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Previously a t(2;14)(p13;q32) translocation was characterized in four unusually 

aggressive cases of B cell chronic lymphocytic leukemia (B-CLL). A gene located near 

the 2p13 breakpoint, B cell lymphoma/leukemia 11A (BCL11A), was shown to over-

express 3 isoforms (BCL11A-XL, L and S). Bcl11a knockout mice are severely impaired 

in B cell development at the early (pro-B) stage.  

I have further characterized BCL11A, focusing on the most abundant and 

evolutionarily conserved isoform, BCL11A-XL (XL). I demonstrated that XL resides in 

the nuclear matrix, is modified by ubiquitination, and is destabilized by B cell antigen 

receptor ligation. I identified domains within XL required for its localization within 

nuclear paraspeckles and for its transcriptional repression. 

While BCL11A-XL represses model promoters in non-B cells, its biologically 

relevant targets in B lymphocytes were unknown. I have identified and confirmed a 
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number of XL targets which are both up- and down-regulated by XL over-expression in 

B cell lines. A number of these genes have been implicated in B cell function, including 

the V(D)J recombination activating (RAG) genes. Both RAG1 and RAG2 transcripts 

were up-regulated by XL. XL binds to the RAG1 promoter and RAG enhancer (Erag) in 

vivo as well as in vitro. Unexpectedly, XL repressed RAG1 transcription in non-B cells, 

indicating that additional B cell-specific factors are required for activation. Over-

expression of XL in a V(D)J recombination-competent pre-B cell line markedly induced 

RAG expression and VDJ recombination. IRF4 and IRF8, transcription factors previously 

shown to be required for early B cell development, were also induced by BCL11A-XL.  

I propose that the early B cell progenitor block in Bcl11a knockout mice is, at 

least in part, a direct result of BCL11A-XL regulation of V(D)J recombination. Further 

experiments are required to establish how other XL targets promote B cell lineage 

development and how malignant transformation such as in B-CLL may corrupt BCL11A 

function. 



 ix 

Table of Contents 

List of Tables ........................................................................................................xiii 

List of Figures .......................................................................................................xiv 

CHAPTER 1.  INTRODUCTION 1 

1.1. Examples of Chromosomal Translocation Involved in B cell Lymphoid 
Malignancy......................................................................................................1 

1.2. Isolation and Initial Characterization of B cell Lymphoma/Leukemia 11A 
(BCL11A) .......................................................................................................3 

1.3. Early B Cell Development ................................................................................9 

1.4. Transcriptional Regulation of Early B Cell Development..............................10 

1.5. V(D)J Recombination.....................................................................................16 

1.6. Differentiation of Abelson Virus-Transformed Pre-B Cell Lines and the Abl 
Kinase Inhibitor, STI-571 .............................................................................17 

1.7. Control of RAG1 and RAG2 Activity during B Cell Development ...............20 

1.8. Ubiquitination .................................................................................................21 

1.9. Localization within the Nuclear Matrix and Nuclear Paraspeckles ................21 

CHAPTER 2.  MATERIALS AND M ETHODS 23 

2.1. RNA Isolation.................................................................................................23 

2.2. RT-PCR...........................................................................................................23 

2.3. Cell Culture .....................................................................................................24 

2.4. Retrovirus Preparation and Transduction .......................................................24 

2.5. Western Blot Analysis ....................................................................................25 

2.6. Ubiquitination Assays .....................................................................................26 

2.7. Nuclear Matrix Fractionation..........................................................................26 

2.8. Electrophoresis Mobility Shift Assays ............................................................27 



 x 

2.9. Luciferase Assays ...........................................................................................28 

2.10. Chromatin Immunoprecipitation (ChIP) .......................................................28 

2.11. Microarray.....................................................................................................29 

2.12. A70-INV Cell Line and STI-571 ..................................................................30 

2.13. Genomic DNA Isolation and Southern Blotting ...........................................30 

2.14. Flow Activated Cytometry Sorting (FACS) Analysis ..................................31 

2.15. Inducible shRNA Knock-Down of BCL11A and RAG Expression in BJAB B 
Cells ..............................................................................................................31 

2.16. Construction of BCL11A Plasmids ..............................................................32 

CHAPTER 3.  CHARACTERIZATION OF BCL11A FUNCTION,  STABILITY AND 
LOCALIZATION 34 

3.1. Overview of BCL11A Domain Structure .......................................................34 

3.2. BCL11A-XL is a Major Isoform Conserved in Evolution .............................40 

3.3. Ubiquitin Mediated Protein Degradation  of Ectopically Expressed BCL11A 
Proteins ..........................................................................................................43 

3.4. Antigen Receptor Signaling in B cells Induces Instability of BCL11A .........43 

3.5. BCL11A-XL is a Nuclear Matrix Protein.......................................................49 

3.6. The N-terminal Domains of BCL11A is Responsible for Repression Activity and 
for Paraspeckle Localization.........................................................................52 

3.7. The Nuclear Localization Signal of BCL11A-XL is Sufficient for Predominant 
Nuclear Localization of GFP ........................................................................57 

3.8. Discussion.......................................................................................................60 

3.8.1. BCL11A-XL is highly conserved and highly expressed ....................60 

3.8.2. BCL11A stability and ubiquitination, and proteasome .......................61 

3.8.3. Multple functions of the conserved N-terminus of BCL11A.............62 



 xi 

CHAPTER 4.  IDENTIFICATION AND ANALYSIS OF BCL11A TARGET GENES  64 

4.1. Introduction.....................................................................................................64 

4.2. Stable Over-Expression of BCL11A-XL in Human B Cell Lines..................65 

4.3. Putative BCL11A Target Genes Obtained from DNA Microarray Analysis .68 

4.4. Discussion.......................................................................................................77 

4.4.1. Regulation of tetraspanin proteins by BCL11A..................................77 

4.4.2. Regulation of tumor necrosis factors by BCL11A.............................78 

4.4.3. Regulation of co-stimulatory factor, B7, by BCL11A........................79 

4.4.4. Regulation of surrogate light chain genes by BCL11A......................80 

CHAPTER 5.  BCL11A-XL ACTIVATES V(D)J REARRANGEMENT BY INDUCING THE 
EXPRESSION OF RECOMBINATION ACTIVATING GENES ,  RAG1 AND RAG2
 82 

5.1. Introduction.....................................................................................................82 

5.2. Confirmation of Targets by Inducible, shRNA Knock-Down of BCL11A....82 

5.3. BCL11A-XL is Recruited to the RAG1 Promoter and the Erag Enhancer in vivo
.......................................................................................................................88 

5.4. BCL11A-XL Binds to the RAG1 Promoter and the Erag Enhancer in vitro..91 

5.5. BCL11A-XL Represses the RAG1 Promoter in Non-B cells .........................94 

5.6. BCL11A-XL Transduction into a V(D)J-Competent Pre-B Cell Line, A70-INV
.......................................................................................................................99 

5.7. BCL11A-XL Activates an Integrated V(D)J Recombination Substrate, pMX-
INV, Independently from the Abelson Kinase Inhibitor,  STI571 .............104 

5.8. Confirmation of pMX-INV Rearrangement by Genomic PCR....................107 

5.9. Induction of Endogenous VJ? Rearrangement in BCL11A-XL Transduced Pre-B 
Cells ............................................................................................................107 

5.10. BCL11A-XL Over-Expression Regulates RAG1, RAG2, and Additional Genes 
Implicated in V(D)J Recombination. ..........................................................111 

5.11. Discussion...................................................................................................115 

5.11.1. Regulation of Recombination activating genes (RAG)s by BCL11A115 



 xii 

5.11.2. BCL11A consensus DNA binding sites..........................................116 

5.11.3. Regulation of V(D)J recombination by BCL11A...........................117 

References ............................................................................................................119 

Vita.......................................................................................................................133 



 xiii 

List of Tables 

 

Table 1. A list of putative BCL11A-XL target genes from microarray assays. ............... 71 

Table 2. Primers used in RT-PCR experiments of Figure 15. .......................................... 75 

Table 3. Primers used in RT-PCR analysis of Figure 25. ............................................... 114 

  



 xiv 

List of Figures 

 
Figure 1. BCL11AXL is highly conserved in xenopus, chicken, mouse and human. ........ 7 

Figure 2. Transcriptional control of lymphoid development. ........................................... 12 

Figure 3. Key events during B cell development.............................................................. 14 

Figure 4. Steps in early B cell development subject to Abelson (Abl) transformation and 

Abl kinase inhibition by STI571. .............................................................................. 18 

Figure 5. Schematic representation of the functional domains of BCL11A-XL. ............. 35 

Figure 6. Comparison of N terminal sequences and zinc fingers among BCL11 and other 

highly similar transcription factors. .......................................................................... 37 

Figure 7. BCL11A-XL expression in chicken, mouse and human cells........................... 41 

Figure 8. BCL11A-XL expression is regulated by ubiquitin-mediated proteosome 

degradation. ............................................................................................................... 45 

Figure 9. BCL11A instability during B cell receptor stimulation by anti-IgM antibodies.

................................................................................................................................... 47 

Figure 10. BCL11A-XL partitions predominantly within the nuclear matrix. ................. 50 

Figure 11. The N-terminus of BCL11A functions as a transcriptional repression domain.

................................................................................................................................... 53 

Figure 12. The paraspeckle and nuclear matrix targeting motifs of BCL11A. ................. 55 

Figure 13. The NLS of BCL11A-XL is sufficient to direct nuclear localization of GFP. 58 

Figure 14.  Stable B cell lines over-expressing BCL11A-XL. ......................................... 66 

Figure 15.  Validation of selected targets identified in microarrays (table 1) by semi-

quantitative RT-PCR. ................................................................................................ 72 

Figure 16.  Schematic of the RAG genomic locus and transcriptional factors shown to 

bind to promoters and enhancers. ............................................................................. 84 

Figure 17. Silencing of BCL11A by inducible shRNA knock-down leads to down-

regulation of RAG1 and RAG2.................................................................................. 86 

Figure 18. BCL11A is recruited to the RAG1 promoter and to the Erag enhancer in vivo.

................................................................................................................................... 89 



 xv 

Figure 19. BCL11A-XL binds to the RAG1 promoter and the Erag enhancer in vitro.... 92 

Figure 20. BCL11A-XL represses RAG1-driven transcription reporter activity in non-B 

cells. .......................................................................................................................... 96 

Figure 21. Strategy for the detection of the RSS-mediated inversion of an ectopic V(D)J 

recombination substrate and for the detection of endogenous V?-J? rearrangement.

................................................................................................................................. 100 

Figure 22.  Stable over-expression of BCL11A-XL in A70-INV pre-B cells. ............... 102 

Figure 23. Flow cytometry detection of enhanced V(D)J recombination substrate 

inversion in A70-INV pre-B cells over-expressing BCL11A-XL or treated with the 

Abelson kinase inhibitor, STI571. .......................................................................... 105 

Figure 24. Genomic confirmation of BCL11A-XL induction of recombination substrate 

and endogenous Ig? light chain rearrangement. ..................................................... 109 

Figure 25. BCL11A-XL over-expression or STI571 treatment induce RAG1, RAG2, and 

other V(D)J recombination-associated genes. ........................................................ 112 

 



 1 

CHAPTER 1. INTRODUCTION 

 

1.1. Examples of Chromosomal Translocation Involved in B cell 
Lymphoid Malignancy  

Tumor specific chromosomal abnormalities have been identified by cytogenetic 

markers in human pathogenesis. Chromosomal translocation in B and T cells underlies 

oncogenesis in addition to structural rearrangements (Blackwell et al., 1990; Haluska et 

al., 1987; Nowell, 1962). One of the best examples showing the relationship between 

chromosome abnormality and translocation is chronic myelogenous leukemia (CML) 

(Hermans et al., 1987). The t(9;2) translocation results in a minute chromosome called 

the Philadelphia chromosome (Ph1).  Ph1 is present in most of patients with CML. The 

t(9;22)(q34;q11) involves the Abl proto-oncogene and the breakpoint cluster region (bcr). 

The BCR-Abl fusion gene is produced by the consequence of this fusion. Nearly all CML 

cases result in p210 fusion protein. In acute lymphoblastic leukemia (ALL), the Ph1 

chromosome produces a p190 fusion protein (Hermans et al., 1987). The normal Abl 

kinase has weak phosphorylation activity but BCR-Abl fusion protein shows enhanced 

kinase activity (Lugo et al., 1990). Higher expression levels of BCR-Abl protein display 

more resistance against apoptotic stimuli (Cambier et al., 1998; Nowell, 1962). 

In Burkitt’s lymphoma, the myc oncogene is introduced into the immunoglobulin 

heavy –chain (IgH) locus by the t(8;14) translocation (Taub et al., 1982). Juxtaposed 

locations of c-myc reside within an active Ig gene locus. As a consequence of this 

translocation, c-myc expression is deregulated. Experimental evidence indicates that c-

myc is involved in cell growth and differentiation (Cole, 1986). c-Myc also functions as a 
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transcriptional factor recognizing specific DNA sequences (CACCGTG) (Blackwell et 

al., 1990).   

The t(14;18)(q32;q21) translocation in follicular lymphoma involves the 

transcriptional unit of bcl-2 (Yunis, 1987). This is a very common translocation in human 

lymphoid malignancy. Bcl-2 localizes to the inner mitochondria membrane and blocks 

programmed cell death (Hockenbery et al., 1990). Unlike other proto-oncogenes which 

promote cell proliferation, Bcl-2 is involved in carcinogenesis by enhancing cell survival.   

The t(11;14)(q13;32) translocation occurs in some B cell chronic lymphocytic 

leukemias (B-CLL) (Tsujimoto et al., 1984a; Tsujimoto et al., 1984b). The area on 

chromosome 11q13 was named the Bcl-1 locus. The PRAD-1 (parathyroid adenomatosis) 

gene was identified as a candidate gene for bcl-1. PRAD-1 encodes a novel cyclin and its 

over-expression by translocation may play an important role for development of B-CLL 

(Motokura et al., 1991). 

The t(1;19)(q23;p13.3) translocation occurs in approximately 30% of acute 

lymphoblastic leukemias (ALL) (Carroll et al., 1984; Williams et al., 1984). The 

consequence of this translocation produces an E2A/PBX fusion protein. The E2A gene 

encodes a transcription factor that is a key regulator of B cell development (Mellentin et 

al., 1989). The chromosome 1 gene, PBX, encodes a homeobox protein (Kamps et al., 

1990; Nourse et al., 1990).  

Another common Ig translocation, found primarily in aggressive B cell non-

Hodgkin lymphoma (B-NHL), involves a Kruppel- like zinc finger gene, BCL6, located 

on chromosome 3q27 (Miki et al., 1994; Ye et al., 1995). BCL6 is a highly conserved 

transcriptional repressor, showing 97% identity between the zinc finger domains of frog 

and man. While its precise functions remain unknown, BCL6 mutant mice fail to develop 

germinal centers during a T cell-dependent immune response and a fatal inflammatory 
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disease distinguished by the presence of TH2 cells (Staudt et al., 1999).  The BCL6 gene 

and its translocations are unusual in two regards. Firstly, apart from the IG translocations, 

BCL6 is frequently translocated to at least twenty other non-IG sites, including TTF, 

BOB1 and histone H4 genes where constitutive promoters drive deregulated BCL6 

transcription (Akasaka et al., 2000). Secondly, BCL6, in both normal and malignant B 

cell populations, frequently exhibits mutations, insertions and deletions in the 5’ region of 

the gene, the same region in which translocations occur (Shen et al., 1998). These 

alterations may arise due to IG somatic hypermutation acting on a non-IG gene. The 

mechanisms by which deregulated expression of BCL6 contributes to the pathogenesis of 

B-NHL remain unknown (Staudt et al., 1999). Paradoxically, over-expression of BCL6 

under some conditions results in apoptosis rather than transformation (Albagli et al., 

1999; Yamochi et al., 1999). 

 
 

1.2. Isolation and Initial Characterization of B cell 
Lymphoma/Leukemia 11A (BCL11A) 

The chromosomal translocation t(2;14)(p13;q32.3) has been reported in a wide 

variety of B cell malignancies including B cell precursor acute lymphoblastic leukemia 

(BCP-ALL), B-NHL, B cell chronic lymphocytic leukemia (CLL) and myeloma; this 

translocation is frequently the sole cytogenetic abnormality within the neoplastic clone 

(Mitelman et al., 1997).  

We reported the breakpoint cloning of two aggressive cases of CLL in children 

with t(2;14)(p13;q32.3) (Richardson et al., 1992). Both patients died following 

unsuccessful attempts at bone marrow transplantation.  We showed that in both instances 

the 14q32.3 breakpoints were within the switch region of the IgH Cγ2 gene, and the 2p13 
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breakpoints clustered within 38 bp of each other within a previously uncharacterized CpG 

island. Cloning the potential gene was accomplished (Satterwhite et al., 2001), and in 

addition, two adult cases were cloned from the same region using an Ig switch LDI-PCR 

(Li et al., 1999). All four translocations were associated with a novel zinc finger gene 

(BCL11A) on chromosome 2p13 which was deregulated as a consequence. BCL11A 

maps closely telomeric to REL in a region selectively amplified, in some instances up to 

32-fold, in some subtypes of B-NHL and also in Hodgkin’s disease (HD) (Barth et al., 

1998; Houldsworth et al., 1996; Joos et al., 2000; Joos et al., 1996; Rao et al., 1998). We 

have observed that all cases exhibiting 2p13/REL amplification also showed comparable 

BCL11A amplification (Satterwhite et al., 2001). It therefore seems feasible that over-

expression of BCL11A is a pathological consequence of the amplification, although this 

remains to be demonstrated.  

The similarities in structure, function and expression of BCL11A and BCL6 

prompted experiments that revealed that all BCL11A isoforms physically associate with 

BCL6 and two of these isoforms colocalize in nuclear “dots” (Liu et al., 2006). This 

raises the possibility that these two genes may transform mature B cells via similar 

pathways. BCL6 expression in HD appears to define a distinct histological subtype of 

disease that originates from germinal center B cells (Carbone et al., 1998).  However, the 

possible diagnostic and prognostic significance of BCL11A over-expression in both HD 

and B-NHL and the possible correlation with BCL6 expression, awaits future studies.   

Like BCL6, BCL11A shows a high level of conservation.  BCL11A is the human 

homologue of mouse Evi9, being 94% identical at the nucleotide level, and 98% identical 

at the protein level. Evi9 was detected as a gene able to induce myeloid leukemias 

following proviral integration (Li et al., 1999; Nakamura et al., 2000). It is not known 

whether deregulated BCL11A expression arising from other mechanisms occurs in these 
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diseases.  Evi9 also was isolated as an interacting partner (CTIP-1) of the orphan nuclear 

receptor COUP-TF2 (Avram et al., 2000).  

Like BCL11A, three common isoforms of Evi9/CTIP-1 were identified (Nakamura 

et al., 2000), although the mouse and human isoforms do not correspond exactly.  Mouse, 

chicken, and Xenopus BCL11A homologues also have been identified (Figure 1). Such a 

degree of conservation, comparable to that seen within the PAX gene family for example 

(Albagli et al., 1999), may indicate a developmentally important role for BCL11A.  

Database analysis revealed a human homologue of BCL11A mapping to 

chromosome 14q32.1.  This gene (BCL11B) is 67% identical to BCL11A at the nucleotide 

level and 61% identical overall at the protein level.  BCL11B, like BCL11A, contains six 

C2H2 zinc fingers and proline-rich and acidic regions with 95% identity in the zinc finger 

domains.  Like BCL11A, BCL11B is remarkable in having a large 5’ CpG island. 

BCL11B is the homologue of mouse CTIP-2 and is 86% identical at the protein level 

(Avram et al., 2000). BCL11B deficient mice show a block at the CD4-CD8- double-

negative stage of thymocyte development (Wakabayashi et al., 2003).  

Together, the translocation and the amplification data implicate deregulated 

expression of BCL11A directly in the pathogenesis of divergent subtypes of aggressive 

human B-NHL and HD.  Additional indirect contributions might be afforded through its 

heteromeric interactions in the absence of 2p13 loss or gain. BCL11A associates with two 

other highly conserved transcriptional repressors, BCL6 and COUP-TFII, both of which 

have been implicated in malignancy (Lin et al., 2000; Nakshatri et al., 2000). COUP-

TF1, for example, is necessary for the induction of growth arrest and apoptosis induced 

by retinoic acid in malignant cell lines (Lin et al., 2000), while the closely-related COUP-

TFII regulates cell cycle progression by modulating expression of p21WAF1, Cyclin D1  

and cdk2 (Nakshatri et al., 2000).   
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BCL11A and BCL11B were shown to have transcriptional repression activity in 

GAL4 mammalian one-hybrid studies (Avram et al., 2002; Liu et al., 2006) and  interact 

with the nucleosome remodeling and deacetylase (NURD) complex in Raji cells 

(Cismasiu et al., 2005). While the GAL4-BCL11B fusion protein showed transcriptional 

repression activity on a GAL4-luciferase reporter, endogenous BCL11B showed 

transcriptional activation activity of interleukin-2 (IL-2) gene expression (Cismasiu et al., 

2006). Prior to the analysis presented in Chapter 4, the true transcriptional targets of 

BCL11A were unknown. 
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Figure 1. BCL11AXL is highly conserved in xenopus, chicken, mouse and human. 

 

Alignment among different species shows that BCL11A-XL is highly conserved 

during evolution. Medline gene accession numbers: Xenopus (BC123944.1), Chicken 

(AJ851441), Mouse (AK140949), and Human (AJ 404611). The alignment was carried 

out using a web based software, “Multiple sequence alignment with hierarchical 

clustering” (Corpet, 1988). Human BCL11A-XL shows 87.1%, 91.3%, and 99% 

identities to the putative BCL11A proteins of xenopus, chicken, and mouse. The 34 

amino acids which are encoded by exon 3 are missing in xenopus and chicken as 

compared to mouse and human BCL11A.  
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Consensus symbols: 

! is one of I or V 

$ is one of L or M 

% is one of F or Y

# is one of N, D, E, B, or Z
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1.3. Early B Cell Development 

The development of B cells from Hematopoietic stem cells (HSC) is a finely 

tuned process regulated by multiple transcription factors (described in section 1.4) and 

cytokines (Medina and Singh, 2005). The activation and silencing of specific subsets of 

genes appear to control the determination of cell lineages. Transcription factors (PU.1, 

Ikaros, E2A, BCL11A, EBF, and PAX5) and cytokine receptors (Flk2/Flt3 and IL-7R) 

have been shown to be key regulators for the development of early B cell progenitors 

(Medina and Singh, 2005). The pluripotent HSC cells can differentiate into all blood cell 

types with loss of self-renewal potential. Lymphocytes develop from HSC cells via 

multipotent progenitors (MPP), and common lymphoid progenitors (CLP) (Akashi et al., 

2000). The long term self renewal capacity is lost with up-regulation of the tyrosine 

kinase receptor Flt3 in MPP cells (Adolfsson et al., 2001).  

The expression of RAG genes and the start of DH-JH rearrangement occur in the 

earliest lymphocyte progenitors (ELP) differentiated from MPP cells (Igarashi et al., 

2002). ELP cells are thought to develop into early T- lineage progenitors (ETP) in the 

thymus (Allman et al., 2003) and into common lymphoid progenitors (CLP) in the bone 

marrow, which can give rise to B, T, NK, and DC cells (Akashi et al., 2000; Kondo et al., 

2004; Traver et al., 2000). By using cell surface markers, B220+/CD45R and CD19-, pre-

pro B cell fractions were isolated (Li et al., 1996). At the early pro-B cell stage, CD19 is 

expressed and VH-JH recombination is completed (Hardy, 1991). Late pro-B cells with 

successful VH-DJH rearrangement express the Igµ proteins. Assembly of the heavy chain, 

Igµ and the surrogate light chain, VpreB and ?5 produces the pre-B cell receptor (pre-

BCR), which signals allelic exclusion at the IgH locus, cell proliferation, and 

differentiation into small pre-B cells (Meffre et al., 2000).  
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1.4. Transcriptional Regulation of Early B Cell Development 

Significant progress in the study of the transcriptional control of B cell lineage 

specification and commitment has been made (Busslinger, 2004) (Figure 2 and 3). Ikaros 

is a family of zinc finger transcription factors. Dominant negative (DN) Ikaros mice 

resulted in the failure to produce any B, T, NK, and DC cells, showing that Ikaros is 

involved in the development of all lymphocytes (Georgopoulos et al., 1994). Ikaros 

together with Aiolos, which is another zinc finger DNA binding protein, is required in the 

control of B cell maturation and germinal center formation (Kirstetter et al., 2002; Wang 

et al., 1998).  

The Ets transcription factor PU.1 is required for the generation of multiple 

lineages of immune cells (DeKoter and Singh, 2000). PU.1 seems to function at the level 

of myeloid- lymphoid progenitors. B cells are induced at low concentration of PU.1, while 

macrophage differentiation and blocks of B cell differentiation occur at high 

concentration of PU.1 (DeKoter and Singh, 2000). PU.1 regulates the expression of IL-7a 

by binding directly to its 5’ region (DeKoter et al., 2002). The lymphoid cytokine IL-7 

induces B cell development from the CLP cells and promotes pro-B cell survival (Miller 

et al., 2002).  

Three transcriptional factors E2A, EBF, and Pax5 are pivotal to the differentiation 

of CLP cells to pro-B cells. The E2A gene encodes two isoforms E12 and E47, which are 

basic helix- loop-helix (bHLH) proteins (Shen and Kadesch, 1995). E2A null mutant mice 

fail to produce mature B cells and are arrested at an early stage indicated by the absence 

of DH-JH rearrangement in those mutant mice (Bain et al., 1994).  
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The early B cell factor (EBF) is a tissue-specific DNA-binding protein whose 

expression is detected only in the hematopoietic cells such as CLP, pro-B, and pre-B cells 

(Hagman et al., 1993). EBF  knock-out mice show a deficiency in immunoglobulin DH-JH 

rearrangement (Lin and Grosschedl, 1995). A similar developmental arrest in E2A and 

EBF mutant mice suggests that these two transcription factors work together in the early 

stage of B- lymphopoeisis (Busslinger, 2004). Molecular analysis supports this concept by 

showing that E2A and EBF bind cooperatively to the promoters of the ?5, VpreB and 

Iga(mb-1) genes (Busslinger, 2004).  

For the complete commitment of B cell progenitors, Pax5 (also known as BSAP) 

is required in addition to E2A and EBF. Pax5-/- mice display developmental arrest at an 

early pro-B cell phase (Schebesta et al., 2002; Urbanek et al., 1994). Interestingly, Pax5-/- 

pro-B cells are unable to commit to the B- lymphoid lineage, but have potential to 

differentiate into a broad range of hematopoietic cell types (Nutt et al., 2001). Pax5 

represses MCSF-R, Notch1, and Flt3 genes are involved in non-B cell lineage 

determination, Flt3 (Holmes et al., 2006), Notch (Souabni et al., 2002), and MCSF-R are 

required for DC, T cell, and myeloid cell development, respectively (Tagoh et al., 2006). 

Meanwhile, Pax5 activates expression of B cell lineage genes such as mb-1, CD19, 

CD79a, ?5 and BLNK (Cobaleda et al., 2007). Hence, Pax5 is a crucial B- lineage 

commitment factor fulfilling its role by activating B cell lineage specific genes, but 

repressing the expression of non-B cell genes. 

BCL11A is also essential for early B cell development(Liu et al., 2003). BCL11A-/- 

fetal livers contain very few B220+ cells, indicating that Bcl11a is required for B cell 

formation at the pre-pro stage (Figures 2 and 3). B cell lineage genes such as EBF, Pax5, 

IL7?, CD19, RAG1, and VpreB2 were not expressed in BCL11A mutant fetal livers. This 

suggests that BCL11A functions upstream of EBF1 and Pax5 (Liu et al., 2003).  
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Figure 2. Transcriptional control of lymphoid development. 

 

Early B cell development from the common lymphoid progenitor (CLP) requires 

BCL11A, E2A, EBF, PAX5, and Foxp1 transcription factors. Defects of deficiencies of 

transcription factors result in developmental arrest in mice. Notch signaling is essential 

for T cell and natural killer (NK) cell development, while ID2 and SpiB signaling is 

required for dendritic cell progenitors (pDC). The approximate developmental arrest 

points that arise from deficiencies of these factors are indicated by positions of 

transcription factors. Cross-suppression among some of these lineage-specific 

transcription factors (e.g. Notch on E2A, PAX5 on Notch, and ID2 on E2A) is also 

important for development of lymphoid cells (Busslinger, 2004).  
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Figure 3. Key events during B cell development.  

Expression (+), lack of expression (-) or low levels of expression (+/-) are noted 

for the recombination activating genes (RAGs), the IL7 receptor, key transcription 

factors, including BCL11A (in blue), and the rearrangement status of immunoglobulin 

genes (Busslinger, 2004).  BCL11A knock-out mice (K/O) show a defect in B cell 

development at the pre-pro-B cell stage (Liu et al., 2003). Nd, not determined. 
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1.5. V(D)J Recombination 

B and T cells can generate specific immune responses to a huge number of 

immunogens. The genes coding immunoglobulin and T cell receptor are composed of 

multiple segments dispersed in the germline. These segments V (variable), D (diversity), 

and J (joining) are joined together in somatic tissues by the process called V(D)J 

recombination (Fugmann et al., 2000). Because V(D)J recombination makes double 

strand DNA breaks, uncontrolled recombination events can result in chromosomal 

translocation, oncogenesis and cell death.  

V(D)J recombination is a site specific and lineage specific recombination process 

occurring only in immature B and T cells. Site specificity is provided by recombination 

signal sequences (RSSs) which consist of highly conserved heptamer and nonamer 

sequences. The heptamer and the nonamer are separated by nonconserved 12 or 23 bp 

spacers. Efficient recombination is possible only between a 12-RSS and 23-RSS, known 

as the 12/23 rule (Bassing et al., 2002). V(D)J recombination activity is conferred by 

recombination activating gene 1  (RAG), RAG2, TdT, DNA-PKcs, Ku70/Ku80, XRCCT, 

DNA ligase IV, and Artemis (Bassing et al., 2002; Gellert, 2002). RAG1 and RAG2 can 

confer V(D)J recombination synergistically in nonlymphoid cells (Oettinger et al., 1990).  

RAG1 and RAG2 are convergently transcribed and coordinately controlled in B 

and T cell progenitors (Nagaoka et al., 2000). The Erag enhancer is an evolutionarily 

conserved transcription enhancer and is required for proper RAG expression in early B 

cell precursors but not in T cells (Hsu et al., 2003). The B cell transcription factor E2A 

was shown to directly bind to the Erag enhancer and transactivate RAG expression (Hsu 

et al., 2003). The forkhead transcription factor, Foxp1, also has Erag binding activity and 
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its defect in mice showed diminished expression of RAG proteins as well as other B cell 

lineage genes (Hu et al., 2006).       

 

 

1.6. Differentiation of Abelson Virus-Transformed Pre-B Cell Lines and 
the Abl Kinase Inhibitor, STI-571 

The Abelson murine leukemia virus (A-MuLV) can be used to transform adult 

murine bone marrow or fetal liver cells (Kurosaki, 2003). The retroviral oncogene, v-abl 

encodes a constitutively active non-receptor tyrosine kinase. Transformed pro-B cells are 

able to proliferate in culture without interleukin 7 (IL-7) but their maturation halts at the 

pro-B or early pre-B cell stages. Thus, A-MuLV transformed cell lines contain a 

productive heavy chain rearrangement but (with few exceptions) no light chain 

rearrangement. A-MuLV transformed cells resemble large pre-B cells. They proliferate 

robustly, express low levels of RAG1 and RAG2, and express low levels of “germline” 

Ig? or Ig? transcripts.  Germline transcripts are initiated from cryptic promoters within 

the J-C intron and correlate strongly with chromatin accessibility of the respective locus 

prior to its recombination (discussed in Chapter 5) (Sleckman et al., 1996; Van Ness et 

al., 1981). A-MuLV transformed cell lines, treated with an inhibitor (STI-

571/imatinib/Gleevec) of the Abl kinase, are relieved of the differentiation block and 

progress to a late pre-B cell- like state, displaying Ig? or Ig? rearrangement (Muljo and 

Schlissel, 2003) (Figure 4).            
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Figure 4. Steps in early B cell development subject to Abelson (Abl) transformation and 
Abl kinase inhibition by STI571. 

The Abelson murine leukemia virus tryrosine kinase is constitutively activated. 

Abl-transformed B cells are arrested at the large pre-B stage of development. Treatment 

of Abl cells with the Abl kinase inhibitor and chronic myelogenous leukemia therapeutic, 

STI571/Gleevec, results in G1/S cell cycle arrest, induction of RAG expression and 

immunoglobulin (Ig) light chain VJ recombination (Bredemeyer et al., 2006). These 

features are characteristic of late pre-B cells. 
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1.7. Control of RAG1 and RAG2 Activity during B Cell Development 

RAG expression begins in early lymphoid progenitors (ELP) that can give rise to 

T cells, B cells, and NK cells (Igarashi et al., 2002). The levels of RAG transcripts are 

high during early stages of B cell development until rearrangement of immunoglobulin 

heavy chain (IgH) is complete. RAG gene expression is suppressed at the large pre-B cell 

stage where rapid proliferation occurs following the assembly of pre-B cell receptor (pre-

BCR)  (Nagaoka et al., 2000) (Figure 4). Pre-B cells then exit the cell cycle and the 

transcription of RAG genes resumes for light chain gene assembly. Complete expression 

of BCR results in the eventual loss of RAG expression. Reactivation of RAG activity in 

peripheral B cells is still controversial.  

In addition to the transcriptional regulation discussed in Section 1.4, post-

translational regulation of RAG proteins provides another level for control of 

recombinase activity (Jiang et al., 2005). RAG2 is phosphorylated and degraded through 

an ubiquitination/proteasome pathway in the S, G2, and M phases of the cell cycle. This 

explains why V(D)J recombination occurs mainly in the G1 phase. Over-expression of 

RAG genes in non- lymphoid cells could activate recombination of exogenous 

recombination reporter constructs but not endogenous Ig and TCR loci (Oettinger et al., 

1990). The “accessibility hypothesis” (Stanhope-Baker et al., 1996) proposes that RSS 

sites normally reside within heterochromatin and have to be “opened” for V(D)J 

recombination to occur. Germline transcription, DNA methylation, and histone 

modification have each been implicated in control of chromatin accessibility and V(D)J 

recombination (Roth and Roth, 2000; Schlissel, 2003).  
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1.8. Ubiquitination 

Ubiquitin (Ub) is a highly conserved 76 amino acid polypeptide that can be 

covalently attached to another protein through an isopeptide bond. Stability and function 

of many key cellular proteins are regulated by ubiquitination (Di Fiore et al., 2003). Ub 

conjugation to the protein substrate is mediated through a cascade of enzymatic reactions. 

An Ub activating enzyme (E1) forms a thio-ester bond from a cysteine within its C-

terminus to a glycine in Ub.  Next, an Ub conjugating enzyme (E2) accepts Ub from the 

E1-Ub conjugate to form the E2-Ub conjugate through a similar thio-ester linkage. 

Finally, an Ub ligase (E3) transfers Ub to the target protein, resulting in an isopeptide 

bond between Ub and the substrate lysine (Liu, 2004).  

The most prevalent result of ubiquitination is polyubiquitination-mediated protein 

degradation. If there are at least four Ubs linked through lys48, Ub substrates are 

recognized and degraded by proteasomes  (Conaway et al., 2002). However, a non-

proteolytic function of polyubiquitination can be mediated through lys63 on Ub. This 

mode of ubiquitination is reversible (Spence et al., 2000). Proteins can also be 

monoubiquitinated. Proteasome independent monoubiquitination is involved in many 

cellular processes such as protein transport, transcriptional regulation, and DNA repair 

(Hicke, 2001; Sigismund et al., 2004).    
 
 

1.9. Localization within the Nuclear Matrix and Nuclear Paraspeckles 

The nuclear matrix is a three dimensional structure consisting mainly of protein 

networks that survive sequential treatment with non-ionic detergents, nucleases and high-

salt buffers (Verheijen et al., 1988). The nuclear matrix is thought to be involved in 

various nuclear activities, including replication, transcription, and RNA processing 
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(Verheijen et al., 1988). Recent studies have shown that the nuclear matrix is involved in 

various nuclear activities such as DNA replication, transcription, RNA processing, viral 

replication, and hormone activity. Nuclear matrix attachment sites (MARs) often 

colocalize with replication origins, insulators and other regulatory DNA elements. 

Several transcription factors have been shown to bind to the nuclear matrix and to MARs. 

MARs can act as promoters, enhancers, and silencers when bound by transcription factors 

(Razin et al., 2007). Deletion of nuclear matrix targeting sequence (NMTS) abrogates 

transcriptional activity in several transcription factors, such as SATB1 and Runx2 (Seo et 

al., 2005). 

Transcription of rRNA genes and the processing of rRNA precursors occur in the 

nucleolus. Proteomic analysis of purified human nucleoli identified 3 proteins (PSP1, 

PSP2, and Nono/p54/nrb) (Fox et al., 2002). Indirect immunofluorescence analysis 

indicated that these proteins also resided in novel non-nucleolar punctuate foci.  These 

foci were termed “paraspeckles” because they localized adjacent to another set of nuclear 

foci (“speckles”) that are involved in storage or recycling of splicing factors (Fox et al., 

2002). The biological function(s) of paraspeckles have not been fully discerned. 

However, paraspeckle proteins are suggested to be involved in RNA metabolism, based 

on the fact that localization within paraspeckles depends on active transcription and that 

the 3 PSP proteins contained RNA binding (RRM) domains. Relevant to the stud ies 

presented in Chapter 3, it has been shown that BCL11A colocalizes with these proteins 

and with BCL6 within nuclear paraspeckles (Liu et al., 2006). 
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CHAPTER 2. MATERIALS AND METHODS 

 

2.1. RNA Isolation 

For total RNA isolation, cells were washed twice in PBS and homogenized in 

TRizol (GibcoBRL). Chloroform was added at 200ul/1ml of TRizol, and phases were 

separated by centrifugation.   RNA was precipitated with isopropyl alcohol and dissolved 

in DEPC-treated water.  

For mRNA isolation, FastTrack 2.0 mRNA isolation kit (Invitrogen) was used 

according to the manufacturer’s instructions. Briefly, cells were homogenized in Lysis 

buffer and incubated with oligo (dT) cellulose. Oligo (dT) cellulose was washed in 

Binding buffer and Low Salt Washing buffer.   The pellet was transferred into a spin 

column and washed with Low Salt Washing buffer. mRNA was eluted in elution buffer, 

precipitated with isopropyl alcohol, and dissolved in DEPC-treated water. 
 
 

2.2. RT-PCR 

For reverse transcription (RT), 1ug of total RNA or 10ng of mRNA, 1ul of oligo 

(dT) (500ug/ml), 1ul of dNTP mix (1mM each), 4ul of 5X first-strand buffer, 2ul of 0.1M 

DTT, 1ul of RNAseOut  (40 units/ul, GibcoBRL), 1ul of Superscript II (200 units, 

GibcoBRL) and water were added to each reaction in 20ul of final volume. The reaction 

mixture was incubated at 42°C for 50 min. The reaction was inactivated by heating at 

70°C for 15 minutes. 

For PCRs, 1 to 3 ul of cDNA, 5ul of 10X PCR buffer (200mM Tris-HCl, 500mM 

KCl), 1.5ul of 50mM MgCl2 , 0.4ul of Taq polymerase (5U/ul, Invitrogen), 1ul of 
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forward primer (10uM) and 1ul of reverse primer (10uM) were mixed and then water was 

added to a final volume of 50ul.   
 
 

2.3. Cell Culture  

293T, Phoenix, NIH3T3 and COS7 cells were maintained in DMEM (GibcoBRL) 

containing 10% fetal bovine serum (FBS) (HyClone), 100 U/ml penicillin, and 100 ug/ml 

streptomycin. Raji, Nalm6, SMS-SB, and A70 cells were maintained in RPMI-1640 

(GibcoBRL) containing 10% FBS, 5x10-5 2-Mercaptoethanol, 100 U/ml penicillin, and 

100 ug/ml streptomycin. 
 
 

2.4. Retrovirus Preparation and Transduction 

Human BCL11A-XL cDNA was subcloned into the pXY-IRES-puro (pXY-puro) 

vector which was a kind gift from Dr. Louis Staudt at Division of Clinical Sciences, 

National Cancer Institute (Shaffer et al., 2000). Plasmid DNA encoding BCL11A-XL was 

transfected into the Phoenix cell line using Fugene (Roche) to produce retroviral 

particles. Viral particles were harvested 48hr after transfection and centrifuged to remove 

cell debris. The viral supernatants were ultracentrifuged at 20000 RPM for 2hr and 

resuspended in an appropriate amount of serum free Opti-MEM media (Invitrogen). 

Aliquots of viral supernatants were stored at -80°C. 

Viral titers were determined by infecting NIH3T3 cells and counting the number 

of puromycin-resistant cells. Approximately the same amount of pXY-puro virus or 

pXY-BCL11A-XL virus was used to produce similar multiplicities of infection (MOIs). 

The appropriate amount of viral particles were thawed and incubated with 10 ug/ml of 

DOTAP (Roche) for 10min. Cells were transduced in 24-well culture plates at 25°C by 



 25 

spin inoculation for 90min (Shaffer et al., 2000). Forty-eight hours after transduction, 

cells were selected in the presence of 0.5-2ug/ml of puromycin (Sigma). The following 

concentrations of puromycin were used for each cell line: 293T cells, Nalm6 cells, SMS-

SB cells and Jurkat cells – 0.5ug/ml, and BJAB and Raji cells – 1ug/ml.      
 
 

2.5. Western Blot Analysis 

Cells were suspended in RIPA buffer (150 mM NaCl, 10 mM Tris-HCl, pH 7.2, 

0.1% SDS, 1% Triton X-100, 1% deoxycholate, 5 Mm EDTA) supplemented with 

protease inhibitors (Roche). Cell lysates were cleared by centrifugation. Loading 

concentrations of proteins were determined by Bradford assay using the Bio-rad protein 

assay reagent. Equal amounts of proteins were loaded onto SDS-PAGE gels and 

transferred to nitrocellulose membranes (Protran BA) using a semi-dry transfer apparatus. 

Each membrane was blocked with blocking buffer containing 5% milk and 0.1% Tween 

20 for 1hr at room temperature. Appropriate concentrations of primary antibodies were 

used for 1 hr incubations and membranes were washed 4 times in PBST (PBS with 0.1% 

Tween 20) before incubation with secondary antibodies. Horseradish peroxidase 

conjugated goat anti-mouse antibody or goat anti-rabbit antibody (Amersham) were used 

at a 1:8000 dilution for 1hr at RT. After 4 washes, membranes were developed using 

ECL reagents (Amersham Pharmacia Biotech). The following dilutions were used for 

each antibody; HA – 1:2000 (Babco), Flag – 1:5000 (Sigma), ß-tubulin- 1:2000 (Santa 

Cruz), RAG1-1:2000 (Pharmingen, Cal# 554116), PSF-1:2000 and BCL11A-XLc-1:3000 

(Bethyl, BL1797). 
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2.6. Ubiquitination Assays 

For in vivo ubiquitination assays, 293T cells were transfected transiently with 

CMV10-BCL11A-XL or S, pMT-HA-Ub (a kind gift from Dr Huibregtse) and empty 

CMV10 (Sigma) at the indicated concent rations. Eight hours after trans fection, cells were 

incubated in proteasome inhibitors, MG132 (20uM, Calbiochem) or LLM (50uM, 

Calbiochem) for an additional 12 hr. The cells were lysed in RIPA buffer containing 

protease inhibitors and immunoprecipitated using anti-Flag antibody, M2 (Sigma). The 

lysates were loaded onto SDS-PAGE gels and processed for western blot analysis. 

Ubiquitin signals were detected using an anti-HA antibody (Babco). For B cell receptor 

stimulation, goat anti-human IgM polyclonal antibody (Southern Biotechnology) was 

used at the indicated concentration. 

 
 

2.7. Nuclear Matrix Fractionation 

The procedure was adapted from the method of Reyes et al. (Reyes et al., 1997).  

For nuclei and cytoplasm isolation, 107 cells were resuspended in 200 µl of HNB (0.5 M 

sucrose, 15 mM Tris-HCl, pH 7.5, 60 mM KCl, 0.25 mM EDTA, pH 8, 0.125 mM 

EGTA, pH 8, 0.5 mM spermidine, 0.15 mM spermine, 1 mM DTT, 0.5 mM PMSF, 

5 µg/ml pepstatin, 5 µg/ml leupeptin, and 5 µg/ml aprotinin). Then 100 µl of HNB 

supplemented with 1% NP-40 was added dropwise. After 5 min of incubation on ice, 

cells were fractionated into nuclei pellet and cytoplasm supernatant (C) by centrifugation 

at 6,000 rpm for 3 min. Isolated nuclei were resuspended in 200 µl of nuclear buffer 

(20 mM Tris-HCl, pH 7.5, 70 mM NaCl, 20 mM KCl, 5 mM MgCl2, and 3 mM CaCl2 

supplemented with protease inhibitors) and incubated with 3 U of micrococcal nuclease 
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(Sigma) for 15 min at room temperature. The reaction was terminated by the addition of 

EDTA and EGTA to 5 mM each, the mixture was then centrifuged at 5,000 g for 3 min, 

and the supernatant was designated the nucleoplasm fraction (NP). The nuclear pellet was 

suspended in CSK buffer and digested with 1 mg/ml of RNase-free DNAase I in CSK 

buffer plus proteases inhibitors for 15 min at 37°C. Then ammonium sulfate was added to 

a final concentration of 0.25 M and the mixture was incubated on ice for 5 min. After 

centrifugation, the soluble material was referred to as the chromatin fraction (CH). The 

pellet was washed twice with 2 M NaCl and solubilized in urea buffer (8 M urea, 0.1 M 

NaH2PO4, 0.01 M Tris-HCl, pH 8) to isolate nuclear matrix fraction (NM). The 

efficiency of the nuclear fractionation was assessed by specific detection of the Lamin B 

nuclear matrix protein (Seo et al., 2005).  
 

2.8. Electrophoresis Mobility Shift Assays 

The minimum promoter region of the mouse RAG1 gene (Brown et al., 1997) and 

the Erag enhancer region (Hsu et al., 2003) were amplified by PCR using the following 

primers; RAG1 forward 5’-cattctcagggagggaactg-3’, RAG1 reverse 5’-

ggcaaagtgtgttctctgctc-3’, Erag forward 5’-acaccctaaatgggccgtgaac-3’, Erag reverse 5’-

cagaacccgagggcttagcatt-3’. R1P-Luc, R2P-Luc, and EragR1P-Luc constructs (described 

in chapter 5.4) were used as templates for PCRs. Double stranded PCR products were 

end- labeled with P32 using polynucleotide kinase and then purified using Bio-Spin 

Columns (BIO-RAD). Each reaction mixture was consisted of 5 to 10 ug of nuclear 

extracts from Nalm6 cells, probes, and a binding buffer (20mM HEPES, pH 7.9, 40 mM 

KCl, 6 mM MgCl2, 1mM DTT, 0.1% NP40, 3 mg/ml bovine serum albumin, 10% 

glycerol, 2% Ficoll, 50 ug/ml of sonicated salmon sperm DNA and protease inhibitor 
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cocktail). The binding mixture was incubated at room temperature for 30 min. For the 

antibody binding assays, 100ng of BCL11A polyclonal antibody (BL1797) or an equal 

amount of a control rabbit IgG antibody were added to each binding reaction. Each 

binding reaction was loaded onto the nondenaturing gels. The gels were dried and 

analyzed using a Phosphoimager (Molecular Dynamics).  
 
 

2.9. Luciferase Assays 

293T cells were plated at 1x106 cells per well in 12-well plates. Twenty four hr 

later, cells were transiently transfected with 1ug of firefly luciferase constructs, 5 ng of 

ranilla luciferase constructs, and indicated amounts of constructs encoding the BCL11A-

XL gene. Final trasnsfection concentrations were adjusted to equal amounts with the 

empty CMV 10 construct. Forty eight hr after transfection, cells were harvested for Dual-

Luciferase Reporter Assays (Promega). Cell lysis and luciferase value measurements 

were performed following manufacture’s manual. Values were normalized using Renilla 

values and expressed in terms of % of control in which only the empty vector (CMV10) 

was transfected.  

 
 

2.10. Chromatin Immunoprecipitation (ChIP) 

These analyses followed Upstate ChIP kit protocols (www.upstate.com). Nalm6 

or Raji cells were cross- linked by incubating at room temperature for 8 min in a final 

concentration of 1% formaldehyde. Fixed cells were washed twice with ice cold PBS and 

lysed in SDS lysis buffer (1% SDS, 10mM EDTA and 50mM Tris-HCl, pH 8.1). Lysates 

were sonicated for thirty sec six times. Sonicated chromatin was diluted 10-fold in a 
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dilution buffer (0.01% SDS, 1.1% Triton X- 100, 1.2mM EDTA, 16.7mM Tris-HCl, pH 

8.1, 167mM NaCl), and then immunoprecipitated with purified rabbit IgG or BCL11A-

XL antibodies (Bethyl, BL1797). Antibody/chromatin complexes were washed with a 

low salt wash buffer (0.1% SDS, 1% Triton X-100, 2mM EDTA, 20mM Tris-HCl, pH 

8.1, 150mM NaCl), a high salt wash buffer (0.1% SDS, 1% Triton X-100, 2mM EDTA, 

20mM Tris-HCl, pH 8.1, 500mM NaCl), a LiCl wash buffer (0.25M LiCl, 1% IGEPAL 

CA630, 1% deoxycholic acid (sodium salt), 1mM EDTA, 10mM Tris, pH 8.1) and a TE 

wash buffer (10mM Tris-HCl, pH 8.0, 1mM EDTA). These complexes were eluted in 

elution buffer (1% SDS, 0.1 M NaHCO3) and cross links were reversed at 65°C for 6-12 

hours in the presence of 0.2 M NaCl. After proteinase K treatment for one hr at 45°C, 

DNA was recovered by using PCR purification columns (Invitrogen) and then used for 

PCR analysis. The RAG1 and RAG2 promoter and the Erag enhancer region were 

detected using the following primers: RAG1 forward 5’-cattctcagggagggaactg-3’,  RAG1 

reverse 5’-ggagggctaaccacaaatga-3’,  RAG2 forward 5’-gtggtctctgcttcaggaca-3’ and  

RAG2 reverse  5’-agcaacaatggcaacacaat-3’. Thermal cycling conditions are 95°C for 5 

min, then 35 cycles at 95°C for 10 sec, 55°C for 15 sec, 72°C 10 sec and 72 °C for 7 min. 

Erag forward 5’-tattcaggagggaattaaatgac-3’, Erag reverse 5’-gacagaacccgagggcttagcat-3’. 

PCR conditions used for the Erag enhancer are 95°C for 5 min, then 35 cycles at 95°C for 

1 min, 57°C for 1 min, 72°C for 1 min and 72°C for 7 min. 
 
 

2.11. Microarray 

A detailed protocol can be obtained on the Iyer lab (University of Texas at 

Austin) web site (http://mbb3212a1.icmb.utexas.edu/ilcrc/protocols/index.shtml). Briefly, 

3ug of mRNA was reverse transcribed using amino-ally UTP/dNTPs. Synthesized cDNA 
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was hydrolyzed and subjected to PCR purification columns (Invitrogen). Each sample 

was coupled with Cy3 or Cy5 dyes and mixed samples were hybridized on human array 

slides. Microarray slides were scanned using a GengePix 400a Microarray Scanner.  

 

 

2.12. A70-INV Cell Line and STI-571 

The A70-INV cell line is described in Chapter 1.5 according to Bredemeyer and 

others (2006). Briefly, Bone marrow cells from mice were infected with the pMSCV-v-

Abl retrovirus to generate v-Abl transformed pre-B cells. These cells were transduced by 

pMX-RSS-GFP/IRES-hCD4 encoding inverted GFP flanked by recombination signal 

sequences (RSS) and following IRES-hCD4 (described in Figure 21A). Only after normal 

rearrangement, GFP cDNA is inverted to the sense orientation, which results in GFP 

expression. pMX-RSS-GFP/IRES-hCD4 retrovirus positive cells were isolated by hCD4 

sorting. Cells were transduced by pXY-puro or pXY-BCL11A-XL retroviruses or/and 

treated with 3uM STI-571 (Novartis) for the indicated time. Rearrangement was 

quantitated using FACS and genomic DNA PCR analyses.  

 
 

2.13. Genomic DNA Isolation and Southern Blotting 

A DNeasy tissue kit (Qiagen) was used to isolate genomic DNA from A70-INV 

cells. We used previously published protocols with some modifications for analysis of 

pMX-RSS-GFP/IRES-hCD4 (Bredemeyer et al., 2006) and Ig light chain k (Ramsden, 

1994) rearrangements.  For genomic PCR, 100-200 ng of genomic DNA was PCR 

amplified and then subjected to electrophoresis in agarose gels. VJk2 PCR products were 
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transferred to a nylon membrane for Southern blot analysis.  Jk2-2 oligo probes were end 

labeled using a T4 polynucleotide kinase.  Southern blots were pre-hybridized overnight 

and hybridized with probes for 3 hr at 50°C in Ultra-hyb hybridization solution 

(Ambion). Blots were washed once at room temperature and twice at 50°C in 2X 

SSC/0.1% SDS for 30 min each. The blots were exposed to phosphorimager plates for 

48-72 hr and the signals were detected using a Phosphorimager (Molecular Dynamics). 

The detailed strategy and all sequences of used primers are described in Figures 20B and 

23.  

 

 

2.14. Flow Activated Cytometry Sorting (FACS) Analysis  

A70-INV cells were incubated in the absence or in the presence of 3uM of 

STI571 for three days. The harvested cells were washed two times with ice-cold PBS and 

resupended again in PBS at a concentration of 1 x 106 cells/ml. A minimum of 5000 cells 

per sample was used for FACS analysis. The parental A70-INV cells were used for GFP 

gating.  Flow cytometry (BD FACSCalibur Flow Cytometry System) was used to analyze 

the samples for GFP positive signals. The collected data were analyzed using the Cell 

Quest software.  

 

 

2.15. Inducible shRNA Knock-Down of BCL11A and RAG Expression in 
BJAB B Cells 

Two complementary shRNA template oligonucleotides targeting a BCL11A gene 

were synthesized and cloned into the pRSMX-PG vector (Ngo et al., 2006) using HindIII 
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and BglII sites. pRSMX-PG-BCL11A-shRNA retrovirus was produced in Phoenix cells 

as described above and used for infection of a Tet-on BJAB cell line (Ngo et al., 2006) 

which expresses the Tet-repressor. Transduced BJAB cells were selected in the presence 

of puromycin for 6 days. BCL11A specific shRNA expression was induced with different 

concentrations of doxycycline for the indicated time. Levels of BCL11A expression were 

measured by RT-PCR and western blot analysis. The following oligomers were used for 

the BCL11A shRNA template; forward, 5’-

gatcaccccagcacttaagcaaattcaagagatttgcttaagtgctggggtttttttggaaa-3’, and reverse, 5’-

agcttttccaaaaaaacccagcacttaagcaaatctcttgaatttgcttaagtgctggggtg-3’. BglII and HindIII sites 

were used for cloning. 

 
 

2.16. Construction of BCL11A Plasmids 

Plasmids CMV10-BCL11A-XL and CMV10-BCL11A-S were constructed as 

follows: BCL11A-XL and BCL11A-S were amplified by PCR with the same forward 

primer: 5’-gccaaagcttatgtctcgccgcaagcaaggc-3’ and different reverse primers: for XL 

isoform, 5’-cccaggatcctattcagtttttatatcattattcaac-3’, for S isoform, 5’-

cccaggatcctcaaattttctcagaacttaag-3’. The PCR products were digested using BamHI and 

HindIII restriction digestion enzymes and cloned into the CMV10 plasmid (Sigma), 

which contains a 3xFlag tag. The pXY-BCL11A-XL plasmid was constructed using 

CMV10-BCL11A-XL as a template and the following PCR primers: forward, 5’-

ccgggatccatggactacaaagaccatgac-3’ and reverse, 5’-ggacgcggccgctattcagtttttatatcattattc-

3’. The PCR products were digested with BamHI and NotI restriction enzymes and 

cloned into the pXY-IRES-puro plasmid using BglII and NotI sites. pEGFPC1-BCL11A-

XL-K5N mutant was generated by site-directed mutagenesis using the Quick Change 
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site-directed mutagenesis kit and a protocol from Stratagene. The following primers were 

used; forward, 5’-ccatgtctcgccgcaaccaaggcaaacccccagc-3’ and reverse, 5’-

gctggggtttgccttggttgcggcgagacatgg-3’. The deletion mutant pEGFPC1-BCL11A-

XLdelN80 was constructed using PCR with the following primer pairs: forward, 5’-

ggcgtcgacagcgaacacggaagtccc-3’ and reverse, 5’-cccaggatcctattcagtttttatatcattattcaac-3’. 

The PCR products were digested using SalI and BamHI restriction enzymes and cloned 

into the plasmid vector pEGFPC1. The final clones were verified by sequencing. 
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CHAPTER 3. CHARACTERIZATION OF BCL11A FUNCTION, 
STABILITY AND LOCALIZATION 

 

3.1. Overview of BCL11A Domain Structure 

The human BCL11A locus can produce several isoforms by alternative pre-mRNA 

splicing (Liu et al., 2006) (Figure 5). Each contains the same N-terminal exon 1 and 2. 

The N-terminal 12 amino acids within exon 1 are virtually identical with the N-termini of 

BCL11B, FOG, SALl and Spalt transcription factors (Lin et al., 2004) (Figure 6). This 12 

amino acid motif from FOG-2 was fused with the GAL DNA-binding domain and the 

fusion protein was shown to be sufficient to produce repression activity on a GAL-

luciferase reporter. Point mutations of R3, R4, or K5 disrupted the repression activity of 

the fusion protein (Lin et al., 2004). 

 The XL isoform has five C2H2 zinc finger motifs which are known to be 

involved in protein-protein interaction, lipid binding, DNA binding, and RNA binding 

(Laity et al., 2001). The common N-terminal domain contains a rare, C2XX zinc finger, a 

motif whose function is not well understood. There are three putative nuclear localization 

signals, NLS1, HKRK at 66-69, NLS2, KHKR at 569-572 and NLS3, PFSKRIK at 631-

637. Mutational analysis demonstrated that NLS3 is a bonafide NLS (Liu, 2002). An 

acidic domain has been shown to have transcriptional activation activity in other proteins 

including the herpes simplex virus transactivator, VP16 (Shen et al., 1996). 
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Figure 5. Schematic representation of the functional domains of BCL11A-XL. 

 

The BCL11A “extra long” isoform (BCL11A-XL) has 835 amino acids. This 

protein migrates at 120kD on a SDS-PAGE gel even though its predicted molecular 

weight is 91kD. The “long” (BCL11A-L) and “short” (BCL11A-S) isoforms also migrate 

slower on SDS-PAGE gels (L at 100kD and S at 35kD) than predicted by their 

sequences. The first 12 amino acids of the N-terminus (shared by all BCL11A isofroms) 

are highly similar to that of several zinc finger-containing transcriptional factors. There 

are six zinc fingers and an acidic domain in the XL isoform. The nuclear localization 

signal (NLS) resides at amino acids 631-637. All isoforms contain the N- terminal region 

encoded by exon 1 and 2. The exons (boxes) and untranslated regions (lower boxes) are 

denoted.  
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Figure 6. Comparison of N terminal sequences and zinc fingers among BCL11 and other 
highly similar transcription factors. 

 

A. The N-terminal 12 amino-acids are highly similar in several transcription 

factors that are known to be involved in hematopoeisis. The underlined three amino-

acids, RRK, were shown to be essential for transcriptional activity (Hong et al., 2005; Lin 

et al., 2004). 

 

B. Comparisons of zinc fingers. The highly similar N-termini are followed by a 

single, canonical C2HC zinc finger, which then is followed by one or more single, 

double, or triple zinc fingers of the C2H2 type.  BCL11A and its paralogue, BCL11B, as 

well as early hematopoietic zinc finger (EHZF) and the friend-of-GATA hematopoietic 

transcription regulators FOG-1 and FOG-2—all encode zinc finger proteins with these 

conserved features, and all have been implicated in hematological malignanc ies (Lin et 

al., 2004). M, M. musculus; H, H. sapiens; B, B. taurus; R, Rattus norvegicus; X. laevis; 

G, G. gallus. 
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Adapted from Lin, A. C. et al. J. Biol. Chem. 2004.279:55017

B
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3.2. BCL11A-XL is a Major Isoform Conserved in Evolution 

 

BCL11A-XL was identified initially in human brain and in human B lymphocytes 

(Liu et al., 2006; Satterwhite et al., 2001). An expressed sequence tag cDNA libraries for 

XL was observed in the chicken, but surprisingly, no EST for XL was reported in mouse 

libraries. However, a full- length transcript for mouse BCL11A-XL was cloned from 

cDNA libraries designed to capture long transcripts more efficiently than do conventional 

methods (Carninci et al., 2000). Regardless of this and the extremely high homologies 

among BCL11A-XL orthologues (Figure 1), previous functional studies were performed 

only on the long (BCL11A-L) isoform (Avram et al., 2000; Avram et al., 2002; 

Nakamura et al., 2000).  

To further address this issue, we generated primers that specifically target the 5’ 

end of the coding region and the 3’ UTR of the XL isoform. BCL11A-XL was observed 

in RNA from both mouse and chicken cell lines (Figure 7A).  

Monoclonal (Liu et al., 2006) or commercially obtained polyclonal antibodies 

specific for both L and XL isoforms of  BCL11A were used for immunoblotting nuclear 

extracts prepared from the DT40 chicken B cell line and from human and mouse B cell 

lines. We detected only the BCL11A-XL isoform in mouse samples (data not shown). 

Immunoblots with the XL C-terminal polyclonal antibody (BL1797), which detects the 

C-terminal region unique to the XL isoform, confirmed the presence of BCL11A-XL in 

mouse and chicken cell lines (Figure 7B). These results indicate that the highly conserved 

BCL11A-XL is also the most highly expressed isoform in B cells. 
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Figure 7. BCL11A-XL expression in chicken, mouse and human cells. 

 

A. Measurement of BCL11A-XL transcript levels by RT-PCR. Primers specific 

for human BCL11A-XL 5’ ends were used to amplify cDNA. RNA was isolated from a 

human B cell line (Raji), a mouse B cell line (BCL1), mouse whole brain tissue, mouse 

thymocytes and a chicken B cell line (DT40). BCL11A-XL is expressed in chicken (c), 

mouse (m) and human (h) cells. The faster migration of chicken BCL11A-XL results 

from a shorter 3’UTR. PCR primers: forward; 5’-gtggggaaggacgtttacaa-3’; reverse, 5’-

atcatgcattcaaacggtga-3’. 

       

B. Western blot identification of BCL11A-XL protein. The polyclonal antibody 

(Bethyl, BL1797) is specific for the unique BCL11A C-terminus (amino acids 775-835; 

Figure 5). An in vitro translated lysate (IVT) was used as a positive control. Nuclear 

extracts from a chicken B cell line (DT40), mouse (m) B cell lines (HAFTL-1 and 

300.19) and a human (h) B cell line (Raji), express BCL11A-XL. XL and Deg indicate 

full length and degraded BCL11A-XL, respectively.   
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3.3. Ubiquitin Mediated Protein Degradation  of Ectopically Expressed 
BCL11A Proteins 

Epitope-tagged expression constructs of BCL11A isoforms were made for in vitro 

and in vivo expression. Each of these produced very poor expression levels in transient 

transfections as compared to epitope-tagged Bright and other factors used routinely in our 

laboratory (data not shown). This suggested that BCL11A proteins might be subject to 

ubiquitin-mediated protein degradation. We used the specific proteasome inhibitors LLM 

and MG132 in an attempt to increase the stability of BCL11A proteins following 

transfection. Regardless of whether the isoform localized to the nucleus (XL and L) or to 

the cytoplasm (BCL11A-S), proteasome inhibitors protected BCL11A proteins from 

degradation (Figure 8A).  

293T cells were co-transfected with Flag-tagged BCL11A and HA-ubuiquitin 

constructs to assess the ubiquitination levels (Figure 8B). In the presence of proteasome 

inhibitor, typical ladders representing multiple-ubiquitinated BCL11A proteins were 

observed (lanes 3 and 9). This data suggests that ubiquitination/proteasome mediated 

degradation pathway may contribute to poor exogenous expression of BCL11A proteins 

in non-B cells.  
 
 

3.4. Antigen Receptor Signaling in B cells Induces Instability of 
BCL11A 

It was previously shown that BCL11A-XL and L  undergo protein-protein 

interaction with BCL6, a transcription factor essential for germinal center B cell 

formation (Liu et al., 2006; Nakamura et al., 2000). BCL6 is expressed in germinal center 

B cells, but not in plasma cells. Antigen receptor stimulation with anti-IgM was shown to 
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induce phosphorylation, ub iquitination and degradation of BCL6 in the mature B cell 

line, Ramos. These authors further reported that ubiquitination-mediated degradation of 

BCL6 is responsible for rapid down-regulation of BCL6 during post-GC differentiation 

(Niu et al., 1998).  

Because BCL11A-XL expression is also extinguished in post-GC plasma cells 

(Liu et al., 2006), we tested whether BCL11A proteins are destabilized by antigen 

receptor stimulation. As shown in Figure 9A, stimulation of the antigen receptor in 

Ramos B cells resulted in decreased levels of exogenous (lane 2) and endogenous (lane 4) 

BCL11A-XL, as detected by anti-Flag and BCL11A polyclonal (BL1797) antibodies, 

respectively. As expected from previous data (Niu et al., 1998), BCL6 showed induced 

degradation by antigen receptor stimulation (lane 6). Levels of an unrelated nuclear 

protein, PSF, were not significantly changed after antigen receptor stimulation. Next, 

Ramos cells were treated with an anti-IgM antibody and/or a proteasome inhibitor, 

MG132. As shown previously (Niu et al., 1998), proteasome inhibitor treatment blocked 

BCR-stimulated degradation of BCL6 (Figure 9B, lanes 4, 5  vs 6, 7). Unexpectedly, 

proteasome inhibitor treatment initially increased the stability (lanes 2 and 6) and later 

time points decreased the stability of BCL11A-XL (lanes 3 and 7).  

We conclude that, as previously demonstrated for the XL-interacting partner, 

BCL6, human BCL11A-XL is ubiquitinated and proteosomally degraded as a mechanism 

for controlling expression levels.   
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Figure 8. BCL11A-XL expression is regulated by ubiquitin-mediated proteosome 
degradation. 

 

A. Expression of BCL11A isoforms was increased by proteasome inhibitors 

(LLM or MG132) treatment in 293T cells (lane 2, 4, and 5). Thirty hr after transfection, 

cells were treated with 40 µM LLM or DMSO (solvent) for an additional 12-14 hr. 

BCL11A protein expression was detected by anti-Flag antibody following separation by 

SDS-PAGE and blotting.  

 

B. BCL11A-XL (right) and BCL11A-S (left) are poly-ubiquinated and the 

modified proteins (adducts) are stabilized by proteosome inhibitors (lanes 3 and 9). Flag-

tagged BCL11A-XL and S were transfected into 293T cells together with HA-Ub. Thirty 

hours after transfection, cells were further incubated in the absence or presence of LLM 

(40 uM) for 12-14 hr. Harvested cells were lysed and immunoprecipitated by anti-Flag 

antibodies and loaded onto a SDS-PAGE gel. Ubiquitinated signals were detected by 

HA-specific antibody immunoblotting. Hc (immunoglobulin heavy chain cross reaction), 

Lc (immunoglobulin light chain cross reaction). 
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Figure 9. BCL11A instability during B cell receptor stimulation by anti-IgM antibodies. 

 

A. BCL11A transduced Ramos cells were stimulated with anti-IgM polyclonal 

antibodies at 10ug/ml for 6 hr. Cell lysates were prepared and separated on SDS-gels. 

Exogenous  BCL11A-XL was detected by anti-Flag antibodies (Flag-XL) and total 

BCL11A-XL by XL polyclonal antibodies (XL). The positive control, BCL6, was 

destabilized but negative control, PSF, was not affected during BCR stimulation. 

  

B. Anti-IgM induced BCL11A degradation was prevented by a specific 

proteasome inhibitor, MG132 under short term (3 hr) incubation (lanes 2 and 6). Long 

term (6 hr) incubation with the proteasome inhibitor resulted in enhanced degradation of 

BCL11A (lanes 3 and 7). Instability of BCL6 was induced by BCR stimulation (lanes 4 

and 5) and blocked by proteasome inhibitor treatment (lanes 6 and 7) regardless of the 

incubation period. ß-tubulin was not affected by the above treatments.  
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3.5. BCL11A-XL is a Nuclear Matrix Protein 

As mentioned above, detecting BCL11A proteins is difficult even in a transient 

over-expression system. This can be partially explained by the ubiquitin-mediated 

degradation of BCL11A. We also checked the extraction efficiency of BCL11A with 

mild lysis buffer which contains only non- ionic detergents because nuclear matrix 

proteins are known to be resistant to non- ionic detergents (Verheijen et al., 1988). When 

cells were suspended in mild lysis buffer (50 mM Tris-HCl pH 8.0, 150 mM NaCl, 

0.02% sodium azide, 1% NP-40, 100 ug/ml PMSF, 1 ug/ml aprotinin), a significant 

amount of signal resided in the lysis resistant insoluble pellet (data not shown).  

Many transcription factors have been identified as insoluble nuclear matrix 

proteins (described in Section 3.8.2) (Mika and Rost, 2005). To assess solubility of 

BCL11A proteins, we carried out sub-cellular fractionations of several human B cell lines 

(Daudi, Raji, and Ramos) that have detectable levels of endogenous BCL11A expression. 

As shown in Figure 10, BCL11A-XL partitioned almost exclusively within the nuclear 

matrix fraction (lanes 4, 8, and 12) (Liu et al., 2006).  

Thus, BCL11A-XL is another example of a nuclear matrix protein involved in 

transcription (Verheijen et al., 1988). Unlike nuclear localization signals, there is no 

consensus nuclear matrix targeting signal (NMTS). The relationship between nuclear 

matrix localization and function of BCL11A is addressed below. 
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Figure 10. BCL11A-XL partitions predominantly within the nuclear matrix. 

 

 Daudi, Raji, and Ramos cells were fractionated into cytoplasm (C), nucleoplasm 

(NP), chromatin (CH), and nuclear matrix (NM). Equivalent volume of each sub-cellular 

fraction was loaded and resolved on SDS-PAGE gels. Endogenous BCL11A-XL was 

detected with BCL11A polyclonal antibodies. BCL11A-XL apears predominantly in the 

insoluble nuclear matrix fractions (lane 4, 8, and 12). 
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3.6. The N-terminal Domains of BCL11A is Responsible for Repression 
Activity and for Paraspeckle Localization  

As summarized in Section 3.1, the N-terminal 12 amino acids of BCL11A are 

virtually identical in several non-paralogous transcriptional factors (Figure 6). To 

determine whether the N-terminus of BCL11A-XL is also involved in transcription 

activity, the first 80 amino acids were deleted and the truncated protein was fused to 

GFP. In transient transfection assays, repression of RAG1-luciferase activity was 

abolished (Figure 11, lane 5). In addition, the distinct nuclear paraspeckle pattern of XL 

was significantly diminished to diffuse nuclear (Figure 12A, GFP-XLdelN80), while not 

affecting nuclear matrix targeting (Figure 12B, lane 8).   

Lin and others (2004) observed that the N-terminal K5 of FOG2 was critical for 

repression activity. Thus, a GFP-BCL11A-XL-K5N mutant was constructed by site 

directed mutagenesis. As predicted, this point mutation abolished repression of the 

RAG1P-Luciferase reporter (Figure 11, lanes 7 and 8) but did not affect paraspeckle 

formation (Figure 12A, GFP-XL-K5N).  

These results indicate that the first 80 amino acids of BCL11A-XL contain its 

transcriptional repression domain and paraspeckle targeting sequence. These two 

functions can be distinguished by mutation of a highly conserved residue (K5) within the 

N-terminus.  
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Figure 11. The N-terminus of BCL11A functions as a transcriptional repression domain. 

 

Wild type (WT),  or a N-terminal (80 amino acid) deletion mutant (Del80) or an 

N-terminal point mutant (K5N) of BCL11A-XL (30, 40, or 60 ng as indicated) was co-

transfected with 1ug of RAG1-luciferase (R1P-Luc) and 5ng of Renilla luciferase into 

293T cells. Forty hr after transfection, cells were harvested and luciferase activities were 

measured. The deletion of the first 80 amino-acids (lanes 4 and 5) or site directed 

mutagenesis of K5 of BCL11A-XL significantly reduced transcriptional repression 

relative to WT BCL11A-XL (lanes 1-3).  
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Figure 12. The paraspeckle and nuclear matrix targeting motifs of BCL11A. 

 

A. GFP-BCL11A fusions of wild type (GFP-XL), N-terminal deletion (GFP-

XLdelN80) or point mutant (GFP-XLK5N) were transiently expressed in 293T cells. 

Live cells were imaged under an inverted fluorescence microscope. Deletion of the first 

80 amino-acids from BCL11A-XL resulted in loss of distinct nuclear paraspeckles 

(middle panel) while the K5N mutant (left panel) retained distinct paraspeckle pattern 

(dots, right). 

  

B. Nuclear matrix partitioning of BCL11A-XL was not affected by truncation of 

its N-terminal 80 amino-acids. Upper, anti-BCL11A immunoblotting; lower, anti-Lamin 

B immunoblotting. 
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3.7. The Nuclear Localization Signal of BCL11A-XL is Sufficient for 
Predominant Nuclear Localization of GFP 

Point mutation and a fluorescence microscopy demonstrated that NLS (631-

PFSKRIK-637) is necessary for nuclear localization of BCL11A (Liu, 2002). To 

determine whether NLS3 is also sufficient to provide nuclear localization, we constructed 

NLS3-GFP fusions with wild type (GFP-WT-NLS) and mutant (GFP-MT-NLS) NLS3 

and analyzed their localization in transiently transfected NIH3T3 cells. GFP-MT-NLS 

localized to both the cytoplasm and the nucleus in a pattern indistinguishable from GFP 

alone (Figure 13). The GFP-WT-NLS fusion localized almost exclusively to the nucleus 

(Figure 13) in a diffuse pattern. 

 We conclude that NLS3 is necessary and sufficient for nuclear localization of 

BCL11A-XL. But as expected from the N-terminal truncation data (Figure 12), NLS3 

was insufficient for its sub-nuclear localization within paraspeckles.  
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Figure 13. The NLS of BCL11A-XL is sufficient to direct nuclear localization of GFP. 

 

Wild type (GFP-WTNLS: PFSKRIK) and mutated (GFP-MTNLS; underlined 

amino acids mutated; PFSARIA) nuclear localization sequences of BCL11A-XL were 

fused to GFP, and the fusions were transfected into NIH3T3 fibroblasts. Forty eight hr 

after transfection, cells were fixed in paraformaldehyde, stained with 4’,6-diamideino-2-

phenylindole (DAPI) and imaged under an inverted fluorescence microscope. Wild type 

localized predominantly within the nucleus (overlapping with DAPI staining; right 

panel), whereas the mutant GFP-fusion localized in a diffuse pattern (left panel) 

indistinguishable from GFP alone (not shown). 
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3.8. Discussion 

3.8.1. BCL11A-XL IS HIGHLY CONSERVED AND HIGHLY EXPRESSED  

BCL11A is highly conserved during evolution. In addition to the high 

similarity/identity of XL among chicken, frog, mouse and human XL isoform at the 

protein level (Figure 1), the DNA sequences, even at the third base of codons, are often 

conserved. For example, the mouse-human DNA identity within XL exons is 88% (data 

not shown). Three regions within the BCL11A transcription unit have been formally 

classified among the category of “super-conserved” sequences (Bejerano et al., 2004).  

Thus, it seemed reasonable that the XL isoform was the most highly expressed 

isoform in humans (Liu et al., 2006), but puzzling that XL was not reported to be 

expressed in mouse B cells (Avram et al., 2002; Nakamura et al., 2000).  On re-

examining the Northern blot data of Nakamura et al. (2000), it is apparent that these 

investigators mis-assigned the abundant 5.8 kb species as BCL11A-L-an isoform hardly 

detectable in human B cells (Liu et al., 2006). This was unfortunate because all  previous 

functional studies in mice were carried out with the L isoform (Avram et al., 2000; 

Avram et al., 2002; Liu et al., 2003; Nakamura et al., 2000). BCL11A-L lacks 3 of the 5 

C2-H2 zinc fingers and likely binds DNA in a different manner than XL (Figure 5). 

BCL11A has been strongly implicated in B-CLL and other B cell malignancies  

(Alizadeh et al., 2000; Satterwhite et al., 2001; Su et al., 2002). In B-CLL patient 

peripheral blood B cells, follicular lymphomas, and mantle lymphomas, XL is the most 

highly expressed isoform (Liu et al., 2006; Satterwhite et al., 2001). We have considered 

these findings in focusing our studies (Chapters 4 and 5) on BCL11A-XL.  
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3.8.2. BCL11A STABILITY AND UBIQUITINATION, AND PROTEASOME    

Protein ubiquitination is involved in a wide array of cellular processes, including 

cell-cycle control, signal transduction, transcriptional regulation, DNA repair, receptor 

down-regulation, antigen presentation, and apoptosis (Schwartz and Ciechanover, 1999). 

Here, we have shown conclusively that ubiquitin-mediated protein degradation is 

involved in the regulation of BCL11A. All BCL11A isoforms appear to be ubiquitinated, 

and their stability is greatly increased by proteasome inhibitor treatment. Many 

transcription factors controlling cell growth are unstable proteins which are degraded 

through the ubiquitin-mediated proteasome pathway. Many unstable proteins such as p53, 

Myc, Rel, Fos, and E2F-1 have transcriptional activation domains overlapping with 

degradation signal sequences (Salghetti et al., 2000). As initial attempts to define 

ubiquitination target sites, we mutated all the first 10 lysine sites in the repression 

domain. None of them led to large difference in the sensitivity to proteasome inhibitors 

(data not shown). Additional mutagenesis efforts will be required to identify the motifs 

which are responsible for the instability of BCL11A proteins. Because a BCL11A-S 

isoform also showed ubiquitination/proteasome mediated instability, one would predict 

that these would reside within the exons shared by S, L, and XL (Figure 5) (Figure 8). 

BCL6 expression is regulated by antigen receptor-mediated phosphorylation and 

polyubiquitination during B cell development in germinal centers (Niu et al., 1998).  

BCL11A-XL expression was also down-regulated during BCR stimulation. Transient 

transfection experiments in 293T cells showed an increased stability of BCL11A with 

proteasome inhibitor treatment. However, BCL11A stability in Ramos cells was 

decreased by proteasome inhibitor treatment. We suggest that in B cells, the stability of 

BCL11A may also be regulated by proteasome-uncoupled caspases, because BCR 

stimulation of Ramos cells with anti- IgM antibodies is also known to induce apoptosis 
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(Sakata et al., 1995). Ligation of CD40 was shown to be able to rescue antigen receptor 

stimulated apoptosis (An and Knox, 1996). Co-culturing BCR-stimulated B cells with 

anti-CD40 antibodies or with caspase inhibitors will allow additional insights into how 

the stability of BCL11A is regulated during B cell activation 

It will also be instructive to determine whether BCL11A has functional PEST 

sequences. Potential PEST motifs are scattered throughout the XL sequence, but their 

contribution will require additional mutagenesis. PESTs are known to be involved in 

proteasome independent regulation of numerous ubiquitinated proteins (Salghetti et al., 

2000). 
 
 

3.8.3. MULTPLE FUNCTIONS OF THE CONS ERVED N-TERMINUS OF BCL11A 

Deletion and point mutation analysis enabled us to define two apparently non-

overlapping functions within the N-terminus shared among all BCL11A isoforms. The 

first 12 amino-acids were identified as a repression domain. This was predicted from the 

analysis of FOG2, a transcriptional repressor, which otherwise shares no domains with 

BCL11 (Lin et al., 2004). 

The paraspeckle is a subnuclear body, previously defined by its clustering around 

speckles and by 3 RRM proteins (PSP1, PSP2, and Nono/p54/nrb) contained within. 

Partitioning of these proteins between paraspeckles and nucleoli depends on active pol II 

transcription (Fox et al., 2002). BCL11A-XL and its interacting partner, BCL6, are the 

only transcription factors shown to localize within paraspeckles (Liu et al., 2006). Very 

likely, the physical interaction of XL with nonO/p54nrb (Liu et al., 2006) is responsible 

for localizing the XL-BCL6 complex.  However, the significance of this localization is 

not clear. 
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We found that sequences within the N-terminal 80 residues of XL are required for 

paraspeckle targeting. Disruption of sub-nuclear targeting can often affect transcriptional 

activity.  An example of this is the loss of transcriptional repression by  SATB1 when its 

nuclear matrix targeting is abolished (Seo et al., 2005). Thus, we anticipated that a point 

mutation (K/N5) that eliminated XL repression might eliminate paraspeckle localization 

and/or nuclear matrix association.  This was not the case. While neither function was 

perturbed, the observation that these functions can be segregated at the primary sequence 

level provides a means for defining the relationship between subcellular localization and 

functions of BCL11A by further mutagenesis. 
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CHAPTER 4. IDENTIFICATION AND ANALYSIS OF BCL11A 
TARGET GENES 

 

4.1. Introduction 

The BCL11A gene was identified from patients diagnosed with aggressive B cell 

chronic lymphocytic leukemia (CLL) with the following translocation t(2;14)(p13;q32.3) 

(Satterwhite et al., 2001). Dysregulation of this gene may play a crucial role in 

tumorigenesis of these cases and in other B cell neoplasias where BCL11A is over-

expressed.  

 BCL11A is also critical to early stages of B cell development (Liu et al., 2003). 

In BCL11A knock-out mice, few B cell progenitors (B220+IgM-) were found in fetal liver 

or embryonic bone marrow.  RT-PCR analysis of cells from mutant fetal livers showed no 

expression of the genes involved in early B cell development such as Ebf1, Pax5, Il7r, 

CD19, Rag1 and Vpreb2(Liu et al., 2003). 

Avram and her colleagues showed that BCL11A and BCL11B have DNA-binding 

activity (Avram et al., 2002). Another group showed that the highly conserved N-

terminal 12 amino acids (Figure 6) of the transcription factors such as FOG, Sal, Spalt, 

and BCL11A, have transcriptional repression activity (Lin et al., 2004). However, no 

bonafide biological targets were identified. 

Even though BCL11A is suggested to be involved in the tumorigenesis of mature 

B cells and the development of early B cells, its role in these processes is still unknown. 

To have a better understanding of BCL11A functions, we sought to identify target genes 

that are deregulated by BCL11A-XL over-expression in pre-B and mature B cell lines 
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using DNA microarray analyses. We validated deregulation of 14 genes which we 

considered to be of significant immunologic interest.  Among these were RAG1 and 

RAG2. Further characterization of RAG regulation by BCL11A-XL and its consequences 

on V(D)J recombination are presented in Chapter 5.  

 

 

4.2. Stable Over-Expression of BCL11A-XL in Human B Cell Lines 

Three B cell lines were transduced with pXY-puro (mock control) or with the 

same virus containing an N-terminally, Flag-tagged, full- length BCL11A cDNA. The 

acute lymphoblastic leukemia pre-B cell lines (Nalm6 and SMS-SB) and the Burkitt’s 

lymphoma mature B cell line (Raji) were infected as described in Chapter 2. Over-

expression levels of BCL11A-XL were determined by western blotting. We used an anti-

Flag mAb to detect exogenous XL and an anti-BCL11A-XL C-terminal polyclonal 

antibody (BL1797) to detect total BCL11A-XL protein levels. 

As shown in Figure 14, each of these B cell lines over-expressed BCL11A-XL 

after an initial selection with puromycin for 5-6 days. Over-expression was also 

confirmed by RT-PCR (data not shown). However, prolonged cell culture of transduced 

Nalm6 and Raji, which express low levels of endogenous XL, resulted in reduction of 

total BCL11A-XL expression, even under stringent puromycin selection (data not 

shown). On the other hand, SMS-SB cells, which have no endogenous BCL11A-XL 

expression, were quite stable with regard to exogenous BCL11A-XL expression.   

Therefore, to collect mRNA for microarray analysis, Nalm6 and Raji cells were 

harvested 1 week after transduction and SMS-SB cells were harvested 4 weeks after 

transduction (when total BCL11A-XL over-expression was at its peak).   
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Figure 14.  Stable B cell lines over-expressing BCL11A-XL. 

 

pXY-IRES-puro Nalm6 and SMS-SB (SB), pre-B cell lines, and Raji, a mature B 

cell line, were transduced with empty retrovirus (pXY-IRES-puro; abbreviated as V) or 

with a full length, Flag-tagged BCL11A-XL-containing retrovirus (pXY-BCL11A-IRES-

puro; abbreviated as XL). Transduced cells were selected in the presence of puromycin 

(Sigma) at 0.5-1 ug/ml concentration for 5 days. Cells were further cultured for the 

indicated periods (1 week for Nalm6 and Raji cells and 4 weeks for SMS-SB cells), and 

cell lysates were prepared for western blotting. Anti-Flag mAb (Sigma) identifies 

exogenous Flag-BCL11A-XL and polyclonal anti-BCL11A (XLc pAb, Bethyl) identifies 

both endogenous and exogenous BCL11A-XL expression. ß-tubulin was used as a 

loading control. 
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4.3. Putative BCL11A Target Genes Obtained from DNA Microarray 
Analysis 

RNA samples were isolated from these transduced cells and converted into cDNA 

for DNA microarray analysis. These studies, performed in collaboration with Dr. Iyer’s 

lab (Section 2.11 and http://microarray.icmb.utexas.edu/ ), utilized chips in which the total 

human genome (about 50,000 genes) is represented as full length or partial length 

cDNAs. Based on microarray duplicates of each B cell line, about 1100 gene-spots turned 

out to be valid array spots after normalization. The SMS-SB microarays showed up-

regulation of about 40% of the ~1100 genes and down-regulation of the other 60%. 

Microarray analyses of Nalm6 and Raji showed up-regulation of ~60% of genes and 

down-regulation of ~40% of genes. Those genes that showed at least a 1.8-fold difference 

in expression levels between BCL11A-XL transduced cells (XL) and pXY-puro 

transduced cells and were considered most relevant to B cell biology are shown in Table 

1. RT-PCR results performed on the same mRNA were generally consistent with the 

microarray data (Figure 15 and data not shown). 

A number of membrane-bound molecules were deregulated by BCL11A-XL 

over-expression. CD9, CD53, and CD82 belong to the tetraspanin family that is involved 

in cell aggregation, migration, signal transduction and cell survival (Lagaudriere-Gesbert 

et al., 1997a; Lagaudriere-Gesbert et al., 1997b; Ono et al., 1999). BCL11A-XL activated 

CD9 in Nalm6. CD53 and CD82 were induced by BCL11A-XL in Raji cells. CD38, a 45-

kDa transmembrane glycoprotein, was down-regulated in Nalm6, SMS-SB, and Raji cells 

by BCL11A-XL over-expression. Stimulation of CD38 was shown to induce cell 

proliferation in mature B cells and apoptosis in precursor B cells (Silvennoinen, 1996). 

CD99 known to be involved in T cell death, (Pettersen et al., 2001), was up-regulated by 
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BCL11A-XL over-expression in Nalm6 and Raji cells. B7 (CD80), a co-stimulatory 

factor, which  induces T cell proliferation and the secretion of interleukin 2 (Gimmi et al., 

1991) was down-regulated in Raji cells by BCL11A-XL. LTA and TNF, which are shown 

to be involved in inflammation, autoimmunity, and the development of follicular 

dendritic cells and peripheral lymphoid tissues such as spleen, Peyer’s patch, and 

peripheral lymph nodes (Kuprash et al., 2002), were up-regulated by BCL11A-XL in Raji 

cells.   

Among the list of transcription factors potentially deregulated by BCL11A-XL 

over-expression is Foxp1. Foxp1 is required for the transition of pro-B to pre-B cells, 

potentially by affecting V(D)J recombination through the Erag enhancer binding (Hu et 

al., 2006). Foxp1 was up-regulated in Nalm6 and SMS-SB cells while it was down-

regulated in Raji cells by BCL11A-XL over-expression. Activating transcription factor 5 

(ATF5), involved in differentiation and cell survival of neuron cells (Angelastro et al., 

2006; Angelastro et al., 2003) was down-regulated only in SMS-SB cells by BCL11A-

XL.  

As further addressed in Chapter 5, BCL11A-XL appears to regulate several genes 

involved in V(D)J recombination (Table 1). VpreB and ?5 are the surrogate light chain 

components of pre-B cell receptor (BCR) (Zhang et al., 2004).  VpreB and ?5 were down-

regulated in SMS-SB cells and up-regulated in Nalm6 cells by BCL11A-XL over-

expression. RAG1 and TdT genes were also implicated from previous “Lymphochip” data 

of Liu (2002). The Lymphochip is an array employing oligonucleotides complementary 

to 3’ UTRs of genes involved in the immune system and preferentially expressed in 

lymphoid cells (Liu, 2002; Shaffer et al., 2000). RAG1 was up-regulated in Nalm6 and 

Raji but was down-regulated in SMS-SB cells.  
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RAG2 expression did not appear to be altered on Lymphochips, and its expression 

levels were too low to be assessed in the cDNA microarrays (data not shown). Given that 

the implications of RAG1 and Foxp1 findings and that RAG1 and RAG2 genes are 

coordinately regulated by the Erag enhancer (Schlissel, 2003) (Figure 16), we checked 

RAG2 expression levels by RT-PCR (Figure 15B). As anticipitated, RAG2 was also 

activated by BCL11A-XL in Nalm6 cells. However, there was little difference in TdT 

expression between the control and BCL11A-XL transduced cells (data not shown).  

To analyze RAG expression levels semi-quantitatively, we carried out RT-PCR 

with serial dilutions of cDNA samples from Nalm6 cells. Up-regulation of RAG1 and 

RAG2 by BCL11A-XL in Nalm6 was more obvious in these serial RT-PCR assays 

(Figure 15B).  
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Table 1. A list of putative BCL11A-XL target genes from microarray assays. 

 

Microarray assays were carried out multiple times using cDNA generated from 

pXY-puro or pXY-BCL11A-XL transduced Nalm6 and SB pre-B cells or from Raji 

mature B cells. Of the potential 1100 target genes, whose transcription levels were 

deregulated by BCL11A-XL at least 1.8 fold, 14 (shown) below were selected for 

validation and/or further analysis. TdT and RAG1 were initially identified in a 

lymphochip screen (Liu, 2002).     

 
Gene Basic Functions 

CD9 Differentiation, aggregation and cancer 
CD38 Calcium signaling, apoptosis and ADP-ribosyl cyclase 
CD53 Sinal transcuction and cell growth  
CD82 TCR/CD3 pathway and tumor suppressor 
CD99 T cell adhesion and cell death 
LTB Lymphotoxin beta (TNF alpha), inflammation, cell death 
TNF Tumor necrosis factor, inflammation, cell death, B cell development   
Foxp1 Transcriptional repressor and cell development, B cell development 
ATF5 Transcription factor and brain development 
B7 Co-stimulatory factor for T cell activation 
VpreB Immunoglobulin gene rearrangement and B cell differentiation 
 ?5 Immunoglobulin gene rearrangement and B cell differentiation 
TdT Terminal deoxynucleotidyltransferase 
RAG1 DNA recombination and cell differentiation 
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Figure 15.  Validation of selected targets identified in microarrays (table 1) by semi-
quantitative RT-PCR. 

 

A. Total RNA was isolated from Nalm6, SMS-SB, and Raji B cells transduced 

with pXY-puro (V) or pXY-BCL11A-XL (XL) retroviruses for reverse transcription and 

RT-PCR analysis. GAPDH was used as internal control. RAG results are highlighted by 

the box. The primers used for RT-PCR are in Table 2. 

 

B. Template dilution confirms that RT-PCR for RAG1 and RAG2 is semi-

quantitative. The same Nalm6 cDNA samples from Figure 15A were employed. Lanes 1 

and 4, a 1:9 dilution (1/9); lanes 2 and 5, a 1:3 dilution (1/3); and lanes 3 and 6, undiluted 

samples (1). GAPDH was used as a loading control. Up-regulation of RAG1 and RAG2 

by BCL11A-XL over-expression can be observed most clearly using a 1:3 dilution (lanes 

2 and 5).  
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Table 2. Primers used in RT-PCR experiments of Figure 15. 

 

Gene Oligonucleotide Sequences (5’ to 3’) 

CD9-F TGCATCTGTATCCAGCGCCA 

CD9-R CTCAGGGATGTAAGCTGACT 

CD38-F GGAGAAAGGACTGCAGCAAC 

CD38-R CATGTATCACCCAGGCCTCT 

CD53-F CAAGAATATCACGGCATGG 

CD53-R CCACAGAACTACTGCAGATCATAG 

CD82-F CAGGATGCCTGGGACTACGT 

CD82-R GACCTCAGGGCGATTCATGA 

CD99-F GATGGTGGTTTCGATTTATC 

CD99-R CTCTTCCCCTTCTTTCCTGTGGCTGCC 

LTA-F CATGACACCACCTGAACGTC 

LTA-R GACCACCTGGGAGTAGACGA 

TNF-F AGCCCATGTTGTAGCAAACC 

TNF-R GGAAGACCCCTCCCAGATAG 

Foxp1-F GTCGGGCGGCAGCAACCACTTACTAGAGTG 

Foxp1-R GAAGAGCTGGTTGTTTGTCATTCCTCTTGGGA 

ATF5-F ACCGCAAGCAAAAGAAGAGA 

ATF5-R GGCCTTGTAAACCTCGATGA 
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B7-F AACTCAGGACACTGAGCTTG 

B7-R TTGCTCTCTCAAATTCCAGG 

VpreB-F TTTGTCTACTGCACAGGTTGTGG 

VpreB-R TGCAGTGGGTTCCATTTCTTCC 

Nalmda5-F ACGCATGTGTTTGGCAGC 

Nalmda5-R GGCGTCAGGCTCAGGTA 

RAG1-F ATCCCAATGCTTCCAAAGAG 

RAG1-R CCATTGAATCTTGGCTTTCC 

RAG2-F CACTCTAGGGATTCAAAGATC 

RAG2-R GATGTGTAGCTTTGGAAATCT 

GAPDH-F CATGTTCGTCATGGGTGTGAACCA 

GAPDH-R GTTGCTGTAGCCAAATTCGTTGTC 
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4.4. Discussion 

Using cDNA microarrays and RT-PCR, we identified a number of putative target 

genes of BCL11A-XL. Unlike the model promoter studies in which BCL11A showed 

transcriptional repression activity (Avram et al., 2000; Liu et al., 2006), transcriptional 

up-regulation was noted for several genes (CD9, CD53, CD82, CD89, LTA, and TNF). 

Others were down-regulated (ATF5 and B7) by BCL11A-XL over-expression. Another 

group including Foxp1, VpreB, ?5, RAG1, and RAG2 showed both up-regulated and 

down-regulated depending on cell lines. Speculations on how BCL11A-XL regulation 

might correlate the functions of the proteins encoded by some of these genes follows.    
 
 

4.4.1. REGULATION OF TETRASPANIN PROTEINS BY BCL11A  

We observed that tetraspanin family proteins, CD9, CD53, and CD82 were up-

regulated by BCL11A. Tetraspanin proteins interact with each other and their associated 

proteins laterally within membrane microdomains (referred to as “tetraspanin-enriched 

microdomains”) which are different from lipid rafts (Levy and Shoham, 2005). CD9, 

CD53, and CD82 were shown to link integrins to protein kinase C (PKC). It has been 

suggested that this tetraspanin- integrin-PKC linkage may be involved in cell migration 

(Levy and Shoham, 2005; Zhang et al., 2001). CD82 was shown to associate with HLA 

class I molecules (Lagaudriere-Gesbert et al., 1997b). 

There are numerous examples of how cell migration and cell adhesion participate 

in normal and neoplastic B cell growth and differentiation (Hemler, 2003; Levy and 

Shoham, 2005). However, beyond the PKC linkage, nothing is known about tetraspanin-
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mediated signal transduction in lymphocytes. We noticed that the adhesion properties of 

several of the BCL11A-XL transduced cell lines were altered (data not shown).  

Transduced cells clumped together in larger aggregates. We have initiated a collaboration 

with Dr. Wolfgang Fry (UT Austin, Department of Biomedical Engineering) to determine 

whether XL-induced tetraspanin over-expression affects lymphocyte rolling, a property 

critical for their homing within both infected and uninfected tissues. 

 

 

4.4.2. REGULATION OF TUMOR NECROSIS FACTORS BY BCL11A  

Cytokines are essential signals in a variety of immunological, inflammatory and 

infectious diseases (Ware, 2005). Lymphocyte communications with surrounding cells 

are often mediated by tumor necrosis factor (TNF) and lymphotoxin (LT)-related 

cytokines. Lymphotoxin-a (LTA) and TNF are members of the TNF superfamily 

involved in cell proliferation, death, and differentiation. LTA-deficient mice showed 

defects in the development of  lymph nodes, Peyer’s patches, natural killer cells as well 

as dendritic cell migration (Ware, 2005). It was shown that LTA was highly expressed in 

B-CLL and can enhance B cell proliferation in an autocrine manner (Kulmburg et al., 

1998).  

BCL11A-XL interacts physically with BCL6, a “master regulator” of germinal 

center formation.  TNF family members were also altered by BCL6 overexpression 

(Shaffer et al., 2000).  Perhaps loss BCL11A plays a redundant role in GC and lymph 

node formation, or BCL11A-BCL6 interaction is required to modulate a subset of TNF 

family promoters.  This would predict that BCL11A deficiency at the mature B cell stage 

would lead to similar impairment in peripheral lymphoid centers.  Conventional BCL11A 

knockout leads to perinatal lethality and pre-proB cell block in fetal livers, and thus, 
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precludes the study of the GC-associated events.  Recently we have generated conditional 

knockout mice that will allow us to test this hypothesis.  

These data also predict that up-regulation of LTA and TNF by BCL11A-XL may 

contribute to the development of B-CLL.  Future microarray sampling of t(2;14)-bearing 

neoplasias will be required to establish this correlation.  

 

 

4.4.3. REGULATION OF CO-STIMULATORY FACTOR,  B7, BY BCL11A 

Engagement of the T cell receptor complex (TCR) by antigen is not sufficient to 

stimulate T cell mediated immune response. B cell surface antigen B7 is a co-stimulatory 

factor that interacts with the T cell restricted CD28 antigen and induces T cell 

proliferation and IL2 secretion (Ge et al., 2003; Gimmi et al., 1991). The B7 molecule is 

a member of immunoglobulin superfamily and its expression is restricted to activated B 

cells and interferon ?-treated monocytes which can act as antigen presenting cells. B-CLL 

cells are known to lack significant expression of B7 co-stimulatory factor and to be 

inefficient at stimulating T cells (Van den Hove et al., 1997; Ward and Kaufman, 2007).  

Over-expression of BCL11A-XL led to down-regulation of B7. This suggests that 

BCL11A-deficient B cells may be hyper-stimulatory in their ability to present antigen. 

The availability of inducible Cre-expressing lines that allow temporal and lineage-

specific elimination of BCL11A will allow us to test this idea in our conditional mice. 

Following in vivo immunization, antigen-specific BCL11A-deficient B cells can be 

employed in in vitro proliferation and cytokine release assays with Th2 T cell lines 

specific for epitopes within the same antigen. We further speculate that down-regulation 

of B7 expression by BCL11A may enhance B-CLL development by increasing T cell 

unresponsiveness towards B-CLL cells. 
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4.4.4. REGULATION OF SURROGATE LIGHT CHAIN GENES BY BCL11A 

A successful VDJH rearrangement in pro-B cells gives rise to large pre-B cells. 

The large pre-B cells then undergo several cycles of cell division before exiting the cell 

cycle. The Ig light chain rearrangement occurs in the small resting pre-B cells. The large 

pre-B cells express pre-B cell receptor (pre-BCR) complexes and are composed of a 

transmembrane Ig heavy chain, Iga, Igß, and a surrogate light chain (SLC) of VpreB and 

?5. The heterodimer of Iga and Igß is non-covalently associated with a pre-BCR and 

transmits pre-BCR signaling through phosphorylation of immunoreceptor tyrosine-based 

activation motifs (ITAMs) (Monroe, 2006). It was reported that the pre-BCR positive 

large pre-B cells show down-regulation of RAG1 and RAG2 during their rapid cell 

division, while the non-cycling pre-BCR-negative small pre-B cells up-regulate both 

RAGs and down-regulate the SLC genes (Wang et al., 2002).  

Our observation that RAG and SLC genes were each up-regulated by BCL11A-

XL in Nalm6 pre-B cells is inconsistent with the negative correlation of pre-B cell 

receptor and RAG expression during normal pre-B lineage progression. This might be 

expected if the XL-transduced Nalm6 cells are in transition between the large and small 

pre-B; ie, the SLC genes are not fully inactivated and the RAG genes are beginning to be 

expressed. Or, because Nalm6 pre-B cells are transformed, they differ in this respect from 

normal pre-B cells. Data presented in Chapter 5 suggest that the latter interpretation is 

correct. As with small pre-B cells, Nalm6 cells express high levels of TdT, but they are 

abnormal in that they secrete detectable levels of µ chain (Smith, 1981). RAG genes were 

down-regulated by BCL11A-XL in SMS-SB cell cells which were cultured for 4 weeks 

before mRNA preparation. We observed that RAG genes were also down-regulated in 
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long term cultured Nalm6 and Raji cells (data not shown) while they were up-regulated in 

short term (1 week) cultured cells. This data suggest that long term over-expression of 

BCL11A-XL might cause expression waves of some of its target genes.     
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CHAPTER 5. BCL11A-XL ACTIVATES V(D)J REARRANGEMENT 
BY INDUCING THE EXPRESSION OF RECOMBINATION 

ACTIVATING GENES, RAG1 AND RAG2 

 
 

5.1. Introduction 

The RAG1 and RAG2 genes are located adjacent to each other and convergently 

transcribed. DNA-binding elements for several transcription factors have been identified 

in both RAG promoters and in the common Erag enhancers (Schlissel, 2003) (Figure 16). 

Factors that bind and transactivate the RAG1 promoter (E2A, Ikaros, and NF-Y), and the 

RAG2 promoter (LEF-1, Pax5 and c-Myb) have been described (Schlissel, 2003). E2A 

and Foxp1 bind to the Erag enhancer and regulate RAG expression and recombination in 

B cells (Hsu et al., 2003; Hu et al., 2006). The proximal enhancer (Ep) and distal 

enhancer (Ed) were identified by mapping DNase I hypersensitive sites(Wei et al., 2005). 

Ikaros and C/EBP are known as binding factors for the Ep enhancer, but no binding 

factors have been identified for the Ed enhancer to date (Wei et al., 2005). Specific 

interactions between regulatory elements and transacting factors provide lineage specific 

regulation of RAG expression to B and T cells (Schlissel, 2003).  

 

 

5.2. Confirmation of Targets by Inducible, shRNA Knock-Down of 
BCL11A 

Up-regulation of RAG1 and RAG2 was observed following BCL11A-XL over-

expression in B cell lines (Figures 14 and 15C). To confirm this, we designed several 

small hairpin RNAs (shRNA) predicted to target XL specifically or all BCL11A 
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isoforms. Both standard transfection and unregulated retroviral transductions were 

unsuccessful (data not shown). Thus, we employed a doxycycline- inducible retroviral 

vector encoding exon 2 shRNA (common to all BCL11A isoforms) with a Burkitt’s 

lymphoma (mature) B cell line, BJAB, containing an integrated bacterial tetracycline 

repressor (Ngo et al., 2006).      

After establishing a stable shRNA expressing line, we performed a number of 

experiments to best optimize time and concentration of drug delivery (data not shown). 

Induction of shRNA expression with doxycyline for 24-48 hr resulted in a robust and  

specific (as compared to GAPDH and ß-tubulin) knock-down of BCL11A expression as 

assessed by RT-PCR (Figure 17A) and western blot (Figure 17B) assays. Under these 

conditions RAG1 and RAG2 levels were significantly reduced (Figure 17C).  
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Figure 16.  Schematic of the RAG genomic locus and transcriptional factors shown to 
bind to promoters and enhancers. 

 

Arrows denotes the divergent transcriptional initiation sites for RAG1 and RAG2. 

The figure is drawn approximately to scale, with the common Erag enhancer located  ~22  

kb 5’ to RAG2 (Schlissel, 2003). 
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Figure 17. Silencing of BCL11A by inducible shRNA knock-down leads to down-
regulation of RAG1 and RAG2. 

 

A. Doxycycline (Dox) inducible, stable expression of a small hairpin RNA 

(shRNA) down-regulated BCL11A expression (lanes 3-5) but did not affect GAPDH 

transcript levels. The vector, pRSMX-GFP, and Tet-repressor-transduced BJAB cells 

(BJAB-TetR) were described by Ngo et al. (Ngo et al., 2006). The shRNA sequences 

correspond to exon 2 of all BCL11A and the primers used are described in Materials and 

Methods.  The virus was packaged, transduced as described in previous legends, and 

infected cells were selected in the presence of 1ug/ml of puromycin. To induce knock-

down of BCL11A, doxycycline (Dox) was added in the culture at the indicated 

concentrations and time periods. The knock-down was confirmed by RT-PCR for the XL 

isoform of BCL11A.  

  

B. Anti-BCL11A Western blotting confirms BCL11A knock-down by Dox-

inducible shRNA. BCL11A-XL protein levels were specifically decreased (lanes 2-4) 

while ß-tubulin protein levels were relatively constant.   

 

C. RAG1 and RAG2 transcript levels are significantly reduced by inducible 

knockdown of BCL11A-XL. RAG transcript levels directly correlated with BCL11A 

levels, while GAPDH was not affected by the induction of BCL11A-shRNA. 
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5.3. BCL11A-XL is Recruited to the RAG1 Promoter and the Erag 
Enhancer in vivo 

Chromatin immunoprecipitation (ChIP) is a very useful approach to identify and 

quantitate interactions between proteins and specific regions of DNA. ChIP can be used 

to detect recruitment of transcription factors to regulatory elements such as promoters and 

enhancers. We used this tool to test whether BCL11A-XL binds to RAG promoters or the 

Erag enhancer in vivo. Prior to performing ChIP-PCR assays, the usefulness of the 

available BCL11A antibodies for immunoprecipitation of cross-linked chromatin-protein 

complexes was established.  The polyclonal BCL11A antibody (BL1797), but not the 

monoclonal antibody (mAb123), could be optimized (Figure 17A). 

 Specific sets of primers were designed to span the upstream 1kb region of each 

promoter and for Erag (Hsu et al., 2003). ChIP-PCR demonstrated that RAG1 promoter 

and Erag sequences, but not RAG2 promoter sequences, were enriched in pull-downs 

with anti-BCL11A but not with control antibody (Figure 17B). This indicated that 

BCL11A-XL is recruited either directly or indirectly to the proximal promoter of RAG1 

and to the RAG enhancer in vivo.   
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Figure 18. BCL11A is recruited to the RAG1 promoter and to the Erag enhancer in vivo. 

 

 A. Chromatin immunoprecipitation (ChIP) optimization of anti-BCL11A 

antibodies. Nalm6 pre-B cells were cross- linked with 1% formaldehyde and were lysed in 

SDS-lysis buffer. Lysates were immunoprecipitated using a control monoclonal antibody, 

a BCL11A monoclonal antibody (mAB123), a control polyclonal antibody, or a BCL11A 

polyclonal antibody.  Samples were resolved on SDS-PAGE gels and western blots were 

carried out with the BCL11A polyclonal antibody. The BCL11A polyclonal antibody was 

successful and was used in ChIP-PCR experiments below. Immunoglobulin heavy chains  

(Hc) of the precipitating antibody were also detected by anti-rabbit secondary antibodies. 

 

B. ChIP-PCR identifies the RAG1 promoter and Erag enhancer as targets for 

BCL11A-XL binding. Immunoprecipitated chromatin samples above, were reverse cross-

linked, purified and analyzed by PCR assays using primers that amplify the proximal 

promoters and the enhancer. Specific PCR products (PCR) were observed in samples 

targeting the RAG1 promoter and the Erag enhancer (lanes 3 and 9) but not in samples 

targeting the RAG2 promoter (lane 6). PCRs from 1% input were used as positive 

controls (lanes 1, 4, and 7). Purified rabbit IgG antibodies did not immunoprecipitate 

target DNA significantly (lanes 2, 5, and 8). Detailed procedures are described in 

Materials and Methods.    
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5.4. BCL11A-XL Binds to the RAG1 Promoter and the Erag Enhancer 
in vitro 

Electromobility shift assay (EMSA) detects protein:DNA interaction in vitro. We 

performed EMSAs to verify the ChIP results. When P32-labeled DNA fragments from the 

RAG1 promoter region were incubated with B cell nuclear extracts, several complexes 

were observed (Figure 19, A and B). The slowly migrating band (boxed in Figure 19) 

was specifically abolished by pre- or post- incubation with anti-BCL11A polyclonal or 

monoclonal antibodies, but not with control antibodies (Figure 19, A and B).  A similar 

sized protein:Erag DNA complex was specifically abolished (Figure 19C). Ablation of 

complexes as opposed to super-shifted complexes suggests that both anti-BCL11A 

antibodies interfere with DNA binding, leading to dissociation of BCL11A/DNA 

complexes.  No binding to RAG2 promoter probes was observed (data not shown). 

 These results are consistent with previous ChIP-PCR results and indicate that 

BCL11A-XL binds to the RAG1 promoter and Erag, but not to the RAG2 promoter, in 

vivo and in vitro. 
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Figure 19. BCL11A-XL binds to the RAG1 promoter and the Erag enhancer in vitro. 

 

The RAG1 promoter and Erag enhancer regions were PCR amplified for EMSA 

probes. Probes were labeled with 32-P and then incubated with nuclear extracts prepared 

from B cell lines (Nalm6, A; Raji, B) confirmed to express BCL11A-XL. The 

probe/nuclear extracts mixtures were further incubated with control antibodies (C1; 

mouse anti-Myc antibody or C2; rabbit IgG antibody) or with BCL11A antibodies (M; 

mAb123 or P; BCL11A polyclonal, BL1797) and then resolved on native 6% gels. 

BCL11A/DNA complexes are indicated by arrows and highlighted in boxes. The addition 

of BCL11A antibodies caused the ablation of the BCL11A/DNA complexes, while 

control antibodies caused no changes in gel shift complexes. 
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5.5. BCL11A-XL Represses the RAG1 Promoter in Non-B cells 

The expression and knock-down experiments of Figures 15 and 16 indicated that 

both RAG1 and RAG2 are activated by BCL11A-XL over-expression. Thus, it was 

informative to determine whether BCL11A-XL was sufficient to transactivate RAG genes 

following transient transfection into fibroblast (NIH3T3) or epithelial (293T) cell lines. 

BCL11A-XL was co-transfected with previously characterized (Hsu et al., 2003) RAG 

promoter-driven luciferase constructs (R1P-Luc and R2P-Luc) or with RAG promoter + 

Erag-driven constructs (EragR1P-Luc and EragR2P-Luc). Relative luciferase activities 

were set at 100% with samples from empty CMV10 vector-transfected cells 

 Unexpected from the B cell expression data, transfection of increasing amounts 

of BCL11A-XL in 293T cells significantly repressed the RAG1 (R1P-Luciferase) 

promoter (Figure 20A). Consistent with the EMSA and ChIP data, no effect was 

observed on the RAG2 (R1P-Luc) promoter (Figure 20B). Even though interaction 

between BCL11A-XL and the Erag enhancer was observed by gel shift and ChIP-PCR 

assays, EragR2P-Luc activities were not affected and EragR1P-Luc activities were 

similar to those of R1P-Luc by BCL11A-XL transient co-transfection of 293T cells (data 

not shown). Identical results were observed for all these constructs in NIH3T3 fibroblasts 

(data not shown).  

BCL11A and its paralogue, BCL11B, were shown to interact with the nucleosome 

remodeling and histone deacetylase (NuRD) complex (Cismasiu et al., 2005). One of the 

NuRD components, metastasis tumor antigen (MTA) 1 was shown to enhance BCL11B 

repression activity synergistically, while MTA2 did not (Cismasiu et al., 2005). Thus, we 

tested whether there is synergism between BCL11A-XL and MTA proteins on RAG1 
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promoter (R1P-Luc) activity. As shown in Figure 20C, significant augmentation of 

BCL11A-XL repression activity was observed with MTA1, but not with MTA2, co-

transfection. Neither of the other self-associating BCL11A isoforms (BCL11A-L or 

BCL11A-S) nor other previously characterized BCL11A interacting proteins (BCL6, 

HIC1 or Foxp1)  had significant effect on RAG1 promoter repression when they were co-

transfected with BCL11A-XL (data not shown).   

We conclude that BCL11A-XL in non-B cells, under the transient transfection 

conditions employed, represses transcription of the same target gene which it activates in 

B cell lines.  One interpretation of this result is that stable integration of the target gene is 

required for activation by the nuclear matrix-associated XL isoform. Alternatively, 

BCL11A may require, in addition to MTA1, other B cell-specific factors to activate 

RAG1.  
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Figure 20. BCL11A-XL represses RAG1-driven transcription reporter activity in non-B 
cells. 

 

A. BCL11A-XL represses RAG1-luciferase in 293T epithelial cells. Cells were 

transiently transfected with 1ug of RAG1 promoter luciferase (R1P-Luc), 5ng of Renilla 

luciferase (Renilla–Luc) and the indicated amounts of BCL11A-XL. The total amount of 

DNA was adjusted with empty CMV10 plasmid DNA (lane 1). Cells were harvested 40-

48 hr after transfection and analyzed for luciferase activity. The efficiency of transfection 

was normalized to Renilla luciferase activity. Luciferase activity was set at 100% in cells 

transfected with empty vector alone for reading. Error bars indicate standard deviation of 

3-5 independent experiments. The bottom panel shows results of western blots carried out 

to confirm BCL11A-XL expression levels with the increasing amounts of DNA. GAPDH 

blots were used as loading controls. Increasing expression levels of BCL11A-XL result in 

increased repression activity on the RAG1 promoter (lanes 2-4). 

  

B. BCL11A does not repress the RAG2 promoter. Cells were transiently 

transfected with R2P-luciferase, Renilla luciferase, and CMV10-BCL11A-XL. Assays 

were normalized as in (A) and ectopic BCL11A-XL protein levels were confirmed by 

western blotting (data not shown). 

  

C.  Co-expression of MTA1 enhances RAG1 repression by BCL11A.  Reduction 

of RAG1-driven luciferase activity with co-transfected MTA1 (lane 3) was significantly 

greater than that of BCL11A-XL alone (lane 2). Co-expression of MTA2 did not affect 

repression activity of BCL11A on the R1P-luciferase reporter. 
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5.6. BCL11A-XL Transduction into a V(D)J-Competent Pre-B Cell 
Line, A70-INV   

Transformation of murine fetal liver or bone marrow B cell progenitors by the 

Abelson (Abl) murine leukemia virus arrests these cells at the early (large) pre-B cell 

stage (low to negligible  RAG1 and RAG2 expression). The A70-INV Abl-transformed B 

cell line retains these properties, but it has been engineered for inducible V(D)J 

recombination analysis by integration of a recombination substrate, pMX-INV, which on 

inversion activates expression of GFP (Muljo and Schlissel, 2003). Induction of 

recombination is achieved by treatment of A70-INV cells by the Abl kinase inhibitor, 

STI571 (Muljo and Schlissel, 2003).  It has been suggested that STI571 causes 

differentiation of early pre-B cells to a late pre-B cell- like state through regulation of 

BLNK, Syk, and other genes (Muljo and Schlissel, 2003).  RAG1 and RAG2 expression is 

induced, followed by V-J recombination of the ? light chain locus, and accordingly in 

A70-INV cells, inversion of the integrated pMX-INV (Bredemeyer et al., 2006).  

 We transduced A70-INV cells with empty virus (pXY-puro) or with pXY-

BCL11A-XL. Puromycin-selected bulk (uncloned) cells were screened by RT-PCR 

(Figure 25) and western blot (Figure 22) assays to assess BCL11A-XL over-expression. 

As shown in Figure 21, BCL11A protein is barely detectable in untransduced or mock-

transduced A70-INV cells, whereas transduced cells express significant levels. RT-PCR 

analysis shows that BCL11A-XL over-expression induces RAG1 and RAG2 transcription 

in the A70-INV cells (Figure 25). 
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Figure 21. Strategy for the detection of the RSS-mediated inversion of an ectopic V(D)J 
recombination substrate and for the detection of endogenous V?-J? 
rearrangement. 

 

A. pMX-INV encodes anti-sense-oriented green fluorescence protein (GFP) 

cDNA flanked by V(D)J recombination signal sequences (RSS). The Abelson (Abl) 

kinase-transformed pre-B cell line, A70, was  transduced with the pMX-INV retrovirus to 

produce A70-INV (Bredemeyer et al., 2006). The Abl kinase inhibitor, STI571, can 

induce rapid RAG gene expression and the recombination of the recombination target 

genes. Human CD4 (hCD4) cDNA was placed downstream of internal ribosome entry 

site (IRES) (upstream of the anti-sense GFP cDNA) to allow screening of pMX-INV 

positive cells by anti-hCD4 FACS. After RSS-mediated recombination, GFP will be 

inverted to sense orientation, allowing GFP expression. Arrows indicate primers used to 

amplify rearranged pMX-INV substrates. Without rearrangement, both primers will be in 

the same orientation so that no PCR products are generated. Only after successful 

rearrangement of pMX-INV will PCR products be detected.   

  

B. Schematic of PCR amplification to detect V?-J? (Ramsden, 1994). Only after 

successful rearrangement, will the V? and J? segments get close enough to allow PCR 

amplification under typical reaction conditions. Primer locations are indicated by arrows. 

The Vcon (forward) and J?2-1 (reverse) primers can detect VJ?1 and VJ?2 

rearrangements and the J?2-2 primer can be used to make a probe for Southern blot 

assays later. The Vcon (forward) and J?5 (reverse) primers will be used to detect VJ?4 

and VJ?5 rearrangements.       
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Figure 22.  Stable over-expression of BCL11A-XL in A70-INV pre-B cells. 

 

A70-INV cells were transduced with pXY-IRES-puro (V) or pXY- BCL11A-XL 

(XL) and selected with 1ug/ml of puromycin for 6 days. Western blot assays show over-

expression of Flag-BCL11A-XL in A70-INV-BCL11A-XL cells (lane 3) as compared to 

in the parental A70-INV (lane 1) and A70-INV-pXY-puro (mock) transduced cells (lane 

2). Anti-Flag immunoblotting detected ectopic BCL11A-XL and anti-BCL11A 

immunoblotting detected total expression of BCL11A-XL. ß-tubulin bands were used as 

loading controls. 
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5.7. BCL11A-XL Activates an Integrated V(D)J Recombination 
Substrate, pMX-INV, Independently from the Abelson Kinase 
Inhibitor,  STI571  

The strategy used to detect the inversion of pMX-INV and V-J recombination of 

the endogenous ? light chain locus is described in Figure 21 (Bredemeyer et al., 2006). 

Mock viral transduction produced 0.7% and 18.1% GFP-positive cells with or without 

STI571 treatment, respectively (Figures 22, A and B). This level of “leaky” GFP 

expression is similar to previously published data (Bredemeyer et al., 2006). BCL11A-

XL transduced cells produced 7% and 34.5% GFP-positive cells with or without STI571 

treatment, respectively (Figures 22, C and D).   

This ~10-fold increase in recombination substrate inversion by BCL11A-XL in 

the absence of STI571 treatment suggests that BCL11A acts independently. Consistent 

with this interpretation, the level of substrate inversion by XL in the presence of STI571 

was consistently additive. In addition, unlike the G1/S arrest induced by STI571 

treatment, XL transduction was accompanied by no alteration in cell cycling (as 

measured by DNA content of propidium iodide stained cultures by FACS; data not 

shown).   
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Figure 23. Flow cytometry detection of enhanced V(D)J recombination substrate 
inversion in A70-INV pre-B cells over-expressing BCL11A-XL or treated with 
the Abelson kinase inhibitor, STI571. 

 

Cells were transduced as described in previous legends and then were incubated 

in the absence (STI -) or in the presence (STI +) of STI571 at 3uM for 72 hours. 

Inversion of pMX-INV resulted in GFP expression, which could be assessed by FACS. 

The x axis indicates GFP green fluorescence intensity, and the y axis indicates cell 

numbers. Percentages of GFP-positive cells are given in each plot.  
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5.8. Confirmation of pMX-INV Rearrangement by Genomic PCR  

To verify that GFP expression resulted from inversion of pMX-INV, we carried 

out PCR assays on genomic DNA using primers complementary to hCD4 (a gene 

encoding the CD4 surface marker, which can be used for selection) and inverted GFP. 

pMX-INV inversion allows successful PCR product formation by providing the reverse 

primer with the correct orientation of GFP cDNA (Figure 21). 

 As shown in Figure 24A, a significant increase in the intensities of inverted GFP-

hCD4 PCR products was observed in STI571-treated or BCL11A-XL-transduced cells as 

compared to STI571-untreated or mock virus transduced cells, respectively (Figure 24A). 

These results confirm that the induction of GFP represents authentic RSS-mediated 

V(D)J inversion of the integrated recombination substrate.   
 
 

5.9. Induction of Endogenous VJ? Rearrangement in BCL11A-XL 
Transduced Pre-B Cells 

Although integrated as a single copy, the pMX-INV reporter locus may not 

display the equivalent heterochromatin structure as the endogenous light chain loci do in 

pre-B cells.   To assess whether the endogenous locus can also be induced to rearrange by 

BCL11A-XL over-expression, genomic DNA was analyzed by PCR using a “universal” 

V? forward primer and J?2-1 and J?5-1 reverse primers (indicated in Figure 21). 

Efficient PCR can occur only if VJ? rearrangement deletes the long intervening sequence 

between V? and J? elements. Details of this strategy were described previously 

(Ramsden, 1994). Assessment of VJ?2 rearrangement required Southern blotting of the 
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PCR products because there were significant amounts of non-specific PCR products 

(Figure 24B).  

As shown in Figure 24B, increased levels of J? rearrangement (lanes 2, 4, 6, and 

8) were observed in both STI571-treated and BCL11A-XL-transduced cells as compared 

to control cells (lanes 1, 3, 5, and 7). Since more VJ?4 rearrangement was observed in 

BCL11A-XL-transduced cells than in STI571 treated cells (lanes 6 and 8), this result 

suggests that there are differences in mechanism and outcome of VJ? rearrangement 

when induced by STI571 or by BCL11A-XL.   
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Figure 24. Genomic confirmation of BCL11A-XL induction of recombination substrate 
and endogenous Ig? light chain rearrangement. 

 

A. PCR amplification of RSS-mediated inversion of pMX-INV substrates. 

Genomic DNA was isolated from the indicated cell lines for PCR following the strategy 

described in Figure 21. STI571 treatment (3µM, 48hr) or transduction with BCL11A-XL 

retrovirus induced inversion of GFP, allowing PCR amplification (lane 2 and 4). PCR 

amplification of the endogenous RAG1 gene (which is unaffected by recombination 

signal sequence-mediated recombination) used as a DNA loading control. The following 

primers were used for PCR; pA; 5’-cacaacatcgaggacgg-3’, hCD4R; 5’-

gcaccactttctttccctga-3’. The primers for RAG1 are described in Chapter 2.10. 

 

B. Detection of endogenous Ig? light chain rearrangement induced by STI571 or 

BCL11A-XL. A degenerate V? consensus primer (Vcon) and J?2-1 or J?5 reverse 

primers were used to amplify rearrangements from genomic DNA. When J?2-1 was used 

as a reverse primer, 190 bp (VJ2) and 540 bp (VJ1) PCR products are expected. 

Amplified PCR products (arrows) were resolved on agarose gels and then subjected to 

Southern blot analysis using the J?2-2 probe (left panel). PCRs using Vcon and J?5 

primers produced 270 bp (VJ5) and 600 bp (VJ4) rearrangement products (arrows, right 

panel). The 100 bp DNA ladder is depicted. The following primers were used for PCR 

and blotting; Vcon forward; 5’-ccgaattcgsttcagtggcagtggrtcwggtac-3’, ?2-1 reverse; 

5’ggttagacttagtgaacaagagttgagaa-3’, ?2-2 probe; 5’-caagagttgagaagactacttacgtttt-3’, and 

?5 reverse; 5’-tgccacgtcaactgataatgagccctctc-3’. The amplification conditions were 30 

cycles of 30 s at 94 °C, 90 s at 60 °C, and 60 s at 72 °C. 
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5.10. BCL11A-XL Over-Expression Regulates RAG1, RAG2, and 
Additional Genes Implicated in V(D)J Recombination.  

The results of the functional experiments reported above could be ascribed 

exclusively to up-regulation of RAG genes, since ectopic introduction of RAG1 and 

RAG2 in non-B cells is sufficient for V(D)J recombination substrate rearrangement  

(Angelin-Duclos and Calame, 1998; Romanow et al., 2000).  As expected, the extremely 

low levels of RAG1 and RAG2 transcripts in A70-INV pre-B cells were significantly 

induced by STI571 treatment or by BCL11A-XL transduction (Figure 25).  

In addition to RAGs, several key genes (Schlissel, 2003) known to encode 

proteins involved in V(D)J recombination were modulated. Both IRF-4 and IRF-8 were 

up-regulated by BCL11A-XL over-expression (Figure 25). Up-regulation of these 

transcription factors has been reported to be essential for Ig light chain gene 

recombination (Lu et al., 2003; Ma et al., 2006).   

 STI571 treatment of Abl pre-B cell lines was shown to induce expression of IRF-

4, Spi-B, and Ig? germline transcription (Muljo and Schlissel, 2003). This was observed 

in STI57I treatment of A70-INV cells (g?, Figure 25). Surprisingly, Ig? germline 

transcription, a consequence of chromatin accessibility of the J? locus, was down-

regulated in BCL11A-XL-transduced cells (Figure 25).   

 As we observed in other B cell lines (Figure 15A), the Erag-binding factor and 

pro-B-pre-B regulator, Foxp1, was induced slightly in A70-INV cells by BCL11A-XL 

over-expression (Figure 25). However, expression of pre-B cell receptor encoding genes,  

?5 and VpreB, which were unexpectedly up-regulated in Nalm6 pre-B cells were not 

modulated in A70-INV cells. 
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Figure 25. BCL11A-XL over-expression or STI571 treatment induce RAG1, RAG2, and 
other V(D)J recombination-associated genes. 

 

STI571 treatment at 3uM for 20 hr induced up-regulation of RAG1, RAG2, and 

Ig? germline transcripts in A70-INV cells (lane 2) relative to untreated cells (lane 1) 

Transduction of A70-INV with BCL11A-XL (alone) up-regulated RAG1, RAG2, IRF-4 

and IRF-8 (lane 4) relative to mock-transduced cells (lane 3). GAPDH was the loading 

control. The primers used for these RT-PCR amplifications are listed in Table 3. 
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Table 3. Primers used in RT-PCR analysis of Figure 25. 

 

RAG1-F CCAAGCTGCAGACATTCTAGCACTC 

RAG1-R CTGGATCCGGAAAATCCTGGCAATG 

RAG2-F CACATCCACAAGCAGGAAGTACAC 

RAG2-R GGTTCAGGGACATCTCCTACTAAG 

IRF4-F CCACGGACACACCTATGATG 

IRF4-R GGTCTGGAAACTCCTCACCA 

IRF8-F GGGCTGCCTAAGTTGTATG 

IRF8-B ACCACCCTGCTGTCAGGTAG 

Spi-B-F AGAGGACTTCACCAGCCAGA 

Spi-B-R TGAGTTTGCGTTTGACCTTG 

gVk-F CCACATGCCTTTCTTCAGGGACAAGTGGGA 

gVk-R GTTATGTCGTTCATACTCGTCCTTGGTCAAC 

Foxp1-F AAGGGGCAGTATGGACAGTG 

Foxp1-R CCCAGAGGTTCACTCCATGT 

BCL11A-3’E-F CCCAGAGTAGCAAGCTCACC 

BCL11A-BamH1-R CCCAGGATCCTATTCAGTTTTTATATCATTATTCAAC 
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5.11. Discussion 

Microarray and RT-PCR analyses provided us with several potential target genes 

of BCL11A-XL. In particular, the RAG genes were validated as BCL11A-XL targets 

using several approaches, including shRNA knock-down, ChIP, EMSA, and luciferase 

assays.  

To assess the functional consequence of RAG up-regulation, we employed an Abl 

transformed, V(D)J-competent pre-B cell line, A70-INV. Over-expression of BCL11A-

XL in A70-INV cells up-regulated RAG1, RAG2, IRF-4, and IRF-8, which led to the 

induction of V(D)J rearrangement of exogenous and endogenous targets. Further work 

will be required to identify the molecular mechanisms by which BCL11A modulates the 

transcription levels of these potential target genes and to assess the biological 

consequences of this regulation. Some of the issues we face and how we plan to address 

them are discussed below. 

 

  

5.11.1. REGULATION OF RECOMBINATION ACTIVATING GENES (RAG)S BY BCL11A 

Our data indicate that BCL11A-XL binds to RAG regulatory elements within the 

RAG1 promoter and the Erag enhancer to regulate RAG transcription. Ectopic expression 

of BCL11A-XL activated RAG1 and RAG2 in Nalm6 and Abl pre-B cells. However, 

BCL11A-XL repressed a luciferase reporter driven by the RAG1 promoter in non-B cells. 

In addition, XL repression of RAG1 or RAG2 promoter-driven luciferase reporter was not 

affected by Erag.  
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 How can we explain the difference outcomes in non-B transient transfections 

with the expression assays in B cells? One possible explanation for the contradictary data 

is that activity of the regulatory elements might require a specific chromatin structure in 

the genome. It was reported that Erag activity was far more potent in stable transfection 

assays than in transient transfection assays (Hsu et al., 2003). BCL11A might also require 

other B cell-specific transcription factors to activate the RAG promoter and the Erag 

enhancer properly. We have attempted to address these issues by carrying out luciferase 

assays in untransduced or BCL11A-XL transduced A70-INV pre-B cells. However, the 

poor transfection efficiency of this line has given us inconsistent results (data not shown). 

To further address this issue, we will carry out stable transfection in B cells employing 

RAG regulatory elements in their germline context with the open reading frames of RAG1 

and RAG2 replaced with GFP. 

  

 

5.11.2. BCL11A CONSENSUS DNA BINDING SITES  

Two putative DNA binding consensuses have been reported. One is a GC-rich 

sequence, 5’-GGCCGG-3’, which was identified for BCL11A-L by a random repeat 

oligomer binding and amplification approach (Avram et al., 2002). We identified a CCC-

(T/ A)-GC sequence as a putative consensus for BCL11A-XL using the same approach 

(Liu et al., 2006). Neither was confirmed for endogenous targets in vivo. Nor is it clear 

whether the differences in L and XL structure (Figure 5) underlie these differences. 

 Sequence alignments (data not shown) reveal several examples of consensus 

sequences within RAG1 promoter and the Erag enhancer that are conserved within mice 

and humans. We have begun to determine the precise BCL11A-binding sites. Employing 

duplexed oligonucleotides which span these regions as competitors in EMSAs, although 
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unsuccessful to date (data not shown), is a logical approach to continue. Neither the ChIP 

or EMSA results rule out the possibility that BCL11A does not bind DNA directly, but is 

recruited there in a complex. We have not succeeded in producing recombinant, full-

length XL in quantities required to test this possibility. Finally, it may be informative to 

use “ChIP on ChIP” assays (Ren et al., 2000) to construct genome-wide maps of the 

interaction between the BCL11A protein and DNA.  

 

 

5.11.3. REGULATION OF V(D)J RECOMBINATION BY BCL11A 

BCL11A-XL induced transcription of RAG1, RAG2, IRF-4 and IRF-8 in the Abl 

pre-B cells. In V(D)J recombination, there are at least two levels of control: RAG 

expression and chromatin accessibility (Schlissel and Stanhope-Baker, 1997). Up-

regulation of RAG genes can account for the rearrangement of an exogenous 

recombination target, pMX-INV, because RAG expression alone was shown to be 

sufficient to induce rearrangement of exogenous target genes with a strong promoter even 

in fibroblasts (Angelin-Duclos and Calame, 1998).  

Chromatin accessibility is required for the rearrangement of the endogenous Ig 

loci. V(D)J recombination and B cell development  are blocked in  IRF4 and IRF8 double 

knock-out mice at the pre-B cell stage (Lu et al., 2003). The results presented here, along 

with the phenotype of BCL11A knock-out mice, indicate that BCL11A acts upstream of 

both IRF-4 and IRF-8. Histone modifications were shown to be involved in the 

accessibility and activation of the light chain loci (Schlissel and Stanhope-Baker, 1997).  

Ectopic expression of IRF-4 in IRF-4,8-/- pre-B cells increased acetylation of  histone H3 

and H4, trimethylation of H3K4 (modifications typically associated with euchromatin) 

within the Ig? light chain enhancer, and ? germ line transcription (Ma et al., 2006). Even 
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though there was up-regulation of IRF-4 and IRF-8 in BCL11A-XL transduced A70-INV 

cells, germ line ? transcription was not affected. It has been reported that germ line 

transcription is not required for V(D)J recombination (Angelin-Duclos and Calame, 

1998). Therefore, we suggest that an open chromatin structure of ? loci in BCL11A-XL 

transduced A70 cells might be provided by other mechanisms, such as histone 

modifications rather than germ line transcription. It will be informative to study how 

histone modifications are affected in BCL11A-XL transduced A70 cells using anti-

histone chromatin immunoprecipitation.  
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