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A detailed analysis of autonomous navigation algorithms to achieve autonomous

precision landing is presented. The problem of integrated attitude determination

and inertial navigation is solved. The theoretical results are applied and tested

in three different applications. Optimality conditions for constrained quaternion

estimation using the Kalman filter are derived.

It is common in spacecraft applications to separate the attitude determina-

tion from the inertial navigation system. While this approach has worked in the

past, it inevitably degrades the navigation performance when the correlations be-

tween the two systems are not correctly accounted for. It is shown how to optimally

include an attitude determination algorithm into the Kalman filter. When the con-

ditions to achieve optimality are not met, it is shown how to achieve sub-optimality
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by properly accounting for the correlation.

The traditional approach to inertial navigation is to employ the inertial mea-

surement unit (IMU) outputs to propagate the estimated states forward in time,

rather then use them to update the state. A detailed covariance analysis of dead-

reckoning Mars entry navigation is performed. The contribution of various sources

of IMU errors are explicitly accounted for and the filter performance is validated

through Monte Carlo analysis.

The drawback of dead-reckoning is that this approach prevents the inertial

measurements from reducing the uncertainty of the estimated states. While this

shortcoming can be compensated by the availability of other measurements, it be-

comes crucial when the IMU is the only sensor to provide measurements. Such a

situation arises, for example, during Mars atmospheric entry. In the second appli-

cation of this work, IMU measurements from a NASA mission are processed in an

extended Kalman filter, and the results are compared to dead-reckoning. It is shown

that is possible to reduce the uncertainty of the inertial states by filtering the IMU.

The final application is lunar descent to landing navigation. In this example

the IMU is filtered and the algorithms to include an attitude estimate into the

Kalman filter are tested. The design performance is confirmed by Monte Carlo

analysis.
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Chapter 1

Introduction

With the renewed objective of landing men on the Moon as a step to Mars human

exploration, the engineering challenge to safely navigate a spacecraft to touchdown

on a distant planet has taken center stage. This work is concerned with autonomous

navigation of spacecraft performing precision landing. The importance of this study

follows from the fact that no mission to date has landed on a distant planet aided

by an autonomous navigation system, therefore the need for research in the field is

large.

The optimal approach to estimate the spacecraft state (position, velocity, and

attitude) is an integrated single estimator, such as the Kalman filter [1–3], or its

nonlinear (non-optimal) extension, the extended Kalman filter (EKF) [4]. However,

an integrated approach has not been implemented in space missions to date. Space-

rated computers with the required computational capability have not been available.

But modern sensors have some computational capability and can share the load. For

example, a star tracker can identify stars and compute its own attitude in inertial

space. It is therefore easier for the central filter to receive an attitude estimate from

the star tracker rather than all the raw measurements. While at first glance this

appears to be a viable approach, it leads to suboptimal performance of the overall
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navigation solution. As more powerful computers find their way into service, it is

prudent to evaluate the options – what navigation process would be most optimal

in terms of landing precision.

An integrated attitude and translation (position and velocity) estimator re-

quires that we consider the nature of the group of rotations in three dimensions,

SO(3). Being that SO(3) is not a vector space adds complexity to the process of

estimating attitude in a Kalman filter. The fact that no three-dimensional represen-

tation of attitude can be globally continuous and non-singular [5] makes it desirable

to introduce a higher dimensional representation that results in a constrained state.

If the attitude is represented through the quaternion [6] (a parametrization with one

redundant parameter) then the constraint is given by the unitary norm of the atti-

tude quaternion. However, the Kalman filter algorithm does not naturally permit

the introduction of constraints. So, during the update stage of the estimate process,

the attitude quaternion estimate can violate the unitary norm constraint. There

will be more discussion of this situstion in the subsequent sections. To avoid poor

performance, the constraint should be included in the filter [7, 8]. Modifications to

the EKF to estimate the quaternion include the additive EKF [9], the multiplica-

tive EKF [10], and the rotational EKF [11]. This three approaches retain the basic

structure of the EKF, relying on linearization to estimate the quaternion.

Other classes of attitude estimation algorithms operate directly on the non-

linear structure of the problem. The Davenport-q algorithm [12] is a nonlinear

least-squares solution. While the Davenport-q algorithm is deterministic, it was

shown to be a maximum likelihood solution under specific assumptions on the dis-

tribution of the measurements [13]. Other deterministic approaches exist, such as

TRIAD [14], that determines the rotation matrix directly. Also, nonlinear observers

have been investigated [15, 16]. These nonlinear attitude determination algorithms

are not easily augmented to include position and velocity states (one such example
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is Extended QUEST [17]).

The designer is therefore left to choose between estimating the attitude

through a linearized approach using a single filter that optimally accounts for the

correlation between attitude and other states, or to employ a nonlinear attitude de-

termination algorithm that will decentralized the estimation effort, and by doing so

possibly loose optimality. In this dissertation, a method is developed to incorporate

the estimate from an attitude determination algorithm in an integrated filter, such

as the EKF.

The inertial measurement unit (IMU) is one of the most common navigation

aids in aerospace applications. The IMU is composed of accelerometers and a gyros.

The accelerometer measures non-field acceleration and the gyro measures rotation

rates. These two measurements are often referred to as internal measurements, as

opposed to external measurements for which the sensor interacts with the external

environment. The traditional approach to navigate the IMU is to employ an al-

gorithm that dead-reckons the IMU outputs of acceleration and attitude rates, i.e.

the IMU measurements are used to propagate the spacecraft state (position, veloc-

ity, and attitude) using a numerical integration algorithm and a model of gravity.

Dead-reckoning is characterized by a dynamic model in which only the gravitational

acceleration is present; the attitude dynamics are measured, not modeled. In the

case of Mars entry, descent, and landing (EDL), for example, aerodynamic forces and

torques are not modeled. Dead-reckoning is a sensible navigation strategy when the

aerodynamic models have large uncertainties at the same time time that the IMU

hardware is capable of accurately providing measurements of the non-gravitational

accelerations. Fortunately, knowledge of the Mars atmosphere has improved over

time thanks to data collected from various successful planetary exploration missions.

Nevertheless, the lack of predictability of the atmosphere makes the task of modeling

the aerodynamic forces challenging. In lunar descent navigation, dead-reckoning the
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IMU implies that the thrusters forces and torques need not to be modeled, making

the model-based navigation algorithm less complex.

Despite the challenges of processing the IMU data in a model-based nav-

igation algorithm, there are valid reasons for considering abandoning the dead-

reckoning approach during the EDL phase of spacecraft navigation. First, the model-

based approach provides the ability to accurately navigate through data drop-outs.

Although thought to be an unusual event, IMU data dropouts can occur, leading to

large state estimation errors that can be mitigated with a model-based approach.

Second, the Kalman filtering approach naturally provides a state estimation covari-

ance that accurately represents the state uncertainty, thereby leading to superior

estimation accuracies once other external sensors become available, notably the al-

timeter. Finally, in the case of high uncertainty of Mars atmosphere, if a properly

configured filter bank is employed in a multiple-model adaptive estimation (MMAE)

architecture, changes in the atmosphere can be detected and accounted for.

It is of fundamental importance to correctly incorporate the correlation of

attitude errors with position and velocity errors for precision navigation. A covari-

ance analysis is used to quantify the dead-reckoning performance. Dead-reckoning

Mars navigation is also compared to filtering IMU measurements from a NASA Mars

landing mission. An extended Kalman filter is employed for this purpose. Previous

works [18] have employed sigma point Kalman filters to accomplish similar goals.

The EKF will use mission data from Mars Exploration Rover (MER) IMUs. It will

be shown that the model-based EKF algorithm leads to better navigation results

than dead-reckoning as measured by estimate error uncertainty. The single EKF

navigation system is expanded to a MMAE architecture in order to account for

different possible atmospheric conditions. In previously reported investigations, a

different MMAE scheme [19] was used to filter simulated data. In this work a new

filter selection scheme is developed and used to process MER IMU data.
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The MMAE is an adaptable estimation technique that consist of a bank

of parallel filters. It has been a topic of great interest since Magill’s pioneering

work [20]. The Magill scheme has been modified to study a variety of problems.

The interacting multiple model (IMM) [21] is a MMAE scheme that has received

attention in the past years. To avoid the necessity of having a large bank of filters

to implement every possible parameter realization, the concept of moving bank was

introduced [22]. Methods to enhance the MMAE performance were investigated

[23], and conditions for the effective steady-state performance were studied [24].

The MMAE techniques were successfully used for space structures control [25], and

actuator-sensor failure detection in various situations, for example on the F-16 [26].

Other applications are tracking maneuvering targets [27], and estimation in presence

of switching coefficients [28].

Together with the filter bank, the MMAE has an hypothesis algorithm that

weights each filter in the bank. In the Magill scheme case, the weight is given by

the conditional probability, and is used to combine the state estimates into a single

optimal estimated state. Other possible weighting methods exist, including the

single layer gating network [29–32]. The gating network approach is followed here

because it is a “winner take all” strategy consistent with our objective of determining

the filter producing the “best” state estimate. Each filter in the bank represents a

different realization of Mars atmosphere (e.g., one filter represent nominal expected

density, another represents possible high density conditions, and so forth). The filter

in the bank assigned the highest weight by the gating network indirectly indicates

the atmospheric conditions.

The last application developed is Moon descent navigation. For this applica-

tion the gyro is filtered and attitude estimation is decentralized using a star-tracker

that provides a quaternion output rather than raw measurements.

5



1.1 Contributions of the Dissertation

This work focuses on autonomous navigation for precision landing on distant planets.

The major contribution of the dissertation is the detailed theoretical study of two

important aspects of the navigation scheme: inclusion of attitude estimation and

inertial measurements.

An autonomous vehicle performs its own measurements, which therefore de-

pend on the orientation of the spacecraft. This dependance introduces a correlation

between the attitude and translation estimates. Ignoring this correlation results

in a nonoptimal navigation solution which deteriorates the system navigation per-

formance. This work researches optimal and suboptimal ways of introducing an

attitude estimate into the navigation filter.

Integrating the IMU measurements is a simple solution, and is relatively accu-

rate because of the precision obtainable by modern IMUs. However dead-reckoning

is an open loop-method in which the errors of the IMU are directly transmitted

to the estimate. A closed-loop solution in which the measurements are compared

to a model-based estimate can filter out some of the IMU errors leading to better

performance. Detailed applications of both solutions are presented in this work.

Designing a spacecraft with independent attitude and translation filters that

dead-reckon the IMU is a proven, reliable method. The need for a very precise

navigation estimate however, motivates the search for techniques that can improve

the navigation system performance. This dissertation investigates two alternative

options which will improve the filter estimate. Quantification of the improvement is

mission and hardware specific, and beyond the scope of this theoretical study. How-

ever, three applications of relevance to today’s aerospace field have been developed

to show the possibilities of these techniques.
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1.2 Organization of the Dissertation

The organization of this work is as follows: In Chapter 2 the building blocks of

the investigation are presented. All relevant equations for the study of attitude

(composition, kinematics, Euler’s equations) are introduced in Section 2.1. The

section focuses on the chosen attitude parametrization, the quaternion-of-rotation,

and presents the notation used in this work. Extensive work has been done on the

topic of quaternion estimation using Kalman filters. These works are presented in

Section 2.2. Section 2.3 introduces an important nonlinear attitude determination

algorithm, together with the derivation of the estimation error covariance. Sec-

tion 2.4 introduces an existing MMAE architecture which will be the bases of the

adaptable filter used for Mars entry navigation.

Chapter 3 contains the theoretical contributions of these thesis. It is divided

into three section, each containing the theory relevant to one of the three applications

presented in Chapters 4–6. Section 3.1 develops the algorithm to incorporate the

estimate from an attitude determination algorithm into the EKF. This algorithm is

applied to lunar descent navigation (Chapter 6). Section 3.2 develops Kalman filter

equations under the assumption that process and measurement noises are composed

by a white process and a random bias. Two algorithms are introduced, assuming

either discrete (§3.2.1), or continuous (§3.2.2) measurements. The algorithms are

applied to Mars entry navigation, specifically they are used in the “classic” naviga-

tion approach where the IMU is dead-reckoned. Section 3.3 introduces the modified

MMAE scheme, to be used for Mars entry navigation when the accelerometer is

filtered (Chapter 5).

Chapter 4 contains a detailed linear covariance analysis of Mars entry nav-

igation. During this phase the IMU provides the only available measurements. In

this chapter the dead-reckoning approach is studied. The IMU measurements are

modeled including random biases, misalignment errors, and scale factors. These
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error sources are all considered in the covariance analysis. Both a continuous-time

IMU providing directly non-gravitational acceleration and angular velocity (§4.2),

and a discrete-time IMU integrating them (§4.3) are considered.

In Chapter 5 the approach to Mars entry navigation is that of filtering the

accelerometer. An adaptable filter is successfully implemented to process observa-

tions from the Mars Exploration Rover mission. A comparison of the dead-reckoning

and filtering approaches is performed, demonstrating the advantages of the filtering

approach.

Chapter 6 contains the lunar navigation example, where a star-tracker feeds

the Kalman filter with an attitude estimate rather than raw measurements of stars

positions. To correctly account for the autocorrelation in the attitude estimate, the

star-tracker also provides to the Kalman filter a covariance. The covariance equation

used in this chapter is introduced in Section 2.3.1. The proposed filter processes the

gyro data to update the state.

A summary of major results and conclusions is given in Chapter 7.
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Chapter 2

Preliminary Notions

In this chapter, the basic material to be used in the sequel is introduced. In Sec-

tion 2.1, the mathematical notation and the equations describing the spacecraft

attitude are presented. The quaternion is the chosen representation of the attitude.

In Section 2.2, a review of quaternion estimation is presented. Section 2.3 introduces

the quaternion estimation algorithm to be used in the star-tracker of Chapter 6. Fi-

nally, Section 2.4 introduces the gating network on which the developed MMAE

scheme is based.

2.1 Attitude Representations, Kinematics, and Dynam-

ics

Many of the equations presented in this section describing the physics of rotations

are due to the Swiss mathematician Leonhard Euler, who is therefore the father of

this branch of classical mechanics.

9



2.1.1 Attitude Representation

Solutions to the problem of representing the rotations in Euclidean 3-space appeared

in 1775 when Euler presented two fundamental papers. In the first paper, Euler

enunciated his famous theorem stating that all displacements about a fixed point

can be represented with a rotation about an axis [33]. From this theorem an attitude

representation comes natural: the so called Euler axis and angle [n̂ θ]b,i, where

the subscript b, i indicates that rotation is from i to b. Superscripts on vectors

will denote the frame in which the components of the vector are calculated. Note

that n̂i
b,i = n̂b

b,i, i.e. the rotation vector has the same components in both frames.

The Euler axis and angle are a redundant representation since there is a unitary

constraint on the norm of n̂. The associated minimum representation is given by

the rotation vector defined as

θ , θ n̂.

Performing a first rotation from i to c, followed by a second rotation from c to b,

can be expressed through a single rotation from i to b. The formula to obtain the

total rotation is known as the composition rule. Define the rotation from i to c as

rotation one [n̂1 θ1]c,i, the rotation from c to b as rotation two [n̂2 θ2]b,c, and the

composed rotation as rotation three [n̂3 θ3]b,i. The composition rule for the Euler

axis and angle follows from the quaternion composition discussed later, and is given

by [34]

cos θ3 = cos
θ1

2
cos

θ2

2
− sin

θ1

2
sin

θ2

2
n̂2 · n̂1

n̂3 =
sin(θ1/2) cos(θ2/2)

sin(θ3/2)
n̂1 +

sin(θ2/2) cos(θ1/2)

sin(θ3/2)
n̂2+

− sin(θ1/2) sin(θ2/2)

sin(θ3/2)
n̂2 × n̂1.
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In his second 1775 paper, Euler’s formula was introduced [35]. In today terminology

the formula relates the axis and angle of rotation with the direction cosines matrix.

The direction cosines matrix (or rotation matrix) T, is a convenient parametrization

because it treats rotation of vectors using vector algebra, and the composition of

rotations is given by matrix multiplication. Being an orthogonal matrix, T has six

constraints. Therefore, its highly redundant representation makes it undesirable in

estimation algorithms, such as the Kalman filter. In terms of the Euler axis and

angle, the rotation matrix is given by

Tb
i = I3×3 − sin θ [n̂×] + (1− cos θ)[n̂×]2, (2.1)

where Tb
i is the rotation matrix from frame i to frame b, and the skew-symmetric

cross product matrix is defined as

[α×] =




0 −α3 α2

α3 0 −α1

−α2 α1 0


 .

For small angles δθ, Eq. (2.1) is approximately given by

Tb
i ≃ I3×3 − δθ [n̂×]. (2.2)

From the definition of the cross product matrix

α× β = [α×]β, ∀α, β ∈ ℜ3,

the following properties will be useful

[(α× β)×] = βαT −αβT , [α×] [β×] = βαT − βT αI3×3. (2.3)
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In 1770 Euler showed that three angles were sufficient to represent any rotation [36].

This result can be generalized with three parameters that are sufficient to represent

a rotation. For example, Euler presented a three dimensional parametrization, the

Euler angles [37], that is not of interest in this work. Other three dimensional rep-

resentations are the Rodrigues parameters [38] given by tan(θ/2)n̂ and the modified

Rodrigues parameters tan(θ/4)n̂. Let ̺ be the vector of Rodrigues parameters.

Then the composition rule is given by

̺3 =
̺2 + ̺1 − ̺2 × ̺1

1− ̺1 · ̺2

, (2.4)

where rotation one is from frame i to c, rotation two is from c to b, and rotation

three is from i to b.

All three-dimensional representations are singular. The first proof is due

to Frobenius during his work on abstract algebra (Kuipers [6]). Another proof is

given by Stuelpnagel [5]. The singularity of a three-dimensional representation can

sometimes be avoided by introducing a discontinuity. Either way the representation

may not be satisfactory. In 1940 Hopf proved that the minimum dimension to

represent the rotation group in a 1one-to-one global manner is five [39]. Representing

the rotation with two redundant elements introduces two constraints, and no five

dimensional representation has been found with nice properties. The quaternion is

a four-dimensional representation which is not topologically equivalent to the three-

dimensional rotation because is a one-to-two representation, but it is sufficient for

our purposes.

Quaternion-of-Rotation

Olinde Rodrigues introduced the three dimensional representation that was later

study by Gibbs and is often referred as Gibbs vector. Rodrigues also introduced in

the same 1840 paper [38] a four dimensional representation that was attributed to
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Euler. This representation is known as Euler-Rodrigues symmetric parametrization,

but it is more commonly referred as quaternion-of-rotation, or simply quaternion.

In 1843, three years after Rodrigues, Sir William Rowan Hamilton intro-

duced the quaternion. Hamilton’s intent was not to parameterize SO(3), instead he

invented a new algebra in which the elements were both operators (rotations) and

operands (vectors) [40]. Cayley discovered that by defining a quaternion via Euler-

Rodrigues parameters, the resulting unitary quaternion represents a rotation, and

that the quaternion multiplication is precisely the rotation composition introduced

by Rodrigues [41]. Every unitary quaternion represent a rotation, hence are called

quaternion-of-rotation. Since in this work the quaternion is used only as a rotation

parametrization, of-rotation designations will be omitted.

The quaternion used here has the vector first and scalar last, q =
[
qT q

]T
.

The quaternion as a function of Euler axis and angle is given by

q =


q

q


 =


sin ( θ

2)n̂

cos ( θ
2)


 .

The associated rotation matrix is

T , T(q) = I3×3 − 2q[q×] + 2[q×]2. (2.5)

To perform a sequence of two rotations, from i to c to b, the total rotation is

Tb
i = Tb

c Tc
i = T(qb

c)T(qc
i ) = T(qb

c ⊗ qc
i ).

The quaternion product ⊗ is defined such that the quaternions are multiplied in the
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same order as the attitude matrices,

q⊗ p =


qp + pq− q× p

qp− q · p


 .

Originally Hamilton defined the product in opposite order, Hamilton’s product will

be denoted by ⊛, and in terms of ⊗ is given by

p ⊛ q = q⊗ p.

The quaternion product is a bilinear operator, therefore product matrices can be

defined as

q⊗ p = [q⊗]p = [p⊛]q,

from which it follows that

[q⊗] = [Ψ(q) q] , Ψ(q) =


qI3×3 − [q×]

−qT


 ,

[q⊛] = [Ξ(q) q] , Ξ(q) =


pI3×3 + [q×]

−qT


 .

The matrix Ξ(q) is particularly important and possesses the following properties

ΞT(q)Ξ(q) = (qT q)I3×3 Ξ(q)ΞT(q) = (qT q)I4×4 − qqT

ΞT(q)q = O3×1 ΞT(q)p = −ΞT(p)q.

The inverse quaternion and the identity quaternion are

q−1 =
[
−qT q

]T
i =

[
0 0 0 1

]T
.
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It is easy to verify that

q⊗ q−1 = i.

A pure quaternion is a quaternion with zero scalar component. A pure quaternion

obtained from a three dimensional vector v is defined as

v ,


v

0


 .

The rotation of a vector v can be written in quaternion form as

v b = q b
i ⊗ v i ⊗

(
q b

i

)−1
,

from which is obtained that the rotation matrix T(q) can also be expressed as

T(q) = Ξ(q)TΨ(q).

2.1.2 Attitude Kinematics

The angular velocity of a body rotating with respect to a reference frame i, is defined

as

ω(t) , lim
∆t→0

∆θ

∆t
n̂(t). (2.6)

A few remarks are important. The Euler axis and angle of Eq. (2.6) represent the

rotation of the body frame from time t to time t + ∆t and should not be confused

with the rotation from the reference to the body frame. The definition given in

Eq. (2.6) naturally provides the angular velocity in the body, or moving frame,

which as before will be denoted with a superscript ωb. We started by stating that

the body frame was rotating with respect to a reference frame. When this relation

needs to be expressed explicitly, it will be indicated as ωb
b,i(t).

The fact that reference b is rotating with respect to reference i is arbitrary,
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the same analysis could be carried considering reference i rotating with respect to

reference b. Its angular velocity will then be denoted as ωi,b and

ωi,b = −ωb,i.

Denote by ∆T(t) the rotation matrix between the body frame at time t and

at time t + ∆t, such that

Tb
i(t + ∆t) = ∆T(t)Tb

i(t). (2.7)

Expressing ∆T(t) in terms of the Euler axis and angle of Eq. (2.1), it follows that

∆T(t) = I3×3 − sin∆θ [n̂(t)×] + (1− cos ∆θ) [n̂(t)×]2. (2.8)

Using Eqs. (2.7) and (2.8), the derivative of the rotation matrix is obtained as

Ṫb
i(t) , lim

∆t→0

Tb
i(t + ∆t)−Tb

i(t)

∆t
= lim

∆t→0

−∆θ [n̂(t)×]

∆t
Tb

i(t) = −[ωb
b,i×]Tb

i . (2.9)

Knowing the initial orientation of a body and the angular velocity history, is possible

to integrate Eq. (2.9) to compute the attitude of the body at any given time. In

practice this integration will be done numerically. The numerical integration will

introduce roundoff errors which will result in nonorthogonality. One procedure to

mitigate the round-off error is to reinstate orthogonality every few integration steps.

A much more common and efficient strategy is not to integrate the nine components

of the rotation matrix but only the three or four elements of a lower dimensional

representation, and to calculate the rotation matrix when needed.

The fact that the kinematics of the quaternion is simple is one of the reason

this parametrization is so popular. The derivative of the quaternion is a bilinear

form in the angular velocity and the quaternion. The derivative of the quaternion
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is

q̇b
i(t) , lim

∆t→0

qb
i(t + ∆t)− qb

i(t)

∆t
. (2.10)

Define ∆q such that

qb
i(t + ∆t) = ∆q(t)⊗ qb

i(t).

The quaternion ∆q can be written in terms of Euler axis and angle as

∆q =


sin

(
∆θ
2

)
n̂(t)

cos
(

∆θ
2

)


 .

As ∆θ goes to zero, it follows that

∆q→




∆θ
2 n̂(t)

1


 =


0

1


+




∆θ
2 n̂(t)

0


 .

Hence, as ∆θ goes to zero,

∆q(t)⊗ qb
i(t) = qb

i(t) +
1

2


∆θ n̂(t)

0


⊗ qb

i(t),

from which we find that Eq. (2.10) reduces to

q̇b
i(t) = lim

∆t→0

1

∆t


1

2


∆θn̂(t)

0


⊗ qb

i(t)


 =

1

2


ωb

b,i(t)

0


⊗ qb

i(t). (2.11)

Eq. (2.11) can be rewritten in three equivalent ways:

q̇b
i =

1

2
ωb

b,i ⊗ qb
i =

1

2
Ξ(qb

i)ωb
b,i =

1

2
Ω(ωb

b,i)q
b
i ,
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where the dependency on time is omitted. The matrix Ω is defined as

Ω(ω) , [ω⊗],

and

ωb
b,i ,


ωb

b,i

0


 .

According to Shuster [34], Eq. (2.11) was introduced by Cayley [42]. The evolution

of the rotation vector is given by the Bortz equation [43],

θ̇b
i = ωb

b,i +
1

2
θb

i × ωb
b,i +

1

θ2
[1− (θ/2) cot(θ/2)]θb

i × θb
i × ωb

b,i,

where θ = ‖θb
i‖.

The following identities will be helpful in the formulation that follows. First

Ξ̇
(
q b

i

)
= Ξ

(
q̇ b

i

)
=

1

2
Ξ
(
Ω(ωb

b,i)q
b
i

)
=

1

2
Ξ




q× ωb

b,i + q ωb
b,i

−(ωb
b,i)

Tq




 =

=
1

2


−(ωb

b,i)
Tq I3×3 +

[
(q× ωb

b,i)×
]

+ q[ωb
b,i×]

(ωb
b,i × q)T − q (ωb

b,i)
T


 ,

where q and q are the vector and scalar components of q b
i . Using Eq. (2.3), it can

be found that

Ξ̇
(
q b

i

)
=

1

2
Ξ
(
q b

i

)
[ωb

b,i×]− 1

2
q b

i (ωb
b,i)

T.

Also, we have

Ω
(
ωb

b,i

)
Ξ
(
q b

i

)
= −Ξ

(
q b

i

)
[ωb

b,i×]− q b
i (ωb

b,i)
T.
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2.1.3 Attitude Dynamics

After realizing that the rotation dynamics were independent of the translational

dynamics [44], Euler presented the angular momentum law in a fixed reference

frame [45]. In 1758, he presented Euler’s equations [46] which, in modern notation,

are given by

J ω̇b
b,i = −ωb

b,i × Jωb
b,i + mb, (2.12)

where the reference frame i has to be inertial, m are the external moments. The

matrix J is the moment of inertia expressed in body frame with respect to the center

of mass.

Note

When Eneström categorized Euler’s works, he gave the years of publication, pre-

sentation, and approximate composition. These three dates can sometimes differ

substantially from each other. In the bibliography the dates are those of first pub-

lication, followed by Eneström index number. All Euler’s original works can be

viewed at the Euler web archive [47]. The following references were also consulted

for historical information [48,49].

2.2 Quaternion Estimation in the Kalman Filter

Attitude estimation has been the topic of much research and debate over the past

two decades [50]. The interest arises from the fact that the representation of the

attitude is not a vector space and redundancy is necessary to avoid singularities

and discontinuities [5]. For real-time space applications, the quaternion is a favorite

attitude representation and will be utilized in this work. In sequential real-time

quaternion estimation, two schools of thought receive the most attention: the Addi-

tive Extended Kalman Filter (AEKF) [9] and the Multiplicative Extended Kalman
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Filter (MEKF) [10]. While the additive approach resembles closely the standard ex-

tended Kalman filter (EKF), several shortcomings of the AEKF were pointed out.

These shortcomings are:

1. The estimation error does not have a physical meaning.

2. The estimation error covariance becomes ill-conditioned.

3. The algorithm requires a brute force normalization procedure.

Theoretical studies show that the covariance in the AEKF should be nearly singular

[11], while practical applications do not reveal the problem [51].

The multiplicative approach defines the estimation error as a rotation. The

shortcomings of the MEKF are:

1. The quaternion innovation is obtained through a first- (or second-) order ap-

proximation.

2. The quaternion is not estimated directly but the deviation from the nominal

is estimated.

Since the quaternion innovation is approximate, the norm of the updated quaternion

is not maintained, hence the MEKF necessitates restoring the norm constraint after

the update. The most obvious method to accomplish this is to re-scale the updated

quaternion by its norm, thereby minimizing the Euclidean distance between the

unconstrained and the constrained estimates [52]. The normalization process also

provides the unitary estimate with minimum mean square error [53].

2.2.1 Existing Methods of Including Constraints in the Kalman

Filter

It is well-known that the Kalman filter provides the unconstrained optimal solu-

tion of the linear stochastic estimation problem [1–3]. The Kalman filter algorithm

20



has two main phases: the state estimate propagation phase between measurements,

and the state estimate update phase when measurements become available. Un-

constrained implies that the optimal state estimate is not constrained during the

state estimate update phase as the measurements are processed. The Kalman filter

provides the optimal state estimate considering n degrees of freedom (that is, the

entire vector space ℜn). However, if r state constraints are applied, the degrees of

freedom are reduced to n−r. Simply projecting the unconstrained solution into the

constrained space will not guarantee optimality.

One method of introducing state constraints is to use pseudo-measurements

[54,55]. The fundamental idea is to introduce a perfect measurement (hence the use

of the term “pseudo-measurement”) consisting of the constraint equation into the

estimation solution. In the MEKF, the pseudo-measurement is given by

ypm = q Tq

and is always equal to one. The residual is therefore given by

ǫ = 1− q̂ Tq̂,

and the measurement mapping matrix is

Hpm = 2q̂ T.

Since the norm of the quaternion is truly one, the measurement is perfect, and the

measurement error covariance matrix is zero.

This approach has two shortcomings. First, the use of a perfect measure-

ment results in a singular estimation problem known to occur when processing

noise-free measurements in a Kalman filter. A small noise can be added to the

pseudo-measurement to address the singularity; however with the noise introduced,
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the constraint is no longer exactly satisfied. Second, since the constraint is nonlin-

ear, after the linearization of the measurement equation consistent with the EKF

algorithm, the constraint is no longer satisfied exactly.

One can consider state constraints when considering the optimization prob-

lems based on least-squares methods. The solution to the least-squares problem in

the presence of linear equality constraints is found in Lawson and Hanson [56]. An-

other approach is to project the Kalman solution into the desired subspace. Since

the projection can be done in different ways, a performance index can be defined

to find the optimal projection. The optimal projection for the linear state equal-

ity constraint problem is presented in Simon and Chia [57]. The projection of the

Kalman solution can be done at any time, not only during the update.

In the multiplicative approach, the attitude is not estimated directly but

instead the deviation from the nominal attitude is estimated. This deviation employs

a small angle approximation. The quaternion estimate is found by composing the

nominal quaternion and the deviation. The small angle approximation results in

an approximation of the quaternion norm, i.e. if a first order approximation on the

angle is made, the quaternion will have norm one to first order. It is important that

the quaternion has exactly norm one, otherwise it will not only rotate vectors, but

change their norms too. Therefore, normalization occurs in the MEKF.

The normalization procedure for both AEKF and MEKF consists in re-

scaling the updated quaternion estimate by its norm.

2.2.2 Quaternion Estimation Errors: Additive and Multiplicative

The additive estimation error is defined as

eq , q− q̂.
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Because of the unity norm constraints on q and q̂, the issue of computing an estimate

with zero mean estimation error is more delicate than in the traditional Kalman

filter. For example, if q were deterministic (i.e. no process noise), for eq to be zero

mean it would imply that

E
{
q̂
}

= q,

which is generally not possibly because the mean of a distribution over a four-

dimension hyper-sphere is necessarily inside the sphere.

In engineering applications, emphasis is placed on the estimation error co-

variance and how it should be minimized. It is therefore important to notice that

minimizing the trace of the covariance follows from the desire to minimize the mean

square error (MSE) of an unbiased estimator. The MSE is the the most common

way of evaluating estimators, and is defined as

MSE , E
{
eT e

}
= E

{
(x− x̂)T (x− x̂)

}
.

The covariance P of a random vector e is defined as

P , E
{

(e− E {e}) (e− E {e})T
}

= E
{
e eT

}
− E {e} E {e}T .

The matrix E
{
e eT

}
is the mean-square of vector e. When e is zero mean, covariance

and mean-square coincide.

The matrix P of the Kalman filter is defined from the estimation error e as

P , E
{
e eT

}
.

The definition of P is that of a mean-square, but P is referred to as covariance

because the Kalman filter is an unbiased estimator (i.e. with zero mean estimation

error). By minimizing the trace of the covariance, the Kalman filter minimizes
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the MSE. Minimizing the covariance is desirable only in the presence of unbiased

estimators. Minimizing the covariance implies shrinking the estimation error around

its mean, which is not necessarily good, since the mean might be large. Figure 2.1

illustrates this concept, the errors of two estimators are plotted. The errors of the

biased estimator are represented in blue. The bias is given by [5 5]T and the

covariance is given by the identity matrix. The errors of the unbiased estimator

are shown in green. The covariance is four times larger than the covariance of the

biased estimator. However the biased estimator has clearly much larger errors and

MSE.
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Figure 2.1: Comparison of mean square errors of two estimators.

The estimation error is a way of quantifying the difference between the true

state and the estimated state, therefore it does not necessarily have to be physically

meaningful. The same holds true for the MSE, which is one measure of the perfor-

mance of the estimator. A small MSE it is desirable independent of the physics of

the problem and independent of the covariance matrix (which might be singular).

Like any performance index, its use could be replaced by another measure leading

to a different optimization solution. The lack of physical meaning of the additive

24



estimation error is a drawback only because evaluation of the performance of the

filter is less intuitive (the errors are not angles). This fact, however, should not be

confused with the performance of the AEKF. The additive approach minimizes the

standard statistical performance index, which is the MSE (minimum over all linear

estimators and conditional to the linearization approximation).

Quaternion estimation has the goal of making the distance between the es-

timated and the estimate variables small. The multiplicative approach defines this

distance to be a quaternion itself

δq = q⊗ q̂−1.

This approach guarantees a physical interpretation of the estimation error: δq is

the rotation from the estimated body frame to the true body frame. The relation

between the multiplicative error and the additive error is given by

eq = q− q̂ = q− δq−1 ⊗ q = q−
[
−Ξ(q) q

]
δq.

The true state, q, is often treated as deterministic, and therefore taken outside the

expectation operation in calculating the theoretical value of the estimation error

covariance. This operation is legitimate only in the absence of process noise. In the

presence of process noise, q is a random quantity and taking it outside the expected

value results in an approximation, therefore only approximate conclusions can be

inferred from this procedure.

The covariance which is associated with the additive Kalman filter is

Pa = E
{
eq eT

q

}
,
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and for the multiplicative approach

P4m = E
{
δq δqT

}
.

In calculating Pa, the additive Kalman filter does not compensate for the mean of

eq, therefore any theoretical study of Pa should not contain E {eq} unless it is proven

to be zero. It was shown in [7] that when the estimation error is a small rotation,

P4m becomes ill-conditioned. Assuming the true quaternion q is deterministic and

relating the two matrices, will result in Pa being ill-conditioned as well. However,

when q is a random vector it cannot be taken outside the expected value, and no

conclusions can be made on Pa from the condition of P4m. The matrix Pa will

depend on the joint distribution of q and δq and not solely on δq.

In the absence of process noise, the Kalman filter covariance will eventually

converge to zero. Therefore, the fact that in the absence of process noise Pa becomes

ill-conditioned is an expected characteristic of the AEKF scheme.

2.2.3 Relationship Between Additive and Multiplicative Error Rep-

resentations

The MEKF is equivalent to the AEKF∗. Let the measurement y be related to the

quaternion through a nonlinear function h and noise η as

y = h(q) + η = h(q̂ + eq) + η = h(δq⊗ q̂) + η = h
([

q̂⊛
]
δq
)

+ η

≃ h
(
Ξ(q̂)δq + q̂

)
+ η.

∗Shuster [8] cites Ferraresi [58] to prove the equivalency, Ferraresi’s work was not available to
the author.
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Using a Taylor series expansion and dropping higher order terms yields

h(q̂ + eq) ≃ h(q̂) +
∂

∂eq
h(q̂ + eq)

∣∣∣∣
eq=0

eq, and

h
(
Ξ(q̂)δq + q̂

)
≃ h(q̂) +

∂

∂δq
h
(
Ξ(q̂)δq + q̂

)∣∣∣∣
δq=0

δq.

Defining H(q) as the jacobian of h(q) and using the chain rule, it follows that

Ha(q̂) ,
∂

∂eq
h(q̂ + eq)

∣∣∣∣
eq

= H(q̂), and

Hm(q̂) ,
∂

∂δq
h
(
Ξ(q̂)δq + q̂

)∣∣∣∣
δq=0

= H(q̂)Ξ(q̂) = Ha(q̂)Ξ(q̂).

The multiplicative quaternion error is approximately

δq ≃


δq

1


 ,

therefore the multiplicative error is completely defined by its vector part. Let Pm ∈
ℜ3×3 = E

{
δqδqT

}
be the multiplicative error covariance matrix. An AEKF and

a MEKF with the same a priori estimates and with a priori covariances satisfying

the following relationship,

P−
a = Ξ(q̂−)P−

mΞ(q̂−)T, (2.13)

then the additive Kalman gain is (dropping the arguments of the matrix functions)

Ka = P−
a HT(HP−

a HT + R)−1 = ΞP−
mΞTHT(HΞP−

mΞTHT + R)−1

= ΞP−
mHT

m(HP−
mHT

m + R)−1 = ΞKm.
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The filter residual is ǫ = ǫa = ǫm = y − h(q̂), the a posteriori estimates are

q̂
+
m =


Kmǫ

1


⊗ q̂

−
= ΞKmǫ + q̂

−
, and

q̂
+
a = q̂

−
+ Kaǫ = q̂

−
+ ΞKmǫ = q̂

+
m.

The a posteriori additive covariance is

P+
a = (I−KaHa)P

−
a = (I−ΞKmHa)ΞP−

mΞT = Ξ(I−KmHaΞ)P−
mΞT.

= Ξ(I−KmHm)P−
mΞT = ΞP+

mΞT.

It was shown that when the a priori covariances of the AEKF and MEKF are

related through Eq. (2.13), the state update of the two algorithms is the same, and

the a posteriori covariance obeys the same relationship.

In between measurements, the quaternion estimates evolve as

d

dt
q̂(t) =

1

2
Ω (ω(t)) q̂(t).

The propagation of the covariance between measurements is given by

Ṗa(t) =
1

2
Ω (ω(t))Pa(t)−

1

2
Pa(t)Ω (ω(t)) + Qa(t); Pa(tk) = P+

a (tk)

Ṗm(t) = −[ω(t)×]Pm(t) + Pm(t)[ω(t)×] + Qm(t); Pm(tk) = P+
m(tk)

where Qa and Qm are the spectral densities of the process noise.

It is now going to be shown that if

Qa(t) = Ξ
(
q̂(t)

)
Qm(t)ΞT

(
q̂(t)

)
,
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then

Pa(t) = Ξ
(
q̂(t)

)
Pm(t)ΞT

(
q̂(tk)

)
. (2.14)

Since the equality holds at the beginning of the propagation, it is sufficient to show

that both sides of Eq. (2.14) have the same derivative. For convenience, let

Ξ , Ξ
(
q̂(t)

)
, [ω×] , [ω(t)×], and Ω , Ω (ω(t)) .

Taking the derivative of both sides of Eq. (2.14) yields

1

2
ΩPa −

1

2
PaΩ + Qa =

= Ξ̇PmΞT −Ξ[ω×]PmΞT + ΞPm[ω×]ΞT + ΞQmΞT + ΞPmΞ̇
T

(2.15)

where

Ξ̇ = Ξ
(

˙̂
q
)

=
1

2
Ξ
(
Ωq̂

)
=

1

2
Ξ




q̂× ω + q̂ ω

−ωTq̂






=
1

2


−ωTq̂ I3×3 + [(q̂× ω)×] + q̂[ω×]

(ω × q̂)T − q̂ ωT


 .

Utilizing the identities from Eq. (2.3), it follows that

[(q̂× ω)×] = ωq̂T − q̂ωT, [q̂×] [ω×] = ωq̂T − ωTq̂I3×3,
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it follows that

Ξ̇ =
1

2


−ωTq̂ II3×3 + ωq̂T − q̂ωT + q̂[ω×]

−q̂T[ω×]− q̂ ωT




=
1

2


−ωTq̂ II3×3 + ωq̂T + q̂[ω×]

−q̂T[ω×]


− 1

2
q̂ωT

=
1

2


−[q̂×] · [ω×] + q̂[ω×]

−q̂T[ω×]


− 1

2
q̂ωT =

1

2
Ξ[ω×]− 1

2
q̂ωT, (2.16)

and

ΩΞ =


−q̂[ω×]− [ω×] · [q̂×]− ωq̂T

−q̂ωT − ωT[q̂×]


 = −Ξ [ω×]− q̂ωT. (2.17)

Substituting Eq. (2.16) in Eq. (2.15) yields

1

2
ΩPa −

1

2
PaΩ =

1

2
Ξ[ω×]PmΞT − 1

2
q̂ωTPmΞT −Ξ[ω×]PmΞT+

+ ΞPm[ω×]ΞT − 1

2
ΞPm[ω×]ΞT − 1

2
ΞPmωq̂

T

=
1

2

{
−Ξ[ω×]− q̂ωT

}
PmΞT − 1

2
ΞPm

{
[ω×]ΞT − ωq̂

T
}

which is equivalent because of Eq. (2.17) and Eq. (2.14). The proof is complete.

The above arguments show that every MEKF is equivalent to an AEKF. It

does not show the converse. A MEKF designed with

q̂m(t0), Pm(t0), Rm,k, and Qm(t)

is equivalent to an AEKF with

q̂a(t0) = q̂m(t0), Pa(t0) = Ξ
(
q̂0

)
Pm(t0)Ξ

T
(
q̂0

)
, Ra,k = Rm,k, and

Qa(t) = Ξ
(
q̂(t)

)
Qm(t)ΞT

(
q̂(t)

)
.
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Every MEKF is equivalent to an AEKF with a singular covariance matrix. This

does not imply that every AEKF has a singular covariance. It is sufficient to choose

a nonsingular Pa(t0). It would be reasonable to ask whether the converse is true: it

is possible to design an MEKF equivalent to any given (non-singular) AEKF? The

answer is no.

Once more the a posteriori estimates are

q̂
+
m = q̂

−
+ ΞKmǫ, and

q̂
+
a = q̂

−
+ Kaǫ.

The filters give the same estimate if

(ΞKm −Ka)ǫ = 0,

[ΞPmHT
m(HmPmHT

m + R)−1 −PaH
T
a (HaPaH

T
a + R)−1]ǫ = 0, and

[ΞPmΞTHT
a (HaΞPmΞTHT

a + R)−1 −PaH
T
a (HaPaH

T
a + R)−1]ǫ = 0.

Unless the residuals have an unusual structure, it is impossible that every realization

belongs to the null space of the same matrix, therefore the term in brackets must

be zero. If rank(Pa) = 4

ΞPmΞT 6= Pa ∀Pm.

The following equation should be considered

ΞPmΞTHT
a (HaΞPmΞTHT

a + R)−1 = PaH
T
a (HaPaH

T
a + R)−1. (2.18)

Solving Eq. (2.18) is not always possible. Assume, for example, that the initial
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orientation is along the reference frame and the initial covariance is

Pa = κI4×4; Ξ =


 I3×3

O1×3


 ,

where κ is a given positive number. Then Eq. (2.18) becomes


 Pm O3×1

O1×3 0


HT

a


Ha


 Pm O3×1

O1×3 0


HT

a + R




−1

= κHT
a (κHaH

T
a + R)−1.

It can be seen that no Pm will work because the fourth row of the left side of the

equation is always going to be zero.

In summary, every design of a MEKF corresponds to a singular AEKF, while

not every non-singular AEKF corresponds to a MEKF. Researchers agree that the

covariance of the AEKF does not need to be strictly singular [11]. Therefore, there

are many possible AEKFs that are not equivalent to a corresponding MEKF.

2.2.4 Normalization

Both multiplicative and additive approaches provide estimates with unit norm to

first order [8] with respect to the estimation error. It will be proven that in the

multiplicative approach the a posteriori estimate norm is always greater than the

a priori norm, and that the estimate norm is unchanged through propagation. As

a consequence, brute force normalization is essential in the multiplicative update to

avoid the norm of the estimate becoming arbitrarily large. Of course this can be

avoided by using the full nonlinear transformation between the three-dimensional

representation of the attitude error and the quaternion. The downside would be

that the estimate will depend on the parametrization (rotation vector, Gibbs vector,

modified Rodrigues parameters) which is counterintuitive. This approach is referred

to as rotational [11].
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The a posteriori estimate is given by

q̂
+

= δq̂⊗ q̂
−

=


δq̂q̂− − [δq̂×]q̂− + q̂−δq̂

−δq̂Tq̂− + δq̂ q̂−


 .

The norm can be computed to be

‖q̂+‖2 = ‖q̂−‖2 · ‖δq̂‖2, and

‖δq̂‖2 = 1 + ‖δq̂‖2 > 1.

Therefore, the a posteriori estimate norm is always greater than the a priori esti-

mate norm. During propagation, the norm remains unchanged since the quadratic

form of a skew-symmetric matrix is always zero,

d

dt
‖q‖2 =

d

dt

(
qTq

)
= 2qTq̇ = 2qTΩ(ω)q = 0.

The square of the norm remaining constant implies that the norm remains constant

since the norm is always positive.

In summary, it was shown that at every update the norm of the estimate

increases, while during propagation the estimate norm remains the same. Hence the

norm of the estimate of a MEKF will constantly increase. To avoid this situation,

it is necessary to normalize the estimate.

The rate at which the estimate norm increases can be reduced by using the

second order MEKF, in which

δq̂ =


 δq̂

1− ‖δq̂‖2/2


 .
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The norm is still greater than one,

‖δq̂‖2 = ‖δq̂‖2 + 1 + ‖δq̂‖4/4− ‖δq̂‖2 = 1 + ‖δq̂‖4/4 > 1.

Therefore normalization is still necessary. In the MEKF, the error on the norm is

of first order (or second), but always positive, and the cumulative effect after many

updates could result in large deviations from unitary norm. In the AEKF, the error

in the norm could be either positive or negative, making the normalization necessary

but less crucial after some time. Figure 2.2 shows the evolution of the norm in the

additive and multiplicative case if the normalization was not enforced after each

update. Estimating the quaternion without normalization is not recommended [7].

However, from Fig. 2.2 it should be clear that normalization is an essential part of

the MEKF as it is for the AEKF.
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Figure 2.2: Norm evolution without brute force normalization. Dashed line is the
multiplicative update, continuous line is the additive update.

Having the norm of the quaternion greater than one results in stretching
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and not only rotating a vector when the vector is pre-multiplied by T(q). In the

accelerometer dead-reckoning navigation scheme, the non-gravitational acceleration

measurement is rotated in the inertial frame. It is evident that having the quaternion

always greater than one will result in an a bigger effective acceleration measurement,

which could rapidly cause divergence because of the high sampling rate of IMUs.

It was shown that defining a physically meaningful attitude estimation error

leads to a Kalman filter formulation equivalent to the one defining the error in

standard way, which is the Mean Square Error. The same conclusion was reached

with a very different approach [59]. Having a small mean square error is desirable,

independent of the possible physical interpretation. Arguments were presented to

provide an explanation of the fact that in practical applications, the covariance of the

AEKF does not become ill-conditioned when process noise is present. Finally, it was

shown that brute force normalization is fundamental in both schemes. Theoretically,

the norm constraint could be enforced with a perfect measurement of the state

norm. A perfect measurement would produce a singular covariance matrix, where

the singularity is a byproduct of the linearization process [11] and does not signify

that the covariance in the AEKF is singular. A stochastic justification of brute force

normalization will be presented next.

2.2.5 Norm Constrained Kalman Filtering

In this section, it will be shown that brute force normalization is optimal in a MSE

sense, not only in a geometrical sense as previously shown [52]. Normalization is a

nonlinear transformation, therefore similar approximations to those associated with

the extended Kalman filter will be made. Optimality does not hold strictly, but

conditionally on the above approximations.

Define the a priori state estimate x̂−
k to be the state estimate at time tk

just prior to employing the measurement yk in the state estimate update algorithm.
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Similarly, define the a posteriori state estimate x̂+
k to be the state estimate at time

tk just after the state estimate update. The performance index is defined as

Jk = E
[(

e+
k

)T
e+

k

]
, (2.19)

where the a priori and a posteriori estimation errors are given by

e−k = xk − x̂−
k , and

e+
k = xk − x̂+

k ,

respectively. Associated with the estimation errors, define the matrices

P−
k = E

{
e−k

(
e−k

)T}
, and

P+
k = E

{
e+

k

(
e+

k

)T}
,

before and after the measurement update, respectively. Note that

Jk = traceP+
k .

The norm of the state vector is desired to have a predefined value

‖x̂+
k ‖ =

√
l.

This constraint is equivalent to the following scalar quadratic representation

(x̂+
k )Tx̂+

k = l. (2.20)

The update is

x̂+
k = x̂−

k + Kkǫk,
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where ǫk = yk − ŷk is the residual. Substituting the residual into Eq. (2.20), the

state constraint can be expressed more conveniently as a control constraint:

ǫT
k KT

k Kkǫk + 2x̂T
k Kkǫk + x̂T

k x̂k − l = 0. (2.21)

The goal is to find the gain Kk such that Eq. (2.19) is minimized and the constraint

given by Eq. (2.21) is satisfied.

First-Order Condition

The a posteriori error mean square is given by†

P+
k = (I−KkHk)P

−
k (I−KkHk)

T + KkRkK
T
k ,

where P−
k is the a priori state error mean square. Define

Wk , HkP
−
k HT

k + Rk.

Therefore, the Joseph formula can be rewritten as

P+
k = P−

k −KkHkP
−
k −P−

k HT
k KT

k + KkWkK
T
k .

The performance index to be minimized is then given by

Jk = trace
[
P−

k −KkHkP
−
k −P−

k HT
k KT

k + KkWkK
T
k

]
.

The Kalman gain should be computed to satisfy the constraint in Eq. (2.21). Matrix

P−
k is n×n, Kk is m×n, l is a scalar and the remaining are of appropriate dimensions.

†see page 43.
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The augmented performance index is

Jk = trace
[
P−

k −KkHkP
−
k −P−

k HT
k KT

k + KkWkK
T
k

]
+

+ λk

[ (
x̂−

k

)T
x̂−

k + 2ǫT
k KT

k x̂−
k + ǫT

k KT
k Kkǫk − l

]
.

The n×m+1 optimal values of λk and Kk are obtained solving the n×m equations

resulting from taking the derivative of Jk with respect to Kk and setting it to zero.

The equations are

−2P−
k HT

k + 2KkWk + 2λk(x̂
−
k ǫT

k + Kkǫkǫ
T
k ) = O, (2.22)

and the scalar constraint Eq. (2.21). Equation (2.22) can be rewritten to obtain the

following first-order conditions:

Kk = (P−
k HT

k − λkx̂
−
k ǫT

k )(Wk + λkǫkǫ
T
k )−1, and

ǫT
k KT

k Kkǫk + 2
(
x̂−

k

)T
Kkǫk +

(
x̂−

k

)T (
x̂−

k

)
− l = 0.

Using the matrix inversion lemma, it follows that

Kk =P−
k HT

k W−1
k − λkx̂

−
k ǫT

k W−1
k −P−

k HT
k W−1

k

λkǫkǫ
T
k W−1

k

1 + λkǫ
T
k W−1

k ǫk

+

+ λkx̂
−
k ǫT

k W−1
k

λkǫkǫ
T
k W−1

k

1 + λkǫ
T
k W−1

k ǫk

.

Substituting into Eq. (2.21), after some manipulations, the following scalar equation

with the scalar unknown λk is obtained

λ2
k ǫ̃

2
k

(
−
(
x̂−

k

)T
x̂−

k +
(
x̂−

k

)T (
x̂−

k

)
− l
)

+ λk ǫ̃k

(
−2
(
x̂−

k

)T
x̂−

k + 2
(
x̂−

k

)T (
x̂−

k

)
− 2l

)

+
(
ǫT
k W−1

k HkP
−
k P−

k HT
k W−1

k ǫk + 2
(
x̂−

k

)T
P−

k HT
k W−1

k ǫk +
(
x̂−

k

)T (
x̂−

k

)
− l
)

= 0,
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where

ǫ̃k = ǫT
k W−1

k ǫk.

Therefore, the optimal Lagrange multiplier is

λk =
−b/2±

√
b2/4− ac

a
,

where

a = −lǫ̃2k, b = −2ǫ̃kl, and

c = ǫT
k W−1

k HkP
−
k P−

k HT
k W−1

k ǫk + 2
(
x̂−

k

)T
P−

k HT
k W−1

k ǫk +
(
x̂−

k

)T (
x̂−

k

)
− l.

Finally, it follows that

λk =
ǫ̃kl ±

√
ǫ̃2kl

2 + lǫ̃2kc

−lǫ̃2k
=

1±
√

1 + c/l

−ǫ̃k

.

Notice that

1 + c/l = (ǫT
k W−1

k HkP
−
k P−

k HT
k W−1

k ǫk + 2
(
x̂−

k

)T
P−

k HT
k W−1

k ǫk +
(
x̂−

k

)T (
x̂−

k

)
)/l

= (ǫT
k W−1

k HkP
−
k +

(
x̂−

k

)T
)T(ǫT

k W−1
k HkP

−
k +

(
x̂−

k

)T
)/l ≥ 0.

Therefore, λk is always a real number and can be rewritten as

λk =
−1

ǫ̃k

± ‖x̂
−
k + P−

k HT
k W−1

k ǫk‖
ǫ̃k

√
l

.

Second-Order Condition

Taking the second derivative of the performance index presents some representation

issues. Each of the entries of the first derivative could be differentiated again, but

this approach will result in m × n matrix equations. Another approach would be
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to perturb the gain and show that the perturbation results in an increment of the

performance index.

In the case of scalar measurement, the gain Kk can be partitioned as

Kk =


kk

kk


 ,

where kk is a scalar. The constraint becomes

ǫ2kk
T
k kk + ǫ2kk

2
k + 2ǫk

(
χ̂−

k

)T
kk + 2ǫkx

−
k kk +

(
χ̂−

k

)T
χ̂−

k − l = 0,

where

x̂−
k =


χ̂−

k

x̂−
k


 .

Differentiating the constraint, yields

2(ǫ2kk
T
k + ǫk

(
χ̂−

k

)T
)dkk + 2(ǫ2kkk + ǫkx̂

−
k )dkk = 0.

Assuming the residual is not zero (if the residual is zero the a posteriori estimate is

always equal to the a priori estimate), it follows that

dkk = −ǫkk
T
k +

(
χ̂−

k

)T

ǫkkk + x̂−
k

dkk.
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The second-order differential is

dJ 2
k = dKT

k GKKdKk,

GKK = 2Wk + 2λkǫ
2
k, and

dJ 2
k = (2Wk + 2λkǫ

2
k)(dK

T
k dKk) = (2Wk + 2λkǫ

2
k)(dk

T
k dkk + dk2

n)

= 2(Wk + λkǫ
2
k)dk

T
k

(
I +

ǫkkk + χ̂−
k

ǫkkk + x̂−
k

ǫkk
T
k +

(
χ̂−

k

)T

ǫkk + x̂−
k

)
dkk.

The sufficient condition for a minimum is

2(Wk + λkǫ
2
k)

(ǫkkk + x̂−
k )2

[
(ǫkkk + x̂−

k )2I + ǫ2kkkk
T
k + ǫkχ̂

−
k KT

k + ǫk

(
χ̂−

k

)T
+ ǫkkkχ̂

−
k

(
χ̂−

k

)T]
> 0

kk =

(
P̃−

k

)T
HT

k − λkǫkχ̂
−
k

Wk + λkǫ
2
k

, kk =
pTHT

k − λkǫkx̂
−
k

Wk + λkǫ
2
k

, P−
k =

[
P̃−

k pk

]
.

Substituting in the gain and eliminating positive scalars, yields

(Wk + λkǫ
2
k)

{
(ǫkkk + x̂−

k )2I +
ǫ2k

(Wk + λkǫ
2
k)

2

[(
P̃−

k

)T
HT

k HkP̃
−
k − λkǫkχ̂

−
k HkP̃

−
k +

− λkǫk

(
P̃−

k

)T
HT

k

(
χ̂−

k

)T
+ λ2

kǫ
2
kχ̂

−
k

(
χ̂−

k

)T
]

+
r

Wk + λkǫ
2
k[(

P̃−
k

)T
HT

k

(
χ̂−

k

)T
+ χ̂−

k HkP̃
−
k − 2λkǫχ̂

−
k

(
χ̂−

k

)T
]

+ χ̂−
k

(
χ̂−

k

)T
}

> 0.

An equivalent condition is

(Wk + λkǫ
2
k)

{
(ǫkkk + x̂−

k )2(Wk + λkǫ
2
k)

2I +

[
ǫk

(
P̃−

k

)T
HT

k + Wkχ̂
−
k

]

[
ǫk

(
P̃−

k

)T
HT

k + Wkχ̂
−
k

]T
}

> 0.
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The matrix in brackets is of the form

µ2I + vvT,

which is positive definite when µ 6= 0. As a consequence, the optimal gain produces

a minimum performance index when the scalar Wk + λkǫ
2
k is positive. Since

Wk + λkǫ
2
k = ±

√
W 2

k + c/l,

the minimum occurs when the plus sign is chosen for the Lagrange multiplier. Also,

if the minus sign is chosen, the performance index will be maximized. The same

arguments hold true when the measurement is a vector.

Constrained Minimum Solution

The performance index is minimized and the constraint is satisfied when the optimal

gain is chosen as

K∗
k = (P−

k HT
k − λkx̂

−
k ǫT

k )(Wk + λkǫkǫ
T
k )−1, where

λk =
−1

ǫ̃k
+
‖ǫT

k W−1
k HkP

−
k +

(
x̂−

k

)T ‖
ǫ̃k

√
l

.

The asterisk in K∗
k was added to distinguish from the unconstrained Kalman gain

Kk = P−
k HkW

−1
k .

The unconstrained a posteriori estimate is x̂+
k

x̂+
k = x̂−

k + Kkǫk.
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The minimizing constrained gain can be rewritten as

K∗
k = Kk +

( √
l

‖x̂+
k ‖
− 1

)
x̂+

k

ǫT
k W−1

k

ǫ̃k
.

Property 1. The optimal constrained solution shares the same direction as the

optimal unconstrained solution.

Proof. Let x̂∗
k be the optimal constrained estimate. Then it follows that

x̂∗
k = x̂−

k + K∗
kǫk = x̂−

k + Kkǫk +

( √
l

‖x̂+
k ‖
− 1

)
x̂+

k

ǫT
k W−1

k

ǫ̃k
ǫk =

√
l

‖x̂+
k ‖

x̂+
k .

So x̂∗
k and x̂+

k have the same direction, but different magnitude. Property 1 states

that brute force normalization is optimal not only in a geometrical sense, but also

in a Mean Square Error sense.

The a posteriori estimation error is

e∗ = (I−K∗
kH)e− + K∗

kηk.

Under the assumption that measurement noise is independent of process noise and

initial estimation error, it follows that

P∗
k = E

{
(I−K∗

kHk)e
−(e−)T(I−K∗

kHk)
T
}

+ E
{
K∗

kηkη
T
k (K∗)T

}
. (2.23)

The optimal gain is a function of the a priori state and the residual, therefore it is

a random variable and it should not be taken outside the expectation operator. A

similar situation happens in nonlinear Kalman filtering. In the extended Kalman

filter, for example, the measurement mapping matrix is a function of the a priori

state, thus making the gain a function of the a priori state as well. The Kalman
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gain is taken out of the expectation sign, following the EKF solution

P∗
k = (I−K∗

kHk)P
−
k (I−K∗

kHk)
T + K∗

kRk (K∗
k)

T .

Substituting for K∗
k yields

P∗
k = P+

k +
1

ǫ̃k

(
1−

√
l

‖x̂+
k ‖

)2

x̂+
k

(
x̂+

k

)T
, (2.24)

which is very similar to the correction given by Choukroun et al. [60].

When two random variables are related through a nonlinear transformation,

it is generally impossible to relate exclusively their second moments but all the

moments of the original variable will contribute to the second moment of the trans-

formed variable. Therefore, the correction of the covariance can be accurate or not

depending on the distribution. Both the AEKF and MEKF provide estimates with

unit norm to first-order [8], therefore the unmodified covariance P+
k is an approxi-

mation accurate to first-order.

The matrix P∗
k is an approximation, and like any approximation, might not

be satisfactory under certain circumstances. From Eq. (2.24) it can be seen that P∗
k

can be unsatisfactory for small ǫ̃k and large norm errors of the unconstrained esti-

mate. This situation could arise, for example, in the presence of scalar measurement

when the estimation error is large.

The scope of this section was to demonstrate that brute force normalization

is optimal in a stochastic sense. The goal was not to derive a correction to the

additive covariance since a well-performing correction already exists [60]. Also, it

is the belief of the author that no correction should be performed to the covariance

of the AEKF, because the covariance is accurate to first-order, and so is the EKF.

If the AEKF necessitates a covariance adjustment, so does the first-order MEKF

since brute force normalization affects the multiplicative error as well.
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2.2.6 Conclusions

The arguments previously presented aim to show that the additive and multiplica-

tive approach have equal dignity, that the AEKF does not need to possess a singular

covariance, and that brute force normalization is optimal under standard nonlinear

filtering assumptions. The multiplicative approach has the advantages of a covari-

ance with smaller dimension and easy physical interpretation of the error, but is

otherwise not superior to the additive approach. The other advantage of the mul-

tiplicative approach, which is also the reason why it is going to be used for the

remaining of this work, is that matrix Pm is indeed a covariance. This fact makes

the tuning of the filter very intuitive and the display of the results very immediate

because the estimation errors are angles (or half angles).

2.3 Davenport Solution to the Wahba Problem

The Wahba problem [61] consists in determining the orthogonal matrix T that

minimizes the performance index

J (q) =
1

2

n∑

i=1

wi‖ŷi −Tn̂i‖2, (2.25)

where ŷi are vector observations and n̂i are their representation in the reference

frame. This minimization problem can be reformulated for the quaternion, substi-

tuting the rotation matrix with T(q) given in Eq. (2.5) and substituting the orthog-

onality requirement with a unitary norm constrain on q. The original solution to

this problem is due to Davenport and is given by Keat [12]. Wahba performance

index in Eq. (2.25) can be rewritten as

J (q) = λ0 − J ⋆(q), (2.26)
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where

λ0 =
1

2

n∑

i=1

wi

(
‖ŷi‖2 + ‖n̂i‖2

)
(2.27)

is independent from the quaternion. The minimization of Wahba performance index

in Eq. (2.25) is equivalent to maximization of

J ⋆(q) =
n∑

i=1

wiy
T
i T(q)ni, (2.28)

subject to ‖q‖2 = 1.

Scaling the performance index will not affect the solution, therefore often the weights

are normalized, i.e.
∑n

i=1 wi = 1. Vectors ŷi and n̂i are often of unitary norm, under

those circumstances λ0 = 1.

Defining the 3× 3 matrix B as

B ,

n∑

i=1

wiŷin̂
T
i , (2.29)

and using matrix trace properties, it follows that Eq. (2.28) can be written as

J ⋆(q) = trace
[
T(q)BT

]
. (2.30)

Substituting Eq. (2.5) in the performance index of Eq. (2.30), and using B from

Eq. (2.29) yields

J ⋆ = σ(q2 − qTq) + 2qTBTq− 2q trace
[
[q×]BT

]
,

where

σ , trace(B).
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This problem constitutes a quadratic program, i.e. the performance index can be

rewritten as

J ⋆(q) = qTKq, (2.31)

where the 4× 4 matrix K is now obtained. Define the symmetric matrix S as

S , B + BT.

Then it follows that

2qTBTq = qTSq.

Notice that

−2 trace
[
[q×]BT

]
= −2 trace

[
n∑

i=1

wi[q×]n̂iŷ
T
i

]
= 2

n∑

i=1

wi (ŷi × n̂i)
T

q.

Therefore, matrix K in Eq. (2.31) is given by

K =


S− σI3×3 z

zT σ


 , (2.32)

where

z ,

n∑

i=1

wi (ŷi × n̂i) .

Adjoining the constraint ||q||2 = 1 to the performance index with a Lagrange mul-

tiplier, denoted by λ, the first-order optimal condition is given by the eigenvalue

problem

Kq = λq. (2.33)

47



Also using Eq. (2.31) and Eq. (2.33), the performance index can be shown to be

J ⋆ = λ.

Since the performance index is to be maximized, the optimal Lagrange multiplier

is given by the maximum eigenvalue of K given in Eq. (2.32), and the optimal

quaternion is given by the corresponding unit eigenvector. There is no need to

calculate the eigenvector. The vector of Rodrigues parameters is given by

̺ = q/q.

The first three rows of Eq. (2.33) can be expanded to be

(S− σI3×3)q + zq = λq,

from which the estimated Gibbs vector is found to be

̺̂ = [(σ + λ)I3×3 − S]−1z. (2.34)

The optimal quaternion is given by

q̂ =
1√

1 + ̺̂T̺̂


̺̂

1


 . (2.35)

Shuster and Oh [62] show how to handle Eq. (2.34) when matrix (σ + λ)I3×3 − S

is singular. The same paper shows a numerically efficient algorithm to compute

the eigenvalue referred to as QUEST. Covariance analysis is also performed in [62]

under the assumption of a simplified measurement model, known as the QUEST
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measurement model. The ith measurement is modeled as

ŷi = T(q)ni + ỹi = T(q) (n̂i − ñi) + ỹi,

where ni are the true reference vectors while ñi and ỹi are errors. In [62], yi and

ni are assumed to be unit vectors, and the measurement error is given by a rotation

δθ

n̂i = ni + ñi = T(δθi)ni.

Using Eq. (2.2) and assuming small angles

n̂i ≃ ni − [δθi×]ni,

therefore

E
{
ñi ñ

T
i

}
= [ni×] E

{
δθi δθ

T
i

}
[ni×]T. (2.36)

The QUEST measurement model assumes

E
{
δθi δθ

T
i

}
= σ2

n,iI3×3,

therefore Eq. (2.36) becomes

E
{
ñi ñ

T
i

}
= σ2

n,i

(
I3×3 − ni n

T
i

)
.

Similarly

E
{
ỹi ỹ

T
i

}
= σ2

y,i

(
I3×3 − yi y

T
i

)
,

where yi are the true values of the measurements yi = T(q)ni. Since ni and

yi are unknown, they have to be replaced by n̂i and ŷi when calculating the two

covariances.
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Notice that Matrix B fully defines the problem, since

[z×] = BT −B.

2.3.1 QUEST Covariance Analysis

The matrix associated with the true observations is defined as

Btrue ,

n∑

i=1

wiyin
T
i ,

and the matrix associated with the measurement error

δB =
n∑

i=1

wiỹin
T
i + T(q)

n∑

i=1

wiyiñ
T
i .

Therefore to first-order in the errors

B = Btrue + δB.

Similar quantities can be defined for z, σ, and S

z = ztrue + δz, S = Strue + δS, σ = σtrue + δσ,

obtaining

ztrue =
n∑

i=1

wi(yi × ni) δz =
n∑

i=1

wi(yi × ñi + ỹi × ni)

Strue = Btrue + BT
true δS = δB + δBT

σtrue = traceBtrue δσ = trace δB.
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Provided that at least two independent vector measurements are available, the es-

timate obtained from Btrue using Davenport-q algorithm is the true quaternion.

Define

M , (σ + λ)I3×3 − S,

the true Gibbs vector is

̺ = M−1
trueztrue,

where

Mtrue = (σtrue + λtrue)I3×3 −
n∑

i=1

wiyin
T
i −

n∑

i=1

winiy
T
i . (2.37)

The estimated Gibbs vector is

̺̂ = (Mtrue + δM)−1 (ztrue + δz) ≃
(
M−1

true −M−1
trueδMM−1

true

)
(ztrue + δz)

≃ ̺ + M−1
trueδz−M−1

trueδM̺ = ̺− ˜̺,

where a first-order approximation was used. Defining a rotational estimation such

that T(q) = T(δq)T(q̂), and using Eq. (2.4)

δq ≃ δ̺ =
I3×3 + [̺×]

1 + ̺T̺− ̺T˜̺ ˜̺, (2.38)

using Mac-Laurin series

(1 + ̺T̺− ̺T˜̺)−1 ≃ (1 + ̺T̺)−1 + (1 + ̺T̺)−2̺T˜̺,

substituting in Eq. (2.38), the following first order approximation results

δq ≃ I3×3 + [̺×]

1 + ̺T̺
˜̺ = q (qI3×3 + [q×]) ˜̺,
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finally

δq = (qI3×3 + [q×]) M−1
true (δMq− qδz) . (2.39)

Shuster and Oh notice that the covariance should be approximately independent

from the the true state, therefore Eq. (2.39) is evaluated at a convenient true state,

the identity quaternion, resulting in

δq = −M−1
trueδz.

Assuming ñi and ỹi are uncorrelated from each other, the covariance is

Pθθ = 4M−1
true

n∑

i=1

w2
i

{
[ni×]Ry,i[ni×]T + [yi×]Rn,i[yi×]T

}
M−T

true,

where

E
{
ỹiỹ

T
j

}
= Ry,i δij , E

{
ñiñ

T
j

}
= Rn,i δij , i, j = 1..n.

Since the true quaternion was chosen as the identity quaternion

ni = yi,

which substituted into Eq. (2.37) results in

Mtrue = 2
n∑

i=1

wi‖ni‖2 I3×3 − 2
n∑

i=1

winin
T
i ,

because σtrue =
∑n

i=1 wi‖ni‖2 and

λtrue = J ⋆(q) = σtrue.
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Using vector product matrix properties of Eq. (2.3) it follows that

Mtrue = −2
n∑

i=1

wi[ni×]2, (2.40)

using the QUEST measurement model, and choosing the weights such that

wi =
1

σ2
n + σ2

y

the covariance becomes

P
QUEST
θθ = 2M−1

true.

In the zero attitude case, Mtrue is given by Eq. (2.40), or the original definition of

Eq. (2.37), or equivalently

Mtrue = −2
n∑

i=1

wi[yi×]2. (2.41)

These three different definitions are equivalent for zero attitude, but would result

in deferent calculated covariances in the general case of q 6= iq. In their original

derivation [62], Shuster and Oh employ Eq. (2.41) without justification. The choice

of Eq. (2.41) leads to the QUEST covariance formulation

P
QUEST
θθ =

(
n∑

i=1

wi[yi×]2

)−1

=
{

trace
[
T(q)BT

true

]
I3×3 −T(q)BT

true

}−1
. (2.42)

Since T(q) and Btrue are unknown, in applying this formula they need to be sub-

stituted by T(q̂) and B. Eight years after the original QUEST covariance analysis,

this formulation was proven to be equivalent to the inverse of the Fisher informa-

tion matrix, which is asymptotically equal to the covariance [13]. Notice however

that the QUEST formulation of the covariance is attitude dependent, which is a

direct contradiction of the starting assumption. Choosing to represent Mtrue with
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Eq. (2.40) would satisfy the assumption that the covariance is independent from the

true quaternion. It turns out that both formulations are correct, they express the

covariance in different frames.

The true quaternion q expresses the rotation from a reference frame i to the

body frame b. Assuming the covariance is independent from the true attitude, i.e.

is independent from the body frame, the body frame can be rotated to coincide

with the reference frame for covariance calculation purposes. If that was the case

reference vectors ni would stay the same, but new measurements ŷ∗
i would occur

ŷ∗
i = T(q)Tŷi = ni + T(q)Tỹi.

Repeating the previous analysis replacing the following quantities

T(q)Tyi → yi, T(q)Tỹi → ỹi

it follows that

δθ = −2M−1
true

n∑

i=1

wi(T(q)Tyi × ñi + T(q)Tỹi × ni), (2.43)

and the following covariance formulation is obtained

Pθθ = 4M−1
true

n∑

i=1

w2
i

{
[ni×]

(
Rn,i + T(q)TRy,iT(q)

)
[ni×]T

}
M−T

true,

where Mtrue is given by Eq. (2.40). If the measurement covariance follows the

QUEST measurement model, and if the weights are chosen such that

wi =
1

σ2
n + σ2

y

,
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a modification of the QUEST covariance is obtained

PMOD
θθ =

(
n∑

i=1

wi[ni×]2

)−1

=
{

trace
[
BT

trueT(q)
]
I3×3 −BT

trueT(q)
}−1

. (2.44)

Like in the previous case, T(q) and Btrue are unknown therefore they need to be

substituted by T(q̂) and B. The QUEST formulation returns the covariance in the

body frame, while the modified formulation returns the covariance in the inertial

frame. Removing the QUEST measurement model assumption from the QUEST

covariance formulation, results in the following generalized covariance

PGEN
θθ = 4M−1

true

n∑

i=1

w2
i

{
[yi×]

(
T(q)Rn,iT(q)T + Ry,i

)
[yi×]T

}
M−T

true, (2.45)

where Mtrue is given by Eq. (2.41).

Consider the following example, the true quaternion is given by

q = [0.5 0.5 0.5 0.5]T,

two observations are available

n1 = [1 0 0]T, n2 = [0 1 0]T,

from which

T(q) =




0 1 0

0 0 1

1 0 0


 , y1 = [0 0 1]T, y2 = [1 0 0]T.

The measurement model is not the QUEST measurement model because the norm
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of the measurement is allowed to vary

ŷi = yi + ηi, E
{
ηiηj

}
= σ2

yI3×3δij , i, j = 1, 2.

The norm of the estimates of the reference vectors is also allowed to vary

n̂i = ni + νi, E {νiνj} = σ2
nI3×3δij , i, j = 1, 2.

The same covariance formulation as the one using the QUEST measurement model

is still valid when

wi =
1

σ2
n + σ2

y

i = 1, 2.

The standard deviations are chosen as

σn = 0.05 σy = 0.1,

leading to

Btrue =




0 80 0

0 0 0

80 0 0


 .

Using the previously derived equation

PMOD
θθ =

{
trace

[
BT

trueT(q)
]
I3×3 −BT

trueT(q)
}−1

the following covariance is obtained

PMOD
θθ =




0.0125 0 0

0 0.0125 0

0 0 0.0063



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Using five thousand samples from a normal distribution, the statistical covariance

defining the error in the inertial frame (as the vector component of q̂−1 ⊗ q) is

PSTAT
θθ =




0.0131 −0.0001 0.0001

−0.0001 0.0122 −0.0000

0.0001 −0.0000 0.0064


 .

The QUEST covariance formulation provides

P
QUEST
θθ =




0.0125 0 0

0 0.0063 0

0 0 0.0125


 ,

and the statistical covariance obtained defining the error in the body frame (as the

vector component of q⊗ q̂−1) is

PSTAT
θθ =




0.0122 −0.0000 −0.0001

−0.0000 0.0064 0.0001

−0.0001 0.0001 0.0131


 .

Often times the reference vectors n̂i are functions of the spacecraft position,

for example in the case of the magnetometer. In those cases the position estimate

needs to be provided by another system, and is useful to derive the cross covariance.

n̂i = n̂i(r) ≃ ni + ñi + Aier, er , r− r̂, Ai ,
dn̂i

dr

∣∣∣∣
r=r̂

from Eq. (2.43) follows immediately that

Pθr = 2M−1
true

n∑

i=1

wi[ni×]AiPrr, (2.46)
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assuming ñi, ỹi, and er are all uncorrelated to each other, and Prr = E
{
ere

T
r

}
is

provided externally.

2.3.2 Summary

A very common spacecraft attitude determination algorithm was introduced. The

original QUEST covariance formulation was re-derived in a different manner and

modified to account for (i) a more realistic measurement model that does not ne-

cessitate the QUEST measurement model approximation, (ii) a different definition

of the attitude estimation error.

2.4 Single Layer Gating Network

The MMAE scheme employed in this work is a modified version of the gating net-

work of Chaer et al. [31,32]. Figure 2.3‡ shows the structure of the gating network.

The gating network is basically a single layer of cells, each cell receives the same

vector of inputs (in navigation applications the inputs are sensor measurements) and

computes a weighted sum of the input, which is then passed to the hypothesis testing

algorithm which compares the weighted sum to a threshold. The measurement can

either pass or fail, in [63] it is shown how this procedure can be interpreted as di-

viding the hyper-space with a hyper-plane, with one half of the space containing the

inputs matching the required pattern and the other half containing the inputs that

fail the test. The gating network proposed by Chaer et al. substitutes the threshold

with the softmax function, which has the advantage of being differentiable. A navi-

gation filter is not desired to be trained beforehand, therefore the inputs weights are

continuously updated on-line according with statistical information derived by the

filters. The weighted sum of the measurement at time tk can be written as an inner

product yT
k ui, where ui is the vector containing the input weights of the ith filter.

‡Figure courtesy of R. H. Bishop
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Figure 2.3: The hierarchical gating network architecture.

Considering ui as the normal to a hyper-plane, then yT
k ui will be positive if yk lays

on the half hyper-space towards where ui is pointing, and negative otherwise. The

measurement is considered accepted if the inner product returns a positive number,

and rejected otherwise. Ideally, after some measurements are processed, the hyper-

planes are oriented in such a way that only the best performing filter validates

measurements.

As said before the hypothesis algorithm uses a softmax function and assigns

a weight wi to each filter in the bank

wi =
eyT

k ui

ΣL
i=1e

yT

k ui
, (2.47)

this function is not only differentiable as stated before, but also provides weights

that satisfy the characteristics to be interpreted as probabilities

0 ≤ wi ≤ 1, ∀i = 1, 2, ..., L and
L∑

i=1

wi = 1.
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The bank of filters is implemented with different values of the unknown vector of

parameters α. The gating network has to assign a weight wi to each filter. The

probability density of the entire bank is

f(yk) =
L∑

i=1

f(yk | αi)P (αi) (2.48)

where P (·) denotes probability and αi is the unknown parameters realization of the

ith filter. Interpreting the weight as a probability, Eq. (2.48) becomes

f(yk) =
L∑

i=1

f(yk | αi)wi.

The goal is to maximize the probability of the bank. In order to maximize this

probability density, it is easier to work with the natural logarithm of f(yk), or

l , ln f(yk) = ln
L∑

i=1

f(yk | αi)e
yT

k ui − ln
L∑

i=1

eyT

k ui .

Taking the derivative of l with respect to ui yields

∂l

∂ui
= (P (αi | yk)− wi)yk, (2.49)

where

P (αi | yk) =
f(yk | αi)wi

f(yk)
.

Eq. (2.49) shows the direction of maximum growth of the function l. The update

is accomplished via

ui ← ui + λ
∂l

∂ui

where λ is a learning rate parameter. The gating network gains can now be computed

with Eq. (2.47).
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Chapter 3

Theoretical Foundations

This chapter presents the analytical tools to be used in the applications of the

subsequent chapters. Section 3.1 introduces attitude in spacecraft navigation. One

of the solutions proposed will be used in Chapter 6 where the star tracker implements

an attitude filter to be fused with the central filter. Section 3.2 introduces a way

to account for biases in the Kalman filter without explicitly estimating them. This

formulation will be applied in the covariance analysis of the IMU dead-reckoning

approach for Mars entry navigation in Chapter 4. Finally, Section 3.3 contains

a modification to the gating network introduced in § 2.4, this modified adaptive

filter will be used in Chapter 5 to account for atmospheric uncertainty during the

accelerometer filtering of Mars entry navigation.

3.1 Introduction of Attitude Estimation in Spacecraft

Navigation

It is still common on spacecraft missions that the attitude estimation and the space-

craft navigation are handled as independent subsystems. While it could be argued

that the attitude does not depend on position and velocity, hence leading to an
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optimal estimate when independently obtained; the attitude estimation errors nat-

urally enter and affect the translation navigation sub-system. In order to have an

optimal estimate it is therefore to account for the effect attitude estimation and po-

sition/velocity estimation on the other, and correctly incorporate the correlations.

The most straightforward way is to have a single navigation algorithm which esti-

mates both rotational and translational states. Relevant examples of such a solution

are given in Chapters 4 and 5. However such a solution is not always desirable ei-

ther because of heritage reasons, or because some attitude determination algorithms

cannot be expanded to estimate other states. The hardware also can affect the de-

cision of having a single navigation system: a star tracker naturally comes with

an attitude determination algorithm and provides an attitude estimate rather than

raw measurements. In this section various approaches to the decentralized attitude

navigation problem will be analyzed. It is possible to obtain an optimal decentral-

ized structure as shown in §3.1.1, other approaches lead to a suboptimal navigation

architecture (§3.1.3, §3.1.4). The architectures that are of interest here are those

without a master filter. The problem solved is not of fusing the outputs of individual

filters. The first architecture investigated here is a filter/sub-filter shown on Fig-

ure 3.1. Notice that is not a fusion problem like that depicted in Figure 3.2, which

was solved by Carpenter and Bishop [64] for correlated measurements. The problem

of an arbitrary number of sub-filters has also been addressed, see for example [65]

and [66].

3.1.1 Uncorrelated Sub-filter

Assume the state vector is partitioned into two components as

xT =
[
xT

1 xT
2

]
.
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Figure 3.1: Main filter with raw measurements and a filtered state as inputs.

Figure 3.2: Classic filter fusion problem (not considered here).

Consider that the entire vector measurement can be also partitioned into two com-

ponents. Vector y2 is independent of x1, and y1 is a function of the entire state x.
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With the measurement partitioned as

yT =
[
yT

1 yT
2

]

y1 = H1 x + ν1, y2 = H2 x2 + ν2.

At each time tk when the measurement is available, we have the measurement model

yk = Hkxk + νk

Hk =


H1,k

H̃2,k


 ,

where

H̃2,k =
[
O H2,k

]
.

Vector νk is zero mean white noise with

E
{
νk νT

j

}
= Rk δkj ∀k, j.

Superscript − denotes the a priori value, i.e. the value before the measurement is

processed. Superscript + denotes the a posteriori value, i.e. the value after the

measurement is processed.

The optimal global information filter update is [67]

(P+)−1 = (P−)−1 + HTR−1H (3-1a)

x̂+ = P+
[
(P−)−1x̂− + HTR−1y

]
, (3-1b)
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matrix P being the estimation error covariance. Assuming ν1 and ν2 are uncorre-

lated from each other, i.e.

R =


R1 O

O R2


 ,

Eqs. (3-1a)-(3-1b) become

(P+)−1 = (P−)−1 + HT
1 R−1

1 H1 + H̃T
2 R−1

2 H̃2 (3-2a)

x̂+ = P+
[
(P−)−1x̂− + HT

1 R−1
1 y1 + H̃T

2 R−1
2 y2

]
. (3-2b)

Let first consider the case in which the sub-filter provides estimates based only

on the current measurement and not on previous ones, i.e. P−
sf = ∞. Then the

sub-filter update is given by

P−1
sf = HT

2 R−1
2 H2 (3-3a)

x̂sf = Psf H
T
2 R−1

2 y2. (3-3b)

Using Eqs. (3-3a)–(3-3b), the update of the central filter given by Eqs. (3-2a)–(3-2b),

can be rewritten as

(P+)−1 = (P−)−1 + HT
1 R−1

1 H1 +
[
O I

]T
P−1

sf

[
O I

]

x̂+ = P+

{
(P−)−1x̂− + HT

1 R−1
1 y1 +

[
O I

]T
P−1

sf x̂sf

}
.

Therefore, treating the sub-filter as a sensor that measures x2 with covariance P2

will lead to an optimal linear estimate.

Now suppose that the sub-filter employs all previous measurements to gen-

erate the estimate. In this case, there will be correlation between the measurement

error and the a priori estimation error. The linear update of the central filter is
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given by

x̂+
k = (I−KkHk) x̂−

k + Kkyk.

The associated estimation error is

e+
k = (I−KkHk) e−k −Kkνk,

and the estimation error covariance is given by

P+
k =(I−KkHk)P

−
k (I−KkHk)

T + KkRkK
T
k − (I−KkHk) E

{
e−k νT

k

}
KT

k +

−Kk E
{
νk (e−k )T

}
(I−KkHk)

T .

Defining

Ck , E
{
e−k νT

k

}
,

the gain that minimizes the trace of the a posteriori covariance is

Kk =
(
HkP

−
k + CT

k

) (
HkP

−
k HT

k + Rk + HkCk + CT
k HT

k

)−1
.

The a posteriori estimation error is a linear combination of the initial estimation

error, the measurement noise, and the process noise. Assuming the measurement

noise is uncorrelated with the initial state estimate and the process noise, it follows

that

Ck = −
k−1∑

i=1

ZiΦiKi E
{
νiν

T
k

}
(3.4)

Zk−j =





I j = 1
∏k−j+1

i=k−1 Φi(I−KiHi) j > 1.

The standard Kalman filter assumes E
{
νiν

T
k

}
= Riδik, resulting in Ck = O. For
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this application the sub-filter is used as a sensor by the central filter, therefore the

measurement noise νk is given by the the estimation error of the sub-filter esf , k.

For any Kalman filter, the correlation between the a posteriori estimation errors at

different times is given by

E
{
e+

k (e+
j )T

}
=

[
j+1∏

i=k

(I−KiHi)Φi−1

]
P+

j , j < k. (3.5)

The measurement noise of the central filter is given by the estimation error of the

sub-filter. The central filter computes Ck using Eq. (3.4), where E
{
νiν

T
k

}
is com-

puted by the sub-filter using Eq. (3.5). Clearly, although possible, accounting for

the time correlation is difficult, and this implementation with sub-filter dynamics is

not very practical for on-board navigation.

3.1.2 Star-Tracker Implementation

While an exhaustive implementation of the above result will be given in Chapter 6,

it is useful at this point to provide an illustrative example. The example is a sub-

filter that reconstructs the quaternion from star measurements without dynamics.

The quaternion is processed by the main filter as a measurement. The main as-

sumption holds, since stars can be considered as infinitely far and therefore the

star-tracker measurement can be considerate independent from position, velocity,

angular velocity, and any state except the quaternion itself.

The optimality of the previous section was shown for the linear model. How-

ever, attitude estimation is inherently nonlinear. Because of the absence of a priori

information, Eqs. (3-3a) and (3-3b) are the linear least-squares solution. For the

nonlinear star-tracker algorithm two solutions are possible. The first is to linearize

the problem. The preferred solution is to substitute the linear least-squares for-

mulation with the nonlinear least-squares given by the Davenport-q method. The
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multiplicative approach is chosen to represent the estimation error, and the co-

variance is computed using Eq. (2.45). The algorithm to process the star-tracker

measurement has only the quaternion and gyro bias as state elements. The state

vector could easily be augmented with position, velocity and other states, and other

measurements can be also included.

The measurement y = q̂st is a quaternion. The estimate of the quaternion is

computed internally by the star-tracker. The multiplicative approach estimates the

deviation between a nominal attitude and the estimated attitude. This deviation is

usually expressed as a small rotation vector δα but could also be represented with

a small Gibbs vector δ̺. In the multiplicative extended algorithm, the nominal

trajectory is refreshed after every update. Being that the state is a small rotation

vector, and the measurement noise covariance, i.e. the star tracker covariance, is

also computed for a small rotation vector, it is natural to rewrite the quaternion

measurement as rotation vector between the nominal and measured attitude [68].

In doing so, the classical formulation of the Kalman filter is recovered. Suppose

a measurement of the rotation between the nominal and measured attitude was

available at tk. Then the state update would be

α̂+
k = α̂−

k + Kk δǫk,

where α̂−
k = 0 because the a priori nominal quaternion coincide with the estimated

a priori quaternion, and δǫk is the residual, that coincide with the measurement

because α̂−
k = 0. But δǫk is twice the vector part of δyk, and δyk is given by

δy , y ⊗ q̂−1.
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Let qk be the true quaternion

qT
k = [qT

k qk].

The star tracker measurement is corrupted by a small rotational error δθ whose

covariance is given in Eq. (2.45). Since the error is small, the measured quaternion

can be modelled as

yk =




1
2δθk

1


⊗ qk,

where

Pst,k = E
{
δθk δθT

k

}
.

Using the above arguments and including the gyro bias in the state vector, the

a posteriori estimate is given by


δα̂+

k

b̂+
k


 =


 0

b̂−
k


+ Kk δǫk.

The measurement residual is

δyk = yk ⊗
(
q̂−

k

)−1
=




1
2δθk

1


⊗ qk ⊗

(
q̂−

k

)−1
. (3.6)

The true a priori deviation is

δq−
k = qk ⊗

(
q̂−

k

)−1
.

Substituting into Eq. (3.6) yields

δyk =




1
2δθk

1


⊗ δq−

k .
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Since the true deviation is approximated by

δq−
k ≃




1
2δα−

k

1


 ,

it follows that the multiplicative residual is

δǫk = δα−
k + 2δθk × δα−

k + δθk.

To first order, we have

δǫk ≃ δα−
k + δθk. (3.7)

The true a posteriori deviation is computed to be

δq+
k = qk ⊗

(
q̂ +

k

)−1
= δq−

k ⊗ q̂
−

k ⊗
(
δq̂ +

k ⊗ q̂−
k

)−1
= δq−

k ⊗
(
δq̂ +

k

)−1
.

The vector component of δq +
k is

δα+
k = δα−

k −
1

2
δα−

k × (Kα,kδǫk)−Kα,kδǫk.

The estimation errors are

eα,k , δαk − δα̂k, eb,k , bk − b̂k, ek =
[
eT

α,k eT
b,k

]T
, .

Assuming small quantities, truncating to first order, and using Eq. (3.7), it follows

that

e+
k = (I6×6 −Kk Hk) e

−
k −Kk δθk,

where

Hk =
[
O3×3 I3×3

]
.

70



The a posteriori error covariance is

Pk = E
{
ek eT

k

}
.

Hence, we have

P+
k = (I6×6 −KkHk)P

−
k (I6×6 −KkHk)

T + KkPst,kK
T
k ,

and the optimal Kalman gain is

Kk = P−
k HT

k

(
HkP

−
k HT

k + Pst,k

)−1
.

The true quaternion propagation is modeled via

d

dt
q =

1

2


ω

0


⊗ q =

1

2


ωm − δω − b

0


⊗ q,

where δω is the gyro noise, b is the bias, and ωm is the gyro measurement of body

rate. The propagation of the estimate is given by

d

dt
q̂ =

1

2


ωm − b̂

0


⊗ q̂.

The quaternion estimation error is δq = q⊗ q̂−1, hence its evolution is

d

dt
δq =

d

dt
q⊗ q̂

−1
+ q⊗ d

dt

(
q̂
−1
)

.

The estimation error α is twice the vector component of δq and evolves as

d

dt
δα ≃ −(ωm − b̂)× δα− eb − δω,
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valid to first order in the errors. The bias is modeled as

ḃ = νb,

vector νb is white noise. The propagation of the estimate of the bias is

d

dt
b̂ = 0.

The propagation of the covariance is

Ṗ = FP + PFT + Q

where

F =


−

[
(ωm − b̂)×

]
−I3×3

O3×3 O3×3




and

E






δω(t)

νb(t)



[
δωT(τ) νT

b (τ)
]


 = Q δ(t− τ).

This example has shown how to incorporate the estimate of a star camera

(which functions as a sub-filter) into the navigation filter. In order to maintain

the optimality, the attitude sub-filter needs not only to pass its estimate to the

navigation filter, but also the estimation error covariance. Failing to calculate the

covariance with the techniques shown in Section 2.3.1, would result in non-optimal

performance.

3.1.3 Correlated Sub-Filter and Attitude Sub-Filter Implementa-

tion

In the star tracker example of the previous section, the hypothesis that the mea-

surements processed by the sub-filter depend only on the sub-filter state was met.
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However this is not the general case. A magnetometer, for example, measures the

local magnetic field. Such a measurement is a function of the spacecraft position.

If the magnetometer measurement was to be processed in a sub-filter implementing

Davenport-q algorithm, the estimated quaternion would be a function of the esti-

mated spacecraft position. If the quaternion estimate obtained through Davenport-q

algorithm was processed by the navigation filter as a measurement, this measure-

ment would be correlated to the filter state, and such correlation should be taken

into account. Figure 3.3 shows the architecture of this filter/sub-filter case.

Figure 3.3: Main filter with raw measurements and a filtered state as inputs.

Using the notation of Section 3.1.1, y2 is now a function of the entire state

vector, not of just x2. This scheme will not be optimal because y2 contains in-

formation on x1 that will not be used by the sub-filter. However, it can be made

sub-optimal by correctly taking into consideration the correlation. Sub-optimal im-

plies that x̂2 is globally optimal and x̂1 is optimal only given y1 and x̂2. The

measurement y2 is modeled as

y2 = H2x + ν2 = H2,1x1 + H2,2x2 + ν2.
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The sub-filter only estimates x2, therefore part of the information is ignored, leading

to the non-optimality of the estimation of x1. The component of the state vector x1

is modeled by the estimate of x1 from the central filter. The uncertainty associated

with the estimate x̂1 needs to be added to the measurement noise in order for the

sub-filter to be optimal. The estimated measurement is given by

ŷ2 = H2,1x̂1 + H2,2x̂2.

The sub-filter only estimates xsf = x2. The residual is given by

ǫ = y2 − ŷ2 = H2,2esf + H2,1e1 + ν2.

Effectively then, the measurement noise of the sub-filter is not only ν2, but H2,1e1+

ν2, where e1 is the estimation error of the central filter associated with x1. It is

assumed that the sub-filter does not use an a priori estimate, i.e. P−
sf =∞. Using

the information formulation , we find that

Psf =
[
HT

2,2

(
H2,1P11H

T
2,1 + R2

)−1
H2,2

]−1
(3-8a)

Ksf = Psf H
T
2,2

(
H2,1P11H

T
2,1 + R2

)−1
(3-8b)

x̂sf = Kǫ, (3-8c)

where P11 is the central filter error covariance associated with x̂1. Since the central

filter estimation error of x1 affects the estimate of the sub-filter, there will be a

correlation between the sub-filter estimate x̂sf and the central filter estimate x̂1.

The central filter is not going to recover optimality, however sub-optimality can be
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achieved through the use of the correlation

Ck = E
{
e−k (esf ,k)

T
}

=


E
{
e−1,k (esf ,k)

T
}

O


 .

The central filter update equations are

P+
k = (I−KkHk)P

−
k (I−KkHk)

T + KkRkK
T
k − (I−KkHk) CkK

T
k

−KkC
T
k (I−KkHk)

T (3-9a)

Kk =
(
HkP

−
k + CT

k

) (
HkP

−
k HT

k + Rk + HkCk + CT
k HT

k

)−1
(3-9b)

x̂+
k = x̂−

k + Kk

(
x̂sf ,k −Hkx̂

−
k

)
(3-9c)

Hk =
[
O I

]
. (3-9d)

A spacecraft implementing an attitude sub-filter would use this algorithm

when some of the inertial reference vectors ni are functions of position, such as

the magnetometer and horizon sensor. In this attitude sub-filter example, the sub-

filter implements Davenport’s algorithm to estimate the attitude from the vector

measurements. Therefore Eqs. (3-8a)–(3-8c) are not used, but instead are replaced

by Eqs. (2.35) and (2.44). To compute the inertial reference vectors ni, the main

filter passes to the sub-filter the position estimate and the position covariance. The

sub-filter outputs the quaternion estimate, together with its covariance and the

cross-covariance between the sub-filter quaternion estimate and position. The cross-

covariance Prθ is calculated with Eq. (2.46). The state vector of the central filter is

given by

xT =
[
rT vT δαT

]
,
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the measurement is given by the sub-filter’s quaternion estimate

y = q̂sf .

The central filter uses Eqs. (3-9a)–(3-9d) to update the state, the only difference

is that replaces the additive residual x̂sf −Hx̂− with twice the vector part of the

multiplicative residual δy

δy = q̂sf ⊗ (q̂−)−1.

The correlation C between the measurement and the state is given by

C =


 Prθ

O6×3


 .

3.1.4 Parallel Filters

To achieve optimality all measurements and all states need to be processed and

estimated in a single integrated filter. It was shown how to lower the burden of the

central filter by processing some of the measurements in a sub-filter. This approach

still leads to an optimal estimate if such measurements are uncorrelated to the

remaining states of the central filter § 3.1.1. When the measurements processed by

the sub-filter are correlated to the remaining states of the central filter, only the

estimate of common states between the two filters will be optimal § 3.1.3. In this

section, a parallel architecture will be presented. In this approach there is not a

central filter that contains all the states, but two filters estimating a disjoint part of

the state vector, as shown in Figure 3.4. As in the previous sections, the attitude

filter employs the Davenport-q method to estimate the attitude, no a priori estimate

is present and the filter functions exactly like the sub-filter previously presented.

The derivation of the non-attitude filter is almost identical to the derivation in the

previous section.
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Figure 3.4: Parallel filters architecture.

Let y1 be the measurement processes by the non-attitude filter (filter 1). It

is assumed that y1 is a function of the attitude, so that

y1 = h1(x1,q) + ν1 = h1(x1, δq⊗ q̂) + ν1,

where the small rotation given by δq is the actual rotation between the estimated

quaternion q̂ and the true quaternion q. The estimated measurement is given by

ŷ1 = h1(x̂1, q̂),

where q̂ is passed by the attitude filter. The residual is

ǫ1 = y1 − ŷ1 ≃ H11e1 + H12δθ + ν1.

The vector δθ is twice the vector component of the quaternion δq and

H1 = [HT
11 HT

12]
T
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is the jacobian of h1. The actual “measurement” noise is given by H12δθ +ν1. The

update equations are

P+
k = (I−KkH11,k)P

−
k (I−KkH11,k)

T + KkRkK
T
k − (I−KkH11,k) CkK

T
k +

−KkC
T
k (I−KkH11,k)

T

Rk = H12,kPθθ,kH
T
12,k + E

{
ν1,kν

T
1,k

}

Ck =
[
H12,kP

T
rθ,k OT

]T

Kk =
(
H11,kP

−
k + CT

k

) (
H11,kP

−
k HT

11,k + Rk + H11,kCk + CT
k HT

11,k

)−1

x̂+
k = x̂−

k + Kkǫ1,k,

where Pθθ and Prθ are provided by the attitude filter. It is assumed that the process

and measurement noises are white and uncorrelated to each other. The derivation

would become substantially more complex if the attitude filter had dynamics. But

in such a situation it would be better to combine the two filters. The advantage

of having a dedicated attitude filter is being able to use the nonlinear least-squares

approach of the Davenport-q method. If this approach is replaced with a Kalman

filter with dynamics it makes more sense to combine it with the Kalman filter for

the translational states.

It is common for spacecrafts to have the navigation system independent from

the attitude determination. These two systems however share estimates and there-

fore they output quantities correlated to each other. A common attitude determi-

nation system, Davenport-q algorithm, is a point-wise in time estimator, i.e. does

not have dynamics. This section showed how to sub-optimally interconnect the two

algorithms. Sub-optimality implies that each system is optimal with respect to the

measurements it receives. Loss of information occurs because each system is not

formulating an estimate using the measurements of the other system. Section 3.1.1

showed how to recovery optimality under two conditions. First the navigation did

78



not only estimate the translation, but also the quaternion. The assumption might

seem restrictive (why to have an attitude sub-filter when the navigation filter al-

ready estimates the attitude?) but Section 3.1.2 showed a practical example that

falls in this category. Star cameras often have their own attitude estimation algo-

rithm and output quaternions rather than star position measurements. The example

in § 3.1.2 was a navigation filter having a star camera estimate as a measurement.

This example is very much of current interest. Taking advantage of the absence

of atmosphere on the Moon, NASA’s current intent for human lunar missions is to

update the state estimate with quaternions provided by a star tracker. The star

camera example also satisfies the second assumption made in § 3.1.2, that mea-

surements processes by the attitude sub-filter were independent from translational

states. This second assumption was relaxed in Section 3.1.3.

3.2 Kalman Filter with Uncompensated Biases

One of the fundamental assumptions of the Kalman filter is that measurement and

process noise are white. In practice however the error of a sensor can often be

modelled more accurately as the sum of a white noise component and a strongly

correlated component. The correlated component can either be a constant bias

or a walking bias. The most straightforward technique to include the biases in the

Kalman filter is to augment the state vector and estimate the biases. In the attempt

to decouple the bias estimation from the state estimation, Friedland estimates the

state as the bias was not present, and then adds the contribution of the bias. Fried-

land showed [69] that this approach is equivalent to augmenting the state vector.

This technique, known as two-stage Kalman filter or separate-bias Kalman estima-

tion, was then extended to incorporate a walk in the bias forced by white noise [70].

Since the process noise covariance was increased heuristically, optimality conditions

were derived [71,72].
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In this section a completely different approach is taken. The effect of a

constant random bias in the Kalman filter will be considered without estimating

the bias itself. This is important, for example, when the bias is not observable, or

when there is not enough information to discern the bias from the measurement.

When this situation arises, the classical approach is to tune the filter such that the

sample covariance obtained through Monte Carlo analysis matches the predicted

covariance. The technique presented here is useful in quantifying the uncertainty

due to a random bias in a single run, which would aid in tuning the filter.

The approach taken in this section is different from that of the consider

filter [73, 74]. The consider filter can be designed to solve the same problem, and

the two algorithms although different are equivalent.

3.2.1 Discrete Kalman Filter with Uncompensated Biases

Consider the stochastic system of difference equations

xk+1 = Φkxk + Υkbν + νk,

where νk is process noise assumed to be a zero-mean, white noise sequence with

E {νk} = 0 ∀ k, E
{
νj νT

k

}
= Qk δjk.

Unlike the traditional Kalman filter, a random bias is also considered to be present.

The bias has the assumed properties that

E {bν} = 0, E
{
bν bT

ν

}
= Bν > O, E

{
νkb

T
ν

}
= O ∀k.

The shape matrix Υk is deterministic. Since νk and bν are zero-mean, an unbiased

estimation of the state x̂k−1 can be propagated forward in time to obtain an unbiased
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estimate at time tk

x̂−
k = Φkx̂

+
k .

The estimation error at tk before the measurement update is defined as

e−k , xk − x̂−
k .

At tk, it is assumed that a measurement is available of the form

yk = Hkxk + Λkbη + ηk,

where

E {ηk} = 0 ∀ k, E
{
ηj ηT

k

}
= Rk δjk, E

{
ηkb

T
η

}
= O,

E {bη} = 0, E
{
bη bT

η

}
= Bη > O E

{
bνb

T
η

}
= O,

E
{
ηjνk

}
= O, E

{
νkb

T
η

}
= O E

{
bηη

T
k

}
= O,

for all k, j. The state update is assumed to be the linear update

x̂+
k = x̂−

k + Kk(yk − ŷk), (3.10)

where

ŷk , Hkx̂k.

The update in Eq. (3.10) provides an unbiased a posteriori estimate when the a pri-

ori estimate is unbiased. After the update, the estimation error is

e+
k = xk − x̂+

k = xk − x̂−
k −Kk

(
Hkxk + Λkbη + ηk −Hkx̂

−
k

)

= (I−KkHk)e
−
k −KkΛkbη −Kkηk. (3.11)
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The covariance update is given by

P+
k = (I−KkHk)P

−
k (I−KkHk)

T + KkΛkBηΛ
T
k KT

k + KkRkK
T
k + (3.12)

− (I−KkHk) E
{
e−k bT

η

}
ΛT

k KT
k −KkΛk E

{
bη(e

−
k )T

}
(I−KkHk)

T.

assuming ηk and bη are uncorrelated to the initial estimation error (a good assump-

tion).

After propagation to the next measurement at time tk+1, the estimation error is

e−k+1 = xk+1 − x̂−
k+1 = Φkxk + Υkbν + νk −Φkx̂

+
k = Φke

+
k + Υkbν + νk. (3.13)

The covariance propagation is given by

P−
k+1 = ΦkP

+
k ΦT

k + ΥkBΥT
k + Qk + Φk E

{
e+

k bT
ν

}
ΥT

k + Υk E
{
bν(e

+
k )T

}
ΦT

k ,

assuming νk and bν are uncorrelated to the initial estimation error (a good assump-

tion).

Estimation Error

Substituting Eq. (3.11) into Eq. (3.13) yields to the recurrence relation

e−k+1 = Φk

[
(I−Kk Hk) e

−
k −Kk ηk −Kk Λk bη

]
+ Υkbν + νk.

Forming e−k+1 bT
η and taking the expectation, it follows that

E
{
e−k+1 bT

η

}
= Φk (I−Kk Hk) E

{
e−k bT

η

}
−ΦkKk ΛkBη. (3.14)

Defining

E
{
e−k bT

η

}
, Mk Bη, (3.15)
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and using Eq. (3.14), the matrix Mk can be found recursively as

Mk+1 = Φk [(I−KkHk)Mk −KkΛk] .

If, at the initial time, a propagation occurs such that

e−1 = Φ0e0 + Υ0bν + ν0,

then from Eq. (3.15)

E
{
e−1 bT

η

}
= O implies that M1 = O, since Bη > O.

Similarly, using Eqs. (3.11) and (3.13), it follows that

e+
k+1 = (I−Kk+1Hk+1)

(
Φke

+
k + Υkbν + νk

)
−Kk+1Λk+1bη −Kk+1ηk+1.

Forming e+
k+1 bT

ν and taking the expectation yields

E
{
e+

k+1 bT
ν

}
= (I−Kk+1Hk+1)

[
Φk E

{
e+

k bT
ν

}
+ ΥkBν

]
.

Define

E
{
e+

k bT
ν

}
= LkBν .

Then

E
{
e+

k+1 bT
ν

}
= (I−Kk+1Hk+1) [ΦkLk + Υk]Bν = Lk+1Bν ,

where

Lk+1 = (I−Kk+1Hk+1)(ΦkLk + Υk). (3.16)
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After the first update, we have

e+
1 = (I−K1H1) (Φ0e0 + Υ0bν + ν0)−K1Λ1bη −K1η1.

Computing e+
1 bT

ν and taking the expectation yields

E
{
e+

1 bT
ν

}
= (I−K1H1)Υ0Bν

since E
{
e0b

T
ν

}
= O. Therefore, we find that

L1 = (I−K1H1)Υ0,

which can be obtained using the recursion of Eq. (3.16) for k = 0 with L0 = O.

Optimal Kalman Gain

Substituting Eq. (3.15) into Eq. (3.12), after some rearrangement, we obtain

P+
k = P−

k −Kk

(
HkP

−
k + ΛkBηM

T
k

)
−
(
P−

k HT
k + Mk BηΛ

T
k

)
KT

k +

+ Kk

(
HkP

−
k HT

k + Rk + ΛkBηΛ
T
k + HkMk BηΛ

T
k + ΛkBηM

T
k HT

k

)
KT

k .

Taking the derivative of the trace of P+
k with respect to Kk yields

J ′ =
d

dKk

trace(P+
k ) = −

(
HkP

−
k + ΛkBηM

T
k

)T −
(
P−

k HT
k + Mk BηΛ

T
k

)
+

+ 2Kk

(
HkP

−
k HT

k + Rk + ΛkBηΛ
T
k + HkMk BηΛ

T
k + ΛkBηM

T
k HT

k

)
.

Setting J ′ = O and solving for Kk yields the optimal gain,

Kk =
(
P−

k HT
k + Mk BηΛ

T
k

)
W−1

k .
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The matrix Wk is the covariance of the residuals, as is found to be

Wk , E
{
ǫk ǫT

k

}
= E

{
(y − ŷ) (y − ŷ)T

}
=

= HkP
−
k HT

k + Rk + ΛkBηΛ
T
k + HkMk BηΛ

T
k + ΛkBηM

T
k HT

k .

Table 3.1 summarizes the discrete-time Kalman filter algorithm with uncompensated

bias. Notice that when the biases are absent, the filter reduces to the standard

Kalman filter. It was assumed that at the initial time a propagation will occur

first, and the first update will follow. If an update occurs at time t0 before the first

propagation, the same algorithm can be used by setting

M0 = O, L0 = O.
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System Model xk+1 = Φkxk + Υkbν + νk, E {νk} = O

E
{
bν(ti)b

T
ν (tj)

}
= Bν > O, E

{
bν(ti)ν

T
j

}
= O ∀i, j

E
{

νiν
T
j

}
= Qiδij , E

{
bη bT

ν

}
= O

Measurement Model yk = Hkxk + Υkbη + ηk, E {ηk} = O

E
{
bη(ti)b

T
η (tj)

}
= Bη > O, E

{
bη(ti)η

T
j

}
= O ∀i, j

E
{

ηiν
T
j

}
= O∀i, j, E

{
ηiη

T
j

}
= Riδij

Initial Conditions x̂0 = E {x(t0)} , P0 = E
{
e0e

T
0

}

Matrices Initialization M1 = O, L0 = O

State Propagation x̂−
k = Φk−1x̂

+
k−1

Covariance Prop. P−
k = Φk−1P

+
k−1Φ

T
k−1 + Υk−1BνΥ

T
k−1 + Qk−1+

+Φk−1Lk−1BνΥ
T
k−1 + Υk−1BνL

T
k−1Φ

T
k−1

M Calculation Mk = Φk−1 [(I−Kk−1Hk−1)Mk−1 −Kk−1Λk−1]

Gain Calculation Kk =
(
P−

k HT
k + Mk BηΛ

T
k

)
W−1

k

Wk = HkP
−
k HT

k + Rk + ΛkBηΛ
T
k + HkMk BηΛ

T
k +

+ΛkBηM
T
k HT

k

L Calculation Lk = (I−Kk+Hk)(Φk−1Lk−1 + Υk−1)

State Update x̂+
k = x̂−

k + Kk(yk −Hkx̂
−
k )

Covariance Update P+
k = P−

k −KkWkK
T
k

Table 3.1: Discrete-time Kalman filter with uncompensated bias.

86



3.2.2 Continuous Kalman Filter with Uncompensated Biases

The continuous time Kalman filter is considered here. The system model is given

by

ẋ(t) = F(t)x(t) + Υ(t)bν + ν(t), E {ν(t)} = O ∀t (3-17a)

E
{
bν(t)bν(τ)T

}
= Bν ∀t, τ, E

{
bν(t)ν(τ)T

}
= O ∀t, τ, E {Bν} = O (3-17b)

E
{
ν(t)ν(τ)T

}
= Q(t)δ(t− τ), E

{
bη bT

ν

}
= O (3-17c)

y(t) = H(t)x(t) + Υ(t)bη + η(t), E {η(t)} = O (3-17d)

E
{
η(t)η(τ)T

}
= R(t)δ(t− τ), E

{
η(t)ν(τ)T

}
= O∀t, τ (3-17e)

E
{
bη(t)b

T
η (τ)

}
= Bη ∀t, τ, E

{
bη(t)η(τ)T

}
= O ∀t, τ, E {Bη} = O. (3-17f)

The continuous formulation is obtained from the discrete formulation by making

tk+1 → tk + dt.

The discrete update was given by

x̂+
k = x̂−

k + Kk(yk −Hkx̂
−
k )

in between measurements, the propagation of the estimate is given by

˙̂x(t) = F(t) x̂(t), tk ≤ t ≤ tk + dt,

with initial condition x̂+
k . As dt→ 0

x̂−
k+1 = x̂(tk + dt)→ x̂(tk) + F(tk) x̂(tk)dt = [I + F(tk)dt]

[
x̂−

k + Kk(yk −Hkx̂
−
k )
]

The derivative of the estimate with continuous measurements is given by

˙̂x(tk) = lim
dt→0

x̂−
k+1 − x̂−

k

dt
= F(tk)x̂

−
k +

I + F(tk)dt

dt
Kk(yk −Hkx̂

−
k ) (3.18)

87



The residuals covariance Wk is given by

Wk = HkP
−
k HT

k + Rk + ΛkBηΛ
T
k + HkMk BηΛ

T
k + ΛkBηM

T
k HT

k .

Matrix Rk is a covariance, not a spectral density. Continuous white noise has infinite

covariance given by Rk(t) = limdt→0 R(t)δ(dt), where R(tk) is a spectral density. It

will be shown that M(t) is bounded, hence the term in the limit dominates and

W(tk) = lim
dt→0

R(tk)δ(dt). (3.19)

The discrete optimal gain is therefore given by

Kk(t) =
(
P−(t)H(t)T + M(t)BηΛ(t)T

)
[R(t)δ(dt)]−1 , (3.20)

substituting into Eq. (3.18) and replacing tk with t

˙̂x(t) = F(t)x̂(t) + K(t)
[
y(t)−H(t)x̂(t)

]
,

where

K(t) =
(
P−(t)H(t)T + M(t)BηΛ(t)T

)
R(t)−1 6= Kk(t).

From Eq. (3.18) the estimation error evolves as

ė(t) = F(t) e(t) + Υ(t)bν + ν(t) e(tk) = e+
k . (3.21)

Integrating Eq. (3.21) from tk to tk+1 = tk + dt yields

e−k+1 , e(tk + dt) = Φ(tk + dt, tk)e
+
k +

∫ tk+dt

tk

Φ(tk + dt, τ) [Υ(τ)bν + ν(τ)] dτ.
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Computing P−
k+1 = E

{
e−k+1(e

−
k+1)

T
}

yields

P−
k+1 = Φ(tk + dt, tk)P(tk)

+Φ(tk + dt, tk)
T+

+

∫ tk+dt

tk

Φ(tk + dt, τ)Q(t)Φ(tk + dt, τ)T dτ+

+

[∫ tk+dt

tk

Φ(tk + dt, τ)Υ(τ)dτ

]
Bν

[∫ tk+dt

tk

Φ(tk + dt, τ)Υ(τ)dτ

]T

+

+ Φ(tk + dt, tk)LkBν

[∫ tk+dt

tk

Φ(tk + dt, τ)Υ(τ)dτ

]T

+

+

[∫ tk+dt

tk

Φ(tk + dt, τ)Υ(τ)dτ

]
BνL

T
k Φ(tk + dt, tk)

T.

As dt→ 0 it follows that

P(tk + dt)− → [I + F(tk) dt]
{
P+

k + Q(tk) dt + Υ(tk)BνΥ(tk)
T dt2+

+ LkBνΥ(tk)
T dt + Υ(tk)BνL

T
k dt
}

[I + F(tk) dt]T . (3.22)

The updated covariance is P+
k = P−

k −KkWkK
T
k , it then follows that replacing tk

with t into Eq. (3.22), and using Eqs. (3.19), (3.20)

Ṗ(t) = lim
dt→0

P(t + dt)− −P(t)−

dt

= F(t)P−(t) + P−(t)F(t) + Q(t) + L(t)BνΥ(t)T + Υ(t)BνL(t)T+

+
(
P−(t)H(t)T + M(t)BηΛ(t)T

)
R(t)−1

(
P−(t)H(t)T + M(t)BηΛ(t)T

)T
.

Similarly

Ṁ(t) = lim
dt→0

M(t + dt)−M(t)

dt

= lim
dt→0

{[I + F(t)dt] [(I−K(t)H(t))M(t)−K(t)Λ(t)]−M(t)} /dt

= F(t)M(t)−K(t)
[
H(t)M(t) + Λ(t)

]
.
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System Model ẋ(t) = F(t)x(t) + Υ(t)bν + ν(t), E {ν(t)} = O

E
{
bν(t)b

T
ν (τ)

}
= Bν ∀t, τ, E

{
bν(t)ν(τ)T

}
= O ∀t, τ

E
{
ν(t)ν(τ)T

}
= Q(t)δt−τ , E

{
η(t)ν(τ)T

}
= O∀t, τ

Measurement Model y(t) = H(t)x(t) + Υ(t)bη + η(t), E {η(t)} = O

E
{
bη(t)b

T
η (τ)

}
= Bη ∀t, τ, E

{
bη(t)η(τ)T

}
= O ∀t, τ

E
{
bη bT

ν

}
= O, E

{
η(t)η(τ)T

}
= R(t) δ(t− τ)

Initial Conditions x̂0 = E {x(t0)} , P0 = E
{
e(t0) e(t0)

T
}

M(t0) = O, L(t0) = O

Gain Calculation K(t) =
(
P−(t)H(t)T + M(t)BηΛ(t)T

)
R(t)−1

State Estimate ˙̂x(t) = F(t) x̂(t) + K(t)[y(t)−H(t) x̂(t)]

M Calculation Ṁ(t) = F(t)M(t)−K(t)
[
H(t)M(t) + Λ(t)

]

L Calculation L̇(t) = F(t)L(t) + Υ(t)−K(t)H(t)
[
L(t) + Υ(t)

]

Covariance Ṗ(t) = F(t)P(t) + P(t)F(t) + Q(t) + L(t)BνΥ(t)T+
+Υ(t)BνL(t)T + K(t)R(t)K(t)T

Table 3.2: Continuous-time Kalman filter with uncompensated bias.

Finally

L̇(t) = lim
dt→0

L(t + dt)− L(t)

dt

= lim
dt→0

(I−K(t)H(t)) [(I + F(t)dt)L(t) + Υ(t)] /dt

= F(t)L(t) + Υ(t)−K(t)H(t)
[
L(t) + Υ(t)

]
.

Table 3.2 summarizes the continuous time algorithm. Notice that in the absence of

biases the filter reduces to the Kalman-Bucy filter. For finite times, M(t) will stay

bounded as long as R(t) is non-singular.
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3.3 Proposed Gating Network

The MMAE scheme employed here is a modified version of that of Chaer et al. [31,32]

introduced in §2.4. The gating network as described before, presents numerical

problems due to Eq. (2.49) [75]. In addition, the dependence on yk in Eq. (2.47)

may create problems when the measurement vector rapidly changes with time [76].

The vectors ui should orientate with hyper-planes to create the accept/reject zones,

however the measurement will change due to the dynamics of the problem. If the

frequency with which the measurements are available is not high enough, the vectors

ui will not be able to represent the accept/reject zone correctly. As presented in §2.4,

the MMAE scheme requires that all measurements are synchronized and available

at the same time.

For this work, yT
k ui of Eq. (2.47) is replaced with a scalar ui to eliminate

the dependence on yk. Also a scalar voids the requirement that all measurements

are synchronized,

wi =
eui

ΣL
i=1e

ui
. (3.23)

The filter weight wi is interpreted as a probability, hence the probability of the entire

bank is

f(yk) =

L∑

i=1

f(yk | αi)P (αi) =

L∑

i=1

f(yk | αi)wi,

where L is the number of filters in the bank. The goal is to maximize the probability

of the bank. In order to maximize this probability density, it is easier to work with

the natural logarithm of f(yk), or

l , ln f(yk) = ln
L∑

i=1

f(yk | αi)e
ui − ln

L∑

i=1

eui .
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Taking the derivative of l with respect to ui yields

∂l

∂ui
= P (αi | yk)− wi, (3.24)

where

P (αi | yk) =
f(yk | αi)wi

f(yk)
.

Eq. (3.24) shows the direction of maximum growth of the function l. The update

is accomplished via

ui ← ui + λ
∂l

∂ui
, (3.25)

where λ is a learning rate parameter. The gating network gains can now be computed

with Eq. (3.23). The scalar ui can be interpreted as a measure of how likely the ith

filter is to be the best performing filter within the bank. The higher the value of ui,

the higher the likelihood that it is the best performing filter. Notice that ui cannot

be interpreted as a probability since ui ∈ ℜ. Eq. (3.25) can be rewritten as

ui ← ui + λ [P (αi | yk)− P (αi)]

which is intuitive in the following sense: the updated ui starts from the old value,

increases if the probability associated with the last measurement is larger than the

old probability, decreases otherwise. The larger the learning rate parameter, the

larger the current measurements are weighted. For λ = 0 the gains do not update,

for λ → ∞ the filter with higher probability after measurement yk will be given

probability one, all others will be given probability zero.

Once the filter weights are computed, the state estimate can be chosen to be

the state estimate associated with the winning filter, or it can be a weighted average
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of the L filters in the bank. In the latter case, the estimated state is given by

x̂ =
L∑

i=1

wix̂i.

The estimation error associated with the weighted state estimate is

e =

L∑

i=1

wi (x̂i − xi) =

L∑

i=1

wi ei,

and the estimation error covariance is

P = E
{
e eT

}
=

L∑

i=1

L∑

j=1

wiwj E
{
ei eT

j

}
=

L∑

i=1

L∑

j=1

wiwjPij ,

where Pii is the autocovariance of the ith filter, and Pij , i 6= j is the crosscovariance

between filters i and j. Recall that

e+
i ≃ e−i + KiHie

−
i + Ki η,

where η is the measurement noise which is a common quantity for all filters in the

bank. Then it follows that

P+
ij = (I−KiHi)P

−
ij(I−KjHj)

T + KiRKT
j ,

where R is the measurement noise autocovariance, which is also the cross-covariance

because the filters share the sensors. Similarly, the propagation is given by

Pij(t) = Φi(t, tk)P
+
ij(tk)Φj(t, tk)

T +

∫ t

tk

Φi(t, τ)Qij(τ)Φj(t, τ)T.
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To avoid this computation an upper bound of Pij can be used instead. Since

Pij + Pji < Pii + Pjj , i 6= j

a conservative bound can be formulated as follows

P =
L∑

i=1


w2

i Pii +
i−1∑

j=1

wiwj (Pij + Pji)




≤
L∑

i=1


w2

i Pii +
i−1∑

j=1

wiwj (Pii + Pjj)




=
L∑

i=1


wiPii




L∑

j=1

wj




 =

L∑

i=1

wiPii.
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Chapter 4

Dead-Reckoning Entry

Navigation

One of the most challenging and fascinating problems in spacecraft navigation is

atmospheric entry, or re-entry in case of Earth. This is the most dynamically inten-

sive phase and the poorest in available measurements. The high dynamics make di-

rect acquisition of external measurement problematic, ionization blackout prevents

ground signals from reaching the spacecraft, even communications with orbiting

satellites could be problematic and subject to blackouts.

While re-entry navigation is a challenging task, entry navigation to a distant

planet, such as Mars, is an even harder engineering problem. The aids that the

Space Shuttle has during its descent are much more than anything achievable on

Mars, at least in the medium to long term. Knowledge of the Mars atmosphere,

weather, and seasons is improving, but clearly is not as accurate and as easy to

predict as on Earth.

All these reasons make Mars entry navigation a very good study case that

has and keeps receiving a lot of attention. In this work a detailed study of entry

navigation algorithms will be perform, with particular emphasis given to how to

95



optimally introduce the estimation of the attitude. This chapter will use the Kalman

filter with uncompensated bias result derived in Section 3.2.

A typical Mars entry, descent, and landing scenario starts at entry interface

(EI) which is the time when the spacecrafts switches between the orbit phase to the

entry phase, the time when the spacecraft first encounters the sensible atmosphere.

In orbit, the spacecraft is mainly tracked by Earth-based resources, such as the Deep

Space Network. During EDL, the spacecraft is autonomous and must navigate using

on-board resources. Shortly after EI, the IMUs begin providing measurements of all

non-gravitational accelerations (i.e., those to due aerodynamic forces). The space-

craft makes a hypersonic/supersonic descent during which only on-board IMUs, and

possibly atmospheric measurements (such as stagnation point pressure), are avail-

able. The spacecraft is contained within its aeroshell. On future missions requiring

precision landing, it is during this upper atmospheric phase that the guidance will

be active. For Apollo, the GN&C system modulated the aerodynamic lift direction

by banking the capsule during the time in the Earth’s atmosphere. Future GN&C

algorithms for planetary missions may also modulate the angle of attack.

At about Mach 2+ (or an altitude of approximately 10 km), one or several

parachutes are deployed and the aeroshell is jettisoned, allowing ranging instruments

on-board to provide a measurement of the proximity to the ground. At this point,

more advanced sensors can also map the terrain. Once the heat shield is jettisoned

and the altimeter and velocimeter, now exposed to the external environment, provide

measurements to the navigation algorithm, the spacecraft is on the parachute and

cannot be actively guided using lift modulation. During this phase of EDL, the

navigation uncertainty is significantly reduced, but guidance cannot compensate for

any existing state errors. Unless there is an active parachute steering control or there

is a decision made to fire the engines on the chute, this is not an active guidance

phase.
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In the last hundreds of meters above the surface, the parachute is jettisoned

and the spacecraft lands on its own power. Once the hazard avoidance sensor is

available, guidance can actively be utilized to maneuver the vehicle. By this time

there is not much ability to make large excursions to hit a pinpoint landing. In

the case of MER, a landing bag system was deployed which resulted in a significant

bouncing at the final phase. MER did not use active guidance–it was not a precision

targeted landing.

The traditional approach to EDL navigation is to employ a filter that dead-

reckons the inertial measurement unit, i.e. the IMU measurements are used to

propagate the states and not to update them. The advantage of this scheme is

the total absence of a model for the aerodynamic forces that act during EDL. The

effectiveness of this navigation system to produce a precise navigated state during

entry depends almost entirely on the accuracy of the initial spacecraft state knowl-

edge. The magnitude of the IMU errors also contributes to the precision of the

estimated state. In this chapter algorithms for dead-reckoning navigation are de-

rived, and a detailed linear covariance analysis is developed for both the continuous

time measurement case (section 4.2) and the discrete time measurement case (sec-

tion 4.3). The original contribution of this analysis lays in the inclusion of attitude

estimation and its correlation to translational states estimation through the multi-

plicative approach, and in considering errors due to uncertainty on the location of

the measurement unit with respect to the spacecraft center of mass.

4.1 Models

In this section, common models for the continues and discrete measurement will be

presented. The dynamic model for entry navigation is the same for both classes of

measurements, as is the IMU model.
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4.1.1 Dynamics Modeling

The system dynamics in the inertially-fixed frame are given in the general form

ṙi = vi

v̇i = g(ri + Ti
cd

c) + Ti
ca

c

q̇ c
i =

1

2
Ω(ωc)qc

i .

All superscripts indicating the inertial or case frame will be dropped since no con-

fusion can arise because each quantity is consistently expressed in the same frame.

The vector r is the position of the IMU in the inertial frame, v the velocity of the

IMU in the inertial frame, q the quaternion expressing the rotation from inertial to

case, therefore T := Tc
i = T(q). The vector g is the acceleration due to gravity, d

is the unknown offset between the IMU and the center of mass which is expressed

in the case frame. The true non-gravitational acceleration represented in the IMU

case frame is denote by a, and ω is the relative angular velocity vector of the IMU

case frame with respect to the inertial frame expressed in the case frame.

4.1.2 IMU Error Model

The IMU unit contains both an accelerometer package and a gyro package. Only the

strapdown implementation of the IMU unit is considered here. The sensor model,

whether accelerometer or gyro, continuous-time or discrete-time, has the same form

and will be presented in this section.

The accelerometers and gyros produce measurements corrupted by random

errors (noise and biases), and systematic errors (misalignment and scale factors).

The IMU package produces a measure of the spacecraft non-gravitational accelera-

tions and rotation rate in the IMU case frame. Let ytrue be the “true” value of the

measurement, and ym be the measurement. The measurement error model can be
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formulated as

ym = (I3×3 + Γ)(I3×3 + S)(ytrue + b + η),

where

Γ ,




0 γxz −γxy

−γyz 0 γyx

γzy −γzx 0


 , S ,




sx 0 0

0 sy 0

0 0 sz


 , (4.1)

and (γyz, γzy, γzx, γxz, γxy, γyx) are nonorthogonality and axes misalignment errors,

b ∈ ℜ3 is the bias, (sx, sy, sz) are scale factor errors, and η ∈ ℜ3 is noise. The

nonorthogonality and axes misalignment errors, scale factor errors, and bias para-

meters are all modelled as zero-mean and random constants. The noise η is modelled

as a zero-mean white random process (or sequence).

Assuming that the various errors are “small,” then the following first-order

approximation can be made

(I3×3 + Γ)(I3×3 + S) ≈ I3×3 + Γ + S.

Defining

∆ , Γ + S (4.2)

yields the measurement model

ym = (I + ∆)(ytrue + b + ǫ). (4.3)

4.2 Dead-Reckoning Continuous IMU Measurements

The underlaying assumption of this scheme is that IMU measurements of nongrav-

itational acceleration am and of angular velocity ωm are continuously available.
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Then the estimated vehicle state at time t is obtained by numerically integrating

over the interval [t0, t] the following equations:

˙̂r = v̂ (4-4a)

˙̂v = g(r̂ + T̂Td̂) + T̂Tam (4-4b)

˙̂
q =

1

2
Ω(ωm)q̂ (4-4c)

with initial conditions

r̂(t0) = r̂0, v̂(t0) = v̂0, q̂(t0) = q̂0.

The estimate of the rotation matrix is

T̂ = T( q̂ ).

Integration of the navigation equations given in Eqs. (4-4a)–(4-4c) yields the nav-

igated spacecraft position, velocity, and attitude. Since dead-reckoning is essen-

tially an open-loop estimation process, the accuracy of the navigated state depends

strongly on knowledge of the initial spacecraft state. Also, any measurement errors

present in ωm and am will corrupt the navigation solution.

The estimation errors associated with the dead-reckoning navigation solu-

tion is comprised of the attitude estimation errors and the position and velocity

estimation errors. As can be seen in Eqs. (4-4a)–(4-4c), integration of the position

and velocity equations requires a transformation of the IMU accelerations from the

case frame to the inertial frame, which depends, in turn, on the spacecraft attitude

estimate. Therefore, any estimation error in the attitude estimate naturally couples

into the position and velocity navigation. The attitude estimation does not rely on

the position and velocity estimation, hence can be addressed independently.
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4.2.1 Attitude estimation errors

Define the multiplicative attitude error, δq, as

δq , q⊗ q̂−1 .

Computing δq̇ yields

δq̇ = q̇⊗ q̂−1 + q⊗ ˙̂
q−1 =

1

2
ω ⊗ δq− 1

2
δq⊗ ωm, (4.5)

where the pure quaternion ωm is defined as

ωm ,


ωm

0


 .

Assuming small angles, the vector part of the quaternion fully represents the attitude

δq ≃


δq

1


 ,

from Eq. (4.5) it follows that to first-order we have

δq̇ = −ωm × δq +
1

2
(ω − ωm).

It then follows from Eq. (4.3) that

δq̇ = −ωm × δq +
1

2

[
(I + ∆g)

−1(ωm − bg − ηg)− ωm

]
.

To first -order in ∆g, it follows that

(I + ∆g)
−1 ≃ I−∆g.
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Therefore, to first-order we have

δq̇ = −[ωm×]δq− 1

2

(
∆gωm + bg + ηg

)
.

With the given definition of Sg in Eq. (4.1), we can write

Sgωm = D(ωm)sg,

where

sg ,




sgx

sgy

sgz


 and D(ωm) =




ωmx 0 0

0 ωmy 0

0 0 ωmz


 . (4.6)

Similarly

Γgωm = N(ωm)γg , (4.7)

where

γg ,




γgxy

γgxz

γgyx

γgyz

γgzx

γgzy




and N(ωm) ,




−ωmz ωmy 0 0 0 0

0 0 ωmz −ωmx 0 0

0 0 0 0 −ωmy ωmx


 .

Therefore, it follows that

δq̇ = −[ωm×]δq− 1

2

[
D(ωm)sg + N(ωm)γg + bg + ηg

]
.
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For small angles, the rotation vector θ is approximately twice the vector part of the

quaternion, therefore eθ ≃ 2δq, and

ėθ = −[ωm×]eθ −D(ωm)sg −N(ωm)γg − bg − ηg. (4.8)

4.2.2 Position and velocity estimation errors

The position and velocity estimation error are defined to be

er , r− r̂ and ev , v − v̂.

Computing the time-derivative of er and ev yields, respectively,

ėr = ev, (4.9)

and

ėv = g(r + TTd)− g(r̂ + T̂Td̂) + TTa− T̂Tam, (4.10)

where d̂ is the estimate of the distance between the IMU and the center of mass.

Expanding gravity utilizing a Taylor series, and neglecting higher order terms, it

follows that

g(r + TTd)− g(r̂ + T̂Td̂) ≃ G(r̂ + T̂Td̂)
(
er + TTd− T̂Td̂

)
,

where

G(r̂ + T̂Td̂) ,
∂g

∂r

∣∣∣∣
r=r̂+T̂Td̂

.

Since the quaternion error is defined as δq , q ⊗ q̂ −1 and attitude matrices are

multiplied in the same order as quaternions, then δT = TT̂T, therefore

TTd− T̂Td̂ = T̂T δTT(d̂ + ed)− T̂Td̂,
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where ed , d− d̂. Since

δTT ≃ I3×3 + [eθ×], (4.11)

it follows that

TTd− T̂Td̂ ≃ T̂T[eθ×]d̂ + T̂Ted = −T̂T[d̂×]eθ + T̂T ed. (4.12)

Similarly,

TTa− T̂Tam = T̂T δTTa− T̂Tam,

and using Eq. (4.11), we obtain

TTa− T̂Tam ≃ T̂T[eθ×]am + T̂T (a− am) . (4.13)

Rearranging the terms in the IMU model given in Eq. (4.3) yields

a = (I + ∆a)
−1am − ba − ηa,

after some manipulation and using the fact that (I + ∆a)
−1 ≃ I −∆a for “small”

∆a, it follows that

a− am = −∆aam − ba − ηa. (4.14)

Substituting Eqs. (4.12)–(4.14) into Eq. (4.10) and neglecting higher-order terms

yields

ėv = G(r̂+ T̂Td̂)
(
er − T̂T[d̂×] eθ + T̂T ed

)
− T̂T(∆aam +ba + ηa)− T̂T[am×]eθ.

(4.15)

Keep in mind that in Eq. (4.15), the matrix ∆a is comprised of random constants,

ba is a random constant vector, ed is a random constant under the assumption of

ballistic entry (no fuel is expended), ηa is a random process, and eθ is the attitude
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estimation error that contributes directly to the uncertainty in the position (through

integration) and velocity estimation errors.

Consider the term ∆aam more closely. From the definition of ∆a given in

Eq. (4.2), we have

∆aam = (Γa + Sa)am.

With the definitions of Γa and Sa given in Eq. (4.1), ∆aam can also be written as

∆aam = D(am)sa + N(am)γa,

where definitions of D(·) and N(·) are equivalent to those of Eqs. (4.6) and (4.7)

are used.

Collecting the position, velocity, and attitude estimation error equations from

Eqs. (4.8)–(4.10), and writing them in matrix form yields the stochastic linear matrix

differential equation

ė = Fe + H1b + H2η, (4.16)

where

e ,




er

ev

eθ


 ∈ ℜ

9, b ,




sa

γa

ba

sg

γg

bg

ed




∈ ℜ27, η ,


 ηa

ηg


 ∈ ℜ6.
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The error state matrix F ∈ ℜ9×9 is

F =




O3×3 I3×3 O3×3

G(r̂ + T̂Td̂) O3×3 −G(r̂ + T̂Td̂)T̂T[d̂×]− T̂T[am×]

O3×3 O3×3 −[ωm×]


 ,

and the input mapping matrices H1 ∈ ℜ9×27 and H2 ∈ ℜ9×6 are

H1 ,




O3×12

−T̂T
[
D(am) N(am) I3×3

]

O3×12

O3×12

O3×12

−
[
D(ωm) N(ωm) I3×3

]

O3×3

G(r̂ + T̂Td̂)T̂T

O3×3


 ,

and

H2 ,




O3×3 O3×3

−T̂T O3×3

O3×3 −I3×3


 .

The components of b in Eq. (4.16) are the various random constant errors associated

with the IMU and c.g. location, where it assumed that

E {b} = 0,

and B ∈ ℜ27×27 is

B , E
{
bbT

}
.

The components of η(t) in Eq. (4.16) are the random components of the IMU errors,

where it is assumed that

E {η(t)} = 0 and E
{
η(t)η(τ)T

}
= V(t)δ(t− τ).

106



4.2.3 Estimation error covariance

Define the state transition matrix Φ(t, t0) ∈ ℜ9×9 associated with F as the solution

to the matrix differential equation

Φ̇(t, t0) = F
(
x̂(t)

)
Φ(t, t0), (4.17)

where

Φ(t0, t0) = I9×9.

The solution to Eq. (4.16) is

e(t) = Φ(t, t0)e(t0) +

[∫ t

t0

Φ(t, τ)H1(τ)dτ

]
b +

∫ t

t0

Φ(t, τ)H2(τ)η(τ)dτ, (4.18)

and with the estimation error covariance, P(t), defined as

P(t) = E
{
e(t)eT(t)

}
, (4.19)

the matrix P(t) can be compute using Eqs. (4.17)–(4.19) yielding

P(t) = Φ(t, t0)P(t0)Φ
T(t, t0) +

∫ t

t0

Φ(t, τ)H2(τ)V(τ)HT
2 (τ)ΦT(t, τ)dτ

+

[∫ t

t0

Φ(t, τ)H1(τ)dτ

]
B

[∫ t

t0

HT
1 (τ)ΦT(t, τ)dτ

]
.

As the first step towards a more implementable form of the error covariance, define

Vt ,

∫ t

t0

Φ(t, τ)H2(τ)V(τ)HT
2 (τ)ΦT(t, τ)dτ

Bt ,

[∫ t

t0

Φ(t, τ)H1(τ)dτ

]
.
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Then, taking the time-derivative of Vt and Bt yields

V̇t = F(t)Vt + VtF
T(t) + H2(t)V(t)HT

2 (t), (4.20)

and

Ḃt = F(t)Bt + H1(t), (4.21)

respectively. The appropriate initial conditions are Vt(t0) = O and Bt(t0) = O.

Once the values of Φ(t, t0), Vt and Bt have been computed via integration of

Eqs. (4.17), (4.20), and (4.21) from t0 to t, the error covariance P(t0) at time

t0 is mapped forward to time t via

P(t) = Φ(t, t0)P(t0)Φ
T(t, t0) + Vt + BtBBT

t .

4.2.4 Dead Reckoning Navigation

Suppose that the time history of the IMU observations, that is, am(t) and ωm(t)

are continuously available. Then, dead reckoning navigation, including computing

the associated state estimation error covariance, is the process of integrating over

the interval [t0, t] the following equations:

˙̂r = v̂

˙̂v = ĝ + T̂Tam

˙̂
q =

1

2
Ωq̂

Φ̇ = FΦ

Ḃt = FBt + H1

V̇t = FVt + VtF
T + H2VHT

2 ,
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and the estimation error covariance at time t0 is mapped forward to time t via

P(t) = ΦP0Φ
T + Vt + BtBBT

t ,

where ĝ , g(r̂ + T̂Td̂) is the modelled gravity, q̂ =
[
q̂T q̂

]T
, T̂ = T(q̂), and

Ω , Ω(ωm) =


−[ωm×] ωm

−ωT
m 0


 ,

T̂T , T(q̂)T = I3×3 + 2q̂[q̂×] + 2[q̂×]2,

F ,




O3×3 I3×3 O3×3

G(r̂ + T̂Td̂) O3×3 −G(r̂ + T̂Td̂)T̂T[d̂×]− T̂T[am×]

O3×3 O3×3 −[ωm×]


 ,

H1 ,




O3×12

−T̂T
[
D(am) N(am) I3×3

]

O3×12

O3×12

O3×12

−
[
D(ωm) N(ωm) I3×3

]

O3×3

G(r̂ + T̂Td̂)T̂T

O3×3


 ,

H2 ,




O3×3 O3×3

−T̂T O3×3

O3×3 −I3×3


 ,

D(am) =




amx 0 0

0 amy 0

0 0 amz


 , D(ωm) =




ωmx 0 0

0 ωmy 0

0 0 ωmz


 ,

N(am) =




−amz amy 0 0 0 0

0 0 amz −amx 0 0

0 0 0 0 −amy amx


 ,
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N(ωm) =




−ωmz ωmy 0 0 0 0

0 0 ωmz −ωmx 0 0

0 0 0 0 −ωmy ωmx


 ,

with initial conditions

r̂(t0) = r̂0, v̂(t0) = v̂0, q̂(t0) = q̂0, Φ(t0, t0) = I, P(t0) = P0, Vt(t0) = 0,

Bt(t0) = 0.

The sensor models are assumed known and represented by the matrices V(t) and

B.

4.2.5 Simulation Results

In the section, the sampled estimation error covariance obtained through Monte

Carlo analysis is compared with the linear covariance formulation. Verification of the

formulation is made corrupting the “true” measurements and the initial estimate and

through judicious use of Monte Carlo. The true trajectory is obtained from NASA’s

high fidelity SORT simulation. The trajectory follows that of NASA JPL 2005 Mars

mission (the mission was eventually cancelled). The true measurements are obtained

directly from the true trajectory and corrupted with noise whose characteristic are

shown in Table 4.1. In each of the 100 Monte Carlo runs, the random errors are

generated from a zero mean gaussian distribution with standard deviation shown in

Table 4.1. The 100 trajectories of the estimation error are then used to calculate the

sample covariance, which represent the true error characteristics of the estimated

state. The filter covariance represents the estimate of the error characteristics. By

matching the filter covariance with the sample covariance, we show that the filter

accurately represents the estimation error characteristics, hence the filter is well-

tuned.
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Accelerometer Noise ηa 10 [µg
√

s]
Accelerometer Bias ba 0.1 [mg]
Accelerometer Scale Factor sa 175 [ppm]
Accelerometer Misalignment γa 5 [arcsec]

Gyro Noise ηg 0.01 [deg/
√

hr]

Gyro Bias bg 0.05 [deg/hr]
Gyro Scale Factor sg 5 [ppm]
Gyro Misalignment γg 5 [arcsec]

Table 4.1: Continuous-time IMU errors

Figures 4.1–4.3 show samples of error evolution of the 100 runs (denoted by

red x’s), the sample covariance (blue lines), and the linear covariance formulation

evaluated (black lines). Figures 4.1–4.2 contain the inertial position and velocity

errors in the x, y, and z axis respectively. Figure 4.3 contains the three components

of the attitude error from estimated body frame to true body frame, the attitude

error is represented as a rotation vector.

111



0 100 200 300 400 500
−4

−3

−2

−1

0

1

2

3
x 10

4

Time (s)

E
st

im
at

io
n

 E
rr

o
r 

(m
)

(a) Inertial x axis

0 100 200 300 400 500
−5

−4

−3

−2

−1

0

1

2

3

4
x 10

4

Time (s)

E
st

im
at

io
n

 E
rr

o
r 

(m
)

(b) Inertial y axis

0 100 200 300 400 500
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

4

Time (s)

E
st

im
at

io
n

 E
rr

o
r 

(m
)

(c) Inertial z axis

Figure 4.1: Position estimation error. Error denoted by red x, sample covariance by
blue line, and calculated covariance by black line.
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Figure 4.2: Velocity estimation error. Error denoted by red x, sample covariance by
blue line, and calculated covariance by black line.
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(b) Second component
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(c) Third component

Figure 4.3: Attitude estimation error. Error denoted by red x, sample covariance
by blue line, and calculated covariance by black line.
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4.2.6 Generating the Accelerometer and Gyro Noises

Since the accelerometer and the gyro are dead-reckoned, white noise enters the

numerical integration of the estimated state in the simulation. In performing the

numerical integration, a white sequence has to be generated to replace the white

noise. In this work the white sequence covariance was generated as follows.

Consider the following stochastic differential equation

ẋ = Ax + η, (4.22)

where η is a zero-mean, white noise process, with spectral density Qspec. Eq. (4.22)

needs to be simulated, therefore it will be numerically integrated. For simplicity we

will consider a single step integrator and small ∆t. Each step is given by

xk+1 ≃ xk + Akxk∆t + ηk∆t, (4.23)

where ηk needs to be generated, for example from a gaussian distribution denoted

by

ηk ∼ N(0,Rk).

For small ∆t, we make the assumption that Φk ≃ I + Ak∆t. Therefore, the error

covariance associated with Eq. (4.23) is

Pk+1 = ΦkPkΦ
T
k + Qcov, Qcov = Rk∆t2.

It is well-known that

Q̇cov = AQcov + QcovA
T + Qspec,
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with Qcov(0) = O. To first order in ∆t, we obtain

Qspec = 2Rk∆t.

Hence the zero-mean sequence in Eq. (4.23) is be generated with covariance

Rk ≃
Qspec

2∆t
.

4.2.7 Alternative Approach

The equations summarized in § 4.2.4 are exactly those used in [77], and equivalent

to those in [78] that employed the additive approach. However, an alternative

approach is possible from the Kalman filter with uncompensated bias formulation

of Section 3.2.2. The equations of Table 3.2 can be used taking into account that

no measurement is available, i.e. K = O. Therefore the equations to be integrate

become

˙̂x = F(t) x̂; x̂(t0) = x̂0

L̇ = F(t)L + H1(t); L(t0) = O

Ṗ = F(t)P + PF(t) + H2(t)V(t)H2(t)
T + L(t)BH1(t)

T + H1(t)BL(t);

P(t0) = P0,

where F(t, B, V(t), H1(t), and H2(t) were defined in the previous sections. This

alternative approach is more convenient from a computational standpoint because it

does not required the integration of as many equations, but is absolutely equivalent

from a mathematical standpoint.
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4.3 Dead-Reckoning Discrete IMU Measurements

The underlying assumption of this scheme is that discrete IMU measurements of

∆v’s and ∆θ’s are available. The measurement model is given by Eq. (4.3) with

ytrue,k = ∆vk =

∫ tk

tk−1

a dt, and ytrue,k = ∆θk =

∫ tk

tk−1

ω dt,

for the accelerometer and gyro, respectively. Once the acceleration and the angular

velocity have been integrated by the sensor, their point-wise in time values are not

retrievable but only the average values are available. The standard procedure is

therefore to assume a and ω constant in the time step.

am,k ,
∆vm,k

∆t
, ωm,k ,

∆θm,k

∆t
, ∀t ∈ [tk−1, tk].

The quaternion expressing the rotation from the inertial frame to the case frame

at time tk−1 is denoted by qk−1. Define the quaternion ∆q expressing the rotation

during one time step as

∆q̂(t) , q̂(t)⊗ q̂−1
k−1 t ∈ [tk−1, tk].

Its evolution is given by

∆
˙̂
q(t) =

˙̂
q(t)⊗ q̂−1

k−1 =
1

2
Ω(ωm,k)∆q(t), t ∈ [tk−1, tk], ∆q(tk−1) = iq.

(4.24)

Let θ be the rotation vector parametrization of ∆q. Using this parametrization and

assuming small θ (i.e. small time step), Eq. (4.24) reduces to

˙̂
θ(t) = ωm,k − ωm,k × θ̂(t), t ∈ [tk−1, tk], θ̂(tk−1) = 0. (4.25)
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The solution of Eq. (4.25) is

θ̂(t) = ωm,k(t− tk−1).

Therefore, the discrete quaternion update is given by

q̂k = q(∆θm,k)⊗ q̂k−1,

where

q(∆θm,k) = ∆q̂(tk) =


sin

(
1
2‖∆θm,k‖

)
∆θm,k

/
‖∆θm,k‖

cos(1
2‖∆θm,k‖)


 .

The estimate of the velocity evolves as

˙̂v(t) = g(r̂ + T̂(t)Td̂) + T̂(t)Tam,k. t ∈ [tk−1, tk], (4.26)

The estimate of the rotation matrix is

T̂(t)T = T
(
q̂(t)

)T
= T( q̂k−1)

T T(∆q̂(t) )T, t ∈ [tk−1, tk],

and to first order we obtain

∆T̂(t) , T(∆q̂(t) ) ≃ I3×3 − [θ̂(t)×], t ∈ [tk−1, tk].

Using Taylor series, we expand the gravity term

ĝ(t) , g(r̂(t) + T̂(t)Td̂) ≃ g
(
r̂k−1 + T̂(t)Td̂

)

≃ g
(
r̂k−1 + T̂T

k−1d̂
)

+
∂g(r)

∂r

∣∣∣∣
r̂k−1+T̂T

k−1
d̂

(
T̂(t)T − T̂k−1

)
d̂

= ĝk−1 + Ĝk−1T̂
T
k−1[θ̂(t)×]d̂, ∀ t ∈ [tk−1, tk], (4.27)
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this can be interpreted as assuming that the acceleration of gravity at the IMU

location is constant over the time step. The contribution of Ĝk−1[θ̂(t)×]d̂ is small

but will be kept for completeness. Using Eq. (4.27), we rewrite Eq. (4.26) as

˙̂v(t) = ĝk−1 − Ĝk−1T̂
T
k−1[d̂×] θ̂(t) + T̂T

k−1∆T̂(t)am,k (4.28)

≃ ĝk−1 + T̂T
k−1am,k −

(
Ĝk−1T̂

T
k−1[d̂×] + T̂T

k−1[am,k×]
)

θ̂(t), t ∈ [tk−1, tk],

Integrating Eq. (4.28) yields

v̂k = v̂k−1 + T̂T
k−1∆vm,k + ĝk−1∆t− 1

2

(
Ĝk−1T̂

T
k−1[d̂×] + T̂T

k−1[am,k×]
)

∆θm,k∆t.

(4.29)

Integrating Eq. (4.29) yields the estimate position

r̂k = r̂k−1 + v̂k−1∆t +
1

2
ĝk−1∆t2 +

1

2
T̂T

k−1∆vm,k∆t+

− 1

6

(
Ĝk−1T̂

T
k−1[d̂×] + T̂T

k−1[am,k×]
)

∆θm,k∆t2.

In summary, the estimated states are obtained via

r̂k = r̂k−1 + v̂k−1∆t +
1

2
T̂T

k−1

(
I3×3 +

1

3
[∆θm,k×]

)
∆vm,k∆t+ (4-30a)

+
1

2

(
ĝk−1 −

1

3
Ĝk−1T̂

T
k−1[d̂×] ∆θm,k

)
∆t2

v̂k = v̂k−1 + T̂T
k−1

(
I3×3 +

1

2
[∆θm,k×]

)
∆vm,k+ (4-30b)

+

(
ĝk−1 −

1

2
Ĝk−1T̂

T
k−1[d̂×]∆θm,k

)
∆t

q̂k = q(∆θm,k)⊗ q̂ k−1. (4-30c)

If it is desired to have a more accurate representation of the gravitational accel-

eration, the time step can be divided to use a higher-order method, each sub-step
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will employ an equation similar to Eqs. (4-30a)–(4-30c). Then all contributions will

be added together in a weighted average. Notice that only the contribution due

to gravity will be represented more accurately. Relying solely on the IMU integral

measurements, point-wise in time quantities are not available and discretization er-

rors are unavoidable. A higher order-method would be preferable if the IMU was

providing measurements at a low frequency; normally the IMU can function at 10

Hertz or higher, which makes the assumption of constant gravitational acceleration

in between measurements very reasonable.

Solution of the navigation equations given in Eqs. (4-30a)–(4-30c) yields the

navigated spacecraft position, velocity, and attitude. As in the case of continuous-

time measurements, the accuracy of this open-loop navigation architecture is strongly

dependent on the knowledge of the initial spacecraft state. Also, measurement errors

present in ∆θk and ∆vk are not filtered, and will corrupt the navigation solution

directly.

In order to solve for position and velocity it is necessary to rotate the IMU

accelerations from the case frame to the inertial frame. Therefore, any estimation

error in the attitude estimate affects the position and velocity estimate. The attitude

estimation does not rely on the position and velocity estimation, hence can be

addressed independently.

4.3.1 Attitude estimation errors

We assume that the attitude propagates according to

qk = q(∆θtrue,k)⊗ qk−1. (4.31)
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This is only an approximation but the discretization error will be compensated via

process noise. Define the multiplicative attitude error as

δq , q⊗ q̂−1.

Using Eqs. (4-30c) and (4.31), we obtain

δqk = q(∆θtrue,k)⊗ qk−1 ⊗ q̂−1
k−1 ⊗ q(∆θm,k)

−1

= q(∆θtrue,k)⊗ δqk−1 ⊗ q(∆θm,k)
−1

= q(∆θtrue,k)⊗ q(∆θk)
−1 ⊗ q(∆θk)⊗ δqk−1 ⊗ q(∆θm,k)

−1,

which is equivalent to

δqk = q(∆θtrue,k)⊗ q(∆θm,k)
−1 ⊗




T(∆θm,k) 0

0T 1


 δqk−1


 . (4.32)

Assuming small angles, the vector component of the quaternion fully represents the

attitude since

δq ≃


δq

1


 , q(∆θtrue,k)⊗ q(∆θm,k)

−1 ≃




1
2 (∆θtrue,k −∆θm,k)

1


 .

From Eq. (4.32), approximating to first-order yields

δqk = T(∆θm,k) δqk−1 +
1

2
(∆θtrue,k −∆θm,k) .

It then follows from Eq. (4.3) that

δqk = T(∆θm,k) δqk−1 +
1

2

[
(I + ∆g)

−1∆θm,k − bg − ηg,k −∆θm,k

]
.
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To first-order in ∆g we have

(I + ∆g)
−1 ≃ I−∆g.

It then follows that to first-order

δqk = T(∆θm,k) δqk−1 −
1

2

(
∆g ∆θm,k + bg + ηg,k

)
.

With the given definition of Sg in Eq. (4.1), we have the following relationship

Sg∆θm,k = D(∆θm,k)sg,

where

sg ,
[
sgx sgy sgz

]T
,

and D(·) is defined in Eq. (4.6). Similarly, we have

Γg∆θm,k = N(∆θm,k)γg ,

where

γg ,
[
γgxy γgxz γgyx γgyz γgzx γgzy

]T
,

and N(·) is defined in Eq. (4.7). For small angles the rotation vector θ is ap-

proximately twice the vector part of the quaternion, therefore it follows that the

estimation error represented with the rotation vector is given by

eθ,k = T(∆θm,k)eθ,k−1 −D(∆θm,k)sg −N(∆θm,k)γg − bg − ηg,k. (4.33)
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4.3.2 Position and velocity estimation errors

The assumption made in Eq. (4.31) is equivalent to assuming constant angular

velocity in between measurements. Similarly the gravitational and nongravitational

accelerations will be assumed constant during the time step. These assumptions lead

to equations for the propagation of the true state equivalent to Eqs. (4-30a)–(4-30c)

rk = rk−1 + vk−1∆t +
1

2
gk−1∆t2 +

1

2
TT

k−1

(
I3×3 +

1

3
[∆θtrue,k×]

)
∆vtrue,k∆t+

− 1

6
Gk−1T

T
k−1[d×]∆θtrue,k∆t2

vk = vk−1 + gk−1∆t + TT
k−1

(
I3×3 +

1

2
[∆θtrue,k×]

)
∆vtrue,k+

− 1

2
Gk−1T

T
k−1[d×]∆θtrue,k∆t.

To compensate for the error introduced by the discretization, process noise will be

added. The position and velocity estimation error are defined to be

er,k , rk − r̂k and ev,k , vk − v̂k.

Computing er,k yields

er,k = er,k−1 + ev,k−1∆t +
1

2
(gk−1 − ĝk−1)∆t2 − 1

6
Gk−1T

T
k−1[d×]∆θtrue,k∆t2+

+
1

6
Ĝk−1T̂

T
k−1[d̂×]∆θm,k∆t2 − 1

2
T̂T

k−1

(
I3×3 +

1

3
[∆θm,k×]

)
∆vm,k∆t+

+
1

2
TT

k−1

(
I3×3 +

1

3
[∆θtrue,k×]

)
(∆vtrue,k)∆t,

vector d̂ is the estimate of the distance between the IMU and the center of mass.

Expanding gravity, utilizing a Taylor series and neglecting higher order terms, it
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follows that

g(r + TTd)− g(r̂ + T̂Td̂) ≃ Ĝ
(
er + TTd− T̂Td̂

)
,

where

Ĝ ,
∂g

∂r

∣∣∣∣
r=r̂+T̂Td̂

.

Since the quaternion error is defined as δq , q ⊗ q̂ −1 and attitude matrices are

multiplied in the same order as quaternions, then δT = TT̂T. Therefore,

TTd− T̂Td̂ = T̂T δTT(d̂ + ed)− T̂Td̂,

where ed , d− d̂. To first-order it follows that

δTT ≃ I3×3 + [eθ×].

Then,

TTd− T̂Td̂ ≃ T̂T[eθ×]d̂ + T̂Ted = −T̂T[d̂×]eθ + T̂T ed.

Similarly,

TT∆vtrue − T̂T∆vm = T̂T δTT∆vtrue − T̂T∆vm,

hence, to first-order, we have

TT∆vtrue − T̂T∆vm ≃ T̂T[eθ×]∆vm + T̂T (∆vtrue −∆vm) .
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Finally the position estimation error is obtained to first-order as

er,k = er,k−1 + ev,k−1∆t− 1

2
T̂T

k−1

[(
I3×3 +

1

3
[∆θm,k×]

)
∆vm,k×

]
eθ∆t (4.34)

+
1

2
Ĝk−1

(
er +

1

3
T̂T[(d̂×∆θm,k)×]eθ +

1

3
T̂T [∆θm,k×]ed

)
∆t2+

+
1

2
T̂T

k−1

(
I3×3 +

1

3
[∆θm,k×]

)
(∆vtrue,k −∆vm,k) ∆t− 1

6
Ûk−1er∆t2+

− 1

6

(
T̂T

k−1[∆vm,k×] + Ĝk−1T̂
T
k−1[d̂×]∆t

)
(∆θtrue,k −∆θm,k)∆t.

Following a similar pattern, the velocity estimation error is given by

ev,k = ev,k−1 + Ĝk−1er∆t− T̂T
k−1

[(
I3×3 +

1

2
[∆θm,k×]

)
∆vm,k×

]
eθ (4.35)

+
1

2
Ĝk−1T̂

T
([(

d̂×∆θm,k

)
×
]
eθ + [∆θm,k×]ed

)
∆t+

+ T̂T
k−1

(
I3×3 +

1

2
[∆θm,k×]

)
(∆vtrue,k −∆vm,k)−

1

2
Ûk−1er∆t+

− 1

2

(
T̂T

k−1[∆vm,k×] + Ĝk−1T̂
T
k−1[d̂×]∆t

)
(∆θtrue,k −∆θm,k).

In Eqs. (4.34) and (4.35), the ij component of matrix Û is defined as

Û(ij) ,

3∑

l=1

∂2g(i)

∂r(j) ∂r(l)
u(l)

∣∣∣∣∣
r=r̂+T̂Td̂

u , T̂T
k−1[d̂×]∆θm,k.

This term arises from the difference in gravitational acceleration between the center

of mass and the IMU location, and should be neglected in any practical application.

Rearranging the terms in the IMU model given in Eq. (4.3) yields

∆vm = (I + ∆a)
−1∆vtrue − (ba + ηa),
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where, after some manipulation and using the fact that for “small” ∆a, (I+∆a)
−1 ≃

I−∆a, we have

∆vtrue −∆vm = −∆a∆vm − (ba + ηa).

Like in the continuous-time case, matrix ∆a is comprised of random constants, ba

is a random constant vector, ed is a random constant if entry is ballistic, and η is a

random sequence. From the definition of ∆a given in Eq. (4.2), we have

∆a∆vm = (Γa + Sa) ∆vm.

With the definitions of Γa and Sa given in Eq. (4.1), ∆aak can also be written as

∆a∆v = D(∆v)sa + N(∆v)γa,

where definitions equivalent to those of Eqs. (4.6) and (4.7) are used.

Collecting the position, velocity, and attitude estimation error equations from

Eqs. (4.33)–(4.35), and writing in matrix form yields the stochastic linear matrix

difference equation

ek = Fk−1ek−1 + H1,k−1 b + H2,k−1 ηk−1, (4.36)
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where

ek ,




er,k

ev,k

eθ,k


 ∈ ℜ

9, b ,




sa

γa

ba

sg

γg

bg

ed




∈ ℜ27, ηk−1 ,


 ηa,k

ηg,k


 ∈ ℜ6.

The error state matrix F ∈ ℜ9×9 is

Fk =




I3×3 + 1
2

(
Ĝk−1 − 1

3Ûk−1

)
∆t2 I3×3∆t Frθ,k(

Ĝk−1 − 1
2Ûk−1

)
∆t I3×3 Fvθ,k

O3×3 O3×3 Fθθ,k


 (4.37)

Frθ,k =
1

2

{
1

3
Ĝk−1T̂

T[(d̂×∆θm,k)×]∆t+

−T̂T
k−1

[(
I3×3 +

1

3
[∆θm,k×]

)
∆vm,k×

]}
∆t

Fvθ,k =
1

2
Ĝk−1T̂

T
[(

d̂×∆θm,k

)
×
]
∆t− T̂T

k−1

[(
I3×3 +

1

2
[∆θm,k×]

)
∆vm,k×

]

Fθθ,k =T(∆θm,k),

and the input mapping matrices are H1,k ∈ ℜ9×27 and H2,k ∈ ℜ9×6 are

H1,k−1 =
[
H1a,k−1 [DNIv] H1g,k−1 [DNIθ] H1d,k−1

]
(4.38)
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[DNIv] =
[
D(∆vm,k) N(∆vm,k) I3×3

]

[DNIθ] =
[
D(∆θm,k) N(∆θm,k) I3×3

]

H1a,k−1 =




−1
2T̂

T
k−1

(
I3×3 + 1

3 [∆θm,k×]
)
∆t

−T̂T
k−1

(
I3×3 + 1

2 [∆θm,k×]
)

O3×3




H1g,k−1 =




1
6

(
T̂T

k−1[∆vm,k×] + Ĝk−1T̂
T
k−1[d̂×]∆t

)

1
2

(
T̂T

k−1[∆vm,k×] + Ĝk−1T̂
T
k−1[d̂×]∆t

)

−I3×3




H1d,k−1 =




1
6Ĝk−1T̂

T[∆θm,k×]∆t2

1
2Ĝk−1T̂

T[∆θm,k×]∆t

O3×3


 ,

and

H2,k−1 =
[
H2a,k−1 H2g,k−1

]
(4.39)

H2a,k−1 =




−1
2T̂

T
k−1

(
I3×3 + 1

3 [∆θm,k×]
)
∆t

−T̂T
k−1

(
I3×3 + 1

2 [∆θm,k×]
)

O3×3




H2g,k−1 =




1
6

(
T̂T

k−1[∆vm,k×] + Ĝk−1T̂
T
k−1[d̂×]∆t

)
∆t

1
2

(
T̂T

k−1[∆vm,k×] + Ĝk−1T̂
T
k−1[d̂×]∆t

)

−I3×3


 .

The components of b in Eq. (4.36) are the various random constant errors associated
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with the IMU, where it assumed that

E {b} = 0,

and B ∈ ℜ27×27 is

B , E
{
bbT

}
.

The components of ηk in Eq. (4.36) are the non-constant random components of

the IMU errors, where it is assumed that

E {ηk} = 0 and E
{
ηiη

T
j

}
= Viδij .

Finally, it is assumed that E
{
ηkb

T
}

= O for all k.

The error covariance in the IMU dead-reckoning case can be computed with

the technique developed in § 3.2.1. Only the propagation phase needs to be computed

since no updates are performed. The following substitutions need to be made from

the equations in Table 3.1.

Qk ← H2,kVkH
T
2,k, Υk ← H1,k.

4.3.3 Dead Reckoning Navigation

Suppose that the IMU observations, ∆vm,k and ∆θm,k are available. Then, dead

reckoning navigation, including computing the associated state estimation error co-

variance, is the process of solving the following equations at each time tk an IMU
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observation is available:

r̂k = r̂k−1 + v̂k−1∆t +
1

2
T̂T

k−1

(
I3×3 +

1

3
[∆θm,k×]

)
∆vm,k∆t+

+
1

2

(
ĝk−1 −

1

3
Ĝk−1T̂

T
k−1[d̂×] ∆θm,k

)
∆t2

v̂k = v̂k−1 + T̂T
k−1

(
I3×3 +

1

2
[∆θm,k×]

)
∆vm,k+

+

(
ĝk−1 −

1

2
Ĝk−1T̂

T
k−1[d̂×]∆θm,k

)
∆t

q̂k = q(∆θm,k)⊗ q̂ k−1

Lk = Fk−1Lk−1 + Hk−1

Pk = Fk−1Pk−1F
T
k−1 + Jk−1Vk−1J

T
k−1 + Hk−1BHT

k−1 + Fk−1Lk−1BHT
k−1+

+ Hk−1BLT
k−1F

T
k−1.

where ĝk , g(r̂k + T̂T
k d̂) is the modeled gravity, q̂ =

[
q̂T q̂

]T
and

T̂T
k , T(q̂)T = I3×3 + 2q̂k[q̂k×] + 2[q̂k×]2,

where F, H1, and H2 are given in Eqs. (4.37)–(4.39). The initial conditions are

r̂0 = r̂(t0), v̂0 = v̂(t0), q̂0 = q̂(t0), P0 = P(t0), L0 = 0.

The IMU provides discrete observations ∆vm,k and ∆θm,k, and their error models

are assumed known and represented by the matrices Vk and B.

4.3.4 Simulation Results

The simulation with which the discrete algorithm is tested, uses the same trajectory

and the same philosophy as the continuous-time case. The only differences (besides

the navigation equations) are the true measurements, which are now ∆v’s and ∆θ’s,
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and their errors, which are given in Table 4.2.

Accelerometer Noise ηa 10 [µg s]
Accelerometer Bias ba 0.01 [mg s]
Accelerometer Scale Factor sa 175 [ppm]
Accelerometer Misalignment γa 5 [arcsec]
Gyro Noise ηg 0.01 [arcsec]

Gyro Bias bg 0.05 [arcsec]
Gyro Scale Factor sg 5 [ppm]
Gyro Misalignment γg 5 [arcsec]

Table 4.2: Discrete-time IMU errors

Figures 4.4–4.6 show samples of error evolution in each of the 100 runs (de-

noted by red x), the sample covariance (blue lines), and the linear covariance for-

mulation evaluated (black lines). Figures 4.4–4.5 contain the inertial position and

velocity errors in the x, y, and z axis respectively. Figure 4.6 contains the three

components of the attitude error from estimated body frame to true body frame,

the attitude error is represented as a rotation vector. As in the continuous-time

case, the sample covariance and the filter covariance match, demonstrating that the

linear covariance formulation correctly represent the estimation error.
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(b) Inertial y axis
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(c) Inertial z axis

Figure 4.4: Position estimation error. Error denoted by red x, sample covariance by
blue line, and calculated covariance by black line.
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(a) Inertial x axis
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(b) Inertial y axis

0 100 200 300 400 500
−100

−80

−60

−40

−20

0

20

40

60

80

100

Time (s)

E
st

im
at

io
n

 E
rr

o
r 

(m
/s

)

0 100 200 300 400 500
−100

−80

−60

−40

−20

0

20

40

60

80

100

Time (s)

E
st

im
at

io
n

 E
rr

o
r 

(m
/s

)

(c) Inertial z axis

Figure 4.5: Velocity estimation error. Error denoted by red x, sample covariance by
blue line, and calculated covariance by black line.
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(b) Second component
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Figure 4.6: Attitude estimation error. Error denoted by red x, sample covariance
by blue line, and calculated covariance by black line.
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4.4 Conclusions

In this chapter, the algorithms for precise dead-reckoning navigation were derived

to include the state estimation error covariance computation. The underlying error

equations were linearized and utilized to develop a formulation of the approximate

state estimation error covariance. The correlation of attitude errors with position

and velocity errors was explicitly derived. The resulting set of dead-reckoning rela-

tionships can be used as an independent verification of Monte Carlo analysis during

the verification of the entry filter.

The importance of this example lays in the fact that the vast majority of

spacecraft applications use the IMU to propagate the states. During Mars entry, the

IMU is the only available sensor, therefore the dead-reckoning approach necessarily

results in an increase of the estimates uncertainty. Usually, unmodeled sensors bi-

ases are handled by heuristically increasing the filter’s tuning parameters: the noise

covariances (or spectral densities). While this approach has proven to be reliable,

it necessarily introduces an additional level of approximation, which might be in-

compatible with pin-point landing requirements. The proposed approach explicitly

takes into account the effects of uncompensated biases, hence leaving linearization

as the only approximation made.

In the phases of EDL following entry, this explicitly accounting for the un-

compensated biases errors might not be necessary. One reason is that the availability

of other sensors will drive the uncertainty down, and the updates will reduces the

effect of the bias errors accumulating through then numerical integration. State

updates increase the computational demand of the navigation system, therefore it

might be preferable to avoid the added computational complexity necessary to ac-

count for the uncompensated biases.

The numbers shown in the plots of this chapter are highly variable depend-

ing on the mission and the hardware. What is important then, is not the numbers
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themselves but the tendencies. It can be seen that the attitude uncertainty stays rel-

atively constant, while the translational uncertainty grows significantly. The reason

is readily explained: only gyro errors contribute to attitude uncertainty. Accelerom-

eter errors, unmodeled gravitational acceleration, and attitude estimation errors, all

contribute to the uncertainty on translational states. Therefore is the translational

states estimation that most needs to be improved, that will be the topic of next

chapter. In chapter 5 the accelerometer will be filtered in a model-based Kalman

filter to improve the estimate of translation states. This approach is often consider

non-practical because the uncertainty on Mars atmosphere is too high to model.

Our approach to avoid that situation is to use measurement taken from an actual

mission, NASA’s Mars Exploration Rovers. Since we do not generate the “truth”,

we are not able to match the “true” model with the filter model, hence the high

uncertainly of the real mission is correctly replicated.
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Chapter 5

Adaptive Entry Navigation

The IMU dead-reckoning approach presented in the previous chapter is the most

widely used because of its simplicity. Dead-reckoning is a common procedure not

only in EDL applications, but in other areas of aerospace engineering, such as missile

and aircraft navigation. Mars entry possibly makes an even stronger case for dead-

reckoning than Earth-based applications, because the knowledge of the atmospheric

conditions is limited, therefore the process noise introduced by aerodynamic forces

modeling would most likely be greater than the IMU measurement error. If the

propagation model is poor, the Kalman filter should rely heavily on the measure-

ments to formulate its estimate. This occurrence would result in a rapid increase of

the covariance during propagation, followed by a big decrease after the update. A

very precise measurement (with respect to the process noise) can cause filter diver-

gence because of the linearization approximation. The estimation error covariance

in the Kalman filter is obtained through a linear model, justified by the fact that the

estimation error should be small. However, if the estimation error covariance drops

abruptly the estimation error might not be able to “follow” the covariance, causing

divergence of the filter. These implementation problems are very well known [4] and

are solved by “tuning” the filter. Therefore, the possible performance advantages
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of the filter approach are best demonstrated through Monte Carlo analysis. Other

advantages, such as data drop-out robustness, do not need to be demonstrated.

In this work, the IMU measurements are not generated through a simulation,

but are observation taken from the Mars Exploration Rover mission. The advantage

of using real measurements is that the true atmospheric parameters are unknown,

therefore the high uncertainties of the actual mission are well simulated since no

“true” atmospheric model exists. The disadvantage is that the actual trajectory is

also unknown, therefore the error generation is not exact. In this work, a rough best

estimated trajectory (BET) was employed as the “true” state.

The approach taken here in the EKF development is to update the position

and velocity estimates with the accelerometer measurement, and to dead-reckon

the attitude estimate. The reasoning is as follows. Once through the upper at-

mosphere hypersonic/supersonic phase, other EDL sensors (such as the altimeter

and velocimeter) will be available to provide information about translational states.

Those measurements can naturally be fused together with the accelerometer mea-

surements within the EKF. On the other hand, it is assumed that there are no

other attitude sensors available post-parachute deploy, hence the gyro is the only

sensor capable of providing attitude information. There is no tangible benefit to

updating the attitude estimate with the gyro data unless accompanied by an at-

titude dynamics model of sufficient complexity to capture the rotational motion

of the spacecraft. The additional complexity of the navigation algorithm due to

the attitude dynamics model was deemed to be too great for the potential bene-

fit. If an external attitude sensor should in fact become available, then this issue

would necessarily be re-visited. Some information on the attitude could be inferred

from the accelerometer measurement, however a single vector measurement is not

enough to estimate the attitude, therefore the accuracy of the estimate will depend

strongly on the initial estimate – exactly like in the dead-reckoning approach. Some
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observability would be recovered if the inertial orientation of the non-gravitational

acceleration would substantially change during entry, a fact that does not happen

during MER entry. MER entry trajectory is without lift, therefore the aerodynamic

acceleration is always along the velocity vector. Also, if the information provided by

the accelerometer were used to update both the translational states and attitude,

the translational state estimate would degrade. The optimal way to update only

part of the state is to consider the correlation.

5.1 Partitioning the Kalman Filter State

Suppose that the n× 1 state vector x is partitioned into z and q as

x =


z

q


 ,

where z is (n−p)×1 and q is p×1. The estimation error associated with each parti-

tion will be minimized independently. The Kalman gain is partitioned appropriately

as

K =


Kz

Kq


 ,

where Kz is (n−p)×m, Kq is p×m, m is the dimension of the measurement vector

y. At measurement time tk, a linear update is assumed, where

x̂+
k = x̂−

k +


Kz,k

Kq,k


 (yk − ŷk).

The measurement model is

yk = Hkxk + ηk = Hk(x̂
−
k + e−k ) + ηk = ŷk + Hke

−
k + ηk.
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The estimation error covariance before the update can be partitioned as follows

P−
k =

[
P1,k P2,k

]
=


P

−
zz,k P−

zq,k

P−
qz,k P−

qq,k


 ; P2,k ∈ ℜn×p.

Note that

KkHkP
−
k =


Kz,kHkP1,k Kz,kHkP2,k

Kq,kHkP1,k Kq,kHkP2,k




KRkK
T =


Kz,kRkK

T
z,k Kz,kRkK

T
q,k

Kq,kRkK
T
z,k Kq,kRkK

T
q,k


 .

The partitioned a posteriori covariance is

P+
zz,k = P−

zz,k −Kz,kHkP1,k −PT
1,kH

T
k KT

z,k + Kz,kWkK
T
z,k

P+
zq,k = P−

zq,k −Kz,kHkP2,k −PT
1,kH

T
k KT

q,k + Kz,kWkK
T
q,k

P+
qq,k = P−

qq,k −Kq,kHkP2,k −PT
2,kH

T
k KT

q,k + Kq,kWkK
T
q,k

Wk = HkPkH
T
k + Rk.

The matrix P+
zz,k is only a function of Kz,k, and P+

qq,k is only a function of Kq,k.

Also, the trace of P+
k is equal to the sum of the traces of P+

zz,k and P+
qq,k. The two

facts imply that the minimum of the sum is equal to the sum of the minima, or

min
Kk

(
traceP+

)
= min

Kz,k,Kq,k

(
traceP+

zz,k + traceP+
qq,k

)

= min
Kz,k

(
traceP+

zz,k

)
+ min

Kq,k

(
traceP+

qq,k

)
.

The optimal gains are

Kz,k = PT
1,kH

T
k W−1

k Kq,k = PT
2,kH

T
k W−1

k . (5.1)
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As was expected, there is no difference in calculating the gains independently or

together, because the correlation is taken into account in P1,k and P2,k:

Kk =


Kz,k

Kq,k


 =


P

T
1,k

PT
2,k


HT

k W−1
k = P−

k HT
k W−1

k .

There is no advantage in computing the gain via the partition because the full

residuals covariance matrix still has to be inverted. Assume, however, that the

updates of q and x are different. For example q is dead-reckoned. In this case, the

optimal gain can be derived via the partition since the two minimizations will be

different. The solution will not be a global optimum, but will be the optimum of all

solutions that satisfy the constraint that q is not updated.

If q is to be dead-reckoned, then Kq,k = Op×m and Kz,k is found with

Eq. (5.1). The updated states are

z+
k =z+

k + Kz,k(yk − ŷk)

q+
k =q−

k .

The updated covariance is

P+
zz,k =P−

zz,k −Kz,kHkP1,k −P1,kH
T
k KT

z,k + Kz,kWkK
T
z,k = P−

zz,k −Kz,kWkK
T
z,k

Wk =HkPkH
T
k + Rk

P+
zq,k =P−

zq,k −Kz,kHkP2,k

P+
qq,k =P−

qq,k.

Notice that the cross-covariance P+
zq,k is updated. This approach guarantees that

z+ is optimum out of all solutions that dead-reckon q. The result is identical

to computing the total gain with the conventional algorithm, and to force the q
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partition of the gain to zero, which is the bases of the consider filter [73, 74].

5.2 Single Extended Kalman Filter

In this section, various aspects of the extended Kalman filter are presented. It will

be shown that is possible to improve state knowledge using an EKF processing IMU

data. The EKF also serves as the main computational building block of the filter

bank. Every filter in the bank will be of the form presented in this section, the only

difference will be in the realization of the atmospheric model.

Given that the IMU is the only available sensor during the upper atmospheric

hypersonic/supersonic phase of the EDL, the dead-reckoning approach discussed in

Chapter 4 uses only state integration with given initial conditions. The accuracy

of the initial conditions depend on the quality of the spacecraft tracking prior to

entry interface. In the terminology of Kalman filtering, dead-reckoning represents

state propagation only without any state updates. During the state propagation,

the accuracy of the estimate degrades due to random and systematic errors in the

IMU. Dependent on the accuracy of the IMU, the state estimation error covariance

necessarily increases. Using a model-based EKF approach, the goal is to improve the

state estimate sufficiently during the state update to compensate for atmospheric

and IMU modelling errors. It is expected that only the estimate of velocity will be

substantially improved over time, because position is very poorly observable from

aerodynamic acceleration measurements. As the velocity estimation error decreases

with time, filtering the IMU data will lead to better overall navigation than with

dead-reckoning.
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5.2.1 Filter Model

The translation and attitude motion of the spacecraft are modeled via

ṙ = v

v̇ = g(r) + a(r,v) + ν

q̇ =
1

2
Ω(ω)q,

where g is the gravitation acceleration, a is the nongravitational acceleration. Unlike

the dead-reckoning case, here a(r,v) is not measured by the IMU but instead is

modeled by the filter. All translational quantities are expressed in the inertial frame

i, and the angular velocity ω is expressed in the body frame b. Under the standard

Kalman filter assumptions, the disturbance ν is assumed to be a zero-mean, white

noise process. The EKF propagation equations are given by

˙̂r = v̂

˙̂v = g(r̂) + a(r̂, v̂)

˙̂
q =

1

2
Ω(ωm)q̂,

where ωm is the gyro measurement. Both the gyro and accelerometer measurements

were partially compensated using estimates of their biases obtained in orbit. The

IMU gyro measurement is given by

ωm = (I3×3 + Γg)(I3×3 + Sg)(ω + bg + ηg).

Unlike the previous chapter, all errors will be accounted as a single source

ωm = ω + (Γg + Sg + ΓgSg)ω + (I3×3 + Γg)(I3×3 + Sg)(bg + ηg),
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be re-defining ηg

ηg ← (Γg + Sg + ΓgSg)ω + (I3×3 + Γg)(I3×3 + Sg)(bg + ηg).

Here, the gyro model reduces to

ωm = ω + ηg.

An analogous procedure is performed on the accelerometer. There are good reasons

to make those simplifications. Since the true measurements are from a mission and

the errors were partially compensated is not possible to know the distribution of

the individual errors. Only one set of IMU measurements is available, therefore

statistical methods cannot be used to tune each covariance. It makes engineering

sense to agglomerate them into a single error source. Also, the goal of this chapter is

to show the benefits of filtering over dead-reckoning. Using a more complex model in

both cases will not add or detract to the goal of showing the benefits to the filtering

approach.

The estimation error is defined with the multiplicative quaternion formula-

tion

e ,
[
(r− r̂)T (v − v̂)T δqT

]T
,

where δq is the vector component of the quaternion δq defined as

δq , q⊗ q̂
−1

.
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To first-order, the evolution of the estimation error is given by

ė =
d

dt




er

ev

δq


 =




ev

G(r̂)er + Arer + Avev + ν

−ωm × δq− 0.5 ηg


 ,

where

Ar :=
∂a

∂r

∣∣∣∣
r=r̂,v=v̂

and Av :=
∂a

∂v

∣∣∣∣
r=r̂,v=v̂

.

The model for the aerodynamic acceleration expressed in the inertial frame

is given by

a = −cdS

2m
ρ‖vrel‖vrel.

The coefficient of drag, reference surface, and mass (parameters cd, S, and m, re-

spectively) are assumed to be known. The spacecraft velocity relative to the Mars

atmosphere is denoted by vrel. For Mars, the greatest uncertainty is the density ρ.

5.2.2 Atmosphere Model

The atmospheric model used is the simplified COSPAR model based on Viking 1

and 2 and Mariner data [79]. COSPAR was the first attempt at defining a Martian

standard atmosphere. It does not take into account longitude, latitude, seasons, and

possible dust storms, although it is more precise than a simple exponential density

model. The simplified equation for the COSPAR model is a modified exponential

ρ = ρ1 exp{−βρh + γρ cos(ωρh) + δρ sin(ωρh)}, (5.2)
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where h is the altitude. The nominal coefficients employed in Eq. (5.2) are

ρ1 = 3.492106(g/cm3), βρ = 0.09422, γρ = 1.5607

δρ = 0.3696, ωρ =
2π

300
(km−1).

5.2.3 IMU Measurements

The measurements used are the IMU data collected during the MER EDL at a

frequency of 8 Hertz. The IMU measurements represent the spacecraft change in

velocity, ∆vm, and change in angle, ∆θm, (partially compensated for biases and

misalignments) since the last IMU measurement. These ∆vm and ∆θm are divided

by the time interval to obtain the measured acceleration, ac
m, and angular velocity,

ωm. The accelerometer measurement expressed in the IMU case frame ac
m is rotated

into the body frame through a known constant rotation matrix

ab
m = Tb

c ac
m.

5.2.4 Measurement Model

The accelerometer measurement has two components: (i) the change in velocity due

to nongravitational accelerations, and (ii) the change in velocity due to the offset

between the center of mass and the accelerometer location, given by

âoffset ≃ ωm × ωm × roffset.

The estimated measurement expressed in the body frame is

âb = TT(q̂)â + âoffset,
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The residual ǫ used to update position and velocity is given by

ǫ = ab
m − âb,

and can be approximated to first-order as

ǫ ≃ T(q̂)Arer + T(q̂)Avev + 2[T(q̂)â×]δq + ηa,

where ηa is the accelerometer noise.

5.2.5 Filter Summary

The propagation equations are

˙̂r = v̂

˙̂v = g(r̂) + a(r̂, v̂)

˙̂
q =

1

2
Ω(ωm)q̂,

Ṗ = FP + PFT + Q,

where

F =




O3×3 I3×3 O3×3

G(r̂) + Ar Av O3×3

O3×3 O3×3 −[ωm×]




Ar =
∂a

∂r

∣∣∣∣
r=r̂,v=v̂

, Av =
∂a

∂v

∣∣∣∣
r=r̂,v=v̂

Q δ(t− τ) = E








0

ν(t)

−0.5ηg(t)







0

ν(τ)

−0.5ηg(τ)




T




.
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The update is given by

r̂+ = r̂− + Krǫ

v̂+ = v̂− + Kvǫ

q̂ + = q̂−

P+ = P− −KWKT,

where

K =
[
K⋆(1 : 6, 1 : 3)T O3×3

]T

K⋆ = P−HTW−1

H =
[
T(q̂)Ar T(q̂)Av 2[T(q̂)â×]

]

W = HP−HT + R

R(tk)δk−j = E
{
ηa(tk)ηa(tj)

T
}

.

5.2.6 Simulation Results

Simulations show that filtering leads to a more accurate state estimate than dead-

reckoning. Figure 5.1 shows the comparison between the EKF state estimates and

the dead-reckoning. Every run is preformed with the same set of IMU data from the

MER mission. The error history is obtained by comparing a rough best estimated

trajectory (BET) to the EKF state estimate. Each run differs in the initial condi-

tion generated with a zero-mean, normal distribution whose covariance is diagonal

and has standard deviation of 1000m in each position axes, 100m/s in each velocity

axes, 3◦ in attitude, and mean equal to the initial state of the BET.

It can be noticed that the estimates of velocity are roughly parallel to each

other. Dead-reckoning is an open-loop procedure, based on adding the measured
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(a) Dead-Reckoning
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(b) Filtering

Figure 5.1: Comparison of dead-reckoning and EKF filtering approach. Ten runs
varying the initial conditions and using the same set of MER IMU measurements.
The thick line is the standard deviation.

∆vk to the previous velocity estimate. Since every run has the same measurement

history, it is natural that the errors stay almost parallel to each other and therefore

strongly depend on the initial condition. The filtering has a very different result.

In an observable system, if the initial estimate is good enough not to violate the
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linearization assumption, the Kalman filter estimate should become independent of

the initial condition. We can see that behavior in Figure 5.1. For each run the

estimates converge, revealing that the filter successfully extracts information from

the accelerometer, and based its estimate on those measurements (as well as on the

model).

5.3 Gating Network

The gating network algorithm described in Section 3.3 was tested with the MER

IMU measurements. The bank was composed of three filters, a filter with the

nominal COSPAR air density model, a “high” filter with air density 10% higher

than nominal, and a “low” filter with air density 10% lower. Figure 5.2 shows the

three density models. Figure 5.3 shows the evolution of the gains in the bank, Figure
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Figure 5.2: Air density of the three filters in the MMAE bank.

5.4 shows the total estimation error in position and velocity. In Figure 5.3, the gain

associated with the filter modelling a “high” density situation is assigned the highest

weight during the initial 180s, then a switch occurs and the filter modelling a “low”

density situation is assigned the highest weight. Correspondingly, in Figure 5.4
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Figure 5.3: Gain evolution.
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Figure 5.4: Total position and velocity errors of the three filters in the bank.

the position and velocity errors are smallest for the filter modelling the “high”

density during the first 180s. After about 200s, the filter modelling the ‘low” density

produces the smallest estimation errors. This shows that the gating network is

capable of correctly selecting the best filter among the ones implemented in the

filter bank.
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5.4 Conclusions

A modification of an existing multiple model adaptive estimator was successfully

implemented for Mars EDL state estimation. It was shown that real flight IMU

measurements can be processed as an external measurement in a model-based ex-

tended Kalman filter. Filtering the IMU measurements leads to a more accurate

state estimate than the dead-reckoning approach.

These results are only indicative of the possibilities of using an EKF for

processing the IMU data coupled with the MMAE architecture. This is not an ex-

haustive investigation, hence no general statements about the MER mission or the

atmosphere encountered during the MER EDL should be made. First, the BET

used was, in fact, not a final BET (that work is still underway), so that the state

estimation errors shown in Figures 5.1 and 5.4 may not reflect the actual estimation

errors. Second, and more importantly, the atmospheric density model used in the

analysis (based on the COSPAR data) is likely not of sufficient complexity to ac-

curately reflect the expected density variations at Mars. However the goals of this

investigation were successfully met

1. The contribution of the attitude estimation error was successfully implemented

2. An adaptable filter implementing a very simple density model was designed

to perform better than a dead-reckoning filter. Given that the “true” density

is unknown, the premises of this approach are excellent.
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Chapter 6

Lunar Descent Navigation

In Chapter 4, a detailed linear covariance analysis for the dead-reckoning approach

was developed, and was followed by the filtering of the accelerometer in Chater 5.

In this chapter, the gyro will be filtered in an EKF. The scenario chosen for this

application is lunar descent. The choice is motivated by the desire to include attitude

updates into the EKF. The absence of atmosphere on the Moon allows for the use

of a star camera during descent. Star cameras normally have their own estimation

algorithm and provide an attitude estimation rather than raw measurements. The

technique developed in Section 3.1.1 will be used to fuse the star camera estimate

into the Kalman filter.

The scenario considered here begins after the conclusion of the orbital phase

when the descent trajectory begins. The descent trajectory is a thrust-coast-thrust.

The propulsion system initiates the descent, followed be a no thrust phase. When a

predeterminate altitude is reached, the propulsion system will be employed to land

the spacecraft. The available sensors are an altimeter, a velocimeter, together with

the previously mentioned IMU, star camera, and the IMU. The model of the IMU

was presented in Section 4.3. The altimeter provides a measurement of altitude

along the local vertical, and the velocimter measures relative velocity with respect
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to Moon surface. The models for these sensors, together with the true trajectory, are

those used by DeMars [80]. Figures 6.1∗ and 6.2 show the true trajectory. Figure 6.3

shows the measurement times for each external sensor. The star camera model

Figure 6.1: Groundtrack of lunar descent to landing trajectory. Green dot is the
starting point, red dot the end point.
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Figure 6.2: Altitude of lunar descent to landing trajectory..

used in this work is presented next.

∗Figure courtesy of K. J. DeMars
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Figure 6.3: Times for external measurements.

6.1 Star Camera Model

The star camera model is based on the measurement of two angles α and β along

two perpendicular directions, as shown in Figure 6.4. The reconstructed unit vector

measurement for each star, is given by [13]

y0 =
1√

1 + tan2 α + tan2 β




tan α

tan β

1


 .

Perturbing the angles, it follows that

y=
1√

1 + tan2(α + δα) + tan2(β + δβ)




tan(α + δα)

tan(β + δβ)

1


 .
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Figure 6.4: Star camera measured angles.

We assume perfect knowledge of the inertial position of the stars. This information

is contained in a given star table. From the trigonometric identity

tan(α + δα) =
tanα + tan δα

1− tan α tan δα
,

we obtain to first-order that

tan(α + δα) ≃ tanα + (1 + tan2 α) δα.

Hence y can be approximated to first-order as

y ≃ y0 + δy,
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where

δy =




1+tan2 β

(1+tan2 α+tan2 β)3/2
− tan α tan β

(1+tan2 α+tan2 β)3/2

− tan α tan β

(1+tan2 α+tan2 β)3/2

1+tan2 α
(1+tan2 α+tan2 β)3/2

− tan α
(1+tan2 α+tan2 β)3/2

− tan β

(1+tan2 α+tan2 β)3/2





(1 + tan2 α)δα

(1 + tan2 β)δβ


 .

It turns out that y0,z 6= 0 since the field of view is necessary less than 180 degrees.

Therefore, it follows that

δy =
1

y0,z




y2
0,z + y2

0,y −y0,xy0,y

−y0,xy0,y y2
0,z + y2

0,x

−y0,xy0,z −y0,yy0,z





(y2

0,z + y2
0,x)δα

(y2
0,z + y2

0,y)δβ




=




y2
0,z + y2

0,y −y0,xy0,y −y0,xy0,z

−y0,xy0,y y2
0,z + y2

0,x −y0,yy0,z

−y0,xy0,z −y0,yy0,z y2
0,y + y2

0,x







y2

0,z+y2

0,x

y0,z
δα

y2

0,z+y2

0,y

y0,z
δβ

0




= −[y0×]2




y2

0,z+y2

0,x

y0,z
δα

y2

0,z+y2

0,y

y0,z
δβ

0


 = −[y0×]2 U δα,

where

U =




y2

0,z+y2

0,x

y0,z
0

0
y2

0,z+y2

0,y

y0,z

0 0


 , δα =


δα

δβ


 .

Recall that the QUEST measurement model (§2.3) assumes

δy = [y0×]δθ,

where

Rθθ , E
{
δθδθT

}
= σ2I3×3.
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The QUEST model can only be an approximation of the star camera model devel-

oped here since for this application

Rθθ = −[y0×]UE
{
δα δαT

}
UT[y0×]. (6.1)

The star camera employs the Davenport-q algorithm to estimate the quaternion,

and calculates the associated covariance with Eq. (2.45) as

Pst = 4M−1
0

n∑

i=1

w2
i [yi×]Ry,i[yi×]TM−T

0 , (6.2)

where

T̂ = T(q̂), M0 = −2
n∑

i=1

wi[yi×]2,

and Ry,i are calculated for each star using Eq. (6.1) and

Ry = −[y0×]Rθθ[y0×].

In calculating the covariance, y0 needs to be replaced by y.

6.2 Extended Kalman Filter

This section introduces the Kalman filter used to process the altimeter, velocimeter,

and gyro measurements, together with the quaternion “measurement” provided by

the star camera. The accelerometer is dead-reckoned and used to propagate the

state vector.
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6.2.1 Propagation

The state propagation consists of numerically integrating the model

d

dt




r̂

v̂

q̂

ω̂




=




v̂

g(r̂) + T(q̂)Tam

1
2 ω̂ ⊗ q̂

J−1 (ω̂ × Jω̂ + m̂)




,

where m̂ is the torque to be applied given by the control system. The components

of the estimation error are defined as

er , r− r̂, ev , v − v̂, eθ , 2δq, eω , ω − ω̂,

where δq , q⊗ q̂−1. The first-order approximation of the evolution of the velocity

and attitude components of the error is

ėv = G(r̂)er + T(q̂)T[eθ×]am −T(q̂)Tηa

ėθ = −[ω̂×]eθ + eω.

The difference between the modeled torque m̂ and the actual applied torque m, is

treated as process noise δm , m−m̂, from which it follows that assuming perfectly

known inertia matrix

ėω = J−1[eω×]Jω̂ + J−1[ω̂×]Jeω + J−1δm.

The evolution of the estimation error can then be written in compact matrix form

ė = Fe + ν,
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where

F ,




O3×3 I3×3 O3×3 O3×3

G(r̂) O3×3 −T(q̂)T[am×] O3×3

O3×3 O3×3 −[ω̂×] I3×3

O3×3 O3×3 O3×3 J−1 {−[Jω̂×] + [ω̂×]J}




,

and

ν =




0

−T(q̂)Tηa

0

J−1δm




E {ν(t)} = 0 E
{
ν(t)νT(τ)

}
= Q(t)δ(t− τ).

Between measurements, the covariance propagation is given by the continuous-time

Riccati equation

Ṗ(t) = F(x̂)P(t) + P(t)F(x̂)T + Q(t).

where P(t) = E
{
e eT

}
.

6.2.2 Update

The state update using altimeter and velocimeter is a standard Kalman filter appli-

cation, and its derivation will not be repeated here because a complete presentation

can be found in [80]. This work focuses on the inclusion of the star camera mea-

surement, which is derived here.

The star tracker provides an estimate of the quaternion q̂st and the associated

estimation uncertainty given by the small angle covariance Pst. Since the star tracker

formulates its estimates based only on the current measurements, it was shown in

Section 3.1.1 that is optimal to treat the star tracker as a measurement and its

covariance as measurement noise. However, following the multiplicative approach
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of Section 3.1.2, deviations from rather than quaternions are used. The processed

measurement is twice the vector part of the deviation between the “measured”

quaternion q̂st and the nominal quaternion q̂ − at time tk. The deviation is given

by

yst,k = q̂st,k ⊗ (q̂−
k )−1.

The estimated measurement is zero, therefore the star tracker residual ǫst,k is

ǫst,k = 2yst,k.

The state vector for update purposes is given by

xT
k =

[
r̂T
k v̂T

k δθ̂
T

k ω̂T
k

]
, δθ̂

−

k = 0.

The star tracker measurement mapping matrix is,

Hst,k =
[
O3×6 I3×3 O3×3

]
.

If other measurements are available at time tk, they would be included as

ǫk =


 ǫst,k

ǫothers,k


 Hk =


 Hst,k

Hothers,k


 Rk =


Pst,k O

O Rothers,k


 ,

assuming the other measurements are uncorrelated to the star camera’s.

The residuals covariance is given by

Wk = HkP
−
k HT

k + Rk,
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the standard Kalman filter update is

Kk = PkH
T
k W−1

k , x̂+
k = x̂−

k + Kkǫk, P+
k = P−

k −KkWkK
T
k .

The quaternion update is

q̂ + =


δθ̂

+

1


⊗ q̂−,

followed by the normalization to restore the unit norm constraint.

NOTE The quaternion is a two to one representation of the attitude, q and −q

represent the same rotation. However in processing a quaternion measurement in

a EKF, is very important to distinguish between the two. Assume the a priori

estimate of the attitude is given by

q̂− =
[
0 0 0 1

]T
,

processing a quaternion measurement given by

y =
[
0 0

√
1− .992 −.99

]T
,

would result in an update in the wrong direction. In those situations, it is therefore

necessary to process −y in stead of y, or, equivalently, process y and update the

estimated quaternion with

q̂ + =


δθ̂

+

−1


⊗ q̂−.

6.3 Estimation Error Results

In this section the results of a single run will be presented. The analysis shows that

the filter is stable for the nominal descent. The estimation error (shown in red)
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and the filter standard deviation (shown in blue) are shown as functions of time.

Table 6.1 show the standard deviations of the measurement errors generated in the

simulation.

Accelerometer Noise 10 [µg
√

s]
Accelerometer Bias 0.1 [mg]
Accelerometer Scale Factor 175 [ppm]
Accelerometer Misalignment 5 [arcsec]

Gyro Noise 0.01 [deg/
√

hr]
Gyro Bias 0.05 [deg/hr]
Gyro Scale Factor 5 [ppm]
Gyro Misalignment 5 [arcsec]
Altimeter Noise 10 [m]
Altimeter Bias 0.5 [m]
Velocimeter Noise 0.5 [m/s]
Velocimeter Bias 0.5 [m]
Star Camera Noise 50 [arcsec]
Torque Noise 0.1 [Nm]

Table 6.1: Random error standard deviation values

Figures 6.5–6.8 show the evolution of the states, while Figure 6.9 shows the

star camera estimate and covariance. The filter covariance clearly shows the time at

which the altimeter starts providing measurements (approximately 3200 seconds),

and the time at which the velocimeter start providing measurements (approximately

3800 seconds). It can be also noticed that the y component of position is not very

observable. This fact is due to its orientation perpendicular to the trajectory. In

order to make the y component of position more observable, it is necessary to intro-

duce an additional measurement related to position, like a range measurement (in

an appropriate direction) or a full three dimensional position measurement deduced

from a terrain camera. It is also noticeable that the angular velocity estimation

error reduces to the gyro noise. This fact occurs because of the high frequency of

the data and accuracy of the gyro.
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Figure 6.5: Position estimation error.
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Figure 6.6: Velocity estimation error.
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Figure 6.7: Attitude estimation error.
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Figure 6.8: Angular velocity estimation error.
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Figure 6.9: Star camera estimation error.

6.4 Monte Carlo Analysis

In order to validate a filter design, is not sufficient to analyze a single run. It is

necessary to perform Monte Carlo analysis to confirm that the statistical proper-

ties of the estimation error are appropriately represented by the filter covariance.

Figures 6.10–6.13 plot the filter covariance (black line) and the sample covariance

from 100 runs (blue line). Each run implements different initial estimation error

and measurement errors. Figure 6.14 shows the Monte Carlo analysis of the star

camera estimate and covariance.
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Figure 6.10: Monte Carlo analysis of position estimation error.
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Figure 6.11: Monte Carlo analysis of velocity estimation error.
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Figure 6.12: Monte Carlo analysis of attitude estimation error.
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Figure 6.13: Monte Carlo analysis of angular velocity estimation error.
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Figure 6.14: Monte Carlo analysis of star camera estimation error.
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Chapter 7

Conclusions

A study of precision navigation to support landing on celestial bodies was performed.

Particular attention was given to the inclusion of the inertial measurement unit and

attitude estimation into the Kalman filter. Examples in which the accelerometer

and gyro were successfully used to update the filter were developed. A detailed

comparison of the two most used techniques to introduce quaternion estimation

into the Kalman filter was performed. The processing of attitude estimates as if

they were raw measurements was analyzed, circumstances in which this approach

leads to optimal versus sub-optimal estimates were presented. It was found that a

star camera can be optimally fused into a Kalman filter and the results were applied

to a problem of much current interest, Moon descent to landing navigation. The

classical Davenport q-algorithm was discussed. This algorithm is to be used by the

star camera to produce its estimate. In order to be optimally coupled with the

Kalman filter, the star camera needs to provide together with the estimate of the

quaternion, an error covariance. A new covariance formulation was introduced and

utilized in the example.

A novel way of introducing random biases in the Kalman filter was also

derived and applied to a detailed linear covariance analysis for Mars dead-reckoning
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navigation. A modification of an existing adaptable Kalman filter was made, this

modification was tested in the contest of Mars entry navigation. The three examples

provided were used to validate the theoretical contributions by means of statistical

analysis through the use of Monte Carlo runs.

Humans have already landed unguided probes to Mars and themselves to

the Moon. The next step in advancing distant planets exploration is to be able to

land very closely to where desired. This work suggests ways that aim to improve

the navigation system for precision landing missions. Filtering the IMU can lead to

a reduction of the state’s uncertainty, while dead-reckoning the IMU inevitably in-

creases the estimation error covariance. In the absence of external measurements, if

the designer chooses to propagate the state with the IMU, accounting for the uncom-

pensated biases leads to a better estimate of the uncertainty. A correct knowledge

of the uncertainty is crucial to drive the control decisions that are necessary to

achieve pin-point landing. It is fundamental to correctly account for the effects of

the attitude error on the navigation filter and the correlation between the two. All

these aspects have been presented in dept in this dissertation.

7.1 Future Directions

The conceptual design of algorithms is only the first step towards the implemen-

tation of a reliable precise navigation system. The examples in this dissertation

provide insight of the benefits of filtering the IMU and correctly incorporate the

attitude into the navigation system. High-fidelity simulations, development of more

precise models, are necessary to take this theoretical study one step forward towards

implementation. More work can be done to overcame the sub-optimality of some of

the attitude sub-filter architectures. For example, some measurements could input

both the attitude filter and the navigation filter, this approach would necessitate a

careful analysis of the resulting correlation.

171



This work showed the possibilities of an adaptive estimator to overcame

the modeling uncertainties of Mars atmosphere. Before a similar solution can be

implemented more work needs to be done. Issues like stability and convergence of

the adaptable scheme need to be more closely considered.
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