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CHAPTER 1

Introduction

1.1 Motivation

Efficient visual search strategies have been Yitathe survival of many species,
including humans, particularly in locating food, tes and predators. Search appears in
our daily lives in many tasks such as looking fustlkeys in an apartment, searching for
a friend in a crowd, finding an empty seat on a, bosating green apples at the grocery
store, or simply while walking in the street. Dispghe complexity of many of these
tasks, we conduct search with great ease unrivaleédis day by any artificial system.
For researchers, it has been an ongoing challeagenderstand and model human
strategies in search tasks. Such knowledge coolde powerful insights for improving
machine performance in similar tasks, especialtyafttive vision systems (e.g. robots).
Many applications such as unmanned vehicle nawvgaimage/video database search,
automatic tumor detection, and security/surveikasgstems could potentially flourish by
integrating human-based strategies into their aatedhsearch models.

The main objective of my research has been to desqgoreviously unknown low-
level fixation strategies employed by human obssnduring visual search tasks for
various types of targets and experimental condstidbfiore specifically | have contributed
to our understanding of saccadic targeting ancetasglection in naturalistic visual search
tasks, i.e. what attracts fixations while humaneobsrs perform search tasks and how
observers select target candidates upon fixatidrave shown that observers use target
attributes such as spatial frequency and oriemtaitio saccadic programming and in
selecting the target candidate upon fixation, &i&lunder a great variety of experimental

1



conditions. | have used some of the findings towaadplications for automated visual

search.

1.2 Contributions

The contributions of this dissertation are as fao

1.

| have created a new and efficient technique asipgychophysical reverse
correlation and have used stimuli that emulatentdieral visual environment
to examine observers’ ability to locate low-contréargets under various
experimental conditions. | have sought to addressugh my framework two
intriguing questions in active visual search: watitacts human eye fixations
during search tasks and how are target-candidaiested upon fixation?
With my classification taxonomy, | am able to pmiinsight into foveal and

peripheral processes employed in visual searcls task

| have demonstrated visual guidance in saccadjetaelection in a series of
15 separate visual search experiments where Galgets (2, 4, and 8 c/deg
spatial frequencies at 0, 20, 45, 70, and 90 dem@tions) were used. This
was shown by observers’ selectivity for spatialgérency and orientation
characteristics close to the search target. Additlg, | have shown that
observers exhibit inaccuracies and biases in #stimates of target features.
Furthermore, complementary type frequency respongse observed, with
peaks occurring at frequencies close to that osthaht target and valleys at
nearby frequencies (similar to findings in physgland psychophysics; e.g.

Ringach (1998) showed that observers’ tuning foileraation generally
2



presented a “Mexican hat” distribution peaking aemtations close to the
orientation observers had to report, with valleysither side of the peak).
Finally, an unusual phenomenon is observed whedektyacters containing
close-to-vertical structures are fixated in seasctog non-vertically oriented
targets. My results provide evidence for the ineohent of band-pass
mechanisms along feature dimensions (orientatioth spatial frequency)

during visual search.

| have successfully addressed a more general proinleszisual search where
the orientation of the target is not known to theserver a priori. Such an
experimental procedure is more consistent with -weald search
environments, in which the orientation of an objedargely uncertain, except
that it may be influenced by gravity or its proximateraction with other
objects and planes. | have used my efficient erpantal search framework to
study the behavior of humans seeking a randombnted Gabor of spatial
frequency 8 c/deg embedded in noise. Interestinglyzave found that
observers seem to rely on invariant target feattweperform such search
tasks; in particular, the spatial frequency chamastics of the sought target
appeared to provide guidance in saccadic targe@ingously, despite having
no previous knowledge of each target's orientatidaservers presented clear
biases in orientation selectivity during saccadiogpamming. These biases
persisted into observers' decision-making process dixation and showed
asymmetries between clockwise and anticlockwisentations. Moreover, it

appears that these biases are idiosyncratic to\adyse



4. With the objective of moving towards understandin@server search
strategies for complex targets, | have used myraxgatal search framework
to examine how observers search for low-contrageta created from Gabor
summations (Experiment 1) and mosaicing (Experin®nt have presented
several key findings. First, | showed a strong @nes of visual guidance in
saccadic programming in search for such compleyetar demonstrated by
selectivity for spatial frequencies and (in somgesa orientations close to the
characteristics of each target. Second, multiplentation attributes of the
targets were shown to be represented in saccadititag and target selection
in most cases, modulated by the observer's seigisglectivity for each
orientation. Third, different configurations of tli&abor mosaicing produced
distinct tunings in orientation, but visibly idiasyratic to each observer
(Experiment 2). Moreover, a localized analysis vpesformed. Fourth, a
curious presence of close-to-vertical structuress wdserved in fixated
distracters, although the search targets did notaoo vertically-oriented

structures (Experiment 2).

5. | have provided some ideas and insights inspirech fiwhat | have discovered
in my experiments that could be integrated intaeated visual search. A
few of these ideas have been implemented in siregdech frameworks. In
my proposed models, the non-foveal selection adtion loci is done using
only spatial frequency and orientation attributéshe target, without the use
of the phase information. The foveal selection Ueeal feature attributes of

stimuli, so as to include some phase information.



1.3 Outline

The subsequent chapters in this dissertation @y@nared as follows. In Chapter
2, an overview is given on various approaches & dtudy of visual search.
Furthermore, a technique known as classificatioages, introduced for the study
of visual psychophysics about twenty years ago, imdextensions to visual
search are discussed. Additionally, various impletagons of visual search both
passive and active are presented. In Chapter ®val technique for studying
saccadic targeting and target selection in viseaia@h is presented. The technique
is then used to examine observers’ ability in logatlow-contrast targets
embedded in thoise. In Chapters 4, 5, and 6 we have employedramework
to the study visual search for targets of knowrtiap&equency and orientation
attributes, of unknown orientation characteristi@g)d containing multiple
orientations, respectively. In Chapter 7, we happliad some of our findings
towards the design of a simple automated visuaickea Finally, Chapter 8

concludes the dissertation and points to variotectons for the future work.



Chapter 2

Background

2.1 Visual Search

Visual search can simply be defined as the tastasakiing for an object of interest
in a cluttered visual environment. Due to its fadeglanature, the human visual system
succeeds at such tasks by making many discreteoinsalinked by rapid eye movements
calledsaccades. The goal is to direct the highest resolution sagif the retina, théovea,
onto various locations of a scene in quest of fd@ktarget candidates. It has been
suggested that the location of these saccades fsofa being random (Yarbus, 1967)
and not until recently has there been increasitgrest in understanding how the brain
decides where to make saccades and perform fixatidhis delay in studies of saccadic
targeting is partly due to the impact of visualrsbaheories such as the one proposed by
Treisman and Gelade (1980) where much emphasisnvea® on the role of internal
attention (Liversedge & Findlay, 2000). Simple sbhatasks were claimed to be done by
pre-attentive processes and that more complexweesdone by serial shifts of attention
from one target candidate to another, generallyrasgy covert attention which is mental
scanning as opposed to eye movements. Many of dagber studies of search have only
evaluated human performance by measurements suaaetson time (amount of time
necessary for the observer to find a target) anclracy (percentage of correct),
neglecting somewhat the vital question of how de#@actually performed. It has been
through eye tracking that a smaller number of neteais have been able to study the role
of overt attention, which takes into account eye movements.
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2.1.1 Deployment of Visual Attention

The main theme, in many earlier visual search ssjdnas been to determine
whether a search task is executed by human obsemvex parallel or serial fashion,
referring to attentive processes (see Wolfe, 1984jfe, 1998; Kim & Cave, 1999;
Palmer et al., 2000; and Yanget al., 2002 for detailed reviews). In laboratory
environments, observers were typically asked terd@he whether a target was present
amongst a set of distracters or not. Targets asttadiers would differ in single or
multiple attributes such as color, size, orientgtgpatial frequency, and so on. Figure 2.1
shows some examples of stimuli shown to obseré@ng. of the most used measures to
study visual search tasks has been reaction tingefasction of set size (the number of
items displayed), i.e. the time required for obsesvto provide a response on whether a
target is present or absent. The rationale usethdnyy researchers was to determine the
(reaction time x set size) slope: if the slope whse to flat (i.e. the reaction time
appeared independent of the set size) then thelseas said to be parallel, and if the
slope was increasing then it was said to be s@iehneider & Schiffrin, 1977; Kinchla,
1992; Bundensen, 1996). Often times, search taake been compared based on the
slopes obtained for each task. If task A had atgresope than task B, then task A was
said to be more difficult than task B. Accuracyaafnction of set size was also used to
speculate on the difficulty of a task. Through thesarious experimentations, processes
of visual attention have been shown to be guidedttributes such as color, size, spatial

frequency, and others (see Wolfe, 2004 for a reiew



Figure 2.1: Three examples of stimuli used forhhigreshold visual search tasks are
shown representing cases of (A) pop-out, (B) sHigddure, and (C) conjunction of
features.

Furthermore, many models originated from theseistudf visual attention. One
of the most prominent theoretical models was thetufe integration theory (FIT),
proposed by Treisman and Gelade (1980), where Isegas split into two stages: an
initial parallel stage where the visual scene gstered along independent dimensions
including color, spatial frequency, orientationdanotion; and a final stage where these
dimensions are combined together to representglesobject, performed serially with
focal attention. FIT suggested that parallel seavih no attention limits occurred in
most cases where the target differed by one sifegieire from the distracters, and that
serial search occurred in all the other cases. Mewethe latter claim has been
challenged by many studies (Theeuwes, 1995; Ecksi®98). Eckstein (1998) showed
that the performance of human observers in seaxplerienents with conjunction of
orientation and contrast features could not be ipiedl by a serial search model.
Subsequent search models have been more successiplaining search behaviors in
the context of feature conjunctions (Duncan & Huneyk, 1989; Wolfe, 1994).
However these models have avoided considering deceye movements and fixation

selections although this is how naturalistic seagberformed in many cases.



2.1.2 Guidance of Eye Movements

Recent research has put emphasis on the importahdecorporating eye
movements in visual search studies (see Findla@4;2Bindlay & Gilchrist, 2003 for a
review). In fact many researchers have challengeliee theories and studies that had
omitted eye movements (Zelinsky & Sheinberg, 19Biversedge & Findlay, 2000;
Ecksteinet al., 2001; Findlay & Gilchrist., 2003). Zelinsky andheénberg have argued
that much of the work had been mainly to estimdwe telative difficulty of tasks
compared to one another. They further stressedstiet studies had shrunk a highly
complex spatial and temporal behavior into a simmelgponse time measure. In fact
simple measures such as reaction times and accavackpok more valuable information
such as the fixation patterns, dwell times, sacdadgths and so on. Note that, it has
even been demonstrated in a few tasks that obseopéto perform eye movements even
when such a strategy is not optimal (Findlay, 199idlay & Gilchrist, 1998).

A fundamental problem that many studies using eggements have attempted
to address has been to determine whether saccadgaided and where they land. It has
been shown that saccadic eye movements are naima(¥arbus, 1967). However, there
is some discord on the fixation loci during vissalarch tasks (Findlay and Gilchrist,
2003; Hooge and Erkelens, 1999; Motter and Bell898b; Findlay, 1997; Zelinsky,
1996). In some experiments where eye movements allenged, a group of researchers
claimed that saccades, mainly the initial one, wdirected to the center-of-gravity of
elements in the display (Zelinslgt al., 1997; McGowanret al., 1998). For example,
Zelinsky et al. tracked the eye movements of six human obsenearcising for objects
placed in what they called pseudorealistic scen&s {oys in a crib, tools on a
workbench, and food-related objects on a dinindedal860 trials were run for each
observer, with each trial having a unique configjoraof objects and positions on a
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surface. Three different set sizes were used. Ackdarget was shown to the observer
before each trial and the observer had to decidsttveln the target was present during the
trial. In Figure 2.2, the top left panel shows aaraple of the placement of the toys in a
crib, and the top right panel shows recorded eyeements of an observer searching for
the butter target amongst two distracters on anditable. The results for the first, second
and third saccades across all trials for one nabbserver are shown in the three bottom
panels of Figure 2.2, the squares representingptiaions where objects appeared. They
found that the first saccade appeared to be dadct¢he center-of-gravity of the group
(see bottom left panel in Figure 2.2). On the otha@nd, some researchers have argued
that saccades are made to elements in the dispthyat to the blank spaces (Motter &
Belky, 1998; McGowaret al., 1998). For instance, Motter and Belky discoveretheir
tilted bar experiments that saccades landed withdeg of the center of the target or
distracters having similar features as the target. address this issue of saccadic
targeting, McSorely and Findlay (2003) performea ®@xperiments with Gabor patches
and showed that the center-of-gravity effect deswdawith increasing number of
distracters. Interestingly, they found in their exments that the search performance
improved with a larger number of distracters. Oxglanation that has been proposed for
such phenomenon is that perceptual grouping oflainobjects can result in enhanced

search speed and accuracy.
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Figure 2.2: Eye movement recordings during seaiidie top left panel shows a
configuration of toys placed in a crib. The tophtigpanel shows the recorded eye
movements of an observer searching for the buatget on a dining table during a trial.
Endpoints of the first, second and third saccadesshown in the bottom panels, the
squares indicating the possible locations whereatbjappeared (from Zelinsley al.,
1997).

A natural question one could then ask is what dtifeatures guide eye
movements. Many studies have qualitatively compé#nedelative weighting of features
in the visual guidance of saccadic targeting. lRstance, Williams found that observers
have a strong inclination to direct saccades tmetds of the display having the same
color as the target, while information on targetesiand shape were weakly used
(Williams, 1967 from Ecksteist al., 2001 and Williams & Reingold, 2001). Scialfa and
Joffe (1998) discovered in their tilted bars exmpemts, where the target and distracters
differed in either contrast (black or white) oreartation (+ 45 deg), that observers were
more likely to direct their saccades to distractbed shared similar contrast as the target.
Rajashekaset al. (2002) went further by looking at the statistidstt®e point of gaze,

when observers were searching for a target embetdedise. They found that, on

average, saccades were made to regions of theagisphtaining non-random structures
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and showing some resemblance to the target. We detedled these findings in section

2.2.

2.1.3 Low-level vs. High-level Mechanisms

One of the important issues when studying visu@rcae has been whether
observer performance and behavior should be attwbdwo high-level or low-level
processes. This has been a source of some cobhéigteen the cognitive and the
“bottom-up” factions of the vision community. Magtsearch studies have tried to isolate
one type of process by limiting the other; for arste, low-level studies have used well-
trained observers and simplistic stimuli in order reduce the effects of cognitive
mechanisms. Geisler and Chou (1995) suggestednthaimerous complex tasks both
high-level and low-level mechanisms influence obsemerformance and that many
studies have not been successful in showing thghtteg between the two. They
introduced a technique to separate the influend®tif low and high-level processes, and
they further demonstrated in two complex tasks tbetlevel factors had the highest
influence. This was shown by comparing the perforoeaof observers in a visual search
task to performance in a well-constrained discration task, both experimental setups
using the same stimuli. In a controversial papemndérsoret al. (2006) have argued that
visual saliency map models obtained by using lovelldeatures fail to account for
observer fixations in naturalistic search environtee They showed that observer
fixations and the regions rated highly informatibg Koch and Itti's visual saliency
model (2000) were weakly correlated. They demotedrahis claim by comparing
observer fixations when counting the number of peap a scene to the saliency map
obtained by the model. One could counter arguedihett a finding is most likely related

to their task. In fact, if one had asked obsertersount the number of red cars in a
12



parking lot, the result would probably be muchliéint, with the low-level feature color
having a great role in the search process. Onedoewgn go further to speculate that
many additional red objects other than cars in pgaaking lot may also attract observer
fixations.

Understanding the cognitive aspects of observaralisearch strategies can be
very useful in real world environments but is sorhatvlimited to specific objects of
interest and may be more difficult to extend torcedaor other objects. Intuitively
speaking, humans possess different high-level agpes to finding faces as compared to
finding cars. For example, one may be looking fa wheels when searching for cars in
a scene, an approach that may not be extendeddmdi people in the same scene. By
contrast, a low-level approach could help build foendation of visual search to

discover and understand what features are comntarebe various search tasks.

2.2  Classification Images and Extensions to Visu&learch

A technique known as the classification image pgrad Ahumada, 1996; Beard
& Ahumada, 1998) can be of particular interest ewealing stimuli features used by
observers in various tasks including visual seaitlgontrast with simple measures of
reaction time or accuracy. The classification imageadigm initially originated from
work in auditory yes-no detection experiments (Aladian 1971; Ahumada, 2002). In this
earlier framework, two sound tracks, one contairangpntinuous noise masker and the
other containing marker tones, were presented toanuobservers who had to decide
whether a tone was present or not. The noise magkerthen analyzed to see whether
correlates with observer responses could be oldtaidBumada later extended this
technique to visual yes-no psychophysical tasks aritbduced the concept of

classification images (Ahumada, 1996; Beard & Ahd&)al998). In the classification
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image paradigm, observers judge the presence anebsof a target embedded in
relatively high-amplitude noise, and properties tbé noise that cause correct and
incorrect responses reveal the mechanisms respeifsitdetection.

To demonstrate the various steps constituting déimstcuction of the classification
images, let us consider the vernier acuity taskrevlee human observer has to make
judgments on the alignment of two bars (see FiguB) over several trials, usually
several thousands. During each trial, a stimuluBrss constructed by adding random
noise to one of the two arrangements of the basserhat random. The stimulus is then
presented to the observer who has to decide ongewafion of the bars (left- or right-
aligned). The signal-to-noise ratio of the stimulsiset to influence observer’'s decision

but without completely changing the decision ridering each trial, the noise image, the

stimulus configuration $ orS) and the observer's responsR ¢rR,) are recorded.
The noise images are then classified into one effdlur categorieS R, SR, SR,
and SR, based on observer’s response during each toale¥ample, if the left-aligned

configuration is presented to the observer bubttieerver decides that the alignment is to

the right, then the noise image is classifiedSaR. . Noise images within each category

are then averaged and the resulting images comlaosass categories to create the
classification image'S R +SR —-S R -SR (Ahumada, 1996). The obtained result
provides insight into how the observer is weighstignulus features to make a decision.
In the vernier acuity example, Ahumada and Beaguied that the features obtained by
the classification images disprove a strategy basedhe contrast sensitivity of the

highest cortical unit response (single even-symim&abor filter) or on the difference of

two even-symmetric Gabor filters oriented on eitsate of the target. Instead, they
supported a third strategy consisting of a two syaknetric Gabor filters since they are

also consistent with non-abutting bars (Beard & vikhda, 1998).
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Figure 2.3: Demonstration of the classificationaga technique applied to a vernier
acuity task.

The classification images technique has been egtetalinclude eye movements
during visual search (Rajashelatral., 2002 & 2004; Ecksteist al., 2007). Rajashekar
and colleagues recorded observer eye movements widy searched for a target
embedded in i/noise. Assuming that gaze would be drawn to pamtthe stimulus
bearing some resemblance to the target, the nbek faxations made during a trial was
captured, and a large volume of data could thugdikered in a short time. Observer
visual search strategies were analyzed by pregestimuli that consisted of 640 x 480
pixel 1F noise images in which a 64 x 64 pixel target wakedded. A “region of
interest” (ROI) of 128 x 128 pixels around eachhaf observer fixations was defined and
is shown by the dashed boxes in Figure 2.4a. These patches were then averaged
together and filtered to obtain what they refertedas discrimination images. These
images are shown in Figure 2.4b for three targatsl¢, dipole, and triangle) and are

compared to the discrimination images obtained frandom fixations. The results were
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interpreted as representing features that draw ga#iee periphery and trigger a closer

inspection.

Circle Dipole  Triangle Random
(b)

Figure 2.4: An example of scan paths is showra)ndiscrimination images are shown
in (b) (from Rajashekaat al., 2002 & 2004).

Classification images have been applied to an tmsat of visual perception
problems such as illusory contours (Gadal., 2000), image feature detection and
identification (Neri & Heeger, 2002), stereo (Netral., 1999), visual attention (Eckstein
et al., 2002), Gabor detection (Ahumada & Beard, 199%1@&on 2002), face and facial
expression discrimination (Sekulett al., 2004; Kontsevich & Tyler, 2004), and

“superstitious” perception (Gosselin & Schyns, 2008 few researchers have also
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attempted to extend the technique to color stifiiumada & Krebs, 2000; Bouet &
Knoblauch, 2004; Hansen & Gengenfurtner, 2005).

One of the main drawbacks of the classificationgen@aradigm in its original
form is the need to accumulate a large number taf @dose to several thousands of trials
per human observer). Furthermore, the extensiopgsed by Rajashekat al. has also
its limitations, mainly lacking in spatial specific due to the fact that the noise pixels
being averaged across trials are not always pérfatgned (i.e. observer fixations do
not always land at the center of the target canegjaee Rajashekeral., 2006). In the
next chapter, 1 will present a technique addresdinth these issues that we have

developed to reveal human observer strategies elmavinrs during visual search.

2.3 Machine Vision

Perhaps one of the most important tasks in vistethes analysis is searching for
objects. It has been of central interest for desatde computer vision and pattern
recognition researchers, who have proposed varialgorithms and techniques
attempting to solve this complex problem. Many lé suggested methods have been
developed for full resolution images of a scenguaed passively by cameras without
any type of analysis or any knowledge of the sdenee studied. Not until recently has
there been growing interest in active vision systemhere various parameters of the
camera(s), including gaze control, are guided lgr anowledge of the scene and/or by

decision stages in the search algorithms.
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2.3.1 Search in Passively Acquired Images

A wide range of algorithms have been proposed toy @t search tasks such as
finding cars, people, and so on in passively aeguimages of scenes (see Shivani &
Agarwal, 2004; Anuj & Mohan, 2001 for reviews). Beemethods can be grossly divided
into template-matching, feature-based detectiod, laarning-based approaches. Image
subtraction and correlation are operations commoséd in template-matching, with the
goal of minimizing the distance between the obiexhg searched (i.e. the template) and
a region of the image (Brunelli & Poggio, 1997) féature-based techniques, an object is
represented by various attributes such as coloentation, and motion. During the
detection process, features are extracted fromntlhge being searched and matched to
those of the object. In learning-based approadhesges are also represented by features
but a learning stage is used to find regions offéaure spaces that correspond to the
object class. Learning is done using a training Beis not until the mid-80s, with
advances in physiological research on human vigioet, more powerful, biologically
inspired methods were developed to tackle the Vistene analysis problem (Milanese,
1998). We will mainly focus in this section on lmgically inspired search algorithms.

Possibly the most prominent of such biological amssystems is the saliency-
based attention/search algorithm introduced by Kaweti colleagues (Koch & Ullman,
1985; Itti & Koch, 2000). In their model, shown kg. 2.5, a single saliency map is
obtained by the combination of 42 maps (7 featypes at 6 scales). Their system takes
as input intensity (on/off), orientation (0, 45,,%nhd 135 deg), and color (red, green,
blue, and yellow color channels). 7 feature types Which there exists biological
evidence are then obtained in a center-surrourtddias1 encoding for on/off intensity
contrast, 2 encoding for red/green and blue/yellinuble-opponent channels, and 4
encoding for local orientation contrast. 6 featom@ps, corresponding to 6 spatial scales,

18



are computed for each feature type by using contbima of levels of a Gaussian
pyramid, obtained by repeatedly low-pass filterangd sub-sampling the input image.
The center-surround operations across scales weried by differencing a fine and a
coarse scale for a feature. As an example, ther@iro information was obtained by first
normalizing the red, green, and blue channels yitkensity channel. The red/green
feature maps were obtained by center-surroundrdiifees calculated at 6 different scales
by subtracting (red - green) at the center fronedgr- red) at the surround and taking the
absolute value. The same operations were donensircat the blue/yellow feature maps.
Separate “conspicuity maps” are created by firstmadizing each of the feature maps
between 0 and 1, then by iteratively filtering eadth a DoG (difference of Gaussians)
filter, and finally summing across scales the featmaps obtained for intensity, color,
and orientation. This within-feature spatial conmpmt scheme is similar to a winner-
take-all strategy (WTA). The three conspicuity maps subjected to iterative filtering
with a DoG. The final saliency map is created Hinaar summation of the conspicuity
maps. Koch and colleagues tested their model inff8rent visual search tasks (color
pop-out, orientation pop-out, and conjunctive seprand on naturalistic stimuli (a
military vehicle in a rural environment). They oioid similar performances for their
model in psychophysical experiments as the onedigtesel by Treisman and Gelade
(1980) for human observers: both pop-out experimenbduced flat RT slopes and the
conjunctive experiment produced an increasing Rpesl They also claimed that their
model found the military vehicle in 41 of 44 fudlsolution rural images based on finding

the most salient location.
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Figure 2.5: Model for saliency-based attentioor¢fritti & Koch, 2000).

Other attention / visual search algorithms havenleposed and are detailed in
Milanese’s review (Milanese, 1993). These modelsppse a similar parallel search
approach as Koch and colleagues: Chapman’s modiehad’s VISIT, and Wolfe and
Cave’s implementation of the Guided Search. Ale&algorithms create a number of
bottom-up feature maps such as color and oriemtdtip processing the input image.
VISIT and Guided Search additionally integrate tigwvn features in their models. In the
Guided Search model, bottom-up activation mapserated by measuring how unusual
an item is in comparison to its surrounding (exedical orientated line surrounded by
horizontally oriented lines), hence guiding attentio distinctive items in a scene. But
bottom-up activation alone would not guide attemtio the target if the target-distracters

similarity increases. Therefore, top-down activiativhere knowledge about the target is
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introduced, becomes helpful in selecting what festibetter distinguish the target from
the distracters. One of the main setbacks of thesthods is that features are combined

linearly using simple averaging across saliencgativation maps.

2.3.2 Active Vision

As Bajcsy (1998) puts it, “perceptual activity ispéoratory, probing, searching;
percepts do not simply fall onto sensors as rdis tnto ground.” If one compares the
artificial systems presented in section 2.3.1 ® hlaman visual system, one of the key
ingredients missing is gaze control combined watvegtion, which could provide control
over the acquired images of a scene. Often timesges have been passively acquired at
full resolution, preceding any type of analysisamy knowledge of the scene to be
studied. Besides being counterintuitive vis-a-dsthe biological vision system where
various tasks including search are performed inaeative fashion, one of the main
drawbacks of such an approach has been the congmatatoad for performing tasks
(due to the processing of very large images atrédblution) and the lack of adaptability
to various environments. In fact, systems shouldatiaptable to the environment in
which a task is performed. If we consider the asitjon stage of our own visual system,
our eyes can for instance adjust to various illlanons, correct the focus, and change the
view. In addition, foveation also provides a coesable data reduction since peripheral

image data are lost in the process.
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Figure 2.6: Example of an active vision systeror(frGiefinget al., 1992).

Active vision systems have attempted to provide enoapid and less
computationally intensive solutions for performingrious scene analysis tasks. The
guiding line has been to mimic many aspects ofdgichl visual systems incorporating
gaze control, behavior and attention (see Swaad., 1991; Abbott, 1991 for reviews).
Fig. 2.6 shows an example of an active vision sygi@iefinget al., 1992) where various
stages contribute to accomplishing an object setask. The implementation of gaze
control has been possible with the use of a cdabld camera that can actively scope
complex scenes. Here the dynamic camera was masely for gaze shifts but in general
parameters such as camera position, orientatiarysfoaperture, zoom, and vergence
(obtained with 2 cameras, see Klarquist and Bal®@88) may be varied. Feedback from

decision making stages controls these parametershd example, for instance, the

interest map provided decisions to guide the camW@e that both top-down and
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bottom-up approaches are used to make a decisiethemhto visit another location or
stop the search. The foveal image was analyzedspacific targets whereas the

peripheral image was processed for various feasuels as edges, corners, and so on.

23



Chapter 3

A Novel and Efficient Technique to Study Visual 8arch

The human visual system is remarkably adept atrfqhnabjects of interest in
cluttered visual environments, i.e. at visual skalcaccomplishes this by making many
discrete fixations linked by rapid eye movementsaccades. In such naturalistic tasks,
we know very little about how the brain selectscsalic targets (théxation loci). Our
initial objective was to develop a framework to dstusaccadic targeting and target
selection in naturalistic visual search tasks. His tchapter, we propose a novel and
efficient technique (Tavassodt al., 2007a) akin to psychophysical reverse correlation
and stimuli that emulate the natural visual envinent to measure observers’ ability to
locate a low-contrast target, extending earlierhmégques (Ecksteinet al., 2007;
Rajashekaset al., 2006; Ahumada, 1996). We will discuss in detait smethod in the
next section and how we have successfully testlt & simple shapes, a triangle and a

dipole.

3.1 Proposed Method

In our method, a 1hoise mask is divided into discrete tiles (nott tther noise
types may be used), and the target is embeddederobthem selected at random. The
eye movements of observers are then recorded whédg search for the target to
determine the sequence of tiles fixated during dbarch. ¥/ noise has an amplitude
spectrum of the formd/ f #, where a is near 1, which is similar to the arglit spectra
of natural images (Field, 1987), is used due toajtpeal in simulating a naturalistic

search environment. The additional power at lowtigp&requencies (relative to white
24



noise) results in rapid emergence of featuresenctassification image with our method,
at the scale of reasonably sized targets, withbatrequirement for post-processing.
Several aspects of our technique allow it to rapidiveal classification images. First, the
use of eye tracking allows a high volume of datebéocollected in a given time as
compared to traditional psychophysical methodsoBécthe use of discrete tiles makes
the method more robust to saccadic inaccuracy,tehdency for observers to fixate
different parts of the target, and the limited aecy and precision of the eye movement
recordings, all of which would ultimately resultloss of spatial precision (or blur) in the
final classification images. Third, our novel clifisation taxonomy provides several new
categories for off-line analysis, allowing us téfelientiate foveal and non-foveal aspects

of the search process (see section 3.1.6)

3.1.1 Observers

Three male observers (aged 26 through 30), of wiveonwere experienced (AT
and IVDL) and one naive (AJS), were tested in oupeements, each with
normal/corrected-to-normal vision. Each observemgleted 400 trials (2 sets of 200

trials, each set with a different target).

3.1.2 Apparatus

An SRI/Fourward Generation V Dual Purkinje eye kec (Fourward
Technologies Inc., Buena Vista, VA) was used tor@@ye movements. This device has
accuracy of better than 10 min of arc, a precigibabout 1 min of arc, and a response

time of about 1 msec (though we would like to nthtat a principal advantage of our

1 We use the term “foveal” to refer to a centralkcpatne degree of visual angle across, and “nonalve
refer to regions outside this patch.
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methodology is that it permits the use of a consibly less accurate tracker). A bite bar
and forehead rest were used to minimize head mavismehe continuous output voltage
of the eye tracker was first passed through a hamevButterworth low-pass filter
(Krohn-Hite Corp., Brockton, MA) with a 100-Hz cdtdo eliminate extraneous high
frequency noise in the recording environment, drethtsampled by the host computer at
200 Hz with a National Instruments data acquisitiand (National Instruments Corp.,
Austin, TX).

A calibration routine was run at the beginning atle session and after every 25
trials during a session to establish the lineaati@hship between output voltage and
monitor coordinates. For the calibration, the obsefixated each of nine points in &3
3 grid spanning a visual angle of ¥°7° on the display. The average horizontal and
vertical voltages were then fit (separately) to 3henique horizontal and vertical screen
positions (corrections were performed for the sraalbunts of cross-talk). Afterward, a
dot was superimposed on the computed gaze positiozal-time so the observer could
immediately verify that calibration was successfiil. addition to the mandatory
recalibration every 25 trials, the calibration weagomatically checked at the beginning
of each trial. This was done by requiring that¢benputed fixation be within +/- 0.25° of
the center of the fixation mark for 500 msec at bieginning of each trial. If 5 sec
elapsed before this requirement was met, recaldratas automatically initiated.

The observers viewed the stimuli on an Image Syst2iin. grayscale monitor
(Image Systems Corp., Minnetonka, MN) driven by atidx Parahelia graphics card
(Matrox Graphics Inc., Dorval, Québec, Canada) atr@en resolution of 1,024 768
pixels, a grayscale resolution of 8 bits per piagld a refresh rate of 60 Hz. The screen
was placed 134 cm from the observer and subtendeglial angle of 16% 12°, giving

approximately 1 min of arc per screen pixel. Theihance output was linearized by
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putting the inverse of the monitor's measured ganfumetion in the display look-up
table. The ambient illumination in the laboratorgsakept constant for all observers, and
there was a minimum of 5 minutes to adapt to thdiam illumination and screen
luminance while the eye tracker was calibrated.

The experimental software was written in MATLAB (Maorks Inc., Nantick
MA) and the stimulus presentation itself was cdigbusing the Psychophysics Toolbox
(Brainard, 1997; Pelli, 1997). Gaze positions weakeulated in real time so that feedback
could be provided after each trial. Fixation poiatsd the intervening saccades were
discriminated offline, based on spatio-temporalperties of human eye movements, by
using an adaptation of an ASL fixation detectiorgoaithm (Applied Science
Laboratories, Bedford, MA). This three-stage aldon was robust with respect to small

drifts, blinks, and micro-saccades.

3.1.3 Stimuli

The stimulus consisted of a single 8464 pixel target embedded in ax77
mosaic of 64x 64 pixel tiles containing Lmasking noise, wheee= 0.8. The two targets
used are shown in Figures 3.1A and 3.1B (the shsip@sn in panels C—E were used in
data analysis, but not in the experiment per se;bs&tow). One hundred mosaics were
generated offline by creating one hundred %4844 pixel 1f noise images and then
superimposing the 12 pixel wide gray borders. Ochdaial the target was added to a
randomly selected tile in the noise mosaic. An eplanstimulus in which a triangle is
embedded in the tile immediately below the centee ¢ shown in Figure 3.2. The
signal-to-noise ratio (SNR) in this example is saiat higher than those used in the
actual experiment, where the SNR was determindgtieabeginning of each session as

described below.
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Figure 3.1: Targets used in the trials: (A) triengB) dipole. Additional shapes used in
the analysis: (C) bowtie, (D) circle, and (E) star.

Figure 3.2: An example stimulus (with a higher Stiie@n used during the experiment).
The target, a triangle, is in the tile immediategfow the central one.

3.1.4 Procedure

Each observer ran four sessions for the main exyer: two sessions of 100
trials for each of the two target types. Beforergvgession, the SNR vyielding 68%

correct target detection was determined using tH&®T adaptive procedure (Watson &

2 This percentage has been arbitrarily chosen farfalur experiments, the main idea being to have
observers make enough mistakes over several trials.
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Pelli, 1983). Note that this is effectively a castrthreshold, but we covaried the contrast
of the target and of the noise so that the entiayggale was used but never exceeded.
This SNR threshold was determined using the sameedure as that in the experiment
itself. In other words, a trial during the threghdletermination was exactly the same as a
trial during the experiment, except that, in thenfer, the SNR was varied to find the
68% correct point, whereas in the latter, the SNE® ¥ixed at that point. Since the first
several trials of the QUEST are necessarily dona adlatively high SNR, these trials
served to familiarize the observers with the task.

At the beginning of each trial, a fixation mark apped at the center of the
display for a maximum of 5 sec. As was describetiezaif the observer's computed
fixation was within our error tolerance, the tr@ntinued. Next, the fixation mark was
replaced by the stimulus for 5 sec, and the obsexwarched for the target with the goal
of having his fixation on the correct tile when tti@al ended. The computer provided
audio feedback (“correct” or “incorrect”) after dairial.

The use of a common initial fixation point and aefi, 5-sec trial duration
ensured a somewhat consistent strategy and critadimnss observers that yielded several
fixations per trial. To wit, if we had used a vesigort duration, the experiment would
effectively become a 49-alternative forced choigddyng few fixations per trial. If we
had used long or unlimited durations, differentpmasse criteria could have resulted in
very different strategies including exhaustive skalWe chose 5 sec as a compromise
allowing observers to visit several (five to sixy average) likely tiles without the search
becoming exhaustive (resulting in fixations on venyikely tiles). Post hoc analyses (see
Results section) suggested that the compromiseawasceptable one. It would also be
possible, of course, to use a variable payoff mdfor example), instead of imposing a

time limit, but we chose the simpler option in arte demonstrate our basic method. The
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small number of fixations that fell between theegilin the stimulus grid were not

included in our analysis.

3.1.5 Analysis Method

Classification Taxonomy. In a yes-no detection experiment, responses can be
categorized into hits, misses, false alarms, andecb rejections, depending on the
observer’s response and whether the target waslcpresent. In the psychophysical
classification image paradigm, the stimulus nossaveraged within each category, and
these averages are combined to form the classificanage. For example, the average
of the hits and false alarms can be subtracted tleaverage of the misses and correct
rejections, under the assumption that if a giveelpinclines the observer to say “target
present” when bright (say), it should also inclihe observer to say “target absent” when
dark (Ahumada, 1996). The fidelity of the imagenfreach category will actually depend
upon the observer’'s sensitivity and bias, but ttelities seem to be about equal in the
simple psychophysical situation, so combining therages with equal weight is close to
optimal (Ahumada, 2002).

In this study, we simply extended the above caiegbon to accommodate eye
movements. Consider that each fixation (excludheginitial fixation at stimulus onset)
involves two decisions: the decision to fixate aaie tile (and not the others) and the
subsequent decision to either remain on that tileootinue searching. The presumption
in defining our taxonomy is that the former is whgeimarily on nonfoveal information
and the latter is based primarily on foveal infotima Consider the left panel of Figure
3.3; the first fixation is to a tile on the far g which does not contain the target. This

tile can thus be labeled rmnfoveal false alarm (f.,), since the incorrect decision that

the target was in that tile was (presumably) basegeripheral information. Also, each
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tile except the central one and the one contaithiegtarget can be labelednanfoveal

correct rejection (f .,) since the correct decision that the target wasmthose tiles was

also based on peripheral information, and theadtially containing the target can be

labeled as aonfoveal miss (f._). Finally, when the eye moves to the subsequin(iti

Miss

the lower left), the tile at the first fixation cée labeled doveal correct rejection ( f..),

since the decision to reject this tile and contiragarching was based on foveal

information. Later in the trial, the observer adiyuéixates the tile containing the target,

making that tile ar If

4+ but then continues searching, so that tile atsmes arf

Miss *
the observer had decided to remain on the tileaioimy the target instead of continuing

his search, this tile would have becomef gn Trials in which the observer quickly finds

the target and in which the observer never fix#lhestarget are shown in the center and

right panels, respectively.
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fMiss fCR

Y START FIXATION
@ INTERMEDIATE FIXATION
FINAL FIXATION

Figure 3.3: Examples of scanpaths and tile categiof he signal-to-noise ratio has been
increased for illustration purposes.

Tiles were categorized postexperiment accordingTable 3.1 and 3.2 for
analysis. Note that for a given trial, each tile ¢&long to more than one category. As is
shown in the tables, each fixated tile was clesdifas arf ,, or anf _,, depending on
whether the tile contained the target or not. Tilewas then additionally classified as
one of the foveal categories depending on the @bgssrresponse: either maintaining
fixation on the tile, indicating he thought thegar was there, or continuing the search,
indicating that he thought the target was elsewh€ites not fixated were classified as

f e (target present) of ., (target absent).
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ALL TILES

PRESENT YES ﬁ_ﬁt 1
PRESENT NO ?ﬂniss 1
ABSENT YES 7FA 48
ABSENT NO Fer 48

Table 3.1: The nonfoveal noise tile taxonomy.

ALL FIXATED TILES

Target? Observer’s Decision? | Class Mg);st?bTeb:;:'fr:-iia:les
PRESENT | MAINTAIN FIXATION it 1

PRESENT CONTINUE SEARCH Jmiss 1

ABSENT MAINTAIN FIXATION fra 1

ABSENT CONTINUE SEARCH fer (Num of Fixated Tiles -1)

Table 3.2: The foveal noise tile taxonomy.

Generating the average images and the classificatiamages. Pixel-by-pixel
averaging of images within each category was useabtain the average noise images
corresponding to that category. It is importankéep in mind that only the noise patches
are used as input to this process aatthe target. Any structure revealed through these

methods therefore originates from the influencepaiticular samples of noise on the

observers’ responses.

The average noise tiles were combined in the usnaaner (Hit + FA — Miss —

CR; Ahumada, 2002) to create the classificationgiesa but this was done separately for

our foveal and non-foveal categories:

- fCR




Because we used a finite number of noise tilesx490 = 4900), the expected
average image that would result by randomly sargpiiles is not uniformly zero but,
rather, is the average of all the tiles. This exgpddmage, corresponding to a null
hypothesis that an observer does not use spatiaitste in the tiles to select fixation
points, is shown in Figure 3.4A. As one might expdcis very flat (with a standard
deviation of just 0.0015 on a 0-to-1 scale) butsddoentain some spatial structure, which
can be made clearer by contrast stretching (Figu¥B), and blurring (Figure 3.4C). This
overall average can be thought of as the bias p&eh has as a result of using a finite
number of noise samples. Although the spatial sirecin this overall average does not
closely resemble the search targets (and we haametijad this assertion by calculating
comparative 2D correlation coefficients for eachoaf experimental targets; see Figure
3.7), we must be aware that any average noise imagkassification image resembling

this expected image does not possess significardtste of its own.

U 2 i
’ Ei
=

C

PR

Figure 3.4: The expected image from randomly sargpiiles: (A) raw, (B) contrast
stretched, and (C) low-pass filtered (using ax33 pixel Gaussian mask, with
o = 09 pixel).

3.2 Results

3.2.1 Average/Classification Images

The pixel-by-pixel averages of the noise tiles atle of the eight categories are
shown for each observer in Figure 3.5. Columnslébé\ contain the raw average
images collectively scaled to a single common gralgscolor map, and columns labeled

B contain the raw images after low-pass filteringifig a 3x 3 pixel Gaussian mask with
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o =09 pixel) and individual contrast enhancement. Thenfr shows the relative
fidelity of the average image from each categongl the latter reveals possible structures

present in each of the classification images. A# tategories presented some target-

dependent spatial structure except fbg,, which converged to the overall average
shown in Figure 3.4f ., f_., f.. f.., and f., all show features associated with the

target whereas botlfi . and f,,. present features anticorrelated with the targethe

Miss
future, more accurate pixel weights could be ola@diby applying a foveation algorithm
(e.g. Geisler & Perry, 1998; Lee & Bovik, 2003)the stimuli at each fixation point prior
to computing the nonfoveal average images andifitzggn images, to attenuate higher
spatial frequencies outside the acuity range ovitial system in a space-variant fashion

at each fixation. In this section, however, we wiinfine ourselves to simple averaging

of unfoveated patches in order to illustrate owwidanethod.

IVDL LKC

~l
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(b)

Figure 3.5: The average images for (a) triangke (@) dipole target search are shown for
3 observers. Columns labeled A contain the rawameimages collectively scaled to a
single common grayscale color map, and columndddb® contain the raw images after
low-pass filtering and individual contrast enhaneain

The foveal and nonfoveal classification imagés,and f ,, obtained by linearly

ol
combining the average images in the four respornsegories (defined in our
classification taxonomy) in both the foveal and tlomfoveal cases, are shown in Figures
3.6a and 3.6b. Both foveal and nonfoveal clasgiicaimages were created for each
observer and each target. As shown in Figure 2kinms labeled A contain the raw
average images collectively scaled to a single comgrayscale color map, and columns
labeled B contain the raw images after low-pasteriilg and individual contrast
enhancement. These foveal and nonfoveal classifitatnages provide cleaner target-

like features.

36



(d)

Figure 3.6: Classification images for (a) triangled (b) dipole target search are shown
for 3 observers. (c) Foveal and nonfoveal clas#ifimmn images combined across
observers. (d) Classification images combined acimgeal and nonfoveal categories and
across observers. Columns labeled A contain the inaages collectively scaled to a

single common grayscale color map, and columndddl® contain the raw images after

low-pass filtering and individual contrast enhaneain

Average images for both target types in the fowesadl nonfoveal categories,

averaged across all 3 observers, are shown in é&iguic. The combined classification

image, obtained by averaging the foveal and nordbwtassification images across
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observers, is shown for each target type in Figu6el. These combined classification
images obviously show a strong resemblance todhgtt targets.

The level of structural similarity between the eclfisation images (shown in
Figures 3.6a and 3.6b) and the search targets waatifijed by computing the zero-lag 2-
D correlation coefficients between them and the a&fetshapes in Figure 3.1. The
correlation coefficients obtained, averaged acaisservers and the categories (foveal
and nonfoveal), are shown by the hatched bars gurés 3.7a and 3.7b for both the
triangle and the dipole classification images. Adbown are the coefficients obtained by
computing the correlation between the search taagdteach of the shapes (black bars)
and the coefficients obtained by computing the elation between the expected image
(shown in Figure 3.4) and each of the shapes (faxg). The error bars show the
standard errors of the coefficients across obsered categories (foveal and nonfoveal).
Note that the correlations are highest when contpbietween a classification image
generated from a particular target (the trianglgpamel (a) and the dipole in panel (b))
and that target itself. Moreover, the patternshef ¢éxperimental correlation coefficients
(hatched bars), are virtually identical to thos&aoted using the targets themselves rather
than the classification images (black bars). Thessults show that our technique
produces classification images that rapidly congenyp relatively high fidelity
representations of the pixel weights used by theenkers and, in this case, these weights

strongly resemble the actual targets.
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Figure 3.7: Zero-lag 2-D correlation coefficiersisowing the structural similarity (a)
between the classification images for the triarsglarch and each of the test shapes, and
(b) between the average classification image ferdipole search and each of the test
shapes. Error bars show the standard errors ofcénelations across observers and
categories (foveal and non-foveal).
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3.2.2 Control Experiments

3.2.2.1 Implementation without a Grid

To show the effect of dividing the stimulus intogad of tiles and using the
accompanying taxonomy, we simply repeated the éxgeett without the grid, as was
done in earlier work pioneering the use of eye kirag with classification images
(Rajashekaet al., 2002). In this version of the technique, the aktocation of each
fixation is computed, and the 6464 pixel patch of the stimulus noise surroundiaghe
fixation is sampled and stored. The resulting $etoise patches is then simply averaged
to form theclassification images for each observeérThese are shown in Figure 3.8a;
columns labeled A contain the classification imagafier individual contrast
enhancement, and columns labeled B contain thameges after low-pass filtering and
individual contrast enhancement. The combined ifiea8on image obtained by
averaging the classification images across obserigeishown for each target type in
Figure 3.8b. Although there does appear to be sspagal structure in these images, it
seems less specifically triangular than seen iniféi.6a. This was confirmed by doing
the same correlation analysis as that just destrithee results of which are shown in
Figure 3.9. The black and hatched bars show thgetishape and raw classification
images/shape correlations replotted from Figurea,3ahd the quilted bars show the
correlations obtained using the classification issaghown in Figure 3.8. Not only is the
pattern of correlations across shapes different,tihe actual target used (the triangle)
produced a substantially lower correlation with thassification images than did two of

the other shapes (the circle and the star).

3 This is not strictly a classification image buhdze thought of as the average spatial structatewhs
fixated by the observer.
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Figure 3.8: Classification images for trianglegetr search in 1/noise, without a

stimulus grid, are shown for 3 observers (pane), @)d the combined classification
images are also presented (panel (b)). Columndeldl®e contain the raw classification
images after individual contrast enhancement, asidnens labeled B contain the raw

(@)

sls

(b)

images after low-pass filtering and individual gast enhancement.

2D Correlation Coefficient

-0.2 -

Figure 3.9: Zero-lag 2-D correlation coefficierdBowing the structural similarity
between the classification images for the triarggarch and those for each of the test
shapes, comparing the main experiment with the ricbapntrol experiment. Error bars
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show the standard errors of the correlations aaybservers.
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3.2.2.2 Implementation with White Noise

1/f noise approximates the spectral distribution durs scenes, making it a
valuable tool for probing search behavior within statistically natural visual
environment. Despite this important benefit, thesence of spatial correlation inf 1/
noise leads to classification images that do notectly estimate the lineandependent
contribution of each pixel to an observer's behgvgince the noise itself is already
spatially correlated. In this control experimentg vg8how that because information
actually determining the observer's behavior exiptedominately at low spatial
frequencies (presumably), the classification imagesverge to a similar degree
regardless of whether flhoise is used or whether another noise type (sschvhite
noise) is postprocessed to amplify lower frequenadter the experiment has been
completed.

To compare the classification images derived frafinnbise to those derived
using white noise, we simply repeated our procedisiag uniform white noisé with
200 trials and the same 3 observers. Figure 3.dWslhe resulting data in the same
format as Figure 3.5. Visual comparison of the figares indicates an apparent lack of
spatial structure in the white noise case whengs®eed for viewing as before, with low-
pass filtering and contrast enhancement. The foaedlnonfoveal classification images
for each observer are shown in Figure 3.11a andaged across observers in Figure
3.11b, and the combined classification image issshn Figure 3.11c. Features of the
triangle target are present but comparatively fainthe average images. Some spatial
structure emerges in the combined classificatioagey but it is unclear without further

processing (see below).

4 We used uniform, rather than Gaussian, noise Isecailhigher RMS contrast; at a 68% correct SNR in
our task, Gaussian noise would have been subdtamdipped at the tails.
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Figure 3.10: The average images for the trianglget search in white noise are shown
for 3 observers. Columns labeled A contain the aserage images collectively scaled to
a single common grayscale color map, and columipsléd B contain the raw images
after low-pass filtering and individual contrashencement.
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Figure 3.11: Classification images for the triantgirget search in white noise are shown
(a) for 3 observers, (b) combined across obseregrfoveal and nonfoveal categories,
and (c) combined across foveal and nonfoveal caegand across observers. Columns
labeled A contain the raw images collectively sddlea single common grayscale color
map, and columns labeled B contain the raw imades dow-pass filtering and
individual contrast enhancement.

To effect a fairer comparison, we pinkened our whitoise stimuli and
recalculated the classification images. We then pared these pinkened classification
images with those obtained directly from thérdise stimuli. The pinkening procedure
was derived from the computation of the unbiasdtmese described by Abbey and
Eckstein (2002). This procedure involves multipty@ach noise image by the covariance
matrix of the 1f noise (computed to within an arbitrary scalingtéacgiven byBLB",
where B represents the fl/blurring filter and " the matrix transposition. The
classification images combined across foveal andfaweal categories and across
observers are shown in Figure 3.12. Column A shithesraw result obtained with the
pinkened white noise, and column B shows the loss{ddtered and contrast stretched
version. Again, our results indicate that prebhgri(using 1 noise stimuli) or
postblurring (pinkening uniform noise post hoc) guoes closely comparable results,
evidenced by the correlation analysis shown in fedgl113. The black and hatched bars
show the target/shape and raw classification imagape correlations replotted from

Figure 3.7a, and the striped bars show the comektobtained using the classification

images shown in Figure 3.11.
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Figure 3.12: Combined classification images foifarm noise (A) after being pinkened
and (B) after being pinkened, low-pass filteredj aantrast stretched.
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Figure 3.13: Zero-lag 2-D correlation coefficiersBowing the structural similarity
between the classification images for the triarggarch and each of the test shapes,
comparing the main experiment with the (pinkenedhitev noise control experiment.
Error bars show the standard errors of the coroglatacross observers.

3.2.3 Performance Measures

In general, classification images are valuable fensas observers do the same
thing in each trial. If an observer switches bact forth between two strategies, say, the
pixel weights will reflect the linear combinatiori the two with no way to disentangle
them. Our task is slightly more complicated thaditional psychophysics. We therefore
wanted to ensure that observer’s performance resdaimughly constant across trials and

did not depend on the target location (i.e. th&ahtarget eccentricity). Although this is
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not a direct measure of strategy, a change inegjyatvould probably be accompanied by

a change in performance.

3.2.3.1 Performance over Location and Time

Figure 3.14 shows the cumulative number of hita &mction of the trial number,
obtained for the 3 observers with two sets of It#st for each of the two search tasks
(triangle and dipole target search) in the badimdise, with grid, experiment. The mean
cumulative hit number is represented by the thieklbcurve, and it reaches the 68% rate
sought during the QUEST procedure at the final.tilihese performances are compared
with that of a perfect observer (dashed curve ek perfect) and with that of a random
observer (dashed curve labeled as chance).

Each set of 100 trials yielded a slope betweenhiyu@.5 and 0.8, and for each
set, this slope was roughly constant throughoutidgthis is not direct evidence that
observers were not changing strategies, but it doescate a constant level of

performance was maintained within a session.
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Figure 3.14: Graph of observer performance oveetmeasured as cumulative nhumber
of hits.

We also measured the success rates of observefsum different initial
eccentricity regions covering the full stimulus,etltenter tile (Zone 1) and three
concentric square annuli surrounding the center [@ones 2-4), to see whether the
location of the target had any influence on thegrerance. Because these zones were
square, they include tiles centered at eccentrraibges of 0°, 1.19°-1.68°, 2.38°-3.36°,
and 3.56°-5.04°. Figure 3.15 shows the comparigdrowr plots of success rates in the
four different initial eccentricity regions, fortseof 100 trials performed by the observers
for both targets: (a) triangle and (b) dipole. Tmdy obvious aberration in the data is that
the dipole target was always detected when predentehe central tile, and this is
presumably because this target at this locationltesn the edge’s being presented
directly to the foveola. The triangle target wdsoamore difficult to detect when

presented in the outermost tiles, but not dramiatisa.
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Figure 3.15: Box plots of the success rates aabservers for four different eccentricity
regions are shown for (a) triangle and (b) dipodarsh with 1ff noise stimuli with
superimposed grid.
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3.2.3.2 Observer Dwell Times

As discussed in the Proposed Method section, tlseragbrs were given 5 sec to
find the target, in order to ensure a fairly cotesis strategy across observers, allowing
several fixations to be made per trial but preaigdihe possibility of an exhaustive
search. Figure 3.16a shows the distribution ofdivell-times from the main experiment
for all the fixations, excluding the initial andetHinal ones of each trial, for all the
observers and both target types. It can be sednthlibadwell times are concentrated
between 200 and 600 msec, in accordance with prewstudies (Jacob, 1995). Figure
3.16b shows the distribution of the dwell times daoty the final fixations. Over 83% of
the dwell times observed for the final fixationg &qgual to or longer than 600 msec, the
upper bound on typical fixation durations, reach®¥§6 for cases in which the target is
actually found. We interpret this observation atigating that, in our experiment, search
was fairly naturalistic and that there was enougtetfor observers to deliberately select
a single tile as containing the target on mostgrigor greater rigor in ensuring that the

final fixation categories {,,, f.,) do not contain search fixations, one could elaten

those with dwell times below a threshold.
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Figure 3.16: Dwell-time distribution for each obs: (a) non-final and (b) final
fixations.

3.3 Discussion and Conclusions

In this chapter we have demonstrated a techniquexjediting the convergence
of classification images in visual search experiteem fact, for each of the 3 observers
and two target types, and with only 200 trials pleserver, we see that the classification
images obtained with our method closely resembéetéinget sought (Figures 3.5-3.7).
Although the number of tiles falling into many dfet categories was small, we still
managed to obtain fairly distinctive average imagesl, hence convincingly robust
classification images. Stronger classification ges were obtained in comparison to a

nongrid control experiment (this claim is supportag both visual inspection of the

50



results and the strength of the correlation coieffits obtained between the classification
images and the targets). The use of naturali¢gtimasking noise was evaluated with a
second control experiment in which white noise weed. Visual inspection and

correlation coefficients indicate that there is mimal difference between classification

images generated with either noise type if we eitieken white noise tiles and compare
to 1f noise tiles, or whiten Lhoise tiles and compare to white noise tiles.

In addition, we have introduced a new taxonomytli@r categorization of results
from each fixation during a trial. This new taxonpsimply extends the conventional
signal detection theory categories to distinguistvedl and nonfoveal processes.
However, this extension should allow us and otherscharacterize the kinds of
information used in the fovea and periphery durimafuralistic visual search. For
instance, Figure 3.5a shows blob-like average imageoss observers for the nonfoveal

category f ,, hence characterizing the features that attrashserver fixations to tiles

FA?
not containing the target. But as outlined in oaxonomy, noise images in the,,

category are divided into two foveal categorfes (corresponding to the observer’s final
selection of a wrong candidate) anfd, (corresponding to a rejection of a wrong

candidate). In factf., presents sharper target-like features comparet|toand f _,.

Although preliminary, such results hint at the ei#fnce between the foveal and
nonfoveal selection process. Moreover, stimuli ddu filtered to take into account the
eccentricities of the tiles with regard to the figa points (foveation), prior to averaging,
thus eliminating any contribution of spatial freques outside the pass band of the

visual system at a given eccentricity.
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Chapter 4

Spatial Frequency and Orientation Selectivity in Vsual Search

In this chapter, we use our novel technique (Tadassal., 2007a), described in
the previous chapter, to examine observers’ stiedeghen seeking low-contrast targets
of different spatial frequency and orientation cuderistics. We present four major
findings (Tavassolet al., in preparation). First, we provide strong suppgort visual
guidance in saccadic targeting, characterized bgemfers’ selectivity for spatial
frequency and orientation attributes close to tharch target. Second, we show that
observers exhibit inaccuracies and biases in #&imates of target features. Third, a
complementarity effect is generally observed, iatihg the existence of interactions
between neighboring spectral components of stinkiially, an unusual phenomenon is
observed whereby distracters containing close-tbeat structures are fixated in
searches for non-vertically oriented targets. Oesults provide evidence for the
involvement of band-pass mechanisms along featumertsions (orientation and spatial

frequency) during visual search.

4.1 Motivation

The existence of neurons along the visual pathwatadre selective for the spatial
frequency and orientation characteristics of visséimuli is well established by
physiological studies. Selectivity for spatial foemcy is present in early stages of the
visual pathway and is refined in later ones, if@al tuning at the level of the retina
(Enroth-Cugell & Robson, 1966; Kuffler, 1953) anelatively narrower tuning in the
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visual cortex (DeValoist al., 1982; Schillert al., 1976; Campbelt al., 1969). Tuning
for orientation is a principal characteristic oflsén the visual cortex; neurons located in
earlier stages, including in the lateral geniculateleus, have not been found to be
orientation tuned (Hubel & Wiesel, 1968, 1962). Hwer, the refinement of orientation
tuning is a controversial issue, with various theomproposed, including feedforward
(Fersteret al., 1996; Hubel & Wiesel, 1962) and intracortical ibition mechanisms
(Ringachet al., 1997; Ramoat al., 1986; Morroneet al., 1982).

Evidence for observer selectivity for orientatiomdaspatial frequency has been
provided by numerous psychophysical studies, gégersing contrast sensitivity
(Graham & Nachmias, 1971; Campbell & Robson, 196&sking (Stromeyer & Julesz,
1972; Campbell & Kulikowski, 1966; Wilsomt al., 1983), and spatial adaptation
(Snowden, 1992; Tolhurst, 1972; Blakemeteal., 1970; Blakemore & Campbell, 1969)
paradigms. For example, Campbell and Robson (19&8)ducted detection and
discrimination tasks using gratings (e.g. sineyasg-waves, and so on) and showed that
observers’ contrast thresholds were directly relatethe harmonic Fourier components
of the gratings. They postulated the existencendependent band-pass mechanisms
selective for spatial frequencies. Using stimulingisting of rapid sequential
presentations of sinusoidal gratings at randomntateons and spatial phase, Ringach
(1998) showed that observers’ tuning for orientatienerally presented a “Mexican hat”
distribution peaking at orientations close to thiemtation observers had to report, with
valleys at either side of the peak.

An interesting question is how selectivity for sphfrequency and orientation is
used in visual search tasks. A number of studiese hdemonstrated, through
measurements such as reaction times as a funcfiosetosize, that both feature

dimensions can indeed be used in guiding attentionisual search (Wolfe & Horowitz,
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2004; Sagi, 1988; Treisman & Gelade, 1980). Seafiitiency in many tasks was found
to depend on target-distracter discriminability adidtracter homogeneity along these
feature dimensions (Foster & Ward, 1994; VerghesBhakayama, 1993; Wolfet al.,
1992). In addition, search asymmetries were obse(Véolfe et al., 1992; Foster &
Ward, 1991; Treisman & Gormican, 1988); for inse@nthe detection of a tilted line
amongst vertical lines has been shown to be etigiaran otherwise identical search for
a vertical line amongst tilted lines.

However, many of these previous visual search sfdiespite intending to
elucidate visual search, have avoided the anabfstye movements, either as a result of
using short stimulus display times or by instrugtobservers to keep their eyes still. The
importance of incorporating eye movements to stololserver strategies in visual search
has been emphasized in the recent years (Geisér, 2006; Findlay & Gilchrist, 2003;
Zelinsky & Sheinberg, 1997). Observers naturallwmtheir gaze when searching for a
target, and it has even been demonstrated in aafgls that observers opt to perform eye
movements even when such a strategy is not op(iamadilay, 1997; Findlay & Gilchrist,

1998).

4.2 Methods

We use our new and efficient experimental seare@méwork to study the
behavior of humans seeking gratings of known charestics embedded in flhoise.
Note that the use of noise tiles as distractestead of lines, gratings, and so on as used
in many of the previous visual search studies, gera much larger set of distracting

items that possess differences across many feditmensions.
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4.2.1 Observers

Three male observers (aged 26—-30) were testedriexperiments, of whom two
were experienced (AT and IVDL) and one was naivthéopurpose of the study (AJS),

each with normal/corrected-to-normal vision. Eaditseyver completed 10,500 trials

(fifteen sets of 700 trials, each set with a défarsearch target) over a period of several

HNINNS=
NSNS

months.

Figure 4.1: Targets used in our fifteen separameements. Gabor patches of spatial
frequency 2 (first row), 4 (second row), and 8 g/dthird row), oriented anticlockwise
from the vertical at (a) 0 deg, (b) 20 deg, (c) d&%, (d) 70 deg, and (e) 90 deg were used
as targets.

4.2.2 Visual Stimuli

Our fifteen search targets were 8464 pixel Gabor patches of spatial frequency
2, 4, and 8 c/deg, oriented anticlockwise from veetical at 0, 20, 45, 70 and 90 deg
(Figure 4.1). We use the same one hundred/7ile mosaics that were generated to test
our methodology described in the previous chapierobtained offline by creating one

hundred 544x 544 pixel 1f noise images (with an amplitude spectrum of thenfo
1/ f *with a = 0.8) and then superimposing gray bord@rpigels in width (Figure 4.2b).
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On each trial, the Gabor target was added to aoratydselected tile of the flhoise grid
(Figures 4.2a and 4.2b). Observers viewed the $itonuan Image Systems 21" grayscale
monitor (Image Systems Corp., Minnetonka, MN) dniv®y a Matrox Parahelia graphics
card (Matrox Graphics Inc., Dorval, Québec, Canadag screen resolution of 1,024
768 pixels, a grayscale resolution of 8 bits peepiand a refresh rate of 60 Hz. The
screen was placed 134 cm from the observer anérsddd a visual angle of 3612 deg,
giving approximately 1 min of arc per screen pixéde luminance output was linearized
by putting the inverse of the monitor's measurethiga function in the display look-up
table. The ambient illumination in the laboratorgsakept constant for all observers, and
there was a minimum of 5 min to adapt to the anthlemmination and screen luminance

while the eye tracker was calibrated.

4.2.3 Procedure

The procedure was the same as described in thet€tgapVe would like to point
out that a measure of dwell-times on the obserfieas fixations on the tile they believed
to contain the target indicated that they were baeéitely selecting a single tile as
containing the target on most trials (i.e. over 86fthe dwell-times observed for final
fixations were equal to or longer than 600 ms, @peu bound on typical fixation

durations).
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Figure 4.2: Stimulus creation, data capture, aatd dnalysis. (a) A Gabor patch used as
a target (b) was added to a randomly selectedofilthe 1f noise grid. Observer eye
movements were recorded while they searched fotalget. A representative scan path
is shown for a trial in which the observer did fiatl the target, located in the center of
the leftmost column. (c) Fixated tiles that did romntain the target constitute our
nonfoveal false alarm category, and (d) a subsehede tiles, which were mistakenly
selected at the end of the trials as the targeghbyobserver, constitute our foveal false
alarm category. (e and f) Average difference speatere computed by averaging the
amplitude spectra of noise tiles in each categmy subtracting the spectral bias (see
text).

57



4.2.4 Analysis Method

Observers typically performed close to five fixatsoon average per trial in our
experiments (note that we disregarded saccadesntpmdtween tiles), hence visiting
tiles containing only noise and in some trials stéhg one such tile as the target-
candidate; an example stimulus grid with represemtaeye movements for a single
observer is shown in Figure 4.2b. We were thereiimierested in examining why some
noise-only tiles were fixated whereas others wer® iAind second, why, at the end of
some trials, was a noise-only tile mistakenly selé@s the tile containing the target?

To answer these questions, we assume that eadiopfix@xcluding the initial
fixation at stimulus onset) involves two decisiotige decision to fixate a certain tile (and
not the others), and the subsequent decision keereifemain on that tile or continue
searching. We consider that the former is basedagrify on nonfoveal information and
the latter is based primarily on foveal informatidie therefore stored noise-only tiles

that were fixated while en route to the target daloeled them as “nonfoveal false

alarms” (f.,) (Figure 4.2c). Additionally, noise-only tiles thaere mistakenly selected
as the target at the end of a trial were labeledf@eal false alarms” €.,) - these

necessarily being a subset of the nonfoveal falaema (Figure 4.2d). These signal-
absent categories better reflect observer behdkan signal present categories (those
composed of tiles that contained the target), siocdy patterns in the noise,
corresponding to visual information that the obseriook to imply the presence of a
target, are used (Eckstaghal., 2002).

We therefore computed the Fourier transform of edlehand averaged their
amplitude spectra within category and observer.aBse we used a finite number of 1/
noise tiles (100« 7 x 7 = 4900) for the experiment, a spectral biastiduced in these
averages, i.e. the expected amplitude spectrum wald be obtained by randomly
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sampling noise tiles would have a shape closeftoMé therefore examined differences
between the averages in our categories and thecixpbias. We obtained the bias by
averaging the amplitude spectra of all the 4,908entiles used to generate our stimuli.
We then subtracted the bias from the averagesrmutan each category to form what we
will refer to as average difference spectra (Figute2e and 4.2f); this process is similar
to the amplitude spectrum correction method deedriy Willmore and Smyth (2003).
These average difference spectra represent domifraldtive to the bias) spatial
frequency (indicated by the distance from the origi, see Figure 4.2e) and orientation
(indicated by the angld, from vertical orientation, O deg, see Figure 4o02¢he noise
tiles within each category. To improve visualizatiove zeroed the DC (in all the average
difference spectra) and 1 c/deg (in results obthifoe searches for the 4 and 8 c/deg
Gabors) components, then smoothed each image WBith&apixel Gaussian mask with

= 0.9 pixel. Setting the very low frequencies (D@ d c/deg) to zero simply allows the
full color map to be used for the more interestsgectral structures in surrounding
frequency components.

Note that directly averaging the noise tiles (nethe spatial domain, as described
in the previous chapter) within each category abskeover produced an effect similar to
those reported in earlier psychophysical detecttrdies (Beard & Ahumada, 1999;
Solomon, 2002) whereby the average images contaire darget-like structures in the
case of search for lower frequency targets butehevant structure for search for higher

frequency targets.

4.3 Results

Figures 4.3a, 4.3b, and 4.3c show the averagerelifée spectra for the two false

alarm categories obtained for search experimemtg) @dabor targets of spatial frequency
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2, 4, and 8 c/deg, oriented anticlockwise fromwksical at O (first column), 20 (second
column), 45 (third column), 70 (fourth column), aBf deg (fifth column). For each
observer and set of 700 trials, amplitude specteewreated using about 210 and 2,800
noise tiles respectively for the foveal and nonBdveategories. Regions in red and blue
indicate frequency components having amplitudesvalend below the spectral bias,
respectively (i.e. above and below the expected lilmdp spectrum for a random

observer). Regions in green show frequency comperose to the bias.
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Figure 4.3: Average difference spectra for thrbseovers in the (a) 2, (b) 4, and (c) 8
c/deg Gabor search experiments. Average differeapeetra, smoothed and contrast-
stretched for visual enhancement, are shown far &et00 trials for visual searches for
Gabor targets oriented anticlockwise from the eattiat O (first column), 20 (second
column), 45 (third column), 70 (fourth column), aB@ deg (fifth column). For each
observer and each set of trials, the spectra wesgted using about 210 and 2,800 noise
tiles respectively for the foveal and nonfovealegaties. Regions in red and blue
indicate frequency components having amplitudesvalsind below the spectral bias,
respectively. Regions in green show frequency comapts close to the bias. We have
indicated the spatial frequency of the search taft@ the horizontal and vertical
orientations).
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Clear spectral structures are obtained in all efdkierage difference spectra, i.e.
peaks close to the spatial frequency and oriemtaifahe search target, flanked by well
localized valleys present in the surround, morabiysfor the 4 and 8 c/deg target
searches. To better illustrate the placement ofviieys relative to the peaks, we first
rotated each average difference spectrum by thativegof the estimated orientation of
its peaks. The orientation estimate was obtainedfittinyg each average difference
spectrum with the amplitude spectrum of a Gaborsehparameters (spatial frequency,
bandwidth, orientation, and aspect ratio) were edanising a simplex search method.
Then, for each target spatial frequency conditive, averaged the aligned average
difference spectra for each observer (Figure 4nd) far all observers combined (Figure
4.5).

Figure 4.3c shows a surprising outcome for visuedrehes for the 8 c/deg
Gabors. All three observers have strong peaks d¢tm€edeg in the nonfoveal category
for searches for the non-vertical Gabor targetsaddition to peaks close to that of the
search targets. The additional peaks appear telvani the foveal category, i.e. once
observers fixated the noise tiles. This effectdsthllustrated in the last column of Figure
4.3c, where tightly tuned peaks are present atgimi¢he nonfoveal average difference
spectra along with peaks at 90 deg, and then tbiti@ual peaks fade away in the foveal

average difference spectra.
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Figure 4.4: Complementarity effect for three olees. The average of aligned average
difference spectra are shown for (a) 2 c/deg, (ojd&g, and (c) 8 c/deg Gabor search
experiments for three observers. Regions in reccane frequency components having
amplitudes above the bias and regions in blue Bpdbiose components having
amplitudes below the bias.
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Moreover, we were curious to examine the effecteafentricity and saccade
order on saccadic targeting. We further binnedrtbise tiles in the nonfoveal category
by eccentricity and by order, separately. We fotimat the structures present in the
average difference spectra in each bin, using reliiling approaches, were generally
similar to ones in the average difference spectotained without binning, hence
demonstrating the robustness of our results. Howyeavieen binning by saccade length,
we noticed in the average difference spectra sorstances in which peaks for larger
eccentricity bins were lower in spatial frequenlegrt for smaller eccentricities. Although
the latter effect may be expected due to the falbdfresolution in peripheral vision,
however the effect was not reliable perhaps dutheéolimited number of noise tiles in

each bin, especially for larger saccade lengtlsaocade numbers.
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Figure 4.5: Complementarity effect for all threleservers combined. The average of
aligned average difference spectra are shown ja2 (ddeg, (b) 4 c/deg, and (c) 8 c/deg
Gabor search experiments for all observers combiRedions in red indicate frequency
components having amplitudes above the bias antdn®gin blue specify those
components having amplitudes below the bias.

4.4 Discussion

The aim of the current study was primarily to expleaccadic targeting and

target selection in naturalistic visual search saskore precisely when human observers
66



search for a Gabor target with known charactegsémbedded in a grid of flhoise
(which has a similar falloff in amplitude spectras natural images). We are interested
in understanding what attracts fixations and hovgdt candidates are selected upon
fixation.

Our results clearly indicate visual guidance incsalic targeting, which has been
a somewhat contentious issue in previous studieactife visual search (Findlay &
Gilchrist, 2003; Hooge & Erkelens, 1999; Motter &lIBy, 1998b; Findlay, 1997;
Zelinsky, 1996). Asimilarity effect (as defined by Findlay & Gilchrist, 2003)revealed,
showing that saccades are guided, on averagestiacters (here, noise tiles) presenting
featural similarities to the Gabor target. In partar, we demonstrate that observers are
selective for spatial frequencies and orientatictose to the central frequency and
orientation of the search target, i.e. the averdifference spectra for fixated noise tiles
show peaks localized in spatial frequency and taieon close to that of the target
(Figures 4.3a, 4.3b, and 4.3c).

Furthermore, observers exhibit inaccuracies inrtesiimates of target attributes.
These errors are revealed by the uncertainties cdfséts in the average difference
spectra, i.e. elongations in spatial frequency anedntation bandwidths; radial spread
corresponding to less selectivity in spatial fregme and rotational smearing to less
tuning in orientation. In many cases, offsets iinestes of target features occur
nonfoveally but are corrected upon fixation, elgservers AJS and IVDL are attracted to
noise tiles containing predominantly near-horizoritdose to 90 deg) structures when
looking for a Gabor target of spatial frequency/@eg oriented at 70 deg, then foveally
select those with prevalent structures close todéQ (Figure 4.3c). Inaccuracies in
observer estimates have been reported in psychmphytasks (Ringach, 1998) and

appear in psychophysical reverse-correlation datddtection tasks (Solomon, 2002).
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Interestingly, a markedomplementarity effect is found in much of our human
data; that is, the absence of various spatial &egies and orientations appears to
influence whether a noise tile is fixated and sel@é@s target candidate upon fixation. In
fact, the average difference spectra for fixatedsadiles contain valleys localized at
spatial frequencies and orientations neighborireg ghaks, more consistently for the 4
and 8 c/deg Gabor target experiments. For exampleigure 4.3b, most of the average
difference spectra in the nonfoveal category fasesber AT show distinctive valleys at
oblique orientations. The existence of valleyshia tesults may signify that observers are
often disregarding noise tiles containing frequermymponents surrounding their
estimates of the target’s orientation and spatigudency. Alternatively, it could reflect
that a reduced presence of particular frequencypoments may have an enhancing
effect in the detection of the components of irgerln general, it appears that the valleys
in the average difference spectra tend to be aeldrequencies than the peaks for the
higher frequency (8 c/deg) Gabor search experimamdsthat this tendency is reversed
for lower frequency search experiments (Figure.4TB)s observation is consistent with
findings in masking experiments where it was fouhat the most effective masks for
low frequency test gratings were at higher freqiesnand vice versa (Wilsoe al.,
1982); and, somewhat comparable to the “Mexicari baentation profiles found by
Ringach (1998) in psychophysical experiments, aigo he reported that the effect
disappeared for higher frequencies.

Curiously, there is, on average, an unusual presehclose-to-vertical structures
in fixated noise tiles for visual searches for ®ie/deg Gabors for the non-vertical
orientation conditions, i.e. the average differespectra for the nonfoveal category
present peaks close to the spatial frequency o$elaech target but at an orientation of O

deg. This effect could reflect possible facilitaisoin detection; for instance, Silliab al.
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(1995) showed that responses of many neurons ito\teir preferred orientation could
be enhanced by introducing a surrounding field @imiig a pattern at significantly
different orientation than the center. Alternatiyet could be the consequence of double-
orientation tuning in nonfoveal detection; for exdAe) Shevelevet al. (1994)
demonstrated the existence of neurons in V1 tha¢ lmamain preferred orientation and
an additional preferred orientation. Neverthelessther possibility may be a windowing
or end stopping effect, i.e. the size and widtlstofictures present in noise tiles may be
influencing peripheral decision in making saccad@he additional frequency

components vanish once observers fixated the titese

45 Conclusions

Our results provide compelling evidence for bandspmechanisms in saccadic
targeting and target selection during visual seairtltparticular for grating-like targets.
Furthermore, selectivity along feature dimensioriserd, spatial frequency and
orientation) shows inaccuracies, offsets, and agribiases. These errors are to some
extent corrected during the foveal decision proc&ssthermore, it appears that the
presence or absence of various spectral comporahts, than those close to that of the
search target, influence the guidance of saccadlesfind that the absence of certain
surround frequency components or the presence air-vegtical structures (i.e.

components close to 0 deg) in the noise tiles@trabserver fixations.
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Chapter 5

Visual Search under Uncertainty Conditions

In this chapter, we use our experimental searandwaork, presented in Chapter
3, to measure observers’ ability to locate a lowtcast target of unknown orientation.
We were curious to examine observer strategies ru(miéentation) uncertainty. We
present three main discoveries (Tavasgai., 2007b). First, we provide strong evidence
for saccadic selectivity for spatial frequenciessel to the target's central frequency.
Second, we demonstrate that observers have disigiosyncratic biases to certain
orientations in saccadic programming, althoughehe&ere no priors imposed on the
target's orientation. These orientation biases rcawesubset of the near-cardinal
(horizontal/vertical) and near-oblique orientatiomsth orientations near vertical being
the most common across observers. Further, thessyittratic biases were stable across
time. Third, within observers, very similar biasegist for foveal target detection
accuracy. These results suggest that saccadietitaggis tuned for known stimulus
dimensions (here, spatial frequency) and also bagereference or default tuning for

uncertain stimulus dimensions (here, orientation).

51 Motivation

Studies of visual acuity and contrast sensitivithhumans have shown an unequal
sensitivity across orientation; generally, theseligts find a greater sensitivity to gratings
with cardinal (horizontal/vertical) relative to adpie orientations (Berkelegt al., 1975;
Campbellet al., 1966). This orientation anisotropy is referrecsathe “oblique effect” or

“cardinal bias” in the literature (Appelle, 1972)his effect is also found in cats and



macaque monkeys, but not as consistently as forahanfLi et al., 2003). Some have
argued that using broadband stimuli, such dsnbise or natural images filtered in
orientation, instead of gratings, could insteadldyigreater sensitivity for oblique
orientations (Hansen & Essock, 2004).

A number of single-cell physiological studies (4¢eet al., 2003) of the primary
visual cortex (V1) have found variability in poptitms of orientation tuned cells (viz., a
larger number of cells tuned to horizontal andigattthan to oblique orientations), but
several other studies were unsuccessful in fingunch differences (Finlagt al., 1976;
Mansfield, 1974). It has been suggested that caofdbese discrepancies are that
different studies have used different measuremeateglures, and that some have
sampled only a small population of cells. More rebe researchers have observed an
oblique effect using optical imaging (Coppathal., 1998) and functional magnetic
resonance imaging (Furmanski & Engel, 2000). OVettad belief in a generic deficit for
oblique stimuli remains a source of some contentéord its incidence is likely to vary
with the stage in the visual pathway measured haedxperimental technique employed.

A gquestion of great interest is how visual searéghinbe affected by anisotropies
in the perception of orientation. Studies have reggbsearch asymmetries in tasks where
human observers seek an oriented target amongst af distracters (Wolfe, 1998;
Carrasceet al., 1998; Wolfeet al., 1992; Foster & Ward, 1991; Treisman & Gormican,
1988). For instance, the detection of a tilted lneongst vertical lines has been found to
be easier than search for a vertical line amonlgst tlines. In this paper, we address a
more general problem in visual search where thentation of the target is not known to
the observer a priori. Such an experimental proeeds similar to many real-world
search tasks, in which the orientation of an objgdargely uncertain, though it may be

influenced by gravity or its proximal interactiontkvother objects and planes.
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5.2 Methods

We use our experimental search framework to stindy tehavior of humans

seeking a randomly oriented grating embeddedfindise.

5.2.1 Observers

Four male observers (aged 26 through 30), of whemwere experienced (AT
and IVDL) and two naive (AEP and AJS), were testeaur experiments, each with
normal/corrected-to-normal vision. Each observangleted 1,400 trials (2 sets of 700

trials, separated by a period of about 1 month).

5.2.2 Visual Stimuli

Our search target was a &464 pixel Gabor patch of frequency 8 c/deg and
bandwidth 0.25 octaves (Figure 5.1a). We use theesane hundred ¥ 7 tile mosaics
that were generated to test our methodology destrib the previous chapter, i.e.
obtained offline by creating one hundred 54444 pixel 1f noise images (with an
amplitude spectrum of the fordy f ®with a = 0.8) and then superimposing gray borders
12 pixels in width (Figure 5.1c). On each triak thrientation of the Gabor was randomly
selected from the set {0, 1, 2...179} deg (Figureélsafand 5.1b) and this Gabor was then
added to a randomly selected tile of thé ridise grid (Figure 5.1c). As a convention,
angles ascended from 0 deg (vertical bars) in diclackwise direction. Observers
viewed the stimuli on an Image Systems 21" graysoabnitor (Image Systems Corp.,
Minnetonka, MN) driven by a Matrox Parahelia gragghcard (Matrox Graphics Inc.,

Dorval, Québec, Canada) at a screen resolution,@241x 768 pixels, a grayscale
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resolution of 8 bits per pixel, and a refresh @t&0 Hz. The screen was placed 134 cm
from the observer and subtended a visual angléof 12 deg, giving approximately 1
min of arc per screen pixel. The luminance outpas Vinearized by putting the inverse of
the monitor's measured gamma function in the dispaok-up table. The ambient
illumination in the laboratory was kept constant fdl observers, and there was a
minimum of 5 min to adapt to the ambient illumiatiand screen luminance while the

eye tracker was calibrated.

5.2.3 Procedure

The procedure was the same as described in thet&€hgpWe would like to
indicate that over 81% of the dwell-times obserf@dfinal fixations were equal to or
longer than 600 ms, an upper bound on typical ifoxatdurations, indicating that

observers were deliberately selecting a singleasleontaining the target on most trials.
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Figure 5.1: Stimulus creation, data capture, asé énalysis. (a) A Gabor patch was
used as a target and (b) its orientation was rahdsetected from the set {0, 1, 2...179}
deg. (c) The target was added to a randomly seletie of the 1f noise grid and
observer eye-movements were recorded while thexclsed for the target. An example
of scan path is shown for a trial in which the alee did not find the target, located in
the center of the leftmost column. (d) Fixatedstilihat did not contain the target
constitute our non-foveal false alarm category, @)d subset of these tiles, which were
mistakenly selected at the end of trials as thgetapy the observer, constitute our foveal
false alarm category. (f and g) Average differeapectra were computed by averaging
the amplitude spectra of noise tiles in each categond subtracting the spectral bias (see
text).
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5.2.4 Analysis Method

Observers typically performed four to five fixat®wn average per trial in our
current experiments, therefore visiting tiles nohtaining the target (i.e. noise-only tiles)
and in some trials selecting one such tile as #éinget; an example stimulus grid with
representative eye movements for a single obse\strown in Figure 5.1c.

We asked the same questions as for earlier expetsm@/hy were some noise-
only tiles fixated whereas the others were not? #whg, at the end of some trials, was a
noise-only tile mistakenly selected as the tiletaoning the target? The analysis of the
noise tiles was identical to that presented inpitevious chapter. Note that no significant
patterns were obtained by directly averaging, pxelpixel in the spatial domain (i.e.

retaining the phase information).

53 Results

Figure 5.2 shows the average difference spectrthéotwo false alarm categories
obtained for the first set of 700 trials (first aoin), the second set of 700 trials collected
approximately one month later (second column), alhd.,400 trials (third column) for
each observer. For each observer and each satlsf amplitude spectra were created
using about 210 and 2,800 noise tiles respectifety the foveal and non-foveal
categories. Regions in red and blue indicate fregqueomponents having amplitudes
above and below the spectral bias, respective. @bove and below the expected
amplitude spectrum for a random observer). Regiansgreen show frequency
components close to the bias. Surprisingly, eackemwfer shows an idiosyncratic
preference for certain distinct orientations. Ferthnote the high degree of similarity

within observers between each set of 700 trialgjqudarly in the f _, category, which

indicates the stability over time of these somewhatous results. We have quantified
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these similarities, using zero-lag correlation edw the smoothed average difference
spectra of the two sets, for each observer, andave obtained on average 0.72 (ranging
from 0.6 for AJS to 0.8 for AT). In the fourth cofn of Figure 5.2, we have cropped and
enlarged the results from the third column to betisualize the spectral structures, and
we have indicated the spatial frequency of the bbugrget (for the horizontal and
vertical orientations). Notice that the peaks a@se to the spatial frequency of the
sought target (8 c/deg). Note that we did not fang reliable, dramatic effects of saccade
length (which might be expected due to the faltdffesolution of the visual system).

We show in the last column of Figure 5.2 observpesformance in finding the
Gabor target as a function of its orientation. &enfance was pooled into 15 deg bins (12
bins total) and then averaged. Each bin contaiositabl7 trials. We indicate in red the
average performance of each observer across alfitations (which is close to the initial
value of 68% correct sought using the QUEST promduiRegions in yellow and gray
indicate performance above and below the obserasesage performance, respectively.
Notice that peaks in the average difference spéetrthe f_, category correspond quite
closely to increases in performance at similarrdgagons. A repeated measures analysis
of variance (ANOVA) with orientation and observes factors showed a significant
effect of orientation F (11,705 = 546, p = 217x107°) on the performance in finding
the target, but a marginal effect of observer (rtb the QUEST procedure ensured

similar average performance for observers).
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Figure 5.2: Average difference spectra and perémee plots for four observers.
Average difference spectra, smoothed and contteetttsed for visual enhancement, are
shown for the first set of 700 trials (first columthe second set of 700 trials collected
approximately one month later (second column), &mdall the 1,400 trials (third
column). For each observer and each set of tiilaés spectra were created using about
210 and 2,800 noise tiles respectively for the &vand non-foveal categories.
(continued)
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(continued) Regions in red and blue indicate frequency coreptsrhaving amplitudes
above and below the spectral bias, respectivelygidRe in green show frequency
components close to the bias. In the fourth coluwem have cropped and enlarged the
results from the third column to better visualibe tspectral structures, and we have
indicated the spatial frequency (8 c/deg) of tharde target (for the horizontal and
vertical orientations). Observers performance @urtarget detection rate, on a scale 0 to
1) are shown as a function of the orientation & @abor patches (pooled into 15 deg
bins and averaged, each bin containing about 1al8)trWe indicate in red the average
performance of each observer across all orientafftimns is close to the 68%). Regions in
yellow and gray indicate performance above and vbelbe observer's average
performance, respectively.

We have also tested whether behavior in a givenh igiaffected by the outcome
of the preceding trial. Essentially, we wished s$tablish if the orientation of the target in
trial T,_, affected the outcome of trial,,, i.e. if a delusive sequential strategy or bias

permeates the observer's results (observers wddethat the target orientation was

chosen at random for each trial). We introduce rtitated average difference spectra
obtained by rotating the noise tiles at ttigby the negative of the orientation of the
target at triat,_; , then averaging them across trials. For examplbeitarget at triafts,

has an orientation of 75 deg, we would rotate ladl moise tiles in triatg; by -75 deg

before averaging them in the FA categories. Thiscgss is designed to highlight
dependencies between successive trials. For iresténen average the observer tends to
look for a similar orientation as the target in greceding trial, then we would expect to

see strong increases in amplitude close to theerte orientationz ), set at 0 deg. If

there are no dependencies then we should obsenanrmuius (denoting an isotropic

distribution) of the orientations. Figure 5.3 shothat for all four observers thé .,

categories present structures close to an annthlesgfore that there appears to be, on
average, no significant sequential bias. For olesenAT and AEP, thef_, category

shows some biases; for example, a wide spreadgbfdmplitude frequency components
orthogonal to the reference orientation is obsefeedT, possibly suggesting a decrease
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in frequency detection accuracy for orientationgpprdicular to the previous trial, or a

slight tendency to select perpendicular orientatifvom trial to trial.

AT IVDL AEP AJS
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Figure 5:3: Test for sequential bias. Rotated ayerdifference spectra, smoothed and
contrast stretched for visual enhancement, are sh&egions in red and blue indicate

frequency components having amplitudes above aloavidbe spectral bias, respectively.

Regions in green show frequency components clodeetbias. See text for details.

54 Discussion

The main objective of this study was to investigsdecadic targeting and target
selection in a naturalistic visual search task, whbservers sought a randomly oriented
Gabor target in a grid of flhoise (which has an amplitude spectrum distindiiveatural
scenes). We are interested in discovering whatasr fixations and how target
candidates are selected upon fixation, in particulden observers are uncertain about a
target feature (here, the orientation).

The results clearly point to visual guidance incsakic target selection, in
particular, under orientation uncertainty. We destrate that observers are selective for
spatial frequencies close to the central frequaridipe sought target; that is, the average
difference spectra for fixated noise tiles showkseacalized in spatial frequency (close
to 8 c/deg) but spread across various orientat{ses Figure 5.2). Note that, in the
previous chapter, we found that observers weretetefor both spatial frequency and
orientation when the orientation of the target waswn (i.e. when we used Gabor
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targets of spatial frequency 8 c/deg and fixedntaton {0, 20, 45, 70, and 90} deg in
five separate experiments).

Surprisingly, even under conditions of completeotation uncertainty, observers
show pronounced, idiosyncratic biases for certdimwus orientations in saccadic
programming, that is, rotational smearing of thaksein the average difference spectra
for the fixated noise tiles is limited to a subgkbrientations. Note that if observers were
equally selective for all stimulus orientations.eomould expect to obtain peaks spread
across all orientations, hence, giving rise tolbafanulus structure in the Fourier domain.
Interestingly, these preferences are not exclugilielited to the cardinal directions
(except for observer IVDL), which is somewhat insistent with many physiological
and behavioral studies (let al., 2003; Berkeleyet al., 1975; Campbelkt al., 1966),
although the strongest preference across all obseappears to be close to vertical (0
deg). Nor are the biases solely reserved to thigusblorientations, as might be expected
given the results of behavioral studies using nmateiralistic stimuli (Hansen & Essock,
2004). Instead, we demonstrate preferences fabse$ of orientations that encompass,
in part, cardinal and oblique orientations.

These biases are also present in observers' penficandata, and, within each
observer, they are remarkably similar to the biases in average difference spectra for
noise tiles selected as target candidates upomnidixgalthough more trials would be
needed to examine the fine structure, if any, o timilarity). We show that the
performance in finding the target is dependenttsroiientation and that an asymmetry
exists between clockwise and anticlockwise orieomst AJS, AT, and IVDL have a
preference for anticlockwise oriented stimuli wiesr&EP has a bias towards clockwise.
Although mysterious in origin, such asymmetries éhédeen reported in physiological

studies of macaque monkeys (Finktyal., 1976) and appear in earlier behavioral data
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(Boltz, Harwerth, & Smith, 1979). This observatioray be a consequence of unequal
populations or firing strength of orientation-tunells involved in the task, or may result
from the assembly of search filters tuned such teatain orientations are amplified in
sensitivity at the expense of others, in a dynaltyic@configurable, task-dependent
manner. One may also speculate that these oriemtdtiases could be related to
observers’ daily interactions with their unique omments, although further

investigation would be required to substantiatsd¢hgossibilities.

55 Conclusions

Our results offer insight into observer behaviorvisual search tasks under
uncertain stimulus conditions. In our experimehg spatial frequency was held constant
while the orientation varied. We found that the esloers relied on an invariant target
feature, namely spatial frequency structure simitarthe sought target. Surprisingly,
despite having no previous knowledge of each targmientation, observers showed
clear idiosyncratic biases in orientation seletivuring saccadic programming. These
biases were also present in observers’ foveal tietedata and showed asymmetries
between clockwise and anticlockwise orientationgther examination of the effects of
learning (e.g., training to least preferred oriéintes) may be useful in understanding

mechanisms of plasticity in such tasks.
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Chapter 6

Towards the Better Understanding of Search for Comlex Targets

In the current chapter, we present two directioos further understanding
observer strategies in visual searches for textares complex targets. We use our
experimental search framework, presented in Ch&ptier examine how observers search
for low-contrast targets created from Gabor sumonatiExperiment 1) and mosaicing
(Experiment 2). We present several key discoveries. First, wevsa strong presence of
visual guidance in saccadic programming in searoh g$uch complex targets,
demonstrated by selectivity for spatial frequenaied (in some cases) orientations close
to the characteristics of each target. Second,ipheilbrientation attributes of the targets
are shown to be represented in saccadic targendgtarget selection in most cases,
modulated by the observer’s sensitivity / seletfivor each orientation. Third, different
configurations of the Gabor mosaicing produce dettunings in orientation, but visibly
idiosyncratic to each observer (Experiment 2). Mwesx, a localized analysis is
performed. Fourth, a curious presence of closeettieal structures is observed in
fixated distracters, although the search targetd mibt contain vertically-oriented

structures (Experiment 2).

6.1 Methods

The experimental framework for our experiments v&milar to what we
described earlier, and additionally contained saverethodological extensions that we
have highlighted in the next sections.
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6.1.1 Observers

Four male observers (aged 27 through 31), of whemwere experienced (AT
and IVDL) and two naive (AEP and AJS), were testtedur experiments, with normal or
corrected-to-normal vision. Observers AJS and IMire tested in Experiment 1, AEP
in Experiment 2, and AT in both experiments. Eabkewsver in Experiment 1 completed
2,100 trials (three sets of 700 trials spread @avereriod of about 1 month); and each
observer in Experiment 2 completed 1,800 trialse@hsets of 600 trials spread over a

period of about 1 month).

Figure 6.1: Targets used in our two experimentsidB created from the sum of two
orthogonally oriented Gabor patches, one orientddldeg and the other at 90 deg. The
three targets used had component spatial frequen€ié) 2, (b) 4, and (c) 8 c/deg and
bandwidths of 0.25 octaves. Gabor mosaics creasath warious configurations ((d)
“X”, (e) “O”, and (f) “V”) of two pairs of Gabors bspatial frequency 8 c/deg and
bandwidth 0.5 octaves, oriented at — 45 and 45we®@ used as targets in our second
experiment.

6.1.2 Visual Stimuli

In Experiment 1, our search targets were>x644 pixel plaids (or compound

gratings), created from the sum of two orthogonatignted Gabor patches, one oriented
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at 0 deg (vertical) and the other at 90 deg (hot&alp. The three targets used had
component spatial frequencies of 2, 4, and 8 c(Bamres 6.1a, 6.1b, and 6.1c).

In Experiment 2, we used 6464 pixel targets created from mosaics of Gabor
patches of size 32 32 pixels, using various configurations (that wié wefer to as “X”,
“O”, and “V”) of two pairs of Gabors of spatial fieency 8 c/deg and bandwidth 0.5
octaves, oriented at — 45 and 45 deg (Figures 6.1, and 6.1f).

6.1.3 Procedure

The procedure was identical to that described enGhapter 3. We would like to
point out that over 80% of the dwell-times obsertedfinal fixations were equal to or

longer than 600 ms, an upper bound on typical ibxadlurations).

6.1.4 Analysis Method

We pursued a similar philosophy as described inptle¥ious chapters; that is,
discovering why some noise-only tiles were fixated why on some trials a noise-only
tile was selected as a target-candidate, when wdrsemperformed our search tasks.
Typically in the past experiments we have averapednoise spectra in the foveal and
non-foveal categories, and then removed the spdxamto obtain what we have referred
to as theaverage difference spectra. Here, we have adopted the same analysis for both
our experiments, and additionally we have introduaeew local-based spectral analysis
for Experiment 2. The latter analysis consistsirst ©ividing each noise tile (of size &4
64 pixels) in each category into four equal-sizéeent 32< 32 pixel quadrants (i.e. the
center of each quadrant is the same as the cdndacch of the Gabors in the target). We
then compute the amplitude spectrum of each naiadrant, therefore obtaining for each

noise tile four local amplitude spectra. We theerage all the first quadrant spectra of
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the noise tiles in each category and subtract thisenbias corresponding to the first
guadrant of all the 4,900 noise tiles. We perfon@ $ame operations for the three other
noise quadrants to obtain what we will call tbealized average difference spectra. With
this analysis we can examine separately how difteparts of the stimuli are treated
during search tasks.

Note that directly averaging the noise tiles (inethe spatial domain) within each
category and observer produced a effect similah#&b observed for search tasks using
single Gabor targets described in Chapter 4, wiyetied average images contain some
structures in the case of search for lower frequeargets but non-reliable for searches

for higher frequency targets.

6.2 Results

Figures 6.2a, 6.2b, and 6.2c show the averagerelifte spectra for the two false
alarm categories obtained for Experiment 1 usirgdsl of spatial frequency 2, 4, and 8
c/deg (third columns, denoted “0 + 90”). As a congmn we have shown the results
from previous experiments (see Chapter 4) when lesingabor targets oriented
anticlockwise from the vertical at O (first columrend 90 deg (second columns) were
used as targets. For each observer and set ofrialf) amplitude spectra were created
using about 210 and 2,800 noise tiles respectifely the foveal and nonfoveal
categories. Regions in red and blue indicate frequeomponents having amplitudes
above and below the spectral bias, respective; @bove and below the expected
amplitude spectrum for a random observer). Regiansgreen show frequency

components close to the bias.
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Figure 6.2: Results for three observers in Expeniril. Average difference spectra,
smoothed and contrast-stretched for visual enhaentrare shown for sets of 700 trials
for visual searches for targets with spatial freguyecomponents centered at (a) 2 c/deg,
(b) 4 c/deg, and (c) 8 c/deg. The first column sheasults for search for a Gabor at 0
deg. The second column results for search for aoGai90 deg. The last column shows
the results for search for the sum of the two Galgodicated as 0 + 90 deg). Regions in
red and blue indicate frequency components havinglitudes above and below the
spectral bias, respectively. Regions in green shegquency components close to the
bias. For each observer and each set of trialsethreages were created using about 210
and 2,800 noise tiles respectively for the foverml non-foveal categories.
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Note that the average difference spectra for fokat@ise tiles show peaks close to
both spectral components of the sought target, vadieservers searched for plaids with
component spatial frequencies of 4 and 8 c/deg.ebar, the peaks in the nonfoveal
average difference spectra for observers AJS andholv a spread in orientation. The
two previous observations are less evident in terame difference spectra obtained
when observers searched for the 2 c/deg plaidttangeertheless, the results obtained for
this particular target are clearly low-pass.

Figure 6.3 shows the average difference spectrthéotwo false alarm categories
obtained for Experiment 2 using Gabor mosaic targeth “X” (first column), “O”
(second column), and “V” (third column) configuais. For each observer and set of
600 trials, amplitude spectra were created usinguald80 and 2,400 noise tiles
respectively for the foveal and nonfoveal categoriRegions in red and blue indicate
frequency components having amplitudes above aluivitbe spectral bias, respectively
(i.e. above and below the expected amplitude sprector a random observer). Regions
in green show frequency components close to the. bElear band-pass spectral
structures are present in the nonfoveal averadereifce spectra; i.e. peaks are close to
the component spatial frequencies of the soughetdB c/deg) and spread in orientation,

including orientations close to those characteristithe sought target (i.e. at — 45 and 45

deg).
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Figure 6.3: Results for two observers in Experim2n Average difference spectra,
smoothed and contrast-stretched for visual enhaectrare shown for sets of 600 trials
for visual searches for Gabor mosaic targets wih (first column), “O” (second
column), and “V” (third column) configurations, dsescribed in the text. Regions in red
and blue indicate frequency components having dogas above and below the spectral
bias, respectively. Regions in green show frequesmyponents close to the bias. For
each observer and each set of trials, these imagescreated using about 180 and 2,400
noise tiles respectively for the foveal and nonef@a\categories.

The structural similarity between certain averagieknce spectra in Figure 6.3
(e.g. the first and third column results for AEPaymiead one to think that analogous
approaches may be used by observers in visuallsesafor distinct targets. We address
this issue and whether observers make use some pifagmation with our local-based
analysis described in the previous section. Figbe shows the localized average
difference spectra for the two observers for theeéd false alarm category. Notice that

the localized average difference spectra show reiffees for various configurations of
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the Gabor mosaics. Also in some cases, the peakslase to the local frequency
components of the target, hence showing some uskeo$patial configuration of the
target components in the target-candidate selegiimtcess. However, there is some

leakage between local regions.

TARGET
8 c/deg X (0] \'
-I l r - ‘H - - - -' 1
0 = 1 B
N 1 - .- a '
e Ja : 0
8 W . w P m 5 e eSO N . C GOl JEEaEE % .. ... SN
[ o i il | -
0 : S b p— | oo ; = :
i i A& i I
8 He™
o .T. l'.- i ot “n 'k iy, * 1
N . .= : W R |
- .
g fFA ; 0
- L = .
0 - ‘ L .* " i o T 'z 8
-84 il ‘ ‘§I - B
-8 0 8 -8 0 8 -8 0 8 8 0 8 -8 0 8 -8 0 8

Figure 6.4: Results for two observers in Experitn2nlLocalized average difference
spectra, smoothed and contrast-stretched for visnlahncement, are shown for sets of
600 trials for visual searches for Gabor mosaigets with “X” (first two columns), “O”
(second two columns), and “V” (third two column®nfigurations, as described in the
text. Regions in red and blue indicate frequenapmonents having amplitudes above
and below the spectral bias, respectively. Regiorgreen show frequency components
close to the bias. For each observer and eacH g&ls, these images were created using
about 180 and 2,400 noise tiles respectively ferftlveal and non-foveal categories.

6.3 Discussion

Our main goal in this chapter was to take a stepvdad in the further

understanding of how observers search for com@egets in naturalistic visual search
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tasks. To this end, we have designed search taogetded from Gabor summations
(Experiment 1) and mosaicing (Experiment 2) to mea®bservers’ aptitude in finding
such targets embedded irf fibise. Similarly to our experiments in the pash thapters,
we were curious in discovering what attracts fisas and how target candidates are
selected upon fixation.

The results underscore, once again, the prevaleingisual guidance in saccadic
targeting, in particular during search for comptargets. We show that observers are
selective for spatial frequencies and (in some S)aswientations close to those
characteristic of the target; that is, the averdifierence spectra for fixated noise tiles
present peaks localized in spatial frequency amdesiones in orientation, close to the
spectral components of the sought target (Figu2zaiid 6.3).

Furthermore, we find that multiple orientation ibtfites of the target are generally
represented in saccadic targeting and target smlealemonstrated by selectivity for
orientations close to both component orientatiohsthe target (0 and 90 deg, in
Experiment 1; — 45 and 45 deg, in Experiment 2)weler, the representations of the
oriented components are not equally weighted apeapto be modulated by observer’'s
sensitivity / selectivity for each orientation. Hastance, the average difference spectra
for observer AT, in the “X” and “V” target searckperiments (Figure 6.3), contain well
localized peaks close to — 45 and 45 deg, but wibogueighted.

Interestingly, different configurations of the Gabmosaicing produce distinct
tunings in orientation, but visibly idiosyncratio each observer (Experiment 2). For
instance, the average difference spectra for bbdemwers, obtained when the search
target had the “O” configuration, is structurallyig different form the average

difference spectra obtained for the “V” and “X” get configurations. Note that the

92



Gabor mosaic targets with the “X” and “O” configtioms have the exact same Fourier
amplitudes.

Intriguingly, there is, on average, an unusual gmes of close-to-vertical
structures in fixated distracters, although therdedargets did not contain vertically-
oriented structures in Experiment 2. Several péssdxplanations can be brought
forward, some analogous to those discussed in €hdgdbr a similar phenomenon when
single Gabors were used as targets. One explaraiidd be that the presence of vertical
components may be facilitating the detection ofeotbrientations present in the noise
tiles. Alternatively, it could simply reflect thatbserver's gaze are drawn to noise tiles
containing close-to-vertical orientations but havitominant spatial frequencies close to
that of the target. These vertical components Yamsthe foveal average difference

spectra, i.e. for noise tiles selected as targadidates.

6.4 Conclusions

Our results provide convincing evidence for bandspaechanisms and multiple
orientations in saccadic targeting and target sielecduring visual search, targets.
Furthermore, selectivity along feature dimensioriserd, spatial frequency and
orientation) shows inaccuracies, offsets, and agribiases. These errors are to some
extent corrected during the foveal decision prac&ssthermore, it appears that the
presence or absence of various spectral comporahts, than those close to that of the
search target, influence the guidance of saccadlesfind that the absence of certain
surround frequency components or the presence air-vegtical structures (i.e.

components close to 0 deg) in the noise tiles@#rmbserver fixations.
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Chapter 7

Towards Applications for Automated Visual Search

The main objective of this chapter is to presemhesadeas and insights inspired
from what we have discovered in our experiments¢bald be integrated into automated
visual search. A few of these ideas have been mmgiéed in simple search frameworks.
Although a template matching approach could produetter performance in some of
these tasks, the intent here was to build an apprtieat could potentially outperform the
latter on the long run. Besides, note that templatgching makes the unrealistic
assumption that observers have a full high-resmutepresentation of the target. To
convince oneself, look at a nearby object for a f®gonds, then just try drawing its

contours on a piece of paper without looking atdhgct.

7.1  Some Insights

One of the key findings in all of our experimengstbeen the strong presence of
visual guidance in saccadic targeting and targétcgen. Selectivity along feature
dimensions (spatial frequency and orientation,lin eéxperiments) plays a crucial role in
saccadic programming and foveal scrutiny of tacgeididates. Furthermore, grouping of
our human observer data based on saccade lengthsaaocade order exposed the same
tendency in each group, hence supporting our fogslidnother observation was that in
general spatial phase was not well used by humaereérs, i.e. if observers were
strongly selective for spatial phase then one wa@xpect to obtain target-like average
noise images for the false alarm categories in experiments. However, the latter
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argument is not meant to fully reject the use @attigh phase, since some form of relative
spatial phase or spatial relationships may be bsedbservers. In fact, we have found
some indication of foveal usage of the spatial igumation of stimuli components in
some of our experiments; that is, in the case afcbes for Gabor mosaics, instances
where local spectral components of stimuli presesieilar orientation relationships as
the components of the target. Moreover, under daicdy, we found that observers

appeared to rely on invariant target features teceed at visual search tasks.

7.2  Applications to Visual Search for Objects

We propose extending these concepts to visual lsdarcobjects. We suggest
first extracting the general featural charactarsstf stimuli, without spatial relationships
between them, for saccadic programming; then, ujpaation extracting the spatial
configuration between various components of stimilie targets used for testing our
models included a triangle, a star, and a wrencéeasch targets (Figure 7.1). We have
used the exact same grid-based setup as descrié&@dysly, but we intend to expand it
to stimuli without grids in the near future. Theget for each set of trials was embedded

in a randomly selected tile of ourf hoise grid.

(a) (c) (d)

Figure 7.1: Targets used to test our models:téa) &) triangle, (c) wrench, and (d)
banana.
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To extract the main spatial frequency and orieatatharacteristics of the target,
we have used a bank of complex Gabor filters ofiousr spatial frequencies and
orientations; more specifically, we have employetiltar bank of 24 odd- and even-
symmetric Gabors (of spatial frequencies of {28} c/deg, orientations of {0, 22.5,...,
157.5}deg, bandwidth of 1 octave, and aspect witi®). We convolved the search target
with each filter, shown in Figures 7.2a and 7.2bolbtain the Gabor coefficients for the
target, and then computed the envelope responseéldmbject (see Figure 7.3 for the

case of the star).

(b)

Figure 7.2: Gabor filter bank. (a) Even- and (B)lymmetric Gabor filters of spatial
frequencies of {2,4,8} c/deg, orientations of {®.3,...,157.5}deg, bandwidth of 1
octave, and aspect ratio of 2) are shown.
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Figure 7.3: Envelope responses obtained for tre Begions in red and blue indicate
high and low values in the responses, respectigye that each individual envelope
has been normalized for visual purposes.

We propose two models to make use of the Gaboficesits for visual search:
one where we select a fixed number (Hére pe8scale) of peaks without the restriction
of one for each envelope response (Model 1), aedother where we use one peak
location from each envelope response (Model 2)hBobddels have a total number of 24
peak locations selected. The search algorithm stmsi using only these peak locations
found in the target to make nonfoveal and fovealdiens.

For both models, the nonfoveal decisions are madenétching the amplitude
spectra of the stimulus tiles to the amplitude spet obtained by adding the amplitude
spectra of the Gabors producing peak responsdsettatget (these can be weighted by
the corresponding peak values); in this stage vems no knowledge of the relative
spatial positions of the Gabors. Once a nonfoveattimis found, the algorithm makes a
saccade to that tile for foveal scrutiny. For theefal selection, knowledge of the spatial
positions of the Gabors is used. The zero-lag tarom is computed between the vector
containing the 24 peak responses for the targetthatl containing the 24 envelope
responses of the tile at the exact same locatiims foveal stage accepts the tile as being

the target candidate if it is above a threshold. the time being, we have selected the
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threshold manually (for all our trials below we s$eto 0.7), however by including a
learning stage or a feedback mechanism, the atgortbuld adjust the threshold.

Figures 7.4 and 7.5 show examples of correct detecates as a function of the
target contrast obtained for Models 1 and 2, respdy (note that we co-varied the
contrast of the target and noise, giving a weidht i the target an(ﬂl—c) to the noise).
Three sets of 100 trials were run for each conadlitio comparison, a random observer
would have an expected correct detection rate ofitaB%. The nonfoveal correct rate
(gray bars) refers to the percent correct wherhtgbest response of the nonfoveal stage
is the tile containing the target. The foveal cormate (black bars) corresponds to the
percent correct at the final fixation. In most loé tcases the foveal rate is higher than the

nonfoveal; hence indicating that more than onetifoxawas performed to find the target.
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Figure. 7.4: Examples of correct detection raaesa function of the target contrast,
obtained for Model 1 for search for the (a) trianghd (b) star.
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Figure. 7.5: Examples of correct detection raaesa function of the target contrast,
obtained for Model 2 for search for the (a) trianghd (b) star.

7.3 Conclusions

In this chapter, | have provided some insights @ some of our experimental
findings may be used in automated visual seardtave tested some of these ideas in
simple search tasks and have shown how it couleixbended to object search. | plan to
further develop the algorithm by including foveatid-urthermore, we could perform the
nonfoveal operation on a larger patch size of tmeuwus rather than the same size patch
as for the foveal stage. This would be furthenme lwith the performing operations on a
much larger area. We can also combine all this wéthaps a multiscale representation
of the target based on eccentricity, statisticsloninance & contrast, distributions of

saccade lengths, and so on.
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CHAPTER 8

Conclusions and Future Work

8.1 Conclusions

| have presented a new and effective techniqu@éestigate saccadic targeting
and target selection during visual search. Thisnéaork has enabled me to provide
insight into observers’ strategies in visual seata$ks. Results obtained for various
experimental conditions clearly point to visual dance in saccadic target selection, a
much debated issue in previous studies of actigeiai search. | have shown that
observers use target attributes such as spatigudreey and orientation in saccadic
programming and in selecting the target candidagenufixation. Moreover, | have
illustrated that observers exhibit uncertaintied affsets in selectivity for such features.
Under uncertain stimulus conditions, | demonstrdateriuse of invariant features of the
target as search strategy. An orientation bias mrasent for these conditions. | also
showed that for targets containing multiple oriéota characteristics, observers use

multiple bandpass strategy.

8.2 Future Work

Some avenues of studies that | envision could bsued in the future are as

follows:
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1. Observer selectivity along other feature dimensions. A natural expansion of
my work would be to adapt our novel experimentahteque to the study of
other attributes such as but not limited to cotootion, size, and stereoscopic
depth. The grand goal is to determine the weightigeach feature in
saccadic targeting and target selection, whichccthén be used in automated

search algorithms

2. Visual search for object-like targets. Following a similar logic as in Chapter 6,
visual search could be examined for object-likegeéés constructed from
multiple summations and mosaicings of Gabors of asiety of spatial
frequencies and orientations. Such targets havadiantage of being highly
specific in frequency and orientation charactaessstiand are much more
controllable than the direct use of objects. Areiiesting question would be
what aspects of these targets are used duringrsé€ane may find that certain
frequency components might be weighed more thaarsthre or that some

spatial characteristics of the target may emerge.

3. Target Prevalence. So far, in all the studies that | have been doihg target
has always been present in every trial. Thus, atbarch configurations could
be examined; for example, when different probabgitof appearance of a
target during trials are used. The goal would bewestigate differences in
search strategies and behavior. In an interestundysinspired from baggage
inspections at airports, Wolfe (2005) showed that items were often missed
in visual search tasks; one may adapt the presamtefvork to perform

similar experiments, perhaps using Gabor targetexamine the nature of
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possible deteriorations in search behavior, redldcin the average noise

images, when target prevalence is lowered.

Interaction between visual perception and eye movements. Various studies
have shown that eye movements can affect visuabpdon and performance
in certain tasks. Hence, it would be of great iegérto scrutinize how eye
movements enhance visual performance; for instaask,performance could

be compared in unconstrained versus limited eyeemewt conditions.

. Cognitive Processes. The understanding of eye movement behaviors in
naturalistic tasks could provide insight into cdiy@ processes involved.
Earlier experiments of Yarbus (1967) have nicelsgndestrated that cognitive
processes affect scanning patterns; for instaecerdings of eye movements
when an observer viewed the same image but was gifierent instructions
produced differing gaze patterns. It would be quateciting to link eye
movement behavior to cognitive processes. Suchodises could have a
great impact in applications for novel visually etited human-machine
interfaces; e.g., for unmanned aerial vehicles,otenmobotics especially in
hostile environments, assistance to patients withitdd mobility, and

security/surveillance systems.
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