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Visual search can simply be defined as the task of looking for an object of interest 

in a visual environment. Due to its foveated nature, the human visual system succeeds at 

such task by making many discrete fixations linked by rapid eye movements called 

saccades. However, very little is known about how saccadic targets (fixation loci) are 

selected by the brain in such naturalistic tasks. Discoveries to be made are not only 

invaluable to the field of vision science but are very important in designing automated 

vision systems, which to this day lag in performance vis-à-vis human observers. 

What I have sought to accomplish in this dissertation has been to reveal 

previously unknown saccadic targeting and target selection strategies used by human 

observers in naturalistic visual search tasks. My driving goal has been to understand how 

the brain selects fixation loci and target candidates upon fixation, with the objective of 

using these findings for automated fixation selection algorithms employed for visual 

search. 
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I have proposed a novel and efficient technique akin to psychophysical reverse 

correlation to study human observer strategies in locating low-contrast targets under a 

variety of experimental conditions. My technique has successfully been used to study 

saccadic programming and target selection in various experimental conditions, including 

visual searches for targets with known characteristics, targets whose orientation attributes 

are not known a priori, and targets containing multiple orientations.  I have found visual 

guidance in saccadic targeting and target selection under all experimental conditions, 

revealed by observers’ selectivity for spatial frequencies and/or orientations of stimuli 

close to that of the target. I have shown that under uncertainty, observers rely on known 

target characteristics to direct their saccades and to select target candidates upon foveal 

scrutiny. Moreover, I have demonstrated that multiple orientation characteristics of 

targets are represented in observer search strategies, modulated by their sensitivity / 

selectivity for each orientation. Some of my findings have been applied towards 

applications for automated visual search algorithms. 
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CHAPTER 1 

Introduction 

1.1 Motivation 

Efficient visual search strategies have been vital for the survival of many species, 

including humans, particularly in locating food, mates, and predators. Search appears in 

our daily lives in many tasks such as looking for lost keys in an apartment, searching for 

a friend in a crowd, finding an empty seat on a bus, locating green apples at the grocery 

store, or simply while walking in the street.  Despite the complexity of many of these 

tasks, we conduct search with great ease unrivaled to this day by any artificial system. 

For researchers, it has been an ongoing challenge to understand and model human 

strategies in search tasks. Such knowledge could provide powerful insights for improving 

machine performance in similar tasks, especially for active vision systems (e.g. robots). 

Many applications such as unmanned vehicle navigation, image/video database search, 

automatic tumor detection, and security/surveillance systems could potentially flourish by 

integrating human-based strategies into their automated search models. 

The main objective of my research has been to discover previously unknown low-

level fixation strategies employed by human observers during visual search tasks for 

various types of targets and experimental conditions. More specifically I have contributed 

to our understanding of saccadic targeting and target selection in naturalistic visual search 

tasks, i.e. what attracts fixations while human observers perform search tasks and how 

observers select target candidates upon fixation. I have shown that observers use target 

attributes such as spatial frequency and orientation in saccadic programming and in 

selecting the target candidate upon fixation, and this under a great variety of experimental 



 2 

conditions. I have used some of the findings towards applications for automated visual 

search. 

 

1.2 Contributions 

The contributions of this dissertation are as follows: 

 

1. I have created a new and efficient technique akin to psychophysical reverse 

correlation and have used stimuli that emulate the natural visual environment 

to examine observers’ ability to locate low-contrast targets under various 

experimental conditions. I have sought to address through my framework two 

intriguing questions in active visual search: what attracts human eye fixations 

during search tasks and how are target-candidates selected upon fixation? 

With my classification taxonomy, I am able to provide insight into foveal and 

peripheral processes employed in visual search tasks. 

 

2. I have demonstrated visual guidance in saccadic target selection in a series of 

15 separate visual search experiments where Gabor targets (2, 4, and 8 c/deg 

spatial frequencies at 0, 20, 45, 70, and 90 deg orientations) were used. This 

was shown by observers’ selectivity for spatial frequency and orientation 

characteristics close to the search target. Additionally, I have shown that 

observers exhibit inaccuracies and biases in their estimates of target features. 

Furthermore, complementary type frequency responses were observed, with 

peaks occurring at frequencies close to that of the sought target and valleys at 

nearby frequencies (similar to findings in physiology and psychophysics; e.g. 

Ringach (1998) showed that observers’ tuning for orientation generally 
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presented a “Mexican hat” distribution peaking at orientations close to the 

orientation observers had to report, with valleys at either side of the peak). 

Finally, an unusual phenomenon is observed whereby distracters containing 

close-to-vertical structures are fixated in searches for non-vertically oriented 

targets. My results provide evidence for the involvement of band-pass 

mechanisms along feature dimensions (orientation and spatial frequency) 

during visual search. 

 

3. I have successfully addressed a more general problem in visual search where 

the orientation of the target is not known to the observer a priori. Such an 

experimental procedure is more consistent with real-world search 

environments, in which the orientation of an object is largely uncertain, except 

that it may be influenced by gravity or its proximal interaction with other 

objects and planes. I have used my efficient experimental search framework to 

study the behavior of humans seeking a randomly oriented Gabor of spatial 

frequency 8 c/deg embedded in noise. Interestingly, I have found that 

observers seem to rely on invariant target features to perform such search 

tasks; in particular, the spatial frequency characteristics of the sought target 

appeared to provide guidance in saccadic targeting. Curiously, despite having 

no previous knowledge of each target's orientation, observers presented clear 

biases in orientation selectivity during saccadic programming. These biases 

persisted into observers' decision-making process upon fixation and showed 

asymmetries between clockwise and anticlockwise orientations. Moreover, it 

appears that these biases are idiosyncratic to observers. 
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4. With the objective of moving towards understanding observer search 

strategies for complex targets, I have used my experimental search framework 

to examine how observers search for low-contrast targets created from Gabor 

summations (Experiment 1) and mosaicing (Experiment 2). I have presented 

several key findings. First, I showed a strong presence of visual guidance in 

saccadic programming in search for such complex targets, demonstrated by 

selectivity for spatial frequencies and (in some cases) orientations close to the 

characteristics of each target. Second, multiple orientation attributes of the 

targets were shown to be represented in saccadic targeting and target selection 

in most cases, modulated by the observer’s sensitivity/selectivity for each 

orientation. Third, different configurations of the Gabor mosaicing produced 

distinct tunings in orientation, but visibly idiosyncratic to each observer 

(Experiment 2). Moreover, a localized analysis was performed. Fourth, a 

curious presence of close-to-vertical structures was observed in fixated 

distracters, although the search targets did not contain vertically-oriented 

structures (Experiment 2). 

 

5. I have provided some ideas and insights inspired from what I have discovered 

in my experiments that could be integrated into automated visual search. A 

few of these ideas have been implemented in simple search frameworks. In 

my proposed models, the non-foveal selection of fixation loci is done using 

only spatial frequency and orientation attributes of the target, without the use 

of the phase information. The foveal selection uses local feature attributes of 

stimuli, so as to include some phase information. 
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1.3 Outline 

The subsequent chapters in this dissertation are organized as follows. In Chapter 

2, an overview is given on various approaches to the study of visual search. 

Furthermore, a technique known as classification images, introduced for the study 

of visual psychophysics about twenty years ago, and its extensions to visual 

search are discussed. Additionally, various implementations of visual search both 

passive and active are presented. In Chapter 3, a novel technique for studying 

saccadic targeting and target selection in visual search is presented. The technique 

is then used to examine observers’ ability in locating low-contrast targets 

embedded in 1/f noise. In Chapters 4, 5, and 6 we have employed our framework 

to the study visual search for targets of known spatial frequency and orientation 

attributes, of unknown orientation characteristics, and containing multiple 

orientations, respectively. In Chapter 7, we have applied some of our findings 

towards the design of a simple automated visual searcher. Finally, Chapter 8 

concludes the dissertation and points to various directions for the future work. 
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Chapter 2 

Background 

 

2.1 Visual Search 

Visual search can simply be defined as the task of looking for an object of interest 

in a cluttered visual environment. Due to its foveated nature, the human visual system 

succeeds at such tasks by making many discrete fixations linked by rapid eye movements 

called saccades. The goal is to direct the highest resolution region of the retina, the fovea, 

onto various locations of a scene in quest of potential target candidates.  It has been 

suggested that the location of these saccades is far from being random (Yarbus, 1967) 

and not until recently has there been increasing interest in understanding how the brain 

decides where to make saccades and perform fixations.  This delay in studies of saccadic 

targeting is partly due to the impact of visual search theories such as the one proposed by 

Treisman and Gelade (1980) where much emphasis was made on the role of internal 

attention (Liversedge & Findlay, 2000). Simple search tasks were claimed to be done by 

pre-attentive processes and that more complex ones were done by serial shifts of attention 

from one target candidate to another, generally assuming covert attention which is mental 

scanning as opposed to eye movements. Many of these earlier studies of search have only 

evaluated human performance by measurements such as reaction time (amount of time 

necessary for the observer to find a target) and accuracy (percentage of correct), 

neglecting somewhat the vital question of how search is actually performed. It has been 

through eye tracking that a smaller number of researchers have been able to study the role 

of overt attention, which takes into account eye movements. 
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2.1.1 Deployment of Visual Attention 

The main theme, in many earlier visual search studies, has been to determine 

whether a search task is executed by human observers in a parallel or serial fashion, 

referring to attentive processes (see Wolfe, 1994; Wolfe, 1998; Kim & Cave, 1999; 

Palmer et al., 2000; and Yang et al., 2002 for detailed reviews). In laboratory 

environments, observers were typically asked to determine whether a target was present 

amongst a set of distracters or not. Targets and distracters would differ in single or 

multiple attributes such as color, size, orientation, spatial frequency, and so on. Figure 2.1 

shows some examples of stimuli shown to observers. One of the most used measures to 

study visual search tasks has been reaction time as a function of set size (the number of 

items displayed), i.e. the time required for observers to provide a response on whether a 

target is present or absent. The rationale used by many researchers was to determine the 

(reaction time × set size) slope: if the slope was close to flat (i.e. the reaction time 

appeared independent of the set size) then the search was said to be parallel, and if the 

slope was increasing then it was said to be serial (Schneider & Schiffrin, 1977; Kinchla, 

1992; Bundensen, 1996). Often times, search tasks have been compared based on the 

slopes obtained for each task. If task A had a greater slope than task B, then task A was 

said to be more difficult than task B. Accuracy as a function of set size was also used to 

speculate on the difficulty of a task. Through these various experimentations, processes 

of visual attention have been shown to be guided by attributes such as color, size, spatial 

frequency, and others (see Wolfe, 2004 for a review).  
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Figure 2.1:  Three examples of stimuli used for high threshold visual search tasks are 
shown representing cases of (A) pop-out, (B) single-feature, and (C) conjunction of 
features. 

Furthermore, many models originated from these studies of visual attention. One 

of the most prominent theoretical models was the feature integration theory (FIT), 

proposed by Treisman and Gelade (1980), where search was split into two stages: an 

initial parallel stage where the visual scene is registered along independent dimensions 

including color, spatial frequency, orientation, and motion; and a final stage where these 

dimensions are combined together to represent a single object, performed serially with 

focal attention. FIT suggested that parallel search with no attention limits occurred in 

most cases where the target differed by one single feature from the distracters, and that 

serial search occurred in all the other cases. However, the latter claim has been 

challenged by many studies (Theeuwes, 1995; Eckstein, 1998). Eckstein (1998) showed 

that the performance of human observers in search experiments with conjunction of 

orientation and contrast features could not be predicted by a serial search model. 

Subsequent search models have been more successful in explaining search behaviors in 

the context of feature conjunctions (Duncan & Humphreys, 1989; Wolfe, 1994). 

However these models have avoided considering saccadic eye movements and fixation 

selections although this is how naturalistic search is performed in many cases. 
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2.1.2 Guidance of Eye Movements 

Recent research has put emphasis on the importance of incorporating eye 

movements in visual search studies (see Findlay, 2004; Findlay & Gilchrist, 2003 for a 

review). In fact many researchers have challenged earlier theories and studies that had 

omitted eye movements (Zelinsky & Sheinberg, 1997; Liversedge & Findlay, 2000; 

Eckstein et al., 2001; Findlay & Gilchrist., 2003). Zelinsky and Sheinberg have argued 

that much of the work had been mainly to estimate the relative difficulty of tasks 

compared to one another. They further stressed that such studies had shrunk a highly 

complex spatial and temporal behavior into a simple response time measure. In fact 

simple measures such as reaction times and accuracy overlook more valuable information 

such as the fixation patterns, dwell times, saccade lengths and so on. Note that, it has 

even been demonstrated in a few tasks that observers opt to perform eye movements even 

when such a strategy is not optimal (Findlay, 1997; Findlay & Gilchrist, 1998). 

A fundamental problem that many studies using eye movements have attempted 

to address has been to determine whether saccades are guided and where they land. It has 

been shown that saccadic eye movements are not random (Yarbus, 1967). However, there 

is some discord on the fixation loci during visual search tasks (Findlay and Gilchrist, 

2003; Hooge and Erkelens, 1999; Motter and Belky, 1998b; Findlay, 1997; Zelinsky, 

1996). In some experiments where eye movements were allowed, a group of researchers 

claimed that saccades, mainly the initial one, were directed to the center-of-gravity of 

elements in the display (Zelinsky et al., 1997; McGowan et al., 1998). For example, 

Zelinsky et al. tracked the eye movements of six human observers searching for objects 

placed in what they called pseudorealistic scenes (i.e. toys in a crib, tools on a 

workbench, and food-related objects on a dining table). 360 trials were run for each 

observer, with each trial having a unique configuration of objects and positions on a 
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surface. Three different set sizes were used. A search target was shown to the observer 

before each trial and the observer had to decide whether the target was present during the 

trial. In Figure 2.2, the top left panel shows an example of the placement of the toys in a 

crib, and the top right panel shows recorded eye movements of an observer searching for 

the butter target amongst two distracters on a dining table. The results for the first, second 

and third saccades across all trials for one naïve observer are shown in the three bottom 

panels of Figure 2.2, the squares representing the locations where objects appeared. They 

found that the first saccade appeared to be directed to the center-of-gravity of the group 

(see bottom left panel in Figure 2.2). On the other hand, some researchers have argued 

that saccades are made to elements in the display and not to the blank spaces (Motter & 

Belky, 1998; McGowan et al., 1998). For instance, Motter and Belky discovered in their 

tilted bar experiments that saccades landed within 1 deg of the center of the target or 

distracters having similar features as the target. To address this issue of saccadic 

targeting, McSorely and Findlay (2003) performed two experiments with Gabor patches 

and showed that the center-of-gravity effect decreased with increasing number of 

distracters. Interestingly, they found in their experiments that the search performance 

improved with a larger number of distracters. One explanation that has been proposed for 

such phenomenon is that perceptual grouping of similar objects can result in enhanced 

search speed and accuracy. 
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Figure 2.2:  Eye movement recordings during search. The top left panel shows a 
configuration of toys placed in a crib. The top right panel shows the recorded eye 
movements of an observer searching for the butter target on a dining table during a trial. 
Endpoints of the first, second and third saccades are shown in the bottom panels, the 
squares indicating the possible locations where objects appeared (from Zelinsky et al., 
1997). 

A natural question one could then ask is what stimuli features guide eye 

movements. Many studies have qualitatively compared the relative weighting of features 

in the visual guidance of saccadic targeting. For instance, Williams found that observers 

have a strong inclination to direct saccades to elements of the display having the same 

color as the target, while information on target size and shape were weakly used 

(Williams, 1967 from Eckstein et al., 2001 and Williams & Reingold, 2001). Scialfa and 

Joffe (1998) discovered in their tilted bars experiments, where the target and distracters 

differed in either contrast (black or white) or orientation (± 45 deg), that observers were 

more likely to direct their saccades to distracters that shared similar contrast as the target. 

Rajashekar et al. (2002) went further by looking at the statistics at the point of gaze, 

when observers were searching for a target embedded in noise. They found that, on 

average, saccades were made to regions of the display containing non-random structures 
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and showing some resemblance to the target. We have detailed these findings in section 

2.2. 

 

2.1.3 Low-level vs. High-level Mechanisms 

One of the important issues when studying visual search has been whether 

observer performance and behavior should be attributed to high-level or low-level 

processes. This has been a source of some conflict between the cognitive and the 

“bottom-up” factions of the vision community. Most research studies have tried to isolate 

one type of process by limiting the other; for instance, low-level studies have used well-

trained observers and simplistic stimuli in order to reduce the effects of cognitive 

mechanisms. Geisler and Chou (1995) suggested that in numerous complex tasks both 

high-level and low-level mechanisms influence observer performance and that many 

studies have not been successful in showing the weighting between the two. They 

introduced a technique to separate the influence of both low and high-level processes, and 

they further demonstrated in two complex tasks that low-level factors had the highest 

influence. This was shown by comparing the performance of observers in a visual search 

task to performance in a well-constrained discrimination task, both experimental setups 

using the same stimuli. In a controversial paper, Henderson et al. (2006) have argued that 

visual saliency map models obtained by using low-level features fail to account for 

observer fixations in naturalistic search environments. They showed that observer 

fixations and the regions rated highly informative by Koch and Itti’s visual saliency 

model (2000) were weakly correlated. They demonstrated this claim by comparing 

observer fixations when counting the number of people in a scene to the saliency map 

obtained by the model. One could counter argue that such a finding is most likely related 

to their task. In fact, if one had asked observers to count the number of red cars in a 
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parking lot, the result would probably be much different, with the low-level feature color 

having a great role in the search process. One could even go further to speculate that 

many additional red objects other than cars in that parking lot may also attract observer 

fixations.  

Understanding the cognitive aspects of observer visual search strategies can be 

very useful in real world environments but is somewhat limited to specific objects of 

interest and may be more difficult to extend to search for other objects.  Intuitively 

speaking, humans possess different high-level approaches to finding faces as compared to 

finding cars. For example, one may be looking for the wheels when searching for cars in 

a scene, an approach that may not be extended to finding people in the same scene. By 

contrast, a low-level approach could help build the foundation of visual search to 

discover and understand what features are common between various search tasks. 

 

2.2 Classification Images and Extensions to Visual Search 

A technique known as the classification image paradigm (Ahumada, 1996; Beard 

& Ahumada, 1998) can be of particular interest in revealing stimuli features used by 

observers in various tasks including visual search, in contrast with simple measures of 

reaction time or accuracy. The classification image paradigm initially originated from 

work in auditory yes-no detection experiments (Ahumada, 1971; Ahumada, 2002). In this 

earlier framework, two sound tracks, one containing a continuous noise masker and the 

other containing marker tones, were presented to human observers who had to decide 

whether a tone was present or not. The noise masker was then analyzed to see whether 

correlates with observer responses could be obtained. Ahumada later extended this 

technique to visual yes-no psychophysical tasks and introduced the concept of 

classification images (Ahumada, 1996; Beard & Ahumada, 1998). In the classification 
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image paradigm, observers judge the presence or absence of a target embedded in 

relatively high-amplitude noise, and properties of the noise that cause correct and 

incorrect responses reveal the mechanisms responsible for detection. 

To demonstrate the various steps constituting the construction of the classification 

images, let us consider the vernier acuity task where a human observer has to make 

judgments on the alignment of two bars (see Figure 2.3) over several trials, usually 

several thousands. During each trial, a stimulus is first constructed by adding random 

noise to one of the two arrangements of the bars chosen at random. The stimulus is then 

presented to the observer who has to decide on configuration of the bars (left- or right-

aligned). The signal-to-noise ratio of the stimulus is set to influence observer’s decision 

but without completely changing the decision rule. During each trial, the noise image, the 

stimulus configuration (rS or lS ) and the observer’s response (rR or lR ,) are recorded. 

The noise images are then classified into one of the four categories rr RS , rl RS , lr RS , 

and ll RS , based on observer’s response during each trial. For example, if the left-aligned 

configuration is presented to the observer but the observer decides that the alignment is to 

the right, then the noise image is classified as rl RS . Noise images within each category 

are then averaged and the resulting images combined across categories to create the 

classification image: lllrrlrr RSRSRSRS −−+  (Ahumada, 1996). The obtained result 

provides insight into how the observer is weighing stimulus features to make a decision. 

In the vernier acuity example, Ahumada and Beard argued that the features obtained by 

the classification images disprove a strategy based on the contrast sensitivity of the 

highest cortical unit response (single even-symmetric Gabor filter) or on the difference of 

two even-symmetric Gabor filters oriented on either side of the target. Instead, they 

supported a third strategy consisting of a two odd-symmetric Gabor filters since they are 

also consistent with non-abutting bars (Beard & Ahumada, 1998). 
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Figure 2.3:  Demonstration of the classification image technique applied to a vernier 
acuity task. 

The classification images technique has been extended to include eye movements 

during visual search (Rajashekar et al., 2002 & 2004; Eckstein et al., 2007). Rajashekar 

and colleagues recorded observer eye movements while they searched for a target 

embedded in 1/f noise. Assuming that gaze would be drawn to points in the stimulus 

bearing some resemblance to the target, the noise at all fixations made during a trial was 

captured, and a large volume of data could thus be gathered in a short time. Observer 

visual search strategies were analyzed by presenting stimuli that consisted of 640 × 480 

pixel 1/f noise images in which a 64 × 64 pixel target was embedded. A “region of 

interest” (ROI) of 128 × 128 pixels around each of the observer fixations was defined and 

is shown by the dashed boxes in Figure 2.4a. These noise patches were then averaged 

together and filtered to obtain what they referred to as discrimination images. These 

images are shown in Figure 2.4b for three targets (circle, dipole, and triangle) and are 

compared to the discrimination images obtained from random fixations. The results were 



 16 

interpreted as representing features that draw gaze in the periphery and trigger a closer 

inspection. 

 

 

(a) 

 

 

(b) 

Figure 2.4:  An example of scan paths is shown in (a); discrimination images are shown 
in (b) (from Rajashekar et al., 2002 & 2004). 

Classification images have been applied to an assortment of visual perception 

problems such as illusory contours (Gold et al., 2000), image feature detection and 

identification (Neri & Heeger, 2002), stereo (Neri et al., 1999), visual attention (Eckstein 

et al., 2002), Gabor detection (Ahumada & Beard, 1999; Solomon 2002), face and facial 

expression discrimination (Sekuler et al., 2004; Kontsevich & Tyler, 2004), and 

“superstitious” perception (Gosselin & Schyns, 2003). A few researchers have also 
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attempted to extend the technique to color stimuli (Ahumada & Krebs, 2000; Bouet & 

Knoblauch, 2004; Hansen & Gengenfurtner, 2005). 

One of the main drawbacks of the classification image paradigm in its original 

form is the need to accumulate a large number of data (close to several thousands of trials 

per human observer). Furthermore, the extension proposed by Rajashekar et al. has also 

its limitations, mainly lacking in spatial specificity due to the fact that the noise pixels 

being averaged across trials are not always perfectly aligned (i.e. observer fixations do 

not always land at the center of the target candidates, see Rajashekar et al., 2006).  In the 

next chapter, I will present a technique addressing both these issues that we have 

developed to reveal human observer strategies and behaviors during visual search. 

 

2.3 Machine Vision 

Perhaps one of the most important tasks in visual scene analysis is searching for 

objects. It has been of central interest for decades to computer vision and pattern 

recognition researchers, who have proposed various algorithms and techniques 

attempting to solve this complex problem. Many of the suggested methods have been 

developed for full resolution images of a scene, acquired passively by cameras without 

any type of analysis or any knowledge of the scene to be studied. Not until recently has 

there been growing interest in active vision systems, where various parameters of the 

camera(s), including gaze control, are guided by prior knowledge of the scene and/or by 

decision stages in the search algorithms. 
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2.3.1 Search in Passively Acquired Images 

A wide range of algorithms have been proposed to carry out search tasks such as 

finding cars, people, and so on in passively acquired images of scenes (see Shivani & 

Agarwal, 2004; Anuj & Mohan, 2001 for reviews). These methods can be grossly divided 

into template-matching, feature-based detection, and learning-based approaches. Image 

subtraction and correlation are operations commonly used in template-matching, with the 

goal of minimizing the distance between the object being searched (i.e. the template) and 

a region of the image (Brunelli & Poggio, 1997). In feature-based techniques, an object is 

represented by various attributes such as color, orientation, and motion. During the 

detection process, features are extracted from the image being searched and matched to 

those of the object. In learning-based approaches, images are also represented by features 

but a learning stage is used to find regions of the feature spaces that correspond to the 

object class. Learning is done using a training set. It is not until the mid-80s, with 

advances in physiological research on human vision, that more powerful, biologically 

inspired methods were developed to tackle the visual scene analysis problem (Milanese, 

1998). We will mainly focus in this section on biologically inspired search algorithms. 

Possibly the most prominent of such biological vision systems is the saliency-

based attention/search algorithm introduced by Koch and colleagues (Koch & Ullman, 

1985; Itti & Koch, 2000). In their model, shown in Fig. 2.5, a single saliency map is 

obtained by the combination of 42 maps (7 feature types at 6 scales). Their system takes 

as input intensity (on/off), orientation (0, 45, 90, and 135 deg), and color (red, green, 

blue, and yellow color channels). 7 feature types for which there exists biological 

evidence are then obtained in a center-surround fashion: 1 encoding for on/off intensity 

contrast, 2 encoding for red/green and blue/yellow double-opponent channels, and 4 

encoding for local orientation contrast. 6 feature maps, corresponding to 6 spatial scales, 
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are computed for each feature type by using combinations of levels of a Gaussian 

pyramid, obtained by repeatedly low-pass filtering and sub-sampling the input image. 

The center-surround operations across scales were executed by differencing a fine and a 

coarse scale for a feature. As an example, the chromatic information was obtained by first 

normalizing the red, green, and blue channels by the intensity channel. The red/green 

feature maps were obtained by center-surround differences calculated at 6 different scales 

by subtracting (red - green) at the center from (green - red) at the surround and taking the 

absolute value. The same operations were done to construct the blue/yellow feature maps. 

Separate “conspicuity maps” are created by first normalizing each of the feature maps 

between 0 and 1, then by iteratively filtering each with a DoG (difference of Gaussians) 

filter, and finally summing across scales the feature maps obtained for intensity, color, 

and orientation. This within-feature spatial competition scheme is similar to a winner-

take-all strategy (WTA). The three conspicuity maps are subjected to iterative filtering 

with a DoG. The final saliency map is created by a linear summation of the conspicuity 

maps. Koch and colleagues tested their model in 3 different visual search tasks (color 

pop-out, orientation pop-out, and conjunctive search) and on naturalistic stimuli (a 

military vehicle in a rural environment). They obtained similar performances for their 

model in psychophysical experiments as the ones predicted by Treisman and Gelade 

(1980) for human observers: both pop-out experiments produced flat RT slopes and the 

conjunctive experiment produced an increasing RT slope. They also claimed that their 

model found the military vehicle in 41 of 44 full resolution rural images based on finding 

the most salient location. 
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Figure 2.5:  Model for saliency-based attention (from Itti & Koch, 2000). 

Other attention / visual search algorithms have been proposed and are detailed in 

Milanese’s review (Milanese, 1993). These models propose a similar parallel search 

approach as Koch and colleagues: Chapman’s model, Ahmad’s VISIT, and Wolfe and 

Cave’s implementation of the Guided Search. All three algorithms create a number of 

bottom-up feature maps such as color and orientation by processing the input image. 

VISIT and Guided Search additionally integrate top-down features in their models. In the 

Guided Search model, bottom-up activation maps are created by measuring how unusual 

an item is in comparison to its surrounding (ex. a vertical orientated line surrounded by 

horizontally oriented lines), hence guiding attention to distinctive items in a scene. But 

bottom-up activation alone would not guide attention to the target if the target-distracters 

similarity increases. Therefore, top-down activation, where knowledge about the target is 
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introduced, becomes helpful in selecting what features better distinguish the target from 

the distracters. One of the main setbacks of these methods is that features are combined 

linearly using simple averaging across saliency or activation maps. 

 

2.3.2 Active Vision 

As Bajcsy (1998) puts it, “perceptual activity is exploratory, probing, searching; 

percepts do not simply fall onto sensors as rain falls onto ground.” If one compares the 

artificial systems presented in section 2.3.1 to the human visual system, one of the key 

ingredients missing is gaze control combined with foveation, which could provide control 

over the acquired images of a scene. Often times, images have been passively acquired at 

full resolution, preceding any type of analysis or any knowledge of the scene to be 

studied. Besides being counterintuitive vis-à-vis to the biological vision system where 

various tasks including search are performed in an active fashion, one of the main 

drawbacks of such an approach has been the computational load for performing tasks 

(due to the processing of very large images at full resolution) and the lack of adaptability 

to various environments. In fact, systems should be adaptable to the environment in 

which a task is performed. If we consider the acquisition stage of our own visual system, 

our eyes can for instance adjust to various illuminations, correct the focus, and change the 

view. In addition, foveation also provides a considerable data reduction since peripheral 

image data are lost in the process.  
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Figure 2.6:  Example of an active vision system (from Giefing et al., 1992). 

Active vision systems have attempted to provide more rapid and less 

computationally intensive solutions for performing various scene analysis tasks. The 

guiding line has been to mimic many aspects of biological visual systems incorporating 

gaze control, behavior and attention (see Swain et al., 1991; Abbott, 1991 for reviews). 

Fig. 2.6 shows an example of an active vision system (Giefing et al., 1992) where various 

stages contribute to accomplishing an object search task. The implementation of gaze 

control has been possible with the use of a controllable camera that can actively scope 

complex scenes. Here the dynamic camera was mainly used for gaze shifts but in general 

parameters such as camera position, orientation, focus, aperture, zoom, and vergence 

(obtained with 2 cameras, see Klarquist and Bovik, 1998) may be varied. Feedback from 

decision making stages controls these parameters. In the example, for instance, the 

interest map provided decisions to guide the camera. Note that both top-down and 
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bottom-up approaches are used to make a decision whether to visit another location or 

stop the search. The foveal image was analyzed for specific targets whereas the 

peripheral image was processed for various features such as edges, corners, and so on. 
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Chapter 3 

  A Novel and Efficient Technique to Study Visual Search 

 

The human visual system is remarkably adept at finding objects of interest in 

cluttered visual environments, i.e. at visual search. It accomplishes this by making many 

discrete fixations linked by rapid eye movements or saccades. In such naturalistic tasks, 

we know very little about how the brain selects saccadic targets (the fixation loci). Our 

initial objective was to develop a framework to study saccadic targeting and target 

selection in naturalistic visual search tasks. In this chapter, we propose a novel and 

efficient technique (Tavassoli et al., 2007a) akin to psychophysical reverse correlation 

and stimuli that emulate the natural visual environment to measure observers’ ability to 

locate a low-contrast target, extending earlier techniques (Eckstein et al., 2007; 

Rajashekar et al., 2006; Ahumada, 1996). We will discuss in detail our method in the 

next section and how we have successfully tested it for 2 simple shapes, a triangle and a 

dipole. 

 

3.1 Proposed Method 

In our method, a 1/f noise mask is divided into discrete tiles (note that other noise 

types may be used), and the target is embedded in one of them selected at random. The 

eye movements of observers are then recorded while they search for the target to 

determine the sequence of tiles fixated during the search. 1/f noise has an amplitude 

spectrum of the form af/1 , where a is near 1, which is similar to the amplitude spectra 

of natural images (Field, 1987), is used due to its appeal in simulating a naturalistic 

search environment. The additional power at low spatial frequencies (relative to white 
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noise) results in rapid emergence of features in the classification image with our method, 

at the scale of reasonably sized targets, without the requirement for post-processing. 

Several aspects of our technique allow it to rapidly reveal classification images. First, the 

use of eye tracking allows a high volume of data to be collected in a given time as 

compared to traditional psychophysical methods. Second, the use of discrete tiles makes 

the method more robust to saccadic inaccuracy, the tendency for observers to fixate 

different parts of the target, and the limited accuracy and precision of the eye movement 

recordings, all of which would ultimately result in loss of spatial precision (or blur) in the 

final classification images. Third, our novel classification taxonomy provides several new 

categories for off-line analysis, allowing us to differentiate foveal and non-foveal aspects 

of the search process (see section 3.1.6)1. 

 

3.1.1 Observers 

Three male observers (aged 26 through 30), of whom two were experienced (AT 

and IVDL) and one naïve (AJS), were tested in our experiments, each with 

normal/corrected-to-normal vision. Each observer completed 400 trials (2 sets of 200 

trials, each set with a different target). 

 

3.1.2 Apparatus 

An SRI/Fourward Generation V Dual Purkinje eye tracker (Fourward 

Technologies Inc., Buena Vista, VA) was used to record eye movements. This device has 

accuracy of better than 10 min of arc, a precision of about 1 min of arc, and a response 

time of about 1 msec (though we would like to note that a principal advantage of our 

                                                 
1 We use the term “foveal” to refer to a central patch one degree of visual angle across, and “non-foveal” to 
refer to regions outside this patch. 
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methodology is that it permits the use of a considerably less accurate tracker). A bite bar 

and forehead rest were used to minimize head movements. The continuous output voltage 

of the eye tracker was first passed through a hardware Butterworth low-pass filter 

(Krohn-Hite Corp., Brockton, MA) with a 100-Hz cutoff to eliminate extraneous high 

frequency noise in the recording environment, and then sampled by the host computer at 

200 Hz with a National Instruments data acquisition card (National Instruments Corp., 

Austin, TX). 

A calibration routine was run at the beginning of each session and after every 25 

trials during a session to establish the linear relationship between output voltage and 

monitor coordinates. For the calibration, the observer fixated each of nine points in a 3 × 

3 grid spanning a visual angle of 7° × 7° on the display. The average horizontal and 

vertical voltages were then fit (separately) to the 3 unique horizontal and vertical screen 

positions (corrections were performed for the small amounts of cross-talk). Afterward, a 

dot was superimposed on the computed gaze position in real-time so the observer could 

immediately verify that calibration was successful. In addition to the mandatory 

recalibration every 25 trials, the calibration was automatically checked at the beginning 

of each trial. This was done by requiring that the computed fixation be within +/- 0.25° of 

the center of the fixation mark for 500 msec at the beginning of each trial. If 5 sec 

elapsed before this requirement was met, recalibration was automatically initiated. 

The observers viewed the stimuli on an Image Systems 21-in. grayscale monitor 

(Image Systems Corp., Minnetonka, MN) driven by a Matrox Parahelia graphics card 

(Matrox Graphics Inc., Dorval, Québec, Canada) at a screen resolution of 1,024 × 768 

pixels, a grayscale resolution of 8 bits per pixel, and a refresh rate of 60 Hz. The screen 

was placed 134 cm from the observer and subtended a visual angle of 16° × 12°, giving 

approximately 1 min of arc per screen pixel. The luminance output was linearized by 



 27 

putting the inverse of the monitor’s measured gamma function in the display look-up 

table. The ambient illumination in the laboratory was kept constant for all observers, and 

there was a minimum of 5 minutes to adapt to the ambient illumination and screen 

luminance while the eye tracker was calibrated. 

The experimental software was written in MATLAB (Mathworks Inc., Nantick 

MA) and the stimulus presentation itself was controlled using the Psychophysics Toolbox 

(Brainard, 1997; Pelli, 1997). Gaze positions were calculated in real time so that feedback 

could be provided after each trial. Fixation points and the intervening saccades were 

discriminated offline, based on spatio-temporal properties of human eye movements, by 

using an adaptation of an ASL fixation detection algorithm (Applied Science 

Laboratories, Bedford, MA). This three-stage algorithm was robust with respect to small 

drifts, blinks, and micro-saccades. 

 

3.1.3 Stimuli 

The stimulus consisted of a single 64 × 64 pixel target embedded in a 7 × 7 

mosaic of 64 × 64 pixel tiles containing 1/f masking noise, where 8.0=a . The two targets 

used are shown in Figures 3.1A and 3.1B (the shapes shown in panels C–E were used in 

data analysis, but not in the experiment per se; see below). One hundred mosaics were 

generated offline by creating one hundred 544 × 544 pixel 1/f noise images and then 

superimposing the 12 pixel wide gray borders. On each trial the target was added to a 

randomly selected tile in the noise mosaic. An example stimulus in which a triangle is 

embedded in the tile immediately below the center one is shown in Figure 3.2. The 

signal-to-noise ratio (SNR) in this example is somewhat higher than those used in the 

actual experiment, where the SNR was determined at the beginning of each session as 

described below. 
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Figure 3.1:  Targets used in the trials: (A) triangle, (B) dipole. Additional shapes used in 
the analysis: (C) bowtie, (D) circle, and (E) star. 

 

Figure 3.2:  An example stimulus (with a higher SNR than used during the experiment). 
The target, a triangle, is in the tile immediately below the central one. 

3.1.4 Procedure 

Each observer ran four sessions for the main experiment: two sessions of 100 

trials for each of the two target types. Before every session, the SNR yielding 68%2 

correct target detection was determined using the QUEST adaptive procedure (Watson & 
                                                 
2 This percentage has been arbitrarily chosen for all of our experiments, the main idea being to have 
observers make enough mistakes over several trials. 
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Pelli, 1983). Note that this is effectively a contrast threshold, but we covaried the contrast 

of the target and of the noise so that the entire grayscale was used but never exceeded. 

This SNR threshold was determined using the same procedure as that in the experiment 

itself. In other words, a trial during the threshold determination was exactly the same as a 

trial during the experiment, except that, in the former, the SNR was varied to find the 

68% correct point, whereas in the latter, the SNR was fixed at that point. Since the first 

several trials of the QUEST are necessarily done at a relatively high SNR, these trials 

served to familiarize the observers with the task. 

At the beginning of each trial, a fixation mark appeared at the center of the 

display for a maximum of 5 sec. As was described earlier, if the observer’s computed 

fixation was within our error tolerance, the trial continued. Next, the fixation mark was 

replaced by the stimulus for 5 sec, and the observer searched for the target with the goal 

of having his fixation on the correct tile when the trial ended. The computer provided 

audio feedback (“correct” or “incorrect”) after each trial.  

The use of a common initial fixation point and a fixed, 5-sec trial duration 

ensured a somewhat consistent strategy and criterion across observers that yielded several 

fixations per trial. To wit, if we had used a very short duration, the experiment would 

effectively become a 49-alternative forced choice yielding few fixations per trial. If we 

had used long or unlimited durations, different response criteria could have resulted in 

very different strategies including exhaustive search. We chose 5 sec as a compromise 

allowing observers to visit several (five to six, on average) likely tiles without the search 

becoming exhaustive (resulting in fixations on very unlikely tiles). Post hoc analyses (see 

Results section) suggested that the compromise was an acceptable one. It would also be 

possible, of course, to use a variable payoff matrix (for example), instead of imposing a 

time limit, but we chose the simpler option in order to demonstrate our basic method. The 
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small number of fixations that fell between the tiles in the stimulus grid were not 

included in our analysis. 

 

3.1.5 Analysis Method 

Classification Taxonomy. In a yes-no detection experiment, responses can be 

categorized into hits, misses, false alarms, and correct rejections, depending on the 

observer’s response and whether the target was actually present. In the psychophysical 

classification image paradigm, the stimulus noise is averaged within each category, and 

these averages are combined to form the classification image. For example, the average 

of the hits and false alarms can be subtracted from the average of the misses and correct 

rejections, under the assumption that if a given pixel inclines the observer to say “target 

present” when bright (say), it should also incline the observer to say “target absent” when 

dark (Ahumada, 1996). The fidelity of the image from each category will actually depend 

upon the observer’s sensitivity and bias, but the fidelities seem to be about equal in the 

simple psychophysical situation, so combining the averages with equal weight is close to 

optimal (Ahumada, 2002). 

In this study, we simply extended the above categorization to accommodate eye 

movements. Consider that each fixation (excluding the initial fixation at stimulus onset) 

involves two decisions: the decision to fixate a certain tile (and not the others) and the 

subsequent decision to either remain on that tile or continue searching. The presumption 

in defining our taxonomy is that the former is based primarily on nonfoveal information 

and the latter is based primarily on foveal information. Consider the left panel of Figure 

3.3; the first fixation is to a tile on the far right, which does not contain the target. This 

tile can thus be labeled a nonfoveal false alarm ( FAf ), since the incorrect decision that 

the target was in that tile was (presumably) based on peripheral information. Also, each 
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tile except the central one and the one containing the target can be labeled a nonfoveal 

correct rejection ( CRf ) since the correct decision that the target was not in those tiles was 

also based on peripheral information, and the tile actually containing the target can be 

labeled as a nonfoveal miss ( Missf ). Finally, when the eye moves to the subsequent tile (in 

the lower left), the tile at the first fixation can be labeled a foveal correct rejection ( CRf ), 

since the decision to reject this tile and continue searching was based on foveal 

information. Later in the trial, the observer actually fixates the tile containing the target, 

making that tile an Hitf , but then continues searching, so that tile also becomes anMissf . If 

the observer had decided to remain on the tile containing the target instead of continuing 

his search, this tile would have become anHitf . Trials in which the observer quickly finds 

the target and in which the observer never fixates the target are shown in the center and 

right panels, respectively. 
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Figure 3.3:  Examples of scanpaths and tile categories. The signal-to-noise ratio has been 
increased for illustration purposes. 

Tiles were categorized postexperiment according to Table 3.1 and 3.2 for 

analysis. Note that for a given trial, each tile can belong to more than one category. As is 

shown in the tables, each fixated tile was classified as an Hitf  or an FAf , depending on 

whether the tile contained the target or not. The tile was then additionally classified as 

one of the foveal categories depending on the observer’s response: either maintaining 

fixation on the tile, indicating he thought the target was there, or continuing the search, 

indicating that he thought the target was elsewhere. Tiles not fixated were classified as 

Missf  (target present) or CRf  (target absent). 
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Table 3.1:  The nonfoveal noise tile taxonomy. 

 

Table 3.2:  The foveal noise tile taxonomy. 

Generating the average images and the classification images. Pixel-by-pixel 

averaging of images within each category was used to obtain the average noise images 

corresponding to that category. It is important to keep in mind that only the noise patches 

are used as input to this process and not the target. Any structure revealed through these 

methods therefore originates from the influence of particular samples of noise on the 

observers’ responses. 

The average noise tiles were combined in the usual manner (Hit + FA – Miss – 

CR; Ahumada, 2002) to create the classification images, but this was done separately for 

our foveal and non-foveal categories: 

 

CIf  = Hitf  + FAf  - Missf  - CRf        (3.1) 

CIf  = Hitf  + FAf  - Missf  - CRf             (3.2) 
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Because we used a finite number of noise tiles (49 × 100 = 4900), the expected 

average image that would result by randomly sampling tiles is not uniformly zero but, 

rather, is the average of all the tiles. This expected image, corresponding to a null 

hypothesis that an observer does not use spatial structure in the tiles to select fixation 

points, is shown in Figure 3.4A. As one might expect, it is very flat (with a standard 

deviation of just 0.0015 on a 0-to-1 scale) but does contain some spatial structure, which 

can be made clearer by contrast stretching (Figure 3.4B), and blurring (Figure 3.4C). This 

overall average can be thought of as the bias each pixel has as a result of using a finite 

number of noise samples. Although the spatial structure in this overall average does not 

closely resemble the search targets (and we have quantified this assertion by calculating 

comparative 2D correlation coefficients for each of our experimental targets; see Figure 

3.7), we must be aware that any average noise image or classification image resembling 

this expected image does not possess significant structure of its own. 

 

 

Figure 3.4:  The expected image from randomly sampling tiles: (A) raw, (B) contrast 
stretched, and (C) low-pass filtered (using a 3 × 3 pixel Gaussian mask, with 

9.0=σ pixel). 

3.2 Results 

3.2.1 Average/Classification Images 

The pixel-by-pixel averages of the noise tiles in each of the eight categories are 

shown for each observer in Figure 3.5. Columns labeled A contain the raw average 

images collectively scaled to a single common grayscale color map, and columns labeled 

B contain the raw images after low-pass filtering (using a 3 × 3 pixel Gaussian mask with 
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9.0=σ  pixel) and individual contrast enhancement. The former shows the relative 

fidelity of the average image from each category, and the latter reveals possible structures 

present in each of the classification images. All the categories presented some target-

dependent spatial structure except for CRf , which converged to the overall average 

shown in Figure 3.4. Hitf , FAf , Hitf , FAf , and CRf  all show features associated with the 

target whereas both Missf  and Missf  present features anticorrelated with the target. In the 

future, more accurate pixel weights could be obtained by applying a foveation algorithm 

(e.g. Geisler & Perry, 1998; Lee & Bovik, 2003) to the stimuli at each fixation point prior 

to computing the nonfoveal average images and classification images, to attenuate higher 

spatial frequencies outside the acuity range of the visual system in a space-variant fashion 

at each fixation. In this section, however, we will confine ourselves to simple averaging 

of unfoveated patches in order to illustrate our basic method. 

 

(a) 
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(b) 

Figure 3.5:  The average images for (a) triangle and (b) dipole target search are shown for 
3 observers. Columns labeled A contain the raw average images collectively scaled to a 
single common grayscale color map, and columns labeled B contain the raw images after 
low-pass filtering and individual contrast enhancement. 

The foveal and nonfoveal classification images, CIf  and CIf , obtained by linearly 

combining the average images in the four response categories (defined in our 

classification taxonomy) in both the foveal and the nonfoveal cases, are shown in Figures 

3.6a and 3.6b. Both foveal and nonfoveal classification images were created for each 

observer and each target. As shown in Figure 3.5, columns labeled A contain the raw 

average images collectively scaled to a single common grayscale color map, and columns 

labeled B contain the raw images after low-pass filtering and individual contrast 

enhancement. These foveal and nonfoveal classification images provide cleaner target-

like features. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3.6:  Classification images for (a) triangle and (b) dipole target search are shown 
for 3 observers. (c) Foveal and nonfoveal classification images combined across 
observers. (d) Classification images combined across foveal and nonfoveal categories and 
across observers. Columns labeled A contain the raw images collectively scaled to a 
single common grayscale color map, and columns labeled B contain the raw images after 
low-pass filtering and individual contrast enhancement. 

Average images for both target types in the foveal and nonfoveal categories, 

averaged across all 3 observers, are shown in Figure 3.6c. The combined classification 

image, obtained by averaging the foveal and nonfoveal classification images across 
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observers, is shown for each target type in Figure 3.6d. These combined classification 

images obviously show a strong resemblance to the sought targets. 

The level of structural similarity between the classification images (shown in 

Figures 3.6a and 3.6b) and the search targets was quantified by computing the zero-lag 2-

D correlation coefficients between them and the set of shapes in Figure 3.1. The 

correlation coefficients obtained, averaged across observers and the categories (foveal 

and nonfoveal), are shown by the hatched bars in Figures 3.7a and 3.7b for both the 

triangle and the dipole classification images. Also shown are the coefficients obtained by 

computing the correlation between the search target and each of the shapes (black bars) 

and the coefficients obtained by computing the correlation between the expected image 

(shown in Figure 3.4) and each of the shapes (gray bars). The error bars show the 

standard errors of the coefficients across observers and categories (foveal and nonfoveal). 

Note that the correlations are highest when computed between a classification image 

generated from a particular target (the triangle in panel (a) and the dipole in panel (b)) 

and that target itself. Moreover, the patterns of the experimental correlation coefficients 

(hatched bars), are virtually identical to those obtained using the targets themselves rather 

than the classification images (black bars). These results show that our technique 

produces classification images that rapidly converge to relatively high fidelity 

representations of the pixel weights used by the observers and, in this case, these weights 

strongly resemble the actual targets. 
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(b) 

Figure 3.7:  Zero-lag 2-D correlation coefficients showing the structural similarity (a) 
between the classification images for the triangle search and each of the test shapes, and 
(b) between the average classification image for the dipole search and each of the test 
shapes. Error bars show the standard errors of the correlations across observers and 
categories (foveal and non-foveal). 
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3.2.2 Control Experiments 

3.2.2.1 Implementation without a Grid 

To show the effect of dividing the stimulus into a grid of tiles and using the 

accompanying taxonomy, we simply repeated the experiment without the grid, as was 

done in earlier work pioneering the use of eye tracking with classification images 

(Rajashekar et al., 2002). In this version of the technique, the actual location of each 

fixation is computed, and the 64 × 64 pixel patch of the stimulus noise surrounding each 

fixation is sampled and stored. The resulting set of noise patches is then simply averaged 

to form the classification images for each observer.3 These are shown in Figure 3.8a; 

columns labeled A contain the classification images after individual contrast 

enhancement, and columns labeled B contain the raw images after low-pass filtering and 

individual contrast enhancement. The combined classification image obtained by 

averaging the classification images across observers is shown for each target type in 

Figure 3.8b. Although there does appear to be some spatial structure in these images, it 

seems less specifically triangular than seen in Figure 3.6a. This was confirmed by doing 

the same correlation analysis as that just described, the results of which are shown in 

Figure 3.9. The black and hatched bars show the target/shape and raw classification 

images/shape correlations replotted from Figure 3.7a, and the quilted bars show the 

correlations obtained using the classification images shown in Figure 3.8. Not only is the 

pattern of correlations across shapes different, but the actual target used (the triangle) 

produced a substantially lower correlation with the classification images than did two of 

the other shapes (the circle and the star). 

 

                                                 
3 This is not strictly a classification image but can be thought of as the average spatial structure that was 
fixated by the observer. 
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(a) 

 

(b) 

Figure 3.8:  Classification images for triangle target search in 1/f noise, without a 
stimulus grid, are shown for 3 observers (panel (a)), and the combined classification 
images are also presented (panel (b)). Columns labeled A contain the raw classification 
images after individual contrast enhancement, and columns labeled B contain the raw 
images after low-pass filtering and individual contrast enhancement. 
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Figure 3.9:  Zero-lag 2-D correlation coefficients showing the structural similarity 
between the classification images for the triangle search and those for each of the test 
shapes, comparing the main experiment with the no-grid control experiment. Error bars 
show the standard errors of the correlations across observers. 
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3.2.2.2 Implementation with White Noise 

1/f noise approximates the spectral distribution of natural scenes, making it a 

valuable tool for probing search behavior within a statistically natural visual 

environment. Despite this important benefit, the presence of spatial correlation in 1/f 

noise leads to classification images that do not correctly estimate the linear independent 

contribution of each pixel to an observer’s behavior, since the noise itself is already 

spatially correlated. In this control experiment, we show that because information 

actually determining the observer’s behavior exists predominately at low spatial 

frequencies (presumably), the classification images converge to a similar degree 

regardless of whether 1/f noise is used or whether another noise type (such as white 

noise) is postprocessed to amplify lower frequencies after the experiment has been 

completed. 

To compare the classification images derived from 1/f noise to those derived 

using white noise, we simply repeated our procedure using uniform white noise,4 with 

200 trials and the same 3 observers. Figure 3.10 shows the resulting data in the same 

format as Figure 3.5. Visual comparison of the two figures indicates an apparent lack of 

spatial structure in the white noise case when processed for viewing as before, with low-

pass filtering and contrast enhancement. The foveal and nonfoveal classification images 

for each observer are shown in Figure 3.11a and averaged across observers in Figure 

3.11b, and the combined classification image is shown in Figure 3.11c. Features of the 

triangle target are present but comparatively faint in the average images. Some spatial 

structure emerges in the combined classification image, but it is unclear without further 

processing (see below). 

                                                 
4 We used uniform, rather than Gaussian, noise because of higher RMS contrast; at a 68% correct SNR in 
our task, Gaussian noise would have been substantially clipped at the tails. 
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Figure 3.10:  The average images for the triangle target search in white noise are shown 
for 3 observers. Columns labeled A contain the raw average images collectively scaled to 
a single common grayscale color map, and columns labeled B contain the raw images 
after low-pass filtering and individual contrast enhancement. 

 

(a) 

 

(b) 
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(c) 

Figure 3.11:  Classification images for the triangle target search in white noise are shown 
(a) for 3 observers, (b) combined across observers for foveal and nonfoveal categories, 
and (c) combined across foveal and nonfoveal categories and across observers. Columns 
labeled A contain the raw images collectively scaled to a single common grayscale color 
map, and columns labeled B contain the raw images after low-pass filtering and 
individual contrast enhancement. 

To effect a fairer comparison, we pinkened our white noise stimuli and 

recalculated the classification images. We then compared these pinkened classification 

images with those obtained directly from the 1/f noise stimuli. The pinkening procedure 

was derived from the computation of the unbiased estimate described by Abbey and 

Eckstein (2002). This procedure involves multiplying each noise image by the covariance 

matrix of the 1/f noise (computed to within an arbitrary scaling factor) given by TBB ∗ , 

where B  represents the 1/f blurring filter and T  the matrix transposition. The 

classification images combined across foveal and nonfoveal categories and across 

observers are shown in Figure 3.12. Column A shows the raw result obtained with the 

pinkened white noise, and column B shows the low-pass filtered and contrast stretched 

version. Again, our results indicate that preblurring (using 1/f noise stimuli) or 

postblurring (pinkening uniform noise post hoc) produces closely comparable results, 

evidenced by the correlation analysis shown in Figure 3.13. The black and hatched bars 

show the target/shape and raw classification images/shape correlations replotted from 

Figure 3.7a, and the striped bars show the correlations obtained using the classification 

images shown in Figure 3.11. 
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Figure 3.12:  Combined classification images for uniform noise (A) after being pinkened 
and (B) after being pinkened, low-pass filtered, and contrast stretched. 
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Figure 3.13:  Zero-lag 2-D correlation coefficients showing the structural similarity 
between the classification images for the triangle search and each of the test shapes, 
comparing the main experiment with the (pinkened) white noise control experiment. 
Error bars show the standard errors of the correlations across observers. 

3.2.3 Performance Measures 

In general, classification images are valuable insofar as observers do the same 

thing in each trial. If an observer switches back and forth between two strategies, say, the 

pixel weights will reflect the linear combination of the two with no way to disentangle 

them. Our task is slightly more complicated than traditional psychophysics. We therefore 

wanted to ensure that observer’s performance remained roughly constant across trials and 

did not depend on the target location (i.e. the initial target eccentricity). Although this is 
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not a direct measure of strategy, a change in strategy would probably be accompanied by 

a change in performance. 

 

3.2.3.1 Performance over Location and Time 

Figure 3.14 shows the cumulative number of hits as a function of the trial number, 

obtained for the 3 observers with two sets of 100 trials for each of the two search tasks 

(triangle and dipole target search) in the basic 1/f noise, with grid, experiment. The mean 

cumulative hit number is represented by the thick black curve, and it reaches the 68% rate 

sought during the QUEST procedure at the final trial. These performances are compared 

with that of a perfect observer (dashed curve labeled as perfect) and with that of a random 

observer (dashed curve labeled as chance). 

Each set of 100 trials yielded a slope between roughly 0.5 and 0.8, and for each 

set, this slope was roughly constant throughout. Again, this is not direct evidence that 

observers were not changing strategies, but it does indicate a constant level of 

performance was maintained within a session. 
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Figure 3.14:  Graph of observer performance over time measured as cumulative number 
of hits. 

We also measured the success rates of observers in four different initial 

eccentricity regions covering the full stimulus, the center tile (Zone 1) and three 

concentric square annuli surrounding the center tile (Zones 2-4), to see whether the 

location of the target had any influence on the performance. Because these zones were 

square, they include tiles centered at eccentricity ranges of 0°, 1.19°–1.68°, 2.38°–3.36°, 

and 3.56°–5.04°. Figure 3.15 shows the comparison of box plots of success rates in the 

four different initial eccentricity regions, for sets of 100 trials performed by the observers 

for both targets: (a) triangle and (b) dipole. The only obvious aberration in the data is that 

the dipole target was always detected when presented in the central tile, and this is 

presumably because this target at this location results in the edge’s being presented 

directly to the foveola.  The triangle target was also more difficult to detect when 

presented in the outermost tiles, but not dramatically so. 
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(a) 

 

 

(b) 

Figure 3.15:  Box plots of the success rates across observers for four different eccentricity 
regions are shown for (a) triangle and (b) dipole search with 1/f noise stimuli with 
superimposed grid. 
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3.2.3.2 Observer Dwell Times 

As discussed in the Proposed Method section, the observers were given 5 sec to 

find the target, in order to ensure a fairly consistent strategy across observers, allowing 

several fixations to be made per trial but precluding the possibility of an exhaustive 

search. Figure 3.16a shows the distribution of the dwell-times from the main experiment 

for all the fixations, excluding the initial and the final ones of each trial, for all the 

observers and both target types. It can be seen that the dwell times are concentrated 

between 200 and 600 msec, in accordance with previous studies (Jacob, 1995). Figure 

3.16b shows the distribution of the dwell times for only the final fixations. Over 83% of 

the dwell times observed for the final fixations are equal to or longer than 600 msec, the 

upper bound on typical fixation durations, reaching 95% for cases in which the target is 

actually found. We interpret this observation as indicating that, in our experiment, search 

was fairly naturalistic and that there was enough time for observers to deliberately select 

a single tile as containing the target on most trials. For greater rigor in ensuring that the 

final fixation categories (Hitf , FAf ) do not contain search fixations, one could eliminate 

those with dwell times below a threshold. 
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      (a)       (b) 

Figure 3.16:  Dwell-time distribution for each observer: (a) non-final and (b) final 
fixations. 

3.3 Discussion and Conclusions 

In this chapter we have demonstrated a technique for expediting the convergence 

of classification images in visual search experiments. In fact, for each of the 3 observers 

and two target types, and with only 200 trials per observer, we see that the classification 

images obtained with our method closely resemble the target sought (Figures 3.5-3.7). 

Although the number of tiles falling into many of the categories was small, we still 

managed to obtain fairly distinctive average images and, hence convincingly robust 

classification images.  Stronger classification images were obtained in comparison to a 

nongrid control experiment (this claim is supported by both visual inspection of the 
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results and the strength of the correlation coefficients obtained between the classification 

images and the targets).  The use of naturalistic 1/f masking noise was evaluated with a 

second control experiment in which white noise was used. Visual inspection and 

correlation coefficients indicate that there is a minimal difference between classification 

images generated with either noise type if we either pinken white noise tiles and compare 

to 1/f noise tiles, or whiten 1/f noise tiles and compare to white noise tiles. 

In addition, we have introduced a new taxonomy for the categorization of results 

from each fixation during a trial. This new taxonomy simply extends the conventional 

signal detection theory categories to distinguish foveal and nonfoveal processes. 

However, this extension should allow us and others to characterize the kinds of 

information used in the fovea and periphery during naturalistic visual search. For 

instance, Figure 3.5a shows blob-like average images across observers for the nonfoveal 

category FAf , hence characterizing the features that attracted observer fixations to tiles 

not containing the target. But as outlined in our taxonomy, noise images in the FAf  

category are divided into two foveal categories FAf  (corresponding to the observer’s final 

selection of a wrong candidate) and CRf  (corresponding to a rejection of a wrong 

candidate). In fact, FAf  presents sharper target-like features compared to CRf  and FAf . 

Although preliminary, such results hint at the difference between the foveal and 

nonfoveal selection process. Moreover, stimuli could be filtered to take into account the 

eccentricities of the tiles with regard to the fixation points (foveation), prior to averaging, 

thus eliminating any contribution of spatial frequencies outside the pass band of the 

visual system at a given eccentricity. 
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Chapter 4 

Spatial Frequency and Orientation Selectivity in Visual Search 

 

In this chapter, we use our novel technique (Tavassoli et al., 2007a), described in 

the previous chapter, to examine observers’ strategies when seeking low-contrast targets 

of different spatial frequency and orientation characteristics. We present four major 

findings (Tavassoli et al., in preparation). First, we provide strong support for visual 

guidance in saccadic targeting, characterized by observers’ selectivity for spatial 

frequency and orientation attributes close to the search target. Second, we show that 

observers exhibit inaccuracies and biases in their estimates of target features. Third, a 

complementarity effect is generally observed, indicating the existence of interactions 

between neighboring spectral components of stimuli. Finally, an unusual phenomenon is 

observed whereby distracters containing close-to-vertical structures are fixated in 

searches for non-vertically oriented targets. Our results provide evidence for the 

involvement of band-pass mechanisms along feature dimensions (orientation and spatial 

frequency) during visual search. 

 

4.1 Motivation 

The existence of neurons along the visual pathway that are selective for the spatial 

frequency and orientation characteristics of visual stimuli is well established by 

physiological studies. Selectivity for spatial frequency is present in early stages of the 

visual pathway and is refined in later ones, i.e. broad tuning at the level of the retina 

(Enroth-Cugell & Robson, 1966; Kuffler, 1953) and relatively narrower tuning in the 
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visual cortex (DeValois et al., 1982; Schiller et al., 1976; Campbell et al., 1969). Tuning 

for orientation is a principal characteristic of cells in the visual cortex; neurons located in 

earlier stages, including in the lateral geniculate nucleus, have not been found to be 

orientation tuned (Hubel & Wiesel, 1968, 1962). However, the refinement of orientation 

tuning is a controversial issue, with various theories proposed, including feedforward 

(Ferster et al., 1996; Hubel & Wiesel, 1962) and intracortical inhibition mechanisms 

(Ringach et al., 1997; Ramoa et al., 1986; Morrone et al., 1982). 

Evidence for observer selectivity for orientation and spatial frequency has been 

provided by numerous psychophysical studies, generally using contrast sensitivity 

(Graham & Nachmias, 1971; Campbell & Robson, 1968), masking (Stromeyer & Julesz, 

1972; Campbell & Kulikowski, 1966; Wilson et al., 1983), and spatial adaptation 

(Snowden, 1992; Tolhurst, 1972; Blakemore et al., 1970; Blakemore & Campbell, 1969) 

paradigms. For example, Campbell and Robson (1968) conducted detection and 

discrimination tasks using gratings (e.g. sine-, square-waves, and so on) and showed that 

observers’ contrast thresholds were directly related to the harmonic Fourier components 

of the gratings. They postulated the existence of independent band-pass mechanisms 

selective for spatial frequencies. Using stimuli consisting of rapid sequential 

presentations of sinusoidal gratings at random orientations and spatial phase, Ringach 

(1998) showed that observers’ tuning for orientation generally presented a “Mexican hat” 

distribution peaking at orientations close to the orientation observers had to report, with 

valleys at either side of the peak. 

An interesting question is how selectivity for spatial frequency and orientation is 

used in visual search tasks. A number of studies have demonstrated, through 

measurements such as reaction times as a function of set size, that both feature 

dimensions can indeed be used in guiding attention in visual search (Wolfe & Horowitz, 
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2004; Sagi, 1988; Treisman & Gelade, 1980). Search efficiency in many tasks was found 

to depend on target-distracter discriminability and distracter homogeneity along these 

feature dimensions (Foster & Ward, 1994; Verghese & Nakayama, 1993; Wolfe et al., 

1992). In addition, search asymmetries were observed (Wolfe et al., 1992; Foster & 

Ward, 1991; Treisman & Gormican, 1988); for instance, the detection of a tilted line 

amongst vertical lines has been shown to be easier than an otherwise identical search for 

a vertical line amongst tilted lines. 

However, many of these previous visual search studies, despite intending to 

elucidate visual search, have avoided the analysis of eye movements, either as a result of 

using short stimulus display times or by instructing observers to keep their eyes still. The 

importance of incorporating eye movements to study observer strategies in visual search 

has been emphasized in the recent years (Geisler et al., 2006; Findlay & Gilchrist, 2003; 

Zelinsky & Sheinberg, 1997). Observers naturally move their gaze when searching for a 

target, and it has even been demonstrated in a few tasks that observers opt to perform eye 

movements even when such a strategy is not optimal (Findlay, 1997; Findlay & Gilchrist, 

1998). 

 

4.2 Methods 

We use our new and efficient experimental search framework to study the 

behavior of humans seeking gratings of known characteristics embedded in 1/f noise. 

Note that the use of noise tiles as distracters, instead of lines, gratings, and so on as used 

in many of the previous visual search studies, permits a much larger set of distracting 

items that possess differences across many feature dimensions. 
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4.2.1 Observers 

Three male observers (aged 26–30) were tested in our experiments, of whom two 

were experienced (AT and IVDL) and one was naïve to the purpose of the study (AJS), 

each with normal/corrected-to-normal vision. Each observer completed 10,500 trials 

(fifteen sets of 700 trials, each set with a different search target) over a period of several 

months. 

 

 

Figure 4.1:  Targets used in our fifteen separate experiments. Gabor patches of spatial 
frequency 2 (first row), 4 (second row), and 8 c/deg (third row), oriented anticlockwise 
from the vertical at (a) 0 deg, (b) 20 deg, (c)  45 deg, (d) 70 deg, and (e) 90 deg were used 
as targets. 

4.2.2 Visual Stimuli 

Our fifteen search targets were 64 × 64 pixel Gabor patches of spatial frequency 

2, 4, and 8 c/deg, oriented anticlockwise from the vertical at 0, 20, 45, 70 and 90 deg 

(Figure 4.1). We use the same one hundred 7 × 7 tile mosaics that were generated to test 

our methodology described in the previous chapter, i.e. obtained offline by creating one 

hundred 544 × 544 pixel 1/f noise images (with an amplitude spectrum of the form 
af/1 with a = 0.8) and then superimposing gray borders 12 pixels in width (Figure 4.2b). 
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On each trial, the Gabor target was added to a randomly selected tile of the 1/f noise grid 

(Figures 4.2a and 4.2b). Observers viewed the stimuli on an Image Systems 21” grayscale 

monitor (Image Systems Corp., Minnetonka, MN) driven by a Matrox Parahelia graphics 

card (Matrox Graphics Inc., Dorval, Québec, Canada) at a screen resolution of 1,024 × 

768 pixels, a grayscale resolution of 8 bits per pixel, and a refresh rate of 60 Hz. The 

screen was placed 134 cm from the observer and subtended a visual angle of 16 × 12 deg, 

giving approximately 1 min of arc per screen pixel. The luminance output was linearized 

by putting the inverse of the monitor’s measured gamma function in the display look-up 

table. The ambient illumination in the laboratory was kept constant for all observers, and 

there was a minimum of 5 min to adapt to the ambient illumination and screen luminance 

while the eye tracker was calibrated. 

 

4.2.3 Procedure 

The procedure was the same as described in the Chapter 3. We would like to point 

out that a measure of dwell-times on the observers final fixations on the tile they believed 

to contain the target indicated that they were deliberately selecting a single tile as 

containing the target on most trials (i.e. over 80% of the dwell-times observed for final 

fixations were equal to or longer than 600 ms, an upper bound on typical fixation 

durations). 
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Figure 4.2:  Stimulus creation, data capture, and data analysis. (a) A Gabor patch used as 
a target (b) was added to a randomly selected tile of the 1/f noise grid. Observer eye 
movements were recorded while they searched for the target. A representative scan path 
is shown for a trial in which the observer did not find the target, located in the center of 
the leftmost column. (c) Fixated tiles that did not contain the target constitute our 
nonfoveal false alarm category, and (d) a subset of these tiles, which were mistakenly 
selected at the end of the trials as the target by the observer, constitute our foveal false 
alarm category. (e and f) Average difference spectra were computed by averaging the 
amplitude spectra of noise tiles in each category and subtracting the spectral bias (see 
text). 
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4.2.4 Analysis Method 

Observers typically performed close to five fixations on average per trial in our 

experiments (note that we disregarded saccades landing between tiles), hence visiting 

tiles containing only noise and in some trials selecting one such tile as the target-

candidate; an example stimulus grid with representative eye movements for a single 

observer is shown in Figure 4.2b. We were therefore interested in examining why some 

noise-only tiles were fixated whereas others were not? And second, why, at the end of 

some trials, was a noise-only tile mistakenly selected as the tile containing the target? 

To answer these questions, we assume that each fixation (excluding the initial 

fixation at stimulus onset) involves two decisions: the decision to fixate a certain tile (and 

not the others), and the subsequent decision to either remain on that tile or continue 

searching. We consider that the former is based primarily on nonfoveal information and 

the latter is based primarily on foveal information. We therefore stored noise-only tiles 

that were fixated while en route to the target and labeled them as “nonfoveal false 

alarms” ( FAf ) (Figure 4.2c). Additionally, noise-only tiles that were mistakenly selected 

as the target at the end of a trial were labeled as “foveal false alarms” (FAf ) - these 

necessarily being a subset of the nonfoveal false alarms (Figure 4.2d). These signal-

absent categories better reflect observer behavior than signal present categories (those 

composed of tiles that contained the target), since only patterns in the noise, 

corresponding to visual information that the observer took to imply the presence of a 

target, are used (Eckstein et al., 2002). 

We therefore computed the Fourier transform of each tile and averaged their 

amplitude spectra within category and observer. Because we used a finite number of 1/f 

noise tiles (100 × 7 × 7 = 4900) for the experiment, a spectral bias is introduced in these 

averages, i.e. the expected amplitude spectrum that would be obtained by randomly 
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sampling noise tiles would have a shape close to 1/f. We therefore examined differences 

between the averages in our categories and the expected bias. We obtained the bias by 

averaging the amplitude spectra of all the 4,900 noise tiles used to generate our stimuli. 

We then subtracted the bias from the averages obtained in each category to form what we 

will refer to as average difference spectra (Figures 4.2e and 4.2f); this process is similar 

to the amplitude spectrum correction method described by Willmore and Smyth (2003). 

These average difference spectra represent dominant (relative to the bias) spatial 

frequency (indicated by the distance from the origin, ω, see Figure 4.2e) and orientation 

(indicated by the angle, θ, from vertical orientation, 0 deg, see Figure 4.2e of the noise 

tiles within each category. To improve visualization, we zeroed the DC (in all the average 

difference spectra) and 1 c/deg (in results obtained for searches for the 4 and 8 c/deg 

Gabors) components, then smoothed each image with a 3 × 3 pixel Gaussian mask with σ 

= 0.9 pixel. Setting the very low frequencies (DC and 1 c/deg) to zero simply allows the 

full color map to be used for the more interesting spectral structures in surrounding 

frequency components.  

Note that directly averaging the noise tiles (i.e. in the spatial domain, as described 

in the previous chapter) within each category and observer produced an effect similar to 

those reported in earlier psychophysical detection studies (Beard & Ahumada, 1999; 

Solomon, 2002) whereby the average images contain some target-like structures in the 

case of search for lower frequency targets but no relevant structure for search for higher 

frequency targets. 

 

4.3 Results 

Figures 4.3a, 4.3b, and 4.3c show the average difference spectra for the two false 

alarm categories obtained for search experiments using Gabor targets of spatial frequency 
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2, 4, and 8 c/deg, oriented anticlockwise from the vertical at 0 (first column), 20 (second 

column), 45 (third column), 70 (fourth column), and 90 deg (fifth column). For each 

observer and set of 700 trials, amplitude spectra were created using about 210 and 2,800 

noise tiles respectively for the foveal and nonfoveal categories. Regions in red and blue 

indicate frequency components having amplitudes above and below the spectral bias, 

respectively (i.e. above and below the expected amplitude spectrum for a random 

observer). Regions in green show frequency components close to the bias. 
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(a) 

 



 62 

 

(b) 
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(c) 

Figure 4.3:  Average difference spectra for three observers in the (a) 2, (b) 4, and (c) 8 
c/deg Gabor search experiments. Average difference spectra, smoothed and contrast-
stretched for visual enhancement, are shown for sets of 700 trials for visual searches for 
Gabor targets oriented anticlockwise from the vertical at 0 (first column), 20 (second 
column), 45 (third column), 70 (fourth column), and 90 deg (fifth column). For each 
observer and each set of trials, the spectra were created using about 210 and 2,800 noise 
tiles respectively for the foveal and nonfoveal categories. Regions in red and blue 
indicate frequency components having amplitudes above and below the spectral bias, 
respectively. Regions in green show frequency components close to the bias. We have 
indicated the spatial frequency of the search target (for the horizontal and vertical 
orientations). 
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Clear spectral structures are obtained in all of the average difference spectra, i.e. 

peaks close to the spatial frequency and orientation of the search target, flanked by well 

localized valleys present in the surround, more visibly for the 4 and 8 c/deg target 

searches. To better illustrate the placement of the valleys relative to the peaks, we first 

rotated each average difference spectrum by the negative of the estimated orientation of 

its peaks. The orientation estimate was obtained by fitting each average difference 

spectrum with the amplitude spectrum of a Gabor whose parameters (spatial frequency, 

bandwidth, orientation, and aspect ratio) were varied using a simplex search method. 

Then, for each target spatial frequency condition, we averaged the aligned average 

difference spectra for each observer (Figure 4.4) and for all observers combined (Figure 

4.5). 

Figure 4.3c shows a surprising outcome for visual searches for the 8 c/deg 

Gabors. All three observers have strong peaks close to 0 deg in the nonfoveal category 

for searches for the non-vertical Gabor targets, in addition to peaks close to that of the 

search targets. The additional peaks appear to vanish in the foveal category, i.e. once 

observers fixated the noise tiles. This effect is best illustrated in the last column of Figure 

4.3c, where tightly tuned peaks are present at 0 deg in the nonfoveal average difference 

spectra along with peaks at 90 deg, and then the additional peaks fade away in the foveal 

average difference spectra. 
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(a) 

 

(b) 

 

(c) 

Figure 4.4:  Complementarity effect for three observers. The average of aligned average 
difference spectra are shown for (a) 2 c/deg, (b) 4 c/deg, and (c) 8 c/deg Gabor search 
experiments for three observers. Regions in red indicate frequency components having 
amplitudes above the bias and regions in blue specify those components having 
amplitudes below the bias. 
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Moreover, we were curious to examine the effects of eccentricity and saccade 

order on saccadic targeting. We further binned the noise tiles in the nonfoveal category 

by eccentricity and by order, separately. We found that the structures present in the 

average difference spectra in each bin, using either binning approaches, were generally 

similar to ones in the average difference spectra obtained without binning, hence 

demonstrating the robustness of our results. However, when binning by saccade length, 

we noticed in the average difference spectra some instances in which peaks for larger 

eccentricity bins were lower in spatial frequency than for smaller eccentricities. Although 

the latter effect may be expected due to the falloff of resolution in peripheral vision, 

however the effect was not reliable perhaps due to the limited number of noise tiles in 

each bin, especially for larger saccade lengths or saccade numbers. 

 

 

Figure 4.5:  Complementarity effect for all three observers combined. The average of 
aligned average difference spectra are shown for (a) 2 c/deg, (b) 4 c/deg, and (c) 8 c/deg 
Gabor search experiments for all observers combined. Regions in red indicate frequency 
components having amplitudes above the bias and regions in blue specify those 
components having amplitudes below the bias. 

4.4 Discussion 

The aim of the current study was primarily to explore saccadic targeting and 

target selection in naturalistic visual search tasks, more precisely when human observers 
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search for a Gabor target with known characteristics embedded in a grid of 1/f noise 

(which has a similar falloff in amplitude spectrum as natural images). We are interested 

in understanding what attracts fixations and how target candidates are selected upon 

fixation.  

Our results clearly indicate visual guidance in saccadic targeting, which has been 

a somewhat contentious issue in previous studies of active visual search (Findlay & 

Gilchrist, 2003; Hooge & Erkelens, 1999; Motter & Belky, 1998b; Findlay, 1997; 

Zelinsky, 1996). A similarity effect (as defined by Findlay & Gilchrist, 2003) is revealed, 

showing that saccades are guided, on average, to distracters (here, noise tiles) presenting 

featural similarities to the Gabor target. In particular, we demonstrate that observers are 

selective for spatial frequencies and orientations close to the central frequency and 

orientation of the search target, i.e. the average difference spectra for fixated noise tiles 

show peaks localized in spatial frequency and orientation close to that of the target 

(Figures 4.3a, 4.3b, and 4.3c). 

Furthermore, observers exhibit inaccuracies in their estimates of target attributes. 

These errors are revealed by the uncertainties and offsets in the average difference 

spectra, i.e. elongations in spatial frequency and orientation bandwidths; radial spread 

corresponding to less selectivity in spatial frequency and rotational smearing to less 

tuning in orientation. In many cases, offsets in estimates of target features occur 

nonfoveally but are corrected upon fixation, e.g. observers AJS and IVDL are attracted to 

noise tiles containing predominantly near-horizontal (close to 90 deg) structures when 

looking for a Gabor target of spatial frequency 8 c/deg oriented at 70 deg, then foveally 

select those with prevalent structures close to 70 deg (Figure 4.3c). Inaccuracies in 

observer estimates have been reported in psychophysical tasks (Ringach, 1998) and 

appear in psychophysical reverse-correlation data for detection tasks (Solomon, 2002). 
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Interestingly, a marked complementarity effect is found in much of our human 

data; that is, the absence of various spatial frequencies and orientations appears to 

influence whether a noise tile is fixated and selected as target candidate upon fixation. In 

fact, the average difference spectra for fixated noise tiles contain valleys localized at 

spatial frequencies and orientations neighboring the peaks, more consistently for the 4 

and 8 c/deg Gabor target experiments. For example, in Figure 4.3b, most of the average 

difference spectra in the nonfoveal category for observer AT show distinctive valleys at 

oblique orientations. The existence of valleys in the results may signify that observers are 

often disregarding noise tiles containing frequency components surrounding their 

estimates of the target’s orientation and spatial frequency. Alternatively, it could reflect 

that a reduced presence of particular frequency components may have an enhancing 

effect in the detection of the components of interest. In general, it appears that the valleys 

in the average difference spectra tend to be at lower frequencies than the peaks for the 

higher frequency (8 c/deg) Gabor search experiments and that this tendency is reversed 

for lower frequency search experiments (Figure 4.5). This observation is consistent with 

findings in masking experiments where it was found that the most effective masks for 

low frequency test gratings were at higher frequencies and vice versa (Wilson et al., 

1982); and, somewhat comparable to the “Mexican hat” orientation profiles found by 

Ringach (1998) in psychophysical experiments, although he reported that the effect 

disappeared for higher frequencies. 

Curiously, there is, on average, an unusual presence of close-to-vertical structures 

in fixated noise tiles for visual searches for the 8 c/deg Gabors for the non-vertical 

orientation conditions, i.e. the average difference spectra for the nonfoveal category 

present peaks close to the spatial frequency of the search target but at an orientation of 0 

deg. This effect could reflect possible facilitations in detection; for instance, Sillito et al. 
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(1995) showed that responses of many neurons in V1 to their preferred orientation could 

be enhanced by introducing a surrounding field containing a pattern at significantly 

different orientation than the center. Alternatively, it could be the consequence of double-

orientation tuning in nonfoveal detection; for example, Shevelev et al. (1994) 

demonstrated the existence of neurons in V1 that have a main preferred orientation and 

an additional preferred orientation. Nevertheless, another possibility may be a windowing 

or end stopping effect, i.e. the size and width of structures present in noise tiles may be 

influencing peripheral decision in making saccades. The additional frequency 

components vanish once observers fixated the noise tiles. 

 

4.5 Conclusions 

Our results provide compelling evidence for band-pass mechanisms in saccadic 

targeting and target selection during visual search, in particular for grating-like targets. 

Furthermore, selectivity along feature dimensions (here, spatial frequency and 

orientation) shows inaccuracies, offsets, and curious biases. These errors are to some 

extent corrected during the foveal decision process. Furthermore, it appears that the 

presence or absence of various spectral components, other than those close to that of the 

search target, influence the guidance of saccades. We find that the absence of certain 

surround frequency components or the presence of near-vertical structures (i.e. 

components close to 0 deg) in the noise tiles attracts observer fixations. 
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Chapter 5  

Visual Search under Uncertainty Conditions 

 

In this chapter, we use our experimental search framework, presented in Chapter 

3, to measure observers’ ability to locate a low-contrast target of unknown orientation. 

We were curious to examine observer strategies under (orientation) uncertainty. We 

present three main discoveries (Tavassoli et al., 2007b). First, we provide strong evidence 

for saccadic selectivity for spatial frequencies close to the target’s central frequency. 

Second, we demonstrate that observers have distinct, idiosyncratic biases to certain 

orientations in saccadic programming, although there were no priors imposed on the 

target's orientation. These orientation biases cover a subset of the near-cardinal 

(horizontal/vertical) and near-oblique orientations, with orientations near vertical being 

the most common across observers. Further, these idiosyncratic biases were stable across 

time. Third, within observers, very similar biases exist for foveal target detection 

accuracy.  These results suggest that saccadic targeting is tuned for known stimulus 

dimensions (here, spatial frequency) and also has some preference or default tuning for 

uncertain stimulus dimensions (here, orientation). 

 

5.1 Motivation 

Studies of visual acuity and contrast sensitivity in humans have shown an unequal 

sensitivity across orientation; generally, these studies find a greater sensitivity to gratings 

with cardinal (horizontal/vertical) relative to oblique orientations (Berkeley et al., 1975; 

Campbell et al., 1966). This orientation anisotropy is referred to as the “oblique effect” or 

“cardinal bias” in the literature (Appelle, 1972). This effect is also found in cats and 
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macaque monkeys, but not as consistently as for humans (Li et al., 2003). Some have 

argued that using broadband stimuli, such as 1/f noise or natural images filtered in 

orientation, instead of gratings, could instead yield greater sensitivity for oblique 

orientations (Hansen & Essock, 2004). 

A number of single-cell physiological studies (see Li et al., 2003) of the primary 

visual cortex (V1) have found variability in populations of orientation tuned cells (viz., a 

larger number of cells tuned to horizontal and vertical than to oblique orientations), but 

several other studies were unsuccessful in finding such differences (Finlay et al., 1976; 

Mansfield, 1974). It has been suggested that causes of these discrepancies are that 

different studies have used different measurement procedures, and that some have 

sampled only a small population of cells. More recently, researchers have observed an 

oblique effect using optical imaging (Coppola et al., 1998) and functional magnetic 

resonance imaging (Furmanski & Engel, 2000). Overall, the belief in a generic deficit for 

oblique stimuli remains a source of some contention, and its incidence is likely to vary 

with the stage in the visual pathway measured and the experimental technique employed. 

A question of great interest is how visual search might be affected by anisotropies 

in the perception of orientation. Studies have reported search asymmetries in tasks where 

human observers seek an oriented target amongst a set of distracters (Wolfe, 1998; 

Carrasco et al., 1998; Wolfe et al., 1992; Foster & Ward, 1991; Treisman & Gormican, 

1988). For instance, the detection of a tilted line amongst vertical lines has been found to 

be easier than search for a vertical line amongst tilted lines. In this paper, we address a 

more general problem in visual search where the orientation of the target is not known to 

the observer a priori. Such an experimental procedure is similar to many real-world 

search tasks, in which the orientation of an object is largely uncertain, though it may be 

influenced by gravity or its proximal interaction with other objects and planes.  
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5.2 Methods 

We use our experimental search framework to study the behavior of humans 

seeking a randomly oriented grating embedded in 1/f noise. 

 

5.2.1 Observers 

Four male observers (aged 26 through 30), of whom two were experienced (AT 

and IVDL) and two naïve (AEP and AJS), were tested in our experiments, each with 

normal/corrected-to-normal vision. Each observer completed 1,400 trials (2 sets of 700 

trials, separated by a period of about 1 month). 

 

5.2.2 Visual Stimuli 

Our search target was a 64 × 64 pixel Gabor patch of frequency 8 c/deg and 

bandwidth 0.25 octaves (Figure 5.1a). We use the same one hundred 7 × 7 tile mosaics 

that were generated to test our methodology described in the previous chapter, i.e. 

obtained offline by creating one hundred 544 × 544 pixel 1/f noise images (with an 

amplitude spectrum of the form af/1 with a = 0.8) and then superimposing gray borders 

12 pixels in width (Figure 5.1c). On each trial, the orientation of the Gabor was randomly 

selected from the set {0, 1, 2…179} deg (Figures 5.1a and 5.1b) and this Gabor was then 

added to a randomly selected tile of the 1/f noise grid (Figure 5.1c). As a convention, 

angles ascended from 0 deg (vertical bars) in an anticlockwise direction. Observers 

viewed the stimuli on an Image Systems 21” grayscale monitor (Image Systems Corp., 

Minnetonka, MN) driven by a Matrox Parahelia graphics card (Matrox Graphics Inc., 

Dorval, Québec, Canada) at a screen resolution of 1,024 × 768 pixels, a grayscale 
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resolution of 8 bits per pixel, and a refresh rate of 60 Hz. The screen was placed 134 cm 

from the observer and subtended a visual angle of 16 × 12 deg, giving approximately 1 

min of arc per screen pixel. The luminance output was linearized by putting the inverse of 

the monitor’s measured gamma function in the display look-up table. The ambient 

illumination in the laboratory was kept constant for all observers, and there was a 

minimum of 5 min to adapt to the ambient illumination and screen luminance while the 

eye tracker was calibrated. 

 

5.2.3 Procedure 

The procedure was the same as described in the Chapter 3. We would like to 

indicate that over 81% of the dwell-times observed for final fixations were equal to or 

longer than 600 ms, an upper bound on typical fixation durations, indicating that 

observers were deliberately selecting a single tile as containing the target on most trials. 
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Figure 5.1:  Stimulus creation, data capture, and data analysis.  (a) A Gabor patch was 
used as a target and (b) its orientation was randomly selected from the set {0, 1, 2…179} 
deg. (c) The target was added to a randomly selected tile of the 1/f noise grid and 
observer eye-movements were recorded while they searched for the target. An example 
of scan path is shown for a trial in which the observer did not find the target, located in 
the center of the leftmost column. (d) Fixated tiles that did not contain the target 
constitute our non-foveal false alarm category, and (e) a subset of these tiles, which were 
mistakenly selected at the end of trials as the target by the observer, constitute our foveal 
false alarm category. (f and g) Average difference spectra were computed by averaging 
the amplitude spectra of noise tiles in each category and subtracting the spectral bias (see 
text). 
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5.2.4 Analysis Method 

Observers typically performed four to five fixations on average per trial in our 

current experiments, therefore visiting tiles not containing the target (i.e. noise-only tiles) 

and in some trials selecting one such tile as the target; an example stimulus grid with 

representative eye movements for a single observer is shown in Figure 5.1c.  

We asked the same questions as for earlier experiments: Why were some noise-

only tiles fixated whereas the others were not? And why, at the end of some trials, was a 

noise-only tile mistakenly selected as the tile containing the target? The analysis of the 

noise tiles was identical to that presented in the previous chapter. Note that no significant 

patterns were obtained by directly averaging, pixel by pixel in the spatial domain (i.e. 

retaining the phase information). 

 

5.3 Results 

Figure 5.2 shows the average difference spectra for the two false alarm categories 

obtained for the first set of 700 trials (first column), the second set of 700 trials collected 

approximately one month later (second column), and all 1,400 trials (third column) for 

each observer. For each observer and each set of trials, amplitude spectra were created 

using about 210 and 2,800 noise tiles respectively for the foveal and non-foveal 

categories. Regions in red and blue indicate frequency components having amplitudes 

above and below the spectral bias, respectively (i.e. above and below the expected 

amplitude spectrum for a random observer). Regions in green show frequency 

components close to the bias. Surprisingly, each observer shows an idiosyncratic 

preference for certain distinct orientations. Further, note the high degree of similarity 

within observers between each set of 700 trials, particularly in the FAf  category, which 

indicates the stability over time of these somewhat curious results. We have quantified 
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these similarities, using zero-lag correlation between the smoothed average difference 

spectra of the two sets, for each observer, and we have obtained on average 0.72 (ranging 

from 0.6 for AJS to 0.8 for AT). In the fourth column of Figure 5.2, we have cropped and 

enlarged the results from the third column to better visualize the spectral structures, and 

we have indicated the spatial frequency of the sought target (for the horizontal and 

vertical orientations). Notice that the peaks are close to the spatial frequency of the 

sought target (8 c/deg). Note that we did not find any reliable, dramatic effects of saccade 

length (which might be expected due to the falloff of resolution of the visual system). 

We show in the last column of Figure 5.2 observers’ performance in finding the 

Gabor target as a function of its orientation. Performance was pooled into 15 deg bins (12 

bins total) and then averaged. Each bin contains about 117 trials. We indicate in red the 

average performance of each observer across all orientations (which is close to the initial 

value of 68% correct sought using the QUEST procedure). Regions in yellow and gray 

indicate performance above and below the observer’s average performance, respectively.  

Notice that peaks in the average difference spectra for the FAf  category correspond quite 

closely to increases in performance at similar orientations. A repeated measures analysis 

of variance (ANOVA) with orientation and observer as factors showed a significant 

effect of orientation ( 46.5)705,11( =F , 81017.2 −×=p ) on the performance in finding 

the target, but a marginal effect of observer (note that the QUEST procedure ensured 

similar average performance for observers). 
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Figure 5.2:  Average difference spectra and performance plots for four observers. 
Average difference spectra, smoothed and contrast-stretched for visual enhancement, are 
shown for the first set of 700 trials (first column), the second set of 700 trials collected 
approximately one month later (second column), and for all the 1,400 trials (third 
column). For each observer and each set of trials, the spectra were created using about 
210 and 2,800 noise tiles respectively for the foveal and non-foveal categories. 
(continued) 
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(continued) Regions in red and blue indicate frequency components having amplitudes 
above and below the spectral bias, respectively. Regions in green show frequency 
components close to the bias.  In the fourth column, we have cropped and enlarged the 
results from the third column to better visualize the spectral structures, and we have 
indicated the spatial frequency (8 c/deg) of the search target (for the horizontal and 
vertical orientations). Observers performance (correct target detection rate, on a scale 0 to 
1) are shown as a function of the orientation of the Gabor patches (pooled into 15 deg 
bins and averaged, each bin containing about 117 trials). We indicate in red the average 
performance of each observer across all orientations (this is close to the 68%). Regions in 
yellow and gray indicate performance above and below the observer’s average 
performance, respectively. 

We have also tested whether behavior in a given trial is affected by the outcome 

of the preceding trial. Essentially, we wished to establish if the orientation of the target in 

trial 1nτ −  affected the outcome of trial nτ , i.e. if a delusive sequential strategy or bias 

permeates the observer’s results (observers were told that the target orientation was 

chosen at random for each trial). We introduce the rotated average difference spectra 

obtained by rotating the noise tiles at trialnτ by the negative of the orientation of the 

target at trial 1nτ − , then averaging them across trials. For example, if the target at trial 54τ  

has an orientation of 75 deg, we would rotate all the noise tiles in trial 55τ  by -75 deg 

before averaging them in the FA categories. This process is designed to highlight 

dependencies between successive trials. For instance, if on average the observer tends to 

look for a similar orientation as the target in the preceding trial, then we would expect to 

see strong increases in amplitude close to the reference orientation (Refθ ), set at 0 deg. If 

there are no dependencies then we should observe an annulus (denoting an isotropic 

distribution) of the orientations. Figure 5.3 shows that for all four observers the FAf  

categories present structures close to an annulus, therefore that there appears to be, on 

average, no significant sequential bias. For observers AT and AEP, the FAf  category 

shows some biases; for example, a wide spread of high amplitude frequency components 

orthogonal to the reference orientation is observed for AT, possibly suggesting a decrease 
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in frequency detection accuracy for orientations perpendicular to the previous trial, or a 

slight tendency to select perpendicular orientations from trial to trial. 

 

Figure 5:3:  Test for sequential bias. Rotated average difference spectra, smoothed and 
contrast stretched for visual enhancement, are shown. Regions in red and blue indicate 
frequency components having amplitudes above and below the spectral bias, respectively. 
Regions in green show frequency components close to the bias. See text for details. 

5.4 Discussion 

The main objective of this study was to investigate saccadic targeting and target 

selection in a naturalistic visual search task, when observers sought a randomly oriented 

Gabor target in a grid of 1/f noise (which has an amplitude spectrum distinctive to natural 

scenes). We are interested in discovering what attracts fixations and how target 

candidates are selected upon fixation, in particular, when observers are uncertain about a 

target feature (here, the orientation). 

The results clearly point to visual guidance in saccadic target selection, in 

particular, under orientation uncertainty. We demonstrate that observers are selective for 

spatial frequencies close to the central frequency of the sought target; that is, the average 

difference spectra for fixated noise tiles show peaks localized in spatial frequency (close 

to 8 c/deg) but spread across various orientations (see Figure 5.2). Note that, in the 

previous chapter, we found that observers were selective for both spatial frequency and 

orientation when the orientation of the target was known (i.e. when we used Gabor 
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targets of spatial frequency 8 c/deg and fixed orientation {0, 20, 45, 70, and 90} deg in 

five separate experiments). 

Surprisingly, even under conditions of complete orientation uncertainty, observers 

show pronounced, idiosyncratic biases for certain stimulus orientations in saccadic 

programming, that is, rotational smearing of the peaks in the average difference spectra 

for the fixated noise tiles is limited to a subset of orientations. Note that if observers were 

equally selective for all stimulus orientations, one would expect to obtain peaks spread 

across all orientations, hence, giving rise to a full annulus structure in the Fourier domain. 

Interestingly, these preferences are not exclusively limited to the cardinal directions 

(except for observer IVDL), which is somewhat inconsistent with many physiological 

and behavioral studies (Li et al., 2003; Berkeley et al., 1975; Campbell et al., 1966), 

although the strongest preference across all observers appears to be close to vertical (0 

deg). Nor are the biases solely reserved to the oblique orientations, as might be expected 

given the results of behavioral studies using more naturalistic stimuli (Hansen & Essock, 

2004).  Instead, we demonstrate preferences for a subset of orientations that encompass, 

in part, cardinal and oblique orientations. 

These biases are also present in observers' performance data, and, within each 

observer, they are remarkably similar to the biases seen in average difference spectra for 

noise tiles selected as target candidates upon fixation (although more trials would be 

needed to examine the fine structure, if any, of this similarity). We show that the 

performance in finding the target is dependent on its orientation and that an asymmetry 

exists between clockwise and anticlockwise orientations; AJS, AT, and IVDL have a 

preference for anticlockwise oriented stimuli whereas AEP has a bias towards clockwise. 

Although mysterious in origin, such asymmetries have been reported in physiological 

studies of macaque monkeys (Finlay et al., 1976) and appear in earlier behavioral data 
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(Boltz, Harwerth, & Smith, 1979). This observation may be a consequence of unequal 

populations or firing strength of orientation-tuned cells involved in the task, or may result 

from the assembly of search filters tuned such that certain orientations are amplified in 

sensitivity at the expense of others, in a dynamically reconfigurable, task-dependent 

manner. One may also speculate that these orientation biases could be related to 

observers’ daily interactions with their unique environments, although further 

investigation would be required to substantiate these possibilities. 

 

5.5 Conclusions 

Our results offer insight into observer behavior in visual search tasks under 

uncertain stimulus conditions. In our experiment, the spatial frequency was held constant 

while the orientation varied. We found that the observers relied on an invariant target 

feature, namely spatial frequency structure similar to the sought target. Surprisingly, 

despite having no previous knowledge of each target's orientation, observers showed 

clear idiosyncratic biases in orientation selectivity during saccadic programming. These 

biases were also present in observers’ foveal detection data and showed asymmetries 

between clockwise and anticlockwise orientations. Further examination of the effects of 

learning (e.g., training to least preferred orientations) may be useful in understanding 

mechanisms of plasticity in such tasks. 
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Chapter 6  

Towards the Better Understanding of Search for Complex Targets 

 

In the current chapter, we present two directions for further understanding 

observer strategies in visual searches for textures and complex targets. We use our 

experimental search framework, presented in Chapter 3, to examine how observers search 

for low-contrast targets created from Gabor summations (Experiment 1) and mosaicing 

(Experiment 2). We present several key discoveries. First, we show a strong presence of 

visual guidance in saccadic programming in search for such complex targets, 

demonstrated by selectivity for spatial frequencies and (in some cases) orientations close 

to the characteristics of each target. Second, multiple orientation attributes of the targets 

are shown to be represented in saccadic targeting and target selection in most cases, 

modulated by the observer’s sensitivity / selectivity for each orientation. Third, different 

configurations of the Gabor mosaicing produce distinct tunings in orientation, but visibly 

idiosyncratic to each observer (Experiment 2). Moreover, a localized analysis is 

performed. Fourth, a curious presence of close-to-vertical structures is observed in 

fixated distracters, although the search targets did not contain vertically-oriented 

structures (Experiment 2).  

 

6.1 Methods 

The experimental framework for our experiments was similar to what we 

described earlier, and additionally contained several methodological extensions that we 

have highlighted in the next sections. 
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6.1.1 Observers 

Four male observers (aged 27 through 31), of whom two were experienced (AT 

and IVDL) and two naïve (AEP and AJS), were tested in our experiments, with normal or 

corrected-to-normal vision. Observers AJS and IVDL were tested in Experiment 1, AEP 

in Experiment 2, and AT in both experiments. Each observer in Experiment 1 completed 

2,100 trials (three sets of 700 trials spread over a period of about 1 month); and each 

observer in Experiment 2 completed 1,800 trials (three sets of 600 trials spread over a 

period of about 1 month). 

 

Figure 6.1:  Targets used in our two experiments. Plaids created from the sum of two 
orthogonally oriented Gabor patches, one oriented at 0 deg and the other at 90 deg. The 
three targets used had component spatial frequencies of (a) 2, (b) 4, and (c) 8 c/deg and 
bandwidths of 0.25 octaves. Gabor mosaics created using various configurations ((d) 
“X”, (e) “O”, and (f) “V”) of two pairs of Gabors of spatial frequency 8 c/deg and 
bandwidth 0.5 octaves, oriented at – 45 and 45 deg were used as targets in our second 
experiment. 

6.1.2 Visual Stimuli 

In Experiment 1, our search targets were 64 × 64 pixel plaids (or compound 

gratings), created from the sum of two orthogonally oriented Gabor patches, one oriented 
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at 0 deg (vertical) and the other at 90 deg (horizontal). The three targets used had 

component spatial frequencies of 2, 4, and 8 c/deg (Figures 6.1a, 6.1b, and 6.1c). 

In Experiment 2, we used 64 × 64 pixel targets created from mosaics of Gabor 

patches of size 32 × 32 pixels, using various configurations (that we will refer to as “X”, 

“O”, and “V”) of two pairs of Gabors of spatial frequency 8 c/deg and bandwidth 0.5 

octaves, oriented at – 45 and 45 deg (Figures 6.1d, 6.1e, and 6.1f). 

 

6.1.3 Procedure 

The procedure was identical to that described in the Chapter 3. We would like to 

point out that over 80% of the dwell-times observed for final fixations were equal to or 

longer than 600 ms, an upper bound on typical fixation durations). 

 

6.1.4 Analysis Method 

We pursued a similar philosophy as described in the previous chapters; that is, 

discovering why some noise-only tiles were fixated and why on some trials a noise-only 

tile was selected as a target-candidate, when observers performed our search tasks. 

Typically in the past experiments we have averaged the noise spectra in the foveal and 

non-foveal categories, and then removed the spectral bias to obtain what we have referred 

to as the average difference spectra. Here, we have adopted the same analysis for both 

our experiments, and additionally we have introduced a new local-based spectral analysis 

for Experiment 2. The latter analysis consists of first dividing each noise tile (of size 64 × 

64 pixels) in each category into four equal-sized adjacent 32 × 32 pixel quadrants (i.e. the 

center of each quadrant is the same as the center of each of the Gabors in the target). We 

then compute the amplitude spectrum of each noise quadrant, therefore obtaining for each 

noise tile four local amplitude spectra. We then average all the first quadrant spectra of 
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the noise tiles in each category and subtract the noise bias corresponding to the first 

quadrant of all the 4,900 noise tiles. We perform the same operations for the three other 

noise quadrants to obtain what we will call the localized average difference spectra. With 

this analysis we can examine separately how different parts of the stimuli are treated 

during search tasks. 

Note that directly averaging the noise tiles (i.e. in the spatial domain) within each 

category and observer produced a effect similar to that observed for search tasks using 

single Gabor targets described in Chapter 4, whereby the average images contain some 

structures in the case of search for lower frequency targets but non-reliable for searches 

for higher frequency targets. 

 

6.2 Results 

Figures 6.2a, 6.2b, and 6.2c show the average difference spectra for the two false 

alarm categories obtained for Experiment 1 using plaids of spatial frequency 2, 4, and 8 

c/deg (third columns, denoted “0 + 90”). As a comparison we have shown the results 

from previous experiments (see Chapter 4) when single Gabor targets oriented 

anticlockwise from the vertical at 0 (first columns) and 90 deg (second columns) were 

used as targets. For each observer and set of 700 trials, amplitude spectra were created 

using about 210 and 2,800 noise tiles respectively for the foveal and nonfoveal 

categories. Regions in red and blue indicate frequency components having amplitudes 

above and below the spectral bias, respectively (i.e. above and below the expected 

amplitude spectrum for a random observer). Regions in green show frequency 

components close to the bias. 
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(a) 
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(b) 
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(c) 

Figure 6.2:  Results for three observers in Experiment 1. Average difference spectra, 
smoothed and contrast-stretched for visual enhancement, are shown for sets of 700 trials 
for visual searches for targets with spatial frequency components centered at (a) 2 c/deg, 
(b) 4 c/deg, and (c) 8 c/deg. The first column shows results for search for a Gabor at 0 
deg. The second column results for search for a Gabor at 90 deg.  The last column shows 
the results for search for the sum of the two Gabors (indicated as 0 + 90 deg). Regions in 
red and blue indicate frequency components having amplitudes above and below the 
spectral bias, respectively. Regions in green show frequency components close to the 
bias. For each observer and each set of trials, these images were created using about 210 
and 2,800 noise tiles respectively for the foveal and non-foveal categories. 
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Note that the average difference spectra for fixated noise tiles show peaks close to 

both spectral components of the sought target, when observers searched for plaids with 

component spatial frequencies of 4 and 8 c/deg. Moreover, the peaks in the nonfoveal 

average difference spectra for observers AJS and AT show a spread in orientation. The 

two previous observations are less evident in the average difference spectra obtained 

when observers searched for the 2 c/deg plaid target; nevertheless, the results obtained for 

this particular target are clearly low-pass. 

Figure 6.3 shows the average difference spectra for the two false alarm categories 

obtained for Experiment 2 using Gabor mosaic targets with “X” (first column), “O” 

(second column), and “V” (third column) configurations. For each observer and set of 

600 trials, amplitude spectra were created using about 180 and 2,400 noise tiles 

respectively for the foveal and nonfoveal categories. Regions in red and blue indicate 

frequency components having amplitudes above and below the spectral bias, respectively 

(i.e. above and below the expected amplitude spectrum for a random observer). Regions 

in green show frequency components close to the bias. Clear band-pass spectral 

structures are present in the nonfoveal average difference spectra; i.e. peaks are close to 

the component spatial frequencies of the sought target (8 c/deg) and spread in orientation, 

including orientations close to those characteristic of the sought target (i.e. at – 45 and 45 

deg). 
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Figure 6.3:  Results for two observers in Experiment 2. Average difference spectra, 
smoothed and contrast-stretched for visual enhancement, are shown for sets of 600 trials 
for visual searches for Gabor mosaic targets with “X” (first column), “O” (second 
column), and “V” (third column) configurations, as described in the text. Regions in red 
and blue indicate frequency components having amplitudes above and below the spectral 
bias, respectively. Regions in green show frequency components close to the bias. For 
each observer and each set of trials, these images were created using about 180 and 2,400 
noise tiles respectively for the foveal and non-foveal categories. 

The structural similarity between certain average difference spectra in Figure 6.3 

(e.g. the first and third column results for AEP) may lead one to think that analogous 

approaches may be used by observers in visual searches for distinct targets. We address 

this issue and whether observers make use some phase information with our local-based 

analysis described in the previous section. Figure 6.4 shows the localized average 

difference spectra for the two observers for the foveal false alarm category. Notice that 

the localized average difference spectra show differences for various configurations of 
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the Gabor mosaics. Also in some cases, the peaks are close to the local frequency 

components of the target, hence showing some use of the spatial configuration of the 

target components in the target-candidate selection process. However, there is some 

leakage between local regions. 

 

 

Figure 6.4:  Results for two observers in Experiment 2. Localized average difference 
spectra, smoothed and contrast-stretched for visual enhancement, are shown for sets of 
600 trials for visual searches for Gabor mosaic targets with “X” (first two columns), “O” 
(second two columns), and “V” (third two columns) configurations, as described in the 
text. Regions in red and blue indicate frequency components having amplitudes above 
and below the spectral bias, respectively. Regions in green show frequency components 
close to the bias. For each observer and each set of trials, these images were created using 
about 180 and 2,400 noise tiles respectively for the foveal and non-foveal categories. 

6.3 Discussion 

Our main goal in this chapter was to take a step forward in the further 

understanding of how observers search for complex targets in naturalistic visual search 
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tasks. To this end, we have designed search targets created from Gabor summations 

(Experiment 1) and mosaicing (Experiment 2) to measure observers’ aptitude in finding 

such targets embedded in 1/f noise. Similarly to our experiments in the past two chapters, 

we were curious in discovering what attracts fixations and how target candidates are 

selected upon fixation. 

The results underscore, once again, the prevalence of visual guidance in saccadic 

targeting, in particular during search for complex targets. We show that observers are 

selective for spatial frequencies and (in some cases) orientations close to those 

characteristic of the target; that is, the average difference spectra for fixated noise tiles 

present peaks localized in spatial frequency and sometimes in orientation, close to the 

spectral components of the sought target (Figures 6.2 and 6.3). 

Furthermore, we find that multiple orientation attributes of the target are generally 

represented in saccadic targeting and target selection, demonstrated by selectivity for 

orientations close to both component orientations of the target (0 and 90 deg, in 

Experiment 1; – 45 and 45 deg, in Experiment 2). However, the representations of the 

oriented components are not equally weighted and appear to be modulated by observer’s 

sensitivity / selectivity for each orientation. For instance, the average difference spectra 

for observer AT, in the “X” and “V” target search experiments (Figure 6.3), contain well 

localized peaks close to – 45 and 45 deg, but unequally weighted. 

Interestingly, different configurations of the Gabor mosaicing produce distinct 

tunings in orientation, but visibly idiosyncratic to each observer (Experiment 2). For 

instance, the average difference spectra for both observers, obtained when the search 

target had the “O” configuration, is structurally quite different form the average 

difference spectra obtained for the “V” and “X” target configurations. Note that the 



 93 

Gabor mosaic targets with the “X” and “O” configurations have the exact same Fourier 

amplitudes. 

Intriguingly, there is, on average, an unusual presence of close-to-vertical 

structures in fixated distracters, although the search targets did not contain vertically-

oriented structures in Experiment 2. Several possible explanations can be brought 

forward, some analogous to those discussed in Chapter 4 for a similar phenomenon when 

single Gabors were used as targets. One explanation could be that the presence of vertical 

components may be facilitating the detection of other orientations present in the noise 

tiles. Alternatively, it could simply reflect that observer’s gaze are drawn to noise tiles 

containing close-to-vertical orientations but having dominant spatial frequencies close to 

that of the target. These vertical components vanish in the foveal average difference 

spectra, i.e. for noise tiles selected as target candidates. 

 

6.4 Conclusions 

Our results provide convincing evidence for band-pass mechanisms and multiple 

orientations in saccadic targeting and target selection during visual search, targets. 

Furthermore, selectivity along feature dimensions (here, spatial frequency and 

orientation) shows inaccuracies, offsets, and curious biases. These errors are to some 

extent corrected during the foveal decision process. Furthermore, it appears that the 

presence or absence of various spectral components, other than those close to that of the 

search target, influence the guidance of saccades. We find that the absence of certain 

surround frequency components or the presence of near-vertical structures (i.e. 

components close to 0 deg) in the noise tiles attracts observer fixations. 
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Chapter 7  

Towards Applications for Automated Visual Search 

 

The main objective of this chapter is to present some ideas and insights inspired 

from what we have discovered in our experiments that could be integrated into automated 

visual search. A few of these ideas have been implemented in simple search frameworks. 

Although a template matching approach could produce better performance in some of 

these tasks, the intent here was to build an approach that could potentially outperform the 

latter on the long run. Besides, note that template matching makes the unrealistic 

assumption that observers have a full high-resolution representation of the target. To 

convince oneself, look at a nearby object for a few seconds, then just try drawing its 

contours on a piece of paper without looking at the object. 

  

7.1 Some Insights 

One of the key findings in all of our experiments has been the strong presence of 

visual guidance in saccadic targeting and target selection. Selectivity along feature 

dimensions (spatial frequency and orientation, in our experiments) plays a crucial role in 

saccadic programming and foveal scrutiny of target candidates. Furthermore, grouping of 

our human observer data based on saccade lengths and saccade order exposed the same 

tendency in each group, hence supporting our findings. Another observation was that in 

general spatial phase was not well used by human observers, i.e. if observers were 

strongly selective for spatial phase then one would expect to obtain target-like average 

noise images for the false alarm categories in our experiments. However, the latter 
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argument is not meant to fully reject the use of spatial phase, since some form of relative 

spatial phase or spatial relationships may be used by observers. In fact, we have found 

some indication of foveal usage of the spatial configuration of stimuli components in 

some of our experiments; that is, in the case of searches for Gabor mosaics, instances 

where local spectral components of stimuli presented similar orientation relationships as 

the components of the target. Moreover, under uncertainty, we found that observers 

appeared to rely on invariant target features to succeed at visual search tasks. 

 

7.2 Applications to Visual Search for Objects 

We propose extending these concepts to visual search for objects. We suggest 

first extracting the general featural characteristics of stimuli, without spatial relationships 

between them, for saccadic programming; then, upon fixation extracting the spatial 

configuration between various components of stimuli. The targets used for testing our 

models included a triangle, a star, and a wrench as search targets (Figure 7.1). We have 

used the exact same grid-based setup as described previously, but we intend to expand it 

to stimuli without grids in the near future. The target for each set of trials was embedded 

in a randomly selected tile of our 1/f noise grid.  

 

 

    (a)           (b)            (c)           (d) 

Figure 7.1:  Targets used to test our models: (a) star, (b) triangle, (c) wrench, and (d) 
banana. 
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To extract the main spatial frequency and orientation characteristics of the target, 

we have used a bank of complex Gabor filters of various spatial frequencies and 

orientations; more specifically, we have employed a filter bank of 24 odd- and even-

symmetric Gabors (of spatial frequencies of {2, 4, 8} c/deg, orientations of {0, 22.5,…, 

157.5}deg, bandwidth of 1 octave, and aspect ratio of 2). We convolved the search target 

with each filter, shown in Figures 7.2a and 7.2b, to obtain the Gabor coefficients for the 

target, and then computed the envelope responses for the object (see Figure 7.3 for the 

case of the star). 

 

 

(a) 

 

 

(b) 

Figure 7.2:  Gabor filter bank. (a) Even- and (b) odd-symmetric Gabor filters of spatial 
frequencies of {2,4,8} c/deg, orientations of {0, 22.5,…,157.5}deg, bandwidth of 1 
octave, and aspect ratio of 2) are shown. 
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Figure 7.3:  Envelope responses obtained for the star. Regions in red and blue indicate 
high and low values in the responses, respectively. Note that each individual envelope 
has been normalized for visual purposes. 

We propose two models to make use of the Gabor coefficients for visual search: 

one where we select a fixed number (here 8=N per scale) of peaks without the restriction 

of one for each envelope response (Model 1), and the other where we use one peak 

location from each envelope response (Model 2). Both models have a total number of 24 

peak locations selected. The search algorithm consists in using only these peak locations 

found in the target to make nonfoveal and foveal decisions.  

For both models, the nonfoveal decisions are made by matching the amplitude 

spectra of the stimulus tiles to the amplitude spectrum obtained by adding the amplitude 

spectra of the Gabors producing peak responses to the target (these can be weighted by 

the corresponding peak values); in this stage we assume no knowledge of the relative 

spatial positions of the Gabors. Once a nonfoveal match is found, the algorithm makes a 

saccade to that tile for foveal scrutiny. For the foveal selection, knowledge of the spatial 

positions of the Gabors is used. The zero-lag correlation is computed between the vector 

containing the 24 peak responses for the target and that containing the 24 envelope 

responses of the tile at the exact same locations. The foveal stage accepts the tile as being 

the target candidate if it is above a threshold. For the time being, we have selected the 
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threshold manually (for all our trials below we set it to 0.7), however by including a 

learning stage or a feedback mechanism, the algorithm could adjust the threshold. 

Figures 7.4 and 7.5 show examples of correct detection rates as a function of the 

target contrast obtained for Models 1 and 2, respectively (note that we co-varied the 

contrast of the target and noise, giving a weight of c to the target and ( )c−1  to the noise). 

Three sets of 100 trials were run for each condition. In comparison, a random observer 

would have an expected correct detection rate of about 2%. The nonfoveal correct rate 

(gray bars) refers to the percent correct when the highest response of the nonfoveal stage 

is the tile containing the target. The foveal correct rate (black bars) corresponds to the 

percent correct at the final fixation. In most of the cases the foveal rate is higher than the 

nonfoveal; hence indicating that more than one fixation was performed to find the target. 

 

 

(a) 
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(b) 

Figure. 7.4:  Examples of correct detection rates, as a function of the target contrast, 
obtained for Model 1 for search for the (a) triangle and (b) star. 

 

(a) 
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(b) 

Figure. 7.5:  Examples of correct detection rates, as a function of the target contrast, 
obtained for Model 2 for search for the (a) triangle and (b) star. 

7.3 Conclusions 

In this chapter, I have provided some insights into how some of our experimental 

findings may be used in automated visual search. I have tested some of these ideas in 

simple search tasks and have shown how it could be extended to object search. I plan to 

further develop the algorithm by including foveation. Furthermore, we could perform the 

nonfoveal operation on a larger patch size of the stimulus rather than the same size patch 

as for the foveal stage. This would be further in line with the performing operations on a 

much larger area. We can also combine all this with perhaps a multiscale representation 

of the target based on eccentricity, statistics on luminance & contrast, distributions of 

saccade lengths, and so on. 
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CHAPTER 8 

Conclusions and Future Work 

 

8.1 Conclusions 

I have presented a new and effective technique to investigate saccadic targeting 

and target selection during visual search. This framework has enabled me to provide 

insight into observers’ strategies in visual search tasks. Results obtained for various 

experimental conditions clearly point to visual guidance in saccadic target selection, a 

much debated issue in previous studies of active visual search. I have shown that 

observers use target attributes such as spatial frequency and orientation in saccadic 

programming and in selecting the target candidate upon fixation. Moreover, I have 

illustrated that observers exhibit uncertainties and offsets in selectivity for such features. 

Under uncertain stimulus conditions, I demonstrated the use of invariant features of the 

target as search strategy. An orientation bias was present for these conditions. I also 

showed that for targets containing multiple orientation characteristics, observers use 

multiple bandpass strategy. 

 

8.2 Future Work 

Some avenues of studies that I envision could be pursued in the future are as 

follows: 
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1. Observer selectivity along other feature dimensions. A natural expansion of 

my work would be to adapt our novel experimental technique to the study of 

other attributes such as but not limited to color, motion, size, and stereoscopic 

depth. The grand goal is to determine the weighting of each feature in 

saccadic targeting and target selection, which could then be used in automated 

search algorithms  

 

2. Visual search for object-like targets. Following a similar logic as in Chapter 6, 

visual search could be examined for object-like targets constructed from 

multiple summations and mosaicings of Gabors of a variety of spatial 

frequencies and orientations. Such targets have the advantage of being highly 

specific in frequency and orientation characteristics, and are much more 

controllable than the direct use of objects. An interesting question would be 

what aspects of these targets are used during search. One may find that certain 

frequency components might be weighed more than others are or that some 

spatial characteristics of the target may emerge. 

 

3. Target Prevalence. So far, in all the studies that I have been doing, the target 

has always been present in every trial. Thus, other search configurations could 

be examined; for example, when different probabilities of appearance of a 

target during trials are used. The goal would be to investigate differences in 

search strategies and behavior. In an interesting study, inspired from baggage 

inspections at airports, Wolfe (2005) showed that rare items were often missed 

in visual search tasks; one may adapt the present framework to perform 

similar experiments, perhaps using Gabor targets, to examine the nature of 
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possible deteriorations in search behavior, reflected in the average noise 

images, when target prevalence is lowered. 

 

4. Interaction between visual perception and eye movements. Various studies 

have shown that eye movements can affect visual perception and performance 

in certain tasks. Hence, it would be of great interest to scrutinize how eye 

movements enhance visual performance; for instance, task performance could 

be compared in unconstrained versus limited eye movement conditions. 

 

5. Cognitive Processes. The understanding of eye movement behaviors in 

naturalistic tasks could provide insight into cognitive processes involved. 

Earlier experiments of Yarbus (1967) have nicely demonstrated that cognitive 

processes affect scanning patterns; for instance, recordings of eye movements 

when an observer viewed the same image but was given different instructions 

produced differing gaze patterns. It would be quite exciting to link eye 

movement behavior to cognitive processes. Such discoveries could have a 

great impact in applications for novel visually directed human-machine 

interfaces; e.g., for unmanned aerial vehicles, remote robotics especially in 

hostile environments, assistance to patients with limited mobility, and 

security/surveillance systems. 
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