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The Chediak-Higashi Syndrome is a disorder affecting lysosome biogenesis. At 

the cellular level, the Chediak-Higashi syndrome is characterized by the presence of 

grossly enlarged lysosomes in every tissue. Impaired lysosomal function in CHS patients 

results in many physiological problems, including immunodeficiency, albinism and 

neurological problems. The Chediak-Higashi syndrome is caused by the loss of a 

BEACH protein of unknown function named Lyst. 

  In this work, I have studied the function of the Dictyostelium LvsB protein, the 

ortholog of mammalian Lyst and a protein that is also important for lysosomal function. 

Using a knock-in approach we tagged LvsB with GFP and expressed it from its single 

chromosomal locus. GFP-LvsB was observed on endocytic and phagocytic 

compartments. Specific analysis of the endocytic compartments labeled by LvsB showed 

that they represented late lysosomes and postlysosomes.  The analysis of LvsB-null cells 

revealed that loss of LvsB resulted in enlarged postlysosomes, in the abnormal 

localization of proton pumps on postlysosomes and their abnormal acidification.  This 
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work demonstrated that the abnormal postlysosomes in LvsB-null cells were produced by 

the inappropriate fusion of lysosomes with postlysosomal compartments.  

 Furthermore, this work provided the first evidence that LvsB is a functional 

antagonist of the GTPase Rab14 in vesicle fusion events.  In particular, we demonstrated 

that reduction of Rab14 activity suppressed the LvsB-null phenotype by reducing the 

enlarged post-lysosomes and the enhanced rate of heterotypic fusion. In contrast, 

expression of an active form of Rab14 enhanced the LvsB-null phenotype by causing an 

even more severe enlargement of endosome size.  

The results provided by this work support the model that LvsB and Lyst proteins 

act as negative regulators of fusion by limiting the heterotypic fusion of early with late 

compartments and antagonize Rab GTPases in membrane fusion. The LvsB localization 

studies and the functional assessment of the LvsB-null phenotype helped make unique 

contributions to the understanding of the molecular function of Lyst proteins.   
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Chapter 1: Introduction 

1.1 THE CHEDIAK-HIGASHI SY1DROME 

This dissertation focuses on the study of LvsB in the Dictyostelium discoideum 

model system. The main aim of this dissertation is to uniquely contribute to the 

understanding of a severe immune disorder, the Chediak-Higashi syndrome (CHS) that 

is currently not well understood and has no potential therapies available.  

The Chediak Higashi syndrome (CHS) is a hereditary disorder first described in 

1943 and is one disorder for which there has been little progress in understanding its 

etiology.  This disorder belongs to a group of diseases affecting lysosome biogenesis and 

secretion. The Chediak-Higashi syndrome (CHS) is a rare, autosomal recessive 

immunodeficiency disorder. This human disorder is characterized by severe 

immunologic defects, albinism, susceptibility to bacterial infections and abnormal 

platelet function. The diagnostic feature of CHS is the presence of enlarged intracellular 

vesicles. Affected vesicles include lysosomes, melanosomes, and platelet dense 

granules. This disorder is lethal, and patients die from recurrent bacterial infections or 

from a lymphoproliferative infiltrate known as the accelerated phase. Currently, the only 

treatment available is bone marrow transplantation (Introne et al., 1999; Ward et al., 

2000). However, patients that receive bone marrow transplantation show a progressive 

neuropathy (Misra et al., 1991), indicating that the pathology of this disorder is complex.  

 A homologous disorder with variability in clinical severity has been found in 

other mammalian species. These include mice (Lutzner et al., 1967), rats (Nishimura et 

al., 1989), cows (Padgett et al., 1967), cats (Kramer et al., 1977), mink (Padgett et al., 

1967) and a reported case in killer whale (Orca) (Ridgway, 1979). Currently, the mouse 

is the best-studied animal model. 
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A major breakthrough in the study of this immune disorder is the identification 

of the gene affected in CHS patients. Cloning of the CHS locus was greatly facilitated by 

the finding that Beige mutant mice have the same genetic defect (Barbosa et al., 1996; 

Nagle et al., 1996a). The protein encoded by the CHS/beige genes is named Lyst for 

(lysosomal-trafficking-regulator). Unfortunately, even though the CHS/beige gene was 

identified more than ten years ago, the function of the Lyst protein is still not known.  In 

part, progress is made difficult because the CHS/beige gene is enormous and encodes a 

protein of approximately 3800 amino acids (Perou et al., 1997). The mRNA transcript 

from the  CHS/beige genes is reported to be 12.0kb and  is expressed in all cell types at 

very low levels (Perou et al., 1996). In the majority of cases studied, to date, the 

CHS/Beige mutations result in the generation of a premature stop codon and the 

production of a truncated protein (Certain et al., 2000).  

Many cell types are affected by mutations in the CHS/beige genes, resulting in 

symptoms such as albinism, bleeding and immunodeficiency. Melanocytes from patients 

with CHS show abnormally large melanosomes, containing different varying of melanin 

(Windhorst et al., 1968) that are clustered abnormally in the juxtanuclear area. It is 

unclear whether there is a defect in transfer of melanosomes to the periphery of the 

melanocyte or transfer of melanosomes to keratinocytes. Additionally, platelets from 

CHS patients show irregular dense bodies that result in prolonged bleeding times 

(Buchanan and Handin, 1976; Rendu et al., 1983). CHS/beige mutations also cause 

severe defects in cells of the immune system. Activated cytotoxic T lymphocytes 

(CTLs) are involved in destroying infected target cells. CHS/Beige mutant cells show 

decreased CTLs activity due to a defect in lytic granule exocytosis ((Baetz et al., 1995). 

Additionally, CHS/ Beige mutant B-cells show delayed loading and peptide presentation 

(Faigle et al., 1998). Work in immune cells also indicates that CHS/Beige mutant cells 
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abnormally accumulate several lysosomal markers in early endosomes and at the plasma 

membrane, suggesting that LYST functions in trafficking (Faigle et al., 1998). 

Interestingly, a recent study showed that while CHS giant lysosomes, contain low levels 

of lysosomal enzymes,  they contain increased levels of ER resident proteins when 

compared to control lysosomes (Zhang et al., 2007). The precise trafficking event 

affected is not well understood. 

Biochemical analysis of CHS/beige mutants also indicated several biochemical 

alterations in these cells. Beige mutant cells exhibit abnormally decreased PKC activity. 

E-64-d (a thiol proteinase inhibitor that protects PKC from proteolysis) and phorbol 

myristic acid (PMA) were shown to reduce lysosome size in CHS/Beige cells by 

reversing the decrease in PKC activity (Ito et al., 1989; Sato et al., 1990; Tanabe et al., 

2000; Cui et al., 2001). Additionally, it was reported that the levels of sphingomyelinase 

activity and the degradative product ceramide are significantly increased in the 

CHS/Beige cells (Tanabe et al., 2000). Exogenously added ceramide induces the 

formation of abnormally large lysosomes (Li et al., 1999). Furthermore, ceramide has 

been shown to affect PKC levels (Liu, 1996). These data suggest a correlation between 

the activities of PKC, sphingomyelinase and CHS/Beige proteins, but this connection is 

currently unclear. The complexity of the CHS/Beige phenotype is also indicated by 

alterations in nuclear phosphoinositides specifically PtdIns(4,5)P2. CHS/Beige mutants 

exhibit  a dramatic reduction in nuclear PtdIns(4,5)P2 (Ward et al., 2003). The role of 

Lyst in the regulation of nuclear lipids is not currently known. 
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1.2 BEACH PROTEI1S 

1.2.1 Structural organization of BEACH proteins 

Very little is currently known about the function of Lyst, no significant binding 

partners have been identified and no molecular mechanism of its function has been 

proposed. An exciting development in the study of Lyst is the identification of 

homologous proteins in different model systems. Many proteins that share similar 

structural organization as Lyst, have been identified in multiple organisms and are 

grouped together in the BEACH family (Beige and Chediak-Higashi) (Wang et al., 

2002). All BEACH proteins share a similar structural organization. At the C-terminus 

they have multiple WD motifs. The sequence similarity among the WD motifs of 

BEACH proteins is low (~20%), but are all predicted to fold into a beta-propeller 

structure that creates a protein-protein interaction domain. The most highly conserved 

domain among these proteins is the BEACH domain (~50-60% identity) that is found 

adjacent to the WD motifs.  The function of the BEACH domain is currently unclear.  

Given the high degree of similarity of BEACH domains across species it is thought that 

this domain may play an important functional role. Unfortunately, the crystal structure 

of the BEACH domain did not provide any insights into the role of this domain (Jogl et 

al., 2002; De Lozanne, 2003).The crystal structure revealed that the BEACH domain has 

a unique structure, never seen in any other protein. The majority of the conserved amino 

acids are found in the interior of the molecule. Next to the BEACH domain is a novel 

domain that folds into a structure similar to that of PH domains, although it does not 

share sequence similarities to PH domains from other proteins. The remaining portion at 

the N-terminus of BEACH proteins is unique to each BEACH protein (Jogl et al., 2002; 

Wang et al., 2002; De Lozanne, 2003).   
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Figure 1.1: General structural organization of BEACH proteins 

This diagram shows the general structural organization of BEACH proteins. At the C-

terminus they contain multiple WD motifs (the number of the WD motifs varies between 

four-six). The most highly conserved domain among BEACH proteins is the BEACH 

domain, found adjacent to the WD motifs. Next to the BEACH domain is a novel PH-

like domain. The N-terminus of BEACH proteins is unique to each BEACH protein 

(Wang et al., 2002; De Lozanne, 2003). 

 

1.2.2 Classification of BEACH proteins 

The phylogenetic analysis of BEACH proteins using the conserved BEACH and 

WD domains, indicates that they can be clustered into five distinct classes (Figure 1.2) 

(De Lozanne, 2003). This analysis showed that both budding and fission yeast have only 

one BEACH protein each, named BPH1 (Beige Protein Homologue 1) (De Lozanne, 

2003; Shiflett et al., 2004) while Dictyostelium discoideum contains six BEACH 

proteins named LvsA-LvsF. A. thaliana contains five uncharacterized BEACH proteins. 

D. Melanogaster contains five BEACH proteins and H. sapiens has six. Some of these 

classes have distinct roles in the cell and proteins in each class share additional regions 

of similarity. This suggests that each class of BEACH proteins may have a distinct 

cellular role. Only few of the BEACH proteins have a known function and most of them 

have only been identified as predicted proteins in genomic sequences. Currently the 

molecular mechanism of action of any of these proteins is not known.   
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Figure 1.2:  Phylogenetic tree of the BEACH family of proteins 

The BEACH and WD domains are used for the alignment of the phylogenetic tree. (De 

Lozanne, 2003). The different classes of BEACH proteins are indicated by the brackets 

on the right. (Figure adapted from De Lozanne 2003).  

 

  The different classes are represented by the most well characterized proteins 

from each class. The most well characterized proteins in Class I is the human CHS, 

murine Beige and the Dictyostelium discoideum LvsB. These proteins function in 

lysosome biogenesis by controlling lysosome fusion events.  A more detailed discussion 

of CHS and LvsB proteins is found later in this section.  The single BEACH protein 

found in yeast Bph1 was recently characterized in S. cerevisiae (Shiflett et al., 2004).  

BPH1 gene is not essential and the encoded Bph1 protein was shown to fractionate as a 

soluble cytosolic protein and peripherally bound to membranes. Unfortunately, the 

disruption or overexpression of BPH1 did not affect vacuole morphology, the equivalent 

of lysosomes in yeast. However, Bph1 is shown to be involved in protein sorting of 

several vacuolar hydrolases and cell wall formation (Shiflett et al., 2004).   
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  The best characterized protein in Class II is Dictyostelium LvsA.  Recently the 

role of Drosophila Blue cheese (Bchs) was also reported (Gerald et al., 2001; Khodosh 

et al., 2006). LvsA was the first BEACH protein identified in Dictyostelium during a 

screen for identification of cytokinesis mutants (Kwak et al., 1999). LvsA mutants fail at 

a late stage of cytokinesis specifically at the ingression of the cleavage furrow. 

Interestingly, LvsA has a separate function in the regulation of an osmoregulatory 

organelle, the contractile vacuole (Heuser et al., 1993). Dictyostelium cells can 

withstand a hyposmotic environment by disposing excess water through the contractile 

vacuole system. LvsA is the first BEACH protein found to localize on a membranous 

compartment. Due to the large size of the protein, a knock-in approach was employed 

that generated a GFP fusion protein. LvsA associates with the membrane of the 

contractile vacuole when the vacuole is at its maximum diameter and stays on until the 

vacuole has contracted completely (Gerald et al., 2002) . The mechanism of regulation 

of the expulsion of the contractile vacuole by LvsA is still not well understood.    

A different study on LvsA revealed the requirement of different portions of this 

BEACH protein for its function (Wu et al., 2004). A series of N-terminal and C-terminal 

deletion mutants revealed that deletion of only the small WD at the extreme C-terminus, 

results in complete loss of LvsA function. Deletion of only 688 amino acids from the N-

terminus yields a protein that is partially functional. Further deletions of the N-terminus, 

result in completely inactive protein (Wu et al., 2004). Further studies are required to 

determine the exact portions required for the localization and function of LvsA and other 

BEACH proteins. 

The mammalian protein ALFY and the Drosophila protein Blue Cheese (Bchs) 

are two recently described proteins that belong to Class II. These two proteins are 

characterized by an additional FYVE domain at their C-termini. Defects associated with 
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mammalian ALFY have not been described but Bchs mutants exhibit progressing neural 

degeneration (Simonsen et al., 2004; Khodosh et al., 2006; Simonsen et al., 2007).  

Bchs mutants exhibit premature adult death and contain protein inclusions throughout 

the CNS. These inclusions contain insoluble ubiquinated protein aggregates. 

Additionally Bchs mutants show extensive neuronal apoptosis. This study suggests that 

Bchs may be involved in trafficking of proteins but the exact molecular mechanism in 

unclear (Finley et al., 2003).  

In a later study, Bchs was found highly expressed in the nervous system, where it 

is associated with vesicles and concentrated in synaptic regions(Khodosh et al., 2006). 

More importantly Bchs was shown to antagonize the GTPase Rab11 in synapse 

morphogenesis and multiple other developmental events. In fact, Bchs colocalizes with 

Rab11 at the neuromuscular junction. At the neuromuscular junction, Rab11 is known to 

be important for synaptic growth and morphogenesis, as reductions in Rab11 function 

increases bouton density and branching.  The bchs, rab11 double mutant partially 

suppresses the defects in synapse morphogenesis. In fact, this genetic interaction is 

evident also in multiple developmental contexts. Reduction or loss of bchs, restores 

viability and normal bristle development in animals with reduced rab11 function. Also, 

reductions in rab11 exacerbate the defects in eye development caused by the 

overexpression of bchs (Khodosh et al., 2006). Rab11 is an important regulator of 

membrane traffic and the genetic interaction between these two genes suggest that Bchs 

protein functions similarly. It can be speculated that Bchs negatively regulates Rab11 

activity. This study provides the first evidence of a genetic interaction that may help 

discover the mechanism of action of Bchs as well as other BEACH proteins. 

  BEACH proteins of Class III are represented by the mammalian FAN (factor 

associated with n-Smase), and its unique ortholog in Dictyostelium, LvsF. Interestingly 
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there seems to be no orthologs in Drosophila or C. elegans, although it is present in the 

genome databases from bees, beetles and paramecium.  FAN and the other members of 

the Class III BEACH proteins are the smallest of all BEACH proteins (~ 100 kDa) and 

consist mainly of the PH, BEACH and WD domains. FAN was initially discovered as a 

binding partner of tumor necrosis factor receptor (TNF-R55). This receptor mediates a 

variety of cellular effects ranging from proliferation, to apoptosis, as a result of engaging 

to different signaling cascades. Upon ligand stimulation, the WD domain of FAN 

interacts with the cytoplasmic tail of the receptor and subsequently activates the Neutral 

Spingomyelinase (n-Smase) at the plasma membrane. This activation of n-Smase results 

in hydrolysis of sphingomyelin and production of ceramide which initiates various 

signaling cascades (Adam-Klages et al., 1996). Biochemical analysis of FAN also 

revealed that the PH and BEACH domains of this protein show extensive interactions 

and that both domains are important for the signaling ability of FAN (Jogl et al., 2002).  

In a separate study, FAN was shown to be crucial for the formation of filopodia 

and actin cytoskeleton reorganization induced by tumor necrosis factor (TNF). FAN was 

shown to localize on the plasma membrane, where it colocalizes with TNF-R55 and is 

important for activation of the Rho GTPase Cdc42.  Interestingly, the PH domain of 

FAN is required to target the protein to the membrane where it binds specifically to 

phosphatidylinositol-4,5-bisphosphate (Haubert et al., 2007). Perhaps FAN regulates 

signaling pathways by modulating membrane lipid composition but the exact 

mechanism remains to be investigated.  This last study provides new information about 

the ability of PH domains in BEACH proteins to bind lipids and contradicts previous 

observations that suggested that the PH domain of both Neurobeachin and FAN do not 

bind to phospholipids (Jogl et al., 2002; Gebauer et al., 2004). 
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Class IV includes the mammalian Neurobeachin, the Drosophila AKAP550 and 

their related proteins. Neurobeachin is most prominently expressed in neural tissues. EM 

studies localized neurobeachin to the cytoplasmic surfaces of membranous 

compartments near the trans Golgi stacks (Wang et al., 2000c). This localization 

suggests that neurobeachin may modulate post-Golgi membrane targeting and vesicle 

trafficking. In addition to the conserved continuous PH-BEACH-WD containing C-

terminus, neurobeachin contains a centrally located binding site for the regulatory 

subunit of protein kinase A (PKA). Neurobeachin may function as an adaptor protein for 

PKA. Different lines of evidence implicate PKA and their adaptor proteins in synaptic 

function. The presence of the PKA anchoring domain in neurobeachin, may play a role 

in targeting PKA to specific membranous compartments in neurons and the synapses 

(Colledge and Scott, 1999). In fact, neurobeachin (nbea) null mice have severe defects 

in neuromuscular synaptic transmission but the precise mechanism by which 

neurobeachin controls neurotransmitter release is unclear (Su et al., 2004). Drosophila 

AKAP550 also binds the regulatory subunit of PKA but the significance of this 

interaction needs further investigation (Han et al., 1997). 

A recent study characterized the neurobeachin homolog SEL-2 in C. elegans (de 

Souza et al., 2007). Sel-2 mutants exhibit compromised traffic in polarized epithelial 

cells. These mutants show aberrant basolateral protein accumulation that may result 

from problems in endocytic sorting (de Souza et al., 2007). The precise step regulated by 

Sel-2 is currently not understood. 

 Class V encompasses proteins that are only found in plants and Dictyostelium 

proteins (LvsC-LvsE). Up to date, no function of any of these proteins is discovered.  

The field of BEACH proteins is a new and exciting field that contains a 

multitude of questions to be addressed. Overall, it seems that BEACH proteins associate 
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with different types of membranous compartments. But is there a common mechanism 

of action to all these proteins?  Do they share common effectors? What is the 

significance of the conserved BEACH domain they share?  And why are their N-termini 

is so unique to each protein? The establishment of good model systems is imperative to 

the understanding of the molecular function of BEACH proteins but more importantly in 

the understanding of the Chediak-Higashi syndrome. 

 

1.2.3 Lysosomal Trafficking Regulator (LYST) 

  The founding member of the BEACH family of proteins and the best 

characterized protein that represents class I is the protein lysosomal trafficking  regulator 

(Lyst), encoded by the CHS/beige genes. Lyst consists of a similar C-terminal structural 

organization to other BEACH proteins. The amino terminus contains a large stretch of 

alpha helices termed ARM/HEAT repeats. ARM motifs are thought to mediate 

membrane association and HEAT repeats, such as the ones found in Huntington’s 

disease protein, are thought to mediate vesicle transport (Peifer et al., 1994; Andrade 

and Bork, 1995). The precise role of these motifs in Lyst is currently unknown.    Lyst is 

a very large protein of approximately 430 kDa that is expressed at very low levels in 

cells. The large size of Lyst makes the biochemical characterization very difficult (Perou 

et al., 1996).  Murine Lyst  is expressed in most mouse tissues, with the highest level of 

expression in brain, spleen and lung (Perou et al., 1997). Immunofluorescence 

microscopy studies failed to reveal the localization of murine Lyst. However 

fractionation experiments also indicated that this protein associates with different types 

of membranous compartments (Perou et al., 1997). As indicated above, impaired 

function of Lyst leads to enlargement of lysosome-related organelles. Two predominant 

models have been offered to explain the enlarged lysosomal phenotype presented by the 
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CHS/Beige mutant cells. The first model suggests that Lyst may regulate lysosomal 

fission (Perou et al., 1997)  This model is suggested by the observation that when Lyst is 

overexpressed using a YAC containing the beige gene,  lysosomes become much 

smaller compared to control cell lines. A second model suggests that Lyst regulates 

lysosome fusion. The second model is supported by evidence utilizing secretory 

lysosomes from cytotoxic T lymphocytes. This study showed that in CHS secretory 

lysosomes, while early maturation events such as the targeting of lysosomal and lytic 

enzymes, proceeds normally, late maturation events are impaired.  After early 

maturation, CHS  secretory lysosomes aggregate, fuse together, grow in size and 

decrease in numbers (Stinchcombe et al., 2000). Further studies are required to 

distinguish which model represents the Lyst function and to explore the molecular 

mechanism of how Lyst may regulate fission or fusion. To understand the molecular 

mechanism of Lyst function it will be crucial to identify binding partners. In a recent 

yeast two hybrid screen a  multitude of binding partners have been identified that 

includes many proteins of unknown function and some proteins involved in membrane 

fusion and vesicular transport. Unfortunately none of these interactions is further 

characterized (Tchernev et al., 2002).  

 The overexpression of different domains of Lyst cause a dominant negative 

effect on lysosomal size, suggesting that Lyst interacts with at least two binding partners  

(Ward et al., 2003). The smallest regions required to produce the dominant negative 

phenotype is a construct that contains 674 amino acids close to the N-terminus and a 

construct that includes part of the BEACH domain and the WD motifs (Ward et al., 

2003). 

The role of Lyst is mostly studied in relationship to lysosome biogenesis.  

However, the phenotypes and biochemical alterations exhibited by CHS/Beige mutant 
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cells suggest that Lyst may be involved in multiple cellular processes. Further studies 

are required to determine the precise cellular functions of Lyst and its potential 

interactors.    

 

1.2.4 LvsB in Dictyostelium discoideum 

 An exciting development in dissecting the function of Lyst and the 

understanding of the Chediak-Higashi syndrome is the identification of the Lyst 

ortholog, LvsB, in Dictyostelium discoideum (Wang et al., 2002). Interestingly, 

disruption of lvsB gene produces a phenotype similar to that presented by CHS/Beige 

mutant cells (Harris et al., 2002b).  LvsB mutant cells contain enlarged endosomal 

compartments that are acidic and show secretory defects (Cornillon et al., 2002; Harris 

et al., 2002b). In fact, the enlarged acidic compartments appear to form as a result of an 

increase in the rate of vesicle fusion (Harris et al., 2002b) . Therefore, LvsB is suggested 

to negatively regulate vesicle fusion, a model that seems to agree with one of the 

proposed models for Lyst function. The defects in the morphology of the endolysosomal 

compartments do not affect the rates of fluid phase endocytosis, exocytosis and particle 

phagocytosis. Also, LvsB mutant cells display normal growth and development (Harris 

et al., 2002b). A recent study proposed that LvsB regulates the biogenesis of secretory 

lysosomes. In fact, they observed that the number of secretory lysosomes (post-

lysosomes) is decreased and the maturation of lysosomes to post-lysosomes is defective 

(Charette and Cosson, 2007). However, this last model cannot account for the normal 

rates of fluid phase exocytosis and the enhanced secretion of lysosomal enzymes 

presented by the LvsB mutant cells in earlier studies. Further studies are required to 
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determine the precise function of LvsB and to account for the differences between 

different studies. This is the subject of this thesis. 

 

1.3 REGULATIO1 OF THE E1DOCYTIC PATHWAY BY RAB PROTEI1S 

Localization studies and the study of loss of function phenotypes suggest that 

BEACH proteins are found on specific membranous compartments and are regulators of 

membrane trafficking. Different studies suggest that mammalian Lyst and the 

Dictyostelium LvsB negatively regulate fusion. Alternatively, Lyst may regulate vesicle 

fission. Master regulators of membrane trafficking including fusion and fission events 

are the Rab proteins. It is possible that functional interactions exist between Rab and 

BEACH proteins.   

 

1.3.1 Role of Rab proteins and their effectors in membrane traffic  

It is crucial that each intracellular organelle maintains its characteristic structure, 

biochemical composition and function, which represents a big challenge for the 

organelles of endocytic and exocytic pathways, given the continuous flow of protein and 

membrane along these pathways. The exocytic pathway sorts newly synthesized proteins 

from the endoplasmic reticulum, through the Golgi apparatus to their final destination at 

the lysosome or the plasma membrane. Conversely, the endocytic pathway is required 

for the uptake of nutrients and the internalization of receptors. Master regulators of 

organelle identity are the Rab proteins that regulate four major steps in membrane 

traffic: vesicle formation, vesicle delivery, vesicle tethering and fusion of the vesicle 

membrane with that of the target compartment. These different tasks are carried out by a 

diverse collection of Rab effector molecules. 
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Rab proteins are small (20-29kDa), ubiquitously expressed and constitute the 

largest branch of the Ras GTPase superfamily (Chavrier and Goud, 1999). To date, more 

than 60 Rabs have been identified in mammalian cells, a number that reflects the 

complexity of transport events in higher eukaryotes (Pfeffer, 2001) . Like other 

GTPases, the Rab proteins cycle between an active (GTP-bound) and in inactive (GDP-

bound). In addition, Rab GTPases are post-translationally modified with the addition of 

a carboxy-terminal geranyl-geranyl groups that allows the tight association with 

membranes (Kinsella and Maltese, 1992). Inactive, prenylated Rab GTPases are bound 

to GDP dissociation inhibitors (GDI), which mask the isoprenyl anchor and keeps the 

Rab in a soluble cytosolic form (Garrett et al., 1994; Shapiro and Pfeffer, 1995; 

Shisheva et al., 1999). Membrane attachment of Rabs requires the function of GDI 

displacement factor (GDF) that dissociates the GDI and allows the prenyl anchor to be 

inserted into the membrane  (Pfeffer and Aivazian, 2004).  Subsequently, specific 

guanine exchange factors (GEF) stimulate the exchange of GDP with GTP, thereby 

activating the Rabs. The active, membrane bound Rabs are then able to fulfill various 

functions in membrane traffic by binding to specific effector proteins. Lastly, specific 

GDP activating proteins (GAPs) inactivate the Rabs by accelerating the hydrolysis of the 

bound GTP to GDP. The inactive, GDP-bound Rabs can then be extracted from the 

membrane by GDI and recycled for another round of function (Pfeffer, 2001; Segev, 

2001). 

Rab effectors are proteins that respond to a specific Rab GTPases and mediate 

variety of downstream effects. Specific Rab signal transmission requires specificity of 

effector recognition. This specificity if achieved by specific changes in the Rab structure 

upon GTP binding (Ostermeier and Brunger, 1999; Fukuda, 2003; Zhu et al., 2004; 

Eathiraj et al., 2005). Rabs and their effector are implicated into four major steps of 
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membrane traffic. These steps include: vesicle formation, vesicle delivery utilizing 

motor proteins, vesicle tethering and membrane fusion.  Due to the large list of known 

Rabs and their effectors, only selected examples will be discussed. 

 

1.3.2 Regulation of vesicle formation 

In forming a transport vesicle the correct cargo and the appropriate fusion 

machinery must be incorporated before scission from the donor membrane. Different 

lines of evidence implicate Rabs in cargo selection and vesicle formation/fission. Initial 

evidence for Rab involvement in vesicle formation and budding is suggested by the 

absence of accumulated vesicles when membrane transport is inhibited by expression of 

dominant negative Rab proteins (Nuoffer et al., 1994; Riederer et al., 1994). 

Subsequently, a different study suggests that active Rab5 may facilitate cargo selection 

in clathrin-coated-pits (McLauchlan et al., 1998). Rab9 and its effector tail-interacting 

protein (TIP47) are clearly implicated in the process of vesicle formation (Diaz and 

Pfeffer, 1998). Mannose-6-phosphate receptors (MPRs) transport newly synthesized 

lysosomal hydrolases from the trans-Golgi network to late endosomes. MPRs must be 

transported back to the Golgi for additional rounds of transport a process that requires 

TIP47 that binds to the cytoplasmic tail of MPR. GTP-Rab9 localizes on late endosomes 

and stimulates the capture of MPRs by increasing the affinity of binding with TIP47 

(Carroll et al., 2001). Additional studies are needed to determine whether this type of 

mechanism is used at different stages of membrane traffic. 
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1.3.3 Regulation of cytoskeletal transport 

Membrane vesicles are dynamically transported within the cell towards their 

target membrane by using either actin-dependent motors (myosins) or microtubule-

dependent motors (kinesin or dyneins) to allow for the delivery and recycling of protein 

and lipids. A number of studies have implicated Rabs and their effectors in this transport 

step. Various Rab proteins recruit either directly or indirectly specific microtubule or 

actin-based motor proteins to their target membranes. 

The first evidence that Rab proteins are directly coupled to motor proteins is the 

identification of the effector of the Golgi-associated Rab6. This Rab6 effector, 

Rabkinesin-6 (RB6K) is a new kinesin-like protein (Echard et al., 1998). RB6K 

specifically interacts with GTP-Rab6, and overexpression results in dispersion of the 

Golgi towards the plus end of microtubules. In fact, two related dynactin-binding 

proteins BicD2 and BicD1 also bind to active Rab6, thereby linking Rab6 with the 

dynein-dynactin complex (Matanis et al., 2002). In addition, a link between Rab6 and 

the dynactin subunit p150 
Glued 

was observed in vitro (Short et al., 2002). Thus, active 

Rab6 can interact with both kinesin and the dynein/dynactin compex and regulates both 

plus-end and minus-end directed transport of Golgi compartment. How the relative 

activity of both motors is controlled is yet unclear. 

 Furthermore, Rab4 and Rab5 regulate exocytosis and endocytosis via co-

ordinated interactions with kinesin and dynein motors. The transport of the insulin-

responsive glucose transporter GLUT-4 in adipocytes is a clear example that 

demonstrates the interplay between these Rab proteins and motors. Upon insulin 

stimulation GLUT-4 proteins are translocated from the perinuclear area to the plasma 

membrane due to enhanced exocytosis and reduced endocytosis (Czech and Corvera, 

1999; Pessin et al., 1999). Rab4 is identified as a major regulator of GLUT-4 exocytosis. 
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Insulin enhances the association of active Rab4 with a member of the kinesin-2 family 

(KIF3B) that results in enhanced plus-end directed transport and exocytosis (Imamura et 

al., 2003). In contrast, reduction in GLUT-4 endocytosis is controlled by Rab5. Upon 

insulin stimulation, levels of active Rab5 decrease which results in reduction with 

dynein association and inhibition of minus-end transport (Huang et al., 2001). 

Rab7 GTPase is present on late endosomes and lysosomes that move on 

microtubules in a bidirectional manner due to the alternating activities of dynein and 

kinesin motors. Rab7 requires the effector protein Rab7-interacting lysosomal protein 

(RILP) in order to recruit the dynein/dynactin to endosomes and lysosomes resulting in 

the accumulation of these structures in the perinuclear area (Cantalupo et al., 2001; 

Jordens et al., 2001). Overexpression of the C-terminal Rab7 binding portion of RILP 

prevents the recruitment of the dynein/dynactin complex and results in the relocation of 

late endosomal compartments towards the cell periphery by kinesin (Cantalupo et al., 

2001; Jordens et al., 2001). 

There are also many examples of Rab proteins interacting with actin-based 

myosin motors. Perhaps the best-studied example is the recruitment of myosin-Va to 

melanosomes by Rab27a. Rab27a localizes to the pigment containing melanosome 

granules and is essential for the retention at the periphery of the melanocytes 

(Bahadoran et al., 2001). The Rab27 effector melanophilin links Rab27a positive 

melanosomes to the actin motor myosinVa (Fukuda et al., 2002; Nagashima et al., 2002; 

Strom et al., 2002). Without myosinVa-dependent capture of these organelles on the 

actin filaments, melanosomes are not retained in the cell periphery and therefore cannot 

be transferred to neighboring keratinocytes (Wu et al., 1998). As a result, mouse 

mutants of Rab27, melanophilin or myosinVa display a pigmentary dilution of their 
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skin. In fact, genetic alterations of human Rab27a lead to a pigmentation disorder named 

Griscelli syndrome (Moore et al., 1988; Matesic et al., 2001) 

Rab8 and Rab11 are also shown to couple to myosins. Rab11 is associated with 

the recycling compartment and regulates the recycling of the transferrin receptor and the 

recycling of several G-protein coupled receptors (Chen et al., 1998; Wang et al., 2000d; 

Volpicelli et al., 2002). A direct interaction is found between Rab11 and myosinVb in a 

yeast-two hybrid screen (Lapierre et al., 2001). In addition, the Rab11 effector family-

interacting protein-2 (FIP2) also interacts with myosin VI (Hales et al., 2002). Rab8 

regulates the biosynthetic pathway from the Golgi towards the plasma membrane (Huber 

et al., 1993; Ang et al., 2003). Recently, myosin VI is shown to interact with optineurin, 

an interaction partner of Rab8 (Hattula and Peranen, 2000; Sahlender et al., 2005). 

 

1.3.4 Regulation of vesicle tethering 

Another crucial step in the targeting of vesicle to the correct destination is the 

tethering of the vesicle to the target membrane. This tethering process restrains the 

vesicle at or near their cognate target membranes allowing for SNARE pairing. Rab 

proteins in their GTP-bound form appear to facilitate the recruitment of tethering factors 

to their specific locations. In fact, Rab proteins bind various tethering factors. Tethering 

factors can be divided into two groups: long coiled-coil proteins and large subunit 

complexes (Sztul and Lupashin, 2006).  Examples in the former group are proteins such 

as the p115 (in yeast Uso1p) and the early endosome antigen 1 (EEA1). Examples in the 

latter group include the yeast exocyst and the TRAPP complexes. 

Perhaps the best characterized tethering factor is p115 (yeast Uso1p), a 

peripheral Golgi membrane protein.  The interaction of p115 with a Golgi residing 

complex (GM130/GRASP65) is thought to tether endoplasmic reticulum-derived 
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vesicles to the Golgi (Sztul and Lupashin, 2006). Interestingly, both tethers p115 and 

GM130/GRASP65 have been shown to be effectors of Rab1 (Allan et al., 2000; Moyer 

et al., 2001). In fact, active Rab1 is required for the recruitment of p115 into transport 

vesicles. Rab1 may also regulate the assembly and/or activity of the GM130/GRASP65 

complex on the Golgi (Allan et al., 2000; Moyer et al., 2001). 

In addition, several groups have shown that the early-endosome-antigen 1 

(EEA1) is important for the early endosome tethering and fusion. Active Rab5 

transiently binds to the hVPS34 lipid kinase and generates a local microdomain that 

recruits EEA1 (Patki et al., 1997; Christoforidis et al., 1999). Following membrane 

recruitment, EEA1 becomes part of a high molecular mass oligomer that includes 

Rabaptin, Rabex and NEM-sensitive factor (NSF) (McBride et al., 1999). EEA1 both 

tethers the vesicle and mediates the incorporation of a t-SNARE essential for the fusion 

event (McBride et al., 1999). 

The exocyst is the first large multisubunit tethering complex to be identified as a 

Rab effector (Guo et al., 1999). The exocyst complex is an octameric complex, localizes 

to sites of polarized growth in yeast and is required to tether post-Golgi and recycling 

vesicles to the plasma membrane (Guo et al., 1999). The exocyst component Sec15 is 

found to associate specifically with secretory vesicles and to interact with active 

RabSec4, which is present on the vesicular membrane (Guo et al., 1999). This Sec4-

GTP-Sec15 interaction seems to trigger further interactions between Sec15 and other 

exocytic components, eventually leading to fusion with specific domains on the plasma 

membrane. 

 One interesting idea about the role of Rabs in tethering is that they may link the 

functions of coiled-coil tethers with those of the multisubunit tethering complexes. An 

example is indicated by the large macromolecular complex , named TRAPP (for 
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transport protein particle)  that is also required for ER-Golgi transport in yeast (Sacher et 

al., 1998). TRAPP complex resides on the Golgi and has been shown to activate the Rab 

GTPase Ypt1p (mammalian Rab1) which is present on ER-Golgi vesicles (Wang et al., 

2000a). Ypt1p would then be able to recruit its effector Uso1p (mammalian p115) 

although the direct sequence of events is yet not clear (Cao et al., 1998). 

 

1.3.5 Regulation of vesicle fusion 

 The last step in vesicle-mediated transport is the fusion of the vesicle with its 

target membrane.  Fusion is thought to occur by the pairing of SNARES (soluble NSF 

attachment protein receptor where NSF stands for N-ethyl-maleimide-sensitive fusion 

protein). A SNARE on a transport vesicle (v-SNARE) pairs with its cognate SNARE on 

the target membrane (t-SNARE) forming, a trans-SNARE complex that leads to the 

opening of a fusion pore and final fusion of vesicle and organelle membrane (Chen and 

Scheller, 2001). The ATPase NSF (N-ethylmaleimide-sensitive factor) can disassemble 

SNARE complexes in the presence of a soluble co-factor SNAP (soluble NSF 

attachment protein). Such unpairing would make free t-SNARES available, which would 

then engage in subsequent rounds of membrane fusion. Rabs are thought to influence 

vesicle fusion through their indirect effects on SNARES, although the precise 

mechanisms are currently not well understood.  

Evidence suggests that Rabs indirectly regulate SNARES, through the activity of 

their effector molecules. This is supported by evidence that show that tethering factors 

interact with SNARES.  The complex formed between the Rab5 effector, EEA1 and two 

t-SNARES, syntaxin 13 and syntaxin 6, is required for homotypic early endosome 

fusion. Interestingly, the formation of an oligomeric complex of EEA1 with Rabaptin 

and Rabex requires the activity of NSF (McBride et al., 1999). Additionally, Ypt7p 
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(yeast Rab7) effector proteins, VPS/HOPS, have also been found in complexes with the 

SNARE Vamp3p complex that is required for vacuole fusion (Price et al., 2000; Sato et 

al., 2000; Seals et al., 2000) . The interaction of the Ypt7p effector VPS/HOPS and 

SNARES requires the presence of NSF (Sec18p in yeast) (Price et al., 2000). The 

significance of the incorporation of NSF with the tethering factors is currently unclear. It 

is possible that NSF action couples SNARE disassembly with tethering and trans-

SNARE pairing. Additionally, through directly binding to syntaxin-5 complexes, the 

Rab1 effector p115 might stimulate their incorporation into vesicles (Allan et al., 2000).  

 

1.4 E1DOCYTIC PATHWAY I1 DICTYOSTELIUM DISCOIDEUM 

1.4.1 Dictyostelium as a model system 

Dictyostelium discoideum is the only unicellular model system that contains the 

full complement of BEACH proteins found in metazoans (LvsA-LvsF) (Wang et al., 

2002; De Lozanne, 2003). With the extensive array of tools available to dissect the 

function these novel proteins, Dictyostelium is a powerful model system for the study of 

the function of LvsB in membrane trafficking and the understanding of the Chediak-

Higashi syndrome. 

 Dictyostelium discoideum is a social amoeba that lives in the soil and feeds on 

bacteria. Since the discovery of Dictyostelium discoideum in 1935, its fascinating 

biology has made it a very popular model system for studying the molecular basis of cell 

and developmental biology. Dictyostelium cells grow by mitotic division every 8-10 

hours.  Single cells in vegetative stage, feed by phagocytosis on bacteria or by 

macropinocytosis on simple axenic liquid medium, making it possible to grow many 

cells for analysis. The term ‘social amoeba’ derives from the behavior of cells when 
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their food supply is exhausted or removed.  Upon onset of starvation, undifferentiated 

single cells immediately stop division and enter what is now a well characterized 

developmental program of gene expression and morphogenesis. The steps of the 

developmental cycle are well defined and the whole process, that lasts approximately 24 

hours, can be easily reproduced and visualized in the laboratory. When Dictyostelium 

cells starve, cAMP is secreted to signal neighboring cells to start chemotaxis and about 

10
5 
cells polarize and migrate towards an aggregation center to form a slug (Parent and 

Devreotes, 1999; Firtel and Chung, 2000). The cells that make up the slug differentiate 

into stalk or spore cells. Subsequently, a fruiting body forms which is composed of a 

stalk and a sorus. When nutrients become available, dormancy ends and the spores 

germinate into amoeboid cells (Kessin, 2001). The life cycle of Dictyostelium is ideal to 

study fundamental developmental processes such as cell polarity, chemotaxis, cell 

migration and differentiation.  

Dictyostelium discoideum has six chromosomes and its entire 35Mb genome is 

sequenced (Eichinger et al., 2005). The cells are haploid and the mutant phenotypes are 

therefore easily observable. Many molecular tools are available including the ability to 

make rapid homologous gene replacements, random insertional mutagenesis (REMI), 

multiple gene deletions and RNA interference (RNAi) (De Lozanne and Spudich, 1987; 

Kuspa and Loomis, 1992; Faix et al., 2004; Popova et al., 2006). 

Dictyostelium is also suitable for morphological studies. The 10 micron diameter 

and morphology, allows for the visualization of dynamic processes such as cell division, 

chemotaxis, macropinocytosis and organelle morphology. Dictyostelium provides 

unique advantages for the investigation of endocytosis. Vegetative cells exhibit 

phagocytosis and pinocytosis at rates higher than professional phagocytes (Thilo, 1985). 

In addition, with an array of fluorescent tags and markers available, many features of the 
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endocytic pathway can be studied in real time. In fact many aspects of mammalian 

endocytosis are highly conserved in Dictyostelium (Maniak, 2002).  

 

1.4.2 Endosomal uptake and maturation  

Endocytosis is a highly conserved cellular process that involves the uptake of 

particles (phagocytosis), macromolecules, and solutes (pinocytosis) from the 

surrounding environment via plasma membrane-derived invaginations and the 

subsequent digestion of ingested material. The endocytic pathway in Dictyostelium 

serves primarily a nutrititive function. Nutrients within the endocytosed fluid are 

digested by lysosomal enzymes in a very dynamic process that involves a complex 

series of fusion and fission events.  Finally undigested remnants are released by 

exocytosis.   

The main route for fluid phase uptake in Dictyostelium is macropinocytosis that 

leads to a bulk fluid-phase uptake through actin driven membrane ruffles protruded in 

the surrounding medium. These surface protrusions called crowns are filled with F-actin 

and actin-binding proteins. The membrane protrusions finally constrict to engulf the 

newly formed endosome in a process that depends on the activity of motor proteins. In 

fact, a variety of unconventional myosin molecules localize to the surface protrusions 

(Fukui et al., 1989; Schwarz et al., 2000). The newly formed endosome, remains stable 

for 1 minute and thereafter, loses its protective actin shell and becomes available for 

fusion processes (Maniak, 1999, , 2001).   

Within minutes of endosome internalization early recycling events take place 

that facilitate recycling of plasma membrane components by budding of small tubular 

vesicular-transport intermediates (Neuhaus et al., 2002). This pathway depends on 

myosin IB and has been identified following the path of lipid probes and biotinylated 
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surface proteins (Aguado-Velasco and Bretscher, 1999; Neuhaus and Soldati, 2000). 

Interestingly, following the plasma membrane marker p25 revealed the identification of 

a juxtanuclear recycling compartment. P25 was shown to be excluded from early 

endosomes shortly upon endocytosis and to traffic to the recycling compartment in a 

process that requires the adaptor protein AP-3. Whether all plasma membrane markers 

traffic through the recycling compartment and finally back to the plasma membrane is 

currently not clear (Charette et al., 2006).  

In addition to early recycling, the actin uncoating event occurs concomitantly 

with acidification of the vesicle lumen and the maturation into the lysosomal stage 

(Maniak, 2001). The enzyme responsible for the acidification is the vacuolar-ATPase, 

while the maintenance of the low pH depends on the transmembrane transporters of the 

ABC type (Brazill et al., 2001; Clarke et al., 2002a). Concomitantly with the vacuolar-

ATPase, the small GTPase Rab7 also associates with the endosomal membrane (Rupper 

et al., 2001c). Early lysosomes are competent to undergo homotypic fusion. Fusion is 

possible among endosomes which are formed sequentially and within a few minutes of 

each other (Clarke et al., 2002b). The small GTPase Rab14 is known to associate with 

lysosomes at this stage and regulates homotypic fusion (Bush et al., 1994; Bush et al., 

1996). In fact, expression of a constitutively active Rab14 mutant protein results in an 

enhanced rate of homotypic fusion (Harris and Cardelli, 2002).  In vitro assays for 

homotypic membrane fusion at this stage of endocytic transit revealed the requirement 

for homologs of syntaxin7, SNAP, NSF, and Rab7 (Laurent et al., 1998; Weidenhaupt et 

al., 1998; Bogdanovic et al., 2000; Weidenhaupt et al., 2000).  

Within the acidic phase that lasts approximately 30 minutes, lysosomal enzymes 

carrying different modifications appear sequentially in endosomes. Among the enzymes 

delivered within the first minutes is the protease cathepsin D (Journet et al., 1999). 
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Thereafter, in another wave of vesicle fusion, Glc-Nac-1-P modified cysteine proteases 

fuse with the lysosomes (Souza et al., 1997). In addition, another set of Man-6-P-OCH3 

modified enzymes are also delivered to the lysosomes (Souza et al., 1997). 

About 30 minutes after internalization, the acidic lysosomes begin a process of 

neutralization and maturation into a secretory lysosome (post-lysosome). The 

neutralization is brought about by the budding of transport intermediates that remove the 

vacuolar-ATPase from the membrane of lysosomes and possible recycling to newly 

endocytosed vesicles. Dictyostelium Rab7 is thought to regulate retrograde transport and 

may regulate the retrieval of lysosomal enzymes and the vacuolar-ATPase from post-

lysosomes. In fact, expression of an inactive form of Rab7 results in oversecretion of 

lysosomal enzymes (Buczynski et al., 1997). The sites where recycling vesicles are 

formed are identified by the patchy distribution of dynamin. Accordingly, disruption of 

dynamin affects the kinetics of endocytic transit, but whether the retention of lysosomal 

enzymes is affected, is not known (Wienke et al., 1999). After the retrieval of the 

vacuolar-ATPase and maturation into post-lysosomes the vesicles may become 

competent to undergo fusion. In fact, artificial inhibition of the vacuolar-ATPase results 

in the artificial formation of large vacuoles in the cell (Temesvari et al., 1996). 

Homotypic fusion at this stage is best studied during phagocytosis and fusion events at 

this stage of endosomal maturation are currently not clear. 

In subsequent stages post-lysosomes acquire the cytoskeletal proteins coronin, 

Scar and Arp2/3, which act together to provide the post-lysosome with a coat of 

filamentous actin (Rauchenberger et al., 1997; Insall et al., 2001; Seastone et al., 2001). 

In fact, cells deficient in Scar lack an actin coat around late endocytic compartments and 

are defective in neutralization. The role of actin coat is controversial but it may prevent 

fusion. Subsequently, the peripheral protein vacuolin associates with the post-lysosomes 
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(Rauchenberger et al., 1997; Jenne et al., 1998). Vacuolin is a protein with an HflC 

domain, a domain found in many proteins similar to mammalian flotillins, proteins 

known to bind lipid rafts (Liu et al., 2005). Cells lacking vacuolin show enlarged post-

lysosomes that are severely reduced in numbers compared to control cells (Jenne et al., 

1998). The precise role of vacuolin is currently not understood. It is possible that 

vacuolin controls fusion or exocytosis. 

Exocytosis releases the contents of post-lysosomes into the surrounding medium, 

which include indigestible particulate material, as well as small amounts of lysosomal 

enzymes (Dimond et al., 1981). At the site of exocytosis, the empty vesicle, the 

surrounding actin coat and a patch of vacuolin, remain on the plasma membrane (Jenne 

et al., 1998; Lee and Knecht, 2002; Neuhaus et al., 2002). The final dissociation of these 

proteins from the plasma membrane allows for a new round of endocytic traffic. 
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Chapter 2: The BEACH protein LvsB is localized on lysosomes and 
post-lysosomes and limits their fusion with early endosomes 

The following data was published in Traffic 2007; 8: 774-783 

2.1 I1TRODUCTIO1 

Despite its long history, the Chediak Higashi syndrome (CHS) remains a poorly 

understood genetic disorder (Ward et al., 2000; Shiflett et al., 2002; Ward et al., 2002).  

First described in 1943, this disorder was recognized as a unique lysosomal disease that 

causes the gross enlargement of lysosomes in all tissues from CHS patients.  Defects in 

lysosomal function are at the root of the physiological problems that develop in these 

patients, including delayed blood clotting, albinism, immunodeficiency and neurological 

problems.  Unfortunately, after more than 60 years of research, the molecular basis of 

this lethal disease is still not understood and no potential therapies are available.   

A major breakthrough in the study of this disease was the identification of the 

gene affected in CHS patients.  Cloning of the human CHS locus was greatly facilitated 

by the finding that beige mutant mice have the same genetic defect (Barbosa et al., 

1996; Nagle et al., 1996b).  The protein encoded by the CHS/beige gene has been named 

Lyst for lysosomal-trafficking regulator (Barbosa et al., 1996).   

Lyst was the founding member of the novel family of BEACH proteins.  With 

the exception of yeast, which has only a single BEACH protein, all eukaryotes contain 

multiple BEACH proteins that can be grouped into different functional classes (Wang et 

al., 2002).  All BEACH proteins share the conserved BEACH domain of unknown 

function and several WD motifs at their C-termini.  BEACH proteins tend to be large (> 

400 kDa) and expressed at low levels (Perou et al., 1997; De Lozanne, 2003).  This has 

made the biochemical characterization of BEACH proteins a difficult enterprise.  The 

genetic analysis of BEACH proteins has been more fruitful and has revealed that several 
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BEACH proteins have important roles in membrane trafficking pathways, although their 

precise role has not been defined.  In mammals, the protein neurobeachin seems to be 

localized in vesicles close to the Golgi and is important for neuronal function (Wang et 

al., 2000b).  In Drosophila, AKAP550 and blue-cheese are also important for neuronal 

function (Han et al., 1997; Finley et al., 2003).  Recent studies in Drosophila and C. 

elegans suggest that some BEACH proteins may antagonize the function of Rab11 and 

Lin-12 in development (Khodosh et al., 2006; de Souza et al., 2007).  

We have shown previously that Dictyostelium cells contain six distinct BEACH 

proteins, two of which have separate functions in different membrane compartments (De 

Lozanne, 2003).  Dictyostelium LvsA is a protein that associates transiently with the 

contractile vacuole and is essential for the osmoregulatory function of this organelle 

(Gerald et al., 2002).  LvsA is also required for the separation of daughter cells during 

cytokinesis (Kwak et al., 1999).  In contrast, the Dictyostelium LvsB protein, the 

ortholog of mammalian Lyst, is important for lysosomal function.  LvsB-null cells 

contain enlarged lysosomal compartments similar to those found in CHS and beige 

mutant cells.  Characterization of LvsB-null cells suggested that the enlarged lysosomes 

arose by rapid homotypic fusion of endosomes (Harris et al., 2002a).   

Attempts to localize Lyst in mammalian cells have not been successful, probably 

due to the small amount of this protein in the cell.  We present here a knock-in approach 

to tag the Dictyostelium Lyst ortholog, LvsB with GFP and its localization on 

postlysosomes.  Functional assessment of the endosomal pathway of LvsB-null cells 

shows that the loss of LvsB leads to the inappropriate heterotypic fusion of different 

compartments.  Our data supports the model that Lyst proteins act as negative regulators 

of fusion and suggest that Lyst may provide specificity for endosomal fusion. 
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2.2 RESULTS 

2.2.1 Labeling of LvsB by homologous recombination 

Based on our previous experience with LvsA, we used a knock-in approach to 

insert the TAP and GFP tags at the amino terminus of the LvsB protein.  A construct 

containing these two tags was fused in frame with the 5’ end of the LvsB coding 

sequence and this construct was introduced into wild-type Dictyostelium cells (Figure 

2.1A).  After the construct inserted into the LvsB gene by homologous recombination, 

the fusion protein was expressed from the single copy in its normal chromosomal locus.  

Cells containing the correct insertion were identified by PCR analysis (data not shown) 

and by Western Blot analysis (Figure 2.1B).   

Since this tagging method completely replaced the endogenous LvsB protein 

with the fusion protein, we could determine whether the fusion protein was functional.  

We compared the phenotype of our tagged cell lines with the parental wild-type cells 

and with LvsB-null cells.  We labeled the entire endocytic pathway of these cells by 

internalization of TRITC-dextran as a fluid phase marker.  As shown before, LvsB-null 

cells contained enlarged vesicles (Figure 2.1E) (Harris et al., 2002a).  The GFP-tagged 

LvsB cell lines contained vesicles similar in both number and size to those found in 

wild-type cells (Figure 2.1C-D).  The tagged cell lines did not display any abnormal 

phenotype in growth or development.  Thus, similar to our results with the LvsA protein, 

addition of a tag at the amino terminus of LvsB does not seem to disturb its function. 
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Figure 2.1: Knock-in strategy to label LvsB with GFP   

A) Diagram indicating the construct used to insert the GFP coding region at the 5’ end 

of the LvsB coding region. The construct contained 0.9 kb of LvsB 5’ untranslated 

region (UTR), a blasticidin-resistance marker, an actin 6 promoter that drives the 

expression of the fusion protein and the TAP/GFP coding region fused in frame to the 

initial 1.25 kb of the LvsB coding region.  Knock-in cell lines were screened by PCR.  

B) Knock-in cell lines express full length tagged LvsB protein.  Western blot analysis 

using an anti-GFP antibody detects a single >400 kDa band in a knock-in cell line that is 

absent in a wild type control cell line.  C-E) The inserted tag does not alter LvsB 

function.  The endolysosomal compartments of wild type (C), knock-in (D), and LvsB-

null (E) cells were labeled by internalization of TRITC-dextran for 1 hour.  The knock-

in cell lines contain labeled endosomes similar in size to those found in wild type cells 

and lack the enlarged compartments found in LvsB-null cells. Bar, 10 µm 
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2.2.2 LvsB is localized on lysosomes and post-lysosomes 

Imaging of the GFP-tagged LvsB cells by fluorescence microscopy revealed that 

the fluorescence levels in these cells was so low that we were unable to image the tagged 

protein above the autofluorescence background in the live cells.  This is consistent with 

the low levels of expression of LvsB and its homologs in mammalian cells (Perou et al., 

1997).  However, fixation of the expressing cells allowed us to determine (with 

prolonged exposures) that the tagged-LvsB protein was associated with vesicles of 

various sizes (Figure 2.2).  These vesicles were a part of the endocytic pathway of 

Dictyostelium since they were labeled by endocytic markers such as plastic beads 

(Figure 2.2 A-B). 

To determine more precisely the identity of the vesicles marked by GFP-LvsB 

we stained these cells with markers found on different endolysosomal compartments.  

The endocytic pathway of Dictyostelium traffics endocytosed material through a system 

of vesicles that end in the secretion of undigested material (Maniak, 2003).  Soon after 

internalization, early endosomes receive proton pumps that acidify their contents.  

Lysosomal enzymes are subsequently delivered to form early and then late lysosomes in 

a process that takes 30-40 min.  Proton pumps and lysosomal enzymes are then retrieved 

from late lysosomes to mature into a neutral compartment called the postlysosome.  This 

compartment is a secretory organelle that eventually exocytoses its contents.  

Dictyostelium Rab7 is a protein known to localize on lysosomes and postlysosomes 

(Rupper et al., 2001b).  It has been shown that expression of wild-type GFP-Rab7 does 

not cause an increase in the size of lysosomes and postlysosomes and acts as a reliable 

marker of these compartments (Buczynski et al., 1997).  We expressed RFP-tagged 

Rab7 in our GFP-tagged LvsB cells and found that all vesicles marked by GFP-LvsB 

were also labeled by RFP-Rab7 (Figure 2.2 C-D).  Not all Rab7-labeled vesicles 
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contained tagged-LvsB, indicating that LvsB has a more restricted localization 

compared to Rab7. 

In addition, we found that a large fraction (62 %, n=58) of LvsB-containing 

vesicles were also labeled by the protein vacuolin (Figure 2.2 E-F, arrowheads).  

Vacuolin is a cytosolic protein known to associate with postlysosomes, the neutralized 

vesicles that are destined for exocytosis (Jenne et al., 1998).  While all vacuolin labeled 

vesicles were also labeled by GFP-LvsB, many LvsB-positive vesicles were not labeled 

by vacuolin (Figure 2.2 E-F, arrows). This distribution suggested the possibility that 

LvsB associates with lysosomes that are about to become postlysosomes.  To explore 

this possibility we stained GFP-tagged LvsB cells with an antibody against the 70kDa 

A-subunit of the proton pump v-ATPase, a known marker of lysosomes that is absent 

from postlysosomes (Jenne et al., 1998).  We found that 44% (n=70) of GFP-LvsB 

labeled vesicles were also stained by the proton pump antibodies.  Thus, we conclude 

that LvsB is a cytosolic protein that associates with late lysosomes and postlysosomes.   
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Figure 2.2: GFP-LvsB is localized on vesicles including phagosomes, lysosomes and 
post-lysosomes  

(A-B) GFP-LvsB is localized on phagosomes. Cells were allowed to internalize 0.9µm 

latex beads before being fixed and imaged by microscopy.  GFP-LvsB was clearly 

visible on phagosomes containing internalized beads (arrowheads).  (C-D) GFP-LvsB 

colocalizes with Rab7 a marker of lysosomes and postlysosomes. GFP-LvsB cells were 

transfected with an RFP-Rab7 expression vector and imaged by fluorescence 

microscopy.  All GFP-LvsB labeled vesicles (C) were also labeled by RFP-Rab7 (D) 

(arrowheads).  In contrast, many RFP-Rab7 labeled vesicles were not labeled by GFP-

LvsB (arrows).  This indicates that LvsB is found on a limited subset of endolysosomal 

vesicles. (E-F) GFP-LvsB colocalizes with vacuolin.  Cells were fixed and stained with 

an anti-vacuolin monoclonal antibody. Vacuolin is a cytosolic protein known to label the 

neutral postlysosomal compartment (Jenne et al., 1998).  All vacuolin-labeled vesicles 

(F) were also labeled by GFP-LvsB (E) (Arrowheads).  While the majority (62%, n=58) 

of GFP-LvsB vesicles were labeled by vacuolin there were several vesicles that were not 

labeled by vacuolin (arrows).  (E-F) GFP-LvsB colocalizes with proton pumps.  Cells 

were fixed and stained with an antibody against the proton pump v-ATPase, a marker of 

lysosomal vesicles.  About 44% (n=70) of GFP-LvsB labeled vesicles were also labeled 

by the v-ATPase (arrowheads).  The rest of GFP-LvsB labeled vesicles did not contain 

proton pumps (arrows).  These results suggested that GFP-LvsB labels late lysosomes 

that are about to become postlysosomes.   Bar, 10 µm 
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2.2.3 LvsB-null cells have enlarged, abnormal post-lysosomes. 

The presence of LvsB on postlysosomes suggested that LvsB may play an 

important role on that compartment.  To explore this possibility we determined the 

localization of GFP-vacuolin expressed in LvsB-null cells.  As shown before for wild 

type cells (Rauchenberger et al., 1997; Jenne et al., 1998), GFP-vacuolin labeled several 

postlysosomal vesicles (Figure 2.3) that were neutral in pH since they did not stain with 

lysotracker, an acid compartment stain (Figure 2.3A-C). In contrast, in LvsB-null cells, 

GFP-vacuolin was found on a few enlarged postlysosomal vesicles (Figure 2.3D-F).  

Besides their abnormal size, these mutant postlysosomes differed from wild-type 

postlysosomes in their acidity. Whereas postlysosomes in wild type cells are always 

neutral, the huge postlysosomes in LvsB cells were frequently acidic (~40%) (Figure 2.3 

D-F).   Interestingly, the intensity of the GFP-vacuolin staining appeared to be inversely 

proportional to the acidity of postlysosomes in the mutant cells.   
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Figure 2.3: LvsB-null cells display abnormally large and acidic post-lysosomes 

Wild-type and LvsB-null cells were transformed with a GFP-vacuolinB expression 

vector and stained with Lysotracker Red, a dye that accumulates in acidic compartments. 

(A-C) Wild-type cells contain normal post-lysosomes with normal pH. In wild-type 

cells, the cytosolic protein vacuolin is known to associate with post-lysosomal vesicles 

that have neutral pH and are destined for excretion (Rauchenberger et al., 1997).  These 

three wild-type cells show that vacuolin does not colocalize with lysotracker-red.  (D-F) 
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LvsB-null cells contain enlarged and acidic postlysosomes.  While LvsB-null cells do 

have a few small acidic vesicles, most acid compartments are grossly enlarged in these 

mutant cells.  Importantly, some of these large acidic vesicles are labeled by GFP-

vacuolin suggesting their possible postlysosomal identity. Bar, 5 µm 

 

The abnormal acidity of postlysosomes in LvsB-null cells suggested the 

possibility that the vacuolar H
+
-ATPase (v-ATPase) was missorted to this compartment.  

In wild-type cells, the v-ATPase is incorporated into endosomes within a minute after 

internalization (Maniak, 1999, , 2001, , 2003); subsequently the v-ATPase is removed 

from late lysosomes to allow their neutralization and maturation into postlysosomes 

(Nolta et al., 1994; Maniak, 2003).  Accordingly, when we stained wild type cells 

expressing vatM-GFP with an antibody against vacuolin we observed almost no co-

localization of these two markers (Figure 2.4A-C).  The fraction of wild type cells that 

contained at least one vesicle labeled by the two markers was 19% (n= 68).  In contrast, 

a large fraction of LvsB-null cells (80%, n= 49) contained vesicles labeled with both 

markers (Figure 2.4D-F).  Thus, the loss of LvsB results in both an enlargement of acid 

lysosomes (Harris et al., 2002a) and the formation of abnormally large and acidic 

postlysosomes. 
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Figure 2.4:  The proton pump v-ATPase is abnormally found on post-lysosomes of 
LvsB-null cells   

Wild type and LvsB-null cells were transfected with a VatM-GFP to determine the 

localization of their v-ATPase proton pumps. The cells were fixed and stained with an 

anti-vacuolin monoclonal antibody.  In wild type cells (A-C), proton pumps are 

normally distributed in early endosomes, lysosomes and in the contractile vacuole 
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(Clarke et al., 2002a). These three wild type cells show that the vacuolin-labeled 

postlysosomes do not contain proton pumps. In contrast, the vacuolin-labeled 

postlysosomes of LvsB-null cells (D-F), also contain proton pumps. These results are in 

agreement with the observation that wild type postlysosomes have a neutral pH while 

mutant postlysosomes have a low pH (see Figure 2.3).  Bar, 5 µm 

 

2.2.4 Inappropriate fusion of endosomes in LvsB-null cells. 

Initial studies of LvsB-null cells suggested that early endosomes fused with each 

other faster than early endosomes from wild type cells (Harris et al., 2002a).  Those 

observations seemed contrary to the localization and role of LvsB on postlysosomes 

described here.  However, a model consistent with all observations is that the function of 

LvsB is to inhibit the fusion of early endosomes with late compartments like the 

postlysosomes.  To test this model, we measured the time required for delivery of a 

pulse of endocytosed labeled dextran to the vacuolin-labeled postlysosome.  We gave 

cells expressing GFP-vacuolin a 10 minute pulse of media containing TRITC-labeled 

dextran.  We then determined the fraction cells that contained dextran-labeled vesicles 

that colocalized with GFP-vacuolin at different times after a chase.  In wild-type cells, 

the endocytosed dextran was delivered to the vacuolin-labeled postlysosome ~30 

minutes after the pulse (Figure 2.5).  During early time points the dextran did not 

colocalize with vacuolin, but after 30 minutes the majority of dextran-labeled vesicles 

were also labeled by vacuolin.  Remarkably, in LvsB-null cells a substantial fraction of 

endocytosed dextran was found in vacuolin labeled vesicles soon after the pulse (Figure 

2.5). Examples of images used for the quantification are also shown in Figure 2.6   
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Figure 2.5: The loss of LvsB leads to abnormal fusion of early endosomes with post-
lysosomes   

Wild type (A) and LvsB-null (B) cells expressing GFP-vacuolinB were labeled for 10 

min with TRITC-Dextran, chased in buffer, and imaged at different times after initiation 

of chase.  The percentage of the cell population that contained vesicles labeled by both 

TRITC-Dextran and GFP-vacuolin was quantified (see images in Figure 2.6).  In wild 

type cells the internalized dextran did not colocalize with GFP-vacuolin until after 30 

minutes of chase.  This indicates that the newly internalized marker normally needs 

more than 30 minutes to reach the postlysosomal compartment.  In contrast, LvsB-null 

cells displayed extensive colocalization of dextran and GFP-vacuolin from early time 

points.  This mutant phenotype could be the result of abnormal fusion of newly 

internalized endosomes with vacuolin-labeled postlysosomes.  Error bars represent 

standard deviation.  
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Figure 2.6: The loss of LvsB leads to abnormal fusion of early endosomes with post-
lysosomes 

Wild type (A) and LvsB-null (B) cells expressing GFP-vacuolinB were labeled for 10 

min with TRITC-Dextran, chased in buffer, for 20-30 minutes and imaged by 

fluorescence microscopy.  The three wild type cells shown here do not have any 

colocalization of the two markers.  In wild type cells the internalized dextran did not 
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colocalize with GFP-vacuolin during the first 30 minutes of chase.  This indicates that 

newly the internalized marker normally needs more than 30 minutes to reach the 

postlysosomal compartment. In contrast, the three LvsB-null cells shown here illustrate 

colocalization of dextran and GFP-vacuolin in less than 30 minutes of chase.  This 

mutant phenotype could be the result of abnormal fusion of newly internalized 

endosomes with vacuolin-labeled postlysosomes.  (See Figure 2.5 for quantification at 

different time points after chase).  Bar, 5 µm 

 

Ten minutes after the pulse ~50% of cells contained dextran-labeled vesicles that 

were also labeled by vacuolin and this fraction increased over time. The speed with 

which dextran entered vacuolin-positive compartments in the LvsB-null cells, suggests 

that early endosomes fuse inappropriately with postlysosomal compartments.  

An alternative interpretation of our results is that vacuolin is mislocalized on 

early compartments in LvsB-null cells.  Since vacuolin is a peripheral membrane 

associated protein, vacuolin could associate with early endosomes in the absence of 

LvsB.  In this case, the observation of vacuolin-labeled vesicles containing proton 

pumps and early endosomal markers would not represent inappropriate fusion events 

but, rather, mislocalization of vacuolin.  To distinguish between these alternatives, we 

employed two differently labeled dextrans to follow the luminal contents of endocytic 

vesicles (Figure 2.7).   We gave wild type and LvsB mutant cells a short (5 min) pulse of 

FITC-Dextran and then chased with buffer for 30 minutes to allow the label to reach late 

compartments.  We then gave the cells a second 5 minute pulse of TRITC-Dextran, 

washed the cells, and imaged them within 10 minutes after chase.  In wild type cells the 

green and red dextrans mixed minimally; only 7.2% of their vesicles contained both 

markers.  In contrast, the LvsB mutant cells contained a high fraction (49.6%) of 
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vesicles labeled by both markers. Examples of images used for quantification of the 

colocalization of the two dextrans are shown in Figure 2.8. Therefore, LvsB-null cells 

are unable to constrain the inappropriate fusion of their early and late compartments. 

 

Figure 2.7: Fusion of early and late endosomal compartments is increased in LvsB-null 
cells  

Wild type and LvsB-null cells were labeled with FITC-dextran for 5 minutes and then 

chased in buffer for 30 minutes to allow the internalized marker to reach late 

compartments in the cells.  Cells were then labeled with a 5 minute pulse of TRITC-

dextran, washed and imaged by fluorescence microscopy within 10 minutes (See Figure 

2.8).  The fraction of vesicles containing both fluid phase markers was quantified in two 

independent experiments.  Error bars represent standard deviation. 
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Figure 2.8: Fusion of early and late endosomal compartments is increased in LvsB-null 
cells 

Wild type and LvsB-null cells were labeled with FITC-dextran for 5 minutes and then 

chased in buffer for 30 minutes to allow the internalized marker to reach late 

compartments in the cells.  Cells were then labeled with a 5 minute pulse of TRITC-

dextran, washed and imaged by fluorescence microscopy within 10 minutes.  In wild 

type cells the two pulses of dextran remain in separate compartments.  In contrast, the 

two pulses of dextran rapidly merge in LvsB-null cells. Examples of fusion are indicated 

with arrows (See Figure 2.7 for quantification).  Bar, 10 µm 

 

As previously shown by Maniak et al, the loss of vacuolinB results in the 

formation of enlarged post-lysosomes, the enhanced secretion of lysosomal enzymes and 
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increased transit time of endocytic markers (Jenne et al., 1998). These phenotypes 

presented by the vacuolinB-null cells were very similar to the phenotypes seen in our 

LvsB-null cells. Thus, we tested whether vacuolin also controls heterotypic fusion 

events.  As described above, the absence of LvsB resulted in formation of enlarged 

acidic compartments that represented mixed post-lysosomes with earlier acidic 

compartments.  Using Lysotracker, a probe that accumulates in acidic compartments, we 

assessed that the morphology of acidic compartments in vacuolinB-null cells (Figure 

2.9B) was normal, similar to wild-type cells (Figure 2.9A). This result suggested that the 

enlarged post-lysosomes found in the vacuolinB-null cells did not arise from fusion of 

post-lysosomes with earlier acidic compartments. The in vivo fusion assay using two 

color dextrans was performed in vacuolinB-null cells as described above, further 

supported that the heterotypic fusion of post-lysosomes with earlier compartments was 

normal (4.9%) compared to controls (3.3%) (data not shown). Therefore, we concluded 

that the mechanism by which vacuolin controls post-lysosome morphology is different 

than LvsB. This result further supported that the increase in the rate of heterotypic 

fusion, described above, was a specific phenotype caused by the absence of LvsB. 

 

 

Figure 2.9: Loss of vacuolinB does not affect the morphology of acidic lysosomes 
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Acidic compartments of wild-type (A) and vacuolinB-null (B) cells were assessed using 

Lysotracker, a dye that accumulates in acidic compartments. VacuolinB-null cells 

contained acidic compartments that were similar in size to those found in wild-type 

cells. Bar, 10µm  

 

2.3 DISCUSSIO1 

We have shown here that the Dictyostelium BEACH protein LvsB is localized on 

vesicles of the endolysosomal system and that it plays a role in the regulation of fusion 

among vesicles of this compartment.  Our results represent the first direct evidence that 

orthologs of the beige and Chediak-Higashi Syndrome proteins localize on specific 

vesicles of the endolysosomal system.  Moreover, functional studies of LvsB-null cells 

show that this protein is required to prevent the fusion of postlysosomes with early 

compartments of the endolysosomal system.  By analogy, we suggest that Lyst prevents 

the mixing of compartments in mammalian cells. 

A knock-in approach allowed us to tag LvsB with GFP and express the tagged 

protein from its single chromosomal locus.  While a fraction of soluble GFP-LvsB was 

observed in the cytoplasm, GFP-LvsB also associated with vesicles of various sizes.  

The LvsB-labeled vesicles were in the endolysosomal pathway since they also labeled 

with Rab7, a small GTPase known to associate with multiple compartments of the 

endolysosomal system (Buczynski et al., 1997; Rupper and Cardelli, 2001; Rupper et 

al., 2001a; Rupper et al., 2001b).  Importantly, about 40% GFP-LvsB colocalized with 

v-ATPase-labeled vesicles, while the other 60% colocalized with vacuolin, a marker of 

postlysosomes (Jenne et al., 1998; Wienke et al., 1999).  In wild-type cells, recycling of 

v-ATPase proton pumps from late lysosomes allows these organelles to be neutralized 
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and converted into postlysosomes (Nolta et al., 1994; Maniak, 2003). Vacuolin normally 

associates with vesicles after the removal of the proton pumps and the two do not 

normally colocalize (Jenne et al., 1998).  Thus, our results suggest that LvsB associates 

with late lysosomal vesicles that subsequently mature into postlysosomes.   

LvsB was also found associated with phagosomes. This result is in agreement 

with previous observations that LvsB mutant cells exhibit enhanced rates of phagosome 

fusion (Harris et al., 2002a). Dictyostelium endocytic and phagocytic pathways share 

many common features and effectors (Cardelli, 2001). This suggests that LvsB may 

function in both pathways with a similar mechanism. 

The presence of the LvsB on late lysosomes and postlysosomes suggested that 

LvsB exerts its function in these compartments. Indeed, we found that the morphology 

of postlysosomes is severely altered in LvsB-null cells.  In these mutants, vacuolin-

stained postlysosomes are significantly enlarged and fewer in number than in wild type 

cells.  In addition to their abnormal morphology, the mutant postlysosomes frequently 

exhibit abnormally acidic pH.  We found that this abnormal pH is correlated with the 

abnormal presence of v-ATPase proton pumps in the mutant postlysosomes. A possible 

interpretation of these observations is that LvsB is required for the retrieval of proton 

pumps from late lysosomes.  However, the fact that LvsB mutant cells contain some 

neutral postlysosomes indicates that proton pump retrieval is still active in these cells.  

Earlier studies of beige, CHS, and LvsB mutant cell lines suggested a role for 

LYST proteins as negative regulators of endosome homotypic fusion (Jones et al., 1992; 

Harris et al., 2002a). This role was suggested by pulse-chase experiments showing that 

early endosome fusion occurred faster in LvsB-null cells than in wild type cells (Harris 

et al., 2002a). A role for LvsB on early endosomes may seem puzzling given the 

localization of LvsB on late lysosomes and postlysosomes described here.  However, 
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these data can be explained by a model where the role of LvsB is to inhibit the 

inappropriate fusion between early endosomes and postlysosomal compartments.  Two 

different observations provide support for this model.  First, we determined the time 

course of fluid phase marker delivery to postlysosomes, as labeled by vacuolin.  We 

showed that, in wild type cells, a short 10 minute pulse of fluorescent dextran reached 

the vacuolin-labeled postlysosomes 30 minutes after chase. In contrast, in LvsB-null 

cells, the endocytosed marker was found in vacuolin-labeled postlysosomes within 10 

minutes of chase.  Second, we used an in vivo endosome fusion assay to directly 

quantify the fusion between early and late compartments.  In wild type cells the contents 

of early compartments rarely mixed with those of late compartments.  However, in the 

LvsB mutant cells, almost half of the early endosomes fused with late compartments.  

Together, these two approaches strongly indicate that in the absence of LvsB there is a 

loss of specificity of vesicle fusion resulting in the mixing of early and late 

compartments of the endolysosomal system. The specificity of this LvsB-null phenotype 

was further supported by the lack of this phenotype in vacuolinB null cells, which also 

contain enlarged post-lysosomes. 

The model presented here can also explain the observation of acidic 

postlysosomes and the missorting of proton pumps in LvsB-null cells. In the absence of 

LvsB protein, fusion between an acidic early endosome and a postlysosome will deliver 

proton pumps to the postlysosome and cause its acidification.  In addition, unregulated 

fusion is probably the cause of the severe enlargement and reduction in number of 

lysosomes and postlysosomes.  Finally, the intermixing of compartments helps explain 

the enhanced secretion of lysosomal enzymes observed in beige and LvsB mutant cells 

(Tanaka, 1980; Takeuchi et al., 1986; Harris et al., 2002a). 
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An alternative early model proposed that the formation of large lysosomes in 

beige and CHS mutant cell lines was due to a reduction in the rate of fission from 

maturing lysosomes. This model was suggested by the observation that overexpression 

of LYST in fibroblasts causes the formation of smaller than normal lysosomes (Perou et 

al., 1997).  However, this model cannot account for the observations described here.  On 

the other hand, our model for LvsB function can explain why the overexpression of 

LYST results in smaller than normal lysosomes. If the function of LvsB/LYST/Beige is 

to inhibit the fusion between endosomal compartments, an increase in Lyst activity 

would decrease the rate of fusion of endosomes with lysosomes, resulting in smaller 

lysosomes.   

It is possible that the mechanism of LvsB action involves interactions with 

known regulators of vesicle fusion such as the Rab and SNARE proteins. LvsB and 

other LYST-like proteins may control specific SNARE interactions and control the 

heterotypic fusion between late and early endosomal compartments. It is not uncommon 

that certain adaptor proteins selectively inhibit the formation of specific SNARES 

complexes.  For example, it was recently shown that the endosome-associated 

hepatocyte responsive serum phosphoprotein (Hrs) specifically inhibits the homotypic 

fusion of early endosomes without having a significant effect on late endosomes or 

lysosomes (Sun et al., 2003). Interestingly, a possible interaction between Hrs and Lyst 

was detected in a yeast two hybrid experiment (Tchernev et al., 2002).  Furthermore, 

deletion or mutation of Hrs results in an enlarged endosomal phenotype in mouse, fly 

and yeast (Raymond et al., 1992; Komada and Soriano, 1999; Lloyd et al., 2002).  This 

is clearly a possible pathway that needs to be dissected further. 

In conclusion, we have demonstrated that LvsB localizes on late endocytic 

compartments, and provides an additional level of specificity by controlling fusion 
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events between late and early compartments. Future studies will focus on defining the 

precise mechanism of LvsB function by identifying potential binding partners. It will 

also be crucial to determine the domains that control the subcellular localization and 

function of LvsB and other BEACH proteins in Dictyostelium. This will help us 

understand how the different BEACH proteins have specialized to work in different 

cellular contexts.  
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Chapter 3: The BEACH protein LvsB antagonizes the Rab14 GTPase 
in vesicle fusion  

3.1 I1TRODUCTIO1 

The Chediak Higashi syndrome (CHS) remains a poorly understood genetic 

disorder. The identifying feature is the presence of enlarged lysosomes in all tissues 

from CHS patients. Impaired lysosomal function in these patients results in many 

physiological problems, including immunodeficiency, albinism and neurological 

problems. The gene affected in humans with CHS encodes a 430KDa protein named 

LYST (lysosomal trafficking regulator), expressed in very low levels in cells (Ward et 

al., 2000). The beige mouse has been used as an animal model for the study of CHS 

since the clinical and pathological features of the CHS and the beige mouse are very 

similar (Barbosa et al., 1996; Nagle et al., 1996a; Perou et al., 1996). 

LYST belongs to the novel family of BEACH proteins. BEACH proteins are 

conserved in all eukaryotes. All proteins in this family have a similar structural 

organization and share the conserved BEACH domain of unknown function and 

multiple WD motifs at the C-termini. Localization studies of several BEACH proteins, 

as well as loss of function phenotypes suggest that these proteins may play an important 

role in membrane trafficking. Unfortunately after many years of research the mechanism 

by which BEACH proteins regulate vesicle trafficking is not understood.   

Dictyostelium discoideum has been proven to be a very useful system to study 

the function of BEACH proteins. Dictyostelium contains six BEACH domain-containing 

proteins termed Lvs (large volume sphere) A-F (Wang et al., 2002; De Lozanne, 2003). 

LvsA and LvsB are studied in detail and seem to have different roles in membrane 

compartments in the cell (Kwak et al., 1999; Gerald et al., 2002; Harris et al., 2002b). 
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Dictyostelium LvsA is proven to be essential for cytokinesis and the function of the 

contractile vacuole, an osmoregulatory organelle. In fact, LvsA associates transiently 

with the contractile vacuole (Kwak et al., 1999; Gerald et al., 2002). Dictyostelium LvsB 

is the ortholog of LYST and recent data shows that LvsB functions similarly to LYST. 

LvsB-null cells show enlargement of acidic compartments and present with secretory 

defects (Cornillon et al., 2002; Harris et al., 2002b). Additionally, characterization of the 

LvsB-null cells suggests that the enlarged acidic compartments arise by enhanced 

homotypic fusion of lysosomes (Harris et al., 2002b).  Recently, we have demonstrated 

that LvsB-null cells also contain enlarged post-lysosomes that are abnormally acidic. 

Post-lysosomes are terminal secretory vesicles, marked by the association of vacuolin 

that are destined for exocytosis (Rauchenberger et al., 1997; Jenne et al., 1998). In fact 

we have shown that LvsB localizes on late lysosomes and post-lysosomes and provides 

an additional level of vesicle fusion specificity by controlling heterotypic fusion events 

between late and early endocytic compartments. 

In the present study, with a more precise functional assessment of the endosomal 

pathway in the LvsB-null cells, we showed that the early endosomes and the recycling 

compartment function normally in the absence of LvsB and the function of this protein 

is more restricted in regulating the fusion between lysosomes and post-lysosomes. In 

addition, we found that LvsB antagonizes with the Dictyostelium lysosomal GTPase 

Rab14.  

Rab proteins are small (20-29kDa), ubiquitously expressed and constitute the 

largest branch of the Ras GTPase superfamily (Chavrier and Goud, 1999). Like other 

GTPases, the Rab proteins cycle between an active (GTP-bound) and an inactive (GDP)-

bound state. Numerous studies have established that Rab proteins are distributed to 

distinct intracellular compartments. Activated Rab proteins on their corresponding 
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membranous compartments interact with effector molecules that mediate a variety of 

downstream effects. Rab GTPases and their effectors are implicated into four major 

steps of membrane traffic such as vesicle formation, vesicle delivery utilizing motor 

proteins, vesicle tethering and membrane fusion (Zerial and McBride, 2001).  

Dictyostelium Rab14 is a novel GTPase related to mammalian Rab14. 

Dictyostelium Rab14 is shown to be a positive regulator of homotypic lysosome fusion. 

Rab14 localizes primarily on the contractile vacuole, an organelle important in osmotic 

regulation and to a lesser extent on lysosomal vesicles. The localization of Rab14 on 

lysosomal membranes is shown more clearly using subcellular fractionation 

experiments. When Rab14 is expressed in a constitutively active form (Rab14Q67L), 

cells accumulate enlarged acidic vesicles similar to the enlarged vesicles seen LvsB-null 

cells (Bush et al., 1994; Bush et al., 1996; Harris and Cardelli, 2002). Cells expressing a 

constitutively inactive Rab14 (Rab14N121I) accumulate many endosomes of smaller 

size compared to control cell lines. Furthermore, the neutralization kinetics of lysosomes 

is delayed. In addition, cell lines expressing Rab14(N121I) show deficient  contractile 

vacuole activity (Bush et al., 1996). 

In this study, we provide the first evidence for a functional interaction between 

LvsB and Rab14. Expression of the inactive form of Rab14(N121I) suppressed the 

LvsB-null phenotype by reducing the enlarged post-lysosomes and the enhanced rate of 

heterotypic fusion. In contrast, expression of the active form of Rab14(Q67L) enhanced 

the LvsB-null phenotype by causing an even more severe enlargement of endosome size.  

This functional link between LvsB and Rab14 provides the initial mechanistic 

insights into the regulation of membrane fusion events that are controlled by LvsB. 

Interestingly in a recent study, the Drosophila BEACH protein Blue cheese (Bchs) is 

shown to antagonize the GTPase Rab11 in multiple developmental events and during 
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synapse morphogenesis (Khodosh et al., 2006). Thus, it is likely that BEACH proteins 

localize to specific membranous compartments to control membrane fusion by 

antagonizing specific Rab GTPases. 

 

3.2 RESULTS 

3.2.1 The absence of LvsB does not cause inappropriate fusion between the 
contractile vacuole and endosomes. 

We have shown previously that in the absence of LvsB, endosomes of different 

maturation stages fused inappropriately (Kypri et al., 2007). It is currently not known 

whether LvsB also acts to prevent fusion of membranes derived from other organelles. 

Interestingly, a recent study shows that lysosomes derived from beige mice contained 

high amounts of endoplasmic reticulum proteins (Zhang et al., 2007). Thus, the absence 

of beige/LvsB may cause abnormal fusion with membranes derived from other 

organelles. In Dictyostelium, the contractile vacuole is a very dynamic osmoregulatory 

organelle composed of a reticular network of tubules and bladders. This organelle is 

highly dynamic and is set in motion as soon as the osmotic environment changes. As the 

hyposmotic media, such as water, enters the cell, the tubules collect the excess water and 

feed it to the main bladder that expands. When the bladder reaches its maximum 

capacity  it fuses briefly with the membrane and expels its contents to the extracellular 

milieu (Gerisch et al., 2002).  The membranes of the contractile vacuole and the 

endocytic pathway are distinct, and no apparent trafficking of the bulk flow of 

membranes  occurs between these organelles (Gabriel et al., 1999).  Despite this, the 

proteins Rab14, golvesin and the vacuolar-ATPase, are found to associate with both the 

contractile vacuole and endosomes (Bush et al., 1994; Temesvari et al., 1996; Schneider 

et al., 2000)  In addition, we recently identified that endosomes and the contractile 
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vacuole also share SNARE proteins ( Kevin Bersuker, unpublished data).  To test 

whether in the absence of LvsB there is loss of fusion specificity between endocytic 

membranes and membranes of the contractile vacuole, we tested whether two integral 

membrane proteins, Rh50 a resident protein of the contractile vacuole, and p80 a 

resident protein of endosomes colocalize in LvsB-null cells (Benghezal et al., 2001; 

Ravanel et al., 2001). In fact, p80 localizes on the  plasma membrane and both early and 

late endocytic vesicles (Ravanel et al., 2001), thus making it a good marker for vesicles 

of all maturation stages. Immunofluorescence using antibodies directed against Rh50 

and p80 revealed that the localization of both proteins appeared normal in both control 

(Figure 3.1 A.B) and LvsB-null cells (Figure 3.1C,D). Rh50 displayed a normal 

localization characteristic of the contractile vacuole tubules and bladders (Benghezal et 

al., 2001). P80 localized normally on the plasma membrane and endocytic vesicles, 

although p80 was detected on enlarged vesicles in the LvsB-null cells (D). This can be 

explained by the enlarged endosomes found in LvsB-null cells. Therefore, both Rh50 

and p80 localized to their respective compartments and no intermixing occurred, 

suggesting that the absence of LvsB does not cause fusion of membranes between these 

compartments.  
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Figure 3.1: The absence of LvsB does not cause inappropriate fusion between 
endosomes and the contractile vacuole 

Control and LvsB-null cells were fixed and stained with antibodies against Rh50, a 

contractile vacuole marker and p80, a marker for endosomes. In both wild-type (A,B) 

and LvsB-null cells (C,D), Rh50 is distributed normally on the membranes of the 

contractile vacuole and p80 distributed normally on endocytic vesicles. Thus, the lack of 

LvsB did not cause inappropriate fusion between endosomes and the contractile vacuole. 

Bar,10 µm 
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3.2.2 Early endosomes and post-lysosomes do not fuse inappropriately in the 
absence of LvsB 

 We previously showed that LvsB regulates post-lysosome morphology. Post-

lysosomes are the terminal secretory organelles formed by the fusion of lysosomes. The 

maturation of lysosomes into post-lysosomes is marked by the association of vacuolin 

(Rauchenberger et al., 1997; Jenne et al., 1998). In fact, we showed that in the absence 

of LvsB, lysosomes containing V-ATPase proton pumps fuse with post-lysosomes In 

addition, using an in vivo fusion assay we showed that earlier endosomes fuse with later 

endosomes in LvsB-null cells compared to control cells (Kypri et al., 2007). The in vivo 

fusion assay limited our ability to distinguish whether the newly formed early 

endosomes also fused with post-lysosomes in the absence of LvsB. Therefore, we tested 

the trafficking of the integral membrane protein p25, a marker for the plasma membrane 

and early endosomes in control and LvsB-null cells.  P25 is internalized together with 

endocytic cargo in early endosomes, and shortly retrieved to a recycling compartment 

before final recycling back to the plasma membrane (Charette et al., 2006).  Thus, p25 is 

absent from lysosomes and post-lysosomes. We colocalized p25 and vacuolin in control 

and LvsB-null cells (Figure 3.2). Similar to control cells (A,B,C), in LvsB-null cells 

(D,E,F), p25 localized normally to the plasma membrane and the recycling compartment 

and did not colocalize with vacuolin. This result suggested that early endosomes did not 

fuse inappropriately with late endocytic compartments in the absence of LvsB.  

The normal localization of p25 suggested that early endosome trafficking 

proceeded normally in LvsB-null cells. Thus, the lysosome to post-lysosome fusion did 

not affect the dynamics of trafficking to the recycling compartment. In fact, the 

association of another protein of the recycling compartment, the Dictyostelium GTPase 

Rab5A was normal in LvsB-null cells (Figure 3.3E). Rab5A was found to associate with 



 59 

the juxtanuclear recycling compartment and showed extensive colocalization with p25, a 

marker for this early endocytic compartment (A,B,C). Therefore, we concluded that the 

composition of the recycling compartment was not perturbed by the lack of LvsB.  

Interestingly Rab5A was also found to associate with vesicles that differed in size in 

LvsB-null cells compared to the control (D,E).  This can be explained by the presence of 

enlarged endosomes in LvsB-null cells. This functional assessment of the early steps in 

the endosomal pathway in LvsB-null cells, helped specify the function of LvsB in 

regulating fusion only between lysosomes and post-lysosomes. 
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Figure 3.2: Early endosomes and post-lysosomes do not fuse inappropriately in the 
absence of LvsB 

Control and LvsB-null cells expressing GFP-VacuolinB were fixed and stained with 

antibodies against p25. P25 is internalized together with endocytic cargo in early 

endosomes, and shortly retrieved to a recycling compartment before final recycling back 

to the plasma membrane (Charette et al., 2006). As previously described, in control 

cells, p25 localized normally on the plasma membrane and the juxtanuclear recycling 

compartment and did not colocalize with vacuolin on post-lysosomes (A,B,C). 

Similarly, p25 did not colocalize with vacuolin in the absence of LvsB (D,E,F). This 

result suggests that early endosomes and post-lysosomes did not abnormally fuse in the 

absence of LvsB. This limits the function of LvsB as a negative regulator of heterotypic 

fusion only between lysosomes and post-lysosomes.  Bar,10µm 

 

 

Figure 3.3: The association of Rab5A with the recycling compartment remains normal in 
LvsB-null cells 
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The GTPase Rab5A was found to associate with the juxtanuclear recycling compartment 

(A,B,C) as indicated by colocalization with p25, a marker previously shown to associate 

with the recycling compartment (Charette et al., 2006). Wild-type cells expressing GFP-

Rab5A (A), fixed and stained with p25 mab (B) showed extensive colocalization of the 

two proteins (C). The association of Rab5A with the juxtanuclear compartment 

remained normal in LvsB-null cells (E). Interestingly, Rab5A was also found to 

associate with vesicles in both wild-type (D) and LvsB-null cells (E). Bar,10µm  

 

3.2.3 Wild-type Rab14 abnormally colocalizes with vacuolin in LvsB-null cells 

Our results showed that vesicles, specifically of the lysosomal stage, fuse 

abnormally with post-lysosomes in the absence of LvsB. This suggested that lysosomes 

contained markers, different from markers on early endosomes that allowed the vesicles 

to be competent for fusion. In fact, lysosomes in wild-type cells show a very dynamic 

behavior and undergo homotypic fusion (Maniak, 2001). An important positive regulator 

of homotypic lysosome fusion is the Dictyostelium GTPase Rab14. Rab14 is a small 

GTPase shown previously to localize primarily on the contractile vacuole, and on 

lysosomal membranes. When Rab14 is expressed in a constitutively active form, cells 

accumulate enlarged acidic vesicles (Bush et al., 1994; Bush et al., 1996; Harris and 

Cardelli, 2002). The Rab14 constitutively active phenotype was very similar to the 

phenotype seen in LvsB-null cells. This suggested the possibility that LvsB and Rab14 

may exhibit an antagonistic relationship in vesicle fusion.  

To explore a possible functional interaction between Rab14 and LvsB, we 

initially tested the localization of wild-type Rab14 in the absence of LvsB (Figure 3.4). 

GFP-Rab14 was expressed in wild-type (A,B) and LvsB-null (C,D) cells.  Rab14 
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exhibited normal localization on the contractile vacuole membranes in both wild-type 

(A,B) and LvsB-null cells (C,D). Dictyostelium lysosomes mature into a neutral 

secretory compartment called the post-lysosome  This compartment is marked by the 

association of a peripheral membrane protein vacuolin (Rauchenberger et al., 1997; 

Jenne et al., 1998). Since Rab14 is shown to be a lysosomal marker, it did not colocalize 

with vacuolin on post-lysosomes (E,F,G). Interestingly in LvsB-null cells, while Rab14 

retained the normal localization on the contractile vacuole membranes, it was found to 

abnormally colocalize with vacuolin (H,I,J).  The localization of Rab14 on post-

lysosomes in LvsB-null cells is likely to occur because of the abnormal heterotypic 

fusion of lysosomes and post-lysosomes. Alternatively, the removal of Rab14 from 

lysosomes upon maturation to post-lysosomes may be impaired.  
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Figure 3.4: Rab14 GTPase abnormally colocalizes with vacuolin in LvsB-null cells 

Wild-type and LvsB-null cells were transfected with GFP-Rab14 expression vector 

(provided by Cardelli lab) to determine the localization of Rab14. Cells were also fixed 

and stained with anti-vacuolin mab. In the examples shown, for wild-type (A,B) and 

LvsB-null cells (C,D), Rab14 localized normally on the membranes of the contractile 

vacuole. While Rab14 was not detected to colocalize with the post-lysosomal marker 

vacuolin in control cells (E,F,G), Rab14 was frequently found to colocalize with 

vacuolin in LvsB-null cells (H,I,J). This suggested a mislocalization of Rab14 in the 

absence of LvsB. Bar, 10µm 

  

3.2.4 Inactive form of Rab14 suppresses the endocytic defects of LvsB-null cells 

Loss of LvsB results in enlarged late endocytic compartments with abnormal 

acidity that is caused by the inappropriate fusion of lysosomes with post-lysosomes 

(Kypri et al., 2007). Since Rab14 regulates trafficking events at the acidic stage, we 

examined the effects of the expression of the inactive form of Rab14(N121I) on the 

LvsB-null phenotype. It has been shown previously that cell lines expressing the 

inactive form of Rab14(N121I) accumulate smaller vesicles compared to wild-type cells 

and show some delay in the neutralization kinetics of vesicles (Bush et al., 1996).  The 

endocytic morphology was evaluated in control and LvsB-null cells expressing flag-

Rab14(N121I) that were incubated with TRITC-dextran for 1 hour (Figure 3.5A,B,C,D). 

Our flag-Rab14(N121I) tagged protein was detected at the predicted weight in western 

blot analysis and showed a cytosolic localization when stained with anti-flag 

monoclonal antibodies (data not shown). Importantly, similar to wild-type cells (A), 

LvsB-null cells expressing the inactive form of Rab14(N121I) (D), contained normal 
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size endosomes similar to endosomes in wild-type cells (A). This result suggested that 

the expression of a mutant form of Rab14 that was unable to associate with lysosomes 

caused a phenotypic rescue in LvsB-null cells. As previously described, the expression 

of Rab(N121I) in wild-type cells (C) caused an increased accumulation of small vesicles 

compared to non-transfected cells (A), although the effect was not as dramatic as in 

LvsB-null cells.  

We showed previously that LvsB-null cells exhibited post-lysosomes that were 

abnormally enlarged, compared to control cells.  The effects of the inactive form of 

Rab14(N121I) on post-lysosomal morphology was tested with vacuolin staining (Figure 

3.6 A,C,D,F). Immunostaining with vacuolin revealed that the size of post-lysosomes 

was reduced in LvsB-null cells expressing the inactive Rab14 construct (F). Thus, the 

expression of a cytosolic form of Rab14 suppressed the enlarged post-lysosomal size in 

LvsB-null cells. While a small decrease in overall endosome size was visible in wild-

type cells expressing Rab14(N121I) that were incubated with dextran,  (Figure3.5C), the 

effect on post-lysosome size was not easily distinguished. It is likely that the small 

changes on post-lysosome size were not easily detected. Interestingly, the small delay in 

the in neutralization kinetics of lysosomes measured previously (Bush et al., 1996)  did 

not seem to affect maturation of lysosomes and the association of vacuolin, since the 

number of post-lysosomes in cells expressing Rab14(N121I) (Figure 3.6C) was very 

similar to control cells (Figure 3.6A). 
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Figure 3.5: Expression of the mutant forms of Rab14 alters the LvsB-null endosomal 
morphology 

Wild-type and LvsB-null cells were transfected with the constructs flag-Rab14-N121I or 

flag-RabDQ67L and the endosomal morphology was evaluated by incubating with 

TRITC-dextran for 1 hour. Unstranfected wild-type and LvsB-null cells were used as 

controls (A,B).  As previously described, the expression of the inactive form of 
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Rab14(N121I) in wild-type cells (C) caused the accumulation of many small size 

vesicles compared to the endosomes in wild-type control cells (A) (Bush et al., 1996). 

LvsB-null cells expressing the inactive form of Rab14(N121I) (D) showed endosomes 

that were similar in size to wild-type cells. Thus, the expression of the inactive form of 

Rab14(N121I) rescued the LvsB-null phenotype. As shown previously, expression of the 

active form of Rab14(Q67L) in wild-type cells (E), resulted in the accumulation of 

enlarged vesicles, similar to the vesicles seen in the LvsB-null cells (B) (Harris and 

Cardelli, 2002). Expression of the active form of Rab14(Q67L) in the LvsB-null cells 

(F) caused an even greater enlargement of endosomes compared to the vesicles in the 

LvsB-null untransfected cell line (B). These results suggested that LvsB and Rab14 act 

antagonistically to control vesicle size.  Bar, 10µm 
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Figure 3.6: Expression of the mutant forms of Rab14 alters the LvsB-null post-
lysosomal morphology 

The morphology of the post-lysosomes was evaluated in wild type cells (A), wild-type 

expressing Rab14(Q67L) (B), wild-type expressing Rab14(N121I) (C), LvsB-null (D), 

LvsB-null expressing Rab14(Q67L) (E) and LvsB-null expressing Rab14(N121I) (F). 

The expression of the active form of Rab14(Q67L) caused enlargement of post-

lysosomes in both wild-type (B) and null cells (E), compared to post-lysosomes in non-

expressing cells (A,D). Importantly, LvsB-null cells expressing the inactive form of 

Rab14(N121I) (F), exhibited normal size post-lysosomes similar to wild-type control 

(A)  While the Rab14(N121I) inactive construct caused significant changes when 

expressed in LvsB-null cells it did not significantly alter the post-lysosome size when 

expressed in wild-type cells (C). It is possible that the difference in post-lysosome size is 

too small to detect. Bar, 10µm 

 

We showed previously that the enlarged size of post-lysosome size in LvsB-null 

cells is caused by the inappropriate fusion of lysosomes with post-lysosomes (Kypri et 

al., 2007). To determine whether the expression of the inactive Rab14 rescued the 

heterotypic fusion of lysosomes with post-lysosomes we performed in an in vivo fusion 

assay as previously described (Kypri et al., 2007) (Figure 3.7A,C,E). Control (A), LvsB-

null (C) and Rab14(N121I) (E) expressing cell lines were given a short pulse (5 min) of 

fluorescein isothiocyanate (FITC)-dextran and then chased with buffer for 30 min to 

allow the label to reach late compartments. Subsequently, cells were given a second 

short pulse (5min) of TRITC-dextran, washed and imaged within 10 minutes of the 

chase. In wild-type cells (A) the green and red dextran mixed minimally; 4.2% (n=310) 

of the vesicles contained both markers. LvsB-null cells (C) contained a high percentage 
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of vesicles that labeled by both markers (41.2%, n=136). In contrast, LvsB-null cells 

expressing the inactive Rab14(N121I) (E) contained  a low percentage of fused vesicles 

that were similar to wild-type numbers (2.9% , n=326). Therefore, the reduction in 

Rab14 activity on lysosomes restored normal endosome fusion in LvsB-null cells. This 

result suggests that Rab14 and LvsB work in the same pathway and compete in 

endosome fusion events. 

 

 

Figure 3.7: The expression of the mutant inactive Rab14(N121I) rescues the increased 
heterotypic fusion in the LvsB-null cells 

An in vivo fusion assay was performed as previously described (Kypri et al., 2007) in 

the following cell lines: wild type (A), LvsB-null (C), LvsB-null expressing 

Rab14(N121I) (E), wild-type expressing Rab14(Q67L) (B) and LvsB-null expressing 

Rab14(Q67L) (D). Briefly, control and expressing cell lines were labeled with FITC-
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dextran for 5 minutes and then chased in buffer for 30 minutes to allow the internalized 

marker to reach late compartments in the cells.  Cells were then labeled with a 5 minute 

pulse of TRITC-dextran, washed and imaged by fluorescence microscopy within 10 

minutes.  The fraction of vesicles containing both fluid phase markers was quantified in 

two independent experiments.  Error bars represent standard deviation. While the 

expression of the active form of Rab14(Q67L) caused a five-fold increase in the 

heterotypic fusion in wild-type (B) cells it did not significantly change the heterotypic 

fusion in LvsB-null cells (D) Significantly, the expression of the inactive form of 

Rab14(N121I) rescued the increased heterotypic fusion shown by the LvsB-null cells 

(E). 

 

3.2.5 Active form of Rab14 enhances the LvsB-null phenotype 

 Our experiments described above established a functional interaction between 

LvsB and Rab14. To further understand how Rab14 and LvsB coordinate to regulate 

vesicle fusion, we studied the effects of the expression of the active form of 

Rab14(Q67L) in control and LvsB-null cells. Previously published data showed that 

when Rab14 is expressed in a constitutively active form (Rab14Q67L) causes the 

formation of enlarged acidic compartments that arise by enhanced fusion rates (Harris 

and Cardelli, 2002). 

We expressed a flag-Rab14(Q67L) in control and LvsB-null cells and evaluated 

the endosome size by incubating with TRITC-dextran for 1 hour (Figure 3.5 A,B, E,F).  

The flag-Rab14(Q67L) protein was highly expressed at the predicted weight in western 

blog analysis (data not shown). As reported previously, LvsB-null cells (Figure 3.5B) 

contained enlarged vesicles (Harris et al., 2002b; Kypri et al., 2007). The expression of 

the flag-Rab14(Q67L) in wild-type cells (Figure 3.5E) caused the formation of enlarged 
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vesicles that were similar in size with vesicles in the LvsB-null cells (B). Interestingly, 

the expression of the Rab14(Q67L) construct in the LvsB-null cells caused an even 

greater enlargement of endosomes.(Figure 3.5F).  

To study whether these enlarged vesicles acquired vacuolin normally we stained   

control, LvsB-null and Rab14(Q67L) cell lines with anti-vacuolin antibody (Figure 3.6 

A,B,D,E). Staining with vacuolin revealed that the post-lysosomes of wild-type cells 

expressing the constitutively active Rab14 (Q67L) are enlarged (Figure 3.6B) and 

similar in size to LvsB-null cells (D). In contrast, expression of the constitutively active 

form of Rab14(Q67L) (Figure 3.6 E) caused an even more severe enlargement post-

lysosome size, compared to non-expressing LvsB-null cells (D) . Thus, the expression of 

the active form of Rab14(Q67L) did not prevent vesicle maturation and the association 

of vacuolin.  

The enhancement of the LvsB-null phenotype suggested that the two proteins 

may act independently in regulating vesicle fusion events. The localization and the 

functional phenotypes suggested that Rab14 positively regulates homotypic lysosome 

fusion whereas LvsB negatively regulates heterotypic lysosomes to post-lysosome 

fusion.  

We also tested the effects of the expression of the active Rab14(Q67L) on the 

rates of heterotypic fusion between late and early endosomal vesicles, utilizing the in 

vivo fusion assay with two differently labeled dextrans (Figure 3.7 A,B,C,D). As 

discussed previously, LvsB-null cells contained a high fraction of vesicles labeled by 

both markers (41.2%, n=136) (C). While the expression of the active Rab14(Q67L) in 

wild-type cells caused a small but significant increase in the percentage of heterotypic 

fusion (20.5%, n=241) (B) it did not significantly enhance heterotypic fusion when 

expressed in LvsB-null cells (49.8%, n=130) (D) This suggested that in the LvsB-null 
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cells the fusion machinery has reached saturation and the low vesicle numbers prevent 

further fusion. 

Interestingly, the effect of the active Rab14(Q67L) on heterotypic fusion of post-

lysosomes with earlier endosomes seemed contradictory to the localization of wild-type 

Rab14 (Figure 3.7B). Thus, we tested the possibility that the active form of 

Rab14(Q67L) remained associated with post-lysosomes, therefore affecting heterotypic 

fusion. We visualized the localization of active Rab14(Q67L)  in cells co-expressing 

flag-Rab14(Q67L) and GFP-vacuolinB, fixed and stained with anti-flag antibody in both 

wild-type and LvsB-null cells (Figure 3.8). Active Rab14(Q67L) mainly localized on the 

contractile vacuole membranes (data not shown) in both wild-type and LvsB-null cells. 

In wild-type, we also detected Rab14(Q67L) to colocalize with vacuolin on post-

lysosomes (Figure 3.8 A,B,C).  This localization could account for the increase in 

heterotypic fusion in control cells expressing active Rab14(Q67L). As expected, in 

LvsB-null cells the active form of Rab14(Q67L) was found also on post-lysosomes 

(D,E,F). At this time we cannot distinguish the percentage of active Rab14 that occurs 

on post-lysosomes in LvsB-null cells that is caused by fusion or failure of dissociation.   
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Figure 3.8: The active form of Rab14(Q67L) frequently associates with post-lysosomes 
in wild-type and LvsB-null cells 

Wild-type and LvsB-null cells were transfected with GFP-VacuolinB and flag-

Rab14(Q67L)  and stained with anti-flag monoclonal antibody. Active Rab14(Q67L) 

was frequently found to  colocalize with vacuolin in both wild-type (A,B,C) and LvsB-

null (D,E,F) cells. The association of Rab14(Q67L) with post-lysosomes may explain 

the significant increase in heterotypic fusion seen in wild-type cells expressing the active 

form of Rab14(Q67L) (Figure 3.7B). Bar, 10µm  

 

The enlarged vacuolin labeled post-lysosomes caused by the expression of active 

Rab14(Q67L) (see Figure 3.8) often localized near the edge of the cell and resembled 
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structures similar to the contractile vacuole bladders. Since active Rab14(Q67L) 

localized both on the contractile vacuole (data not shown) and frequently on post-

lysosomes, we investigated the possibility that the membranes of the contractile vacuole 

and post-lysosomes fused inappropriately, when the active Rab14 is expressed. Thus, we 

tested whether Rh50 a resident protein of the contractile vacuole, and vacuolin a post-

lysosome associated protein colocalized in cells expressing active Rab14(Q67L) (Figure 

3.9). Immunofluorescence in wild-type (B,C,D) and LvsB-null cells (F,G,H) expressing 

Rab14(Q67L), with antibodies directed against Rh50 and vacuolin revealed that these 

proteins localized to their respective compartments and no intermixing occurred. This 

suggested that expression of active Rab14(Q67L) did not cause fusion of membranes 

between these two compartments. Interestingly, the localization of Rh50 and the 

structure of the contractile vacuole seemed to be disrupted in cells expressing the active 

form of Rab14(Q67L) (Figure 3.9 B,C,D,F,G,H) compared to control cells (A,E). It 

appeared that the localization of Rh50 was more diffused in the cytoplasm and the 

contractile vacuole bladders were enlarged. While cells expressing inactive 

Rab14(N121I) are unable to handle osmotic stress, the role of Rab14 in contractile 

vacuole regulation is still not clear  (Bush et al., 1996). More careful analysis of the 

contractile vacuole morphology in cells expressing the mutant forms of Rab14 is 

required to understand the function of Rab14 in the regulation of this organelle.   
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Figure 3.9: The expression of the active Rab14(Q67L) does not enhance fusion between 
post-lysosomes and the contractile vacuole 

Control and LvsB-null cells expressing the active form of Rab14(Q67L) were fixed and 

stained with antibodies against Rh50, a contractile vacuole marker and vacuolin, a 

peripheral protein that associates with post-lysosomes. Vacuolin did not appear to 
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colocalize with Rh50 in wild-type (B,C,D) or LvsB-null (F,G,H) cells expressing the 

active Rab14(Q67L). Thus, we concluded that the expression of the active form of 

Rab14(Q67L) did not cause inappropriate fusion between post-lysosomes and the 

contractile vacuole. Interestingly, the expression of the active formed of Rab14(Q67L) 

seemed to cause changes in the contractile vacuole structure in both wild-type (B,C,D) 

and LvsB-null cells (F,G,H) compared to the contractive vacuole morphology in non-

expressing cells (A,E). Bar, 10µm 

 

3.3 DISCUSSIO1 

While several BEACH proteins have been implicated in vesicle trafficking, the 

mechanism through which they may regulate this process is unknown. In this study we 

showed that a Dictyostelium BEACH protein, LvsB, is a negative regulator of 

heterotypic fusion, specifically the fusion of post-lysosomes with lysosomes. More 

importantly, we provide the first evidence that LvsB is a functional antagonist of the 

GTPase Rab14.  In particular, reduction of Rab14 activity suppressed the LvsB-null 

phenotype by reducing the enlarged post-lysosomes and the enhanced rate of heterotypic 

fusion. In contrast, expression of an active form of Rab14 enhanced the LvsB-null 

phenotype by causing an even more severe enlargement of endosome size. By analogy 

we suggest that mammalian Lyst also prevents mixing of specific endocytic 

compartments and functionally interacts with members of the Rab family.  

 Following the dynamic trafficking of p25 from the plasma membrane to early 

endosomes and subsequently to the recycling compartment, we showed that these steps 

proceeded normally in LvsB-null cells. This was further supported by the normal 

association of Dictyostelium Rab5A with the recycling compartment in cells lacking 

LvsB. Upon internalization p25 transiently resides in early endosomes/macropinosomes. 
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Within 5 minutes of internalization p25 is retrieved from early endosomes and is visible 

in the punctuate juxtanuclear recycling compartment. P25 is absent from maturing 

endosomes and does not colocalize with the vacuolar-ATPase, a marker for lysosomes. 

In fact, the clathrin adaptor protein AP-3 is essential for the retrieval of p25 from early 

endosomes (Charette et al., 2006). As shown previously, cells lacking LvsB are unable 

to control heterotypic fusion between vacuolin-labeled post-lysosomes and earlier 

endocytic compartments (Kypri et al., 2007). Results in this study showed that in LvsB-

null cells, p25 traffics normally to the recycling compartment and does not colocalize 

with vacuolin on post-lysosomes, suggesting that post-lysosomes and early p25 positive 

endosomes did not fuse. These results defined a role of LvsB in specifically regulating 

fusion between lysosomes and post-lysosomes. These results also suggested that 

lysosomes contained markers, different from markers on early endosomes that allowed 

the vesicles to be competent for fusion. In fact, lysosomes in wild-type cells show a very 

dynamic behavior and undergo homotypic fusion (Maniak, 2001).  

 Many lines of evidence suggest trafficking between the contractile vacuole and 

the endocytic pathway. Initially, the GTPase Rab14 is shown to localize both on the 

contractile vacuole and on lysosomes. In fact, the expression of mutant forms of Rab14 

causes defects in both the contractile vacuole regulation and in lysosome 

formation(Bush et al., 1994; Bush et al., 1996; Harris and Cardelli, 2002). We also 

recently identified a SNARE protein that localizes on endosomes and the contractile 

vacuole (unpublished data by Kevin Bersuker). In addition, clathrin and adaptor proteins 

are also important for the regulation of endocytic trafficking and the contractile vacuole 

formation (O'Halloran and Anderson, 1992; Lefkir et al., 2003; Stavrou and O'Halloran, 

2006). Furthermore, a study by Padh e al. suggested that the vacuolar proton pumps are 

delivered to the endosomal pathway through the contractile vacuole system (Padh et al., 
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1991). More importantly, in a recent study Cosson et al. showed that contractile vacuole 

markers can traffic to the contractile vacuole membranes via the recycling compartment 

(Mercanti et al., 2006). While the absence of LvsB disrupted fusion between endocytic 

compartments it did not affect the morphology of the contractile vacuole as detected by 

the localization of Rh50 and did not cause an abnormal fusion between the contractile 

vacuole and endocytic membranes.  These results further support that LvsB functions 

specifically in regulating fusion between lysosomes and post-lysosomes.  

 In a process of understanding the mechanism by which LvsB regulates 

membrane fusion we investigated the interaction between Dictyostelium Rab14, a 

GTPase known to regulate lysosome fusion. Even though the precise mechanism by 

which Rab14 regulates lysosome fusion is not known, we can speculate that is by a 

similar mechanism used by other known Rab GTPases. While Rab GTPases may also 

regulate direct SNARE interactions it is well established that Rabs regulate vesicle 

tethering. This tethering process restrains the vesicle at or near their cognate target 

membranes allowing for SNARE pairing. Dictyostelium Rab14 localizes mainly on the 

contractile vacuole and on lysosomal membranes and does not colocalize with vacuolin 

on post-lysosomes. In the absence of LvsB, Rab14 was detected to colocalize with 

vacuolin on post-lysosomes. The presence of the wild-type Rab14 on post-lysosomes did 

not cause any changes on post-lysosome morphology, suggesting that GTPase-activating 

proteins (GAP) proteins functioned normally to keep the Rab14 in its inactive state. 

Based on the fact that LvsB-null cells exhibit enhanced fusion between lysosomes and 

post-lysosomes we can assume that the presence of Rab14 on post-lysosomes was 

caused by fusion.  

A prominent phenotype of LvsB-null cells is the presence of enlarged endocytic 

vesicles that arise by enhanced heterotypic fusion of post-lysosomes with lysosomes. 
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Importantly, this phenotype is completely rescued by the expression of the inactive form 

of Rab14(N121I). In particular, we showed that reduction of Rab14 activity suppressed 

the LvsB-null phenotype by reducing the enlarged post-lysosomes. The reduction of the 

post-lysosome size was caused by a significant reduction in the enhanced rate of 

heterotypic fusion. These results established a functional interaction between LvsB and 

Rab14. The localization of wild-type Rab14 on lysosomes and not on post-lysosomes, 

coupled with the previously characterized role of Rab14 in homotypic lysosome fusion, 

suggested that that Rab14 acts upstream of LvsB (Harris and Cardelli, 2002). The rescue 

of the LvsB-null phenotype by the expression of a cytosolic inactive Rab14(N121I)  

suggested that the activity of this GTPase on lysosomal membranes is required for  

fusion events to occur. 

 As previously characterized, the expression of the active Rab14(Q67L) in wild-

type cells caused the formation of enlarged acidic compartments that was produced due 

to an enhanced rate of homotypic fusion (Harris and Cardelli, 2002).  Here we provide 

the first evidence that the increase in size produced by of the expression of the active 

form of Rab14(Q67L) may also be caused by an increase in the heterotypic fusion of 

post-lysosomes with lysosomes. The increase in heterotypic fusion may be caused by 

active Rab14(Q67L) that remained on post-lysosomes, as shown by the colocalization 

with vacuolin. It is likely the factors such as GAP proteins that are required to inactivate 

and remove the active Rab14(Q67L) from the lysosomal membranes are depleted. We 

can speculate that the active Rab14(Q67L) on post-lysosomes recruits tethering factors 

allowing for heterotypic fusion. 

 The expression of the active Rab14(Q67L) in LvsB-null cells produced a  

synergistic effect. The size of post-lysosomes in null cells expressing active 

Rab14(Q67L) was even more enlarged, compared to post-lysosomes in LvsB-null cells. 
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This synergistic effect on the LvsB-null phenotype suggested that the two proteins have 

an antagonistic relationship. The reciprocity of these functional phenotypes also 

suggested that the two proteins participate in the same process. While the expression of 

the active form of Rab14 in the LvsB-null cells caused a significant increase in the size 

of post-lysosomes it did not alter the rate of heterotypic fusion. This suggested that in 

the LvsB-null cells the fusion machinery has reached saturation and the low vesicle 

numbers prevented further fusion. 

Interestingly, although the significance of the Rab14 function in contractile 

vacuole regulation was highlighted by defects caused by the inactive form of 

Rab14(N121I), the effects of the active mutant Rab14(Q67L) were not tested. 

Expression of the inactive Rab14(N121I) caused osmosensitivity and mislocalization of  

contractile vacuole markers such as the vacuolar-ATPase and calmodulin (Bush et al., 

1996).  In this study we showed initial evidence that the expression of the active 

Rab14(Q67L) also caused alterations  in the structure of the contractile vacuole in both 

wild-type and LvsB-null cells. The bladders of the contractile vacuole seemed to be 

enlarged and the tubular membranes appeared fragmented as detected by the localization 

of Rh50. It is likely that changes in the localization of the vacuolar-ATPase on the 

membranes of the contractile vacuole could account for the morphological changes. 

More careful investigation of the contractile vacuole structure and localization studies of 

other regulators of contractile vacuole activity will allow assessing the function of 

Rab14 in the regulation of the contractile vacuole morphology. While Rab14 seems to 

regulate trafficking in endocytic pathway as well as the contractile vacuole, the 

expression of the active form of Rab14(Q67L) did not cause fusion between the two 

pathways suggesting that additional levels of regulation exist to maintain the unique 

composition of each pathway.   
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The link between Rab14 and LvsB provided the initial mechanistic insights into 

the regulation of membrane fusion controlled by LvsB and GTPases. Our results favor 

the model where Rab14 and LvsB are involved in competing intracellular pathways. 

Wild-type Rab14 may promote homotypic lysosome fusion, thus allowing for the 

mixing of contents during the acidic stage. Subsequently, LvsB associates with late 

lysosomes and post-lysosomes to inhibit their heterotypic fusion and allow for the 

maturation of the secretory vesicles before exocytosis. This model is supported by the 

localization of both proteins as well as the synergistic effect on post-lysosome size of 

active Rab14 expression in LvsB-null cells. Our results at this time, cannot do not 

distinguish whether LvsB negatively regulates Rab14 activity. Thus, the possibility that 

LvsB negatively regulates the activity of Rab14 or a different Rab GTPase on post-

lysosomes still exists. 

Our finding that Dictyostelium LvsB antagonizes Rab14 in addition to the 

finding that Drosophila Bchs antagonizes Rab11 raises the possibility that other 

BEACH proteins might also functionally interact with Rab family members. It will be 

interesting to determine whether alterations in Rab function could ameliorate defects 

caused by the absence of Lyst. 
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Chapter 4: Conclusions and future directions 

 Understanding the function of Lyst is crucial to develop therapies for the 

Chediak-Higashi syndrome. While the study of the localization and function of Lyst has 

not been successful, the study of LvsB, the Lyst ortholog in Dictyostelium, has provided 

many new insights into the function of Lyst-like proteins and further advanced the 

understanding of the Chediak-Higashi syndrome. Specifically, in this study we localized 

LvsB on endocytic and phagocytic compartments. This was the first evidence of a 

localization of a Lyst-like protein. In addition, we presented with a new model for LvsB 

function as a negative regulator of heterotypic fusion of post-lysosomes with lysosomes. 

Furthermore, we identified an antagonistic relationship between LvsB and the GTPase 

Rab14, providing the initial mechanistic evidence of how LvsB regulates membrane 

fusion. This study raises a lot of interesting questions about the precise role of LvsB and 

other BEACH proteins in regulating membrane fusion.  

 

4.1 FUTURE DIRECTIO1S 

4.1.1 Domain analysis of LvsB 

This study found that LvsB, the Lyst ortholog localizes on endocytic vesicles. 

This finding further supports the hypothesis that BEACH proteins function by localizing 

to specific membranous compartments. These findings also raise the question whether 

specific LvsB domains confer its specific function and localization. By extension, an 

LvsB domain analysis will also help understand how other BEACH proteins are targeted 

and specialized to work in different cellular contexts. Our preliminary data showed that 

the PH-Beach-WD domains of LvsB did not include a sufficient membrane localization 
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signal (Appendix Figure A-2) and showed mainly a cytosolic localization. The lack of a 

sufficient membrane localization signal on the C-terminal region that is most conserved 

between BEACH proteins, suggested that the membrane localization signal of LvsB 

resides on the N-terminus. Thus, we started to make deletions at the C-terminus to begin 

understanding the function of the remaining portion of LvsB. Unfortunately, the cell line 

lacking the WD domain (Appendix, Figure A-5) expressed the truncated LvsB protein in 

very low levels and showed an LvsB-null phenotype. Alternatively, to study the function 

of the N-terminus we will generate deletion cell lines tagged with GFP, lacking portions 

of the N-terminus, using a knock-in approach. The deletion cell lines will allow 

assessing whether the mutant truncated proteins are able to localize on endocytic 

vesicles. In addition, they will allow assessing whether the mutant proteins are able to 

regulate vesicle fusion. Interestingly, the N-terminus of LvsB contains two additional 

regions of similarity with mammalian Lyst. Of particular interest is the fact that a human 

CHS missense mutation has been mapped in one of these regions of similarity. These 

two regions provide the initial sequences to be studied within the N-terminus. 

 

4.1.2 Perform in vitro endosome fusion assays 

Our in vivo fusion assay utilizing dextrans provided the initial evidence that 

LvsB regulates heterotypic fusion between postlysosomes and lysosomes. However, our 

in vivo fusion assay failed to detect whether LvsB also controls homotypic fusion events. 

In addition, the assay failed to detect the precise timing of LvsB action due to the 

requirement for broad chase times. An in vitro endosome fusion assay will allow us to 

answer these issues more specifically and will be performed in control and LvsB-null 

cells, as previously described by Laurent et al (Laurent et al., 1998). The endosome 
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fusion assay utilizes the ability of avidin and biotin to bind each other. The fusion will 

be quantified by the formation of a complex between avidin and biotin-HRP loaded 

endosomes, in the presence of cytoplasm. After fusion, endosomes will be loaded onto 

an anti-avidin-coated enzyme-linked immunoabsorbent assay plate and the optical 

density will be measured upon addition of HRP-substrate. Initially, we will confirm that 

LvsB regulates heterotypic fusion between post-lysosomes and lysosomes. 

Subsequently, we will assess both homotypic and heterotypic fusion rates by testing 

fusion using specific internalization and chase times. This assay will allow the precise 

assessment of the maturation stage of endosomes that are abnormally regulated in the 

absence of LvsB. In addition, by modifying the contents of the cytoplasm we can 

determine additional factors that affect fusion of endosomes originating from LvsB-null 

background.    

 

4.1.3 Determine the molecular partners of LvsB 

 Very little is currently known about the function of Lyst, no significant binding 

partners are identified and the molecular mechanism of its function is unknown.  A 

major drawback in the biochemical characterization of Lyst and other mammalian 

BEACH proteins has been the low expression level and the difficulty in manipulating 

their large genes. To make a reasonable progress in the understanding of the molecular 

mechanism of function of Lyst and other BEACH proteins, we must understand some of 

the basic biochemical and structural properties of these proteins. Are they elongated or 

globular molecules? Are they monomeric or multimeric? Do these proteins interact with 

other proteins known to function in membrane trafficking? Dictyostelium has been 

proven a good system to manipulate these genes. In this study, using homologous 
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recombination we inserted the GFP and TAP tags at the amino termini of LvsB (Figure 

2.1). Following a large scale TAP purification protocol, the full length LvsB in 

denatured form was purified and confirmed by mass spectrometry (Appendix-FigureA-

6). Unfortunately many contaminants and large amounts of IgG co-purified with LvsB, 

which made the identification of binding partners very difficult (Figure A-6). The full 

length purification of LvsB presents an exciting development towards the biochemical 

characterization of Lyst-like proteins. In the future, to enable the purification of the full 

length non-denatured form of LvsB, we will insert a different tag at the N-terminus of 

LvsB.  For example, maltose binding protein (MBP) has been successfully used to 

purify proteins in Dictyostelium (Graf, 2001).  Isolated non-denatured LvsB, subjected 

to electron microscopy can provide some initial evidence about the general structure of 

the protein. Upon optimization of the purification protocol we will also identify binding 

partners of LvsB. Since our data suggest that LvsB is a novel regulator of fusion, 

identification of binding partners that are known regulators of membrane trafficking will 

provide insights into the mechanism of how LvsB regulates fusion. 

 

4.1.4 Test the functional interaction between LvsB with Lip5 and SKD1 

To understand the regulatory role of LvsB in membrane fusion it is important to 

investigate whether LvsB exhibits functional interactions with other proteins that are 

known regulators of endocytic traffic. Of particular interest is the ATPase SKD1 

because when altered produces a phenotype similar to LvsB-null. 

Mammalian SKD1 is an ATPase that belongs to the AAA family of ATPases and 

is crucial for the formation of multivesicular bodies (MVB). Multivesicular bodies are 

late endocytic compartments that contain intravesicular vesicles. These intravesicular 
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vesicles contain cargo destined for degradation. Central to the selection of cargo are the 

protein complexes ESCRT-I,II,III that assembly on the membrane of the MVBs. The 

ATPase activity of SKD1 is crucial for the disassembly of ESCRT-III from the MVB 

and the final formation of the intravesicular vesicles. Interestingly, expression of a 

dominant negative form of SKD1(E235Q) causes the accumulation of enlarged acidic 

compartments that bear features of both lysosomes and late endosomes due to 

inappropriate fusion (Fujita et al., 2003). In addition, the expression of the mutant SKD1 

significantly influences the membrane association of Lyst (Fujita et al., 2004) The 

SKD1 mutant phenotype is close to the phenotype presented by LvsB-null cells. Thus, 

we can speculate that a functional interaction exists between these two proteins. The 

Dictyostelium genome encodes one protein with significant homology to mammalian 

SKD1, thus it will important to study the functional interaction with LvsB. In fact, we 

tagged the full length Dictyostelium SKD1 with RFP and showed that while it is mainly 

cytosolic, it also localized on vesicles and colocalized with LvsB (data not shown). A 

mutant form of SKD1(E235Q) was generated (with Kristin Benson) and the effect of the 

overexpression of this construct on endosomal morphology and the LvsB-null phenotype 

is currently under investigation.   

A binding partner of mammalian SKD1 is the novel protein Lip5 (Lyst 

Interacting Protein 5) (Fujita et al., 2004). While the precise function of Lip5 is 

currently unknown, the yeast homologue Vta1 has been shown to stimulate the ATPase 

activity of SKD1(Azmi et al., 2006). Interestingly, Lip5 was identified, independently 

by a different group, as a novel binding partner of Lyst (Tchernev et al., 2002). Thus, it 

is possible that Lip5 also directly interacts with LvsB. In fact, Dictyostelium contains a 

mammalian Lip5 homolog. Dictyostelium Lip5 was shown to associate with endocytic 

vesicles and colocalized with LvsB (by Kristin Benson, unpublished data). While the 
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connection between LvsB, SKD1 and Lip5 are currently not clear, further exploration of 

functional interactions will help understand how LvsB inhibits membrane fusion. 

We can postulate that LvsB binds to Lip5 to promote the ATPase activity of 

SKD1. Unpublished data suggests that Lip5 localizes on endosomes earlier than LvsB 

and the overexpression of Lip5 seems to partially rescue the LvsB-null phenotype (by 

Kristin Benson, unpublished data). It will be important to test whether Lip5 recruits 

LvsB on late lysosomes. This can be tested by the generation of Lip5 knockout cell 

lines. A direct interaction of LvsB, SKD1 and Lip5 will also be tested. Subsequently, 

stimulation of SKD1 activity could facilitate the formation of intravesicular vesicles and 

the retrieval of factors important for fusion. We can postulate that in the absence of 

LvsB the formation of intravesicular vesicles and the retrieval of fusion factors is 

impaired, resulting in abnormal heterotypic fusion. The requirement of LvsB for the 

SKD1 ATPase activity could be tested using an in vitro ATPase assay, which requires 

the purification of full length LvsB. 

While known factors that affect fusion such as the SNARE proteins are not yet 

detected in intravesicular vesicles, the accumulation and degradation of the lipid 

messenger phopshatidylinositol-3-phosphate in intravesicular vesicles is described in 

yeast vacuole (Wurmser and Emr, 1998). The importance of this lipid messenger is 

highlighted during early endosome fusion in mammalian cells, thus, is tempting to 

speculate that the removal of this lipid from the lysosomal membrane into intravesicular 

vesicles is crucial for the regulation of fusion.  
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4.1.5 Future implications of this study to the understanding of the function of Lyst 
and the Chediak-Higashi syndrome 

 The results accomplished in this thesis as well as the future directions outlined 

in this section aim to help understand the role of Lyst-like proteins in higher organisms 

and ultimately a better understanding of the Chediak-Higashi syndrome. The endocytic 

localization of LvsB, as well as the detailed characterization of endocytic compartments 

in LvsB-null cells suggested that Lyst may also localize on specific endocytic vesicles to 

control heterotypic fusion events between vesicles of specific stages. Our current model 

of the function of LvsB in Dictyostelium can also be tested in CHS/beige cells using the 

in vitro endosome fusion assay, an assay that is well characterized in mammalian 

systems (Diaz et al., 1988; Gruenberg et al., 1989). Importantly, the identification of an 

antagonistic relationship between LvsB and Rab14 suggested that a similar interaction 

may exist between Lyst/beige and a mammalian Rab GTPase. Interestingly the 

mammalian Rab7 GTPase seems to function similarly to the Dictyostelium Rab14 in 

controlling lysosome fusion. In fact, Rab7 associates mainly with lysosomes and the 

expression of an active mutant Rab7(Q67L) causes enlargement of lysosome size and 

enhances fusion (Bucci et al., 2000). We can postulate that the overexpression of the 

inactive Rab7(T22N) mutant will rescue the phenotypes presented by CHS and beige 

cells.  

   The identification of LvsB binding partners will also suggest possible binding 

partners of Lyst and will contribute to the elaboration of a model that explains the 

molecular function of Lyst-like proteins. As described earlier in this section, the recent 

evidence in mammalian cells as well as preliminary data from Dictyostelium studies 

(Kristin Benson, unpublished data) suggest that Lyst proteins may regulate fusion 

through functional interactions with the proteins SKD1 and Lip5. We can speculate that 
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the overexpression of SKD1 and Lip5 in CHS/beige cells will result in phenotypic 

rescue. 

The information we receive from this study of LvsB in Dictyostelium, will 

provide valuable insights into the understanding of Chediak-Higashi syndrome. We 

hope that the possible modifications of the activities of the endocytic regulators Rab7, 

SKD1 and Lip5 will provide a path in identifying potential therapies for CHS patients. 
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Chapter 5: Experimental Procedures 

5.1 MATERIALS A1D METHODS 

5.1.1 Strains and culture 

Dictyostelium discoideum wild type cells, NC4A2 and DH1 and AX2, were 

grown axenically in HL-5 medium supplemented with 0.6% penicillin-streptomycin 

(PS) (GIBCO BLR, Gaithersburg,MD) at 18
0
C on Petri dishes. Mutant or transfected 

cell lines were grown in medium supplemented with 5µg/ml blasticidin (Calbiochem, 

EMD Biosciences, Inc. La Jolla, CA) or 10µg/ml G418 (Geneticin, Gibco,BRL, Grand 

Island, NY,USA) 

5.1.2 Tagging LvsB with a knock-in construct 

The LvsB knock-in construct was designed similarly to the GFP-LvsA construct 

(Gerald et al., 2002). In this construct, in addition to the GFP coding sequence, the TAP 

tag sequence was also fused to the lvsB gene. The vector used to make the LvsB knock-

in construct is the pTAP-GFP (constructed by Joe Mireles).  The TAP-GFP coding 

sequence was fused in frame with approximately 1.25kb of the lvsB open reading frame.  

For the amplification of the lvsB coding sequence starting at amino acid 48 we used the 

following primers AO-483 

(5’CGGATCCTGGAATACGTATACACAAACAGTAGTTTATCAAG3’) and AO-484 

(5’CCTCGAGGATAAACATGATTTTGACATTATTTGAGCG3’). The lvsB coding 

sequence was inserted into the BamHI and XhoI sites of the pTAP-GFP vector. The 

fusion construct was placed under the control of the Dictyostelium actin-6-promoter. The 

construct also contained 0.9kb of lvsB untranslated sequence. For the amplification of 
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the untranslated region the primers AO-493 

(5’CGCGGCCGCGTTTCCAAATGCTTTCTTTTTGAGACTCTG3’) and AO-494 

(5’GTCTAGAGTCGACACTAGTGGAATTTTCTATTGCCCCTTATTAATTTTG 3’) 

were used. The untranslated region was inserted into the NotI and XbaI sites of the 

pTAP-GFP vector. A blasticidin-resistance cassette was included as a selectable marker 

and was inserted into the SalI and SpeI sites that were included with the amplification of 

the lvsB untranslated sequence.  

The final construct was linearized using NotI, XhoI sites and was introduced into 

wild-type (DH1) cells by electroporation using a gene pulser (75kv, 25µF) (BioRad, 

Hercules,CA) Transformants were selected in HL-5 medium containing 5µg/ml 

blasticidin. Resulting clones were screened with the polymerase chain reaction (PCR) 

and western blot analysis.  

For PCR screening, the following primers were used: A0-488 (5’ 

GTTTCCAAATGCTTTCTTTTTGAGACTCTG 3’), located in the 5’UTR of lvsB gene, 

AO-293 (5’CCATTACCTGTCCACACAATCTGCCC3’) found in the GFP sequence, 

AO-484 (5’CCTCGAGGATAAACATGATTTTGACATTATTTGAGCG 3’), AO-492 

(5’GAATCTTGATAAACTACTGTTTGTGTATACGTATTCC3’), both located in the 

lvsB coding region and lastly AO-486 (5’ TTGTTGATGGTATTGATAGCCGTGG3’) 

found in the beginning of the lvsB coding region. The primers were used in the 

following combinations: A0-488 with AO-486 (set1), A0-488 with AO-484 (set2), AO-

293 with AO-484 (set3), and AO-488 with AO-492 (set4).   

5.1.3 Western blot analysis 

 Positive cells lines expressing the TAP-GFP-LvsB were screened by western 

blot analysis. Dictyostelium cell lysates (2x10
6
cells/lane) were run on a 7.5% SDS 

polyacrylamide gel. The gel was transferred onto a nitrocellulose membrane and blotted 



 93 

with 1.1000 dilution of an anti-GFP polyclonal antibody developed in our laboratory. 

The blot was probed with an HRP-conjugated goat anti-rabbit secondary and the signal 

was detected using an ECL kit (Pierce Biotechnology, RockFord, IL, USA).  

 The expression level of the C-terminal domains of LvsB (GFP-BEACH-WD, 

GFP-PH-BEACH-WD) was detected by western blot analysis using an anti-GFP 

polyclonal antibody developed in our laboratory using the same conditions as described 

above. 

5.1.4 Labeling of endosomes and phagosomes 

For visualization of LvsB on phagosomes, expressing cells (2x10
6 
cells/ml), were 

allowed to attach to coverslips and were incubated with 200µl of a 1:4000 dilution of 

0.9µm carboxylate-modified polystyrene beads (Sigma-Aldrich, Inc. St Louis, MO, 

USA) in PDF. Cells were allowed to phagocytose the beads for 90 minutes, briefly 

washed in PDF for 2 times, followed by methanol fix. 

For evaluating the morphology of endosomes images were taken in live cells. 

Cells (1x10
6
cells/ml) were allowed to adhere to well chambers (Nalge-Nunc Int., 

Rochester, NY) and were incubated in low fluorescence media 

(http://dictybase.org/techniques/media/lowflo_medium.html) to reduce the background 

for 1 hour at room temperature. Cells were then incubated with 1mg/ml TRITC-dextran 

(mw 64kDa;Sigma- Aldrich Inc. St Louis, MO, USA) diluted in low fluorescence media. 

Cells were washed twice with the low fluorescence media and were imaged. 

For the visualization of acidic compartments and for the colocalization of 

vacuolin with the acidic endosomes, control, LvsB-null, vacuolinB-null or cells 

expressing GFP-vacuolinB (1x10
6
cells/ml), were allowed to attach on well chambers 

and were incubated in low fluorescence media as described above. Cells were then 

incubated with 1µM Lysotracker Red (Molecular Probes, Eugene, Oregon, USA) diluted 
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in low fluorescence media. Cells were washed once with the low fluorescence media and 

were imaged. 

5.1.5 Colocalization of vacuolin with the fluid phase marker 

Expressing cells (1x10
6
cells/ml) were allowed to adhere to well chambers and 

were incubated in low fluorescence media, as described above. Cells were incubated 

with 1mg/ml TRITC-dextran diluted in low fluorescence media for 10 minutes followed 

by and then briefly rinsed twice in low fluorescence media. Images of living cells were 

taken for 60 minutes after the initiation of the chase in both the GFP and Texas Red 

Filters. Images were separated for analysis according to the chase time. Cells that 

contained vacuolin positive vesicles that were colocalized with the fluid phase marker 

were counted in both control cells and mutant cell lines. Data points from three different 

independent experiments were taken. 

5.1.6 Cell fixation 

Cells expressing (2x10
6
cells/ml) were allowed to attach on coverslips for 15 

minutes at 18
0 
C and washed briefly with PDF buffer (2mM KCl, 1.1 mM K2HPO4, 

1.32 mM KH2P04, 0.1mM CaCl2, 0.25mM MgSO4, pH 6.7) and then overlaid with a 

thin layer of 2% PCR agarose (BioRad, Hercules, California). Cells were then fixed with 

1% formaldehyde in methanol for 5 minutes at -20
0 
C followed by a wash with 

phosphate-buffered saline (PBS), rinsed briefly with distilled water and mounted on 

microscope slides with mounting media (MOWIOL, Calbiochem, EMD Biosciences Inc. 

La Jolla, CA). The slides were allowed to dry in the dark and analyzed.   

For immunolocalization studies the following antibodies were used:  anti-

vacuolin monoclonal antibody  (264-79-2), anti-v-ATPase A subunit monoclonal 

antibody  (221-35-2), monoclonal anti-p25(H72) (Charette et al., 2006), monoclonal 
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anti-DdCP224  (Graf et al., 2000; Koch et al., 2006), monoclonal anti-flag(M2) (Sigma-

Aldrich, St. Louis, MO) and polyclonal anti-Rh-50 (Benghezal et al., 2001). For 

immunocolocalization studies, primary antibody was added to the fixed cells and 

incubated for 1 hour at 37 
0
 C in the dark. Cells were washed four times with PBS and 

incubated with Texas-Red conjugated goat-anti mouse antibody or Texas-Red 

conjugated goat anti-rabbit or FITC conjugated goat anti-mouse (30µg/ml; Molecular 

Probes, Eugene,OR) for 1 hour at 37 
0
 C in the dark. Cells were washed four times with 

PBS, rinsed briefly in ddH20 and mounted on microscope slides as described above. 

For nuclear staining, expressing cells were fixed as described previously and 

incubated with 4,6-diamidino-phenylindole (DAPI) at concentration 0.1µg/ml in PBS 

for 10 minutes followed by four washes with PBS. Lastly cells were mounted on 

microscope slides are described above. 

Cells were imaged on an inverted Nikon Microscope TE200 (Nikon Instruments, 

Dallas, TX, USA). GFP, Texas Red and DAPI filters were used. Images were acquired 

on a Photometrics cooled CCD camera and processed using the Metamorph 5.0 

software. When visualizing TAP-GFP-LvsB due to the low fluorescence levels, 

prolonged exposures of 800ms were used. 

 5.1.7 Construction of Rab plasmids 

The rab7 gene was amplified using Dictyostelium cDNA and using primers 

selected from sequence (DDB0191507; http://dictybase.org) (Buczynski et al., 1997). 

The primers used for this amplification were the following: AO-579 

(5’CGCGGATCCGCTGCTGCTGCTGCTGCTATGGCCACAAAGAAAAAGGTTTT

ATTAA 3’) and AO-580 (5’ 

CGCTCTAGATTAACAACAACCTGATTTAGCTGGTTG 3’). The resulting product 

was subcloned into the pTX-GFP expression vector (Levi et al., 2000) at the BamHI, 
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XbaI sites. Using an EcoRI site from the pTX-GFP vector and the XbaI site, the rab7 

gene was also subcloned into the mRFP-mars vector (Fischer et al., 2004).   

The rab5A gene was amplified using Dictyostelium cDNA and using primers 

selected from sequence (DDB0229401; http://dictybase.org). The forward primer used 

for the amplification of the rab5A gene was AO-

581(5”CGCGGATCCGCTGCTGCTGCTGCTGCTATGAATAATAATAATAAGATA

TTTCAATTTAAACTTGTA 3’). The reverse primer used was AO-582 (5’ 

CGCTCTAGATTAGTTCAACATTTGTTTTTCTTTCCAGTG 3’). The resulting 

product was subcloned into pTXGFP at the BamHI, Xba1 sites (Levi et al., 2000). 

The pvEII-Rab14Q67L and pvEIIRab14N121I plasmids that contain the mutant 

forms of Rab14 (provided by Cardelli’s lab) were used for the construction of the 

pTXflag-Rab14Q67L and pTXflag- Rab14N121I vectors. The primers used for the 

amplification of the rab14 were the following: AO-685                                                          

(5’ 

GCGGATCCATGTCATTTCCATATGAATATATATTTAAATACATCATTATTGGT

G3’) and AO-686 

(5’GCTCTAGATTAACAAGAACATTTACTGGCATCTTGAGGTTTATC3’). The 

resulting product of approximately 0.6kb was subcloned into the pTX-flag expression 

vector  (Levi et al., 2000) at the BamHI, XbaI sites. 

5.1.8 Construction of plasmids for LvsB domain analysis 

The BEACH-WD fragment of LvsB was amplified using the following primers: 

AO-465 (5’GGATCCGTTGATTATGCAGAGGTTCATGG3’) and AO-547 (5’ 

CGGATCCTTAACCAAGAACAATTGAAGAATAACCATCA3’). The resulting 

fragment of approximately 2kb plasmid was subcloned in the pTX-GFP plasmid at the 
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single BamHI site. The PH-BEACH-WD fragment of LvsB was cloned in the pTX-GFP 

plasmid by Carter. A. Mitchell.  

A construct was designed to replace the WD domain at the genomic locus of lvsB 

with the G418 resistance cassette using homologous recombination. A sequence starting 

upstream of the BEACH domain and ending at the end of the BEACH domain (~1.1kb) 

was amplified using the primers AO-670 

(5’GCGGATCCCTCGAGATGATATAATTGAAATTCATAAGAGAAGACATGTTT

TAAAGAATAATGC 3’) and AO-671 (5’ 

GCTCTAGAGGGGCCCTAGGCGGCCGCTGACCAATTCTTTTTTGGATGTGGGT

TTGTAAAGATTTG 3’). This sequence was cloned into the pA15TX vector at the 

BamHI and XbaI sites. The sequence of the forward primer AO-670 contained a BamHI 

and an XhoI site to be used at subsequent cloning steps. The sequence for the reverse 

primer AO-671 contained a NotI site, a stop codon, an ApaI site and an XbaI site. 

Subsequently, a sequence within the WD domain (~ 1kb) was amplified using the 

primers AO-672 (5’ 

GCGGATCCGTCGACAACCTCTTACATTATGTTTCAATATCGTTCACCC 3’) and 

AO-673 (5’ GCCTCGAGCAAGAACAATTGAAGAATAACCATCAAAAGAACGAC 

3’). The AO-672 primer included a BamHI and a SalI site. The primer AO-673 included 

an XhoI site. The resulting WD product was subcloned upstream of the BEACH region 

into the pA15TX vector into the BamHI and XhoI sites. The final construct was 

linearized using the single XhoI site and was introduced into the TAP-GFP-LvsB cell 

line (7D1).  

The resulting clones were selected with PCR for the absence of the WD-domain. 

The primers used for the screening of clones containing the deletion were the following: 

AO-546 (5’ CGATAACTGGATTGATTTACTATTTGGTTATAAACAACAAGGTGA 
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3’) located in the BEACH domain, AO-547 (5’ 

CGGATCCTTAACCAAGAACAATTGAAGAATAACCATCA 3’), located at the end 

of the WD domain, AO-553 

(5’TCCATACCAGTTATTAAAAGATTAGTATTAACACCTTG 3’), located within 

the WD domain, AO-461 

(GAATTCAAACTTGGTGAAAAAGTAAAAGAAGTTTTTAAATG 3’), located at 

the beginning of the pH domain, and AO-633 

(TGTACCACCTGATAAGACGACATTACCG 3’), located in the pA15TX plasmid. 

The primers were used in the following combinations: AO-356, AO-359 (Set1, PCR 

positive control), AO-546, AO-553 (Set2), AO-461, AO-633 (Set3) and AO-546, AO-

547 (Set4). 

5.1.9 Endosome fusion assay using two fluid phase markers 

Control and null cells (1x10
6
cells/ml) or expressing cell lines were allowed to 

adhere to well chambers and were incubated in low fluorescence media, as described 

above. Cells were incubated with 4mg/ml FITC-dextran (mw 77kDa; Sigma- Aldrich 

Inc. St Louis, MO, USA) diluted in low florescence media for 5 minutes. Cells were 

then briefly rinsed two times in low fluorescence media followed by a chase for 30 

minutes. Subsequently cells were incubated with 2mg/ml TRITC-dextran diluted in low 

fluorescence media for 5minutes washed two times in low fluorescence media and 

visualized immediately. Images of living cells in different fields were taken 

continuously for 10 minutes in both the GFP and Texas Red Filters. Fused (yellow) 

vesicles were counted and compared to the total vesicles (red and green) in both control, 

null or expressing cells. Vesicle counts from two different independent experiments 

were taken. 
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5.1.10 Tandem affinity purification of LvsB 

Cells (2000ml) expressing TAP-GFP-LvsB were grown to a concentration of 

3x10
6
cells/ml. Cells were harvested by centrifugation at 3000rpm for 10 minutes. The 

resulting pellet was washed with isolation buffer pH 6.5 (100mM MES pH 6.5, 500mM 

KoAc pH6.5, 0.5mM MgCl2, 1mM EGTA, 1mM DTT, 0.02% NaN3). Cells were 

centrifuged at 3000rpm for 3 minutes and resuspended to a concentration of 

2x10
8
cells/ml into modified isolation buffer pH 7.5  (20mM TES pH 7.5, 500mM KoAc 

pH6.5, 0.5mM MgCl2, 1mM EGTA, 1mM DTT, 0.02% NaN3). Protease inhibitor (1%) 

(Fungal Protease Inhibitor cocktail, Sigma-Aldrich, St. Louis, MO) and leupeptin (0.1%) 

were added to the resulting supernatant. Lysis was performed using a nebulizer (BioNeb 

cell and DNA disruptor) for 3 times. Cell-debris was recovered by centrifugation at 

5000rpm for 3 minutes and supernatant was collected. NaCl and NP40 were added to the 

supernatant at 100mM concentration and 0.1% respectively. IgG Sepharose 6 Fast flow 

beads (GE Health Care Bio-Sciences, Uppsala, Sweden) (200µl) were prewashed with 

IPP50 buffer (Tris-HCL 10mM, pH 8.0, NaCl 150mM, NP-40 0.1%) and incubated with 

supernatant for 2 hours at 4 degrees. Upon incubation supernatant was allowed to pass 

through a Poly-Prep chromatography column (BioRad, Hercules, CA). Beads were 

washed with modified IPP50 buffer (Tris-HCL 10mM, pH 8.0, NaCl 175mM, NP-40 

0.1%). The resulting IgG beads were removed to an eppendorf tube and the protein was 

eluted by boiling in hot sample buffer for 5 minutes. 

 

5.2 PLASMIDS A1D CELL LI1ES 

Table 5.1: Plasmids and cell lines used in this study 

Plasmids       Description 
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TAP-GFP-LvsB    0.9 kb of lvsB untranslated sequence cloned  

upstream of the blasticidin resistance 

cassette  and 1.25 kb of lvsB coding 

sequence cloned downstream of the TAP-

GFP sequence, used for LvsB knock-in 

construct 

RFP-Rab7 Full length Rab7 subcloned from PTX-GFP 

plasmid into the mRFP-mars-pBSRH 

plasmid (Fischer et al., 2004), BSR 

resistance 

GFP-vacuolinB   Dictyostelium vacuolin cDNA starting at 

amino acid 25 cloned into a pDNeoII based 

vector, N-terminal GFP tag, G418 

resistance (Jenne et al., 1998) 

VatM-GFP     Large subunit of Dictyostelium v-ATPase  

proton pump, cloned into pDXA-3H, C-

terminal GFP tag, G418 resistance (Clarke 

et al., 2002a) 

GFP-Rab14 Full length Dictyostelium Rab14 cloned 

into pVEII, N-terminal GFP tag, G418 

resistance (provided by Cardelli lab) 

FLAG-Rab14Q67L Full length Dictyostelium Rab14 with 

amino acid 69 mutated, (CAA to TAA), N-

terminal flag tag, G418 resistance 
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FLAG-Rab14N121I Full length Dictyostelium Rab14 with 

amino acid 121 mutated, (AAC to ATC), 

N-terminal flag tag, G418 resistance 

GFP-BEACH-WD Dictyostelium LvsB BEACH and WD 

domains cloned into the pTXGFP vector, 

N-terminal GFP tag, G418 resistance 

GFP-PH-BEACH-WD (by Carter.Mitchell) Dictyostelium LvsB PH, BEACH, WD 

domains cloned into the pTXGFP vector, 

N-terminal GFP tag, G418 resistance 

pA15TX-BEACH-WD Region including the BEACH domain 

(1.1kb) and WD domain (0.9kb) of LvsB 

cloned upstream of G418 sequence in the 

pA15TX vector, used for WD-deletion 

construct. 

 

 

Cell lines       Description 

NC4A2     Wild-type axenic strain, grows in HL-5 

AX2      Wild-type axenic strain, grows in HL-5 

LvsB-null (B1B11) Derived from NC4A2 parent strain, lvsB 

gene disrupted by the blasticidin gene, 

cassette (Harris et al., 2002b), grows in 

HL-5 supplemented with 5µg/ml 

Blasticidin 
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VacuolinB-null Derived from AX2 parent strain, vacuolinB 

gene disrupted by the blasticidin gene 

cassette (Jenne et al., 1998), grows in HL-5 

supplemented with 5µg/ml Blasticidin 

DH1 Derived from Ax3 wild-type axenic strain, 

with the pyr5-6 gene deleted, uracil 

oxotroph, grows in HL-5 and FM media 

TAP-GFP-LvsB (7D1)   Derived from DH1 parent strain, TAP-GFP  

sequence recombined into the N-terminus 

of lvsB coding sequence, grows in HL-5 

supplemented with 5µg/ml Blasticidin 

 

TAP-GFP-LvsB(-WD)(2H6) Derived from 7D1 parent strain, WD 

domain is disrupted by a G418 resistance 

cassette, grows in HL-5 supplemented with 

5µg/ml Blasticidin and 10µg/ml G418.  
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Appendix 

MISCELLA1EOUS EXPERIME1TS 

The BEACH-WD domains of LvsB localize to the cytosol 

 The most conserved region among BEACH proteins is the C-terminus that 

contains the BEACH-WD domains. It is possible that this region contains the LvsB 

membrane localization signal. To understand whether the BEACH and WD domains of 

LvsB are necessary for the localization of the protein on late lysosomes and post-

lysosomes we generated a GFP fusion construct that contained both domains. This 

construct was transformed in both wild-type and LvsB-null cells and was expressed at 

high levels as indicated by western blot analysis (Figure A-1 A,B). This construct 

expressed uniformly in cells and exhibited cytosolic localization in both wild-type cells 

and LvsB-null cells (Figure A-2 A,B). Thus, we concluded that the BEACH and WD 

domains are not sufficient to localize LvsB on vesicles. 

 

The PH-BEACH-WD domains of LvsB localize to the cytosol, nuclear 

envelope and the MTOC 

 Since the BEACH-WD domain did not target LvsB to endocytic compartments 

we investigated the contribution of the PH domain to LvsB localization.  To accomplish 

that, we generated a GFP-fusion construct (made by Carter A. Mitchell) that included 

the three C-terminal domains of LvsB (PH, BEACH,WD). This construct was expressed 

at high levels and exhibited a cytosolic localization in both wild-type and LvsB-null 

cells (Figure 2 C,D). In addition, cells expressing GFP-PH-BEACH-WD fixed and 

stained with 4’-6-Diamidino-2-phenylindole (DAPI) showed that the C-terminal 

domains of LvsB localized on the nuclear envelope (Figure A-3 A,B). In fact, this 
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construct also localized on the microtubule organizing center (MTOC) as indicated by 

colocalization with the centrosome marker DdCP224 (Figure A-3 C,D) (Graf et al., 

2000; Koch et al., 2006). Few reasons can account for the mislocalization of this 

construct to the nuclear envelope and the MTOC. It is likely that this mislocalization is 

caused by the overexpression and possibly degradation, as indicated by western blot 

analysis (Figure A-1 C).  Alternatively, it is possible that the exposed PH domain 

exhibits affinity for nuclear lipids. More experiments are required to understand this 

mislocalization, including the expression of the PH domain alone.  

 

 

Figure A-1: Expression levels of the BEACH-WD and PH-BEACH-WD domains 

 Western blot analysis with anti-GFP antibody of wild-type (A) and LvsB-null (B) cells 

expressing the BEACH-WD domains detects a single band of the predicted molecular 

weight. Western blot analysis of wild-type (C) cells expressing the PH-BEACH-WD 

domains detects a band of the predicted molecular weight. Degradation bands are also 

visible. The expression of the PH-BEACH-WD construct is much higher compared to 

the BEACH-WD construct.  
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Figure A-2: C-terminal domains of LvsB exhibit a cytosolic localization 

The constructs GFP-BEACH-WD (A, B) or GFP-PH-BEACH-WD (C, D) were 

expressed in wild-type and LvsB-null cells. Both constructs exhibited cytosolic 

localization suggesting that the C-terminal region of LvsB is not sufficient to target 

LvsB to the endocytic compartments. Bar, 10µm 
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Figure A-3: The PH-BEACH-WD domains localize on the nuclear envelope and the 
MTOC 

Wild-type cells expressing the PH-BEACH-WD domains were fixed and stained with 

4’-6-Diamidino-2-phenylindole (DAPI) (A,B) and with a monoclonal antibody against 

the  Dictyostelium centrosomal marker DdCP224 (C,D) (Graf et al., 2000; Koch et al., 

2006). GFP-PH-BEACH-WD construct localized on the nuclear envelope (A,B) and 

colocalized with the centrosomal marker on the microtubule organizing center (MTOC) 

(C,D). Bar,10µm 
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Expression of the C-terminal domains of LvsB does not rescue the LvsB-null 

phenotype 

To test the effects of the overexpression of the C-terminal domains of LvsB on 

endosomal morphology, we expressed the two C-terminal constructs in wild-type cells 

and LvsB-null cells and examined the morphology of the endosomes using TRITC-

dextran in living cells. The visualization of the PH-BEACH-WD domain on the nuclear 

envelope and the MTOC in living cells is more difficult due to the very high cytosolic 

signal. Wild-type cells expressing GFP-BEACH-WD or GFP-PH-BEACH-WD that 

were incubated with TRITC-dextran for 1 hour exhibited endosomes of normal size and 

morphology (Figure A-4 A,B,E,F). This suggested that the expression of these two 

constructs did not cause a dominant negative effect when expressed in wild-type cells. It 

is possible that these two constructs did not cause a dominant negative effect due to their 

inability to be targeted on endocytic vesicles. In addition, the expression of GFP-

BEACH-WD or GFP-PH-BEACH-WD did not cause any changes to the LvsB-null 

phenotype (Figure A-4 C,D,G,H). Therefore, we concluded that the C-terminal region of 

LvsB is not sufficient for the localization and function of LvsB.   
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Figure A-4: Overexpression of the C-terminal region of LvsB does not alter the 
endosome morphology in wild-type and LvsB-null cells 
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 The constructs containing the GFP-BEACH-WD and or GFP-PH-BEACH-WD were 

expressed in wild-type and LvsB-null cells and incubated with TRITC-dextran for 1 

hour to evaluate the endosome morphology. Wild-type cells expressing GFP-BEACH-

WD (A) or GFP-PH-BEACH-WD (E) exhibited endosomes of normal morphology (B,F 

respectively) that were indistinguishable from endosomes in non-expressing cells (data 

not shown). In addition, LvsB-null cells expressing GFP-BEACH-WD (C) or GFP-PH-

BEACH-WD (G) showed enlarged endosomes (D,H respectively) that were similar to 

endosomes found in LvsB-null cells (data not shown). Bar,10µm 

 

Disruption of the C-terminal WD domain of LvsB leads to an unstable 

protein 

The lack of the LvsB localization signal on the C-terminal region that is most 

conserved between BEACH proteins, suggested that the localization signal resides on 

the N-terminus. To test this possibility we generated a construct lacking the WD motif at 

the genomic locus of lvsB gene. To achieve that, we made a construct where the 

BEACH and WD domains flanked the G418 resistance cassette. We targeted this 

construct for recombination into the GFP-LvsB knock-in cell line (7d1 in materials and 

methods). Deletion of the WD domain in this cell line allows for visualization of the 

truncated protein. Cell lines that contained the correct disruption of the WD domain 

were selected by polymerase chain reaction (PCR). Many clones have been identified 

lacking the WD region. Clone 2H6 gave us the strongest PCR reactions with all sets of 

primers (see Materials and Methods). 
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Figure A-5: Strategy to produce a stable cell line lacking the WD domain of LvsB 

Diagram indicating the construct used to disrupt the WD domain of LvsB at the genomic 

locus with the G418 resistance cassette. A construct that contained regions of the 

BEACH (~ 1.1kb) and WD (~1kb) domains flanking a G418 resistance cassette was 

introduced into the GFP-LvsB knock-in cell line.  The cell lines containing the WD 

deletion were selected by PCR. 

 

Western blot analysis of the deletion clones, using anti-GFP antibody, revealed 

that the expression level of the TAP-GFP-LvsB(-WD) truncated protein is much lower 

that the TAP-GFP-LvsB full length (data not shown). In fact, the GFP-signal of the 

deletion clones was undetectable, even after prolonged exposures, thus preventing the 

visualization of the localization of the truncation construct. Evaluation of the endosome 

morphology by incubating with TRITC-dextran for 1 hour revealed that the deletion 

clone (2H6) contained large endosomes similar to endosomes seen in LvsB-null cells.  

This is likely caused by the low expression level of the truncation construct. Since the C-

terminal deletion lead to the production of unstable protein, N-terminal deletions will be 
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more useful for the study of the role of the LvsB N-terminal region in the localization 

and function.  

 

Tandem affinity purification of LvsB 

Currently, the molecular mechanism underlying Lyst function is not known and 

no significant binding partners have been identified, probably due to the large size and 

the low expression levels of the protein. Since Dictyostelium presents an easier system 

for manipulation of BEACH proteins, identifying binding partners of LvsB is crucial to 

help understand the mechanism of the regulation of membrane fusion by LvsB and Lyst-

like proteins. In order to accomplish the purification of full-length LvsB, we established 

a cell line (7D1, see Materials and Methods) that expressed the TAP and GFP tags at the 

amino terminus of the LvsB protein. Using cells expressing TAP-GFP-LvsB, we 

performed a large scale tandem affinity purification (TAP). A control experiment with 

cells expressing TAP-GFP was performed in parallel. Cell extract was passed through an 

IgG column and LvsB was detected by western blot analysis to bind to the IgG beads 

successfully (data not shown).  Unfortunately, the second step of the TAP-tag 

purification that involves the cleavage of LvsB from the IgG beads using TEV protease 

was unsuccessful. It is likely that LvsB remained bound to the IgG beads because the 

TEV cleavage site was masked. Since LvsB remained bound to the IgG beads we 

optimized the washing conditions (see Materials and Methods) and eluted the protein 

from the IgG beads using reducing hot sample buffer.  By performing a large-scale 

purification the full length LvsB was purified in an amount that was visible in a 

Coomassie stain. The eluate from the IgG beads, containing the full length LvsB and 

potential binding partners was analyzed by mass spectrometry (Figure A-6). The eluate 

recovered from the IgG beads was not very pure and only few distinct bands were 
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visible that were not present in the negative control. These bands were cut out from the 

gel and analyzed (bands 1,2,3 Figure A-6). Additional areas 4,5,6,7 (Figure A-6) were 

also cut out from the gel and analyzed for potential binding partners. The eluate from the 

negative control experiment was not analyzed due to the increased cost of the mass 

spectrometry. 

Bands 1 and 2 were identified as LvsB. Band 2 most likely represents a 

degradation product. This result suggested that our purification procedure was 

successful in isolating the full-length LvsB. This purification is significant because this 

is the first time that a full-length BEACH protein was isolated from any system. Band 3 

was identified as putative fatty acid synthase (entry DDB0230068 in 

http://dictybase.org).  

The abundant protein below band number 3 indicated by the arrow represents 

myosin II heavy chain, a non-specific contaminant of this preparation, which was also 

present in the negative control (data not shown). In the gel area 4 we identified myosin 

II heavy chain (entry DDB0191444 in http://dictybase.org ) that most likely represents a 

degradation product. In area 4 we also identified pyr1-3 (entry DDB0201646 in 

http://dictybase.org ). In gel area 5 we identified a putative protein (entry DDB0215923 

in http://dictybase.org ) and clathrin heavy chain (DDB0185029 in http://dictybase.org ). 

In area 6 we could not identify any proteins clearly. Lastly, in area 7 we identified a 

phosphoribosylformylglycinamide synthase (DDB0230086  in http://dictybase.org ) and  

a Pleckstrin (PH) homology domain-containing protein (DDB0191188  in 

http://dictybase.org ). The areas below area 7 could not be analyzed due to the large 

amounts of background IgG.  
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Figure A-6: TAP-tag purification of LvsB  

 Full length TAP-LvsB was eluted from the IgG beads using reducing hot sample buffer. 

The final elution was resolved on a 7.5% gel and stained followed by coomasie blue.  

Specific bands (1,2,3) and  gel areas (4,5,6,7) were subjected the mass spectrometry 

following in-gel digestion. Band 1 was identified as LvsB (410kDa). Band 2 was 

identified as LvsB and probably represents a degradation product. Band 3 was identified 

as a putative fatty acid synthase of approximate molecular weight 290kDa. The 
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abundant protein present below band number 3, indicated by the arrow represents 

myosin II heavy chain, a non specific contaminant of this preparation. In area 4 two 

proteins were identified that included myosin II-heavy chain and Pyr-1-3 of size 240kDa 

and 243kDa respectively. Area 5 included clathrin heavy chain (194kDa) and a putative 

protein (188kDa). No proteins were identified in area 6. Lastly, area 7 included a 

phosphoribosylformylglycinamide synthase (150kDa) and a Pleckstrin-homology (PH) 

domain-containing protein (139kDa). 

 

Western blot analysis using antibodies against myosin II and clathrin heavy 

chain, of the eluate in Figure A-6 and the negative control identified that these proteins 

were also present in the negative control (data not shown). This suggested that our eluate 

analyzed by mass spectrometry was not pure enough for identification of true binding 

partners. Further optimization of the washing conditions will be necessary to obtain a 

pure eluate for analysis. 
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