, 

each forward reservoir simulation required by each ensemble member is independent, 

without inter-communication. Therefore, all the required simulation jobs can be 

submitted to the cluster at the same time. But the limited number of nodes in the cluster is 

commonly insufficient to provide for all the submitted jobs. The availability of these 

nodes is determined by a portable batch system (PBS) in the cluster. PBS is a workload 

management system for the Linux cluster, which supplies commands to submit, monitor 

and delete jobs. PBS queues all the submitted jobs and adds them sequentially once a 

certain node is detected free. All the waiting jobs are pending in the queue. More details 

about PBS components, function, and script implementation are given in Appendix B. 

Parallel computing is the simultaneous execution of the same task (split up and 

specially adapted) on multiple processors in order to obtain faster results. The key idea is 

based on the fact that the process of solving a problem can usually be divided into smaller 

tasks, which are carried out simultaneously with some coordination. Some terminologies 

are frequently used in parallel computing: efficiency, parallel overhead, and speedup. 

Efficiency is the ratio of the execution time using one processor and the time using a 

multiprocessor and the number of processors. Some extra time and memory space are 

required in parallel computing. This extra work compared to its sequential code is parallel 

overhead. Parallel speedup is defined as wall-clock time of serial execution divided by 

wall-clock time of parallel execution.  

There are roughly two categories for parallel models: shared memory and 

distributed memory. The area of parallel reservoir simulation has been extensively 

investigated to reduce the elapse running time. Scott et al. (1987), Chien and Northrup 

(1993), and Li et al. (1995) presented the parallel versions of reservoir simulators on 

shared memory computers. Wheeler and Smith (1989), Killough and Bhogosvera (1991), 



 261

Kaarstad (1995), Rame and Delshad (1995), Shiralkar et al. (1997), Chien et al. (1997), 

Killough et al. (1997), Parashar et al. (1997), Dogru et al. (1999), and Wang et al. (1999) 

explored the parallel reservoir simulators on distributed memory computers.  

Recently, both companies and universities have been working on the next 

generation of parallel reservoir simulators. Chevron, with Schlumberger, are developing a 

highly scalable simulator INTERSECT (DeBaun et al., 2005; Cao et al., 2005; Fjerstad et 

al., 2005). ExxonMobil developed a simulator called EMpower (Beckner et al., 2001). 

Landmark Graphics is working on a new parallel simulator called NEXUS (Al-Matar et 

al., 2007). Computer Modelling Group is working on a shared-memory parallel simulator 

(Collins et al., 2003). The University of Texas at Austin is developing a fully implicit, 

compositional simulator called GPAS (General Purpose Adaptive Simulator; Han et al., 

2005) and an implicit parallel accurate reservoir simulator called IPARS (Lacroix et al., 

2001). Stanford University is working on the GPRS (General Purpose Research 

Simulator; Jiang, 2007).  

For the application of parallel simulation on history matching, Ouenens et al. 

(1995) parallelized the simulated annealing algorithm for automatic history matching. 

Schiozer and Sousa (1997) used the external parallization to improve history matching 

through distributing multiple simulations to a network station. Leitao and Schiozer (1999) 

presented an application example for a history matching problem, where the gradient-

based method is used to find the best values for certain reservoir parameters to match 

pressure and water production data through distributed reservoir simulation. Schulze-

Riegert et al. (2002) distributed the evolutionary algorithm for history matching reservoir 

layer permeability, fault transmissibilities and relative permeabilities. Landa et al. (2005) 

presented a distributed high performance computing using a Linux cluster for history 

matching.  
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8.2 STRUCTURE OF DISTRIBUTED AND PARALLEL COMPUTING 

The computation procedure for the EnKF contains two steps: forecasting and 

assimilation. The assimilation step requires only a little computational time since the 

amount of observation data at each measurement time is small. The forecasting step 

makes it straightforward to take the benefit of parallel and distributed high-performance 

computing; because multiple simulation jobs are operated independently, these jobs can 

be distributed to multiple nodes simultaneously. For each job, a parallel version of the 

reservoir simulator can be applied to occupy multiple processors. 

In implementation, to efficiently apply PBS to process multiple jobs, multiple 

shell scripts are used: submission script, PBS job scripts in the “pbsJobs” folder, and 

simulation execution scripts in the “realJobs” folder. The submission script determines 

the host directory and contains all the command lines for PBS job submissions. The PBS 

job script covers the resource requirements (e.g. memory and CPU time), job attributes, 

and the set of commands to execute. Each PBS directive starts from “#PBS”. Simulation 

execution is a shell script containing input link, simulator execution, and some basic 

processes of output files. Each PBS job execution generates two files: one is echo data 

and the other is any possible error message. All these files are stored in the “log” folder.  

A group of commands is used to detect whether all the submitted PBS jobs have 

been finished: list all the jobs of the specific user, filter and count all the running and 

waiting PBS jobs. If the number is zero, start the next step; otherwise, sleep a while and 

recount again. Chapter 9 gives more details about programming and running a job.  

In the input file, the last line is running mode: “0” for sequential, “1” for 

distributed and “2” for parallel and distributed. Correspondingly, the structure for 

sequential, parallel, distributed and parallel modes is illustrated in Figure 8-1. In the 

figure, n is the number of ensemble members (i.e., the number of simulation jobs at each 
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forecasting step in the EnKF), d is the number of distributed nodes and p is the number of 

parallel processors in each simulation job. 

8.3 CASE STUDY AND DISCUSSION 

A three-dimensional quarter-five-spot compositional reservoir simulation problem 

is used to investigate the performance of the developed history matching module in a 

parallel and distributed processing platform.  

8.3.1 Case Description 

The reservoir is discretized by 15×15×20 with grid sizes 22ft, 22ft, and 7.5ft, in 

X, Y, and Z directions, respectively. The top of the reservoir has a depth of about 5000ft. 

In total, there are seven pseudocomponents, i.e., CO2, C1, C2-3, C4-6, C7-16, C17-29, 

and C30+. Initial water saturation is 0.35 and initial pressure is 2000 psi.  

The porosity field is known for each gridblock. Permeability field is generated by 

sequential Gaussian simulation with correlation lengths 150ft, 150ft and 30ft in X, Y, and 

Z directions, respectively. The Dykstra-Parsons coefficient is 0.8.  

This is a small reservoir block with two fully-perforated vertical wells. The entire 

simulation time is 1040 days. Two producers, P0115 and P1501, operate with 1000 psi 

bottomhole pressure from 0 day to 10 days. The maximum oil surface rate in each well is 

400 STB/day. Permeability field associated with well locations is shown in Figure 8-2. 

Well P0115 then switched into a water injector, named Jw0115. This injector has a 

constant bottomhole pressure with 2000 psi. At the end of 1000 days, the water injector 

turns into the solvent injector, named Jg0115, with constant bottomhole pressure of 2100 

psi. The producer P1501 is primarily constrained by 1000 psi constant bottomhole 

pressure and secondarily conditioned by a 400 STB/day surface oil rate.  
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The observation time is irregular. Since all the wells are constrained by 

bottomhole pressure, surface rates of oil, gas, and water are obtained from producers at 

each observation time. The gas or water injection rates in the injectors are also collected. 

Hence, from 0 day to 10 days, the observation data are oil, water and gas rates in surface 

condition from both P0115 and P1501. From 11 days to 1000 days, oil, water and gas 

rates in surface condition from P1501 and water injection rate from Jw0115 are observed. 

After 1000 days, gas injection rate from Jg0115 is collected instead of water injection 

rate from Jw0115. The observation times and the amount of data at each time are listed in 

Table 8-1. 

8.3.2 History Matching Results 

The weighted EnKF, addressed in Chapter 6, is applied in this history matching 

case. The twelfth and twentieth layers are shown in Figures 8-3 and 8-4. With time 

increasing, the permeability map in each layer updates and approaches to the reference. 

The matched field finally captures the main structure. However, the permeability field 

does not match very well with the reference model. The reason for the difficult recovery 

of the reservoir permeability field is of the insufficient information obtained from wells. 

First, there are 4500 gridblocks in total and each gridblock has an individual permeability 

value. We only collect 4 or 6 data points at totally 25 observation times. Second, there are 

20 layers while the observed data are surface rates at two well locations. The information 

from each layer, or at the various locations, is not included.  

Because history matching is not unique, especially when the measurements are far 

from the sufficiency, the matched permeability fields are used in the reservoir model to 

evaluate well performances. The whole simulation period is from 0 day to 1250 days. 

Figure 8-5 gives the plots of surface oil rate and surface gas oil ratio with time in the 

producing well P1501. The figures demonstrate that with time increasing and more 
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information collected, better matching and prediction are achieved. The results from the 

matched field at the end of 1040 days have good agreements with the reference plots. 

Both figures also indicate that the observed information is insufficient to recover the 

reference reservoir field. More constraints, such as using the conditional reservoir field 

generation at the beginning and adding observation wells, are needed to improve the 

history matching performance.  

8.3.3 High-Performance Computing 

With a Dell cluster and commercial reservoir simulator CMG parallel version, we 

implement the above compositional case using different numbers of processors.  

The cluster hardware information is as follows: 

● 8 nodes are all Dell PowerEdge 1750s: 

- (2x) Xeon 3.06 GHz, 1.0 MB Cache; i.e., two processors per node 

- 2.0 GB RAM 

● Frontend is a Dell PowerEdge 2950: 

- (2x) Dual-Core Xeon, Woodcrest 5130, 2.0 GHz, 4.0 MB Cache; i.e., 

dual-core looks like 4 processors 

- 2.0 GB RAM (4x512 MB 667MHz) 

For software, the SMP version of RedHAT is used for the running kernel. 

Commercial reservoir simulator GEM parallel version (compositional module of 

Computer Modelling Group Ltd.) is selected. Note that GEM parallel version uses shared 

memory architecture computers. Also note that the Linux32 version of GEM 2006.10 

runs on Linux_x64 while it does not support parallel. The Linux_x64 version of GEM 

2006.12 supports parallel. Both Linux32 and Linux_x64 of GEM 2007.10 versions 

support parallel. We use the version 2007.10 GEM in this study since our cluster is 

Linux32.  
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We first test the parallel efficiency, which is the performance improved as more 

processing elements are employed. The speedup is one of the ways to measure the 

performance efficiency of parallel processing and is defined as 

 
1Speedup
n

t
t

=  

 

where 1t  is the execution time on a single processor and nt  is the execution time on n  

processors. Speedup performance is largely determined by the ratio of computation cost 

and communication cost. The ratio can be dependent on both the parallel algorithms and 

computer hardware/software performance. The ideal speedup of parallel simulation with 

n  processors is n , which means the program runs n  times faster. However, as the 

number of processors becomes larger, the speedup less than n  is observed in reality 

because of the overheads that are not encountered in a single processor.  

Our reservoir reference model is run in a single processor and two processors 

shared memory in one node. For comparison, the node in these two running modes is the 

same. The total simulation time is 1250 days. The elapsed time in the single-processor 

case is 2371.58 seconds while the elapsed time in the two-processor parallel case is 

1443.69 seconds. Hence, the speedup is about 1.643 while the ideal is 2.0. The speedup is 

not very good and one possible reason is the short simulation running time.  

We then apply the EnKF module to the history matching case using sequential, 

parallel, and distributed and parallel computing performances. The case and results are 

described in Sections 8.3.1 and 8.3.2. Because of the short periods in the primary 

depletion and waterflooding, the simulation times in these sections are very fast. 

Therefore, we only consider the last three matching steps in the input file to demonstrate 

the parallel and distributed computing: 1015 days, 1030 days and 1040 days. In our 



 267

study, 200 ensemble members are used. After each assimilation step, the permeability 

field is updated. We need to rerun the case from the beginning because the restart option 

in GEM does not support such a change in reservoir property. To finish the last three 

steps in the input file, we study five execution modes: 

● Mode 1: One single processor, shown in Figure 8-1(a), needs 93.4 hours.  

● Mode 2: Each ensemble member is run in two-processor parallel and only one 

node is used. The structure is shown in Figure 8-1(b), where 2p = . It needs 

61.0 hours.  

● Mode 3: Each ensemble member is run in two-processor parallel and two 

nodes are used. The structure is shown in Figure 8-1(c), where 2p =  and 

2d = . It needs 30.5 hours. 

● Mode 4: Each ensemble member is run in two-processor parallel and four 

nodes are used. The structure is shown in Figure 8-1(c), where 2p =  and 

4d = . It needs 15.3 hours. 

● Mode 5: Each ensemble member is run in two-processor parallel and eight 

nodes are used. The structure is shown in Figure 8-1(c), where 2p =  and 

8d = . It only needs 7.6 hours. 

The above simulation times are plotted in Figure 8-6. With parallel computing, 

more distributed nodes bring about a faster execution time. We reduced 93.4 hours (about 

4 days) in the single-processor sequential running to only 7.6 hours in two-processor 

parallel eight-node parallel running. The benefit of using high performance computing is 

clearly demonstrated. 

Here we show only a concept of time saving through high-performance 

computing. In reality, each simulation model has millions of gridblocks and needs several 

days, even several weeks. For history matching, if two hundred models are running, there 
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will be a heavy computational burden. The hardware is relatively cheap and the time is 

more valuable. We can apply distributed and parallel computing to the automatic history 

matching process and can greatly save time and improve work efficiency.  

8.4 SUMMARY 

Automatic history matching with distributed and parallel computing was 

investigated in this chapter. Through a compositional case study, the efficiency of 

distributed and parallel computing during history matching, particularly in the EnKF 

methodology, was demonstrated. In this case, 4 days of computational time was 

necessary to perform the simulations using a single-processor computer. This time was 

reduced to about 7.6 hours using distributed/parallel processing (eight distributed nodes 

with two parallel shared memory processors.  

The EnKF based history matching has the straightforward advantage of 

distributed computing. The parallel version of the reservoir simulator can be used for 

additional gain in reducing the actual time for history matching. Therefore, distributed 

and parallel computing techniques are recommended for the automatic history matching 

process and can significantly reduce the execution time.  
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Table 8-1  Observation data during the simulation time 

Time (days) Surface Oil 
Production Rate 

Surface Water 
Production Rate

Surface Gas 
Production Rate

Injected 
Water Rate

Injected 
Gas Rate 

Total Number 
of Data 

1 2×1 2×1 2×1 0 0 6 

4 2×1 2×1 2×1 0 0 6 

7 2×1 2×1 2×1 0 0 6 

10 2×1 2×1 2×1 0 0 6 

11 1×1 1×1 1×1 1 0 4 

15 1×1 1×1 1×1 1 0 4 

20 1×1 1×1 1×1 1 0 4 

30 1×1 1×1 1×1 1 0 4 

40 1×1 1×1 1×1 1 0 4 

60 1×1 1×1 1×1 1 0 4 

100 1×1 1×1 1×1 1 0 4 

200 1×1 1×1 1×1 1 0 4 

300 1×1 1×1 1×1 1 0 4 

400 1×1 1×1 1×1 1 0 4 

460 1×1 1×1 1×1 1 0 4 

560 1×1 1×1 1×1 1 0 4 

660 1×1 1×1 1×1 1 0 4 

780 1×1 1×1 1×1 1 0 4 

830 1×1 1×1 1×1 1 0 4 

920 1×1 1×1 1×1 1 0 4 

1000 1×1 1×1 1×1 1 0 4 

1001 1×1 1×1 1×1 0 1 4 

1015 1×1 1×1 1×1 0 1 4 

1030 1×1 1×1 1×1 0 1 4 

1040 1×1 1×1 1×1 0 1 4 
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Figure 8-1: Schematic structure of sequential, parallel, and distributed and parallel 
computing in the EnKF process. 
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Figure 8-2: Three-dimensional view of reservoir permeability. 
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     Reference                       Initial 

 

     At 60 days                      At 460 days 

 

     At 920 days                     At 1040 days 

 

Figure 8-3: Evolution of the mean permeability field in Layer #12 after logarithm 
transformation. Permeabilities range from 1 mD (blue) to 1100 mD (red). 
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     Reference                       Initial 

 

     At 60 days                      At 460 days 

 

     At 920 days                     At 1040 days 

 

Figure 8-4: Evolution of the mean permeability field in Layer #20 after logarithm 
transformation. Permeabilities range from 1 mD (blue) to 1100 mD (red). 



 274

(a) Surface Oil Rate at Well P1501 
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(b) Surface Gas Oil Ratio at Well P1501 
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Figure 8-5: History matching and forecasting of surface oil rate and surface gas oil ratio 
in well P1501 by using the reservoir field obtained at the different time. 
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Figure 8-6: Elapsed time in five different execution modes. 
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Chapter 9: Automatic History Matching Module 

This Chapter is served as a guideline for using the automatic history match 

module developed and discussed in previous chapters. The platform UT_IRSP is first 

introduced followed by an outline for the automatic history module. The main program 

and a procedure for compilation and execution are then discussed. Example input files for 

UTCHEM, ECLIPSE, and CMG reservoir simulators are described and provided.  

9.1 INTRODUCTION TO UT_IRSP 

Increasing hydrocarbon production via advanced technologies commonly 

involves the use of numerical simulation of the associated processes to minimize the risk 

involved in development decisions. The oil industry today requires much more detailed 

analysis with a greater demand for reservoir simulations with more detailed geological, 

physical, and chemical models than in the past. Without detailed simulations it is very 

unlikely that cost effective recovery processes can be developed and applied 

economically. Although reservoir simulation software is currently available, there are still 

many obstacles to the widespread and effective use in the upstream oil and gas industry, 

such as time-consuming data preparation and output analysis, large uncertainties 

associated with the petrophysical properties and methods for performance predictions, 

and a large number of scenarios required for performance optimization in reservoir 

simulations.  

The UT_IRSP (Integrated Reservoir Simulation Platform), developed by Jiang 

Zhang (2005), is a user-friendly framework to promote the routine application of 

reservoir simulation for design and optimization. In particular, it facilitates the problem 

solving during well location optimization, sensitivity studies to rank the important 
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reservoir parameters, stochastic simulation to gauge risk, the design and optimization of 

chemical flooding processes, and a composite study that combines the above.  

Using the concept of the objected-oriented design, the UT_IRSP has integrated 

three reservoir simulators, two spatial stochastic field generators, and two job schedulers 

for performing distributed and/or parallel computing. Three reservoir simulators are 

UTCHEM, ECLIPSE, and VIP. Two spatial stochastic field generators are MDM and 

SGSIM of GSLIB for generating initial realizations of reservoir properties. Job 

schedulers are Portable Batch System (PBS) and Load Sharing Facility (LSF). There are 

several windows-based commercial software packages used to design, analyze, and 

optimize the results from reservoir simulation studies. For experimental design and 

response surface, Design-Expert (Stat-Ease, Inc., 2003) is used. Crystal Ball 

(Decisioneering, Inc., 2001, 2004) is used for optimization with uncertainties through 

Monte Carlo simulation. Tecplot RS (Tecplot, Inc., 2004) is used for visualization of 

UTCHEM and ECLIPSE output maps, whereas VIP’s 3DView is used for visualization 

of VIP maps. Microsoft Excel is used for processing well data for UTCHEM. Surfer 

(Golden Software, Inc.), can be used for variogram analysis of the geostatistical data. 

The UT_IRSP first prepares and executes multiple reservoir model cases as 

specified in the user’s instruction files denoted as preprocessing step. Post-processing 

step of the UT_IRSP extracts desired simulation results from each simulation run, 

facilitates the three-dimensional visualization, and generates statistical information on 

certain variables such as reservoir recovery. The automatic history matching module with 

EnKF methodologies is now added to the UT_IRSP. When the UT_IRSP is launched, the 

program will prompt the user to select either backward history matching or forward 

prediction and optimization.   

Figure 9-1 shows the working environment of the UT_IRSP.  
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9.2 REQUIREMENTS OF THE AUTOMATIC HISTORY MATCHING MODULE 

The history matching module is implemented in Linux environment. The 

computation platform can either be a single-processor Linux computer or a cluster of 

them. Petros cluster located in the Department of Petroleum and Geosystems Engineering 

is used. This cluster has eight nodes, from “compute-0-0” to “compute-0-7”, each of 

which has two CPUs sharing 2G of memory. To login, type “petros.cpge.utexas.edu” in 

SSH secure shell. The job can be submitted in any of these eight nodes with/without a 

script and run in sequential style, or submitted from Petros I/O node and run in either 

distributed or distributed and parallel environment.  

Linux uses a PATH environment variable to tell the operating system where to 

look for files or programs to execute. The PATH environment variable is stored in an 

operating system table, along with several other environment variables. In a Linux 

command line, you can type “env” to view the contents. In Petros, PATH is defined in 

the “.bash_profile” file. The “.bash_profile” file is one of several scripts that are always 

run upon log in. The user can add a directory to the PATH editing the “.bash_profile”. 

For matrix computation and random seed generation of the history match module, 

four extra libraries are used: LAPACK (LAPACK website), BLAS (BLAS website), 

EISPACK (EISPACK website), and FFTW (FFTW website). LAPACK, Linear Algebra 

PACKage, is written in Fortran 77 and provides routines for solving systems of linear 

equations, least-squares solutions of linear systems of equations, eigenvalue problems, 

and singular value problems. The associated matrix factorizations (LU, Cholesky, SVD, 

QR) are also provided. BLAS, Basic Linear Algebra Subprograms, are routines that 

provide standard building blocks for performing basic vector and matrix operations. 

Because the BLAS are efficient, portable, and widely available, they are commonly used 

in the development of high quality linear algebra software. EISPACK is a collection of 
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FORTRAN subroutines that compute the matrix eigenvalues and eigenvectors. In 

addition, two routines are included that use singular value decomposition to solve certain 

least-squares problems. FFTW is a free collection of fast C routines for computing the 

discrete Fourier transform in one or more dimensions. It includes complex, real, 

symmetric, and parallel transforms, and can handle arbitrary array sizes efficiently. All 

the above packages are free to download from their websites. In our Petros cluster, 

LAPACK and BLAS have been installed. The user needs to install FFTW and EISPACK, 

and then put their absolute paths in the makefile.  

Three simulators, UTCHEM, ECLIPSE and CMG, are installed on the cluster. 

UTCHEM, developed at The University of Texas at Austin, is a three-dimensional 

compositional chemical flooding simulator. The solution scheme is analogous to IMPES, 

where pressure is solved for implicitly, but concentrations rather than saturations are then 

solved for explicitly. Phase saturations and concentrations are then solved in a flash 

routine. The UTCHEM distribution package is free and contains FORTRAN 90 source 

files, two files used for compiling the code (Commodule and Makev9). To compile 

UTCHEM in Petros cluster, first issue the command “Commodule”, which will compile 

the modules; then issue the command “make –f Makev9 FC=ifort” to build the 

executable file called “utchem93.exe”; last, change to the executable model “chmod 700 

utchem93.exe” and move it to “bin” folder in the user’s home directory. ECLIPSE, 

installed in “/opt/eclipse” in Petros, is already set in the user’s path and can be used 

directly. CMG software, installed in “/share/apps/cmg/gem/2007.10/Linux32/exe” folder, 

needs to be set in the user’s path: in user’s home directory, type “vi .bash_profile” and 

add “PATH=$PATH:$HOME/bin:/share/apps/cmg/gem/2007.10/Linux32/exe” under the 

line of “# User specific environment and startup programs”. In this way, “bin” folder and 

CMG directory are added to user’s path.  
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MDM and SGSIM and the source codes are available to generate initial 

geostatistical realizations, i.e., permeability field. MDM source code has only one file 

“mdm.f” and can be compiled by “ifort –o mdm.exe mdm.f”. FORTRAN 90 source 

codes for SGSIM can be compiled by using makefile. Under directory of source codes, 

type “make” and it will generate “sgsim.exe” executable file. Then, move “sgsim.exe” to 

user’s “bin” folder. 

To assist high performance computing, Portable Batch System (PBS) is installed 

in Petros. “qsub”, “qstat” and “pbsnodes” are three commands most frequently used to 

submit a PBS job, to check the status of jobs, queues and the PBS server, and to show all 

the PBS nodes’ status.  

9.3 STRUCTURE OF THE AUTOMATIC HISTORY MATCHING MODULE 

The automatic history matching module, written in FORTRAN 90, contains one 

main program and twelve important modules. Module design, similar to the object-

oriented design in C++, conveniently encapsulates one function within one module and 

can freely use other modules. In addition, one source file “source.files”, one dependent 

file “depends.file” and one makefile “makefile” are used to build the executable file.  

File “main.F90” is the program engine and works as the front end. Once the 

history matching module is launched, it will first read the input file “infile.in” with the 

information provided by the user. These data include number of gridblocks, number of 

realizations, the choice of software for initial realization i.e. MDM or SGSIM, the 

number of observations and the corresponding time of the observation, and the choice of 

sequential or distributed computing. 

The program generates multiple initial realizations using the user-specified 

software such as MDM and SGSIM and also creates folders as many as the number of 

realizations by modules “m_SGSIM.F90”, “m_MDM.F90” and 
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“m_folderGeneration.F90”. Simulator input file(s) are automatically copied into each 

folder. All the realization results then are pasted in the appropriate location in the input 

file in each folder, i.e., permeability field.  

The program enters into a big time step loop, starting from the beginning to the 

final time given by the user. Within the time loop, the matching parameters are updated: 

if it is the first time, the permeability, pressure, and saturation data from the initial 

stochastic results are used; otherwise, the results of Kalman filter methods in the last 

observation data are used. The program updates the permeability fields in each folder if it 

is not the first time step. Meanwhile, restart options are also implemented according to 

different requirements in different reservoir simulators. If the distributed computing is 

invoked, distributed files for PBS submission are then created. The reservoir simulator 

then runs the input case in each folder in a sequential or distributed style. All the above 

steps are performed using module “m_changeSimTime.F90”. 

Once all the jobs are completed, the program reads the observation data prepared 

by the user and extracts the corresponding response of pressure and water/oil saturation 

in each gridblock from the simulation outputs in the folders of different cases. These 

tasks are formed in modules “m_extractTrue.F90” and “m_extractEnsemble.F90”. To 

keep variability between the ensemble members (Burgers, 1998), white noises randomly 

perturbing the observation data are added in the module “m_measurements.F90” to create 

an ensemble of observation datasets for the ensemble reservoir cases.  

Since permeability fields are assumed to have lognormal distribution and the 

Kalman-filter-based methods are implemented in Gaussian space, a module 

“m_logexp.F90” is used to transform the permeability data from lognormal to normal 

spaces.  
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For the assimilation step, more than ten different assimilation schemes are 

implemented in the EnKF method, including direct inverse, standard computation 

algorithm, square-root algorithm, and weighted EnKF. Direct inverse and weighted EnKF 

schemes are coded separately in the module “m_oldenkf.F90” and 

“m_weightedenkf.F90”, while all the other EnKF schemes are in the module 

“m_enkf.F90”. The module “m_seikf.F90” is used for the singular evolutive interpreted 

Kalman filter discussed in more details in Chapter 7.  

After the assimilation step, the module “m_tecplot.F90” is used to prepare the 

average and variance of permeability data calculated from the ensemble members. 

Finally, the saturation and pressure data in each ensemble member before assimilation 

step are written to output files in folders “pressure” and “saturation”. The CPU time is 

given in “cputime.dat” file. The response data of each ensemble member during all the 

observation times are given in “observation.dat” file. For easy comparison and error 

detection, the true observation data and the corresponding average data from the results in 

ensemble members along with assimilation time and CPU time cost for each assimilation 

step are given in the file “overall.dat”. 

The flowchart of the automatic history matching module is illustrated in Figure 9-

2. 

9.4 COMPILATION PROCEDURE FOR THE AUTOMATIC HISTORY MATCHING 
MODULE 

Intel® Fortran Compiler 9.1.040 for Linux is used in Petros cluster to compile the 

automatic history matching module. The compiler processes FORTRAN language source 

and generates object files. There are four steps in compiling the program: preprocess, 

compile, assemble, and link. The Intel® Fortran Compiler can be invoked in either of two 

ways: using the “ifort” command or using the “make” command to specify a makefile. 
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The following command requests a file name “mdm.exe” for the source file “mdm.f”: 

“ifort –o mdm.exe mdm.f”. 

A makefile associated with “depends.file” and “source.files” is used for the 

automatic history matching module. In the file “source.files”, we list all the modules and 

F90 files. File “depends.file” gives the relationships of the files. The implementation is 

straightforward. First, place all the source files in one folder and create a folder “TMP” in 

this folder where the source files are located. Second, type “make” to generate the 

executable program. If you want to change the name of the executable program, edit 

“makefile” and change the character string of “TARGET”. Third, if you update a routine 

and need to recompile, type “make clean; make” to ensure deleting the previous objective 

files. The following shows the content of the “makefile”: 

 
VPATH = .:RCS:TMP 
 
.SUFFIXES: 
.SUFFIXES: .o .F90 .f90 .F .f .H .h   
 
LD = ifort 
CF90 = ifort 
CF77 = ifort 
 
FFLAGS =  -c -r8 
PAR =  
DEBUG_FLAGS = 
F77FLG =   
F90FLG =  
LINKFLAGS =  -r8 
 
CPPARCH = -DLINUX 
CPPFLAGS =  -P $(CPPARCH) 
 
LIBS =  -llapack -lblas -lfftw3 eispack_linux.a 
 
CPP = /usr/bin/cpp 
# Rules for running cpp and updating files in TMP directory 
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.H.h: 
 rm -f ./TMP/$*.h 
 cat MODEL.CPP $*.H | $(CPP) $(CPPFLAGS) > ./TMP/$*.h 
.F90.o: 
 rm -f ./TMP/$*.f90 
 cat MODEL.CPP $*.F90 | $(CPP) $(CPPFLAGS) 
> ./TMP/$*.f90 
 cd ./TMP ; $(CF90) $(FFLAGS) $(F90FLG) -o $*.o $*.f90   
.F.o: 
 rm -f ./TMP/$*.f 
 cat MODEL.CPP $*.F | $(CPP) $(CPPFLAGS) > ./TMP/$*.f 
 cd ./TMP ; $(CF77) $(FFLAGS) $(F77FLG) -o $*.o $*.f   
 
TARGET = 3DHIST 
 
include source.files 
 
INC2 =$(INC1:.H=.h) 
FILES =$(F90FILES) $(F77FILES) $(MODULES) 
FFILES =$(F90FILES:.F90=.f90) $(F77FILES:.F=.f) 
$(MODULES:.F90=.f90) 
OBJECTS = $(F90FILES:.F90=.o) $(F77FILES:.F=.o)  
OMOD = $(MODULES:.F90=.o) $(MODULES77:.F=.o) 
 
all: $(TARGET) 
 
$(TARGET): $(INC2) $(OMOD) $(OBJECTS)  
 cd ./TMP ; $(LD) $(LINKFLAGS) -o ../$(TARGET) $(OMOD) 
$(OBJECTS) $(LIBS)  
install: 
 cp $(TARGET) $(HOME)/bin 
clean: 
 cd ./TMP ; rm -f *.f  *.o *.f90 *.h *.mod 
include depends.file 

9.5 DESCRIPTION OF THE INPUT FILE 

An input file “infile.in” is required to provide the basic information, including the 

number of gridblocks, selection of geostatistic software for initial ensemble members, the 

mean and variance of the field if MDM or the unconditional SGSIM is used, number of 

realization, variances of observation data, total number of observation time and 
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corresponding number of observation data, study name, and running mode. An example 

of the “infile.in” file for an input case for UTCHEM simulator discussed in Chapter 6 is 

given as follows: 

 
22  25  17         ! numbers of gridblocks in X, Y and Z directions, respectively 

 1                 ! 1 for SGSIM; 2 for MDM to generate permeability field 

 3                  ! variance of ln(k), if MDM is used, just put any number  

 6                 ! mean of ln(k), if MDM used, any number will be OK     

 200              ! number of realizations 

 1                ! generate initial realizations. if =1 for normal; if >1 for SVD 

 1.0                ! data errors for oil rate 

 3.0               ! data errors for water rate 

 3.0                ! data errors for bottomhole pressure (BHP) 

 4                 ! EnKF: 1-standard; 2-square root; 3-direct inverse; 4-weighted 

 34      10    7   ! # of times where data available; max # of wells for rate  

                   ! and max # of wells for BHP measurement 

 30      38    2    2  ! time, # of data, # of wells for rate and # of wells for BHP 

  1       4       ! if # of wells with rate data > 0, well ID for rate data 

  1       4        ! if # of wells with BHP data > 0, well ID for BHP data 

 60      38    2    2 

  1       4 

  1       4 

 90      38    2    2 

  1       4 

  1       4 

120      38    2    2 

  1       4 

  1       4 

150.05   38    2    2 

  1       4 

  1       4 

180.05   72    2    4 

  2       5 
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  1       2    4    5 

210.05   72    2    4 

  2       5 

  1       2    4    5 

240.10   72    2    4 

  2       5 

  1       2    4    5 

270.10   77    4    4 

  1       2    4    5 

  1       2    4    5 

300.10   77    4    4 

  1       2    4    5 

  1       2    4    5 

330.10   77    4    4 

  1       2    4    5 

  1       2    4    5 

360.10   77    4    4 

  1       2    4    5 

  1       2    4    5 

390.10   77    4    4 

  1       2    4    5 

  1       2    4    5 

420.10   77    4    4 

  1       2    4    5 

  1       2    4    5 

450.10   77    4    4 

  1       2    4    5 

  1       2    4    5 

480.10   77    4    4 

  1       2    4    5 

  1       2    4    5 

510.10   77    4    4 

  1       2    4    5 

  1       2    4    5 
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540.10   77    4    4 

  1       2    4    5 

  1       2    4    5 

570.10   77    4    4 

  1       2    4    5 

  1       2    4    5 

600.10   77    4    4 

  1       2    4    5 

  1       2    4    5 

620.10  139   10    7 

  1       2    3    4    5   6    7    8    9     10 

 11      12   13   14   15  16   17 

640.10  139   10    7 

  1       2    3    4    5   6    7    8    9     10 

 11      12   13   14   15  16   17 

660.10  139   10    7 

  1       2    3    4    5   6    7    8    9     10 

 11      12   13   14   15  16   17 

 680.10  139  10    7 

  1       2    3    4    5   6    7    8    9     10 

 11      12   13   14   15  16   17 

700.10  139   10    7 

  1       2    3    4    5   6    7    8    9     10 

 11      12   13   14   15  16   17 

720.10  139   10    7 

  1       2    3    4    5   6    7    8    9     10 

 11      12   13   14   15  16   17 

740.10  139   10    7 

  1       2    3    4    5   6    7    8    9     10 

 11      12   13   14   15  16   17 

760.10  139   10    7 

  1       2    3    4    5   6    7    8    9     10 

 11      12   13   14   15  16   17 

780.10  139   10    7 
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  1       2    3    4    5   6    7    8    9     10 

 11      12   13   14   15  16   17 

800.10  139   10    7 

  1       2    3    4    5   6    7    8    9     10 

 11      12   13   14   15  16   17 

850.10  139   10    7 

  1       2    3    4    5   6    7    8    9     10 

 11      12   13   14   15  16   17 

900.10  139   10    7 

  1       2    3    4    5   6    7    8    9     10 

 11      12   13   14   15  16   17 

950.10  139   10    7 

  1       2    3    4    5   6    7    8    9     10 

 11      12   13   14   15  16   17 

1000.10 139  10    7 

  1       2    3    4    5   6    7    8    9     10 

 11      12   13   14   15  16   17 

 CHAPT6                ! study name 

 PERMX                 ! keyword of parameters for matching 

 TMAX                  ! keyword of simulation time 

 IMODE                 ! keyword of simulation running mode: 1-first run; 2-restart 

 1      ! running mode: 0 for sequential; 1 for PBS distribution 

 0                 ! water saturation: 0-uniform; 1-per layer; 2-per gridblock 

 2                      ! reservoir pressure: 0-uniform; 1-per layer; 2-per gridblock   

 

Note that the units for date errors for rate and pressure should be consistent with 

the units given in the observation data files.  

 

9.6 STORAGE HIERARCHY 

Before running the history matching module, the observation data is stored in one 

folder. Besides, a folder “SGSIM” for SGSIM software or folder “MDM” for MDM 
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software is required. Inside of such folder, the file for SGSIM or MDM is already 

prepared.  

Once the history matching module is executed, multiple folders which are equal 

to the number of realizations are created. Each folder contains one independent reservoir 

simulation case, whose permeability field is automatically updated after each assimilation 

step. An empty folder “Tecplt-match” is created to store the matched results of each layer 

in the format of the Tecplot software. In this folder, the permeability mean and variance 

of ensemble realizations in each gridblock from the beginning to the end of history 

matching time are stored in the Tecplot format.  

If PBS is used, a batch file “subPBSJobs.job” is created to submit multiple PBS 

jobs. In addition, four additional folders are generated: “log”, “pbsJobs”, “pbsOut” and 

“realJob”. “pbsJobs” contains the batch file to implement PBS. The echo information 

during PBS job running on different nodes is stored in the folder “log”. “realJob” folder 

contains the batch files to run simulation in each realization folder. The information of 

PBS job identifications and any possible error message is stored in the “pbsOuts” folder. 

9.7 MDM AND SGSIM INPUT FILES 

The evolution of understanding reservoir structure has been a complex interaction 

between quantitative and qualitative judgment. Geostatistics combines the empirical 

conceptual ideas that are implicitly subject to degrees of uncertainty with the rigor of 

mathematics and formal statistics. It has found its way into the field of reservoir 

characterization and dynamic history matching. In our history matching module, we use 

MDM and SGSIM to generate initial permeability realizations based on prior geological 

knowledge and hard data measured in specific locations if possible. 
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9.7.1 MDM  

The current version of MDM has the same coordinate system as the commonly 

used reservoir coordinate system: in areal view, X direction goes toward East, Y direction 

goes toward South; Z direction goes downward. The input file “INPUT” includes the 

number of divisions and gridblock sizes in three directions, the number of variograms, 

the number of realizations, starting random seed number, output option selection. In 

addition, the user needs to specify the mean and variance (or Dykstra-Parsons coefficient) 

of permeability field, semivariogram model, correlation length in X direction and its 

ratios to Y and Z directions, respectively. If hard data in the well location is available, a 

separate file “INDAT” is needed, in which each line has X, Y, Z grid number locations 

and the measured permeability values. If hard data is unavailable, just put “0” in 

“INDAT” file. The relationship between variance after lognormal transformation 2
ln kσ  

and the Dykstra-Parsons coefficient DPV  is given by the following formula (Brown, 

1993):  

 
( ) 22

ln ln 1 .k DPVσ = −⎡ ⎤⎣ ⎦   (9.1) 

 

To execute the MDM program, just type “mdm.exe” in Linux environment. An 

MDM example used in Chapter 7 is given as follows: 

 
     perm-1      
     NX, NUMBER OF X DIVISIONS? 
     19.00 
     NY, NUMBER OF Y DIVISIONS? 
     19.0      
     NZ, NUMBER OF Z DIVISIONS? 
     3.0   
     NV, NUMBER OF VARIOGRAMS (IN THE NESTED MODEL)? 
     1.0000 
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     NR, NUMBER OF REALIZATIONS, <1 AS 1 EXCEPT O-FORM.? 
     1.0000 
     NS, NUMBER FOR STARTING RANDOM NUMBER (SEED)? 
     3500 
     MO, OUTPUT (INPUT) OPTIONS, SUM OF ALL OPTIONS? 
     5130  
     DX, GRID SIZE IN X DIRECTION, CONSISTENT UNIT? 
     32.8 
     DY, GRID SIZE IN Y DIRECTION, SAME UNIT AS DX? 
     32.8    
     DZ, GRID SIZE IN Z DIRECTION, SAME UNIT AS DX? 
     10  
     #1: P OF P-NORMAL FOR THIS TERM OF VARIOGRAM, 0=LOG-N.? 
     0. 
     #1: MEAN VALUE FOR THIS TERM, CONSISTENT UNIT AS S.D.? 
     350 
     #1: CORRELATION LENGTH, X MAJOR AXIS, SAME UNIT AS DX? 
     460    
     #1: CO.MODEL,-1=EXP,-2=DEXP,-3=SPH,-5=INPUTACF,+=POWER? 
     -3. 
     #1: RATIO OF CORRELATION LENGTHES IN MAJOR AXES, LX/LY? 
     1.0           
     #1: RATIO OF CORRELATION LENGTHES IN MAJOR AXES, LX/LZ? 
     10                                                
     #1: VDP FOR THIS TERM, SAME UNIT AS MEAN? 
     0.8 
 

The deficiency of MDM is that it is very slow for large number of gridblocks and 

it does not support the option that reservoir trend has an angle with the grid coordinate 

system. Note that the value 5130 after the line “MO, OUTPUT (INPUT) OPTIONS, 

SUM OF ALL OPTIONS?” is used in the above file. This number is a summation of 

several input and output options, which are represented by specific numbers: 1024 means 

using sample mean; 4096 means using Dykstra-Parsons coefficient instead of standard 

deviation; 2 means using external storage for big arrays; 8 means an output format with 

reduced variables.  
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9.7.2 SGSIM  

SGSIM requires similar information to MDM program. SGSIM has great 

advantages. It is much faster than MDM and offers more options, such as six parameters 

to define the geometric anisotropy of a semivariogram structure in three dimensions, 

multiple grid search, and maximum search radii.  

However, SGSIM has different grid definition: the X axis is associated to the east 

direction; the Y axis is associated to the north direction; and the Z axis is associated to 

the elevation, upward. Rather than block-centered oriented, the grid is node-point 

oriented. A careful transformation of the output is needed to be consistent with the 

reservoir coordinate system. The history matching module has the capability of 

completing such automatic system transform.  

If the unconditional simulation is implemented, SGSIM generates the output with 

the standard normal distribution with zero mean and one variance. The history matching 

module implements the transformation from normal distribution to lognormal distribution 

by the following transform formula: 

 

( )ln lnexp ,new old kK K σ μ= × +   (9.2) 

 

where, newK  is the desired permeability data with the lognormal distribution; oldK  is 

the data directly from SGSIM output with the normal distribution; ln kσ  and ln kμ  are is 

the standard deviation and mean of .oldK  

The default file of SGSIM is “sgsim.par”. The execution command is “sgsim.exe 

filename”. “filename” is the input file name. As an example, SGSIM file used in Chapter 

8 is given. For the meaning of each parameter in each line, refer to Deutsch and Journel 

(1998). 



 293

                 Parameters for SGSIM                                              
                 ********************                                             
                                                                                       
START OF PARAMETERS:                                                              
cluster.dat              - file with data                                         
1  2  0  0  0  0         - columns for X,Y,Z,vr,wt,sec.var. 
-1.0       1.0e21        - trimming limits                                        
0                        - transform the data (0=no, 1=yes)  
sgsim.trn                - file for output trans table                         
0                        - consider ref. dist (0=no, 1=yes)                     
histsmth.out             - file with ref. dist distribution                  
1  2                     - columns for vr and wt                                  
0.0    10.0              - zmin,zmax(tail extrapolation)                        
1       0.0              - lower tail option, parameter                          
1      10.0              - upper tail option, parameter                         
1                        - debugging level: 0,1,2,3                               
sgsim.dbg                - file for debugging output                            
sgsim.out                - file for simulation output                           
200                      - number of realizations                                 
15    11.0   22.0        - nx,xmn,xsiz                                             
15    11.0   22.0        - ny,ymn,ysiz                                            
20    3.75   7.5         - nz,zmn,zsiz                                             
69069                    - random number seed 
0    8                   - min and max original data  
12                       - number of simulated nodes to use                     
1                   - assign data to nodes  
1     3                  - multiple grid search 
0                        - maximum data per octant                                
300  300.0  75.0         - maximum search radii                                  
 0.0   0.0   0.0         - angles for search ellipsoid                          
51    51    11           - size of covariance lookup table                      
0     3.912   1.0        - 0=SK,1=OK,2=LVM,3=EXDR,4=COLC                       
ydata.dat                - file with LVM, EXDR, or COLC                         
4                        - column for secondary variable                         
1   0.0                  - nst, nugget effect                                      
1   1.0  0.0   0.0  0.0  - it,cc,ang1,ang2,ang3                                 
        150.0 150.0 30.0 - a_hmax, a_hmin, a_vert 
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9.8 CASE DESCRIPTIONS FOR DIFFERENT RESERVOIR SIMULATORS 

The history matching program is currently linked with three reservoir simulators: 

UTCHEM, ECLISPE, and CMG. Different reservoir simulators have different input and 

output formats. The following will discuss the main issues when different reservoir 

simulators are applied.   

9.8.1 Procedure for UTCHEM 

UTCHEM reservoir simulator requires two input files (the files names are 

“HEAD” and “INPUT”) for non-restart runs. The “HEAD” input file gives UTCHEM 

information regarding the name and size of the problem to be run.  

To fulfill our purpose of matching permeability in X direction, which is located 

after the line “*---- PERMX” in INPUT file, several steps are needed as discussed.  

1. Prepare a “HEAD” file and an “INPUT” file, except leaving permeability 

values empty after the line “*---- PERMX” in INPUT file. As for the 

maximum simulation time after the line “*---- TMAX” in INPUT, any 

value is acceptable since the program will change the value according to 

the user’s “infile.in” file.  

2. Check the lines “*---- IMODE”, “*---- TMAX” and “*---- PERMX” in 

INPUT file. Make sure they start with an asterisk, four hyphens, and one 

space, followed by the keyword in Capital letters. The program will 

determine the location of the input variables based on these keywords and 

specifications.  

3. Suppose the study name is CHAPT6 and there are total of 34 observation 

times, we then need to prepare a folder named “CHAPT6-true”. Inside this 

folder, the user needs to create files named “CHAPT601.dat” to 

“CHAPT634.dat”, each of which contains the observation data. The file 
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names correspond to the number of observation times. For example, 

“CHAPT601.dat” has the observation data for the first specified time. The 

data is in the same sequence with the well names in the input file. The 

remaining files contain the data for other times for the total of 34 times. 

As an example, “CHAPT601.dat” corresponding to Section 9.5 is given in 

Appendix C. 

4. If initial water saturation and pressure are uniform or constant in each 

layer, the value(s) is given in the input file, described in Section 9.5. 

Otherwise, separate files are needed to assign values to initial ensemble 

members.  

5. For a restart simulation, the output of the first simulation, named 

“CHAPT6.RESTAR”, is renamed to “INPUT2”. For the restart, the 

running mode IMODE flag in INPUT is changed from a value of 1 to 2. 

The program will then update the permeability values in INPUT file. 

Please note that the program will automatically perform these steps. 

UTCHEM recalculates properties such as transmissibilities at the 

beginning of each run even for a restart simulation.  

6. Water saturations and pressures from output files of “*.SATP” and 

“*.PRESP” will be stored. Well data are stored in well history files. For 

example, data for well 1 is in the file “*.HIST01”. Here, “*” represent the 

case name. Linux commands “sed”, “awk”, and pipeline are used to 

extract specific data from these files which can be input case specific. 

7. Unlike commercial reservoir simulators, UTCHEM could not guarantee to 

generate outputs at exact user’s specified time. The user then needs to 

check the value for TINJ in the input line following “TINJ”. Slightly 
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increasing simulation time (TMAX) or reducing output frequency can 

solve this problem. 

9.8.2 Procedure for ECLIPSE 

The input format for ECLIPSE simulator is flexible. The permeability file is 

recommended to be an include file so that the program can easily read and update. Two 

special points are needed to pay attention to. 

The information about reservoir pressure and saturation in each gridbock and well 

pressure and rate are all in the file “*.RSM”, where “*” represents the case name. It first 

gives well data and then reservoir properties. Take the reservoir pressure section as an 

example, the format is: first line is case name; second line starts from time and the type of 

reservoir information, i.e., reservoir pressure; third line is the units for time and pressure; 

fourth line is blank; fifth line is the gridblock, expressed by I, J, and K; sixth line is the 

pressure values corresponding to the gridblock number and the time. In addition, if the 

pressure values are complete, reservoir saturation information will continue and does not 

start in a new line. Such format gives the challenge to the automatic data collection. For 

different input cases, the user needs to check the file format and make sure to extract the 

correct data. 

The other issue is the restart option. There are two methods of restarting an 

ECLISPE 100 run: fast restart and flexible restart. Fast restart option directly reads 

reservoir properties and grid data from a save file. Hence, the transmissibilities are not 

recalculated. This option does not meet the history matching requirement, since 

permeability fields are sequentially changed. Flexible restart reads a complete data file. 

Though slower than fast restart, it recalculates the reservoir information. In the history 

matching program, flexible restart is required. To do this, the RESTART keyword is 
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needed to insert in the SOLUTION section while all equilibration or enumeration 

keywords and any analytic aquifer keywords must be deleted. 

9.8.3 Procedure for CMG 

GEM 2007.10 compositional simulator is used. Make sure to include CMG path 

to the PATH environmental variable. In each node, the Linux execution command is 

“gm200710.exe –f model.dat –log”, where “model.dat” is the GEM input file.  

Since GEM is flexible for the keyword location and is not case sensitive, a 

separate file for permeability field is recommended in the input data. Reservoir pressure, 

saturation, and well data are stored in “*.out” file, where “*” denotes the input data file 

name. GEM output format is easy to handle. First, it gives the output time, then pressure 

or saturation title and data. The data is given by layer and ordered in the table style in 

each layer. As for well data, GEM separates injector and producer information. It is very 

helpful that the locations of time, pressure and saturation tittles, and well names are fixed. 

The history matching program uses these fixed positions with keyword to precisely 

determine the desired data. If all the values in one layer are the same, a sentence “All 

values are” appears in the same line of the layer number. No table format appears for that 

layer. The history matching program can handle this scenario. 

GEM restart option could not be used because it does not support the case that 

permeability field changes. All the cases have to be run from the beginning once the 

permeability values are changed. Fortunately, GEM runs very fast and this is not a big 

limitation. 

9.9 SUMMARY 

This chapter introduces the automatic history matching module developed 

through this research, including the structure, storage hierarchy, geostatistical 
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realizations, and special treatment for different reservoir simulators. The history matching 

module is embedded in the UT_IRSP platform and has the capability to process the input 

and output files of UTCHEM, ECLIPSE, and CMG reservoir simulators.  

The input file for the automatic history matching module is quite general. Based 

on the Kalman filter methods, the module automatically implements the automatic history 

matching process: the folder generation, input preparation for each ensemble member, 

sequential or parallel computing, response data extraction from each ensemble member, 

the assimilation step and thereafter the updating of the permeability values in each 

ensemble member. In addition, the Tecplot format for each member and their average are 

created from initial to the final time.  

Now the basic structure has already been developed, the important issue in future 

is how to apply to different cases using different reservoir simulators. For each 

application, it is strongly recommended to check the input and output formats for 

consistency with the program requirements. 
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Figure 9-1: Environment of UT_IRSP with new “Hist Match” Module. 
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Figure 9-2: Automatic history matching module flow chart
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Chapter 10:  Summary, Conclusions, and Recommendations for 
Future Work 

In this work, automatic history matching using the ensemble Kalman filter 

(EnKF) was studied. An efficient history matching module was developed and its 

application was demonstrated through several reservoir cases.  

After a comprehensive literature review, stochastic history matching based on the 

EnKF was selected and investigated from the following aspects: Bayes’ theorem, formula 

implementation with four calculation approaches, the initial sampling strategy improved 

by the singular value decomposition, a new weighted EnKF through weighing the 

importance of each ensemble member for the updated ensemble, and the impact of adding 

resampling procedure in the singular evolutive interpolated Kalman filter. The sampling 

interval and the uncertainty of geological information were also considered. Three 

different cases were studied: a two-dimensional waterflooding case, a seventeen-layer 

complex reservoir case study explored first by four-well natural depletion and later by 

seventeen-well waterflooding, and a twenty-layer case starting from the primary, 

secondary and then tertiary gas injection. A high-performance computing technique 

including the distributed and parallel simulation was implemented in the module and its 

application for history matching was demonstrated through a compositional reservoir 

case study.  

10.1 CONCLUSIONS 

The following conclusions are drawn from this study: 

● A weighted EnKF, which weighs the contribution of each ensemble member, 

was proposed. Our case showed that both the weighted EnKF and the 

conventional EnKF give an excellent match of the field pressure and water 
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saturation at the end of each assimilation step. The weighted EnKF generates 

better production matches and does better recovery forecasting than those from 

the conventional EnKF. In addition, the weighted EnKF has faster convergence 

at the early time period during history matching. The superior performance of 

the weighted EnKF over the conventional EnKF was demonstrated through a 

seventeen-layer waterflooding reservoir case study. 

● An efficient and user-friendly automatic history matching module based on the 

EnKF has been developed. In this module, three reservoir simulators, 

UTCHEM, ECLIPSE and CMG are integrated. Three computational modes, 

sequential, distributed, distributed and parallel modes are provided in the 

module. 

● The EnKF for sequential data assimilation is an effective method in reservoir 

history matching. As a Monte Carlo approach, this method uses the ensemble 

members to update the model parameters and avoids the tedious gradient 

calculation in traditional history matching methods. The application to several 

cases which include natural depletion, waterflooding and gas injection has 

demonstrated the efficiency and accuracy of this method. 

● In application, after stochastic sampling of multiple initial members through 

geological information, a closed loop consisting of forecasting and assimilation 

steps follows. The forecasting step is implemented by running all the 

independent reservoir simulation models. Four different schemes for the 

assimilation step are studied: direct inverse, standard EnKF assimilation, and 

square root algorithms with and without measurement perturbations. For a 

small number of observations, direct inverse is convenient. For the 
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consideration of algorithm generality, the square root approaches are 

recommended. 

● The initial random sampling strategy is improved by the concept of the 

singular value decomposition: we sample a large number of realizations and 

then use the singular value decomposition to resample a small group of 

realizations with less linear dependence. In our example, the sampling strategy 

with the singular value decomposition has a positive impact on the matched 

results. By using 100 realizations, we achieved the same level of accuracy as 

the results from the conventional approach using 200 realizations.  

● The sampling frequency is important since we do not want to miss any 

valuable information, while we also do not want to over-sample data. The 

study results illustrate that as long as we have a long matching period, the 20-

day sampling interval still gives us reasonable matching results, which are 

almost identical to those from the high-frequency sampling case (such as one-

day interval) at the late time, though some structure fails to recover at the early 

beginning.  

● Well production history matching curves demonstrate that despite some 

reported divergence, both the weighted EnKF and the conventional EnKF 

methods keep improving reservoir models even at late matching time. The well 

production is matched reasonably, though the permeability field maps are 

somehow different from the references. The non-uniqueness may cause this 

phenomenon. Another reason is that the inaccurate reservoir geological 

structure information leads to the visual drift away of the permeability field. 

The impact of the inaccurate reservoir geological information was further 

studied. We found that better matching reservoir permeability structures are 
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obtained if the semivariogram is known initially, than in cases in which the 

semivariogram is roughly estimated.  

● The root mean square is not sufficient to calibrate the matching performance. 

Production history, such as oil and water rates, can be deemed the most 

effective approach for the matching quantification. 

● A variant of the EnKF, the singular evolutive interpolated Kalman filter, is 

applied to a history-matching problem. This method operates with an enhanced 

sampling strategy embedded into its resampling step, which appears to 

improve the filter stability and help the filter to deliver rapid convergence both 

in model and data domains. Both this method and the EnKF are effective tools 

for forecasting uncertainty quantification.  

● The EnKF based history matching has the straightforward advantage of 

distributed computing. A compositional reservoir case study demonstrated that 

the efficiency of distributed and parallel computing during history matching is 

attractive and can significantly reduce the execution time.  

10.2 RECOMMENDATIONS FOR FUTURE WORK 

The following are recommendations for future work: 

● Reservoir production optimization and history matching should be integrated 

through a loop to fulfill the concept of real-time reservoir management. The 

EnKF is recommended for such production optimization. 

● It is common that the permeability field after log transformation is not 

Gaussian distributed. In particular, the channels occur in the geologic facies. It 

is desirable to investigate the performance of the EnKF in the highly non-

Gaussian reservoir field.  
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● Liquid-phase saturation is assumed as a Gaussian distribution and is updated 

together with the reservoir permeability field. For a highly-heterogeneous 

reservoir, the possible density function of water or oil saturation might be 

multi-modal. Such impact needs evaluation. In addition, physical meaning 

limits phase saturation between 0 and 1. During the process of the EnKF 

history matching, the possible occurrence of undershooting and overshooting 

should be investigated though this phenomenon did not occur in our studies.  

● High-performance computing is attractive and suitable for EnKF history 

matching. We studied two-processor parallel and eight-node distributed 

performance. Simulations using nodes with more processors as well as more 

distributed nodes should be carried out. 

● Real reservoir application by EnKF history matching is needed. In particular, it 

is interesting to investigate how to update the ensemble members if the initial 

reservoir structure does not include fractures or faults but later production 

confirms their existence.  

● Measurements from well testing, well logging and seismic data should be 

included as the conditional information in EnKF history matching. 
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Appendix A: Linux Programming 

A.1 INTRODUCTION OF LINUX 

Linux is a freely distributed implementation of a UNIX-like kernel, the low-level 

core of a computer operating system. Linux, written by Linus Torvalds, was first released 

over the Internet in 1991. Since then, Linux has exploded in popularity, maturing with 

each new version and bug fix. Linux has the following characteristics shared by typical 

UNIX programs and systems: simplicity, focus, reusable components, filters, and open 

file formats. There are a number of popular Linux distributions, including the popular 

Red Hat Linux, Debian, and SuSE.  

Linux applications are represented by two special types of files: executables and 

scripts. Executable files are programs that can be run directly by the computer; they 

correspond to Windows .exe files. Scripts are collections of instructions for another 

program to follow; these correspond to Windows .bat or .cmd files. 

The shell is a program started after you log on to Linux; it provides a 

command-line interface between you and the Linux kernel. Typed commands are 

interpreted and sent to the kernel, which in turn opens, closes, reads, or writes files. 

There are several types of shells in the Linux world. The two major types are the 

Bourne shell and the C shell. The Bourne shell uses a command syntax like the original 

shell on early UNIX systems. The name of the Bourne shell on most Linux systems is 

/bin/sh. The C shell, somewhat like the programming language C, is named 

/bin/csh on most Linux systems. In addition, several variations of these shells are 

available. The two most commonly used are the Bourne Again Shell, or “Bash” 

(/bin/bash), and “Tcsh” (/bin/tcsh). bash is a form of the Bourne shell that 

includes many of the advanced features found in the C shell. Because bash supports a 
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superset of the Bourne shell syntax, shell scripts written in the standard Bourne shell 

should work with bash. If you prefer to use the C shell syntax, Linux supports tcsh, 

which is an expanded version of the original C shell. Only when you start to write shell 

scripts or use advanced features of a shell do the differences between shell types begin to 

matter.   

A shell script is used to group a series of commands into a single file. Note that 

for our cluster Petros, the Bourne shell is used. For a C shell script, the first line is 

typically “#!/bin/csh –f”.  The “-f” option tells the shell not to read the 

user’s .cshrc file on startup, which improves both speed and portability. However, it is 

a common mistake to do the same thing for Bourne shell scripts by using “#!/bin/sh 

–f”. The Bourne shell’s “-f” option is completely different from C shell’s “-f” option. 

It disables file name generation.  For example, the following script: 

#!/bin/sh 
rm mdm* 

will remove the names of all the files in the current directory whose names begin 

with “mdm” , but the following script: 

#!/bin/sh -f 
rm mdm* 

will unconditionally print that file “mdm*” does not exist. Therefore, we use 

“#!/bin/sh” in all our shell scripts instead of “#!/bin/sh –f”, to generalize the 

capability of our scripts.  

A.2 FREQUENTLY USED LINUX COMMANDS 

There are hundreds of commands in Linux. We select and list most commonly 

used commands during our work in Table A-1. 
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Table A-1 Commonly Used Linux Commands 

 

Command Meaning 

awk Scan and extract information from a line or string, based on the criteria.

cat Display the contents of a file. 

cd Change directory. 

chmod Change access permissions. 

clear Clear terminal screen. 

comm Compare two sorted files line by line. 

cp Copy one or more files to another location. 

df Display free disk space. 

diff Display the differences between two files. 

dir Briefly list directory contents. 

echo Display message on screen 

env Setting information of environment variables. 

exit Exit the shell. 

find Search for files that meet a desired criterion. 

grep Search file(s) for lines that match a given pattern. 

history Command history. 

kill Stop a process from running. 

ln Make links between files. 

locate Find files. 

ls List information about file(s). 

make Recompile a group of programs. 

man Help manual. 
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mkdir Create new folder. 

more Display output one screen at a time.  

mv Move or rename files or directories. 

passwd Modify a user password. 

quota Display disk usage and limits. 

rm Remove files. 

rmdir Remove folder(s). 

sed Stream editor to edit one or more files without user interaction. 

set Manipulate shell variables and functions. 

ssh Secure shell client (remote login program). 

tar Copy or restore files from an archive medium. 

time Measure program running time. 

top List processes running on the system. 

vi Screen-oriented text editor. 

whereis Report all known instances of a command. 

who Print all usernames currently logged in. 
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Appendix B: Portable Batch System 

B.1 INTRODUCTION OF PORTABLE BATCH SYSTEM 

The Portable Batch System, PBS, is a workload management system for Linux 

clusters. It supplies command to submit, monitor, and delete jobs. Workload management 

systems have three primary roles: 

Queuing: the collecting together of work or tasks to be run on a computer. Users 

submit tasks or “jobs” to the resource management system where are then queued up until 

the system is ready to run them. 

Scheduling: the process of selecting which jobs to run, when, and where, 

according to a predetermined policy. PBS tries to balance competing needs and goals on 

the system(s) to maximize efficient use of resources (both computer time and people 

time). 

Monitoring: the act of tracking and reserving system resources and enforcing 

usage policy. This covers user- and system-level monitoring as well as monitoring of the 

scheduling policies to see how well they are meeting the stated goals. 

Consequently, a PBS has the following three components: 

Job Server: also called pbs_server provides the basic batch services such as 

receiving/creating a batch job, modifying the job, protecting the job against system 

crashes, and running the job.  

Job Executor: a daemon (pbs_mom) that actually places the job into execution 

when it receives a copy of the job from the Job Server. This daemon is informally called 

MOM (a reverse-engineered acronym that stands for Machine Oriented Mini-server) as it 

is the mother of all executing jobs. MOM creates a new session as close to a user login 

session as is possible and returns the job’s output to the user.  
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Job Scheduler: a daemon that contains the site’s policy controlling which job is 

run and where and when it is run. PBS allows each site to create its own Scheduler. The 

Scheduler communicates with various MOMs to learn about the state of a system’s 

resources and with the Server to learn about the availability of jobs to execute.  

B.2 TERM DEFINITIONS OF PORTABLE BATCH SYSTEM 

The following defines important terms and concepts of PBS. 

Node: A node to PBS is a computer system with a single operating system image, 

a unified virtual memory space, one or more CPUs and one or more IP addresses. 

Frequently, the term execution host is used for node. A computer such as the SGI Origin 

3000, which contains multiple CPUs running under a single operating system, is one 

node. Systems like Linux clusters, which contain separate computational units each with 

their own operating system, are collections of nodes. Nodes can be defined as either 

cluster nodes or timeshared nodes. 

Virtual Processors: A node may be declared to consist of one or more virtual 

processors. The term virtual is used because the number of virtual processors declared 

does not have to equal the number of real processors (CPUs) on the physical node. The 

default number of virtual processors on a node is the number of currently functioning 

physical processors; the PBS manager can change the number of virtual processors as 

required by local policy. 

Cluster Node: A node whose purpose is geared toward running parallel jobs is 

called a cluster node. If a cluster node has more than one virtual processor, the virtual 

processors may be assigned to different jobs (job shared) or used to satisfy the 

requirements of a single job (exclusive). This ability to temporally allocate the entire 

node to the exclusive use of a single job is important for some multimode parallel 

applications. Note that PBS enforces a one-to-one allocation scheme of cluster node 
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virtual processors ensuring that the virtual processors are not over-allocated or over-

subscribed between multiple jobs. 

Cluster This is any collection of nodes controlled by a single instance of PBS 

(i.e., by one PBS server). Our Dell cluster Petros has eight nodes with dual shared 

memory processors. 

Queue: A queue is a named container for jobs within a Server. There are two 

types of queues defined by PBS: routing and execution. A routing queue is a queue used 

to move jobs to other queues including those that exist on different PBS servers. A job 

must reside in an execution queue to be eligible to run and will remain in an execution 

queue during the time it is running. In spite of the name, jobs in a queue need not be 

processed in queue order (first-come first-served). 

B.3 ENVIRONMENT VARIABLES OF PORTABLE BATCH SYSTEM 

In order to make sure that the system environment interacts seamlessly with PBS, 

there are mainly three items that need to be checked: (1) User must have access to the 

resources/hosts that the site has configured for PBS; (2) User must have a valid account 

on the execution hosts; (3) User must be able to transfer files between hosts. In many 

cases, the system administrator will have already set up the user environment to work 

with PBS. For Petros, we can use directly PBS without any user environment setting.  

While running, PBS could provide useful information such as job name, host 

node, and directory, through a number of environment variables. Such environment 

variables are taken from the user’s environment or created by PBS. All PBS-provided 

variable names start with the characters “PBS_”. Some are then followed by a capital O 

(“PBS_O”) indicating that the variable is from the job’s originating environment. Table 

A.1 gives a full listing of environment variables and their meanings. PBS resources are 

installed in the folder of “/opt/torque” in our cluster Petros.  
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Table B-1 PBS Environment Variables 

 

Variable Meaning 

ENVIRONMENT Indicates if job is a batch job, or a PBS interactive job. 

NCPUS Number of threads (or cpus per process (cpp)) on the node. 

PBS_JOBCOOKIE Unique identifier for inter-MOM job-based communication.

PBS_JOBID The job identifier assigned to the job by the batch system. 

PBS_JOBNAME The job name supplied by the user. 

PBS_MOMPORT Port number on which this job’s MOMs will communicate. 

PBS_NODEFILE The filename containing a list of nodes assigned to the job. 

PBS_NODENUM Logical node number of this node allocated to the job. 

PBS_O_HOME Value of HOME from submission environment. 

PBS_O_HOST The host name on which the qsub command was executed. 

PBS_O_LANG Value of LANG from submission environment. 

PBS_O_LOGNAME Value of LOGNAME from submission environment. 

PBS_O_MAIL Value of MAIL from Submission environment. 

PBS_O_PATH Value of PATH from submission environment. 

PBS_O_QUEUE The original queue name to which the job was submitted. 

PBS_O_SHELL Value of SHELL from submission environment. 

PBS_O_SYSTEM The operating system name where qsub was executed. 

PBS_O_WORKDIR The absolute path of directory where qsub was executed. 

PBS_QUEUE The name of the queue from which the job is executed. 

PBS_TASKNUM The task (process) number for the job on this node. 

TMPDIR The job-specific temporary directory for this job.  



 314

B.4 SCRIPT SAMPLE FOR PORTABLE BATCH SYSTEM 

Below are the steps needed to run a history matching frameowrk with distributed 

style:  

1. Create a job script containing the following PBS options:  

● request the resources that will be needed (i.e. number of processors, 

wall-clock time, etc.) and  

● use commands to prepare for execution of the executable (i.e. enter the 

working directory, etc.).  

2. Submit the job script file to PBS.  

3. Monitor the job.  

We take a simple job as an example: run MDM stochastic field generation 

software by using PBS. Under the folder of “/home/liang/PBS-test”, we first 

prepare two input files needed by MDM software: “head.dat2” and “input-1.dat1”. The 

content of “head.dat2” is: 

12 
1 1 1 80. 
1 1 2 80. 
1 1 3 80. 
1 1 4 80. 
1 1 5 80. 
1 1 6 80. 
11 11 1 80. 
11 11 2 80. 
11 11 3 80. 
11 11 4 80. 
11 11 5 80. 
11 11 6 80. 

The “input-1.dat1” file is: 

mdm-1.dat1              Fri Jan 12 21:36:32 2007 
NX, NUMBER OF X DIVISIONS                                ? 
30 
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NY, NUMBER OF Y DIVISIONS                                ? 
30 
NZ, NUMBER OF Z DIVISIONS                                ? 
6 
NV, NUMBER OF VARIOGRAMS (IN THE NESTED MODEL)           ? 
1.0000 
NR, NUMBER OF REALIZATIONS, <1 AS 1 EXCEPT O-FORM.       ? 
1.0000 
NS, NUMBER OF FOR STARTING RANDOM NUMBER (SEED)          ? 
1804289383 
MO, OUTPUT (INPUT) OPTIONS, SUM OF ALL OPTIONS           ? 
13322 
DX, GRID SIZE IN X DIRECTION, CONSISTENT UNIT            ? 
60 
DY, GRID SIZE IN Y DIRECTION, SAME UNIT AS DX            ? 
60 
DZ, GRID SIZE IN Z DIRECTION, SAME UNIT AS DX            ? 
5 
#1: P OF P-NORMAL FOR THIS TERM OF VARIOGRAM, 0=LOG-N.   ? 
0. 
#1: MEAN VALUE FOR THIS TERM, CONSISTENT UNIT AS S.D.    ? 
40 
#1: CORRELATION LENGTH, X MAJOR AXIS, SAME UNIT AS DX    ? 
130 
#1: CO.MODEL,-1=EXP,-2=DEXP,-3=SPH,-5=INPUTACF,+=POWER   ? 
-1 
#1: RATIO OF CORRELATION LENGTHS IN MAJOR AXES, LX/LY    ? 
1 
#1: RATIO OF CORRELATION LENGTHS IN MAJOR AXES, LX/LZ    ? 
10 

To run the job in PBS, we have a PBS script pbs.job and a MDM job pre- and 

post-processing script test.job, respectively. For running PBS, we only need to type 

“qsub pbs.job” in the folder of “PBS-test”. The “pbs.job” file is as follows: 

#!/bin/sh 
#Note: PBS directives begin with "#PBS". 
#### Output files 
#PBS -e test.err 
#PBS -o test.log 
 
#Select the number of nodes to use: 
#PBS -l nodes=1 
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#If the job incomplete by specified time, it is terminated. 
#PBS -l walltime=10:00 
 
#Output some useful job information: 
echo 
echo --------------------------------------------------- 
echo 'Job is running on node': cat $PBS_NODEFILE 
echo --------------------------------------------------- 
echo PBS: qsub is running on $PBS_O_HOST 
echo PBS: originating queue is $PBS_O_QUEUE 
echo PBS: executing queue is $PBS_QUEUE 
echo PBS: working directory is $PBS_O_WORKDIR 
echo PBS: execution mode is $PBS_ENVIRONMENT 
echo PBS: job identifier is $PBS_JOBID 
echo PBS: job name is $PBS_JOBNAME 
echo PBS: current home directory is $PBS_O_HOME 
echo PBS: PATH = $PBS_O_PATH 
echo PBS: Directory is `pwd` 
echo PBS: Running on host `hostname` 
echo --------------------------------------------------- 
echo 
 
#Execute the run: 
bash /home/liang/PBS-test/test.job >& pbs.log 

The following is “test.job” file: 

#!/bin/bash 
cd /home/liang/PBS-test 
mkdir liang 
cd liang 
ln -s ../input-1.dat1 INPUT 
ln -s ../head.dat2 INDAT 
time mdm.exe 
mv ECHO liang.eco 
mv OUTXYZ liang.dat 
rm OUTPT 
rm POUTPT 
rm VOUTPT 
rm fort.* 
chmod 755 *.* 
cd .. 
chmod 755 liang 
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B.5 USEFUL COMMANDS FOR PORTABLE BATCH SYSTEM 

qsub: Once a PBS job script is created, it is submitted to PBS via the qsub 

command. In its simplest form, qsub takes a single parameter, the name of the script file 

that you wish to submit.  

qstat: This command allows you to view the contents of the PBS queue.  

showq: Displays information about active, eligible, blocked, and/or recently 

completed jobs.  

qdel: The qdel command takes a single argument, a job number. You can use 

qdel to abort execution of your job.  

qalter: The qalter command is helpful for altering the parameters of a job after 

it's submitted. qalter takes two arguments: the PBS directive that you wish to change, 

and the job number that you want to change. For example, if you forgot to set the 

walltime that your job requires, you can change it after it has been submitted:  

pbsnodes: The pbsnodes command, while a useful PBS administration 

command, can also be informative to the PBS user. pbsnodes -a will list all PBS 

nodes, their attributes, and job status. This is a useful way to get a list of valid machine 

properties for use in a #PBS -l directive.  

qpeek: This command can show you any output your running PBS job is 

generating without having to wait for completion and for PBS to deliver the standard 

output and standard error. The only argument to the program is the PBS jobid.  

showscipt: Will return the contents of the PBS script that you have submitted. 

The only argument is the job’s PBS jobid.  

checkjob: Gives detailed information about your job. This is very useful if your 

job is remaining in the queued state, and you would like to see why PBS has not executed 

it.  
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Appendix C: Example of Observation Data File 

As an example, the following is the file “CHAPT601.dat” discussed in Chapter 9. 

Note that the sequence of observation data should be consistent with the data types and 

wells given in the input file “infile.in”. 

 
   98.67391 
   9.18E-05 
   98.67396 
   4.22E-05 
   481.3386 
   482.7922 
   483.8275 
   484.6595 
   485.4850 
   486.5020 
   487.5168 
   488.3432 
   489.1720 
   489.7944 
   490.2107 
   490.6273 
   491.0442 
   491.4644 
   491.8933 
   492.5287 
   493.9996 
   480.8779 
   482.3409 
   483.3974 
   484.2502 
   485.1318 
   486.2222 
   487.2974 
   488.1570 
   489.0262 
   489.6819 
   490.0985 
   490.5135 
   490.9252 
   491.3373 
   491.7532 
   492.3753 
   493.8315 
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