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This dissertation combines formal verification techniques in an attempt to reduce the human

effort required to verify large systems formally.

One method to reduce the human effort required by formal verification is to modify

general-purpose theorem proving techniques to increase the number of lemma instances

considered automatically. Such a modification to the forward chaining proof technique

within the ACL2 theorem prover is described.

This dissertation identifies a decidable subclass of the ACL2 logic, the Subclass of

Unrollable List Formulas in ACL2 (SULFA). SULFA is shown to be decidable, i.e., there

exists an algorithm that decides whether any SULFA formula is valid. Theorems from first-

order logic can be proven through a methodology that combines interactive theorem proving

with a fully-automated solver for SULFA formulas. This methodology has been applied to

the verification of components of the TRIPS processor, a prototype processor designed

and fabricated by the University of Texas and IBM. Also, a fully-automated procedure

for the Satisfiability Modulo Theory (SMT) of bit vectors is implemented by combining

a solver for SULFA formulas with the ACL2 theorem prover’s general-purpose rewriting

proof technique.
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A new methodology for combining theorem proving and model checking is pre-

sented, which uses a unique “black-box” formalization of hardware designs. This method-

ology has been used to combine the ACL2 theorem prover with IBM’s SixthSense model

checker and applied to the verification of a high-performance industrial multiplier design.

A general-purpose mechanism has been created for adding external tools to a

general-purpose theorem prover. This mechanism, implemented in the ACL2 theorem

prover, is capable of supporting the combination of ACL2 with both SixthSense and the

SAT-based SULFA solver.

A new hardware description language, DE2, is described. DE2 has a number of

unique features geared towards simplifying formal verification, including a relatively sim-

ple formal semantics, support for the description of circuit generators, and support for em-

bedding non-functional constructs within a hardware design.

The composition of these techniques extend our knowledge of the languages and

logics needed for formal verification and should reduce the human effort required to verify

large hardware circuit models.
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Chapter 1

Introduction

Even a single bug in a hardware design, if not detected until late in the design process, can

be extremely costly. Intel, for example, estimated the cost of the Pentium R© bug in 1994

as 500 million dollars [14]. Thus, a lot of time and energy is spent attempting to eliminate

bugs in industrial hardware designs as early as possible.

The primary means for verifying hardware today is simulation. Exhaustive simula-

tion is impossible, since the number of input and state combinations in most designs is enor-

mous. Instead, simulations are carefully engineered to catch as many potential problems as

possible. Nevertheless, there is always the potential for a bug to escape all simulated cases.

And as hardware designs become ever more complex, the cost of keeping the possibility of

a bug acceptably low is always increasing.

An alternative to simulation is formal verification, which proves that a design sat-

isfies its formal specification for all possible input and state combinations. The formal

verification of entire processors has been shown to be possible. In 1985, Warren Hunt used

formal verification to prove that the FM8501 processor implements a formal specification

of its instruction set architecture [27]. While the FM8501 was never fabricated, another

processor that was fabricated, the FM9001 processor, was later proven to implement its

specification as well, by Bishop and Hunt [29].
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While the formal verification of entire processor designs is possible, the cost of per-

forming formal verification has always been too high to make it practical for most industrial

designs. The trend, however, because of the increasing complexity of hardware designs, the

increasing power of formal verification tools, and the increasing expertise with formal veri-

fication tools, has been towards more formal verification. After the Pentium R© bug in 1994,

for example, the decision was made by both Intel and AMD to use formal methods to verify

their floating-point units in future designs[60, 72].

In order to continue the trend, we need to develop new hardware description lan-

guages, improve formal verification tools, and build expertise in formal verification strate-

gies for state-of-the-art hardware designs. In this dissertation, we make progress on each

of these fronts. We have developed a new hardware description language, DE2, designed

to simplify formal verification. We have developed new algorithms, combining theorem

proving with decision procedures, to increase the automation and flexibility of formal ver-

ification tools. Finally, we have applied these techniques to components of the TRIPS pro-

cessor, a complex multi-core research processor, with unique features designed to address

future challenges in microprocessor design.

The dissertation begins with an overview of relevant formal methods in Chapter 2.

Chapter 3 provides a more detailed overview of the ACL2 theorem prover in particular, a

powerful interactive formal tool, that has been successfully applied to the verification of

industrial hardware designs [72, 21].

One way to improve the ACL2 theorem prover, and similar theorem provers, is to

decrease the amount of user guidance required to prove theorems. Chapter 4 describes a

relatively small modification which does just that. The modification increases the amount

of search in one of the standard proof techniques, called forward chaining, allowing more

theorems to be proven automatically at the cost of requiring more time to find a given proof.

Chapter 5 defines the Subclass of Unrollable List Formulas in ACL2 (SULFA).

SULFA can be recognized efficiently, verified fully automatically (in principle), and con-

2



tains a definition principle that allows it to be extended with user-defined functions. Chap-

ter 5 formally defines SULFA and presents an efficient procedure for determining whether

an arbitrary ACL2 formula is in SULFA. Chapter 6 then shows that SULFA is decidable,

by presenting a relatively simple and inefficient decision procedure for SULFA and a proof

sketch of its correctness. Chapter 7 then describes a more efficient SULFA solver based on

Boolean satisfiability solvers (SAT solvers).

Chapter 8 applies the SAT-based SULFA solver to the formal verification of a data-

tile communication protocol implementation within the TRIPS processor. The data-tile

protocol is unique to the TRIPS processor, and is required directly due to the processor’s

unique method of addressing future architecture challenges. Thus, the verification of the

data-tile protocol shows both the feasibility of our approach and helps build formal verifi-

cation expertise beyond the units verified in industrial microprocessors today.

Chapter 9 describes how we have used our approach to develop a fully-automatic

technique for the standard Satisfiability Modulo Theory (SMT) of bit vectors. The SMT

theory of bit vectors is part of a set of recently developed standard theories. Every previ-

ously created SMT solver uses a special purpose simplifier followed by a fully-automatic

technique. Our approach, however, achieves a greater degree of flexibility by using a gen-

eral purpose theorem prover to simplify the problem before passing the problem to a fully-

automated technique. Furthermore, by creating an SMT solver for bit vectors, we were

able to apply our approach, combining general purpose theorem proving with a SAT-based

solver for SULFA formulas, to a large benchmark suite of problems, mostly derived from

hardware verification.

Chapter 10 describes a different hardware verification approach, which combines

the ACL2 theorem prover with another powerful verification tool, IBM’s SixthSense model

checker. These two tools combine synergistically, since ACL2 is scalable and contains

powerful arithmetic proof techniques, while SixthSense is fully automatic and contains

built-in support for industrial hardware description languages. Chapter 10 describes how

3



the two tools are combined and described an application of this approach to the verification

of an industrial high-performance multiplier.

Both Chapter 7 and Chapter 10 involve extending ACL2 with proof techniques that

use external tools. Each of these extensions originally required modifications to the source

code of the theorem prover. Chapter 11, describes a new general-purpose mechanism for

extending ACL2 with external tools at run time, which is powerful enough to support both of

these new proof engines. Furthermore, this mechanism allows users to control and identify

exactly which mechanisms are available in their proofs.

Finally, Chapter 12 describes a new hardware description language, DE2. DE2

has a number of features that make it well-suited for formal verification, including a sim-

ple two-pass semantics, user-defined primitives, and annotations as first-class objects. The

formal semantics of DE2 are specified within the ACL2 logic, allowing the proof of DE2

programs. We have developed an automated procedure for translating DE2 circuits into

simplified ACL2 models, which, along with the ACL2 model, produces a proof of equiva-

lence between the ACL2 model and the original DE2 circuit, relative to the DE2 language

semantics. The DE2 language is also used as part of the verification of the data-tile protocol

implementation described in Chapter 8.

One of the strengths of our work is that lots of future improvements and applica-

tions are possible. Chapter 13 describes a few of these future directions. The decidable

subclass of the ACL2 logic should be enlarged, and a number of optimizations have the

potential to improve the performance of the SAT-based procedure. Also, we feel it would

be worthwhile to continue to apply our techniques to hardware designs beyond the scope of

what is traditionally formally verified in industry.
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Chapter 2

An Overview of Formal Verification

2.1 Introduction

This chapter presents an overview of formal verification and its application to hardware

designs. As is common, we divide formal methods into two categories: fully-automatic

methods, exemplified by model checking, and interactive methods, exemplified by general-

purpose theorem provers.

2.2 Fully-Automatic Methods

Ideally, a hardware design would be proven to satisfy its specification entirely automati-

cally. Thus, the human effort would be limited to formally expressing the design and its

specification. In practice, methods capable of performing such automatic hardware veri-

fication exist, but suffer from problems with scalability and expressiveness. Often small

designs can be verified quickly and automatically, but as the number of input and state bits

increase, exponentially more time and/or memory is required. In order to ensure full au-

tomation, the expressiveness of the logic is limited, which can make expressing a given

design and its specification more difficult or, in some cases, impossible.
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This section provides an overview of various fully-automatic techniques, starting

with those using the least expressive logic and ending with those using the most expressive

logic.

2.2.1 Boolean Satisfiability (SAT) Solvers

Boolean satisfiability solvers, which we refer to as SAT solvers, determine whether a set of

variables can be instantiated with Boolean value such that a formula is true. The formula

solved must be in conjunctive normal form (CNF), such as the one in the following example:

(a ∨ b) ∧ (a ∨ c) ∧ (¬b ∨ ¬c) ∧ (b ∨ c).

The above example has two satisfying instances, [a 7→ true, b 7→ true, c 7→ false] and

[a 7→ true, b 7→ false, c 7→ true]. A SAT solver would return that the above formula is

satisfiable, along with one of the two possible satisfying instances.

In the context of a CNF formula, we say that a literal is either a variable or its

negation. For example, b and ¬b are literals. A clause is then a disjunction of literals, such

as (¬b ∨ ¬c). A CNF formula is then simply a conjunction of clauses.

SAT solving is an NP-complete problem, and therefore suffers from exponential

complexity as the number of Boolean variables increase. Nevertheless, problems from hard-

ware verification are regularly translated into CNF problems with hundreds of thousands of

variables and solved by SAT solvers. Chapter 7 describes such an algorithm, which trans-

lates ACL2 formulas into CNF to be solved by SAT. Furthermore, Chapter 8 uses SAT

solvers, with ACL2, to verify a component of a processor design. SAT solvers are also used

within the SixthSense model checker, which was integrated with the ACL2 theorem prover

as described in Chapter 10.

There is a standard input format for SAT solvers [74] and an annual competition

to compare the performance of SAT solvers [86]. Most of the fastest solvers today use

modifications of the Davis, Putnam, Logemann and Lovel (DPLL) algorithm [11], first
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described in 1962. Some of the more recent modifications to this algorithm are described

by Moskewicz et al. [55]. The SAT solvers used in the implementations discussed in this

dissertation are zChaff [88] and minisat [87].

2.2.2 Satisfiability Modulo Theory (SMT) Solvers

Satisfiability Modulo Theory (SMT) solvers are similar to SAT solvers in that, given a for-

mula, an SMT solver determines whether a satisfying substitution exists under which a the

formula is true. SMT solvers, however, are less restrictive than SAT solvers with respect

to the formulas accepted. Multiple standard SMT theories exist, supporting formulas in-

volving linear arithmetic, arrays, uninterpreted functions, bit vectors, and quantifiers. For

example, the following formula can be represented using the quantifier-free SMT theory of

uninterpreted functions:

f (a) ∧ ¬f (b) ∧ (a = b).

The above formula is unsatisfiable, since all functions return the same value given the same

inputs.

A similar example including linear arithmetic is as follows:

f (a)∧¬f (b)∧ (a = b + 1).

The above formula has an infinite number of satisfying instances, including when a 7→ 1,

b 7→ 0, and

f (x) ,

 false, if x = 0,

true, otherwise.

Since SMT solvers have a less restrictive input language than SAT solvers, less

translation is required to translate problems from hardware verification, and other domains,

into SMT problems. Another strength of SMT theories is that solvers for disjoint theories
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Table 2.1: LTL Temporal Operators
Operation Description
^E E is eventually true.
�E E is always true.
©E E is true during the next time step.
E1 U E2 E1 is true until E2 is true (and E2 must eventually be true).
E1 R E2 E2 is either true forever or until E1 is true. Thus, E1 releases E2.

often can be combined using the techniques developed by Nelson and Oppen [57] and

Shostak [82]. Since 2005, an annual competition has existed comparing the performance

of SMT solvers in various standard SMT theories. Chapter 9 describes the SMT quantifier-

free theory of bit vectors with uninterpreted functions in more detail, as well as a solver we

have developed for this theory.

2.2.3 Temporal Logic

Fully-automatic techniques have also been developed to determine whether finite state ma-

chines satisfy properties that hold over time using temporal logics [10, 65]. Numerous such

logics exists, including, in order from less expressive to more expressive, Linear Temporal

Logic (LTL), Computation Tree Logic (CTL), and µ-Calculus.

In every temporal logic, the propositional calculus is combined with temporal oper-

ators. The LTL temporal operators are shown in Table 2.1. An example of an LTL formula

then is the following:

�(B→ �B).

which states that once B is high, then B continues to be high for all future cycles. The

property is satisfied by the circuit in figure 2.1.

CTL expands on LTL by adding operators that reason about program branches.

This allows statements such as “For all time, there exists some program branch on which

P occurs in the future.” The µ-Calculus is also able to express such properties, through the
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Sticky Bit

A
B C

Figure 2.1: A simple example circuit, in which a high bit A causes bit B and bit C to be
high for all later times.

concept of least fixpoints. No knowledge, however, of CTL or µ-Calculus is required in this

dissertation.

Another fully-automated technique worthy of note is symbolic evaluation, which

can be seen to verify a subset of LTL. Using symbolic evaluation, properties of the form

�(E) can be verified, where E is an LTL term containing no temporal operators other than

©. Thus, �(B → ©B), is an example of a symbolic evaluation formula that is satisfied by

the circuit in Figure 2.1. An extension of symbolic evaluation, called Symbolic Trajectory

Evaluation (STE), has been used successfully in the verification of significant industrial

designs at Intel [60]. STE is similar to symbolic evaluation, but beyond the traditional two

values of Boolean logic, STE contains a “do not care” value for wires that are not being

driven to any value and an “over constrained” value for wires that are being driven to both

true and false simultaneously.

Industrially successful solvers have also been developed for LTL and CTL. IBM’s

SixthSense model checker, which is discussed in more detail in Chapter 10, is one example

of an industrially successful LTL model checker [52]. The SMV model checker, designed

by Carnegie Mellon University and Cadence Berkeley Laboratories, is an example of an

industrially successful CTL model checker [47].

Fully-automatic methods for hardware verification generally suffer from scalability

problems. While they may work very well on small designs, as the design gets larger the
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time required to fully verify the design increases at a much faster rate. Furthermore, certain

circuits, such as multipliers are particularly difficult to verify automatically. Thus, no fully-

automatic method can completely verify large industrial processor designs.

2.3 Interactive Techniques

To verify large designs formally, some human guidance is required. Traditionally, this takes

the form of mathematical proof, checked by computer. A number of automated theorem

provers exists that aid in the creation and checking of mathematical proofs. Some examples

of theorem provers that have been used for hardware verification include HOL4 [20], HOL-

Light [25], Isabelle [59], Coq [15], PVS [62], and ACL2 [41]. The ACL2 theorem prover

is described in more detail in Chapter 3.

There is strong evidence that theorem proving can scale to large designs. An entire

processor design was verified by a theorem prover in 1985 [27]. While that design was not

fabricated, a design that was fabricated was later verified [29]. This design was missing

some of the features of modern processors, such as out-of-order execution, but a model of a

more complex processor design containing more features, including out-of-order execution,

has also been verified [75].

Another advantage of theorem proving is that the logics used by theorem provers

are generally more expressive than the logics used by fully-automatic tools. Most automatic

tools, for example, cannot formally verify reconfigurable designs, if an infinite number of

configurations is possible. Such designs are especially important in the development of

hardware design libraries.

The disadvantage of theorem proving is that human guidance is required. Thus,

even proofs about small designs often require considerable amount of human effort to de-

velop. Furthermore, it is common for months of training to be required before someone can

be a productive user of any given theorem prover.
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2.4 Combined Approaches

While we divide formal verification tools into fully automatic and interactive approaches,

the truth is that there is a lot of interplay between the two techniques. Effective fully-

automatic model checking techniques are often inspired by the methods used during a

mathematical proof of correctness of similar designs. Interactive approaches also often

make use of techniques originating from fully-automatic methods. Furthermore, consid-

erable research has gone into directly combining fully automatic and interactive formal

verification tools.

Too many deductions occur within an automated theorem prover to rely on external

decision procedures to perform those deductions [7]. However, external decision proce-

dures can be used to prove user-generated lemmas efficiently that would otherwise require

user guidance. Thus, most combinations of fully automatic and interactive techniques are

“coarse-grained” solutions, where theorem proving is used to combine user-generated lem-

mas that are verified by fully-automatic procedures. Examples of such integrations include

the integration of the ACL2 theorem prover with UCLID [44] and the integration of the

HOL theorem prover with the VOSS model checker [36].

An industrially successful combination of fully automatic and interactive tools in-

cludes the integration of an STE solver with a theorem prover for higher order logic (HOL),

which was used to verify Intel’s Pentium R© floating-point unit [60]. Due to the relatively

low expressive power of STE, however, significant amount of human guidance is often re-

quired to reduce hardware specifications to STE properties. In particular, a target property

often must be strengthened until it is an inductive invariant. Jacobi addresses this problem

by using a theorem prover to compose more expressive temporal logic properties in the

verification of an out-of-order scheduler implementation [35]. Ray addresses the problem a

different way, by developing techniques to automatically generate inductive invariants [68].

Other work combining theorem proving and fully-automatic tools includes the µ-

calculus model checkers that have been developed within PVS and ACL2 [43, 61]. Also,
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Cadence SMV, an industrially successful model checker [50], includes some support for

user-guided composition.

A disadvantage with most combined approaches is that it often necessitates working

in a logical framework, such as the µ-calculus, that is not ideal for human reasoning. The

logic of automated theorem provers are designed to facilitate human reasoning. The logic

of model checkers, on the other hand, are usually only well-suited for specification, not for

deduction. Our work attempts to address this issue by developing automated techniques

within a natural subclass of a logic developed for human reasoning.
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Chapter 3

The ACL2 Logic and Theorem

Prover

ACL2, or A Computational Logic for Applicative Common Lisp (ACL2), is a programming

language, a mathematical logic, and an automated theorem prover. As a programming

language, it is a subset of Common Lisp; as a logic, it is a form of quantifier-free first-order

logic; and as a theorem prover, it is a tool designed to facilitate the creation and checking of

proofs. ACL2 has been successfully applied to formal verification projects within industry,

including the AMD Athlon TM floating-point unit [72] and the Rockwell Collins AAMP7

Separation Kernel [21]. For a complete introduction to the theorem prover, with exercises

and examples, see Computer-Aided Reasoning: An Approach by Kaufmann, Manolios, and

Moore [41].

Both the ACL2 logic and the theorem prover are heavily incorporated into the work

described in this dissertation. This chapter overviews the key concepts and notation from

ACL2 necessary to understand the rest of the dissertation. We begin with an example of an

ACL2 definition and proof in Section 3.1. Section 3.2 then describes the ACL2 syntax and

the mathematical notation used in most of the dissertation to represent ACL2 definitions and

formulas. Section 3.4 and 3.5 discuss the initial set of axioms in ACL2 and ACL2’s system
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for soundly extending them. Finally, Section 3.6 overviews the ACL2 theorem prover and

some of its proof techniques.

3.1 Example

The ACL2 logic is a form of first-order logic, with recursively defined functions. The

primary data structure is trees, where the function cons (x, y) constructs a tree with the left

branch x and right branch y, car (x) returns the left branch of the tree x, cdr (x) returns the

right branch of the tree x, and consp (x) returns whether the object x is a tree. Lists are

usually represented as trees where the first element of the list is the left branch and the list

containing the remaining elements is the right branch. For example, the predicate in (a, x),

which checks whether an element a is in a list x, and the function del (a, x), which removes

a from x, can be defined in the ACL2 logic using the following recursive definitions:

in (a, x) ,


false, if ¬consp (x)

true, if a = car (x)

in (a, cdr (x)), otherwise.

del (a, x) ,


x, if ¬consp (x)

cdr (x), if a = car (x)

cons (car (x), del (a, cdr (x))), otherwise.

Once in (a, x) and del (a, x) are defined, the predicate perm (x, y), which returns

whether x is a permutation of y, can be defined as:

perm (x, y) ,


¬consp (y), if ¬consp (x)

false, if ¬in (car (x), y)

perm (cdr (x), del (car (x), y), otherwise.
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A property one might wish to prove about the permutation predicate is that permu-

tation is transitive. This can be written as the following first-order property, expressible in

ACL2:

perm-transitivity :

perm (x, y) ∧ perm (y, z)→ perm (x, z)

Note that variables occurring in ACL2 formulas, such as x, y, and z above, are implicitly

universally quantified.

The ACL2 theorem prover cannot prove perm-transitivity automatically. However,

ACL2 does attempt to prove perm-transitivity by induction on the size of the list x, which

is a good strategy. By induction on x and the definition of perm (x, y), we can reduce perm-

transitivity to the following two lemmas:

in-one-but-not-other :

in (a, x) ∧ ¬in (a, y)→ ¬perm (x, y)

perm-implies-perm-minus-a :

perm (x, y)→ perm (del (a, x), del (a, y))

where in-one-but-not-other states that if an element is in x but not y, then x is not a permu-

tation of y and perm-implies-perm-minus-a states that if x is a permutation of y, then x and

y are still permutations after some element a is deleted from both of them.

Neither in-one-but-not-other nor perm-implies-perm-minus-a can be proven auto-

matically by the theorem prover. However, by induction on the size of x and the definitions

of the functions in (a, x) and perm (x, y), in-one-but-not-other can reduced to the following

lemma:

in-minus-a-implies-in :

in (a, del (b, x))→ in (a, x)
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which states that if an element a is in the list x minus some element b, then a is in x

itself. The lemma in-minus-a-implies-in is proven automatically by the theorem prover by

induction on the size of x and the definitions of the functions del (a, x) and in (a, x).

Thus to prove the transitivity of permutation, only the lemma perm-implies-perm-

minus-a still needs to be proven. Again, by induction on x and the definitions of del (a, x)

and perm (x, y), perm-implies-perm-minus-a is reduced to the following two lemmas:

in-implies-in-minus-a :

in (a, x) ∧ a , b→ in (a, del (b, x))

del-symmetry :

del (a, del (b, x)) = del (b, del (a, x))

The lemma in-implies-in-minus-a states that if an element is in the list x and then it is in

x with any other element removed. The lemma del-symmetry states that the order of the

removal of two elements is not significant. Both in-implies-in-minus-a and del-symmetry

can be proven automatically by induction on the size of x and the definitions of the functions

del (a, x) and in (a, x).

Thus, ACL2 can prove perm-transitivity with some user guidance in the form of

five lemmas. Note that the proof closely follows the proof a human might create to prove

the transitivity of the perm (x, y) predicate.

3.2 Syntax

The examples in the previous section use standard math notation for first-order logic to

represent ACL2 formulas, which is possible since ACL2 is a form of first-order logic. The

syntax of the ACL2 logic actually, however, uses Lisp syntax to denote terms. A formula

is created from terms using the equality predicate =, and propositional logic, which are

axiomatized in the standard manner [38]. For example, the following is an ACL2 formula:
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1. ’T , ’NIL

2. X = Y→ (EQUAL X Y) = ’T

3. X , Y→ (EQUAL X Y) = ’NIL

4. X = ’NIL→ (IF X Y Z) = Z

5. X , ’NIL→ (IF X Y Z) = Y

Figure 3.1: A subset of axioms in ACL2’s ground zero theory.

X = Y→ (CONS X Y) = (CONS X X).

Since the axioms shown in Figure 3.1 are a part of every ACL2 theory, every ACL2 formula

can be expressed as a formula of the form:

α , ’NIL

for some ACL2 term α. For example, the ACL2 formula

X = Y→ (CONS X Y) = (CONS X X)

can be written as the equivalent ACL2 formula

(IF (EQUAL X Y) (EQUAL (CONS X Y) (CONS X X)) ’T) , ’NIL.

Thus in this dissertation, we sometimes assume that all ACL2 formulas are of the form

α , ’NIL. In fact, users of the ACL2 theorem prover never create ACL2 formulas, only

ACL2 terms. Also, a term α may be used in place of a formula, with the implicit formula

being α , ’NIL. Note that ’T and ’NIL represent the Boolean constants true and false

respectively.

ACL2 also uses Lisp syntax to specify definitional axioms, such as those in Fig-

ure 3.2. These definitions passed directly to the theorem prover in the same manner that

they would be passed to a Lisp interpreter. Each block of data passed to the theorem prover,
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(DEFUN DEL (A X)

(IF (NOT (CONSP X))

X

(IF (EQUAL A (CAR X))

(CDR X)

(CONS (CAR X) (DEL A (CDR X))))))

(DEFUN IN (A X)

(IF (NOT (CONSP X))

NIL

(IF (EQUAL A (CAR X))

T

(IN A (CDR X)))))

(DEFUN PERM (X Y)

(IF (NOT (CONSP X))

(NOT (CONSP Y))

(IF (NOT (IN (CAR X) Y))

NIL

(PERM (CDR X) (DEL (CAR X) Y)))))

Figure 3.2: The definitions from the example in Section 3.1 in the actual ACL2 syntax,
rather than standard math notation.
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such as each definition in Figure 3.2 is called an event. As in Lisp, a definition event has the

form (name formals body), which defines a function named name with formal parameters

formals and body body.

Another ACL2 event is the DEFTHM event, which passes a conjecture to the theorem

prover. The DEFTHM event has the form (DEFTHM name expr opt), where name is the name

of the theorem, expr is a Lisp expression representing the conjecture, and opt consists of

zero or more optional arguments to the theorem prover. For example, the perm-transitivity

theorem from the previous section, is written as the following DEFTHM event:

(DEFTHM PERM-TRANSITIVITY

(IMPLIES (AND (PERM X Y) (PERM Y Z))

(PERM X Z)))

Note that the conjecture contains variables X, Y, and Z, which are implicitly universally

quantified. The conjecture is said to be valid if there is be no substitution of values in the

variables such that it evaluates to ’NIL.

To be more precise, we define the following terminology:

• An ACL2 symbol is a string of numbers and characters starting with a character, such

as CAR or MY-320463TH-SYMBOL.

• An ACL2 constant is of the form (QUOTE expr) or ’expr, where expr can be a rational

number, symbol, Lisp expression, or various other expressions. The quote may be

omitted for numbers and for the symbols T and NIL, which represent the Boolean

constants.

• A lambda expression is an unnamed function with the same syntax as lambda expres-

sions in Lisp. For example, (LAMBDA (X Y) (+ X Y 4)) represents the function

that, given arguments x and y returns x + y + 4.
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• An ACL2 term is either a variable, a constant, or a function application of the form

(fn-name term-list), where fn-name is a symbol corresponding to a function name

and term-list is a (possibly empty) sequence of terms separated by white space. Thus,

(CAR (FOO 4 X)) is an ACL2 term, which can be written in first-order math nota-

tion as car (foo (4, x)).

• A subterm of an ACL2 term e is any term contained within e including itself. For ex-

ample, the subterms of (CAR (FOO 4 X)) are X, 4, (FOO 4 X), and

(CAR (FOO 4 X)).

• An ACL2 term is grounded or a ground term if it contains no variable symbols.

• An ACL2 constant may also be used more loosely in this dissertation to refer to any

grounded ACL2 term containing only the ACL2 core primitive functions, given in

Figure 3.1. For example, (CONS ’0 ’0) is referred to as an ACL2 constant. All

such constants can be normalized, so it is possible to determine whether any two

constants are equal. Technically, this loose definition is necessary even for many

innocuous looking constants, such as ’3, which technically is an abbreviation for

(BINARY-+ ’1 (BINARY-+ ’1 ’1)).

• LET* is used as an abbreviation for nested lambda expressions that bind variables to

values. For example,

(LET* ((X 4)

(Y (+ X 8))

(Z (+ X Y)))

(* X Y Z))

is the same as
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((LAMBDA (X)

((LAMBDA (Y)

((LAMBDA (Z) (* X Y Z))

(+ X Y)))

(+ X 8)))

4)

which we write in math notation as
x ∗ y ∗ z

where z := x + y

y := x + 8

x := 4.

Note that order of the definitions in math notation is the exact opposite of Lisp’s

LET*. In Lisp’s LET* notation, a variable is used below its definition, whereas in

math notation a variable is used above its definition.

3.3 Mixing Math and Lisp Notation

Standard math notation is often used in this dissertation to denote ACL2 functions and

terms. Translation of names present some difficulty, since function and variables names

are usually more than one character, and often contain symbols, such as “-”, which can

be confused with operations. To avoid ambiguity, names are sometimes modified. For

example, ACL2’s BINARY+ function might be renamed bplus , with a note stating that it

implements ACL2’s binary addition. Also, since names and variables are often multiple

symbols, the × symbol is never implied. For example, in this dissertation ab + c means add

the variable ab to c, not a × b + c.

Actual ACL2 notation is also used in places in this dissertation. For the most part,

its use is limited to when functions are defined that input or return ACL2 terms. Such
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functions warrant further discussion, since they can easily be the cause of much confusion.

Consider, for example, the function Fn (E), used in Chapter 5. Given an ACL2 term E,

denoting a function application, then Fn (E) is the function being applied. For example,

Fn (p(CAR (CONS X Y))q) = pCARq.

We use the pq delimiters to enclose an ACL2 term, which is a constant in the surrounding

mathematical term. Thus, in the above example, the function Fn is applied to the argument

p(CAR (CONS X Y))q, which is a constant denoting the ACL2 term (CAR (CONS X Y)).

In Lisp, the QUOTE (or ’) symbol has a similar effect as pq. For example, given the

Lisp definition:

(DEFUN FN (X) (CAR X))

then

(FN ’(CAR (CONS X Y))) = ’CAR,

whereas

(FN (CAR (CONS X Y))) = (FN X) = (CAR X).

Similarly, the ACL2 formula

(CAR (CONS X Y)) = X

is valid, since it is an axiom in ACL2. On the other hand,

p(CAR (CONS X Y))q , pXq,

since p(CAR (CONS X Y))q is literally a different constant than pXq.

When an ACL2 term occurs by itself, without any enclosing first-order math no-

tation, the pq delimiters may be used or they may be omitted. To emphasize that some
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expression is an ACL2 term or ACL2 formula, it is often is enclosed in a box, like the pre-

vious ACL2 examples. first-order math notation, on the other hand, is usually presented

without an enclosing box.

As another example, consider the function (actually set of functions)

MakeFn ( f , x0, x1, ...xn) that, given ACL2 term f and ACL2 terms x0 through xn, returns

the ACL2 term that applies f to the argument list x0 through xn. Thus,

Fn (MakeFn ( f , x0, x1, ..., xn)) = f

For example,

MakeFn (pCONSq, pXq, pYq) = p(CONS X Y)q.

and

MakeFn (pEQUALq,MakeFn (pCARq,MakeFn (pCONSq, pXq, pYq)), pXq).

is equal to the ACL2 term

(EQUAL (CAR (CONS X Y)) X),

which is a valid ACL2 formula (here we implicitly translate the ACL2 term into a formula

as described in Section 3.2).

3.4 Primitives

An ACL2 primitive is a function symbol present in the ACL2 ground-zero theory, i.e., the

theory in which the ACL2 theorem prover begins. We further divide the ACL2 primitives

into core primitives and defined primitives. The core primitives, or undefined primitives, are

the 29 primitives in Table 3.1 1. We call the remaining ACL2 primitives defined primitives.

Note that while ACL2 is an untyped language, its objects are divided essentially into

characters, strings, numbers, symbols, and lists (or trees). ACL2 numbers are the complex
1Table 3.1 is copied verbatim from “A Precise Description of the ACL2 Logic” by Kaufmann and Moore

[38]
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rationals (e.g., 4/11 + 1/2 × i), characters are ASCII characters (e.g., ’a’), lists (or trees)

are lists ACL2 objects (e.g., [1, 2, 3]), strings are essentially lists of characters tagged as a

string (e.g., “abc”), and symbols are essentially strings tagged as a symbol (e.g., abc). For

more information on the constants of ACL2 and how they are constructed, see “A Precise

Description of the ACL2 Logic” by Kaufmann and Moore [38].

The core primitives are defined through a series of axioms. For example, the IF

primitive satisfies the following axioms:

X = ’NIL→ (IF X Y Z) = Y

X , ’NIL→ (IF X Y Z) = Z

The defined primitives are each defined using a single Lisp definition, which represents a

single axiom in the ground zero theory. Some examples of common primitives and their

definitions are shown in Figure 3.3 and described as follows:

• The IMPLIES and IFF functions implement logical implication and Boolean equiva-

lence respectively.

• The (NFIX X) function returns X if X is a natural number, and zero otherwise.

• The (ZP X) function returns true if X is zero or is not a natural number.

• The MIN and MAX functions select the minimum and maximum of their inputs.

• The NTH function returns the nth member of a list.

• The LEN returns the length of a list.

ACL2 also has a built-in representation for ordinals up to ε0. Since ordinals, such as

the natural numbers, cannot decrease forever, they are useful for reasoning about fixpoints.

Primitives involving ordinals include (O-P X), which recognizes whether X is an ordinal in

ACL2’s representation and (O< X Y), which determines whether an X represents an ordinal

less than the ordinal represented by Y.
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Table 3.1: ACL2 Core Primitives

Function Arity Description
BINARY-* 2 multiplies two numbers
BINARY-+ 2 adds two numbers
UNARY-- 1 negates a number
UNARY-/ 1 inverts a number
< 2 less than on the rationals
BOOLEANP 1 recognizes ’T and ’NIL
CAR 1 first element of a list
CDR 1 all but first element of a list
CHAR-CODE 1 maps characters to integers
CHARACTERP 1 recognizes characters
CODE-CHAR 1 maps integers to characters
COMPLEX 2 builds a complex from two rationals
COMPLEX-RATIONALP 1 recognizes a complex number
COERCE 2 maps between character lists and strings
CONS 2 builds a list
CONSP 2 recognizes a non-empty list
DENOMINATOR 1 denominator of a rational
EQUAL 2 equality predicate
IF 3 if-then-else
IMAGPART 1 imaginary part of a complex
INTEGERP 1 recognizes integers
INTERN-IN-PACKAGE-OF-SYMBOL 2 maps a string to a symbol
NUMERATOR 1 numerator of a rational
RATIONALP 1 recognizes rationals
REALPART 1 real part of a complex
STRINGP 1 recognizes strings of characters
SYMBOL-NAME 1 name of a symbol
SYMBOL-PACKAGE-NAME 1 package name of a symbol
SYMBOLP 1 recognizes symbols
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(DEFUN IMPLIES (P Q) (IF P (IF Q ’T ’NIL) ’T))

(DEFUN IFF (P Q) (IF P (IF Q ’T ’NIL) (IF Q ’NIL ’T)))

(DEFUN NFIX (X)

(IF (IF (INTEGERP X) (NOT (< X ’0)) ’NIL)

X ’0))

(DEFUN ZP (X)

(IF (INTEGERP X) (NOT (< ’0 X)) ’T))

(DEFUN MIN (X Y) (IF (< X Y) X Y))

(DEFUN MAX (X Y) (IF (< Y X) X Y))

(DEFUN NTH (N L)

(IF (NOT (CONSP L))

’NIL

(IF (ZP N)

(CAR L)

(NTH (BINARY-+ ’-1 N) (CDR L)))))

(DEFUN LEN (X)

(IF (CONSP X)

(BINARY-+ ’1 (LEN (CDR X)))

’0))

Figure 3.3: Some examples of defined primitives that are used elsewhere in the dissertation.
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ACL2 also supports Lisp macros, which are simply abbreviations in the logic. Some

primitive macros used later in the dissertation include:

• Conjunction. Conjunction, like implication is implemented using the IF core prim-

itive. Conjunction, however, is implemented using a macro, AND, so that any num-

ber of arguments may be conjoined. For example, (AND X Y) is an abbreviation for

(IF X Y ’NIL), while (AND X Y Z) is an abbreviation for

(IF X (IF Y Z ’NIL) ’NIL).

• Disjunction. Disjunction is analogous to conjunction, and is named OR. For example,

(OR X Y Z) is an abbreviation for (IF X X (IF Y Y Z)).

• Addition. Addition, named +, is another macro that can take multiple arguments. The

expression (+ X Y Z) is an abbreviation for (BINARY-+ X (BINARY-+ Y Z)).

• Multiplication. Multiplication, named *, is analogous to addition. The expression

(* X Y Z) is an abbreviation for (BINARY-* X (BINARY-* Y Z)).

• Subtraction. Subtraction is a macro, named -, with two arguments. The expression

(- X Y) is an abbreviation for (BINARY-+ X (UNARY-- Y)).

For a complete list of the axioms in the ground-zero theory and ACL2’s standard

abbreviations, see “A Precise Description of the ACL2 Logic” by Kaufmann and Moore.

3.5 The Definition Principle

The ACL2 ground-zero theory can be extended using definition events, such as those in Fig-

ure 3.2. Each such event adds a new axiom to the ACL2 theory defining the corresponding

function symbol. For example, the axiom corresponding to the IN definition is:
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(IN A X)

=
(IF (NOT (CONSP X))

NIL

(IF (EQUAL A (CAR X))

T

(IN A (CDR X))))

where A and X are again implicitly universally quantified.

It is possible to create a syntactically well-formed Lisp definition that leads to an

inconsistent theory. For example, if (F X) = (NOT (F X)) is added to any ACL2 theory,

then it becomes possible to prove anything. To avoid such axioms, ACL2 requires that every

recursive definition terminate. To do this, for every recursive function f , a measure function

m f , with the same formal parameters as f , must be shown to return an ordinal that decreases

on each recursive application. In other words, if the definition of f (x) contains a recursive

call f (r (x)), under condition p (x), then it must be proven that p (x) → m f (r (x)) < m f (x).

For example, consider the definition of IN again:

(DEFUN IN (A X)

(DECLARE (XARGS :MEASURE (LEN X)))

(IF (NOT (CONSP X))

NIL

(IF (EQUAL A (CAR X))

T

(IN A (CDR X)))))

Normally, ACL2 chooses a measure function heuristically, and in the case of IN, ACL2’s

heuristics succeed. However, in the above example, the body of the measure function is

given explicitly as (LEN X) (where X corresponds to the formal parameter of IN with the

same name). Given the measure function corresponding to IN and its recursive call, the
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proof obligation is:

(AND (O-P (LEN X))

(IMPLIES (AND (CONSP X)

(NOT (EQUAL A (CAR X))))

(O< (LEN (CDR X)) (LEN X))))

which states that (LEN X) is an ordinal and that it decreases when IN is called recursively.

The above proof obligation is a theorem that is proven automatically by the ACL2 theorem

prover. The proof follows from the fact that (LEN X) is a natural number, and all natural

numbers are ordinals. Furthermore, if X is a list, then (LEN (CDR X)) is smaller than

(LEN X) by induction on X and the definition of LEN.

ACL2 also supports the introduction of mutual-recursive functions, but no knowl-

edge of mutual-recursive functions is needed in this dissertation.

3.5.1 Encapsulation

ACL2 also supports constrained functions, which are functions that satisfy a list of proper-

ties, rather than a single axiom corresponding to a definition event. To avoid inconsistent

axioms, such as constraining f to be a function satisfying

f (x) = ¬f (x),

it is required to provide a witness—a function defined using the definition principle that

satisfies the property. For example, a function EQUIV could be introduced satisfying only

the constraints in Figure 3.4. The EQUIV constraints are the constraints required to be an

equivalence relation, and are satisfied by the previously defined PERM function, as well as

the ACL2 primitives EQUAL, IFF, and the function that always returns true, (LAMBDA (X

Y) ’T).

A constrained function may also be introduced with an empty set of constraints,

in which case we call it an uninterpreted function. Uninterpreted functions only have the
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(IMPLIES (AND (EQUIV X Y) (EQUIV Y Z)) (EQUIV X Z))

(IMPLIES (EQUIV X Y) (EQUIV Y X))

(EQUIV X X)

Figure 3.4: The list of constraints for an arbitrary equivalence relation, EQUIV.

implicit constraint that they return the same value given the same arguments. Note that the

proof obligation for an uninterpreted function is trivial.

Constrained functions are implemented using ACL2’s encapsulation feature, which

allows definitional axioms to occur only within an encapsulated block of events. Thus the

witness function need not introduce any new function symbols into the ACL2 theory pro-

duced after the encapsulation block. The encapsulation block also may be used to manage

the complexity of large proofs by introducing function symbols and theorems locally to

the block and then exporting only the key theorems and definitions needed for some larger

proof. The removal of such function symbols is justified in a paper by Kaufmann and Moore

[39], which shows that every definitional axiom in ACL2 is a conservative extension of the

previous theory, i.e., every theorem provable in the extended theory is either provable in the

previous theory or involves the function symbols introduced by the extension.

3.6 The Theorem Prover

The ACL2 theorem prover combines many proof techniques, which are, for the most part,

applied automatically using heuristics. This section presents a brief overview of the tech-

niques, beginning with forward chaining and rewriting. For a more complete overview, see

Computer-Aided Reasoning: An Approach.
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3.6.1 Forward Chaining

At any point during a proof, ACL2 has a set of valid assumptions, known as the context.

For example, ACL2 will attempt to prove f (x) ∧ g (x) → h (x) by proving h (x) within a

context where f (x) and g (x) are assumed. If that fails, it will attempt to prove ¬f (x), within

a context where g (x) and ¬h (x) are assumed (since f (x) ∧ g (x) → h (x) is equivalent to

g (x) ∧ ¬h (x) → ¬f (x)). If that fails, it will similarly attempt to prove ¬g (x), within a

context where f (x) and ¬h (x) are assumed.

ACL2 also keeps a database of previously proven theorems. The forward chaining

technique attempts to use theorems in the database marked as forward chaining rules to

grow the context. For example, if f (x) and g (x) are in the current context, and f (x)→ m(x)

is a forward chaining rule, then m(x) is added to the context. If m(x) is the proof goal,

then forward chaining has succeeded. Otherwise, it still may be useful to know m(x) while

attempting to prove the current goal by additional forward chaining, or other techniques.

Since any instantiation of a theorem is also a theorem, the forward chaining tech-

nique attempts to find useful instances of forward chaining rules. The primary technique

involves unification. We say a term A unifies with a term B, if there exists a substitution

σ mapping the variables in A to expressions such that A/σ = B. Therefore, if A is a uni-

versally quantified theorem and A unifies with some term B, then B is also a theorem. In

the automated theorem proving community, this is sometimes referred to as one-way uni-

fication, but within this dissertation all unification is one-way, so we refer to it simply as

unification.

Each forward chaining rule has an associated trigger term. Before a forward chain-

ing rule is applied the trigger term must unify with some assumption in the context. Then

the forward chaining technique attempts to extend the substitution implied by the unifica-

tion to create an instance of the rule where all hypotheses occur in the context. For example,

if f (g (a)) is in the current context and f (x) → h (x) is a forward chaining rule with trigger

term f (x), then h (g (a)) is added to the context, since f (x) unifies with f (g (a)) under the
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substitution [x 7→ g (a)]. If a user marks a theorem as a forward chaining rule without

specifying a trigger term, then the trigger term is the first hypothesis of the theorem.

Unification on the trigger term may fail to produce a complete substitution mapping

the variables in the forward chaining rule to values. In this case, which is discussed in

Chapter 4, other heuristics are used to complete the substitution.

3.6.2 Rewriting

The rewriting proof technique attempts to use previously proven theorems, marked as

rewrite rules, to simplify the current proof goal. For example, if marked as a rewrite rule, a

theorem of the form:

My-Rewrite:

p (x) ∧ q (x)→ f (x) = g (x)

is treated as an instruction to rewrite instances of f (x) to g (x), when p (x) and q (x) are

true. If f (x) unifies with a term in the current proof goal under a substitution σ, then f (x)/σ

is replaced by g (x)/σ if p (x)/σ and q (x)/σ can be proven from the current context. For

example, using My-Rewrite, ACL2 will rewrite h (f (g (a))) to h (g (g (a))) if p (g (a)) and

q (g (a)) can be proven from the current context.

Rewriting in ACL2 occurs inside out. Thus, using My-Rewrite and assuming the

hypotheses can be proven, a proof goal f (f (a)) will first be rewritten to f (g (a)) and then to

g (g (a)).

Rewrite rules need not conclude with an equality; they can also conclude with any

equivalence relation, which is a binary function satisfying the theorems in Figure 3.4. For

example, if equiv (x, y) is such an equivalence relation, then a rewrite rule can have the

conclusion equiv (f (x), g (x)). Such a rule is treated as an instruction to rewrite f (x) to g (x)

when equiv (f (x), g (x)) is sufficient to ensure that the original proof goal is true if and only

if the rewritten proof goal is true. For example, if the proof goal is h (f (a)), then h (f (a))

can be rewritten to h (g (a)) if equiv (x, y)→ (h (x)↔ h (y)).
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ACL2 relies on theorems marked as congruence rules to justify rewriting based on

equivalence relations other than equality. Congruence rules have the form

equiv 0(xi, yi)→ equiv 1(f (x1, ..., xn), f (x1, ..., xi−1, yi, xi+1, ..., xn))

where equiv 0 and equiv 1 are arbitrary equivalence relations; x1 through xn and y are vari-

ables; and f is an arbitrary function. Since “if and only if” is an equivalence relation

equiv (x, y) → (h (x) ↔ h (y)) is an example of a theorem that can be marked as a congru-

ence rule.

By combining congruence rules, ACL2 can justify equivalence-based rewriting of

complex expressions. For example, if equiv (f (x), g (x)), then the rewriting of h (f (f (a)))

to h (g (g (a))) is justified by the congruence rules equiv (x, y) → equiv (f (x), f (y)) and

equiv (x, y)→ (h (x)↔ h (y)).

By default, all theorems entered into ACL2’s theorem database are marked as

rewrite rules. Theorems with a conclusion Q that is not an equivalence relation can be

considered a rewrite rules with the conclusion Q ↔ true. For example, p (x) → q (x) is

treated as p (x) → (q (x) ↔ true). This leads to a form of backchaining, since ACL2 will

attempt to prove q (a) by rewriting q (a) to true if p (a) can be proven. This backchaining

with the rewriting proof technique is also how the theorem prover is able to use lemmas

automatically in the example proofs of Section 3.1.

3.6.3 Overview of other Main Techniques

Some other techniques used within the ACL2 theorem prover are as follows:

• Evaluation. All of the core primitives in Table 3.1 are executable, meaning that their

value can be determined given any constant inputs. Similarly, any function whose

body contains only executable functions (or itself) is also executable. Thus, many

ground terms, i.e., terms containing no variables—can be evaluated to constants. For

example, car (cons (4 + 5, 7)) is automatically reduced to 9. The evaluation proof
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technique is used to reduce, when possible, all function calls with constant arguments

to constants.

• Expansion. Every application of a function introduced by a definition event can

be expanded into an instance of its body. Performing such expansions is not al-

ways a good idea though, since recursive functions can be expanded infinitely. The

expansion proof technique performs such expansions only when ACL2’s heuristics

determine that such an expansion is likely to lead to a successful proof.

• Linear Arithmetic. ACL2 contains a proof technique for proving linear arithmetic

theorems. While the mechanism does not prove all theorems within the traditional

theory of linear arithmetic, it has the advantage that it can be extended with theorems

involving user-created functions.

• Type Prescription. ACL2 also contains a mechanism specially designed to prove

rules involving the basic types of ACL2, such as lists and Booleans. For example,

when a new predicate symbol p (x) is introduced, ACL2 will likely automatically

deduce booleanp (p (x)), where booleanp (x) is the function recognizing Booleans.

Then, if the hypothesis of some forward chaining rule or rewrite rule requires

booleanp (p (x)), that hypothesis is proven without needing to look at the body of

p (x).

• Case splitting. Case splitting is sometimes used to reduce an IF into two cases

corresponding to its true and false branches.

• Destructor Elimination. The destructor elimination proof technique removes calls

of the destructors CAR and CDR.

• Induction. ACL2 contains heuristics that automatically attempt to prove theorems

by induction. The ACL2 heuristics attempt to find a good induction scheme to prove
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a given formula from the proofs of termination of functions occurring in that formula.

For example,

in-minus-a-implies-in :

in (a, del (b, x))→ in (a, x),

from Section 3.1, is proven automatically by induction on the size of x; which is also

the measure used to prove the termination of del .

• Generalization. Often induction only succeeds when given a more general form of

a property. ACL2’s generalization proof technique attempts to find such generaliza-

tions and perform them prior to induction.

• Functional instantiation. Any theorem proven about a constrained function is also

valid for any function satisfying its constraints. For example, any theorem proven

about the EQUIV function with the constraints in Figure 3.4, can be automatically de-

duced about IFF, EQUAL, and PERM. Functional instantiation is not tried automatically

by the theorem prover, but is accessible through ACL2’s hint mechanism described

in Section 3.6.4.

The above techniques are combined with a few techniques not mentioned, to create

the ACL2 theorem prover. The most straightforward techniques are generally tried first,

such as evaluation and rewriting, and those requiring the most heuristics, such as induction

or generalization, are tried last.

3.6.4 User Guidance

Expert users can control the theorem prover through multiple mechanisms. Most of the

techniques described in Section 3.6.3 can be completely disabled when they are interfering

with other techniques. More commonly though, users guide the theorem prover by proving

lemmas, as described in Section 3.1, and marking those lemmas as rules to be associated
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with various ACL2 proof techniques. Rules are also commonly disabled or enabled based

on whether they are likely to be useful in a given proof.

Users can affect a proof more directly by using ACL2’s hint mechanism. ACL2 typ-

ically divides a proof into many user-accessible goals and the hint mechanism allows users

to provide assistance at a particular goal. The assistance may involve, among other things,

the disabling and enabling of particular rules; the use of a particular strategy, such as ex-

panding a certain function application; or instantiating a particular theorem. In Chapter 11,

a new form of assistance, accessible through the hint mechanism, is described.

3.6.5 Meta Reasoning

Meta reasoning is a proof technique that allows the use of ACL2 functions that directly

manipulate ACL2 terms. This section provides an introduction to meta reasoning, which

is needed for the discussion of a new technique similar to meta reasoning in chapter 11. A

more complete discussion of meta reasoning can be found in Hunt et al. [30].

A simple, but powerful, form of meta reasoning is available through the syntaxp (x)

primitive. Within the ACL2 logic, syntaxp (x) = true, so syntaxp (x) → p (x) reduces to

proving p (x). “Under the hood”, however, syntaxp (x) can prevent proof techniques from

being used automatically. A theorem syntaxp (x) → p (x) will only be applied automat-

ically when x/σ evaluates to true, where σ is a substitution mapping the variables in the

current theorem to constants corresponding to their value after unification. For example,

the rewrite rule

syntaxp (p (x))→ f (x) = g (x)

will rewrite f (h (a)) to g (h (a)) only when p (p(H A)q) is true, where p(H A)q is the ACL2

term representing h (a).

More sophisticated forms of meta reasoning require that an ACL2 evaluator be

defined. Evaluators are constrained functions, with constraints that are satisfied by the

actual evaluation of ACL2 terms. An evaluator ev (e, σ) inputs an ACL2 term e and a
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substitution σ and is either equal to e/σ, as defined by the current ACL2 theory, or is

undefined over the given term e. For example, if the definitional axiom for some function

is f (x) = x + 1, then

ev (p(F X)q, σ) = ev (p(+ X 1)q, σ)

may be one of the constraints defining ev (e, σ). Thus, it is possible to prove theorems about

the evaluation of f (x), such as

ev (pF 10q, σ) = 11,

which states that f (10) evaluates to 11. Another example is

ev (p(F (+ X 1))q, σ) = ev (p(+ (F X) 1)q, σ),

which states that f (x + 1) evaluates to the same value as f (x) + 1.

Once an evaluator ev (e, σ) is defined, a meta rule can be associated with theorems

such as:

termp (x) ∧ alistp (σ) ∧ ev (hyp (x), σ)

→

equiv (ev (x, σ), ev (trans (x), σ)),

where termp (x) recognizes a well-formed ACL2 term x, alistp (σ) recognizes a well formed

substitution σ, equiv (x, y) is any equivalence relation, hyp (x) is any predicate and trans (x)

is any function.

A trigger term, provided by the user, is also associated with the meta rule. The

meta rule is then applied as part of the rewriting proof technique described in Section 3.6.2.

Whenever the trigger term unifies with a term x in the current proof goal, then x is rewritten

by applying the trans function on it if the hyp predicate returns true, and equivalence-

based rewriting using equiv (x, y) is justified as described in Section 3.6.2. For example, if

hyp (p(F (G A))q) = true and trans (p(F (G A))q) = p(G (F A))q, then the proof goal

h (f (g (a))) is rewritten by meta-reasoning to h (g (f (a))), assuming that the equivalence-

based rewriting is justified.
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Meta rules therefore are a more direct way to manipulate terms within the ACL2

theorem prover. Meta rules can, at times, be more efficient than traditional rewriting. They

are also capable of encoding more complex heuristics.
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Chapter 4

Increasing Free Variable

Instantiation During Forward

Chaining

4.1 Introduction

One way to make large-scale formal verification more practical is to increase the automa-

tion in a tool already capable of large-scale formal verification, such as ACL2. This chapter

describes such a modification to ACL2’s forward chaining proof technique. The modifica-

tion essentially requires more time to prove theorems, but can prove more theorems auto-

matically. The modification became part of ACL2’s default forward chaining technique in

version 2.7, and has been the default since then.

Section 4.2 presents an example of a theorem that used to require user interaction

to prove, but now can be proven automatically. Section 4.3 describes the modification in

detail. Finally, Section 4.4 analyzes the performance effects of the modification on the

theorem prover.
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4.2 Example

Consider the predicate len-equal (x, y), which returns whether two lists have the same

length. In ACL2, len-equal (x, y) can be defined as follows:

len-equal (x, y) ,

 atom (x) ∧ atom (y), if atom (x) ∨ atom (y)

len-equal (cdr (x), cdr (y)), otherwise.

Furthermore, let p (x, y) be a constrained function satisfying the following axiom:

len-equal-implies-p:

len-equal (x, y)→ p (x, y)

Given the definition of len-equal (x, y), the ACL2 theorem prover can prove the

following theorem automatically by induction on x:

len-equal-transitive:

len-equal (x, y) ∧ len-equal (y, z)→ len-equal (x, z)

If len-equal-transitive and len-equal-implies-p are marked as forward chaining rules, then

the following theorem can be proven automatically:

len-equal-implies-p-2:

len-equal (a, b) ∧ len-equal (b, c)→ p (a, c)

During the above proof attempt, the ACL2 theorem prover keeps a list of facts, called the

context, that follow from the hypotheses of the theorem being proven (as well as some

other sources). Among the context are the hypotheses themselves, len-equal (a, b) and

len-equal (b, c). The forward chaining technique then adds len-equal (a, c) to the context,

since it follows from the facts in the context and len-equal-transitive under the substitution

[x 7→ a, y 7→ b, z 7→ c]. The forward chaining technique next proves the conclusion,

since p (a, c) follows from len-equal (a, c) and len-equal-implies-p under the substitution

[x 7→ a, y 7→ c].

Now consider the following two theorems, which are the same as len-equal-implies-

p-2, but each contain an extra (unnecessary) hypothesis.
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len-equal-implies-p-3:

len-equal (a, b) ∧ len-equal (b, c) ∧ len-equal (b, d)→ p (a, c)

len-equal-implies-p-4:

len-equal (a, b) ∧ len-equal (b, d) ∧ len-equal (b, c)→ p (a, c)

The theorem len-equal-implies-p-4 is proven automatically by the forward chaining tech-

nique in ACL2 version 2.6, but the theorem len-equal-implies-p-3 is not.

To explain the problem, first we need to explain a little about how the forward chain-

ing proof technique works. The forward chaining proof technique relies on unification with

a single term, known as the trigger term, to find an instance of a forward chaining rule that

is applicable to a given proof. The unification provides an instance of variables to values

for all variables occurring in the trigger term. Another method must be used to instantiate

variables occurring outside the trigger term, which are called free variables. By default, the

trigger term is the first hypotheses of a forward chaining rule. Thus, len − equal − transitive

trigger term is the len-equal (x, y). The variable z in len − equal − transitive is a free vari-

able.

In ACL2 version 2.6, only the first instance found for a free variable is used. Thus,

when attempting to prove len-equal-implies-p-3 and len-equal-implies-p-4, the forward

chaining technique uses len-equal-transitivity either under the substitution

[x 7→ a, y 7→ b, z 7→ c] or under the substitution [x 7→ a, y 7→ b, z 7→ d], but not

both. The chosen substitution depends on the order of the hypotheses in the conjecture

being proven. In theorem len-equal-implies-p-3, [x 7→ a, y 7→ b, z 7→ d] is chosen, and

len-equal (a, d) is added to the context. In theorem len-equal-implies-p-4, on the other

hand, [x 7→ a, y 7→ b, z 7→ c] is chosen, and len-equal (a, c) is added to the context. There-

fore, len-equal-implies-p-4 is proven by forward chaining, but len-equal-implies-p-3 is not.
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The modification described in this chapter is such that all possible instances of free

variables are added to the context. Thus, both len-equal (a, c) and len-equal (a, d) are added

to the context during the proof attempts of len-equal-implies-p-3 and len-equal-implies-p-4,

and both theorems are proven automatically.

4.3 Forward Chaining Implementation

This section describes the modification to the forward chaining proof technique in detail.

We refer to the unmodified forward chaining technique as the match once approach and the

modified forward chaining technique as the match all approach.

First, given two substitutions σ and σ′, we say that σ′ extends σ, or σ v σ′, if σ′

contains every element in σ. For example,

[a 7→ 1, b 7→ 2] v [a 7→ 1, b 7→ 2, c 7→ 3] = true

whereas

[a 7→ 1, b 7→ 2] v [a 7→ 1, c 7→ 3] = false.

The match once approach begins with a substitution σ0 resulting from unification

with the forward chaining rule’s trigger term. Then, given hypothesis Hi, σi is defined, if

possible, as a substitution satisfying σi−1 v σi ∧ Hi/σi = C for some term C in the current

context. If, for any hypothesis, no such σi exists, then the forward chaining technique

fails to use that rule. Otherwise, Q/σn is added to the context, where n is the number of

hypotheses in the forward chaining rule and Q is its conclusion. The addition of Q/σn is

justified since each hypothesis of the forward chaining rule under the substitution σn is in

the context. We illustrate the match once approach, alongside the match all approach, on an

example in Figure 4.1.

The match all approach begins with a list of substitutions Σ0 = [σ0], where σ0

is again the substitution resulting from unification with the trigger term. Then, given hy-

pothesis Hi, a list of substitutions Σi is constructed from Σi−1. A substitution Σi contains a
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Rule: f (w, x) ∧ f (x, y) ∧ f (y, z)→ f (w, z)

Initial Context: f (a, b), f (b, c), f (b, d), f (c, e), f (c, f ), f (d, g)
Initial Substitution: σ0 = [w 7→ a, x 7→ b]

Match Once
Hypothesis σ

f (w, x) : [w 7→ a, x 7→ b]
f (x, y) : [w 7→ a, x 7→ b, y 7→ c]
f (y, z) : [w 7→ a, x 7→ b, y 7→ c, z 7→ e]

Conclusion: f (a, e)

Match All
Hypothesis Σ

f (w, x) : [[w 7→ a, x 7→ b]]
f (x, y) : [[w 7→ a, x 7→ b, y 7→ c], [w 7→ a, x 7→ b, y 7→ d]]
f (y, z) : [[w 7→ a, x 7→ b, y 7→ c, z 7→ e], [w 7→ a, x 7→ b, y 7→ c, z 7→ f ],

[w 7→ a, x 7→ b, y 7→ d, z 7→ g]]

Conclusions: f (a, e), f (a, f ), f (a, g)

Figure 4.1: The above figure illustrates the match once and match all approaches on an
example. The example rule is a weak form of transitivity for some predicate f (x, y). It
has two free variables, y and z. An initial substitution and context are given, which are the
same for both approaches. In the match once approach, a substitution σ is then developed
from each hypothesis, leading to a single conclusion to add to the context. In the match all
approach, a list of substitutions Σ is developed from each hypothesis, leading to multiple
conclusions to add to the context.
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substitution σi if and only if there exists a σi−1 ∈ Σi−1 and a term C in the current context

such that σi−1 v σi ∧Hi/σi = C. The match all approach then grows the context by adding

Q/σn for each σn in Σn, where n is the number of hypotheses in the forward chaining rule

and Q is its conclusion. The addition of Q/σ is justified by the validity of the rule, since

σ maps each hypothesis to an element in the context. The match all approach is illustrated

alongside the match once approach with an example in Figure 4.1.

The number of additions to the context can be exponential in the number of free

variables. For instance, xn conclusions can be drawn from a forward chaining rule of the

form:

f (x1) ∧ f (x2) ∧ ... ∧ f (xn)→ g (x1, x2, ..., xn)

when the initial context [ f (a), f (b)]. If n is 2, for example, g (a, a), g (a, b), g (b, a), and

g (b, b), are derived from [ f (a), f (b)] and the rule

f (x1) ∧ f (x2)→ g (x1, x2).

To avoid this exponential and other performance issues caused by the match all

technique, forward chaining rules can be tagged as match once, in which case the original

match once approach is still used to instantiate them. In practice, however, the match all

approach rarely leads to a large increase in proof time, because of the low number of free

variables in most rules. Since version 2.7, the ACL2 theorem prover uses the match all

technique by default.

4.4 Results

The match all technique has now been part of the prover for over four years. Figure 4.2

compares the time taken to verify ACL2 version 3.1’s regression suite using a prover with

only the match once forward chaining technique versus a prover with only the match all

forward chaining technique. Four files contained theorems that were not provable with the

match once prover, whereas every file could be proven with the match all prover. While
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Figure 4.2: A graph comparing the performance of the theorem prover before and after
increasing free variable instantiation of forward chaining rules. Each point represents a file
in the ACL2 regression suite. The x-axis is the time required when using the old, match
once, approach. The y-axis is the time required when using the new, match all, approach.
A point is on the line if the same time is required by both techniques.

the match all technique can cause an exponential slow-down, Figure 4.2 shows that any

slow-down at all is rare. The total time to prove all the files in the regression suite except

the four files that cannot be proven by the match once approach, was 2 hours, 16 minutes,

and 7 seconds for the match once prover, and 2 hours, 19 minutes, and 2 seconds for the

match all prover—a difference of 2.1 percent 1.

In ACL2 version 2.6, the rewriting and linear arithmetic proof techniques also used

an approach analogous to the match once approach in the forward chaining proof technique.

However, an approach analogous to the match all approach is now the default for all three

techniques. Figure 4.3 extends the comparison to the analogous rewriting and linear arith-

metic proof techniques. Here, the match once prover uses a match once free variable ap-

proach for rewriting, linear arithmetic, and forward chaining, whereas the match all prover

1These results were obtained on a Pentium R© 4, 3.0 GHz, dual processor with 2 gigabytes of random access
memory. ACL2 version 3.1 was used, running under GNU Common Lisp version 2.6.7.
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Figure 4.3: A graph comparing the performance of the theorem prover before and after in-
creasing free variable instantiation in the rewriting, linear arithmetic, and forward chaining
proof technique. Each point represents a file in the ACL2 regression suite. The x-axis is the
time required when using the old, match once, approach. The y-axis is the time required
when using the new, match all, approach. A point is on the line if the same time is required
by both techniques.

uses a match all free variable approach for all of these techniques. One file contained proofs

that could not be completed by the match all prover, due to the slow-down in performance.

Twenty-seven files contained proofs that could not be completed by the match once prover.

Omitting these twenty-eight files, the total time to prove the regression suite for the match

once prover was 1 hour, 53 minutes, 33 seconds versus 2 hours, 10 minutes, and 48 seconds

for the match all prover—a difference of 15.2 percent.

4.5 Summary

ACL2’s forward chaining proof technique has been modified to allow it to prove more

theorem automatically. Furthermore, the modification does not significantly reduce perfor-

mance on any of the existing proofs in ACL2’s regression suite. Based on these results, the
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modified technique is now ACL2’s default forward chaining technique. Similar improve-

ments to the rewriting and linear arithmetic proof techniques were later implemented and

added to the theorem prover as well.

The modification to the forward chaining technique highlights the potential for fu-

ture improvements to the theorem prover. A general purpose theorem prover must balance

a trade-off between proving difficult theorems automatically and proving easy theorems

quickly. The modification to the forward chaining technique adjusts this trade-off by prov-

ing more theorems automatically and the expense of requiring more time to prove other

theorems.

4.6 Development and Bibliographic Notes

This chapter describes joint work with J Moore and Matt Kaufmann. J Moore helped de-

velop the new forward chaining algorithm, I implemented the initial forward chaining mod-

ification, and Matt Kaufmann modified it somewhat before adding it to the theorem prover.

Matt Kaufmann went on to implement similar modification to the rewriting and linear arith-

metic proof techniques.

Automated instantiation of free variables is not always built into general-purpose

theorem provers. PVS [62], for example, has no built-in technique for automating free

variable instantiation, though such a technique may be implemented through user-defined

“tactics.” A contextual rewriting technique that instantiates free variables, called here exis-

tential variables, is part of the Terminating Functional Programs (TFL) environment [83],

implemented for HOL [20] and Isabelle [59]. Techniques for using unification to match free

variables, called here holes, can also be found in the field of logic programming [45, 51].
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Chapter 5

The Subclass of Unrollable List

Formulas in ACL2 (SULFA)

5.1 Introduction

The previous chapter describes a method to decrease the amount of user guidance required

in theorem proving by modifying the ACL2 theorem prover’s existing proof techniques.

Another way to decrease the amount of user guidance is to identify ACL2 formulas that

can be verified fully automatically and then use fully-automated procedures to prove or

disprove such formulas. Such a technique not only can significantly reduce the amount of

human effort required to prove valid formulas, but also can inform users when a conjecture

is not provable from the current ACL2 theory.

This chapter defines the decidable Subclass of Unrollable List Formulas in ACL2

(SULFA). Here we say that SULFA is a decidable subclass of ACL2 because:

1. A terminating procedure exists that recognizes whether any ACL2 formula is in

SULFA.

2. A terminating procedure exists that decides whether any formula in SULFA is prov-

48



able in ACL2.

This chapter addresses the first requirement, by showing that there exists a terminating

procedure that recognizes whether any ACL2 formula is in SULFA. Chapter 6 addresses

the second requirement, by presenting a terminating procedure that decides any SULFA

formula.

Note that “decidable subclass” is a pretty weak term. Any terminating proof pro-

cedure is a decision procedure for a decidable subclass, namely the subclass of formulas

that it proves. The SULFA subclass is a meaningful subclass in that it is significantly easier

to recognize than it is to solve. We have successfully applied the SULFA recognizer to all

the theorems in ACL2’s regression suite. On the other hand, solving SULFA formulas is an

NP-hard problem.

Furthermore, SULFA is distinguished from most other meaningful decidable sub-

classes in that it is not restricted to a finite set of functions, but, like ACL2, can be ex-

tended by a function definitional principle. Furthermore, SULFA is defined entirely using

the primitives of ACL2, along with a definitional principle to support additional functions.

Thus sometimes ACL2 formulas are in SULFA even when created by users unaware of it,

including 3.2% of the formulas in ACL2’s regression suite.

This chapter begins by describing the intuition behind SULFA and why it is decid-

able in Section 5. Section 5.3 then explains some simplifications we make to the ACL2

logic. Section 5.4 rigorously defines SULFA and Section 5.5 shows how to create an

efficient recognizer for SULFA. Section 5.6 presents the results of applying the efficient

SULFA recognizer to ACL2’s regression suite of theorems.

5.2 Intuition Behind SULFA

SULFA is based primarily on the theory of list structures, which, as defined by Nelson and

Oppen [58], corresponds to ACL2 formulas formed by terms in the following grammar:
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E ::= (CAR E) | (CDR E) | (CONS E E) | (CONSP E) | ’NIL | ’T | var

where var is any symbol, denoting a universally quantified variable.

The axioms of the theory of list structures, aside from the standard axioms of equal-

ity and conjunction, are shown in Figure 5.1. Nelson and Oppen show not only that this

theory is decidable, but that, if limited to formulas involving conjunctions of equalities and

negated equalities, it can be decided with complexity O(N × Log (N)), where N is the size

of the formula. The size of a formula here is equal to the sum of the sizes of all terms in

the formula, where a term’s size is the number of leaves in its parse tree (e.g., A has size 1,

(CONS A B) has size 3, and (CONS (CONS A B) (CAR X)) has size 6).

Nelson and Oppen also show, in a separate paper, that decision procedures for any

two theories sharing only equality and propositional symbols can be combined into a de-

cision procedure for the combined theory. Thus, a decidable theory axiomatizing ACL2’s

EQUAL and IF primitives can be combined with the theory of lists to form a decidable the-

ory including CAR, CDR, CONS, CONSP, IF, and EQUAL. The decidable theory can further be

combined with a decision procedure for uninterpreted functions. Also unrollable function

applications, by definition, can be unrolled into expressions involving only previously de-

fined functions and primitives. The SULFA subclass is defined to be exactly this decidable

subclass, including function applications that can be unrolled into CAR, CDR, CONS, CONSP,

IF, EQUAL, and uninterpreted functions.

As suggested by the intuition, the theory of list structures within ACL2 is decid-

able and can be combined with many other decidable theories. In practice, however, some

complications arise:

• The axioms in Figure 5.1 are all theorems provable from ACL2’s ground-zero theory.

Thus, any theorem proven by Nelson and Oppen’s procedure is a theorem in the

ACL2 logic. However, the converse is not true. ACL2 formulas in the language of the

theory of lists may be provable from the ground zero ACL2 theory but not provable

from the axioms in the theory of list structures. For example, (CAR ’NIL) = ’NIL
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1. ’T , ’NIL

2. (CONSP X) = ’T ∨ (CONSP X) = ’NIL

3. (CONSP (CONS X Y)) = ’T

4. (CONSP X) ` (CONS (CAR X) (CDR X)) = X

5. (CAR (CONS X Y)) = X

6. (CDR (CONS X Y)) = Y

Figure 5.1: Axioms in the traditional theory of list structures.

and (CAR ’T) = ’NIL are provable from the ACL2 ground zero theory, but not

provable from the axioms in Figure 5.1.

• We do not want to limit ourselves to the primitives CAR, CDR, CONS, CONSP, IF, and

EQUAL. Since any ACL2 formula involving primitives applied to constants can be

decided with ACL2’s evaluation proof technique, we wish to include all primitives

when applied to constants.

Due to the above complications, Chapter 6 defines a decision procedure for SULFA from

scratch, rather than relying on a combination of previous, well-known decision procedures.

5.3 Simplified ACL2 Logic

This chapter defines SULFA with respect to a simplified version of the ACL2 logic. The

simplified version contains no lambda expressions, contains no mutually-recursive func-

tions, and assumes that all ACL2 formulas are of the form α , ’NIL, for some ACL2 term

α. For example,

(F X) , ’NIL

is in the simplified ACL2, but not the equivalent formula
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(F X) , ’NIL ∧ (F X) , ’NIL.

None of these removals affect the expressiveness of the ACL2 logic or the decid-

ability of SULFA. ACL2 lambda expressions can be substituted for named functions or

removed by β reduction; mutually-recursive set of functions can be defined as a single

function with a flag; and all ACL2 formulas can be expressed as equivalent formulas of the

form α , ’NIL. For example,

(P X)→ (F X) = (G X)

is equivalent to

(IMPLIES (P X) (EQUAL (F X) (G X))) , ’NIL.

The implementation of the SULFA recognizer and SULFA solver available with the

ACL2 distribution does support lambda functions and mutually recursive functions. An

ACL2 formula with lambda functions and mutually recursive functions is in SULFA if it

would be in SULFA were each lambda function replaced with a named function and each

mutually recursive function defined with a flag.

Users of the ACL2 theorem prover only write terms, not formulas. When a user

proves an ACL2 term α, they actually are proving the formula α , ’NIL. Thus there is no

need, in practice, to consider more general ACL2 formulas than α , ’NIL.

5.4 SULFA Recognizer

This chapter provides a procedure that determines whether any ACL2 formula is in SULFA.

The primary primitives of SULFA are ACL2’s list, equality, and if-then-else primitives. We

refer to these primitives (EQUAL, IF, CONS, CAR, CDR, and CONSP) as the SULFA core prim-

itives. SULFA terms may also include uninterpreted functions, which in ACL2, as defined

in Section 3.5.1, are constrained functions with minimal constraints. Terms involving other

52



functions may also occur, under the condition that some of the arguments to these functions

are reducible to constants.

The following terminology is necessary before defining SULFA rigorously:

• Define E as the set of all ACL2 terms. Recall that an ACL2 term is either a constant,

a variable, or the application of a function to an argument list composed of ACL2

terms. We denote terms as lisp expressions surrounded by pq, though the pq may be

removed when its removal does not cause ambiguity. For example, f (p(IF A B C)q)

is the value of some function f , given as input the ACL2 term (IF A B C).

• Define S ⊂ E as the set of all ACL2 symbols, representing either functions and

variables in terms. For example, the term (+ 4 X) has a function symbol + and a

variable symbol X.

• An ACL2 function is an ACL2 symbol denoting the name of the function.

• The SULFA core primitives are the ACL2 functions IF, CONS, CAR, CDR, CONSP, and

EQUAL.

• Fn (E), given a function application E ∈ E, is the ACL2 function being applied in E.

For example, Fn (p(IF A B C)q) = pIFq.

• NA (E), given a function application E ∈ E, is its number of arguments. For example,

NA (p(IF A B C)q) = 3.

• Arg (i, E), given a natural number i ∈ N and function application term E ∈ E, is the

ith argument of E. For example, Arg (1, p(IF A B C)q) = pAq.

• |E|, given any E ∈ E, is its size, defined as:

|E| ,



0, if E is a constant

1, if E is a symbol

2 +

NA (E)∑
i=1

|Arg (i, E)|, otherwise.
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where all grounded ACL2 terms involving only applications of ACL2 primitives are

considered constant. For example, |pAq| = 1 (the size of the symbol A), |p’Aq| = 0

(the size of the ACL2 constant ’A), |p(CONS ’4 ’5)q| = 0 (p(CONS ’4 ’5)q is

also a constant), and |p(IF A B)q| = 4.

• Define an ACL2 history as a sequence of ACL2 events, including events defining

functions and introducing constrained functions. We say that an ACL2 formula is

valid in an ACL2 history, if it is valid in the theory corresponding to that history, i.e.,

the ACL2 ground zero theory plus the axioms corresponding to the ACL2 events in

the history.

• Body (H, f ), given an ACL2 history H and ACL2 function f , is the term denoting the

body of the function f . For example,

Body (H, pIFFq) = p(IF P (IF Q ’T ’NIL) (IF Q ’NIL ’T))q,

which corresponds to the definition of the IFF primitive:

(DEFUN IFF (P Q)

(IF P (IF Q ’T ’NIL) (IF Q ’NIL ’T))).

Note that when f has no body in H, then Body (H, f ) is undefined. In particular,

Body (H, f ) is undefined if f is a constrained function or an ACL2 core primitive.

• Formals (H, f ), given an ACL2 history H and ACL2 function f , is the set of formal

parameters of f . For example, Formals (H, pIFFq) = {pPq, pQq}.

• Meas (H, f ), given an ACL2 history H and an ACL2 function f , is the body of the

measure function of f , if one exists. For example, given that the following definition

is in H
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(DEFUN IN (A X)

(DECLARE (XARGS :MEASURE (LEN X)))

(IF (NOT (CONSP X))

NIL

(IF (EQUAL A (CAR X))

T

(IN A (CDR X)))))

then Meas (H, pINq) = p(LEN X)q.

• Given an ACL2 history H, a set X ⊂ S, E ∈ E, then the predicate Evblp (H, X, E) is

defined as:

Evblp (H, X, E) ,



true, if |E| = 0

E ∈ X, if |E| = 1

false, if evalFn (H,Fn (E))∧
i∈N,1≤i≤NA (E)

Evblp (H, X,Arg (i, E)), otherwise.

where evalFnp (H, f ) returns whether f is an evaluatable function in H, i.e., whether

f is a function that can be evaluated for any constant inputs into a constant. All ACL2

primitives are evaluatable, as are all functions defined from evaluatable functions

(including recursive functions). Constrained functions are not evaluatable.

Intuitively, Evblp (H, X, E) returns whether mapping the variables in X to constants is

sufficient to ensure that E can be reduced to a constant by evaluation. For example,

Evblp (H, X, p(+ 1 A B)q) is true if A and B are in X.

• ConstForm (H, X, E), given an ACL2 history H, a function application E ∈ E, and a

set of symbols X ⊂ S, is a subset of the formal parameters of Fn (E) including the ith

formal if Evblp (H, X,Arg (i, E)).
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Given an ACL2 history H, a set of symbols X ⊂ S, a symbol f ∈ S ∪ {♣}, and
a term E ∈ E, then the predicate SULFAp (H, X, f , E) is defined as follows (where
G , ConstForm (H, X, E), if E is a function application):

1. true, if |E| ≤ 1.

2. false, if
∨

1≤NA (E)
¬SULFAp (H, X, f ,Arg (i, E)).

3. true, if Fn (E) is a SULFA core primitive or an uninterpreted function in H.

4. false, if Fn (E) is a constrained function in H.

5. Formals (H,Fn (E)) ⊆ G, if Fn (E) is an ACL2 core primitive or a recursive
function without a valid measure.

6. SULFAp (H,G,Fn (E),Body (H,Fn (E))), if Fn (E) is not recursive.

7. Evblp (H,G,Meas (H,Fn (E))) ∧ SULFAp (H,G,Fn (E),Body (H,Fn (E))), if
Fn (E) , f .

8. true, if X ⊆ G.

9. Evblp (H, X ∩G,Meas (H,Fn (E)))∧SULFAp (H, X ∩G, f ,Body (H,Fn (E))),
otherwise.

Figure 5.2: The definition of the predicate SULFAp (H, X, f , E). If E is a formula in H, then
it is defined to be in SULFA, if and only if SULFAp (H, ∅,♣, E). We use ♣ as a constant not
equal to any ACL2 function name.

ConstForm (H, X, E) thus returns the formals corresponding to the constant argu-

ments of E. For example,

ConstForm (H, {pAq, pBq}, p(IFF (< (+ A B) 0) (< A C))q) = {pPq}.

since the formals of IFF, as previously defined, are P and Q; the argument correspond-

ing to P is (< (+ A B) 0), which is reducible to a constant, given that A and B are

constants; and the argument corresponding to Q is (< A C), which is not reducible

to a constant.

Given the above terminology, a formula E in an ACL2 history H is in SULFA

if SULFAp (H, ∅,♣, E), where the predicate SULFAp (H, X, f , E) is defined in Figure 5.2.
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Note that ♣ is used as a constant that is not equal to (or easily confused with) an ACL2

function. Section 5.4.1 shows that SULFAp (H, X, f , E) terminates.

Intuitively, in the definition of SULFAp (H, X, f , E), f = ♣ if E is a top-level for-

mula; otherwise, f is a function symbol, E is a subterm of the body of f , and X is a set of

variables symbols assumed to be constant. It is probably easiest to understand the definition

of SULFA by considering examples.

By condition 1 in Figure 5.2, any formula that is simply a variable or constant is in

SULFA. Thus, X, Y, ’T and ’4 are all in SULFA.

For a formula to be in SULFA all the terms inside the formula must be in SULFA.

For example, if (F (G X)) is in SULFA, then so is (G X). Thus, there is no reason to make

a distinction between a formula and a term.

By conditions 1, 2, and 3, any formula composed of SULFA core primitives is in

SULFA. Thus,

(CONSP (CAR X)),

(EQUAL (CAR (CONS X Y)) (CDR (CONS Y X))), and

(EQUAL (CAR X) (CDR X))

are in SULFA.

Condition 3 also allows uninterpreted functions (uninterpreted functions, as defined

in Section 3.5.1, are constrained functions with minimal constraints). Thus, if F and G

are uninterpreted functions, then terms such as (F (G X)) and (CAR (F (G (CONS X

’5)))) are in SULFA.

Condition 4, however, rules out constrained functions that are not uninterpreted. If

F is introduced using ACL2’s constrained function feature, then not even grounded terms

involving it, such as (F ’4), are in SULFA.

Condition 5 ensures if a term involves applications of ACL2 core primitives other

than the SULFA core primitives, then those applications must be grounded. For example,

(EQUAL (BINARY-* ’2 ’4) (BINARY-+ ’4 ’4))
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is in SULFA, but not

(EQUAL (BINARY-* 2 X) (BINARY-+ X X)),

because BINARY-* and BINARY-+ are core primitives. Condition 5 similarly restricts re-

cursive functions whose measure cannot be justified by the normal definition principle.

Generally, this occurs when the measure has been removed. This also is the case for a

couple ACL2 primitives.

Condition 6 essentially restricts non-recursive function applications to those which

would be in SULFA if the application is expanded. For example, consider the following

definitions:

(DEFUN ZP (N)

(IF (INTEGERP N)

(NOT (< 0 X))

’T))

(DEFUN IMPLIES (P Q)

(IF P (IF Q ’T ’NIL) ’T))

(DEFUN REDUCE (N X)

(IF (< N 0) (CAR X) (CDR X)))

Given the above definitions, the following are SULFA terms:

(ZP ’4),

(IMPLIES A (EQUAL (CAR A) (CDR B))),

(REDUCE ’4 A), and

(REDUCE (+ ’1 ’2) (IF A (CONS X Y) (CONS Y Z))),

whereas the following are not SULFA terms:
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(ZP N),

(REDUCE A ’4), and

(REDUCE N (CONS ’4 ’5)).

Since (ZP N) expands into an expression of ACL2 core primitives other than the SULFA

core primitives, only grounded applications of ZP can be permitted. On the other hand,

since (IMPLIES A B) expands into a nested IF, any expression involving just IMPLIES is

in SULFA. In fact, since all propositional formulas in ACL2 expand into IF expressions all

propositional formulas are in SULFA.

The function (REDUCE N X) is perhaps more interesting because it expands into an

expression in which N is inside <, but X is only inside IF, CAR, and CDR. The result is that N

must be constant for (REDUCE N X) to be in SULFA, but X is unrestricted.

Applications of recursive functions are handled by conditions 7, 8, and 9 of the def-

inition of SULFAp (H, X, f , E). Intuitively, recursive applications are permitted in SULFA

terms, if those applications can be unrolled and that unrolling produces an expression that is

in SULFA. Consider the function (BV-NOT N X), which inverts a bit vector X, represented

as a list of Booleans of length N.

(DEFUN BV-NOT (N X)

(DECLARE (XARGS :MEASURE (IF (ZP N) 0 N)))

(IF (ZP N)

NIL

(CONS (EQUAL (CAR X) NIL)

(BV-NOT (BINARY-+ N -1) (CDR X))))).

Given the above definition, some examples of SULFA terms are

(BV-NOT 8 X),

(BV-NOT (+ ’1 ’1) (CONS X0 (CONS X1 ’NIL))), and

(EQUAL (BV-NOT 8 (BV-NOT 8 (BV-NOT 8 X))) (BV-NOT 8 X)).
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Whereas, the following are not:

(BV-NOT N X),

(BV-NOT (+ ’1 N) (CONS X0 (CONS X1 ’NIL))), and

(EQUAL (BV-NOT N (BV-NOT N (BV-NOT N X))) (BV-NOT N X)).

The first part of condition 7, Evblp (H, X,Meas (H,Fn (E))), ensures that the measure is

constant. The second part SULFAp (H,G,Fn (E),Body (H,Fn (E))) ensures that the body

is also in SULFA.

Condition 8 and 9 represent the case where E is a recursive application. This case

must be handled carefully to ensure termination of the SULFA recognizer. If condition

8 holds, then the recursive call requires fewer or the same formals to be constant as the

original call. In this case, the previous, or ongoing, check is sufficient to ensure that the

expansion of E is in SULFA. If condition 8 does not hold, then a new check must be

undertaken with fewer formals assumed constant. For example, consider the following

definition of BV-AND, a function that computes the conjunction of two bit vectors:

(DEFUN BV-AND (N X Y)

(DECLARE (XARGS :MEASURE (IF (ZP N) 0 N)))

(IF (ZP N)

NIL

(CONS (AND (CAR X) (CAR Y))

(BV-AND (BINARY-+ N -1) (CDR Y) (CDR X)))))

The following are SULFA terms:

(BV-AND 8 X Y),

(BV-AND (+ ’4 ’4) (CONS X Y) (CONS A B)),

(EQUAL (BV-AND 4 (BV-NOT 4 X) Y) Z)

(BV-AND 2 (CONS ’T (CONS ’NIL ’NIL)) X).
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Whereas, the following are not:

(BV-AND N X Y), and

(BV-AND N (BV-NOT 4 X) Y).

Considering the last example term that was in SULFA

SULFAp (H,G, ∅, pNILq, p(BV-AND 2 (CONS ’T (CONS ’NIL ’NIL)) X)q),

by condition 7, reduces to

SULFAp (H, {pNq, pXq}, pBV-ANDq,Body (H, pBV-ANDq)).

We have defined BV-AND somewhat oddly in that the arguments on each recursive call are

swapped. Since

ConstForm (H, {pNq, pXq}, p(BV-AND (BINARY-+ N -1) (CDR Y) (CDR X))q)

=

{pNq}

condition 9 requires that

SULFAp (H, {pNq}, pBV-ANDq,Body (H, pBV-ANDq)),

which is true. Essentially, an attempt is made to show that the body of BV-AND is in SULFA

while assuming X is constant, but then it is found that in the recursive call X is not constant.

Therefore, the body is checked again without the assumption that X is constant. In this case,

the check succeeds because X did not need to be constant.

For an example where condition 9 leads to an ACL2 term not being in SULFA,

consider the definition of BV-ODD:
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(DEFUN BV-ODD (N X Y)

(DECLARE (XARGS :MEASURE (IF (ZP N) 0 N)))

(IF (ZP N)

NIL

(IF (< (LEN X) N)

X

(CONS (AND (CAR X) (CAR Y))

(BV-NOT (BINARY-+ N -1) (CDR Y) (CDR X))))))

The following term is not in SULFA:

(BV-ODD 2 (CONS ’T (CONS ’NIL ’NIL)) X).

The evaluation of the above term follows the same pattern as in BV-ODD, but the (LEN X)

test ensures that X really must be constant. Thus,

SULFAp (H, {pNq}, pBV-ANDq,Body (H, pBV-ANDq)),

is false.

5.4.1 Termination

We prove that SULFAp (H, X, f , E) terminates by defining an ordinal that decreases on each

recursive call in its definition.

All functions defined in an ACL2 history have an associated unique natural number,

such that functions are defined in terms of functions with smaller unique numbers. Define

FnNum (H, f ), given an ACL2 history H and f ∈ (S ∪ {♣}), as:

• the unique natural number associated with f , if f is a function symbol in history H;

• 0, otherwise.
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Thus, every non-recursive function application E′ ∈ E such that E′ is a subterm of

Body (H, f ) satisfies FnNum (H,Fn (E′)) < FnNum (H, f ).

Given an ACL2 history H, a set of symbols X ⊂ S, a symbol f ∈ S∪{♣}, and a term

E ∈ E, the ordinal that decreases is:

ord (H, X, f , E) , ω3 × badFn (H, f , E) +

ω2 × FnNum (H, f ) +

ω × |X| +

|E|.

where

• badFn (H, f , E) is defined to be 1, if f is not an ACL2 function; 1, if f does not have

a definition in H; 1, if there exists a function application E′ ∈ E that is a subterm of

E satisfying FnNum (H,Fn (E′)) > FnNum (H, f ); and 0, otherwise.

• |X| is the number of elements in the set X.

• |E| is the size of the term E, as defined previously.

We now prove that the ordinal decreases on each recursive call in

SULFAp (H, X, f , E):

• In condition 2, the ordinal decreases since the size of the term decreases,

|Arg (i, E)| < |E|, and everything else remains the same,

• In condition 6 and 7, first note that since functions are defined in terms of smaller

unique numbers badFn (H,Fn (E),Body (H,Fn (E))) = 0. Thus, if

badFn (H, f , E) = 1 then the ordinal decreases on the recursive call. Otherwise,

the unique number decreases, i.e., FnNum (H,Fn (E)) < FnNum (H, f ).

• In condition 9, the size of the set of formals decreases |X∩G| < |X|, while the function

and history remain the same.
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5.5 Efficient SULFA Recognizer

The SULFA recognizer defined by SULFAp (H, X, f , E) essentially has worst case cubic

complexity in the size of the bodies and measure terms in H. If no functions were recur-

sive, then it would have quadratic complexity in the size of the bodies and measures in H,

because determining whether a given function application E f is in SULFA requires, in the

worst case, considering all previous definitions. Recursive functions add another level of

complexity, because their bodies need to be considered, in the worst case, once for each of

their formal parameters.

While cubic complexity is better than the worst-case complexity required to solve a

SULFA formula, it is still too inefficient to be used on many ACL2 formulas. It is possible

though to define a more efficient recognizer. The intuition behind such a recognizer comes

from the following theorem, which is provable by induction on the ordinal used to prove

the termination of SULFAp :

X ⊂ Y ∧ SULFAp (H, X, f , E)→ SULFAp (H,Y, f , E).

As suggested by the above theorem, it is possible for any function f to find a minimal set

of formals, called the ground formal set, which must be constant in order for an application

of f to be in SULFA (assuming the arguments of the application are all in SULFA). For

example, given the definition of IFF:

(DEFUN IFF (P Q)

(IF P (IF Q ’T ’NIL) (IF Q ’NIL ’T))).

Then for the following application to be in SULFA

(IFF (+ ’4 ’5) (+ X ’5))

it is required that

SULFAp (H, {pQq}, pIFFq, p(IF P (IF Q ’T ’NIL) (IF Q ’NIL ’T))q),
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which is true since nested IF terms are in SULFA. Note that the assumption that Q is con-

stant is unnecessary. The following ACL2 term is also in SULFA:

(IFF (IFF A B) (IFF B C)).

In fact, any ACL2 term composed of only IFF applications is in SULFA. Thus, we say that

the ground formal set of IFF is empty.

On the opposite end of the spectrum, consider the constrained functions other than

uninterpreted functions. By case 4 in the definition of SULFAp illustrated in Figure 5.2,

no ACL2 term involving such functions can occur in a SULFA formula. We say that such

functions have no valid ground formal set.

Thus the most restricted functions, in terms of their occurrence in SULFA formu-

las, are those with no valid ground formal set, whereas the least restricted functions are

those with an empty ground formal set. For example, (F X Y) is in SULFA only if the

ground formal set of F is empty. On the other hand, if the ground formal set of F is equal

to its formals, then F can only occur in SULFA if its arguments are constant, such as in

(F (+ ’1 ’4) ’5). Finally, if F has no valid ground formal set, then it cannot occur in

any SULFA formula.

The ACL2 core primitives all have valid sets of ground formals. If an ACL2 core

primitive is a SULFA core primitive (i.e., the tree primitives, the if-then-else primitive, or

the equality primitive), then its ground formal set is the empty set; otherwise the ground

formal set of any ACL2 core primitive is equal to its full set of formals. For example,

the ground formal set of (CONS X Y) is the empty set, whereas the ground formal set of

(BINARY-+ X Y) is the full set of formals, {pXq, pYq}.

For a constrained function f to have a valid set of ground formals, it must be an

uninterpreted function (as defined in Section 3.5.1), i.e., it must have minimal constraints.

Uninterpreted functions have a ground formal set equal to the empty set.

For any function f with a definition in an ACL2 history H, its ground formal set

can be determined from its ground formal dependency graph, which is defined as follows:
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• Each node in the graph is either ♠ or a formal parameter of f . We use ♠ because it is

not equal to (and should not be confused with) any ACL2 symbol.

Intuitively, ♠ represents the empty set of ground formals and each edge from vs to vt

in the ground formal dependency graph denotes a dependence that vt be in the ground

formal set if vs is in the set.

• A subset of the nodes are marked as failure nodes. A failure node denotes a node that

cannot be part of the valid set of ground formals. If ♠ is a failure node, or if some

dependency leads to a failure node, then there is no valid set of ground formals.

A node v is marked as a failure node if any of the following conditions apply:

1. v = ♠ and there exists some term E ∈ E such that E is a subterm of the body of

f and Fn (E) has no valid set of ground formals.

Intuitively, f cannot be in any SULFA formula because it is defined from a

function that cannot be in any SULFA formula.

2. v = ♠ and there exists a term E ∈ E and a natural number i ∈ N such that E is

a subterm of the body of f , the ith formal of E is in the ground formal set of

Fn (E), and ¬Evblp (H,Formals (H, f ),Arg (i, E)).

Intuitively, f cannot be in any SULFA formula, because a function occurring in

the body of f requires an argument be constant that, in the body of f , cannot be

evaluated. For example, if (G (H X)) is in the body of f , H is not executable,

and the ground formal set of G includes its formal argument, then ♠ is a failure

node.

3. If v is the ith formal of f and there exists a recursive application E ∈ E in the

body of f (i.e. E is a subterm of the body and Fn (E) = f ), and

¬Evblp (H,Formals (H, f ),Arg (i, E)).

Intuitively, v cannot be part of the ground formal set because the body of f con-

tains a recursive call in which v cannot be evaluated. For example, if
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(F (G X)) is a recursive application in the body of F and G cannot be exe-

cuted, then X is a failure node.

• An edge occurs from vs (the source vertex) to vt in the ground formal dependency

graph of f if any of the following conditions hold:

1. vs = ♠, vt is the ith formal of f , and there exists an E ∈ E and i ∈ N such that

E is a subterm of the body of f , Fn (E) , f , the ith formal of Fn (E) is in the

ground formal set of Fn (E), and vt is a subterm of Arg (i, E).

Intuitively, vt must be in the ground formal set of f if vt is part of an expression

that must be mapped to a constant in order for some function application in the

body of f to be in SULFA. For example, if the body of the definition of F is

(IF (INTEGERP (+ N M))

(F (1- N) M (CDR X) B (CDR X) (CDR Y))

Y)

then an edge goes from ♠ to N and from ♠ to M, since INTEGERP and BINARY-+

are ACL2 core primitives, but not SULFA core primitives. N and M need to be

constant so that INTEGERP and BINARY-+ can be removed by evaluation.

2. vs = ♠ and f is a recursive function without an evaluatable measure.

Intuitively, such a function cannot be unrolled, but it may be evaluated, so its

ground formal set is its complete set of formals.

3. vs = ♠, f is a recursive function, and vt is a subterm of the measure of f .

Intuitively, the measure must be constant in order for the function to be unrolled.

For example, if the measure of f is (NFIX X), then an edge goes from ♠ to X,

denoting that X must be constant in order for f to be unrolled.

4. vs is the ith formal of f and there exists a recursive application E (a subterm of

the body of f such that Fn (E) = f ) such that vt is a subterm of Arg (i, E).
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For example, if (F (1- A) (CONS B C) 0) is a recursive call in the body of

F, and F has formal parameters A, B, and C respectively, then an edge goes from

A to A, from B to B, and C to B. Intuitively, this is because for B to be constant in

the recursive call, (CONS B C) must evaluate to a constant.

Figure 5.3 shows an example function definition and its associated ground formal

dependency graph. Since N occurs in the measure of f and as an argument of ZP, there is

a node from ♠ to N. There is also a node from ♠ to A, since A occurs as an argument of <.

The other edges follow the dependencies implied by the two recursive calls in the body of

EXAMPLE. Furthermore, the node D, corresponding to the fifth formal of EXAMPLE, is marked

as a failure node because F, which occurs in the fifth argument of a recursive call, is not

executable.

The ground formal set of a defined function f can be determined by computing

the set of nodes R f reachable from node ♠ in f ’s ground formal dependency graph. The

function f has no valid ground formal set if R f contains a failure node. Otherwise, the

ground formal set of f is the set of formals contained in R f .

The set of nodes reachable from ♠ in Figure 5.3 is {♠, pNq, pAq, pBq, pEq}. Since

none of these are failure nodes, the set of ground formals of EXAMPLE is {pNq, pAq, pBq, pEq}.

Thus, an application of EXAMPLE is in SULFA if its first, second, and sixth arguments are

constant.

Note that if we assume that the ground formal sets for all previously defined func-

tions have been determined, then the ground formal dependency graph can be constructed

for a newly defined function in linear time with respect to the size of its body and its mea-

sure function’s body. Also, computing the set of reachable nodes is linear in the number of

edges in the graph. Thus the ground formal sets for all functions in a history can be deter-

mined in linear time with respect to the size of the events in that history. Once the ground

formal sets have been computed for all functions occurring in a formula, it requires only a

single traversal through an ACL2 formula to determine whether that formula is in SULFA.

68



(DEFUN EXAMPLE (N A B C D E)

(DECLARE (XARGS :MEASURE (NFIX N)))

(IF (ZP N)

(EQUAL (< 0 A) E)

(IF (CAR C)

(EXAMPLE (1- N) B B (EQUAL C D) (F B) E)

(EXAMPLE (1- N) E E E E E))))

A C EN B D

Ground Formal Dependence Graph

Figure 5.3: An example definition and its ground formal dependency graph. In the above
definition, the ACL2 primitive ZP, defined in Figure 3.3, checks whether a number is equal
to 0 and the function F is uninterpreted. The primitive NFIX, also defined in Figure 3.3,
is the identity function over natural numbers, and returns 0 for any other inputs. A double
circle in the dependency graph represents a failure node. In order for an application of
EXAMPLE to be unrollable all formals reachable from ♠ (i.e., N, A, B, and E) must be mapped
to constants.
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Figure 5.4: A plot comparing the time required to check whether formulas are in SULFA
compared to the time required to prove them using the ACL2 theorem prover. Each point
represents a file in the ACL2 regression suite. The x-axis is the total proof time to prove all
formulas in a given file and the y-axis is the total proof time in addition to the time required
to check whether all formulas in the same file are in SULFA. A point is on the line if no
measurable time is required to check whether the formulas in its file are in SULFA.

5.6 Results

Since the SULFA recognizer described in Section 5.5 has linear complexity (with respect

to the size of the SULFA formula plus the sizes of the bodies of its relevant functions and

their measures), it is not surprising that it is reasonably efficient. Figure 5.4 compares the

time needed to recognize whether a formula is in SULFA to the time needed by ACL2 to

prove the formula. 1,249 formulas were found to be in SULFA and 37,397 were found not

to be in SULFA (3.2% are in SULFA). The total proof time without the SULFA check was

5 hours, 12 minutes. An additional 32 minutes were required to determine whether each

formula was in SULFA (10.1% of the proof time). 1

1These results were obtained on a Pentium R© 4, 3.0 GHz, dual processor with 2 gigabytes of random access
memory. ACL2 version 3.1 was used, running under GNU Common Lisp version 2.6.7.
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5.7 Summary

This chapter identifies a subclass of ACL2 formulas, SULFA, for which a decision proce-

dure is presented in Chapter 6. Unlike most previously identified decidable subclasses of

first-order logic, SULFA is not a single decidable theory, but instead an infinite set of de-

cidable theories, since it has a principle for sound extension with new definitional axioms

while maintaining decidability.

Furthermore, SULFA is tightly integrated with ACL2, allowing procedures that de-

termine the validity of SULFA formulas (SULFA solvers) to be used as proof techniques

within the ACL2 theorem prover. Chapter 7 describes one such SULFA solver based, which

makes use of Boolean SAT solvers.

We believe developing decision procedures that operate on primitives and can solve

properties about user-defined functions is the key to developing a tight integration with

a general-purpose theorem prover. Furthermore, such work may promote a deeper under-

standing of the decidable space of formulas within the ACL2 logic, and, perhaps, first-order

logic itself.

5.8 Development and Bibliographic Notes

SULFA was first described at the 3rd International Joint Conference on Automated Reason-

ing (IJCAR 2006) [70]. This chapter differs, however, from the description in IJCAR 2006

in that it is more rigorous and that uninterpreted functions and equality have been added.

Sophisticated decision procedures have been previously integrated with general-

purpose theorem provers. The PVS general-purpose theorem prover contains decision pro-

cedures for the µ-calculus, linear arithmetic, and tree structures [61, 81, 12]. One way in

which SULFA differs from such decidable domains is that SULFA can be extended with

new function symbols and axioms. Similarly decision procedures in the HOL theorem

prover, such as the SAT-based decision procedure for propositional logic [34], are usually
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restricted to a finite set of functions. One exception is the HOL-Voss System, which sup-

ports model checking within the HOL theorem prover [36]. The HOL-Voss system also

makes use of the HOL type system to restrict formulas into a finite domain unique to the

HOL-Voss system. This differs from SULFA in that SULFA, like ACL2, is untyped, and

universally quantifies over the entire, infinite domain of ACL2 objects. Also, since HOL-

Voss uses its own type system, no formulas created by users unaware of the HOL-Voss

system can be verified by it.

The ACL2 theorem prover also has been integrated with a µ-Calculus model checker

[43], the SMV model checker [69], the SixthSense model checker [77], and UCLID [44].

The distinguishing feature of SULFA is that it is defined directly from ACL2’s ground-

zero primitives (in fact, SULFA is built on top of ACL2’s undefined, core primitives) and

can be extended with new function symbols. In that since, SULFA is more closely related

to ACL2’s built-in BDD proof technique, written by Matt Kaufmann and based on work

by J Moore [53]. SULFA differs from the BDD system in that the BDD system uses a less

automatic approach for function unrolling, which relies on user-generated rewrite rules, and

the BDD system requires hypotheses mapping variables directly into the Boolean domain.
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Chapter 6

A SULFA Decision Procedure

6.1 Introduction

Recall that we say that SULFA is a decidable subclass of ACL2 because it meets the fol-

lowing two conditions:

1. A terminating procedure exists that recognizes whether any ACL2 formula is in

SULFA.

2. A terminating procedure exists that decides whether any formula in SULFA is prov-

able in ACL2.

Chapter 5 presented a procedure that recognizes whether an ACL2 formula is in SULFA.

This chapter completes the description of SULFA as a decidable subclass by presenting a

decision procedure for all SULFA formulas. Note that for SULFA to be a decidable subclass

there is no need for the decision procedure to be efficient. The one presented in this chapter

is not efficient, but instead is intended to be as simple as possible. Chapter 7 shows how to

create a more efficient SULFA solver using SAT solvers.

This chapter reuses the terminology and simplified ACL2 logic from Chapter 5 to

present a decision procedure for SULFA. First, Section 6.2 shows how a SULFA formula
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may be reduced to a formula involving only SULFA core primitives, uninterpreted func-

tions, variables, and constants. Section 6.3 then shows how uninterpreted functions can be

removed. Finally, Section 6.4 presents a decision procedure for any ACL2 formula involv-

ing only SULFA core primitives, variables, and ACL2 constants. Section 6.5 then discusses

the problem of generating counterexamples to invalid SULFA formulas.

6.2 Unrolling SULFA Formulas

This section presents a method for reducing a SULFA formula into a formula involving

only uninterpreted functions and the SULFA core primitives. We begin by introducing the

following terminology:

• MakeFn ( f , E1, E2, ...En), given n ACL2 terms E1, E2, ...En and a f ∈ S, is the ACL2

term representing the application of the function f to arguments E1, E2, ...En. For

example,

MakeFn (pCARq, pXq) = p(CAR X)q, and

MakeFn (pFq, p(G X)q, pYq) = p(F (G X) Y)q.

• MakeEq (X,Y) , MakeFn (pEQUALq, X,Y).

• MakeIf (X,Y) , MakeFn (pIFq, X,Y).

• MakeCar (X,Y) , MakeFn (pCARq, X,Y).

• MakeCdr (X,Y) , MakeFn (pCDRq, X,Y).

• MakeCons (X,Y) , MakeFn (pCONSq, X,Y).

• MakeConsp (X,Y) , MakeFn (pCONSPq, X,Y).

• MakeImp (X,Y) , MakeFn (pIMPLIESq, X,Y).
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• MakeImpEq (X,Y,Z) , MakeImp (X,MakeEq (Y,Z)).

• EvPrf (H, E), given an ACL2 history H and an ACL2 term E, is the result of applying

ACL2’s evaluation proof strategy to E. As described in Section 3.6.5, the evaluation

proof strategy is a terminating technique that reduces evaluatable terms to constants

by evaluating executable ACL2 functions. For example,

EvPrf (H, p(+ 4 5)q) = p9q,

whereas

EvPrf (H, p(+ X 4)q) = p(+ X 4)q.

• EvPrfp (H, E), given an ACL2 history H and an ACL2 term E, is the predicate that

returns true if the evaluation proof strategy successfully proves that E is not NIL.

Thus,

EvPrfp (H, E) , |EvPrf (H, E)| = 0 ∧ EvPrf (H, E) , pNILq.

where |EvPrf (H, E)| = 0 is whether EvPrf (H, E) returns a constant.

• Expd (H, E), given a history H and a function application E ∈ E, is the expansion of

the top-level function application in E. To be more precise,

Expd (H, E) , Body (H,Fn (E))/σ,

where σ is the substitution mapping the formals of Fn (E) to the corresponding argu-

ments of E. For example, given the definition of IFF

(DEFUN IFF (P Q)

(IF P (IF Q ’T ’NIL) (IF Q ’NIL ’T))).

Then Expd (H, p(IFF (IFF X Y) Z)q) is

(IF (IFF X Y) (IF Z ’T ’NIL) (IF Z ’NIL ’T)).
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• ExpdM (H, E), given a history H and a function application E ∈ E, is the expansion

of the measure of E. To be more precise,

ExpdM (H, E) , Meas (H,Fn (E))/σ,

where σ is the substitution mapping the formals of Fn (E) to the corresponding argu-

ments of E. For example, given the definition of BV-NOT

(DEFUN BV-NOT (N X)

(DECLARE (XARGS :MEASURE (IF (ZP N) 0 N)))

(IF (ZP N)

NIL

(CONS (EQUAL (CAR X) NIL)

(BV-NOT (BINARY-+ N -1) (CDR X))))).

Then ExpdM (H, p(BV-NOT 8 (F X))q) is (IF (ZP 8) 0 8).

The function UnRoll (H, f , o, E) is defined in Figure 6.1. By Theorem 1, UnRoll

terminates for all valid inputs. Furthermore, given a SULFA formula F in an ACL2 history

H, by Theorem 3, F is valid if and only if UnRoll (H,♣, p0q, F) is valid and, by Theorem 2,

UnRoll (H,♣, p0q, F) contains only SULFA core primitives and uninterpreted functions.

Therefore, any SULFA formula can be automatically reduced to a formula involving only

SULFA core primitives and uninterpreted functions. For example, consider the following

SULFA formula, which we name cadrBvNot

(IMP (CAR (CDR (BV-NOT 2 X))) (EQUAL (CAR (CDR X)) NIL))

where the BV-NOT function is the same function defined previously and IMP is a simpler

version of IMPLIES, defined as

(DEFUN IMP (X Y) (IF X Y ’T))
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Given an ACL2 history H, f ∈ (S ∪ {♣}), o ∈ E, and E ∈ E, define UnRoll (H, f , o, E) as

1. E, if |E| < 2.

2. p’ERRORq, if ¬Evblp (H, ∅, o)∨(( f , ♣)∧(FnNum (H, f ) ≤ FnNum (H,Fn (E)))).

3. EvPrf (H, E), if Evblp (H, ∅, E).

4. Erec, if Fn (E) has no definition in H, i.e., it is a constrained function or a core
primitive.

5. UnRoll (H,Fn (E),♣,Expd (H, Erec)), if Fn (E) is not recursive.

6. UnRoll (H,Fn (E), orec,Expd (H, Erec)), if Fn (E) , f .

7. UnRoll (H, f , orec,Expd (H, Erec)), if EvPrfp (H,MakeFn (pO<q, orec, o)).

8. p’IRRELEVANTq, otherwise.

where

• orec , ExpdM (H, Erec)

• Erec is the application of Fn (E) such that the ith argument of Erec is
UnRoll (H, f , o,Arg (i, E)).

Figure 6.1: Definition of UnRoll (H, f , o, E), which is used to unroll the user-defined func-
tions in a SULFA formula. Note that MakeFn (pO<q, x, y) is an ACL2 term representing
whether the term x represents a smaller ordinal than the term y.
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UnRoll (H,♣, p0q, cadrBvNot) is therefore equal to

(if (car

(cdr

(if nil nil

(cons (equal (car x) nil)

(if nil nil

(cons (equal (car (cdr x)) nil)

(if t nil

(cons (equal (car (cdr (cdr x))) nil)

’irrelevant))))))))

(equal (car (cdr x)) nil)

t)

Note that (BV-NOT 0 (CDR (CDR X))) is unrolled into

(IF T NIL (CONS (IF (CAR (CDR (CDR X))) NIL T) ’IRRELEVANT)).

The other applications of BV-NOT, and IMPLIES are expanded directly.

The term (BV-NOT -1 (CDR (CDR (CDR X)))) is replaced with ’IRRELEVANT

to prevent the recursion in BV-NOT from continuing without end. In this case, as is common

in practice, the replacement can be justified directly by simplifying IF terms with constant

conditions.

In general, however, more sophisticated reasoning may be required. For example,

consider the following ACL2 definition:

(DEFUN F (X)

(DECLARE (XARGS :MEASURE 1))

(IF (EQUAL X X)

T

(F X)))
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Since the IF condition is a valid theorem in ACL2, the theorem prover can reduce (F X)

to T and thus allow the introduction of F with the above definition.

The SULFA formula (F X) unrolls into (IF (EQUAL X X) T ’IRRELEVANT).

Thus, an axiom regarding EQUAL is needed to prove that the unrolled term is equivalent

to the original formula. For any E, the task of proving UnRoll (H,♣, p0q, E) equivalent to

E, on a case by case basis, can be as difficult as determining the validity of an arbitrary

SULFA formula. However, instead of proving the equivalence on a case by case basis, we

rely on the proof of termination, which implies that any recursive call in which a measure

fails to decrease is in an impossible IF branch.

6.2.1 Correctness

Given an ACL2 history H, f ∈ (S ∪ {♣}), o ∈ E, and E ∈ E, define the ordinal

UnRollOrd (H, f , o, E) as

UnRollOrd (H, f , o, E) ,

 ε
3
0 , if f = ♣

ε2
0 × FnNum (H, f ) + ε0 × ord (H, o) + |E|, otherwise.

where

• ord (H, o), is the ordinal represented by EvPrf (H, o), if EvPrf (H, o) returns an ACL2

ordinal constant; otherwise, ord (H, o) , 0. Recall that an ACL2 ordinal constant

represents an ordinal less than ε0.

• FnNum (H, f ) has the same definition as in Section 5.4.1.

Theorem 1. UnRoll (H, f , o, E) terminates for all valid inputs.

Proof Sketch: The ordinal UnRollOrd (H, f , o, E) decreases on each recursive call in Fig-

ure 6.1. �

Lemma 1. SULFAp (H, X, f , E) → SULFAp (H, X, f ,Arg (i, E)), where H is an ACL2 his-

tory, X a set of symbols, f ∈ S ∪ {♣}, E ∈ E is a function application, and i is a natural

number less than NA (E).
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Proof Sketch: Trivial from the definition of SULFAp . �

Lemma 2. SULFAp (H, X, f , E) → SULFAp (H, X, f ,Expd (H, E)), where H is an ACL2

history, X a set of symbols, f ∈ S ∪ {♣}, and E ∈ E is a function application.

Proof Sketch: First note, by induction on |E|

Evblp (H, X, E)→ Evblp (H, X,Expd (H, E)).

It follows that

ConstForm (H, X, E) = ConstForm (H, X,Expd (H, E)).

The theorem thus follows from the definition of SULFAp (H, X, f , E) and induction on the

ordinal used to prove termination of SULFAp (H, X, f , E). �

Lemma 3. SULFAp (H, ∅,♣, E)→ SULFAp (H, ∅,♣,UnRoll (H, f , o, E)).

Proof Sketch: The theorem follows from induction on UnRollOrd (H, f , o, E), the definition

of UnRoll , Lemma 1, and Lemma 2. �

Theorem 2. If SULFAp (H, ∅,♣, E) and f is a function applied in UnRoll (H, g, o, E), then

either f is an uninterpreted function or a SULFA core primitive.

Proof Sketch: By, induction on UnRollOrd (H, f , o, E), the theorem reduces to the case

when Fn (E) is a constrained function or a core primitive. Thus, the theorem follows from

the definition of SULFAp given in Figure 5.2. �

Given three ACL2 terms E, A, and C, define

SubConj (E, A,C) ,



{C} if E = A

∅, if |E| < 2⋃
i∈N,1≤i≤3

SubConj (Arg (i, E), A, ifConj (i,C)), if Fn (E) = pIFq⋃
i∈N,1≤i≤NA (E)

SubConj (Arg (i, E), A,C), otherwise.

where
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ifConj (i,C) ,


C, if i = 1

MakeIf (Arg (1, E),C, pNILq), if i = 2

MakeIf (Arg (1, E), pNILq,C), otherwise.

Intuitively, A is a subterm of E and SubConj (E, A, H) is the set of assumptions

(encoded as ACL2 terms) under which A is relevant to E.

Lemma 4. If C ∈ SubConj (Body (H, f ), E, pTq), then

MakeImp (C,MakeFn (pO<q,ExpdM (H, E),Meas (H, f ))) is a valid ACL2 formula; where

H is an ACL2 history, E is an ACL2 term, and f is a recursively defined function in H.

Proof Sketch: The theorem follows directly from the (user-guided) proof of termination of

f in H. �

Lemma 5. Evblp (H, ∅, E)→ |EvPrf (H, E)| = 0.

Proof Sketch: Follows directly from our knowledge of the ACL2 evaluation proof tech-

nique. The ACL2 evaluation proof technique reduces any grounded ACL2 term containing

only executable functions to a constant. �

Theorem 3. If SULFAp (H, ∅,♣, E) then UnRoll (H,♣, p0q, E) is a valid ACL2 formula if

and only if E is a valid ACL2 formula.

Proof Sketch: First, we generalize the theorem, proving that if SULFAp (H, ∅, p0q, E), then

MakeImpEq (C, E,UnRoll (H, f , o, E)) is a valid ACL2 formula, where

1. C is pTq if f = ♣; otherwise, C is some ACL2 term such that

C ∈ SubConj (Body (H, f ))/σ, E, pTq).

2. o is p0q, if f = ♣; otherwise, o is Meas (H, f )/σ.

3. f is either ♣ or the name of a function defined in H such that E is a subterm of

Body (H, f )/σ.
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4. σ is any substitution mapping ACL2 variable symbols to ACL2 terms.

We now prove the generalization by induction on UnRollOrd (H, f , o, E). Consider

each case in the definition of UnRoll illustrated in Figure 6.1:

1. Trivial, since MakeEq (E, E) is valid.

2. This case cannot occur under the theorem’s assumptions.

3. Trivial, since MakeEq (E,EvPrf (H, E)) is valid.

4. MakeImpEq (C, E, Erec), where Erec has the definition given in Figure 6.1, follows

from induction. Note that unless Fn (E) = pIFq the assumptions under which E

occurs are the same as the assumptions under any argument of E, i.e., Fn (E) , pIFq

implies that for every ith argument of E

SubConj (Body (H, f )/σ, E, pTq)

is equal to

SubConj (Body (H, f )/σ,Arg (i, E), pTq).

When, Fn (E) = pIFq, this case reduces to the following ACL2 formula, which is a

theorem:

(IMPLIES (AND (IMPLIES A (EQUAL X B))

(IMPLIES (NOT A) (EQUAL X C)))

(EQUAL X (IF A B C)))

5. By induction, and Lemma 3, the theorem reduces to

MakeImpEq (C, E,Expd (H, Erec)).

This is valid by the definition of Fn (E), Lemma 2, and the induction hypothesis.
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6. Same reasoning as previous case, with the addition that, SULFAp (H, ∅,♣, E), by

the definition of SULFAp , implies Evblp (H,ConstForm (H, ∅, E), E), which implies

Evblp (H, ∅, orec).

7. Same reasoning as previous case.

8. By Lemma 4, MakeImp (C,MakeFn (pO<q,ExpdM (H, E), o)) is valid, and by the

same reasoning as in case 4, MakeImp (C, E, Erec). Thus,

MakeImp (C,MakeFn (pO<q, orec, o))

is a valid ACL2 formula. This simplifies, by the case assumptions and Lemma 5, to

MakeImp (C, pNILq). Therefore, MakeImpEq (C, E,UnRoll (H, f , o, E)) is vacuously

true.

�

6.3 Removing Uninterpreted Functions

Section 6.2 shows that defined functions in a SULFA formula can be removed by unrolling,

leaving a formula involving only uninterpreted functions and SULFA core primitives. Next,

we show that the uninterpreted functions can also be removed, leaving a formula involving

only SULFA core primitives. Before explaining how to remove uninterpreted functions

though, the following terminology is introduced:

• S/σ, given a set S ⊂ E, is the set satisfying for all E ∈ E:

(E ∈ S )→ (E/σ ∈ S/σ).

• FreshV (F), given F ∈ E, produces a symbol not used as a variable in F. Such a

function is possible since ACL2 contains an infinite namespace of variable names.
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• It is possible to define a lexicographic ordering on ACL2 terms, and such an ordering

is provided with the ACL2 theorem prover. The details of this ordering are not signif-

icant to this dissertation, except that if A is a subterm of B, then A is lexicographically

smaller than (or equal to) B.

• Let F be a formula containing applications of uninterpreted functions. Then, let

PickUF (F) be the lexicographically smallest uninterpreted function application in F.

• MakeEqArgs (X,Y), given two applications X ∈ E and Y ∈ E of functions of the

same arity, is the ACL2 term that representing∧
i∈N,1≤i≤NA (X)

Arg(i, X) = Arg(i,Y).

For example, MakeEqArgs (p(F X Y Z)q, p(G A B C)q) =

p(AND (EQUAL X A) (EQUAL Y B) (EQUAL Z C))q

• Given A ∈ E, X ∈ E, and E ∈ E:

SubUF (A, X, E) ,



X, if E = A

E, if (|E| < 2) ∨ (|A| < 2)

Erec, if Fn (E) , Fn (A)

MakeIf (MakeEqArgs (A, Erec), X, Erec), otherwise.

where Erec is an application of Fn (E) such that the ith argument of Erec is

SubUF (A, X,Arg (i, E)).

Intuitively, A is an application of an uninterpreted function, X is a variable, and E

is a term in which X does not occur. In that case, SubUF (A, X, E) produces a term

equivalent to E, with A replaced by X.

Given a formula F containing only applications of uninterpreted functions and core

SULFA primitives, from Theorem 4 and Theorem 5, SubUF (PickUF (F),FreshV (F), F) is
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an equivalent formula with fewer uninterpreted function applications. Thus, by repeatedly

applying SUBUF , all the uninterpreted functions from F can be removed, leaving a formula

with only SULFA core primitives. For example, let E be the following ACL2 term, where

F and G are uninterpreted functions:

(IF (EQUAL (F Y) (F X))

(EQUAL (G (F X)) (G (F Y)))

(EQUAL (EQUAL X Y) NIL)).

Note that E is a valid ACL2 formula. Then SubUF (p(F Y)q, pV0q, E) is

(IF (EQUAL V0 (IF (EQUAL X Y) V0 (F X)))

(EQUAL (G (IF (EQUAL X Y) V0 (F X))) (G V0))

(EQUAL (EQUAL X Y) NIL)).

Label the above formula E′. Note that E has four distinct applications of uninterpreted func-

tions, (F Y), (F X), (G (F X)), and (G (F Y)). On the other hand, E′ has only three

distinct applications of uninterpreted functions, (F X),

(G (IF (EQUAL X Y) V0 (F X))), and (G V0). Furthermore, we can prove E from

E′ by instantiation and we can prove E′ from E by functional instantiation (substitute

((LAMBDA (A) (IF (EQUAL A Y) V0 (F A)))) for F).

SubUF (p(F X)q, pV1q, E′) is:

(IF (EQUAL V0 (IF (EQUAL X Y) V0 V1))

(EQUAL (G (IF (EQUAL X Y) V0 V1)) (G V0))

(EQUAL (EQUAL X Y) NIL)).

Label the above formula E′′. E′′ has only two uninterpreted function applications, and E′′

is equivalent to E′ by a similar justification as that used to prove E′ equivalent to E.

Now, let E′′′ be SubUF (p(F X)q, pV2q, E′′), which is equal to:
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(IF (EQUAL V0 (IF (EQUAL X Y) V0 V1))

(EQUAL (IF (EQUAL (IF (EQUAL X Y) V0 V1) V0)

V2

(G (IF (EQUAL X Y) V0 V1)))

V2)

(EQUAL (EQUAL X Y) NIL)).

E′′′ has only one distinct uninterpreted function application, and E′′′ is equivalent to E′′ by

a similar justification as that used to prove E′ equivalent to E.

Now, let EIV be SubUF (p(G (IF (EQUAL X Y) V0 V2))q, pV3q, E′′′), which is

equal to:

(IF (EQUAL V0 (IF (EQUAL X Y) V0 V1))

(EQUAL (IF (EQUAL (IF (EQUAL X Y) V0 V1) V0)

V2

V3)

V2)

(EQUAL (EQUAL X Y) NIL)).

EIV has no uninterpreted function applications, and EIV is equivalent to E′′′ by a similar

justification as that used to prove E′ equivalent to E. Thus, E has been reduced to a term

with no uninterpreted functions.

6.3.1 Correctness

Lemma 6. For any ACL2 formula F and ACL2 term x, F is a valid ACL2 formula if and

only if SubUF (x, x, F) is a valid ACL2 formula.

Proof Sketch: The theorem follows from the definition of SubUF , by induction on |F|. �
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Theorem 4. Let F be a formula in history H containing only applications of SULFA core

primitives and uninterpreted functions. Further assume that F contains at least one uninter-

preted function application. Then, F is a valid ACL2 formula if and only if

SubUF (PickUF (F),FreshV (F), F) is valid.

Proof Sketch: First, we assume that SubUF (PickUF (F),FreshV (F), F) is valid and show

that F is valid. Let

G , SubUF (PickUF (F),FreshV (F), F)/[FreshV (F) 7→ PickUF (F)].

By instantiation, G is valid. Furthermore,

G = SubUF (PickUF (F),PickUF (F), F).

F then follows from SubUF (PickUF (F),PickUF (F), F) by Lemma 6.

Next, we assume F and show that SubUF (PickUF (F),FreshV (F), F) is valid. Let

g be an ACL2 lambda function with the same arity as Fn (PickUF (F)) such that its body is

MakeIf (MakeEqArgs (PickUF (F), A),FreshV (F), A),

where A is the application of Fn (PickUF (F)) such that the ith argument of A is equal to the

ith formal parameter of g. Let G be F except that all applications of Fn (PickUF (F)) are

replaced with applications of a function g. G follows from F by functional instantiation,

justified in ACL2 by Kaufmann and Moore [39]. SubUF (PickUF (F),FreshV (F), F) then

follows from G by expanding applications of g and reducing

MakeIf (MakeEqArgs (PickUF (F),PickUF (F)),FreshV (F), A)

to FreshV (F). �

Theorem 5. Let E ∈ E, x ∈ S, and A ∈ E such that A contains exactly one uninterpreted

function application, which occurs at the top level of A. Then, SubUF (A, x, E) contains at

most the same number of distinct uninterpreted function applications as E. Furthermore,
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if A is a subterm of E, then SubUF (A, x, E) contains fewer distinct uninterpreted function

applications than E.

Proof Sketch: The theorem follows from induction on |E| and the definition of SubUF ,

since MakeEqArgs (A, Erec) only contains terms that occur as arguments to A or Erec. The

arguments of A have no uninterpreted function applications, and any applications added

from Erec are repetitious. �

6.4 A Decision Procedure for SULFA Core Primitives

This section presents a decision procedure for any ACL2 formula that contains only ACL2

constants, variables, and applications of SULFA core primitives. Before presenting the

procedure, we introduce the following terminology:

• SymTermp (X,Y), given X ∈ E and Y ∈ E, is a predicate returning true if and only if

X ∈ S and X occurs as a variable in Y . For example,

SymTermp (pXq, p(CAR (CDR (CONS A X)))q) = true,

SymTermp (pAq, p(CAR (CDR (CONS A X)))q) = true,

SymTermp (pYq, p(CAR (CDR (CONS A X)))q) = false, and

SymTermp (p(CONS A X)q, p(CAR (CDR (CONS A X)))q) = false.

• MakeNotConsp (X) , MakeEq (MakeConsp (X), pNILq). For example,

MakeNotConsp (p(F 4)q) = p(EQUAL (CONSP (F 4)) NIL)q.

• MakeNotEq (X,Y) = MakeEq (MakeEq (X,Y), pNILq). For example,

MakeNotEq (p(F A)q, p(G A)q) = p(EQUAL (EQUAL (F A) (G A)) NIL)q.

• Given a set C ⊂ E, and a term E ∈ E, define

MakeSetImp (C, E)

,  E, if C = ∅

MakeIf (C0,MakeSetImp (C \ {C0}, E), pTq), otherwise.
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where C0 is the lexicographically smallest element of C (actually any element will

do, we only choose the lexicographically smallest element so that MakeSetImp has

a precise definition). Also, note that \ is set subtraction, e.g.,

{a, b, c, d} \ {a, c} = {a, b}.

Intuitively, MakeSetImp (C, E) is the ACL2 representation of the predicate which

returns true when the conjunction of the elements of C imply E. For example,

MakeSetImp ({pAq}, p(CAR B)q}, p(EQUAL X Y)q) is

p(IF A (IF (CAR B) (EQUAL X Y) ’T) ’T)q.

• ESC is the subset of ACL2 terms containing only applications of SULFA core primi-

tives.

• ET is the set of ACL2 terms containing only variables, constants (which may be any

ground terms involving ACL2 primitives), and applications of CONS. For example,

(CONS X Y), (CAR (CONS ’4 ’5)) and X are in ET, whereas (CAR X) is not.

• ENT is the set of ACL2 terms recognized by the grammar

negTree ::= (EQUAL (EQUAL tree tree) ’NIL) |

(EQUAL (CONSP tree) ’NIL)

tree ::= var | constant | (CONS tree tree)

where var is a variable symbol and constant is an ACL2 constant (which may be a

ground term involving ACL2 primitives). For example,
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p(EQUAL (EQUAL X Y) ’NIL)q ∈ ENT,

p(EQUAL (CONSP X) ’NIL)q ∈ ENT,

p(EQUAL (EQUAL X (CONS X Y)) ’NIL)q ∈ ENT,

p(EQUAL X Y)q < ENT,

p(EQUAL (EQUAL X Y) ’T)q < ENT, and

p(EQUAL (CONSP (CAR X)) ’NIL)q < ENT.

• HGZ is the empty history, representing ACL2’s ground zero theory.

• NonConsFA (E), given an E ∈ E such that E < ET, returns the lexicographically

smallest subterm E′ of E, such that Fn (E′) , pCONSq and for each ith argument of

E′, Arg (i, E′) ∈ ET.

Intuitively, NonConsFA (E) picks one of the inner-most subterms of E that is not an

application of CONS. For example,

NonConsFA (p(EQUAL (CONS (CAR (CONS A B)) (EQUAL A C)) X)q)

is ’(CAR (CONS A B)).

• Given an E ∈ E define

GetCar (E) ,


EvPrf (HGZ,MakeCar (E)), if |E| = 0

MakeCar (E), if (|E| = 1) ∨ (Fn (E) , pCONSq)

Arg (1, E), otherwise.

Intuitively, GetCar (E) is equal to the CAR of E, with some simplifications. For ex-

ample,

GetCar (p(CONS A B)q) = pAq,

GetCar (p(+ ’4 ’5)q) = pNILq,

GetCar (pAq) = p(CAR A)q, and

GetCar (p(CAR A)q) = p(CAR (CAR A))q.
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• Given an E ∈ E define

GetCdr (E) ,


EvPrf (HGZ,MakeCdr (E)), if |E| = 0

MakeCdr (E), if (|E| = 1) ∨ (Fn (E) , pCONSq)

Arg (2, E), otherwise.

Intuitively, GetCdr (E) is equal to the CDR of E, in the same way that GetCar (E) is

equal to the CAR of E.

• Given an E ∈ E define

GetConsp (E) ,


EvPrf (HGZ,MakeConsp (E)), if |E| = 0

MakeConsp (E), if (|E| = 1) ∨ (Fn (E) , pCONSq)

pTq, otherwise.

Intuitively, GetConsp (E) is equal to the CONSP of E, in the same way that GetCar (E)

is equal to the CAR of E.

The decision procedure is broken into two components: first, the formula is sim-

plified into a set of formulas such that all the formulas in the set are valid if and only if

the original formula is valid; next, the validity of each simplified formula is determined.

During simplification, each element in the set of formulas to be conjoined is maintained as

a pair (C, E), representing the formula MakeSetImp (C, E), where C ⊂ ET and E ∈ E. The

pair (∅, F) is the initial formula. Simplification proceeds as a series of steps of the func-

tion Round (C, E) simplifies a formula into a set of “simpler” formula until each formula is

represented by a pair (C, E) such that E ∈ ET.

Given a set C ⊂ ENT and a term E ∈ ESC, such that E < ET, let A , NonConsFA (E),

A f , Fn (A), A1 , Arg (1, A), A2 , Arg (2, A), A3 , Arg (3, A), and subA (X) be the term

formed from E by replacing all occurrences of A with X. Also, let v0 and v1 be unique

symbols not used as variables in E or any member of C. Then, Round (C, E) ,
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1. {(C, subA (X))}, if (A f ∈ {pCARq, pCDRq, pCONSPq})∧Fnp (A1), where X is Arg (1, A1),

Arg (2, A1), or pTq, if A f is pCARq, pCDRq, or pCONSPq respectively.

Intuitively, this case simplifies (CAR (CONS X Y)), (CDR (CONS X Y)), and

(CONSP (CONS X Y)) into X, Y, and T respectively. For example,

Round (∅, p(IF (EQUAL (CAR (CONS X Y)) (CAR X)) A B)q)

=

{(∅, p(IF (EQUAL X (CAR X)) A B)q)},

which simplifies the ACL2 formula

(IF (EQUAL (CAR (CONS X Y)) (CAR X)) A B)

to

(IF (EQUAL X (CAR X)) A B).

2. {(C, subA (X))}, if (A f = pIFq) ∧ ¬(A1 ∈ S), where X is A3 or A2, if A1 = pNILq or

A1 , pNILq respectively.

Intuitively, this case simplifies (IF NIL X Y) to Y and (IF α Y Z) to Y, if α is a

non-NIL constant or an application of CONS. For example,

Round (∅, p(EQUAL NIL (IF NIL Y Z))q)

=

{({X}, p(EQUAL NIL Z)q)},

which simplifies the ACL2 formula

(EQUAL NIL (IF NIL Y Z)).

to

(EQUAL NIL Z).
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As a second example,

Round ({p(EQUAL (EQUAL X NIL) NIL)q}, p(IF (CONS A B) T NIL)q)

=

{({p(EQUAL (EQUAL X NIL) NIL)q}, pTq)},

which simplifies the ACL2 formula

(EQUAL (EQUAL X NIL) NIL)→ (IF (CONS A B) T NIL).

to

(EQUAL (EQUAL X NIL) NIL)→ T.

3. {(C, subA (X))}, if (A f = pEQUALq) ∧ (SymTermp (A1, A2) ∨ SymTermp (A2, A1)),

where X is pTq or pNILq, if A1 = A2 or A1 , A2 respectively.

Intuitively, this case simplifies (EQUAL X X) to T and (EQUAL X α) to NIL, if α is

a CONS tree with X as one of its leaves. For example,

Round (∅, p(EQUAL (CONS (EQUAL X X) Y) Z)q)

=

{(∅, p(EQUAL (CONS T Y) Z)q)},

which simplifies the ACL2 formula

(EQUAL (CONS (EQUAL X X) Y) Z)

to

(EQUAL (CONS T Y) Z).

As a second example,
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Round (∅, p(IF (EQUAL X (CONS (CONS X Y) Z)) T NIL))q)

=

{(∅, p(IF NIL T NIL)q)},

which simplifies the ACL2 formula

(IF (EQUAL X (CONS (CONS X Y) Z) T NIL))

to

(IF NIL T NIL).

4. {(C, subA (X))}, if A f = pEQUALq ∧ A1 < S ∧ A2 < S, where X is pNILq or

MakeIf (Ecar, Ecdr, pNILq), if GetConsp (A1) = pNILq ∨ GetConsp (A2) = pNILq or

GetConsp (A1) , pNILq ∧ GetConsp (A2) , pNILq respectively; Ecar ,

MakeEq (GetCar (A1),GetCar (A2)); Ecdr , MakeEq (GetCdr (A1),GetCdr (A2)).

Intuitively, when the arguments to EQUAL are not symbols, they must be applications

of CONS. This case then simplifies (EQUAL (CONS X0 Y0) (CONS X1 Y1)) to

(IF (EQUAL X0 X1) (EQUAL Y0 Y1) NIL)

and (EQUAL α (CONS Y Z)) to NIL if α is a non-tree constant. For example,

Round (∅, p(IF (EQUAL (CONS X Y) (CONS A B)) T NIL)q)

=

{(∅, p(IF (IF (EQUAL X A) (EQUAL Y B) NIL) T NIL)q)},

which simplifies the ACL2 formula

(IF (EQUAL (CONS X Y) (CONS A B)) T NIL)

to
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(IF (IF (EQUAL X A) (EQUAL Y B) NIL) T NIL).

As a second example,

Round (∅, p(CONS (EQUAL (CONS X Y) ’4) A)q)

=

{(∅, p(CONS NIL A)q)},

which simplifies the ACL2 formula

(CONS (EQUAL (CONS X Y) ’4) A)

to

(CONS NIL A).

5. {(C ∪CNC, subA (pNILq)), (C/σ, subA (X)/σ)}, if

(A f ∈ {pCARq, pCDRq, pCONSPq}); where σ , [A1 7→ MakeCons (v0, v1)]; CNC ,

{MakeNotConsp (A1)}; and X is v0, v1, or T, if A f is pCARq, pCDRq, or pCONSPq

respectively.

Intuitively, this case breaks up a formula involving (CAR X), (CDR X), and

(CONSP X) into two cases: one when X is a variable satisfying

(EQUAL (CONSP X) NIL) and another X is a variable satisfying (CONSP X). In the

second case, (CONS V0 V1) is substituted for X, where V0 and V1 are variables not

occurring in the original term. A simpler formula is produced in the sense that the

conclusion has fewer applications of CAR, CDR, and CONSP. For example,

Round (∅, p(IF (CAR X) A (CDR X))q)

=

{ ({p(EQUAL (CONSP X) NIL)q}, p(IF NIL A (CDR X))q),

(∅, p(IF V0 A V1)q)},
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which simplifies the ACL2 formula

(IF (CAR X) A (CDR X))

to the conjunction of the validity of

((EQUAL (CONSP X) NIL)→ (IF NIL A (CDR X)))

and

(IF V0 A V1).

As a second example,

Round ({p(EQUAL (EQUAL (CONS A X) Y) NIL)q}, p(CAR X)q)

=

{ ( {p(EQUAL (EQUAL (CONS A X) Y) NIL)q,

p(EQUAL (CONSP X) NIL)q},

pNILq),

({p(EQUAL (EQUAL (CONS A (CONS V0 V1)) Y) NIL)q}, pV0q)},

which simplifies the ACL2 formula

(EQUAL (EQUAL (CONS A X) Y) NIL)→ (CAR X)

to the conjunction of the validity of

(EQUAL (EQUAL (CONS A X) Y) NIL) ∧ (EQUAL (CONSP X) NIL)

→

NIL

and
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(EQUAL (EQUAL (CONS A (CONS V0 V1)) Y) NIL)→ V0.

6. {(C ∪CNEQ, subA (A2)), (C/σ, subA (A3)/σ)}, if A f = pIFq, where

σ , [A1 7→ pNILq] and CNEQ , {MakeNotEq (pNILq, A1)}.

Intuitively, this case breaks (IF X Y Z) (where X is a variable) into two cases, one

where X is true and the other where X is false. For example,

Round (∅, p(IF X Y Z)q)

=

{ ({p(EQUAL (EQUAL X NIL) NIL)q}, pYq),

(∅, pZq)},

which simplifies the ACL2 formula

(IF X Y Z)

to the conjunction of the validity of

(EQUAL (EQUAL X NIL) NIL)→ Y

and

Z.

As a second example,

Round ( {p(EQUAL (EQUAL (CONS A X) Y) NIL)q},

p(CAR (IF X Y (CONS X Y)))q)
=

{ ( {p(EQUAL (EQUAL (CONS A X) Y) NIL)q,

p(EQUAL (EQUAL X NIL) NIL)q},

p(CAR Y)q),

( {p(EQUAL (EQUAL (CONS A NIL) Y) NIL)q},

p(CAR (CONS NIL Y))q)},
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which simplifies the ACL2 formula

(EQUAL (EQUAL (CONS A X) Y) NIL)

→

(CAR (IF X Y (CONS X Y)))

to the conjunction of the validity of

(EQUAL (EQUAL (CONS A X) Y) NIL) ∧ (EQUAL (EQUAL X NIL) NIL)

→

(CAR Y)

and

(EQUAL (EQUAL (CONS A NIL) Y) NIL)→ (CAR (CONS NIL Y)).

7. {(C∪CNEQ, subA (pNILq)), (C/σ, subA (T)/σ)}, otherwise, where AS is the argument

of A that is a symbol (AS ∈ S), AO is the other argument of A, σ , [AS 7→ AO], and

CNEQ , {MakeNotEq (AS , AO)}.

Note that at this point A f must be EQUAL and either A1 or A2 is a symbol. Intuitively,

this case breaks (EQUAL X Y) into two cases, one in which (EQUAL X Y) is false

and the other in which it is true. In the false case, (EQUAL (EQUAL X Y) NIL) is

added to the set of hypotheses. In the true case, X is replaced everywhere with Y. For

example,

Round (∅, p(EQUAL X (CONS A B))q)

=

{ ({p(EQUAL (EQUAL X (CONS A B)) NIL)q}, pNILq),

(∅, pTq)},

which simplifies the ACL2 formula
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(EQUAL X (CONS A B))

to the conjunction of the validity of

(EQUAL (EQUAL X (CONS A B)) NIL)→ NIL

and

T.

As a second example,

Round ( {p(EQUAL (EQUAL (CONS A X) Y) NIL)q},

p(CONS (EQUAL X Y) X)q)
=

{ ( {p(EQUAL (EQUAL (CONS A X) Y) NIL)q,

p(EQUAL NIL NIL)q},

p(CONS NIL X)q),

( {p(EQUAL (EQUAL (CONS A Y) Y) NIL)q},

p(CONS T Y)q)},

which simplifies the ACL2 formula

(EQUAL (EQUAL (CONS A X) Y) NIL)→ (CONS (EQUAL X Y) X)

to the conjunction of the validity of

(EQUAL (EQUAL (CONS A X) Y) NIL) ∧ (EQUAL (EQUAL X Y) NIL)

→

(CONS NIL X)

and
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(EQUAL (EQUAL (CONS A Y) Y) NIL)→ (CONS T Y).

Thus through a sequence of calls Round can reduce a set of formulas represented

as pairs (C, E), where C ⊂ ENT and E ∈ ESC, into simplified pairs (C′, E′), where C ⊂ ENT

and E ∈ ET. This sequence is formalized in with following function.

Given S ∈ (P(ENT) × ESC), define

SimplifyCore (S ) ,

 S , if ∀(C, E) ∈ S : E ∈ ET

SimplifyCore ((S \ {(XC , XE)}) ∪ Round (XC , XE)), otherwise.

where (XC , XE) is some element of S such that XE < ET (to be precise we can choose the

element such that MakeSetImp (C, E) is lexicographically smallest).

The SimplifyCore function terminates by Theorem 6 and by Theorem 7 it produces

a set of formula that are valid if and only if its input formula is valid.

The decision procedure can then be completed with a procedure that checks the

validity of each formula returned by SimplifyCore .

Given a set C ⊂ ENT and a term E ∈ ET, define

ValidFFp (C, E) ,


EvPrfp (HGZ,MakeSetImp (C, E)/σ) = pNILq, if E = pNILq

ValidFFp (C/[E 7→ pNILq], pNILq), if E ∈ S

true, otherwise.

where σ is the substitution that maps each vi to the natural number i + M, v1 ∈ S through

vn ∈ S are the n variables that occur in MakeSetImp (CG, E), and M is a natural number at

least as large as any constant that occurs in MakeSetImp (C, E).

From Theorem 8 it follows that ValidFFp (C, E) is true if and only if

MakeSetImp (C, E) is a valid ACL2 formula. Thus, F ∈ ESC is valid if and only if

ValidFFp (C, E) is true for all (C, E) ∈ SimplifyCore (∅, F). We therefore have a decision

procedure for any formula that contains only SULFA core primitives.
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Intuitively, ValidFFp (C, E) determines whether MakeSetImp (C, E) is valid by

breaking up the problem into three cases: 1) E is NIL, 2) E is a symbol, 3) E is an ap-

plication of CONS (the only other possibility since E ∈ ET ). Case 3 is trivially valid, since

(CONS X Y) , NIL.

Case 2 can be reduced to case 1, since if the formula has a counterexample, that counterex-

ample occurs when E is NIL. For example,

(EQUAL (EQUAL (CONS A Y) Y) NIL)→ Y.

is reduced to:

(EQUAL (EQUAL (CONS A NIL) NIL) NIL)→ NIL.

Case 1 then determines whether there is a substitution σ mapping variables to values such

that every hypothesis is true. Since each hypothesis is the negation of a CONSP application

or the negation of an EQUAL, this can be determined easily.

• Every CONSP negation that can be true will be true when all variables are mapped to

non-tree values. For example, (EQUAL (CONSP X) NIL) is true when X is a non-tree

value, (EQUAL (CONSP (CONS X Y)) NIL) must be false, and (EQUAL (CONSP

’8) NIL) must be true.

• Every EQUAL negation that can be true will be true when all variables are given values

distinct from other variables and from values occurring in the original term. For

example, (EQUAL (EQUAL X Y) NIL) is true when X and Y are different and

(EQUAL (EQUAL (CONS X Y) (CONS A B)) NIL)

is true when X, Y, A, and B are all different from each other. Similarly,

(EQUAL (EQUAL (CONS X ’4) (CONS A ’4)) NIL)
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is true when X and A are different. On the other hand,

(EQUAL (EQUAL (CONS X Y) (CONS X Y)) NIL)

will be false regardless of which values are given to X and Y.

Thus, given a C ⊂ ENT, a simple way of determining whether a formula

MakeSetImp (C, pNILq) is valid is to see if MakeSetImp (C/σ, pNILq) evaluates to NIL

when σ is a substitution mapping the variables in C to non-tree constants (such as natural

numbers) different from one another and from the constants in C. For example, the validity

of

(EQUAL (EQUAL (CONS X Y) (CONS X Y)) NIL)

∧

(EQUAL (CONSP X) NIL)

∧

(EQUAL (CONSP Y) NIL)

→

NIL

is determined by evaluating

(EQUAL (EQUAL (CONS 1 2) (CONS 1 2)) NIL)

∧

(EQUAL (CONSP 1) NIL)

∧

(EQUAL (CONSP 2) NIL)

→

NIL.

On the other hand, a counterexample to
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(EQUAL (EQUAL (CONS X 4) (CONS X Y)) NIL)

∧

(EQUAL (CONSP X) NIL)

∧

(EQUAL (CONSP Y) NIL)

→

NIL

is determined by evaluating

(EQUAL (EQUAL (CONS 5 4) (CONS 5 6)) NIL)

∧

(EQUAL (CONSP 5) NIL)

∧

(EQUAL (CONSP 6) NIL)

→

NIL.

6.4.1 Correctness

Given a set of symbols S and term E, define Count (S , E) to be the number of times that

symbols in S appear as functions in E. Furthermore, define VarCount (E) to be the number

of distinct variable symbols that occur in E. For example,

Count ({pCARq, pCDRq}, p(CONSP (CAR (CDR (CDR X))))q) = 3,

Count ({pCDRq}, p(CONSP (CAR (CDR (CDR X))))q) = 2,

Count ({pCONSPq}, p(CONSP (CAR (CDR (CDR X))))q) = 1,

VarCount (p(CONS X (CONS X Z))q) = 3, and

VarCount (p(CONS X (CONS X Y))q) = 2.

Also, given E ∈ E, define
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RoundOrd (E) , ω3 × Count ({pCARq, pCDRq, pCONSPq}, E) +

ω2 × VarCount (E) +

ω × Count ({pCONSq}, E) + Count ({pEQUALq, pIFq}, E).

Lemma 7. Given C ⊂ ENT and E ∈ ESC such that E < ET, let S , Round (C, E). Then,

for each element (S C , S E) ∈ S it follows that S C ∈ ENT, S E ∈ ESC, and RoundOrd (S E) <

RoundOrd (E).

Proof Sketch: Note that from the definition of NonConsFA it follows that A is a subterm

of E such that Fn (A) ∈ {CAR, CDR, CONSP, IF, EQUAL}.

For all (S C , S E) ∈ S , it follows trivially from the definition of Round that S C ∈ ENT

and S E ∈ mathbbESC. To prove that RoundOrd (S E) < RoundOrd (E), we consider each

case within the definition of Round .

• In cases 1 through 3, each conclusion S E returned by Round (C, E) is trivially smaller

than RoundOrd (E), since S E is formed by replacing A with an argument of A.

• In case 4, either A1 or A2 is an application of pCONSq. Thus, by the definition of

GetCar and GetCdr , A contains at least one fewer application of pCONSq. Further-

more, since A1 < S and A2 < S no new applications of pCARq or pCDRq are added.

• In case 5, the substitution σ may add applications of pCONSq, but not applications

of any other functions. Therefore, each conclusion S E returned by Round (C, E) has

one fewer application of pCARq, pCDRq, or pCONSPq than E.

• In case 6, both subA (A2) and subA (A3)/σ have one fewer application of pIFq, since

σ just maps variables to pNILq.

• In case 7, subA (pNILq) has at least one fewer application of EQUAL then E and

subA (T)/σ, while it may have more CONS applications than E, has fewer variables.

�
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Theorem 6. For all S ∈ (P(ENT) × E) SimplifyCore (S ) terminates.

Proof Sketch: From Lemma 7 it follows that the ordinal
∑

(C,E)∈S

ωRoundOrd (E) decreases on

each recursive call in the definition of SimplifyCore (S ). �

Lemma 8. Let X ∈ ET and Y ∈ ET satisfy SymTermp (X,Y) and X , Y. Then,

MakeEq (MakeEq (X,Y), pNILq) is a valid ACL2 formula in HGZ.

Proof Sketch: Trivial by induction on |Y | and ACL2’s axioms defining the primitive

ACL2-COUNT, from which it follows that:

(AND (INTEGERP (ACL2-COUNT X))

(<= 0 (ACL2-COUNT X))

(IMPLIES (CONSP X)

(< (ACL2-COUNT (CAR X)) (ACL2-COUNT X)))

(IMPLIES (CONSP X)

(< (ACL2-COUNT (CDR X)) (ACL2-COUNT X)))).

�

Lemma 9. Given E ∈ E, X ∈ S, an ACL2 history H, let v0 ∈ S and v0 ∈ S be symbols not

occurring in E such that v0 , v1. Then, MakeImp (MakeConsp (X), E) is valid in H if and

only if E/[X 7→ MakeCons (v0, v1)] is valid in H.

Proof Sketch: If MakeImp (MakeConsp (X), E) is valid, then E/[X 7→ MakeCons (v0, v1)]

follows by instantiation.

If F = E/[X 7→ MakeCons (v0, v1)] is valid, then

F/[v0 7→ MakeCar (X), v1 7→ MakeCdr (X)]
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is valid. Therefore, MakeImp (MakeConsp (X), E) follows from the validity of

(IMPLIES (CONSP X) (EQUAL (CONS (CAR X) (CDR X)) X)).

�

Lemma 10. Given E ∈ E, X ∈ S, Y ∈ E, and an ACL2 history H, the formula

MakeImp (MakeEq (X,Y), E) is valid in H if and only if E/[X 7→ Y] is valid in H.

Proof Sketch: Trivial from the inference rules of the ACL2 logic. �

Theorem 7. Given a finite set C ⊂ ENT and an ACL2 term E ∈ ESC such that E < ET,

let S , Round (C, E). Then, for any ACL2 history H, MakeSetImp (C, E) is a valid ACL2

formula in H if and only if for all (S C , S E) ∈ S , MakeSetImp (S C , S E) is a valid ACL2

formula.

Proof Sketch: We prove the theorem for each of the cases in the definition of Round , and

using the same definitions of A1, A2, and A f as in the definition Round . Note that, since

A1 ∈ ET , Fnp (A1)→ Fn (A1) = pCONSq and the same is true for A2.

1. Follows directly from the validity of

(EQUAL (CAR (CONS X Y)) X),

(EQUAL (CDR (CONS X Y)) X), and

(EQUAL (CONSP (CONS X Y)) T).

2. Either A1 is a constant or an application of CONS. Therefore, the equivalence of

MakeSetImp (C, subA (X)) and MakeSetImp (C, E) follows from the validity of

(IMPLIES (NOT (EQUAL X NIL)) (EQUAL (IF X Y Z) Y)),

(EQUAL (IF NIL Y Z) Z)), and

(EQUAL (IF (CONS A B) Y Z) Y).
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3. If A1 = A2, then (EQUAL (EQUAL X X) T). Otherwise, the theorem follows from

Lemma 8.

4. One of A1 and A2 is an application of CONS and the other is either a constant or an ap-

plication of CONS. Therefore, if either GetConsp (A1) = pNILq or

GetConsp (A2) = pNILq then the theorem follows from the validity of

(IMPLIES (NOT (CONSP X)) (EQUAL (CAR X) NIL)),

(IMPLIES (NOT (CONSP X)) (EQUAL (CDR X) NIL)), and

(IMPLIES (NOT (CONSP X)) (EQUAL (CONSP X) NIL)).

Otherwise, the theorem follows from

(IMPLIES (AND (CONSP A1) (CONSP A2))

(EQUAL (EQUAL A1 A2)

(IF (EQUAL (CAR A1) (CAR A2))

(EQUAL (CDR A1) (CDR A2))

NIL))).

5. Note that A1 ∈ S, by the negation of the conditions of case 1. Furthermore,

MakeSetImp (C ∪CNC, subA (NIL))

is equal to

MakeSetImp (C ∪CNC, E),

by the same reasoning as in case 1. Thus, we need only prove that

MakeImp (MakeConsp (A1,MakeSetImp (C, E))

is valid if and only if

MakeSetImp (C/σ, subA(X)/σ)

is valid. This follows from Lemma 9 and the reasoning in case 1.
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6. Note again that A1 ∈ S. From the validity of

(IMPLIES (NOT (EQUAL A1 NIL)) (EQUAL (IF A1 A2 A3) A2)),

it follows that

MakeSetImp (C ∪CNEQ, subA (A2))

is equal to

MakeSetImp (C ∪CNEQ, E).

Therefore, we need only prove that

MakeImp (MakeEq (pNILq, A1),MakeSetImp (C, E))

is valid if and only if

MakeSetImp (C/σ, subA(A3)/σ).

This follows from Lemma 10 and the validity of

(IMPLIES (EQUAL A1 NIL) (EQUAL (IF A1 A2 A3) A3)).

7. Note that Fn (A) = pEQUALq, and either A1 ∈ S or A2 ∈ S. Therefore,

MakeSetImp (C ∪CNEQ, subA (pNILq))

equals

MakeSetImp (C ∪CNEQ, E).

Thus, we need only prove that

MakeImp (MakeEq (AS , AO),MakeSetImp (C, E))

is valid if and only if

MakeSetImp (C/σ, subA(pTq)/σ),

which follows from Lemma 10.
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�

Lemma 11. Given a term X ∈ ET and Y ∈ ET, let A , MakeNotEq (X,Y); letσ ⊂ (S×E) be

a substitution mapping all the variables in A to unique natural numbers that do not appear

in A; Then, if EvPrfp (HGZ, A/σ), then A is a valid ACL2 formula.

Proof Sketch: First note that since σ maps all variables to constants and all functions in A

are ACL2 primitives, EvPrfp (HGZ, A/σ) is equivalent to EvPrf (HGZ, A/σ) , pNILq.

Induct on the number of CONS applications in A.

• If there are no CONS applications, then X and Y are each either a constant or a variable.

Since σ never maps a variable to a constant that occurs in A and never maps two

variables to the same constant, X and Y must be constant. In that case, the formula is

clearly valid, since A = A/σ.

• If either X or Y is a CONS application, but not both, then the theorem follows from

contradiction. EvPrf (H, Aσ) = pTq, since no natural number can equal the result of

a CONS application.

• Otherwise, both X and Y are CONS applications. Thus, the theorem follows from

induction, and the validity of

(IMPLIES (OR (NOT (EQUAL X0 Y0)) (NOT (EQUAL X1 Y1)))

(NOT (EQUAL (CONS X0 X1) (CONS Y0 Y1)))).

�

Lemma 12. Given an ACL2 history H, C ⊂ ENT, let E , MakeSetImp (C, pNILq). Fur-

thermore, let v1 ∈ S through vn ∈ S denote the n variables that occur in E, let M be a

natural number at least as large as the largest natural number constant that appears in E,

and let σ be the substitution that maps each vi to the natural number i + M. Then, E is a

valid formula in H if and only if EvPrfp (HGZ, E/σ).
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Proof Sketch: First note that since σ maps all variables to constants and all functions in A

are ACL2 primitives, EvPrfp (HGZ, A/σ) is equivalent to EvPrf (HGZ, A/σ) , pNILq.

The validity of E implies the validity of E/σ, by instantiation. Furthermore, since

σ maps all variables in E to constants and E ∈ ECS, the validity of E/σ implies that

EvPrf (HGZ, E/σ) is a constant and not equal to pNILq.

We prove that the validity of E follows from the validity of E/σ by contradiction.

Assume that E/σ is valid, since EvPrf (HGZ,MakeSetImp (C, pNILq/σ)) , pNILq, there

must be some A ∈ C such that EvPrf (HGZ, A/σ) = pNILq.

• First, assume A = MakeNotConsp (Ax) for some Ax ∈ ET. If Ax is constant, then

Ax = pNILq, and therefore E is valid. Otherwise, Ax must be an application of CONS,

since Ax ∈ S implies EvPrf (HGZ, A/σ) =T. Thus, the validity of E follows from

(EQUAL (NOT (CONSP (CONS X0 X1))) NIL).

• Otherwise, the validity of E follows from Lemma 11.

�

Theorem 8. Let H be an ACL2 history, C ⊂ ENT, and E ⊂ EH . Then, MakeSetImp (C), E)

is a valid formula in H if and only if ValidFFp (C, E).

Proof Sketch: If E = pNILq, then the theorem follows directly from Lemma 12. If E ∈ S,

then the theorem follows from Lemma 10 and Lemma 12. Otherwise, the theorem follows

from the validity of p(NOT (EQUAL (CONS X Y) NIL))q. �

6.5 Counterexample Generation

It is possible to construct a counterexample to any invalid SULFA formula. In this context a

counterexample replaces uninterpreted functions with concrete functions and variables with

values such that a formula evaluates to NIL.
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From the previous section, recall that if F ∈ ESC is an invalid formula, then there ex-

ists a (C, E) ∈ SimplifyCore ({(∅, F)}) such that ¬ValidFFp (C, E). Note that when

ValidFFp (C, E) is false ValidFFp creates a counterexample to MakeSetImp (C, E). By

following the substitutions leading to (C, E), it is possible to construct a counterexample to

the original formula F.

Furthermore, by inverting the substitutions used to remove uninterpreted functions

in Section 6.3, it is possible to determine concrete functions for each uninterpreted function

such that the formula evaluates to NIL. Furthermore, the unrolling algorithm in Section 6.2

produces an equivalent formula to the original SULFA formula with no new variables and

only provably irrelevant variables removed. Therefore, a counterexample to the unrolled

formula is also a counterexample to the original SULFA formula.

6.6 Summary

Chapter 5 defines SULFA, a decidable subclass of ACL2 formulas, involving unbounded

tree structures, if-then-else, equality, uninterpreted functions, and a definition principle for

extending it with user-defined functions. SULFA intuitively resembles the theory of list

structures with uninterpreted functions, which is known to be decidable. The axioms of

ACL2 are somewhat different from the axioms of the theory of list structures (more can

be proven from the axioms of ACL2). Also, ACL2 contains a more sophisticated array of

constants than the traditional theory of list structures, such as strings, symbols, and complex

numbers. Thus the decidability of SULFA does not directly follow from previous proofs of

decidability of similar theories.

This chapter shows that SULFA is, in fact, a decidable subclass, by presenting a

procedure that determines whether any SULFA formula is valid. The procedure first unrolls

user-defined functions, then removes uninterpreted functions, and finally solves ACL2 for-

mulas involving SULFA core primitives. A proof sketch of the correctness of each step of

the procedure is provided.
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The decision procedure presented here is intended to be as simple as possible, rather

than efficient. Chapter 7 describes a more efficient SULFA solver, though with a less rig-

orous correctness justification. Chapter 8 and 9 then apply the SULFA solver to hardware

verification problems.
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Chapter 7

Developing a SAT-Based SULFA

Solver

7.1 Introduction

Chapter 5 defines SULFA, a decidable subclass of ACL2 formulas made up of the tree

data structure, equality, if-then-else, uninterpreted functions, and (unrollable) user-defined

functions. Chapter 6 shows that SULFA is a decidable subclass by presenting a procedure

that determines whether any SULFA formula is valid. In order to apply a SULFA solver to

problems of practical interest, however, a more efficient procedure than this is required.

This chapter outlines an algorithm for solving SULFA formulas, based on SAT

solvers, which Chapters 8 and 9 apply to non-trivial problems from hardware verifica-

tion. The intuition behind the SAT-Based SULFA Solver is to find a finite set of equality

and CONSP predicates that are relevant to a given formula. Then, the relationship between

the predicates is codified as a satisfiability problem in Boolean Conjunctive Normal Form

(CNF), and passed to a SAT solver. The algorithm is described in more detail in our work-

shop paper [32] and an implementation of it, along with its source code, is available with

the ACL2 distribution [37].
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Section 7.2 begins by showing how nested if-then-else terms can be translated into

CNF. Section 7.3 then defines Boolean SULFA predicates, which form the basis for our

SAT-based algorithm. Section 7.4 next presents an overview of the algorithm used to trans-

late SULFA formulas into CNF and the intuition used to optimize it. Section 7.5 illustrates

how our algorithm translates a few SULFA formulas into CNF.

Note that this chapter reuses some of the terminology from Chapter 5, as well as the

simplifications to the ACL2 logic described in Section 5.3. While the actual implementation

supports mutual recursion and lambda functions, these features are not addressed in this

chapter.

7.2 Translating Nested If Terms to CNF

We begin by showing how nested IF terms are translated into CNF, which forms the basis

for our full SULFA to CNF translation algorithm.

Define a normalized IF term as an IF term where every condition (the first argument

of IF) is a symbol. The validity of normalized IF terms can be easily translated into the

satisfiability of a Boolean CNF formula. For example, the universally-quantified ACL2

formula

α: (IF A (IF B C D) (IF E F G))

translates to the following (negated) existentially-quantified CNF formula:

β : (¬a ∨ ¬b ∨ ¬c) ∧ (¬a ∨ b ∨ ¬d) ∧ (a ∨ ¬e ∨ ¬ f ) ∧ (a ∨ e ∨ ¬g)

Note that α is valid if and only if β is unsatisfiable. Thus a SAT solver that checks whether

β is satisfiable also solves whether α is valid.

A simple algorithm for translating a normalized IF term to CNF creates one clause

for each possible result of the IF condition. This has O(N2) worst case complexity, where

N is the size of the normalized IF term, since the generated CNF formula has N clauses

and each clause has at most N literals.
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The straightforward method for normalizing a nested IF term, however, requires

exponential time, because the branches of the IF must be duplicated during normalization.

As Tseitin showed, however, this problem can be alleviated by introducing new variables

into the CNF term[89]. To formalize this concept, we introduce the notion of an ACL2 term

in CNF-ready form, defined by the following grammar:

CNF-ready ::= norm-if | (IMPLIES (AND norm-iff) norm-if) |

(IMPLIES (AND norm-iff-list) norm-if)

norm-iff-list ::= norm-iff | norm-iff norm-iff-list

norm-iff ::= (IFF symbol norm-if) | norm-if

norm-if ::= symbol | T | NIL | (IF symbol norm-if norm-if)

where symbol is an arbitrary symbol. For example, the nested IF term

(IF (IF A B C) D E) is valid if and only if the CNF-ready formula

(IMPLIES (IFF V (IF A B C)) (IF V D E))

is valid.

The simple algorithm for translating normalized IF terms into CNF can be extended

into an algorithm to translate CNF-ready formulas. For example, the formula

(IMPLIES (IFF V (IF A B C)) (IF V D E)) is translated into:

(¬v ∨ ¬a ∨ b) ∧ (¬v ∨ a ∨ c) ∧ (v ∨ ¬a ∨ ¬b)∧

(v ∨ a ∨ ¬c) ∧ (¬v ∨ ¬d) ∧ (v ∨ ¬e)

where v , (pVq , pNILq), a , (pAq , pNILq), b , (pBq , pNILq), c , (pCq , pNILq),

d , (pDq , pNILq), and e , (pEq , pNILq). The above formula is unsatisfiable if and only

if

(IMPLIES (IFF V (IF A B C)) (IF V D E))

is valid.
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The algorithm used above has O(N2) complexity. Each hypothesis in the CNF-

ready formula is translated into CNF independently of the conclusion and other hypotheses,

since the disjunction in the ACL2 formula becomes a conjunction in the CNF formula.

Furthermore, each IFF hypothesis translates into CNF by translating its normalized IF

term twice, once for the true case and once for the false case. Therefore, the time required

is O(m2
0 + m2

1... + m2
n), where mi is the size of the ith IF term. Given a CNF-ready formula

of size N, the complexity of the translation is O(N2), since (m0 + m1...+ mn)2 is greater than

m2
0 + m2

1... + m2
n.

The translation of a CNF-ready formula into CNF is linear if the size of each IFF

is bounded. Therefore, any nested IF term can be translated into CNF in linear time, if

variables are created for every IF term. For example,

(IF A (IF B C D) (IF (IF E F G) H J))

can be translated to

(IMPLIES (AND (IFF V0 (IF B C D))

(IFF V1 (IF E F G))

(IFF V2 (IF V1 H J)))

(IF A V0 V2)).

The above CNF-ready formula is translated to CNF in linear time, since each hypothesis

and conclusion contains only a single IF term.

7.3 Boolean SULFA Predicates

Note that in the previous section each Boolean variable in the CNF formula represents a

predicate on ACL2 terms of the form α , NIL for some ACL2 variable α. The problem

is then decidable since only a finite number of such Boolean predicates are relevant to the

nested IF term. Similarly every SULFA formula can be reduced to a finite number of

Boolean predicates.
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Define a SULFA Boolean predicate as an ACL2 term in the following grammar:

SBP ::= T | NIL | (CONSP ccExpr) | (EQUAL ccExpr ccExpr) |

ccExpr ::= symbol | (CAR ccExpr) | (CDR ccExpr)

where symbol is an arbitrary symbol. For example, (CONSP (CDR (CAR X))) and

(EQUAL (CAR A) (CAR (CDR B))) are SULFA Boolean predicates.

Furthermore, a SULFA nested IF predicate is defined by the grammar:

ifpred ::= SBP | (IF ifpred ifpred ifpred)

where SBP is an arbitrary SULFA Boolean predicate. For example,

(IF (EQUAL (CAR X) 4) (CONSP Y) (EQUAL (CDR X) NIL))

is a SULFA nested IF predicate.

Given a SULFA Boolean predicate X and a substitution σ mapping variables to

terms in ESC (terms containing only SULFA core primitives), X/σ can be reduced to a

SULFA nested IF predicate by successive applications of the rules in Figure 7.1. Further-

more, any ACL2 formula F is equivalent to p(EQUAL X NIL)q/[X 7→ F]. Therefore, since

any SULFA formula can be reduced to a formula involving only SULFA core primitives,

any SULFA formula can be reduced to a SULFA nested IF predicate. For example,

(IMPLIES (EQUAL (CAR X) A)

(EQUAL (CAR (IF (CONSP X) X (CONS A B)))

A))

is a SULFA formula that is equivalent to:

(IF (EQUAL (CAR X) A)

(EQUAL (CAR (IF (CONSP X) X (CONS A B)))

A)

T).
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1. (CAR (IF A B C))⇒ (IF A (CAR B) (CAR C))

2. (CDR (IF A B C))⇒ (IF A (CDR B) (CDR C))

3. (CAR (EQUAL A B))⇒ (CDR (EQUAL A B))⇒ NIL

4. (CAR (CONS A B))⇒ A

5. (CDR (CONS A B))⇒ B

6. (CAR (CONSP A))⇒ (CDR (CONSP A))⇒ NIL

7. (EQUAL (IF A B C) D)⇒

(IF (EQUAL A NIL) (EQUAL C D) (EQUAL B D))

8. (EQUAL (CONS A B) C)⇒

(IF (CONSP C)

(IF (EQUAL (CAR C) A) (EQUAL (CDR C) B) NIL)

NIL)

9. (EQUAL (CONSP A) B)⇒ (IF (CONSP A) (EQUAL B T) (EQUAL B NIL))

10. (EQUAL (EQUAL A B) C)⇒

(IF (EQUAL A B) (EQUAL C T) (EQUAL C NIL))

11. (CONSP (IF A B C))⇒ (IF (EQUAL A NIL) (CONSP C) (CONSP B))

12. (CONSP (CONS A B))⇒ T

13. (CONSP (CONSP A))⇒ (CONSP (EQUAL A B))⇒ NIL

Figure 7.1: Let X be a nested IF predicate, and σ a substitution mapping symbols to terms
in ESC (terms that include only SULFA core primitives). Then, the rewrite rules above can
be used to reduce X/σ into a nested IF predicate.
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The above formula is equivalent to the following instantiation of p(EQUAL X NIL)q:

(NOT (EQUAL

(IF (EQUAL (CAR X) A)

(EQUAL (CAR (IF (CONSP X) X (CONS A B)))

A)

T)

NIL)),

where (NOT E) is an abbreviation of (IF E NIL T). By repeatedly applying the simplifi-

cation rules in Figure 7.1 and evaluating ground terms, the above formula simplifies to the

following SULFA nested IF predicate:

(NOT (IF (NOT (EQUAL (CAR X) A))

NIL

(NOT (IF (NOT (NOT (CONSP X)))

(EQUAL (CAR X) A)

(EQUAL A A))))).

If the negation in the above formula is removed, it becomes:

(IF (EQUAL (CAR X) A)

(IF (CONSP X)

(EQUAL (CAR X) A)

(EQUAL A A))

T).

Let F be a SULFA nested IF predicate containing the set Z ⊂ E of SULFA Boolean

predicates. Then, if each member of Z is generalized to a variable, the result is a nested

IF that can be translated into CNF. If a SAT solver returns unsatisfiable, then the origi-

nal SULFA formula is valid. Otherwise, the original formula is valid only if the formula

119



MakeSetImp (C, pNILq) is valid, where each element of C either is E ∈ Z, if E corre-

sponds to a true variable in the satisfying instance; or MakeNot (E), if E corresponds

to a false variable in the satisfying instance. In our example, a satisfying instance re-

turned by the SAT solver could lead to (NOT (CONSP X)), (EQUAL (CAR X) A), and

(NOT (EQUAL A A)), which is a spurious counter-example

Any SULFA Boolean predicate, such as (EQUAL X X), that is reducible to a con-

stant can be easily simplified. If E is an instance of (EQUAL X X), then it is simplified to ’T;

otherwise, if E is an application of EQUAL such that one of its arguments, X, is a subterm of

the other, then it is simplified to (EQUAL X ’NIL). For example,

(EQUAL A (CAR A)) is simplified to (EQUAL A ’NIL). MakeEq (X, NIL). Our example

formula therefore simplifies to:

(IF (EQUAL (CAR X) A)

(IF (CONSP X)

(EQUAL (CAR X) A)

T)

T).

The above formula generalizes to a valid nested IF term, which can be proven using a SAT

solver.

Further spurious counterexamples can occur due to relations between SULFA

Boolean predicates. For example, if (CONSP X) is true, then (EQUAL X NIL) must be

false. Many spurious counterexamples can be avoided, however, by instantiating the the-

orems in Figure 7.2. For example, by adding instances of the theorems in Figure 7.2, our

example becomes:
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1. (IMPLIES (AND (EQUAL X Y) (EQUAL Y Z)) (EQUAL X Z))

2. (IMPLIES (NOT (CONSP X)) (EQUAL (CAR X) NIL))

3. (IMPLIES (NOT (CONSP X)) (EQUAL (CDR X) NIL))

4. (IMPLIES (AND (CONSP X) (NOT (CONSP Y))) (NOT (EQUAL X Y)))

5. (IMPLIES (CONSP X) (EQUAL (CONSP X) T))

6. (IMPLIES (EQUAL X Y) (EQUAL (EQUAL X Y) T))

7.

(IMPLIES (AND (EQUAL (CAR X) (CAR Y))

(EQUAL (CDR X) (CDR Y))

(CONSP X)

(CONSP Y))

(EQUAL X Y))

Figure 7.2: ACL2 theorems instantiated after generalization to prevent spurious counter
examples.

(IMPLIES

(IMPLIES (NOT (CONSP X)) (EQUAL (CAR X) NIL))

(IF (EQUAL (CAR X) A)

(IF (CONSP X)

(EQUAL (CAR X) A)

T)

T)).

Note that IMPLIES and NOT are easily translated to IF terms.

Since each of the theorems in Figure 7.2 is an ACL2 theorem, adding instantiations

of them as hypotheses does not affect the validity of an ACL2 formula. Our algorithm

instantiates every instance of the theorems in Figure 7.2 that we believe may be relevant to

the SAT solver, to avoid as many spurious counterexamples as possible.
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7.4 Developing an Efficient SAT-Based Proof Procedure

The previous section shows that it is possible to use SAT solvers to aid in the proof and

disproof of SULFA formulas. This section describes the optimizations needed to make an

efficient SAT-based SULFA verification technique, and provides an overview of the result-

ing tool. Note that the subject of uninterpreted functions is omitted from this section and

instead discussed in Section 7.7.

To develop an efficient algorithm for translating a SULFA formula to CNF, a trade

off is managed between the following three goals:

1. Avoid duplication of terms: In simpler versions of our algorithm, complex terms

are often duplicated. For example, unrolling (F (IF A B C)) might lead to the

duplication of (IF A B C) since the formal parameter of Fmay occur multiple times

in its body. Such duplication leads to an exponential explosion that can be avoided

by creating new variables. For example, (F (IF A B C)) is equal to

(IMPLIES (EQUAL V (IF A B C)) (F V)),

so that F can be unrolled without duplicating (IF A B C). Therefore, the efficient

translation algorithm creates variables for complex terms before those terms are likely

to be duplicated.

2. Avoid the creation of unnecessary variables: On the other hand, the performance

of a SAT solver on a given problem is often closely related to the number of Boolean

variables present in the problem. Furthermore, the size of the term can increase from

the unnecessary creation of variables. For example,

(IF (F0 A0) (F1 A1) (F2 A2))

might unroll to A1, if (F0 A0) expands to T and (F1 A1) expands to A1. If a variable

is created for (F0 A0), however,
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(IF (F0 A0) (F1 A1) (F2 A2))

becomes

(IMPLIES (EQUAL V (F0 A0)) (IF V (F1 A1) (F2 A2))).

Now, (F2 A2) is likely to be unrolled, despite the fact that it is irrelevant to the

original formula.

The efficient translation algorithm avoids unrolling irrelevant terms such as (F2 A2)

above, by restricting variable creation to IF terms, and performing minimal simplifi-

cation on IF terms before unrolling or variable creation.

3. Avoid simplifying irrelevant subterms: Note that the rewrite rules in Figure 7.1,

implement a form of cone of influence reduction. For example, the formula

(EQUAL (CAR (IF A

(CONS (CONS (F X) (F Y)) (F Z))

(CONS X (G Y))))

NIL).

simplifies to

(EQUAL (IF A (CONS (F X) (F Y)) X)

NIL)

by rules 1 and 4 in Figure 7.1. This further simplifies to

(IF (EQUAL A NIL)

(EQUAL X NIL)

(EQUAL (CONS (F X) (F Y)) NIL))
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by rules 7 in Figure 7.1. Finally, this is simplified to

(IF (EQUAL A NIL) (EQUAL X NIL) NIL)

by rule 8 in Figure 7.1, which produces an IF with a trivial condition that is then

simplified to NIL—essentially, the CONS of two elements is never equal to NIL. Note

that the subterms (F X), (F Y), (F Z), and (G Y) in the original example formula

have no bearing its validity.

The efficient translation algorithm, for the most part, avoids manipulating or creating

variables for subterms that can be removed by the rewrite rules in Figure 7.1. In

practice, this is an important technique for hardware verification, since it enables the

verification of shallow properties of large hardware designs.

An overview of the optimized SAT-based proof procedure, which manages a trade-

off between the three above goals, is illustrated in Figure 7.4. The procedure is divided into

the following phases:

• SULFA Recognizer. The recognizer described in Section 5.5 is used to efficiently

determine if the given formula is in SULFA. If it is not, then an error message is

presented to the user. Otherwise, the procedure continues.

• Basic Simplification. This phase performs some minimal simplification of the cur-

rent term, which is initially the formula and later the definition of a symbol occurring

in the formula (the current term is updated at the end of the normalization phase).

The simplification in this phase generally involves only the evaluation proof tech-

nique, simplification based on the axioms of CONS, and simplification based on the

axioms of IF. For example, (CAR (IF T (CONS X Y) Z)) is simplified to X.

• Definition Creation. First, define an inner-if term as an IF term that occurs either

within the argument of a user-defined function, the condition of an IF, or an argu-

ment of EQUAL. Furthermore, an inner-if must not have any user-defined functions
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Figure 7.3: An overview of our tool that verifies SULFA formulas using SAT Solvers
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in its condition. For example, (F (IF (CAR X) (F Y) Z)) contains an inner-if,

whereas (F (IF (F X) (F Y) Z)), (IF (CAR X) (F Y) Z),

and (IF A (IF (CAR X) (F Y) Z)) do not.

During this phase, new symbols are defined to represent inner-if terms occurring

in the current term. For example, (F (IF (CAR X) (F Y) Z)) is replaced with

(F V), where V is defined to be (IF (CAR X) (F Y) Z).

• Unroll. This phase expands functions in the current term.

• Definition Removal and Normalization. If the current term is the formula, then it

is equivalent to p(NOT (EQUAL X NIL))q/[X 7→ F], which is reduced to a SULFA

nested IF by outside-in rewriting based on the theorems in Figure 7.1.

Otherwise, the formula is a SULFA nested IF predicate and the current term defines

a symbol that occurs in the formula. The definition is now removed by mapping its

symbol to the current term. Next, the formula is again reduced to a SULFA nested

IF predicate by outside-in rewriting, based on the theorems in Figure 7.1.

New variables are also created for the resulting SULFA Boolean predicates in the

same manner. For example, if V0 is a symbol with a definition that has not yet been

traversed, then (IF A (EQUAL NIL V0) (EQUAL NIL V0)) is translated to

(IMPLIES (IFF V0-P0 (EQUAL NIL V0)) (IF A V0-P0 V0-P0)).

When the symbol removal phase later substitutes a term for V0, this term will not be

duplicated.

Once the formula is normalized, the most recent definition not already removed, is

chosen as the new current term. If no definitions exist that have not been removed

then the algorithm proceeds to the final translation phase.

• Final Translation. The final translation phase generalizes any remaining SULFA

Boolean predicates, instantiates the theorems in Figure 7.2, as described in Sec-
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tion 7.3, and then translates the resulting nested IF into CNF by the method described

in Section 7.2.

• Counterexample. If the SAT solver returns satisfiable, then the satisfying instance is

a mapping from SULFA Boolean predicates to Booleans. In a manner similar to that

described in Section 6.5, this mapping is translated, if possible, into a concrete ACL2

object that is a counterexample to the original formula.

The algorithm in Figure 7.4 is further optimized to avoid simplifying irrelevant

subterms. Note that in the definition removal and normalization phase, there is some finite

set of SULFA Boolean predicates in which the current term will eventually be instantiated.

The basic simplification, symbol creation, and unrolling phases are, therefore, optimized to

ignore subterms that are irrelevant to the set of predicates in which the current term will

eventually be instantiated. Any unsimplified terms are eventually removed by the definition

removal and normalization phase.

7.5 Example

This section translates an example SULFA formula into CNF using the algorithm shown in

Figure 7.4. First define UNARY-AND as:

(DEFUN UNARY-AND (N X)

(IF (ZP N) T

(IF (CAR X)

(UNARY-AND (1- N) (CDR X))

NIL))),

which computes the conjunction of the first n-bits in a bit vector. In the body of UNARY-AND,

the function ZP returns true if its argument is the natural number 0, and the function “1-”
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subtracts 1 from its argument. The following is a valid SULFA formula, which we we name

uAndForm:

(EQUAL (UNARY-AND 2 (IF A (CONS B (CONS C (CONS (F A) NIL)))

(CONS C (CONS B NIL))))

(IF B (IF C T NIL) NIL)).

where F is any arbitrary function with a valid ground formal set.

The formula uAndForm is valid since both the conjunction of B and C and the con-

junction of C and B, are equal to T if B and C are non-NIL; otherwise, both are NIL.

We will now translate the theorem uAndForm to CNF. The first step is to simplify

the formula, using the axioms of IF, CONS, and evaluation, which yields no change to the

formula. Next, the definition creation phase produces the following:

(LET* ((V0 (IF A (CONS B (CONS C (CONS (F A) NIL)))

(CONS C (CONS B NIL))))

(V1 (IF B (IF C T NIL) NIL)))

(EQUAL (UNARY-AND 2 V0)

V1)).

Two symbols, V0 and V1, are created to represent inner-if terms. These symbols are defined

in a LET* (LET* is described in Chapter 3).

The next phase that alters the formula is the unroll phase, which produces:

(LET* ((V0 (IF A (CONS B (CONS C (CONS (F A) NIL)))

(CONS C (CONS B NIL))))

(V1 (IF B (IF C T NIL) NIL)))

(EQUAL (IF (ZP 2) T

(IF (CAR V0) (UNARY-AND (1- 2) (CDR V0))

NIL))

V1)).
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The above formula is equivalent to uAndForm by the definition of UNARY-AND.

The translation algorithm next uses the basic simplification phase to simplify the

body of the LET* into:

(LET* ((V0 (IF A (CONS B (CONS C (CONS (F A) NIL)))

(CONS C (CONS B NIL))))

(V1 (IF B (IF C T NIL) NIL)))

(EQUAL (IF (CAR V0) (UNARY-AND 1 (CDR V0)) NIL)

V1)).

which is equivalent to the previous formula by evaluation and the axioms of IF.

Next, the definition creation phase translates the formula into the following:

(LET* ((V0 (IF A (CONS B (CONS C (CONS (F A) NIL)))

(CONS C (CONS B NIL))))

(V1 (IF B (IF C T NIL) NIL))

(V2 (IF (CAR V0) (UNARY-AND 1 (CDR V0)) NIL)))

(EQUAL V2 V1)).

Next, the translation process proceeds to the definition removal and normalization

phase. Normally, this phase must reduce the current term into a SULFA nested IF predicate,

but in the above example the current term (in this case, the body of the LET*) is already a

SULFA nested IF predicate, so no normalization is needed. Instead, a variable is simply

created to represent each SULFA Boolean predicate in the current term, as shown below:

(LET* ((V0 (IF A (CONS B (CONS C (CONS (F A) NIL)))

(CONS C (CONS B NIL))))

(V1 (IF B (IF C T NIL) NIL))

(V2 (IF (CAR V0) (UNARY-AND 1 (CDR V0)) NIL)))

(IMPLIES (IFF V2-P0 (EQUAL V1 V2))

V2-P0)).
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The new symbol, V2-P0, is associated with V2 since V2 is the more recently defined symbol

in the SULFA Boolean predicate it represents. At first glance the above formula appears

weaker than the previous formula, since V2-P0 is not restricted to be Boolean. However,

the two formulas are equivalent since V2-P0 is never used in a context that distinguishes

between non-NIL constants.

Also note that the arguments of the equality have been reordered. Although not pre-

viously mentioned, arguments of SULFA Boolean predicates are ordered to avoid creating

equivalent predicates.

At this point, the simplification continues with the current term becoming the

bottom-most definition, which is the definition of V2. The unroll phase is the next phase to

modify the formula, as shown below:

(LET* ((V0 (IF A (CONS B (CONS C (CONS (F A) NIL)))

(CONS C (CONS B NIL))))

(V1 (IF B (IF C T NIL) NIL))

(V2 (IF (CAR V0)

(IF (ZP 1) T

(IF (CAR (CDR V0))

(UNARY-AND (1- 1) (CDR (CDR V0)))

NIL))

NIL)))

(IMPLIES (IFF V2-P0 (EQUAL V1 V2))

V2-P0)).

The above formula is equivalent to the previous formula, by the definition of UNARY-AND.

Next, the basic simplification phase produces:
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(LET* ((V0 (IF A (CONS B (CONS C (CONS (F A) NIL)))

(CONS C (CONS B NIL))))

(V1 (IF B (IF C T NIL) NIL))

(V2 (IF (CAR V0)

(IF (CAR (CDR V0))

(UNARY-AND 0 (CDR (CDR V0)))

NIL)

NIL)))

(IMPLIES (IFF V2-P0 (EQUAL V1 V2))

V2-P0)),

which is equivalent to the previous formula by evaluation and the axioms of IF.

After another round of unrolling and basic simplification, the following formula is

produced:

(LET* ((V0 (IF A (CONS B (CONS C (CONS (F A) NIL)))

(CONS C (CONS B NIL))))

(V1 (IF B (IF C T NIL) NIL))

(V2 (IF (CAR V0) (IF (CAR (CDR V0)) T NIL) NIL)))

(IMPLIES (IFF V2-P0 (EQUAL V1 V2))

V2-P0)),

which is equivalent to the previous formula by the definition of UNARY-AND, evaluation, and

the axioms of IF.

Next, V2 is removed by substituting its body into the body of the LET*, leading to:
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(LET* ((V0 (IF A (CONS B (CONS C (CONS (F A) NIL)))

(CONS C (CONS B NIL))))

(V1 (IF B (IF C T NIL) NIL)))

(IMPLIES (IFF V2-P0 (EQUAL V1

(IF (CAR V0)

(IF (CAR (CDR V0)) T NIL)

NIL)))

V2-P0)).

Note that the definition of V2 in the LET* has been removed, and that the body of the LET*

is a SULFA nested IF term.

Normalization of the LET* body now occurs, using outside rewriting based on the

theorems in Figure 7.1:

(LET* ((V0 (IF A (CONS B (CONS C (CONS (F A) NIL)))

(CONS C (CONS B NIL))))

(V1 (IF B (IF C T NIL) NIL)))

(IMPLIES (IFF V2-P0 (IF (EQUAL NIL (CAR V0)) (EQUAL NIL V1)

(IF (EQUAL NIL (CAR (CDR V0)))

(EQUAL NIL V1)

(EQUAL T V1))))

V2-P0)),

which is equivalent to the previous formula, by the axioms of IF and EQUAL.

Next, variables are created for each SULFA Boolean predicate, which produces:
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(LET* ((V0 (IF A (CONS B (CONS C (CONS (F A) NIL)))

(CONS C (CONS B NIL))))

(V1 (IF B (IF C T NIL) NIL)))

(IMPLIES

(AND (IFF V0-P0 (EQUAL NIL (CAR V0)))

(IFF V0-P1 (EQUAL NIL (CAR (CDR V0))))

(IFF V1-P0 (EQUAL NIL V1))

(IFF V1-P1 (EQUAL T V1))

(IFF V2-P0 (IF V0-P0 V1-P0 (IF V0-P1 V1-P0 V1-P1))))

V2-P0)).

Next, the translation algorithm continues, with the current term equal to V1. Since

V1 contains no defined functions or inner-if terms, the translation proceeds directly to the

definition removal and normalization phase, which produces:

(LET* ((V0 (IF A (CONS B (CONS C (CONS (F A) NIL)))

(CONS C (CONS B NIL)))))

(IMPLIES

(AND (IFF B-P0 (EQUAL NIL B))

(IFF C-P0 (EQUAL NIL C))

(IFF V0-P0 (EQUAL NIL (CAR V0)))

(IFF V0-P1 (EQUAL NIL (CAR (CDR V0))))

(IFF V1-P0 (IF B-P0 T (IF C-P0 T NIL)))

(IFF V1-P1 (IF B-P0 NIL (IF C-P0 NIL T)))

(IFF V2-P0 (IF V0-P0 V1-P0 (IF V0-P1 V1-P0 V1-P1))))

V2-P0)).

The above formula is produces by substituting V1 into the terms for V1-P0 and V1-P1 and

then performing outside-in rewriting based on the theorems in Figure 7.1.
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Next, simplification continues on V0. The term (F A) is not expanded, since it is

irrelevant to the SULFA Boolean predicates involving V0. Instead, the translation proceeds

directly to the definition removal and normalization phase, which produces:

(IMPLIES

(AND

(IFF A-P0 (EQUAL NIL A))

(IFF B-P0 (EQUAL NIL B))

(IFF C-P0 (EQUAL NIL C))

(IFF V0-P0 (IF A-P0 C-P0 B-P0))

(IFF V0-P1 (IF A-P0 B-P0 C-P0))

(IFF V1-P0 (IF B-P0 T (IF C-P0 T NIL)))

(IFF V1-P1 (IF B-P0 NIL (IF C-P0 NIL T)))

(IFF V2-P0 (IF V0-P0 V1-P0 (IF V0-P1 V1-P0 V1-P1))))

V2-P0).

Note that the theorems in Figure 7.1 act here as a form of cone of influence reduction,

removing the unwanted application of F.

At this point, the remaining SULFA Boolean predicates are generalized by remov-

ing the hypotheses involving them. The theorems in Figure 7.2 are instantiated over the

generalized predicates, as needed. In this case, since the predicates are (EQUAL NIL A),

(EQUAL NIL B), and (EQUAL NIL C), no instantiation is necessary. Finally, the formula

is translated into CNF, using the algorithm described in Section 7.2. A SAT solver then

returns unsatisfiable, so uAndForm is valid.

Next, consider what happens if we attempt to prove the following formula:

(EQUAL (UNARY-AND 2 (IF A (CONS B (CONS C (CONS (F A) NIL)))

(CONS C (CONS B NIL))))

(IF B C NIL)).

134



The above formula is similar to uAndForm, but is not a theorem, because UNARY-AND al-

ways returns T or NIL, whereas (IF B C NIL) returns the value of C when B is non-NIL.

The translation process follows in a similar manner as previously, except that V1 is

given the value (IF B C NIL), instead of (IF B (IF C T NIL) NIL), which leads to

the following formula:

(IMPLIES

(AND

(IFF A-P0 (EQUAL NIL A))

(IFF B-P0 (EQUAL NIL B))

(IFF C-P0 (EQUAL NIL C))

(IFF C-P1 (EQUAL T C))

(IFF V0-P0 (IF A-P0 C-P0 B-P0))

(IFF V0-P1 (IF A-P0 B-P0 C-P0))

(IFF V1-P0 (IF B-P0 T C-P0))

(IFF V1-P1 (IF B-P0 NIL C-P1))

(IFF V2-P0 (IF V0-P0 V1-P0 (IF V0-P1 V1-P0 V1-P1))))

V2-P0).

Note that applying the rules in Figure 7.1 creates a test on (EQUAL T C), since V1-P1

is (EQUAL T V1). The SAT solver therefore returns the following satisfying instance:

(EQUAL NIL A) is false, (EQUAL NIL B) is false, (EQUAL NIL C) is false, and

(EQUAL T C) is false. This corresponds to the case where A is T, B is T, and C is 0, which

is a counterexample to the original formula.

7.6 Notes on Complexity and Efficiency

Our SAT-based SULFA procedure suffers from multiple exponential complexity issues.

SAT solving is itself an NP-Complete problem, thus the CNF formula may require ex-
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(DEFUN BAR (N X ANS)

(DECLARE (XARGS :MEASURE (NFIX N)))

(COND

((ZP N)

ANS)

(T

(OR (BAR (1- N) (CDR X) (OR (EQUAL (CAR X) 0) ANS))

(BAR (1- N) (CDR X) (OR (EQUAL (CAR X) 1) ANS))))))

(DEFUN BAR-BETTER (N X ANS)

(DECLARE (XARGS :MEASURE (NFIX N)))

(COND

((ZP N)

ANS)

(T

(BAR-BETTER (1- N)

(CDR X)

(OR (EQUAL (CAR X) 0)

(EQUAL (CAR X) 1)

ANS)))))

Figure 7.4: Two equivalent ACL2 definitions, which produce drastically different perfor-
mance when used in SULFA formulas. To unroll an application of BAR, with a first argu-
ment equal to the natural number N, BAR must be expanded 2N times. On the other hand,
BAR-BETTER, only needs to be expanded N times.

ponential time to solve. Furthermore, the complexity of unrolling can, in the worst case, be

as large as the highest complexity ACL2 function possible, since any ACL2 function could

be used to compute the ordinal that decreases during unrolling. Furthermore, our algorithm

that instantiates the theorems in Figure 7.2 produces an exponential number of hypotheses

in some cases.

In practice though, these exponential issues often can be avoided:

• SAT solvers, while exponential in the number of variables in the worst case, can

often solve problems arising from hardware verification containing tens of thousands
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of variables [90].

• Also, many interesting properties can be solved without exponential unrolling. Some-

times the definition of a function can be rewritten to keep the amount of unrolling

small. For example, properties involving the BAR-BETTER function in Figure 7.4

require significantly less unrolling than properties involving the equivalent function

BAR.

• Finally, large numbers of instantiations of the theorems in Figure 7.2 only result

when the transitivity theorem (theorem number 1) is instantiated. This theorem

is only instantiated though when multiple SULFA Boolean Predicates of the form

(EQUAL X Y) exist, where neither X nor Y are constant. Usually in our work, how-

ever, we use bit-vector equality rather than EQUAL, which does not result in such

SULFA Boolean Predicates.

7.7 Uninterpreted Functions

The SAT based proof procedure has been extended to include uninterpreted functions using

a mechanism similar to that described in Section 6.3. However, the current extension is a

prototype and not very efficient.

Note that the algorithm in Section 6.3 requires uninterpreted functions to be re-

moved inside-out. However, in order to support a cone of influence reduction, our proof

procedure presented in this chapter is primarily outside-in. The result is that as uninter-

preted functions are removed, previously removed definitions must be revisited.

Another problem is that, as mentioned in Section 7.6, our algorithm is inefficient

when the transitivity theorem in Figure 7.2 needs to be instantiated a lot. However, remov-

ing uninterpreted functions produces exactly the type of SULFA Boolean predicates that

lead to multiple instantiations of the transitivity theorem.

Chapter 13 presents some ideas on how uninterpreted functions may be handled
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efficiently.

7.8 Summary

This chapter presents a SAT-based proof procedure for SULFA formulas, with a number

of important optimizations. New variables are created to reduce the duplication of terms

during unrolling and normalization. Furthermore, an outside-in cone of influence reduction

is used to avoid reasoning about irrelevant parts of tree structures.

An implementation of the SAT-based procedure is distributed with the ACL2 the-

orem prover [37] and evidence of its efficiency can be found in later chapters. Chapter 8

uses the procedure, along with the ACL2 theorem prover, to verify a significant hardware

design. Furthermore, chapter 9 uses the procedure, along with the ACL2 theorem prover,

to implement a solver for a standard bit-vector theory and to verify a set of benchmark

problems in that theory.

The SAT-based proof procedure is the first publicly-available integration of an ex-

ternal proof engine, such as SAT solvers, with the ACL2 theorem prover. It also helped

guide the creation of the SixthSense integration with ACL2, described in Chapter 10, and

motivate ACL2’s new general-purpose extension mechanism for external tools, described in

Chapter 11. We believe the integration of general-purpose theorem provers, such as ACL2,

with other proof engines, such as external tools, BDD packages, model checkers, and reso-

lution provers, will greatly decrease the amount of human-effort required during large-scale

verification efforts.

7.9 Development and Bibliographic Notes

Proof techniques based on SAT solvers have been developed for various useful theories,

including the theories of linear arithmetic, arrays, and bit vectors. The ICS tool, which was

integrated with the PVS general-purpose theorem prover, contains a decision procedure for

138



tree structures [12]. ICS uses a lazy approach, based on incremental SAT solvers, whereas

SULFA uses an eager approach, making only a single call to a SAT solver. When full

translation to CNF can be performed efficiently, we believe an eager approach is more

effective. In particular, we believe a general-purpose bit-vector SMT solver, such as the

one described in Chapter 9, benefits from the eager approach, since bit-vector SMT solvers

traditionally use an eager approach.

ICS has recently been replaced with Yices [92]. Yices contains support for induc-

tive datatypes, a general-purpose mechanism capable of supporting tree structures. More

recently, CVC3 [85] has also added support for inductive datatypes. It is not clear, how-

ever, if the use of a more general datatype leads to a loss in performance or more spurious

counterexamples than result from a domain-specific approach.
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Chapter 8

The Verification of the TRIPS

Processor’s Data-Tile Protocol

Implementation

8.1 Introduction

One application of the SULFA subclass described in Chapter 5 and its SAT-based SULFA

solver described in Chapter 7 is to aid in the verification of ACL2 models of hardware de-

signs. This chapter applies the SAT-based SULFA solver to the verification of a component

of the TRIPS processor. The TRIPS processor is a prototype next-generation processor that

was designed and fabricated by the University of Texas and IBM [9, 73]. We applied our

technique to a unique component of the processor that implements a data tile protocol. The

data tile protocol is part of the TRIPS processor’s unique decentralized design, which is

intended to provide a complexity-effective way for increasing the capacity and bandwidth

of a processor’s memory system [79, 80].

Our approach involves the automatic extraction of an ACL2 model from the Verilog

design. The ACL2 model is then specified and verified using the ACL2 theorem prover. In-
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stead of verifying the design using the standard rewriting and induction approach, however,

we use rewriting and induction to reduce the proof that the ACL2 model satisfies its speci-

fication into a set of formulas that can be verified automatically by the SAT-based SULFA

solver. Through our approach, the full power of the ACL2 theorem prover is available, but

the SULFA solver provides an alternative that, when applicable, substantially decreases the

human effort required to complete ACL2 proofs.

This chapter first overviews the TRIPS processor in Section 8.2. Section 8.3 then

describes the data-tile communication protocol, which is necessary for speculative execu-

tion. Section 8.4 then describes our verification methodology, before applying it in Sec-

tions 8.5 and 8.6 to the verification of the data-tile protocol.

8.2 Overview of the TRIPS Processor

The TRIPS processor is a dual-core processor, with each core further divided into tiles as

shown in Figure 8.1 1. Different tiles, for the most part, only communicate with neighbor-

ing tiles, and only once per-cycle. The TRIPS processor contains sixteen execution tiles

(each marked as E), accessing four banks of registers (each marked as R), which allows

16 instructions to be potentially executed in parallel. Furthermore, memory is divided into

four partitions, each with its own instruction cache (marked as I) and data cache (marked as

D). A single global tile (marked as G) is used to coordinate actions that are universal to the

entire processor core.

The tile-based design methodology helps to address the latency (wire delays),

power, and complexity issues facing next-generation microprocessors. Latency issues are

addressed by localizing most computation within each tile. The power density can be re-

duced by spreading out the tiles on the chip. Complexity is reduced by reusing a single tile

design many times on a chip.

1This figure is copied from Burger et al. [9, 73].
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Figure 8.1: An overview of the design of a TRIPS processor core, which contains 16 exe-
cution tiles (each marked as E), four register tiles (each marked as R), four data tiles (each
marked as D), five instruction cache tiles (each marked as I), and a single global tile (G).
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8.3 Overview of the Data-Tile Protocol

The TRIPS processor executes up to 256 memory instructions speculatively. These 256 in-

structions are divided into eight instructions blocks, each containing 32 instructions. All 32

instructions in a given block are dispatched, committed, and flushed together, as managed

by the global tile.

As shown in Figure 8.1, the TRIPS processor core design contains four memory

partitions, which are part of its decentralized design for executing load and store instruc-

tions [79, 80]. While most data-tile functions can be performed locally, the data tiles must

communicate to accumulate two types of information needed for speculative execution:

1) which instruction blocks have caused exceptions and 2) which store instructions have

been (or have begun to be) executed.

Before going into more detail, we first introduce the following terminology:

• A data tile is said to be above another data tile if it is closer to the global tile, as

shown in Figure 8.1. The closest tile to the global tile is referred to as the top tile and

the furthest from the global tile is referred to as the bottom tile.

• We refer to the protocols used to accumulate exception and store information as the

exception protocol and the store protocol respectively. Together these two protocols

make up the data-tile protocol.

• The component of the data tile that implements the exception and store protocols is

called the Data Status Network (DSN).

An overview of the communication between the four data tiles is shown in Fig-

ure 8.2. Information about committed and flushed instruction blocks initiated from the

global tile are communicated to the top data tile as 8 bit flush and commit masks and are

then communicated downward each cycle (four cycles are required for the flush or commit

of an instruction block to affect the bottom tile). Two types of exceptions can occur; each
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Data Tile Communication Protocol

Right (from E Tile)
* Local exception (8 bits)
* Local store (9 bits)

Left (to E Tile)
* Arrived stores (256 bits)

Up (toward G Tile)
* Exception masks (16 bits)
* Arrived stores (27 bits)

Down (away from G Tile)
* Arrived stores (27 bits)

* Flushed blocks (32 bits)
* Committed blocks(32 bits)
* Arrived stores (1024 bits)

State (total)

* Flush mask (8 bits)
* Commit mask (8 bits)

D3

D2

D1

D0

* Exception masks (64 bits)

Figure 8.2: An overview of the communication between the four data tiles of the TRIPS
processor.
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of which are input to each data tile through a one bit enable and three bit instruction block

address (actually one of these exceptions is computed by the data tile, but for simplicity

we will consider it an input). Also, one store can occur within each memory partition each

cycle, and its arrival is announced to each data tile through a one bit enable and eight bit in-

struction address. The arrived stores are then output as a 256 bit mask to each execution tile

(to the left) and the exceptions are output as two 8 bit masks to the global tile (up above).

To create the exception output mask, the data tiles communicate all known excep-

tions in a mask sent upward each cycle. Thus, an exception occurring in the bottom tile

requires four cycles to be reported to the global tile, whereas an exception occurring in the

top tile requires only a single cycle to be reported. To create the mask of arrived stores,

the arrival of up to three stores are communicated upward and downward each cycle (this

is sent as a 27 bit signal including an enable bit and an eight bit address per store). A total

of 1152 bits of state are required to implement the protocol, including bits for each each

potentially arrived store (256 bits per tile), each possible exception (16 bits per tile), each

possible flushed block (8 bits per tile) and each committed instruction block (8 bits per tile).

8.4 Formal Verification Methodology

Figure 8.3 presents an overview of the hardware verification methodology we use to ver-

ify the data-tile protocol. We start with a Verilog design and an informal specification,

composed of documentation, models, and test suites. The Verilog design is translated au-

tomatically into a circuit description in the DE2 language, as described in Chapter 12. The

DE2 description is then automatically translated into an ACL2 finite state machine model.

A proof of equivalence between the ACL2 model and its DE2 description (relative to the

semantics of the DE2 language as encoded in ACL2) is also automatically generated and

checked with the ACL2 theorem prover. A formal specification is then written relative to

the ACL2 model and proven correct through a mixture of user-guided theorem proving and

the SAT-based SULFA solver described in Chapter 7.
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Figure 8.3: An overview of our verification methodology
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Safety-Theorem:
(τ ∈ N)→ P (Tth-state (τ, ι), nth (τ, ι))

follows from the following three finite-step theorems:

1. inv (S0)
2. inv (S )→ inv (step (S , I))
3. inv (S )→ P (S , I)

Figure 8.4: An outline of our basic strategy for verifying safety properties expressed as
ACL2 theorems. Note that all unbound variables, such as S and I in the second finite-step
theorem, are implicitly universally quantified over all ACL2 objects.

8.4.1 Verification of Safety Properties

The ACL2 machine model consists of an initial state, S0; a step function step (S , I), which

maps the machine state S at the beginning of a cycle and its inputs I during the cycle to the

machine state at the beginning of the following cycle; and functions that return each output

of the machine, given its current state and inputs. Thus, the state at clock cycle τ, given a

sequence of machine inputs ι, is defined as:

Tth-state (τ, ι)

,  S0, if zp (τ)

step (Tth-state (τ − 1, ι), nth (τ, ι)), otherwise.

A safety property is a predicate on the state of the machine Tth-state (τ, ι) that is

true for all time τ and any machine input sequence ι. The basic strategy for verifying safety

properties is shown in Figure 8.4. Note that the function nth (n, x) returns the nth element of

the list x. A machine input sequence ι is represented as a list, so that nth (τ, ι) is the machine

inputs at time τ.

The proof of safety properties shown in Figure 8.4 essentially strengthens the target

safety property into an inductive invariant, which then follows from three single-step prop-

erties. First, the inductive invariant is shown to be true of the initial state. Then, it is shown
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Augmented-Safety-Theorem:
(τ ∈ N) ∧ var (v) ∧ Tth-inp (τ, ι)→ P (v,Tth-state (τ, ι), nth (τ, ι))

follows from the following three finite-step theorems:

1. var (v)→ inv (v,S0)
2. var (v) ∧ inp (S , I) ∧ inv (v, S )→ inv (v, step (S , I))
3. var (v) ∧ inp (S , I) ∧ inv (v, S )→ P (v, S , I)

Figure 8.5: An augmentation of the basic strategy shown in Figure 8.4 for proving safety
properties. The augmented strategy includes an additional variable v and predicates var (v),
inp (S , I), and Tth-inp (τ, ι).

to be inductive, i.e., its truth at a state S implies its truth at the next state step (S , I). Finally,

it is shown to be a generalization of the intended safety property.

The composition of the finite step theorems in Figure 8.4 into the safety theorem is

verified by a straightforward ACL2 proof by induction on τ. Furthermore, given a specific

finite state machine model, each of the finite-step properties can be automatically trans-

formed into SULFA formulas. In theory, any SULFA formula can be proven or disproven

through the decision procedure in Chapter 5, and in practice many significant formulas can

be proven or disproven entirely automatically using the SAT-based SULFA solver described

in Chapter 7.

An augmentation of the basic safety property strategy is shown in Figure 8.5. The

augmented strategy reduces a safety property into three finite step properties reducible to

SULFA formulas, but includes additional variables and predicates. The property P may

include an extra variable v, which is restricted into a finite domain by the predicate var (v).

Furthermore, the predicate Tth-inp (τ, ι) is used to encode assumptions necessary on the

machine inputs. This function is defined as:
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Tth-inp (τ, ι)

, 
false, if ¬inp (S τ, Iτ)

true, if zp (τ)

Tth-inp (τ − 1, ι), otherwise.

where the predicate inp (S , I) returns whether the machine inputs I satisfy all the input

assumptions required by inputs occurring in a cycle that begins with the machine state S ,

S τ = Tth-state (τ, ι) is the state at the beginning of cycle number τ, and Iτ = nth (τ, ι) is the

input during cycle number τ.

The augmented strategy is not strictly necessary for verifying safety properties.

Since v is restricted to a finite domain, any property verified by the augmented strategy

in Figure 8.5 can be reduced to a finite number of safety properties without v. Furthermore,

by adding an extra bit to the machine state, the input assumptions Tth-inp can be encoded

into the basic strategy.

The advantage of the augmented strategy is that it often leads to a more compact

specification and proof. For example, in Section 8.5.2 the exception type is encoded in the

variable v, allowing a single specification and proof to be used for two types of exceptions.

Furthermore, by encoding the input assumptions in Tth-inp , no input assumptions need to

be encoded into the invariant.

8.4.2 Verification of Liveness Properties

To verify the data-tile protocol, only a restricted form of liveness property is required. Using

the same ACL2 model as used for safety properties, each liveness property can be expressed

in the form of Liveness-Theorem in Figure 8.6. The restricted liveness theorem states that

if some property P holds of the machine at time τ then eventually there will be a time τ′ at

which Q holds.

Our basic strategy for verifying liveness properties is shown in Figure 8.6. The
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Liveness-Theorem :
(τ ∈ N) ∧ P (v,Tth-state (τ, ι), nth (τ, ι))
→

(∃τ′ : (τ′ ∈ N) ∧ (τ < τ′)→ Q (v,Tth-state (τ′, ι), nth (τ′, ι)))

follows from the following five finite-step theorems:

1. inv (S 0)
2. inv (S )→ inv (step (S , I))
3. inv (step (S , I)) ∧ P (S , I) ∧ ¬Q (S , I)→ bnd (b0, step (S , I))
4. (b ∈ N) ∧ (0 ≤ b < b0) ∧ bnd (b + 1, S ) ∧ ¬Q (S , I)→ bnd (b, step (S , I))
5. bnd (0, step (S , I))→ Q (S , I)

Figure 8.6: An outline of our basic strategy for verifying a type of liveness properties
expressed as ACL2 theorems.

Augmented-Liveness-Theorem :
(τ ∈ N) ∧ var (v) ∧ P (v,Tth-state (τ, ι), nth (τ, ι))
→

(∃τ′ : (τ′ ∈ N) ∧ (τ < τ′) ∧ (Tth-inp (τ′, ι)→ Q (v,Tth-state (τ′, ι), nth (τ′, ι)))

follows from the following five finite-step theorems:

1. var (v)→ inv (v, S 0)
2. var (v) ∧ inp (S , I) ∧ inv (v, S )→ inv (v, step (S , I))
3. var (v) ∧ inp (S , I) ∧ inv (v, step (S , I)) ∧ P (v, S , I) ∧ ¬Q (v, S , I)
→

bnd (v, b0, step (S , I))
4. (b ∈ N) ∧ (0 ≤ b < b0) ∧ var (v) ∧ inp (S , I) ∧ bnd (v, b + 1, S ) ∧ ¬Q (v, S , I)
→

bnd (v, b, step (S , I))
5. var (v) ∧ inp (S , I) ∧ bnd (v, 0, step (S , I))→ Q (v, S , I)

Figure 8.7: An augmentation of the basic strategy shown in Figure 8.6 for proving live-
ness properties. As in the augmented safety strategy, the augmented strategy includes an
additional variable v and predicates var (v), inp (S , I) and Tth-inp (τ, ι).
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liveness theorem is proven by defining an inductive invariant inv (S ) and a bound predicate

bnd (b, S ) satisfying the five finite-step theorems. The first two of the finite-step theorems

show that inv (S ) is an inductive invariant of the machine. The next three use the invariant

to prove that P implies a bound b0 on the number of cycles until Q holds.

Our basic strategy for verifying liveness properties is augmented in the same way

as our safety property strategy is. The augmented strategy, with an additional variable v

predicates var (v), inp (S , I) and Tth-valid-ins (τ, ι), is shown in Figure 8.7.

Using the ACL2 theorem prover, we have proven, by induction on τ and τ′, that

Augmented-Liveness-Theorem follows from the five finite-step theorems in Figure 8.7. Fur-

thermore, if b0 is a constant, as it is in the data-tile protocol, then for any specific finite

state machine each of the five finite-step theorems in Figure 8.7 can be written as SULFA

formulas.

8.5 Verification of the Exception Protocol

As described in Section 8.3, the exception protocol accumulates exceptions detected the

the execution and data tiles. The formal specification of the protocol is a correspondence

between the four DSN components and a single specification machine, shown in Figure 8.8.

The specification machine outputs an exception mask that reports all exceptions that have

occurred in all tiles (that have not yet been flushed), whereas the top DSN requires up to

four cycles to report (to the global tile) an exception.

The specification is that if the top tile reports an exception, then that exception

is also reported by the specification machine; and if the specification machine outputs an

exception, then eventually either a flush will occur or the top tile will also report that ex-

ception. This is written in temporal logic as the following two properties:
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Up (to G Tile)
* Exception masks (16 bits)

Down (from G Tile)
* Flush mask (8 bits)

Right (from E Tiles)

State

* Exceptions (16 bits)

* Recent Flushes (24 bits)

* Local exception (32 bits)

Exception

Protocol

Spec

Exception Protocol Specification Machine

Figure 8.8: A high-level overview of the specification machine for the exception protocol.

Exception-Safety:

�(dsn-ebit (type, x, 0)→ spec-ebit (type, x)).

Exception-Liveness:

�(spec-ebit (type, x)→ ^(flush (x) ∨ dsn-ebit (type, x, 0))).

where

• x is implicitly universally quantified over natural numbers from 0 to 7 inclusive.

• type is implicitly universally quantified over the set of exception types, {miss, exec}.

• dsn-ebit (type, x, n) is a predicate returning whether tile n of the DSN is reporting an

exception of type type in instruction block x.

• spec-ebit (type, x) is a predicate returning whether the specification machine is re-

porting an exception of type type in instruction block x.

• flush (x) is a predicate returning whether the instruction block x is currently being

flushed (in tile 0).
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The following assumptions are also made about the inputs the exception protocol:

• No Resets. The DSN contains a reset input, which resets most of its registers. In our

verification effort, however, we assume that the reset signal is off.

• Properly Connected Wiring. The predicate dsn-ebit (type, x, n) implements the four

DSNs as completely independent and unconnected, without the wiring shown in Fig-

ure 8.2. Instead, part of the input assumption is that the four DSN tiles are related in

the same way as if they were connected as shown in Figure 8.2.

• No Exception After Flush. We also assume that no exception occurs in the cycle

after a flush. This assumption is reasonable since exceptions are caused by executing

instructions and multiple cycles must occur before a new block of instructions can be

executed.

8.5.1 ACL2 Model of the Exception Protocol

The implementation of the exception protocol, its single-tile specification machine, and its

input assumptions are modeled in ACL2 as an initial state constant, a step function, an

input assumption predicate, and a function for each output. As in Section 8.4, given a cycle

number τ and an input sequence ι, we refer to Tth-state (τ, ι) as the state at time τ and

Tth-inp (τ, ι) as whether the input assumptions are met for all inputs in the sequence ι up to

and including those during the cycle numbered τ. The following are the output functions

and state accessor functions used in the following sections:

• dsn-ebit (type, x, n, S , I) is the predicate returning whether an exception in instruction

block x of type type is being reported by the DSN at tile n, given state S and machine

inputs I.

• st-dsn-ebit (type, x, n, S ) is the predicate returning whether an exception of type type

in instruction block x is currently being stored in tile n of the DSN, i.e., it was reported

by tile n of the DSN in the previous cycle.
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• spec-ebit (type, x, S , I) is the predicate returning whether an exception in instruction

block x of type type is being reported by the single tile specification machine, given

state S and machine inputs I.

• st-spec-ebit (type, x, S ) is the predicate returning whether an exception of type type

in instruction block x is currently being stored in the single-tile specification machine,

i.e., it was reported by the specification machine in the previous cycle.

• flush (x, I) is the predicate returning whether the machine inputs I contains a flush of

instruction block x (at tile 0).

• st-flush (x, n, S ) is the predicate returning whether a flush of instruction block x oc-

curred at tile n of the DSN in the previous cycle.

• st-will-flush (x, n, S ) is the predicate returning whether a flush of instruction block x

has occurred in one of the blocks above n in the previous cycle. Thus, a flush of x is

“on its way” to tile n.

8.5.2 Proof of Exception-Safety

The Exception-Safety property can be translated into the following ACL2 property (note

that Iτ and S τ are abbreviations for terms, not universally quantified free variables like τ, ι,

x, and type):

DSN-Exception-Safety:

(x ∈ N) ∧ (x < 8) ∧ (τ ∈ N) ∧ (type ∈ {miss, exec})

∧ Tth-inp (τ, ι) ∧ dsn-ebit (type, x, 0, S τ, Iτ)

→

spec-ebit (type, x, S τ, Iτ)

where S τ = Tth-state (τ, ι) is the state of the machine after τ clock cycles and Iτ = nth (τ, ι)

is the input to the machine during clock cycle τ.
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var (v) , (vx ∈ N) ∧ (vx < 8) ∧ (vtype ∈ {miss, exec})

P (v, S , I) , dsn-ebit (vtype, vx, 0, S , I)→ spec-ebit (vtype, vx, S , I)

inv (v, S )
,

(∀n ∈ N, n < 4 :
¬st-will-flush (vx, n, S ) ∧ st-dsn-ebit (vtype, vx, n, S )
→

st-spec-ebit (vtype, vx, S ))

Figure 8.9: The definitions of the var (v), P (v, S , I), and inv (v, S ) functions needed to verify
the safety property of the exception protocol using the strategy illustrated in Figure 8.5.
Note that v represents the pair [vx, vtype]. Thus, vx and vtype are abbreviations for the first
and second element of v respectively.

The DSN-Exception-Safety property is verified using the strategy shown in Fig-

ure 8.5 with the definitions shown in Figure 8.9. Intuitively, the inductive invariant is that

either a previous input was invalid or every exception of type type in instruction block x

in the DSN is also in the specification machine. Each of the three properties in Figure 8.5

is verified entirely automatically through the SAT-based SULFA solver described in Chap-

ter 7. They are then composed using the ACL2 theorem prover.

8.5.3 Proof of Exception-Liveness

The Exception-Liveness property can be translated into the ACL2 logic as the following

first-order property (note that S τ and Iτ are abbreviations for terms):

DSN-Exception-Liveness:

(x ∈ N) ∧ (x < 8) ∧ (τ ∈ N) ∧ (type ∈ {miss, exec}) ∧ spec-ebit (type, x, S τ, Iτ)

→

(∃τ′ : (τ′ ∈ N) ∧ (τ < τ′)∧

(Tth-inp (τ, ι)→ flush (x, Iτ) ∨ dsn-ebit (type, x, 0, S τ, Iτ)))
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var (v) , (vx ∈ N) ∧ (vx < 8) ∧ (vtype ∈ {miss, exec})

P (v, S , I) , spec-ebit (vtype, vx, S , I)

Q (v, S , I) , flush (vx, I) ∨ dsn-ebit (vtype, vx, 0, S , I)

inv (v, S ) , st-spec-ebit (vtype, vx, S )→ bnd (v, 3, S )

bnd (v, b, S )
, {

bnd1 (v, 0, S ), if zp (b)
bnd1 (v, b, S ) ∨ bnd (v, b − 1, S ), otherwise.

where

bnd1 (v, b, S )
,
¬st-will-flush (vx, b, S ) ∧ ¬st-flush (vx, 0, S ) ∧ st-dsn-ebit (vtype, vx, b, S )

Figure 8.10: The definitions of the var (v), P (v, S , I), Q (v, S , I) and inv (v, S ) functions
needed to verify the liveness property of the exception protocol using the strategy illustrated
in Figure 8.7. Note that v represents the pair [vx, vtype]. Thus, vx and vtype are abbreviations
for the first and second element of v respectively.

where S τ = Tth-state (τ, ι) is the state of the machine at the beginning of clock cycle τ and

Iτ = nth (τ, ι) is the input during clock cycle τ.

The DSN-Exception-Liveness theorem is proven using the strategy for liveness

properties shown in Figure 8.7, given the definitions shown in Figure 8.10. The bound

function, bnd (v, b, S ), returns whether an exception of the type and instruction block de-

noted by v is being stored in one of the top b tiles. Therefore, unless a flush occurs, the

exception will be reported by the top tile within b cycles. The inductive invariant, inv (v, S ),

is equivalent to the statement that if an exception is being stored in the specification ma-

chine, then it is also stored somewhere in the actual machine.

Given the definitions in Figure 8.10, each of the five properties in Figure 8.7 is

proven entirely automatically by using our SAT-based SULFA solver from Chapter 7.
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* Local stores (36 bits)

Right (from E Tiles)

* Arrived stores (256 bits)

Down (from G Tile)
* Flush mask (8 bits)
* Commit mask (8 bits)

State
* Arrived stores (256 bits)
* Recent Flushes (24 bits)

Left (to E Tiles)

Figure 8.11: A high-level overview of the specification machine for the store protocol.

8.6 Verification of the Store Protocol

As described in Section 8.3, the store protocol accumulates information regarding which

store instructions have arrived. The formal specification of the protocol is a correspon-

dence between the four DSN components and a single specification machine, shown in

Figure 8.11. The specification machine outputs a store mask that reports all stores that have

occurred in all tiles (that have not yet been flushed), whereas a DSN component may require

up to four cycles to report that a give store has arrived.

The specification of the store protocol is a correspondence between the four tile

DSN and the single tile specification machine, expressed as the following temporal logic

properties:

Store-Safety:

�(dsn-sbit (x, n) ∧ ¬will-flush (b x
32c, n) ∧ ¬will-commit (b x

32c, n)→ spec-sbit (x))

Store-Liveness:

�(spec-sbit (x)→ ^(flush (b x
32c) ∨ commit (b x

32c) ∨ dsn-sbit (x, n)))
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where

• x, which represents the instruction address of a store, is implicitly universally quan-

tified over natural numbers from 0 to 255 inclusive.

• n, which represents a tile number, is implicitly universally quantified over natural

numbers from 0 to 3 inclusive.

• dsn-sbit (type, x, n) is the predicate returning whether tile n of the DSN is reporting

that instruction x is an executed store instruction.

• spec-sbit (x) is the predicate returning whether the specification machine is reporting

that the store x has been executed.

• flush (x) is the predicate returning whether the instruction block x is currently being

flushed (in tile 0).

• will-flush (y, n) is the predicate returning whether a flush of instruction block y is

occurring in a tile above tile n (i.e., it’s on its way to tile n).

• commit (x) is the predicate returning whether the instruction block x is currently be-

ing committed (in tile 0).

• will-commit (y, n) is the predicate returning whether a commit of instruction block y

is occurring in a tile above tile n

Intuitively, the safety property is that if any tile of the DSN illustrated in Figure 8.2

reports that a store has arrived (and its not about to be removed), then the specification

machine illustrated in Figure 8.11 must also report that the store has arrived. The liveness

property is that if the specification machine reports a store as having arrived, then each tile

of the DSN eventually reports that the store has arrived (or the store is removed from the

specification machine).

The following assumptions are also made about the inputs to the store protocol:

158



• No Store Arrives Twice. If a store is being reported by the specification machine,

then no DSN input can state that it has again been executed. This is justified since

if a store has been executed once, it cannot be executed again without a commit or a

flush.

• No Early Commits. A commit of an instruction block cannot occur unless all stores

reported by the specification machine have also been reported by the top tile of the

DSN. This assumption is justified because the global tile will not send a commit until

the top tile has reported that all stores in the instruction block have arrived.

Similarly, no local store can arrive in an instruction block that has begun to be com-

mitted. For example, if tile 0 has committed instruction block 0, then no store can

arrive in block 0 of tile 3 until after tile 3 has also committed it.

• No Store After Flush. We also assume that no store occurs in the cycle after a flush.

This assumption is reasonable since multiple cycles must occur between the flush of

an instruction block and when the first instruction is executed.

• No Resets. The DSN contains a reset input, which resets most of its registers. In our

verification effort, however, we assume that the reset signal is off.

• Properly Connected Wiring. Our DSN machine is actually implemented as four

DSN tiles, without the wiring shown in Figure 8.2. Instead, part of the input assump-

tion is that the four DSN tiles are related in the same way as if they were connected

as shown in Figure 8.2.

8.6.1 ACL2 Model of the Store Protocol

The implementation of the store protocol, its single-tile specification machine, and its input

assumptions are modeled in ACL2 as an initial state constant, a step function, an input

assumption predicate, and a function for each output. To coincide with the strategy outlined

in Section 8.4, given a cycle number τ and an input sequence ι, we refer to Tth-state (τ, ι) as
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the state at time τ and Tth-inp (τ, ι) as whether the input assumptions are met for all inputs

in the sequence ι up to and including those during the cycle numbered τ. The following are

the output functions and state accessor functions used in the following sections:

• dsn-sbit (x, n, S , I) is the predicate returning whether tile n of the DSN is reporting

that a store at instruction address x has been executed, given state S and machine

inputs I.

• st-dsn-sbit (x, n, S ) is the predicate returning whether the state of tile n of the DSN

includes the knowledge that a store at instruction address x has been executed, i.e., it

was reported by tile n of the DSN in the previous cycle.

• spec-sbit (x, S , I) is the predicate returning whether a store at instruction address x

is being reported by the single tile specification machine, given state S and machine

inputs I.

• st-spec-sbit (x, S ) is the predicate returning whether the state of the single tile speci-

fication machine includes the knowledge that a store at instruction address x has been

executed, i.e., it was reported by the specification machine in the previous cycle.

• flush (y, I) is the predicate returning whether the machine inputs I contains a flush of

instruction block y (at tile 0).

• st-flush (y, n, S ) is the predicate returning whether a flush of instruction block y oc-

curred at tile n of the DSN in the previous cycle.

• st-will-flush (y, n, S ) is the predicate returning whether a flush of instruction block y

is occurring in one of the blocks above n in the previous cycle. Thus, a flush of y is

on its way to tile n.

• commit (y, I) is the predicate returning whether the machine inputs I contains a com-

mit of instruction block y (at tile 0).
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• st-will-commit (y, n, S ) is the predicate returning whether a commit of instruction

block y is occurring in one of the blocks above n in the previous cycle. Thus, a

commit of y is on its way to tile n.

8.6.2 Proof of Store-Safety

The Store-Safety property can be translated into the ACL2 logic as the following first order

property (note that Iτ and S τ are abbreviations for terms, not universally quantified free

variables):

DSN-Store-Safety:

(x ∈ N) ∧ (x < 256) ∧ (τ ∈ N) ∧ (n ∈ N) ∧ (n < 4)

∧ Tth-inp (τ, ι) ∧ dsn-sbit (x, n, S τ, Iτ)

∧ ¬st-will-flush (b x
32c, n, S τ) ∧ ¬st-will-commit (b x

32c, n, S τ)

→

spec-sbit (x, n, S τ, Iτ)

where S τ = Tth-state (τ, ι) is the state of the machine after τ clock cycles and Iτ = nth (τ, ι)

is the input to the machine during clock cycle τ.

The DSN-Store-Safety property is verified using the strategy shown in Figure 8.5

with the definitions outlined in Figure 8.12. Without going into too much detail, the invari-

ant is a conjunction of the following:

1. The safety property. The first clause in the conjunction is just a rewriting of the

store protocol safety property into a predicate on state.

2. Each store in the channels is in the specification. All stores in communication

channels must also be reported as arrived by the specification machine. This is nec-

essary since such stores are about to be reported by the tile receiving the communi-

cation.
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var (v) , (vx ∈ N) ∧ (vx < 256) ∧ (n ∈ N) ∧ (n < 4)

P (v, S , I) , dsn-sbit (vx, n, S , I)→ spec-sbit (vx, S , I)

inv (v, S )
,

(∀n′ ∈ N, n′ < 4 :
¬st-will-commit (b vx

32c, n
′, S ) ∧ ¬st-will-flush (b vx

32c, n
′, S )

∧ (st-dsn-sbit (vx, n′, S ) ∨ in-channel (vx, n′, S ))
→

st-spec-sbit (vx, S ))
∧

in-channel-implies-in-spec (vx, S )
∧

no-committed-stores-in-up-channel (vx, S )
∧

in-up-channel-implies-not-above (vx, S )

Figure 8.12: An outline of the definitions needed to verify the store protocol safety property
using the strategy illustrated in Figure 8.5. Note that v represents the pair [vx, vtype]. Thus,
vx and vtype are abbreviations for the first and second element of v respectively.
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3. No committed stores are communicated upward. If stores in an instruction block

are in the process of being communicated to the top tile, then the instruction block

cannot be committed because the top tile could not have detected that all stores in

the block have been executed. This invariant is needed because, unlike with a flushed

store, the protocol design contains no extra logic to ensure that a committed store

being communicated upwards is properly removed.

4. If a store is being communicated upward, then it is not already known in the tiles

above. If a store is in one of the upward communication channels, then, since no store

can arrive twice, it cannot be in any of the upward communication channels in the

tiles above or in the arrived mask of the top tile. This clause is required, since our

input assumptions regarding committing and duplicate stores do not directly involve

the communication channels and therefore cannot alone imply that no committed

stores are in the upward communication channels.

Given the above invariant, each of the three properties in Figure 8.5 can be veri-

fied through a mixture of user-guided theorem proving and the SAT-based SULFA solver

described in Chapter 7. Only a small amount of user guidance and theorem proving is nec-

essary, because each of the three properties in Figure 8.5 can be proven automatically by

the SAT-based SULFA solver for any given store x. Thus, the proofs of the three proper-

ties involve a case split on the 256 possible stores, followed by 256 calls to the SAT-based

SULFA solver.

8.6.3 Proof of Store-Liveness

The store protocol liveness property can be translated into the ACL2 logic as the following

first-order property (note that S τ, Iτ, and Iτ+1, are abbreviations for terms):
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var (v) , (vx ∈ N) ∧ (vx < 256) ∧ (n ∈ N) ∧ (n < 4)

P (v, S , I) , spec-sbit (vx, step (S , I), I′)

Q (v, S , I) , flush (vx, I) ∨ dsn-sbit (vx, n, step (S , I), I′)

inv (v, S ) , bnd-live-inv (vx, S ) ∧ (st-spec-sbit (vx, S )→ within (vx, n, b, S ))

bnd (v, b, S ) , bnd-live-inv (vx, S ) ∧ within (v, b, S )

Figure 8.13: An outline of the definitions needed to verify the store protocol safety property
using the strategy illustrated in Figure 8.7. Note that v represents the pair [vx, vtype]. Thus,
vx and vtype are abbreviations for the first and second element of v and respectively.

DSN-Store-Liveness:

(x ∈ N)∧ (x < 256)∧ (τ ∈ N)∧ (n ∈ N)∧ (n < 4)∧spec-sbit (x, step (S τ, Iτ), Iτ+1)

→

(∃τ′ : (τ′ ∈ N) ∧ (τ < τ′)∧

(Tth-inp (τ + 1, ι)→ flush (b x
32c, Iτ) ∨ dsn-sbit (x, n, step (S τ, Iτ), Iτ+1)))

where S τ = Tth-state (τ, ι) is the state of the machine at the beginning of clock cycle τ and

Iτ = nth (τ, ι) is the input during clock cycle τ. The reason for using both Iτ and Iτ+1 is that

the store mask is the output of a register, which is affected only by inputs in the previous

cycle, as shown in Figure 8.11. Thus, a flush of instruction block y in inputs Iτ does not

affect dsn-sbit (x, n, S τ, Iτ), but may affect dsn-sbit (x, n, step (S τ, Iτ), Iτ+1).

Figure 8.13 outlines the functions that map our liveness proof strategy, from Fig-

ure 8.7, to a proof of the DSN-Store-Liveness theorem. The function within (x, n, b, S ) is

defined, roughly, as the predicate returning whether x has either arrived at tile n or is in

one of the communication channels headed towards n and within b tiles of n. The predicate

bnd-live-inv (x, S ) is an inductive invariant stating that if x is being flushed in some tile n,

then x is not in the communication channel going from tile n − 1 to n. This is necessary

since within (x, n, 1, S ) is true if a store is in the channel from n − 1 to n; however, such a

store would be removed if it came the cycle after a flush.
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The liveness proof strategy in Figure 8.7 thus reduces DSN-Store-Liveness into five

finite-step properties. As with DSN-Store-Safety, the ACL2 theorem prover is used to split

each of the five finite-step properties into 256 possible values of x. Then, each property

is proven for that specific value of x automatically, by using the SAT-based SULFA solver

described in Chapter 7.

8.7 Analysis

The formal verification of the exception and store protocols found no bugs in the protocol

designs or their implementation. The verification effort, however, provides a higher degree

of assurance than would be possible with simulation. We believe that all bugs found by

simulation would have also been found by formal verification and that formal verification

also rules out any hidden corner cases. For example, the initial software model of the DSN

removed only exceptions and stores flushed in the current cycle, not those flushed in the

previous cycle. This leads to a bug when a flush occurs while an exception or store is being

communicated upward. This case was only found after considerable testing of the software

model. However, given a circuit containing this bug, the SAT-based SULFA solver produces

a counterexample when attempting to prove the safety invariant.

Furthermore, formal verification of the DSN clarifies its input assumptions, which

is helpful for designing other blocks. For example, it was believed before this verification

effort began that the DSN required that no stores arrive for three cycles after an instruction

block is committed (in tile 0). However, no such input assumption is required. Now that all

input assumptions are clearly specified, units that interact with the DSN can be developed

for maximum efficiency without any fear of violating subtle correctness assumptions.

We believe that the SAT-based SULFA solver from Chapter 7 greatly reduced the

amount of human effort required to verify the exception and store protocols using ACL2.

Without the SAT-based SULFA solver, a significant amount of user guidance would be

required to prove each of the finite step properties that were proven automatically by the
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SAT-based SULFA solver. Some evidence of this is provided by our initial proof of the

liveness of the store protocol, which was proven using an earlier and less efficient SAT-

based SULFA solver and before we learned to case-split on the store address to reduce the

state space. While still making some use of the SAT-based SULFA solver, our early effort

required 152 definitions and lemmas, along with weeks of human effort to create. The

current proof is far simpler, requiring only 21 definitions and lemmas to prove the same

property.

The greatest decrease in human effort comes from the generation of counterexam-

ples to failed proofs. Almost all of the inductive invariants and bound functions described

in this chapter were initially incorrect and had to be debugged by counterexamples and

failed proofs. Furthermore, over ten bugs in the initial specification—the input assump-

tions, top-level DSN output functions, and single tile model—were discovered. Using the

ACL2 theorem prover alone, each of these bugs in the specification and proof would have

been discovered only after careful inspection of failed proofs. The SULFA solver from

Chapter 7, however, produces a mapping from variables to values under which an invalid

formula evaluates to false. We believe this is usually far easier to understand than the output

of a failed proof. A counterexample tells the user immediately that the formula is invalid,

not just that it could not be proven. Plus, the Lisp interpreter and its debugging mechanisms

(such as trace) provide a reasonable environment for determining the underlying causes

behind each counterexample.

The fully-automatic verification of SULFA formulas promotes reusability. The user

guidance within theorem proving is often specific to the internals of a specific design. Sim-

ilarly, simulation often requires illustrative test suites designed with knowledge of the de-

sign’s internals. Formal verification, when making use of fully-automated techniques, how-

ever, requires no knowledge of the design’s internals. Thus, hard to follow low-level opti-

mizations can be attempted late in the design process. If the formal verification succeeds

when rerun, then the optimizations can be trusted.
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8.8 Summary

The SAT-based procedure for SULFA formulas described in Chapter 7 has been applied

to the formal verification of components of the TRIPS processor. Both safety and live-

ness properties were proven about models extracted automatically from the actual Verilog

implementations.

The component verified is a novel component of the TRIPS processor, a protocol

required to implement its decentralized memory system. The decentralized memory system

is part of the TRIPS processor’s unique EDGE architecture, which provides the opportunity

to increase thread-level and data-level parallelism within a single processor design.

Our approach uses the theorem prover to reduce safety and liveness properties of

hardware designs into finite step problems in the SULFA decidable subclass. The full power

of the ACL2 theorem prover then remains available at all times, but automatic approaches

are also applicable. During the verification of the exception and store protocols we feel

that we were able to prove many formulas fully automatically that would otherwise have

required significant further guidance. Our approach speeds up debugging of failed proofs by

providing counterexamples to invalid theorems, and promotes reusability by avoiding the

need to consider many internal design details. We feel that the SAT-based procedure from

Chapter 7 can substantially reduce the human guidance required by hardware verification

efforts with the ACL2 theorem prover.

8.9 Development and Bibliographic Notes

The EDGE architecture and the TRIPS processor were developed through a joint effort

between many researchers at the University of Texas [9, 73]. The data tile of the TRIPS

processor, including its communications protocols was primarily designed by Simha Sethu-

madhavan. I wrote the initial Verilog implementation of the DSN component of the data

tile.
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ACL2 and its predecessor Boyer-Moore theorem provers have been used exten-

sively for hardware verification. A simple pipelined processor, the FM8501, was proven to

satisfy its ISA specification by Hunt in 1985 [27]. A more complex model of an out-of-order

pipelined processor, the FM9801, was verified in 1998 [75]. At AMD, the floating-point

unit on the AMDK586 and the floating-point unit on the AthlonTMK7 were verified with

ACL2 [54, 72]. Also, the implementation of Rockwell Collin’s AAMP7 separation kernel,

the unit that keeps critical and non-critical processes from interfering with each other, was

verified with ACL2 [21]. The AAMP7 processor is an industrial processor used for safety-

critical applications. To our knowledge, however, none of the above efforts make extensive

use of fully-automated techniques.

Outside the ACL2 community, there has been considerable interest in applying a

combination of theorem proving and model checking to verify significant hardware systems.

At Intel, the FORTE verification tool has been used to verify the floating-point unit of

the Pentium R© 4 as well as other components, such as the branch-target buffer and the

instruction-length decoder [1, 78]. FORTE uses a fully-automated technique, STE, to verify

finite-step properties, along with a lightweight HOL theorem prover to compose them.

The SMV model checker includes some compositional theorem proving capabilities

[49], which has been used successfully to verify significant hardware designs, such as the

cache coherence protocol on the FLASH processor [50] and to verify an implementation of

Tomasulo’s out-of-order scheduling algorithm [48].

The entire implementation of the VAMP processor, an out-of-order pipelined pro-

cessor, has also recently been verified using the PVS theorem prover [6]. To our knowledge,

however, no inter-tile communication protocol, like the one described in this chapter, has

ever been formally verified previously.

One ACL2 verification effort that did make extensive use of fully-automated tech-

niques, was the verification of an out-of-order, pipelined processor model by Manolios and

Srinivasan using ACL2 and UCLID [44]. This effort differs from our own in a number
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of substantial ways. While Manolios and Srinivasan verified a much larger portion of the

processor design, the processor they verified is not nearly as novel or complex as that of

the TRIPS processor. Also, the type of properties verifiable by their technique differs from

SULFA in interesting ways. SULFA includes ACL2 formulas unrollable into a restricted

set of ACL2 primitives, where variables are unified over the full domain of ACL2 objects.

The UCLID integration proves ACL2 formulas unrollable into a set of defined ACL2 func-

tions that are equivalent UCLID primitives, where variables must be restricted into either

the boolean or integer domains recognized by UCLID.
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Chapter 9

The SULFA SMT Solver

9.1 Introduction

A Satisfiability Modulo Theory (SMT) is a standard theory for which fully-automated pro-

cedures exist to determine whether formulas are satisfiable. Developing and standardizing

SMT theories is an active area of interest in the verification research community. Stan-

dard SMT theories have been developed for theories including linear arithmetic, arrays,

uninterpreted functions, and bit vectors. Databases of problems in SMT theories are be-

ing developed and annual competitions are being held to determine the most efficient and

effective procedure for each standard theory [67, 84].

We have applied the SULFA procedure, along with the ACL2 theorem prover, to

develop an SMT solver for the Quantifier-Free Theory of Uninterpreted Functions and Bit

Vectors of up to 32 bit width (QF UFBV32). The SULFA SMT solver can solve all 8,246

of the problems in the 2006 QF UFBV32 benchmark suite. Furthermore, it has a uniquely

high degree of flexibility due to its embedding within the ACL2 theorem prover.

This chapter begins with an introductory example in Section 9.2, which shows how

an SMT bit-vector problem can be solved through a mixture of theorem proving and the

SAT-based SULFA solver described in Chapter 7. Section 9.3 then describes the SMT
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2006 bit-vector theory in more detail. Next, Section 9.4 outlines the implementation of the

SULFA SMT solver and Section 9.5 describes the unique feature of the SULFA SMT solver,

that it can be extended in a sound and verifiable way with new simplification strategies and

bit-vector primitives. Finally, Section 9.6 describes the verification of the benchmark suite

in more detail before concluding with a summary and bibliographic notes.

9.2 Introductory Example

We begin with an example to introduce the SMT bit-vector theory and show how it can

be modeled and solved using the ACL2 theorem prover and our SAT based procedure for

SULFA formulas. An SMT solver determines whether a given formula, such as the one

below, is satisfiable:

SMT1:

bvnot (bvnot (bvnot (uf0 ()))) = uf1 ()

where bvnot (x) is bitwise negation and uf0 () and uf1 () are uninterpreted functions de-

clared to return 4-bit, bit vectors. In the SMT language, all functions other than bit vector

primitives are uninterpreted, functions, which are constrained only to input and output bit

vectors of some finite declared width.

The goal is to determine whether there exist interpretations of the functions uf0 ()

and uf1 () returning 4-bit, bit vectors such that SMT1 is always satisfied. A typical SMT

solver begins by performing simplification based on the definitions of the bit-vector primi-

tives. In this case, reducing bvnot (bvnot (x)) to x leads to:

bvnot (uf0 ()) = uf1 ()

The above formula may then be shown to be satisfiable (e.g., in binary, uf0 () , 0000

and uf1 () , 1111) by using SAT solvers, BDDs, or some other fully-automated technique.
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In order to model the ACL2 logic in the SMT language, we must first choose a

bit-vector representation that maps ACL2 objects to bit vectors. Different mappings can

be used to create such a model. For now, let the ith bit of an ACL2 bit vector x be high

if nth (n − i − 1, x) = true. Thus a bit vector represented in Boolean as “1110” can be

represented in ACL2 as the list [true, true, true, false]. The bit vector “1110” can also be

represented as the less intuitive [true, true, true], since nth (n, x) = false if x is a list of

less than n elements. In this representation, the number of bits in a bit vector cannot be

determined from its value. Thus, the size of the input bit vectors are added as an input to

each bit-vector primitive. This leads to the following ACL2 representation of the formula

SMT1, which is valid if and only if SMT1 is unsatisfiable:

ACL2-SMT1:

¬nbveq (4, nbvNot (4, nbvNot (4, nbvNot (4, uf0 ())), uf1 ()))

where nbveq (n, x, y) ,
∧

i∈N,0≤i<n
nth (i, x)↔ nth (i, y), and nbvNot (n, x) is the n element list

whose ith element is ¬nth (i, x). The functions uf0 () and uf1 () are uninterpreted functions.

ACL2-SMT1 is in SULFA because, given a constant bit width, each call to a bit-

vector primitive can be unrolled into an expression involving only propositional logic and

list primitives. Rather than solving the problem directly using the SAT-based procedure,

however, it is preferable to let the ACL2 rewriter perform some simplification first. For ex-

ample, the following theorem, which can be proven with the ACL2 theorem prover instructs

the rewriter to remove double negation:

NBVNOT-NOT :

nbvNot (n, nbvNot (n, x)) = nbvfix (n, x)

where nbvfix (n, x) maps x into a list of Booleans of length n representing the same bit

vector as x. Since nbvfix (n, x) returns an equivalent bit vector to x, the following is also a

theorem:
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NBVNOT-FIX :

nbvNot (n, nbvfix (n, x)) = nbvNot (n, x)

Thus, using the ACL2 rewriter ACL2-SMT1, can be simplified in the same manner

as SMT1, which leads to the formula:

¬nbveq (4, nbvNot (4, uf0 (), uf1 ())).

The above formula can be then passed to the SAT-based procedure described in Chapter 7.

The SAT-based procedure finds the following counter example to the above formula

uf0 () , [true, false, false, true]

uf1 () , [false, true, true, false]

Thus ACL2-SMT1 is invalid.

Note that the process for proving ACL2-SMT1 invalid follows the same flow as

would likely be used by an SMT solver to find that SMT1 is satisfiable. The advantage of our

approach, however, is that the bit-vector primitives are ACL2 functions and the rewrite rules

can be verified. This makes it easier to create new bit-vector primitives and simplification

strategies.

9.3 The Standard Bit-Vector Theory

This section provides a more detailed description of the SMT 2006 Quantifier-Free Theory

with Uninterpreted Functions and Bit Vectors up to 32 bits (QF UFBV32). QF UFBV32

provides a standard interface for comparing automated verification strategies on bit vectors

and writing higher-level tools that reduce software and hardware verification to bit-vector

verification problems. Formulas in the SMT bit-vector theory consist of constants, appli-

cations of primitive functions and predicates, and applications of uninterpreted functions

and predicates. A constant is a natural number, a bit vector of width up to 32 bits, or a
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Table 9.1: SMT Bit-Vector Functions

SMT Function ACL2 Function Description
extract ( j, k)(x) ebvEx (nx, j, k, x) Extract bits j through k of x
fill ( j)(x) ebvRepeat (1, x, j) Create j copies of x
concat (x, y) ebvConcat (nx, ny, x, y) Concatenation
bvnot (x) ebvNot (nx, x) Bitwise negation
bvand (x, y) ebvAnd (nx, x, y) Bitwise conjunction
bvor (x, y) ebvOr (nx, x, y) Bitwise disjunction
bvxor (x, y) ebvXor (nx, x, y) Bitwise exclusive or
bvadd (x, y) ebvAdd (nx, x, y) x + y mod 2nx

bvneg (x) ebvNeg (nx, x) −x
bvsub (x, y) ebvSub (nx, x, y) x − y mod 2nx

bvmul (x, y) ebvMul (nx, x, y) x ∗ y mod 2nx

bvnand (x, y) ebvNand (nx, x, y) Negated bitwise conjunction
bvnor (x, y) ebvNor (nx, x, y) Negated bitwise disjunction
bvshift left0 (x, j) ebvShiftLeft0 (nx, x, j) Shift left j bits, filling with zeros
bvshift left1 (x, j) ebvShiftLeft1 (nx, x, j) Shift left j bits, filling with ones
bvshift right0 (x, j) ebvShiftRight0 (nx, x, j) Shift right j bits, filling with zeros
bvshift right1 (x, j) ebvShiftRight1 (nx, x, j) Shift right j bits, filling with ones
bvrepeat (x, j) ebvRepeat (nx, x, j) Create j copies of x
sign extend (x, j) ebvSignExtend (nx, x, j) Extend with j copies of the sign bit
rotate left (x, j) ebvRotateLeft (nx, x, j) Rotate left j bits
rotate right (x, j) ebvRotateRight (nx, x, j) Rotate right j bits
ite (a, x, y) ebvIte (nx, a, x, y) If a then x else y

Boolean. Uninterpreted functions are strongly typed to input and output bit vectors of a

specific, known width.

Tables 9.1 and 9.2 show the primitive functions and predicates in QF UFBV32. The

bit-vector functions and predicates implement standard bit-vector operations, such as con-

junction, disjunction, summation, subtraction, multiplication, equality and less-than. Note

that some common bit-vector operations like division and exponentiation are not included

in the SMT 2006 language.

Each primitive in Tables 9.1 and 9.2 input and output Booleans and bit vectors. The

tables informally include type descriptions by using the convention that bit-vector variables
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Table 9.2: SMT Bit-Vector Predicates and Logical Operators

SMT ACL2 Description
x = y x =ebv y bit-vector equivalence
bvlt (x, y) ebvLt (nx, x, y) Unsigned less than
bvleq (x, y) ebvLeq (nx, y, x) Unsigned less than or equal to
bvgeq (x, y) ebvGeq (nx, x, y) Unsigned greater than or equal to
bvgt (x, y) ebvGt (nx, y, x) Unsigned greater than
bvslt (x, y) ebvSlt (nx, x, y) Signed less than
bvsleq (x, y) ebvSleq (nx, y, x) Signed less than or equal to
bvsgt (x, y) ebvSgt (nx, y, x) Signed greater than
bvsgeq (x, y) ebvSgeq (nx, x, y) Signed greater than or equal to
if then else (a, b, c) eif (a, b, c) If a then b else c
not (a) enot (a) Logical negation
implies (a, b) eimplies (a, b) Implication
and (a1, a2, ..., ak) eand (a1, a2, ..., ak) Conjunction
or (a1, a2, ..., ak) eor (a1, a2, ..., ak) Disjunction
xor (a1, a2, ..., ak) exor (a1, a2, ..., ak) Exclusive or
iff (a, b) eiff (a, b) Boolean equivalence

are named x, y, or z; Boolean variables are named a, b, or c; and natural number variables

are named j or k. The variables nx and ny also represent natural numbers, but they only are

used in the ACL2 functions, and are therefore not part of the SMT language description.

For a precise description of the types of each of these primitives, see the SMT-Lib web page

[67]. Also, on the SMT-Lib web page is a precise description of the SMT syntax, which is

similar to Common Lisp.

The representation of bit vectors in the SMT language is left to each implementa-

tion to define. In our ACL2 representation, a bit vector x is represented as a pair [nx, vx]

where the size of x is nx and vx is a list representing the Boolean values of the bits. The

top-level ACL2 functions used to model the SMT bit-vector primitives are also shown in

Tables 9.1 and 9.2. These functions also often input the bit-vector width of one or more of

their inputs.
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9.4 Implementation

The design of the SULFA SMT solver is outlined in Figure 9.1. The SMT solver is divided

into six phases, each of which manipulates the SMT problem before passing it to the next

phase. Each phase is entirely automatic and most, since they manipulate ACL2 formulas,

have the potential to be verified using the ACL2 theorem prover. The following subsections

describe each phase and follow how that phase manipulates an example.

9.4.1 Syntactic Translation and Negation

The functions and predicates in Tables 9.1 and 9.2 have been formalized as ACL2 func-

tions. Thus, we have developed a shallow embedding of the SMT language within the

ACL2 logic. We refer to the top-level ACL2 functions as the Embedded Type ACL2 (ET-

ACL2) model, since bit vectors are represented as a pair that includes their width. Thus,

unlike the representation in Figure 9.2, the type information is embedded into the bit-vector

representation.

The reason for embedding type information into the data, despite the fact that it is

also input into most functions directly, is that we do not want to input the bit-vector size to

the bit-vector equivalence function =ebv. This allows bit-vector equivalence to be a binary

equivalence relation, which is important during the ACL2 simplification phase.

Thus, the first step in solving a given SMT problem is to translate it into the ET-

ACL2 model. The translation is performed by a mixture of program-mode ACL2 functions

and a program written in C. The formula is negated to translate it from a satisfiability prob-

lem to a validity problem. For example, consider the following SMT formula:

SMT2 :
uf (0bv4)

=

bvand ( bvor (4bv4, bvand (bvand (uf (0bv4), uf (1bv4)), bvnot (uf (0bv4)))),

bvand (5bv4, uf (0bv4)))
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Result

Syntactic Translation
& Negation

Common subexpression

Elimination

Uninterpretted Function

Removal

ACL2 Simplification

SAT−Based

Procedure

ET−ACL2 to NBV

Translation

SMT Formula

ebvNot(4,ebvNot(4,ebvNot(4,euf0(euf2())))) = euf1(euf2())

bvnot(bvnot(bvnot(uf0(uf2())))) = uf1(uf2())

ebvNot(4,euf0(euf2())) = euf1(euf2())

ET−ACL2 Formula

Simplified ET−ACL2

UF−free NBV

Min NBV

NBV Formula

ExampleData Flow Overview

nbvEq(4,nBvNot(4,x1),x2)

where x0 := nbvMap(4,uf2())

nbvEq(4,nBvNot(4,uf0(x0)),uf1(x0))

Satisfiable

nbvEq(4,nBvNot(4,uf0(nbvMap(4,uf2()))),uf1(nbvMap(4,uf2())))

Figure 9.1: An overview of the data flow within the general-purpose SMT solver is shown
on the left. On the right is an example formula, similar to the one in Section 9.2, as it is
represented in each data flow stage. In the example SMT formula, uf0 (), uf1 (), and uf2 ()
are each declared to be uninterpreted functions returning 4-bit, bit vectors.
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where Jbv4 is the 4-bit, bit vector representing the natural number J, i.e., the ith bit of Jbv4

is high if b J
2i c mod 2 = 1. For example, 1bv4 is 0001 (where the right most bit is the 0th

bit) Also, the function uf (x) is an uninterpreted functions inputing and outputting a 4-bit,

bit vector.

Intuitively, SMT2 is the formula x = (4 | x & y & x) & 5 & x, where | represents

bitwise disjunction, & represents bitwise conjunction, y represents bitwise negation of y,

4 and 5 represent bit-vector representations of 4 and 5, and all bit vectors are four bits.

The uninterpreted function is used simply to represent the variables x and y (uf (0bv4) and

uf (1bv4) respectively).

The goal is to determine whether SMT2 is satisfiable, which it is. The first step is to

translate it into the following ET-ACL2 formula, which is valid when SMT2 is unsatisfiable:
ACL2-SMT2 :

euf (0ebv4)

,euf

ebvAnd ( 4, ebvOr (4, 4ebv4, ebvAnd (4, euf (0ebv4), ebvAnd ( euf (1ebv4),

ebvNot (4, euf (0ebv4)))),

ebvAnd (4, 5ebv4, euf (0ebv4)))

Descriptions of all the ET-ACL2 primitives used in ACL2-SMT2 are given in Fig-

ure 9.2. The bit-vector representation is defined by function ebv (n, x), which is defined to

create the n-bit, bit vector represented by the Boolean list x; ebvSize , which returns the

size of a bit vector x, and ebvRaw (x), which returns the Boolean list representing the bits

of the bit vector x. The function ebvNbv (n, x) is also defined, which is used to map x to a

Boolean list representation when x is expected to be n bits. If x is not n bits, then the empty

list is returned, which is equivalent to all low bits.

SMT uninterpreted functions are translated into ACL2 uninterpreted functions by

mapping their inputs and outputs into the appropriate embedded type data structure, as

shown in Figure 9.3. Thus, the euf (x) function in ACL2-SMT2 is defined to return the same

4-bit, bit vector result for any 4-bit, bit vector input.
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ebv (n, x) , [n, x]

ebvSize (x) , nth (0, x)

ebvRaw (x) , nth (1, x)

nbvEq (n, x, y) ,


true, if zp (n)
false, if ¬(car (x)↔ car (y))
nbvEq (n − 1, cdr (x), cdr (y)), otherwise.

x =ebv y
, {

false, if ebvSize (x) , ebvSize (y)
nbvEq (ebvSize (x), ebvRaw (x), ebvRaw (y)), otherwise.

ebvNbv (n, x) ,
{

ebvRaw (x), if ebvSize (x) = n
[], otherwise.

nbvNot (n, x) ,
{

[], if zp (n)
cons (¬car (x), nbvNot (n − 1, cdr (x))), otherwise.

ebvNot (n, x) , ebv (n, nbvNot (n, ebvNbv (n, x)))

nbvAnd (n, x, y) ,
{

[], if zp (n)
cons (car (x) ∧ car (y), nbvAnd (n − 1, cdr (x), cdr (y))), otherwise.

ebvAnd (n, x, y) , ebv (n, nbvAnd (n, ebvNbv (n, x), ebvNbv (n, y)))

nbvOr (n, x, y) ,
{

[], if zp (n)
cons (car (x) ∨ car (y), nbvOr (n − 1, cdr (x), cdr (y))), otherwise.

ebvOr (n, x, y) , ebv (n, nbvOr (n, ebvNbv (n, x), ebvNbv (n, y)))

Figure 9.2: The definitions of the bit-vector primitives used in our example.

179



nbvMap (n, x) ,


[], if zp (n)
cons (false, nbvMap (n − 1, cdr (x))), if car (x) = false
cons (true, nbvMap (n − 1, cdr (x))), otherwise.

bvMap (x) , nbvMap (ebvSize (x), ebvRaw (x))

euf (x0, x1, ..., xk) , ebv (neuf , uf (bvMap (x0), bvMap (x1), ..., bvMap (xk)))

Figure 9.3: A generic SMT uninterpreted function euf (...), returning a bit vector of size
neuf , is defined in the ET-ACL2 model by mapping an ACL2 uninterpreted function uf (...).
into the appropriate domain.

9.4.2 ACL2 Simplification

After translating the problem into an ET-ACL2 formula, the next step is to simplify it using

the ACL2 rewriter. First, =ebv is proven to be an equivalence relation, as shown in ebvEq-

is-equivalence in Figure 9.4. Next, congruence rules are provided for every function in

the ET-ACL2 model, showing that equivalence of its inputs implies the equivalence of its

output. Congruence rules for each of the functions in our example are shown in Figure 9.4.

Proving ebvEq-is-equivalence (or forcing the theorem prover to accept the rule

without proof) enables ACL2 proof strategies specific to equivalence relations, and, most

importantly, enables the rewriter to treat the theorem

P(x)→ E =ebv E′

as an instruction to rewrite a proof goal F to F′ when a subterm G of F and substitution σ

can be found satisfying E/σ = G. F′ then is the term formed from F by replacing G with

G/σ. For the rewriting to succeed it is also required that P/σ can be proven and, using the

congruence rules, it can be shown that

E =ebv E′ → F ↔ F′.

We have therefore created a library of theorems of the form P→ E =ebv E′ that can

be used to simplify ET-ACL2 problems. Some of these theorems are shown in Figure 9.5.

Note that syntaxp (x) is a function that logically returns true, but is used to implement
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ebvEq-is-an-equivalence:
Booleanp (x =ebv y) ∧ (x =ebv x) ∧ ((x =ebv y)→ (y =ebv x)) ∧
((x =ebv y) ∧ (y =ebv z)→ (x =ebv z))

ebvAnd-congruence-1:
(x0 =ebv x1)→ (ebvAnd (n, x0, y) =ebv ebvAnd (n, x1, y))

ebvAnd-congruence-2:
(y0 =ebv y1)→ (ebvAnd (n, x, y0) =ebv ebvAnd (n, x, y1))

ebvOr-congruence-1:
(x0 =ebv x1)→ (ebvOr (n, x0, y) =ebv ebvOr (n, x1, y))

ebvOr-congruence-2:
(y0 =ebv y1)→ (ebvOr (n, x, y0) =ebv ebvOr (n, x, y1))

ebvNot-congruence:
(x0 =ebv x1)→ (ebvNot (n, x0) =ebv ebvOr (n, x1))

Figure 9.4: The theorems needed to recognize =ebv as an equivalence relation and to enable
E =ebv E′ to be used as a rewrite rule rewriting E to E′ where E is an expression occurring
in our example.

ebvAnd-sort1:
syntaxp (¬ebvAndOrd (y, x))→ (ebvAnd (n, y, x) =ebv n,ebvAnd (x, y))

ebvAnd-sort2:
syntaxp (¬ebvAndOrd (y, x))
→

(ebvAnd (n, y, ebvAnd (n, x, z)) =ebv ebvAnd (n, x, ebvAnd (n, y, z)))

ebvAnd-cancel:
ebvAnd (n, x, ebvNot (n, x)) =ebv ebvFill (n, false)

ebvAnd-zero:
syntaxp (quotep (y)) ∧ (y =ebv ebvFill (n, false))
→

(ebvAnd (n, x, y) =ebv y)

Figure 9.5: Some examples of ACL2 theorems that also serve as rewrite rules to simplify
the SMT problem.
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theorem proving heuristics. In ebvAnd-sort1 and ebvAnd-sort2, syntaxp is used to ensure

that the rules only are used when x and y are not in the target order for ebvAnd expressions,

as defined by ebvAndOrd (x, y). In ebvAnd-zero, syntaxp is used to ensure that the rule is

only applied when y is constant, which prevents the theorem prover from wasting a lot of

time attempting to prove the hypothesis when ebvAnd-zero is not applicable.

For example, since the target ordering puts euf (0ebv4) before euf (1ebv4), the rewrit-

ing instructions implied by ebvAnd-sort2 cause ACL2-SMT2 to be simplified to the follow-

ing:

euf (0ebv4)

,euf

ebvAnd ( 4, ebvOr (4, 4ebv4, ebvAnd (4, euf (0ebv4), ebvAnd ( euf (1ebv4),

ebvNot (4, euf (0ebv4)))),

ebvAnd (4, 5ebv4, euf (0ebv4)))

then, by theorem ebvAnd-cancel, the formula further simplifies to:

euf (0ebv4)

,euf

ebvAnd ( 4, ebvOr (4, 4ebv4, ebvAnd (4, euf (0ebv4), ebvFill (4, false))),

ebvAnd (4, 5ebv4, euf (0ebv4)))

where ebvFill (n, a) creates an n-bit, bit vector where each bit has the Boolean value a. Next,

using the rewriting strategy implied by ebvAnd-cancel and evaluation, the formula further

simplifies to the following:

euf (0ebv4) ,euf ebvAnd (4, 4ebv4, ebvAnd (4, 5ebv4, euf (0ebv4)))

Then, using the sorting strategy implied by ebvAnd-sort1 and ebvAnd-sort2 and

evaluation the formula is further simplified to:

euf (0ebv4) ,euf ebvAnd (4, euf (0ebv4), 4ebv4)
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The above formula cannot be further simplified by our library of rewrite rules and

thus is passed to the next phase.

9.4.3 ET-ACL2 to NBV Translation

The next step in solving the SMT problem is to translate the ET-ACL2 formula into a

SULFA formula that can be solved with the SAT-based procedure in Chapter 7. The trans-

lation is performed by the ACL2 rewriter, and is relatively simple and fast (only a single

inside-out pass is required), since the ET-ACL2 functions are defined from Boolean list

functions, such as those used in the introductory example from Section 9.2.

Our example translates into the following formula, based on the definitions shown

in Figure 9.2:

nbvEq ( 4, uf ([false, false, false, false])

nBvAnd ( 4, uf ([false, false, false, false]), [false, true, false, false]))

The above formula is in SULFA, since given constant bit widths, nbvEq (n, x, y) and

nBvAnd (n, x, y) are unrollable into list primitives.

9.4.4 Common Subexpression Elimination

Even though the formula is now in SULFA, some more simplification is performed to re-

duce the size of the problem before solving it with our SAT-based procedure. In the com-

mon subexpression elimination phase, new variables are created for expressions that occur

multiple times in the formula. This prevents the SAT-based conversion algorithm from

translating such expressions multiple times. In the example, a variable is created for the

expression uf ([false, false, false, false]), as follows:

¬nbvEq (4, x, nBvAnd (4, x, [false, true, false, false]))

where x := uf ([false, false, false, false])
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Copying the expression for x above would not hinder the performance of our SAT-based

procedure much. However, when a complex expression is copied multiple times, common

subexpression elimination is significant.

9.4.5 Uninterpreted Function Removal

Next uninterpreted functions are removed. Removing them directly from the bit-vector

SMT problem is more efficient than removing them via our SAT-based procedure, since we

can create a specialized removal procedure taking into account that uninterpreted functions

in bit vector SMT problems only occur at the top level and that each uninterpreted function

has a type declaration stating that it inputs and outputs bit vectors of a particular finite width.

The technique to remove uninterpreted functions is the same straightforward

method used by our SAT-based procedure. For example, given m calls of an uninterpreted

function, uf (x1), uf (x2), ...uf (xm), which inputs an n-bit, bit vector, m new variables are

created u1, u2, ...um. Then, the ith call, uf (xi), is replaced with the following expression:

ite (nbvEq (n, xi, x1), u1, ite (nbvEq (n, xi, x2), u2, ...ite (nbvEq (n, xi, xi−1), ui−1, ui)...))

Only a single uninterpreted function call occurs in our example after common

subexpression elimination. Thus, a single variable u1 is created, which replaces x, lead-

ing to the following expression:

¬nbvEq (4, u1, nBvAnd (4, u1, [false, true, false, false]))

9.4.6 SAT-Based Procedure

After removing uninterpreted functions, the problem is then passed to our SAT-based proce-

dure for SULFA formulas described in Chapter 7. In the example, the SAT-based procedure

finds the counterexample u1 7→ [false, true, false, false]. This is also a satisfying instance

the original SMT problem, SMT2.
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addZeros (n, x) ,
{

x, if zp (n)
addZeros (n − 1, cons (false, x)), otherwise.

addZerosC (a, n, y) ,
{

y, if ¬a
addZeros (n, y), otherwise.

nbvDecode1 (n, x, y)
, {

y, if zp (n)
nbvDecode1 (n − 1, cdr (x), addZerosC (car (x), 2n−1, y)) otherwise.

nbvDecode (n, x) , nbvDecode1 (n, x, [t])

ebvDecode (n, x) , ebv (2n, nbvDecode (n, ebvNbv (n, x)))

nbvEncode1 (n,m, x) ,


nat2nbv (n, 0), if zp (m)
nat2nbv (n,m), if car (x)
nbvEncode1 (n,m − 1, cdr (x)) otherwise.

nbvEncode (n, x) , nbvEncode1 (log2(n), n − 1, x)

ebvEncode (n, x) , ebv (2n, nbvEncode (n, ebvNbv (n, x)))

Figure 9.6: The definitions of bit-vector primitives ebvDecode (n, x) and ebvEncode (n, x),
which are used to encode and decode bit vectors into and from exponentially larger one-hot
signals.

9.5 Adding New Functions and Rewriting Strategies

The main advantage to our approach is its flexibility. Whereas most SMT solvers have a

fixed set of primitives and a single simplification strategy, our system is extendable with new

primitives and strategies. Any user created functions and rewrite rules will be treated no

differently from the primitive functions in the original system. For example, the SMT 2006

bit-vector library includes no primitives to encode and decode wires into one-hot signals—

an operation common in the TRIPS Load Store Queue implementation. In Figure 9.6, the

ebvEncode (n, x) and ebvDecode (n, x) functions are defined to implement these opera-
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tions. Now, encoding and decoding can be added to our suite of bit-vector primitives, with

the same mixture of ACL2 and SAT-based verification as the previous bit-vector primitives.

Furthermore, simplification rules, such as the following Encode-decode-elimination rule,

can be proven using the ACL2 theorem prover and added to the ACL2 simplification phase.

Encode-decode-elimination:

syntaxp (quotep (n) ∧ quotep (n2)) ∧ (2n = n2)

→

(ebvEncode (n2, ebvDecode (n, x)) =ebv x)

The above rule states that when n and n2 are constants, and n2 = 2n, then decoding and then

encoding a bit vector x from size n-bits to n2 bits results in something equivalent to x.

Note that libraries of rules over the SMT 2006 primitives can also be created for

domain-specific applications. For example, rules with hypotheses, especially with free vari-

ables, like those discussed in Chapter 4, are inefficient in many applications but critical to

others. Rules for each application can be proven correct, so that soundness of the system

need not rely on soundness of user-generated rules.

9.6 Results

All 8,246 problems in the SMT 2006 QF UFBV32 benchmark suite were solved by the

SULFA SMT solver. The average time to solution on our machine is about 3 seconds, with

a maximum time of 2 minutes 1. These times are not competitive with the fastest SMT

solvers on these benchmarks, but we are the only SMT solver we know of to make use of a

general-purpose rewriter and definition mechanism.

Figure 9.7 shows the result of removing the ACL2 simplification phase from the

SULFA SMT solver. While using the general-purpose theorem prover to perform simplifi-

cation generates overhead, in the great majority of problems, the overhead is smaller than

the benefit from doing simplification. Also, four problems were omitted from Figure 9.7

1An Intel Pentium R© IV Dual Core 3.0 GHz with 2GB of RAM
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Figure 9.7: A graph comparing the performance of the SULFA SMT solver with and with-
out the ACL2 simplification phase. Each point represents a single problem in the SMT
2006 QF UFBV32 bit vector suite. The x-axis is the time (in seconds) required without the
ACL2 simplification phase and the y-axis is the time (in seconds) required with the ACL2
simplification phase. A point is on the line if the same time is required by both techniques.
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because they required over ten minutes to solve without the ACL2 simplification phase (but

could be solved in under ten minutes with the ACL2 simplification phase).

9.7 Summary

The SAT-based procedure for verifying SULFA formulas described in Chapter 7 has been

used, along with the ACL2 theorem prover, to develop a solver for the standard SMT 2006

QF UFBV32 theory of bit vectors. Our solver for the theory of bit vectors was able to solve

all the problems in the 2006 benchmark suite. Furthermore, it is more flexible than any

other known SMT solvers, since it provides a powerful mechanism for extending it with

new primitives and rewrite rules as ACL2 definitions and theorems.

9.8 Development and Bibliographic Notes

The initial high-level design of the SULFA SMT solver was developed during discussions

with Panagiotis Manolios and Sudarshan Srinivasan.

A number of SMT solvers exist that can automatically solve the SMT 2006 bench-

mark problems. The most efficient of these on the 2006 benchmarks are the yices SMT

solver [92] and the STP solver. The design of the STP solver is described in detail in

the proceedings of CAV 2007 [17]. STP includes a simplification phase, similar to the

ACL2 simplification phase in the SULFA SMT solver. Instead of a general-purpose theo-

rem prover though, STP uses a special purpose simplifier. STP also includes a linear arith-

metic mechanism and an automated refined mechanism for arrays that are not implemented

in the SULFA SMT solver. It may be possible to add a similar linear arithmetic mechanism

to the SULFA SMT solver using the ACL2 theorem prover. However, implementing the au-

tomated refinement mechanism requires modifications to the SAT-based SULFA procedure

to enable incremental additions of hypotheses.
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Chapter 10

Integrating ACL2 with the

SixthSense Model Checker

10.1 Introduction

We have developed a hardware verification methodology that uses an industrial model

checker to automate many hardware verification proofs and avoid the semantic embed-

ding of a hardware description language in the ACL2 logic. In this approach, which we

call the ACL2SIX methodology, the ACL2 theorem prover is combined with the industrial

model checker SixthSense through a new proof mechanism, named the ACL2SIX hint. The

ACL2SIX methodology models the hardware design as a set of axioms in the ACL2 logic

that are never explicitly given to the ACL2 theorem prover. Instead, the ACL2SIX hint

proves properties from axioms outside the ACL2 theorem prover by using the SixthSense

model checker on the actual hardware implementation. Theorems proven by the ACL2SIX

hint can then be combined using the ACL2 theorem prover to prove properties beyond the

scope of what can be verified by SixthSense alone.

This chapter gives an overview of the ACL2SIX hardware verification methodology

and then shows how it has been applied to the verification of a high performance multiplier,
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used in a floating-point unit designed at IBM. This methodology is described in more detail

in the proceedings of the Sixth conference on Formal Methods in Computer Aided De-

sign [77]. The verification of the multiplier is also described in more detail at the Sixth

International Workshop on the ACL2 theorem prover and its Applications [71].

10.2 ACL2VHDL Property

First, we define the notion of an ACL2VHDL property, which is a set of first-order formulas

that can be translated into a VHDL assertions. An ACL2VHDL property is of the form:

(n ∈ N) ∧ (n ≤ n0)→ (E0 = E1).

where n is a natural number variable representing the current clock cycle; n0 is a natural

number, representing the number of cycles needed to initialize the hardware; and E0 and E1

are ACL2VHDL bit-vector expressions. An ACL2VHDL bit-vector expression is one of the

following function applications:

• Bit-vector constant generators. Each bit-vector constant generator is a defined

function that maps ACL2 constants to bit-vector constants. A bit vector is a pair

(n, x), where n is the size of the bit vector and x is a natural number representing its

value. A bit is either 0 or 1. For example, given a natural number n, pad0 (n) = (n, 0)

and pad1 (n) = (n, 2n−1), create bit vectors of size n containing all zeroes or all ones

respectively. Furthermore, given an n ∈ {0, 1} the function make-bit (n) = n returns

the corresponding bit.

Bit-vector primitives. A bit-vector primitive is a member of a finite set of functions

that map bit or bit-vector arguments to an output that is either a bit or a bit vector. bit-

vector primitives are defined in both the ACL2 logic and in VHDL, and therefore can

be easily translated from one to the other. Many of the typical bit-vector functions

are implemented, such as follows:
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– bvPlus (x, y) is the bit vector representing the addition of the values represented

by x and y (all values are unsigned and the resulting bit vector is truncated to

the size of x).

– bvTimes (x, y) is the bit vector representing the multiplication of bit vectors x

and y (all values are unsigned and the resulting bit vector is truncated to the size

of x).

– bvNot (x) is the bitwise negation of x.

– bvIf (a, x, y) is either the bit vector x or y, depending on whether bit a is 1 or 0

respectively.

Note that, unlike in Chapters 8 and 9, the above bit-vector primitives do not input the

bit widths explicitly, since the width of bit vectors is encoded as part of its value (e.g.,

the 4-bit, bit vector 1 is encoded as the pair (4, 1)).

In an ACL2VHDL bit-vector expression, the argument to a bit-vector primitive can

be any ACL2VHDL bit-vector expression. Therefore bvPlus (bvNot (x), x) is an

ACL2VHDL bit-vector expression.

• Sigbit and Sigvec represent signals in the hardware design.

Before defining a well-formed application of sigbit and sigvec , first define a cycle

expression as either n or n−n0, where n is a variable symbol, representing the current

clock cycle and n0 is a natural number constant.

Given a constant e, a constant w, and a cycle expression c, then sigbit (e,w, c, 0)

represents the bit associated with the signal named w in the design entity e during

the first half of clock cycle c. Similarly, sigbit (e,w, c, 1) represents the bit associated

with the signal names w in the design entity e during the second half of clock cycle c.

Given a constant e, a constant w, natural number bl, a natural number bh, a cycle

expression c, and a phase number p ∈ {0, 1}, then sigvec (e,w, bl, bh, c, p) represents
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the bit vector formed from bits bl through bh of wire w in design entity e at clock cycle

c and clock phase p. For example, given a design entity ent (an entity is actually a

constant containing file names, module names, and other design info) and a wire

name a, then sigvec (ent, a, 2, 5, n − 1, 0) represents the four bit, bit vector made up

of bits 2 through 5 of wire a during the first half of clock cycle n − 1.

ACL2VHDL properties are further restricted to contain only a single variable sym-

bol, denoting the current clock cycle, and only a single hardware design entity. For example,

the following is an ACL2VHDL property:

(n ∈ N) ∧ (n ≤ 4)→ sigvec (E, a, 0, 4, n − 1, 1) = bvNot (sigvec (E,b, 1, 5, n, 0))

the above property states that for all cycles after the first 4, in the hardware design repre-

sented by entity E, bits 1 through 5 of signal b at the beginning of a clock cycle is equal to

the negation of bits 0 through 4 of signal a in the middle of the previous cycle. Note that the

above property would not be an ACL2VHDL property if the second application of sigvec

were modified to contain a design entity or a clock cycle variable other than those used in

the first application of sigvec .

10.3 Overview of ACL2SIX

We have modified the ACL2 theorem prover to include a new proof procedure, named the

ACL2SIX hint. The ACL2SIX hint is called directly by the user to prove ACL2VHDL

properties. The ACL2SIX hint uses the SixthSense model checker to determine if the given

ACL2VHDL property holds on the hardware design entity it references. If so, then it is

valid; otherwise, a waveform can be viewed showing why the implementation does not

satisfy the given ACL2VHDL property.

Figure 10.1 presents an overview of the ACL2SIX hardware verification methodol-

ogy. A hardware design, written in VHDL, is specified in the ACL2 logic as a first-order
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Figure 10.1: An overview of the ACL2SIX hardware verification methodology.

property P(w0,w1, ...,wn), where each wi is an application of sigbit or sigvec correspond-

ing to a wire in the design. The property P is decomposed, via user guided proof, into

ACL2VHDL properties. The ACL2SIX hint translates each ACL2VHDL property into

VHDL assertions, checkable by the SixthSense model checker. If one of the resulting as-

sertion is not valid, then a waveform showing how the hardware design does not satisfy the

ACL2VHDL property is presented; otherwise, the validity of P follows from the validity of

its decomposed ACL2VHDL properties.

Note that the SixthSense model checker is mostly automatic. Therefore, by using

SixthSense, a considerable amount of reasoning on the details of the implementation is

avoided. Optional arguments can also be passed through the ACL2SIX hint, to help guide

or configure the SixthSense run for any particular problem.

As an example, consider the circuit in Figure 10.2. A valid property of the circuit

is:

�(B→ �B)

which states that once B is true, then B continues to be true for all future cycles. The
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CLK

Sticky Bit

A
B C

Figure 10.2: A simple example circuit, in which a true bit A causes bit B and bit C to be
true for all later times.

property can be specified in first order logic as:

(n0 ∈ N) ∧ (n1 ∈ N) ∧ (n0 ≤ n1) ∧ sigbit (stickyBit,B, n0, 0)→ sigbit (stickyBit,B, n1, 0)

where stickyBit is the constant representing the circuit design entity.

Note that the above formula is not an ACL2VHDL formula, since it contains two

different cycle number variables. However, by induction on n1 −n0, it can be reduced to the

following ACL2VHDL property:

(n ∈ N) ∧ (1 ≤ n)

→

bvIf (sigbit (stickyBit,B, n − 1, 0), sigbit (stickyBit,B, n, 0)),make-bit (1))

=

make-bit (1)

the above property is an ACL2VHDL property, and, therefore, can be translated by the

ACL2SIX hint into VHDL assertions. SixthSense can then check that the hardware design

corresponding to stickyBit satisfies the resulting assertions.

10.3.1 Soundness

Our FMCAD paper [77] contains a proof sketch justifying the soundness of the ACL2SIX

methodology. The proof sketch shows that sigbit and sigvec could have been introduced as
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Figure 10.3: An overview of a high performance multiplier design that was verified using
the ACL2SIX methodology.

ACL2 constrained functions where all of the unwritten axioms are constraints. Therefore,

the unwritten axioms do not result in an unsound theory.

A few assumptions must be made to ensure the soundness of the ACL2SIX hint, in-

cluding the soundness of SixthSense itself and that the bit-vector primitives have equivalent

definitions in VHDL and ACL2. Another assumption is that sigbit and sigvec are never

functionally instantiated, which is necessary because functional instantiation assumes that

all of the axioms regarding a function have been given to the ACL2 theorem prover. Orig-

inally, ACL2 had no support for functions with axioms outside the theorem prover itself.

Thus, the soundness depended on a manual check that sigbit and sigvec were not instan-

tiated. The new implicitly theory mechanism described in Chapter 11, however, supports

such functions.
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10.4 Overview of Multiplier Verification

Using the ACL2SIX methodology, we verified a 54x53 bit multiplier design used in an

industrial high performance floating-point unit. An overview of the multiplier design is

shown in Figure 10.3. First, a Booth encoder [63] is used to reduce the multiplication of

two bit vectors into the summation of 27 bit vectors. The summation of 27 bit vectors is

then reduced in successive stages to 18, 12, 6, 3, and then 2 bit vectors. The summation of

the final two bit vectors occurs in a different design.

The correctness of the multiplier design is expressed as the following first-order

property:

(7 ≤ n)→ bvPlus (sum (n, 1), carry (n, 1)) = bvTimes (a-in (n − 4, 2), c-in (n − 4, 2))

where sum (n, p), carry (n, p), a-in (n, p), and c-in (n, p) are the values of the sum, carry, A,

and C wires in Figure 10.3 at cycle number n and phase p. Note that the wires in Figure 10.3

are a slight abstraction of the inputs and outputs of the actual design. For example, the

actual design contains input signals that when true, imply A is zero. Therefore, the function

a-in (n, p) represents an ACL2VHDL bit-vector expression involving multiple inputs in the

actual design.

The correctness theorem of the multiplier in Figure 10.3 is an ACL2VHDL prop-

erty. However, due to the complexity of the design and the well-known problems that occur

during the automatic verification of multipliers, the correctness of the multiplier cannot be

verified automatically by SixthSense. Instead, the ACL2 theorem prover is used to verify

a Booth encoder. Then, SixthSense is used to verify that each vector output by the ACL2

Booth encoder is equivalent to a vector output by the Booth encoder implementation. Sixth-

Sense is also used to verify each individual summation compressor unit, which reduces the

sum of four or three bit vectors into the sum of two bit vectors. Finally, the ACL2 theo-

rem prover is used to show that the multiplier’s correctness theorem follows from the above

theorems.
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Our ACL2 workshop paper [71] presents a more detailed description of the multi-

plier verification.

10.5 Summary

We have integrated an industrial-strength model checker, SixthSense, with an industrial-

strength theorem prover, ACL2. The hardware verification problem is divided into an ACL2

problem, which reasons primarily about high-level arithmetic properties, and a SixthSense

problem, which reasons primarily about low-level details of the VHDL implementation. By

combining the two tools, larger problems can be verified than is possible with SixthSense

alone and a greater degree of automation is provided than is available through the ACL2

theorem prover alone. Furthermore, by accessing the hardware model through the model

checker, we are able to avoid writing a formal semantics for VHDL in ACL2.

10.6 Development and Bibliographic Notes

The work described in this chapter is joint work with Jun Sawada. The translator from

ACL2VHDL properties to VHDL is based on the translator described by Sawada in the

ACL2 workshop [76]. Also, Sandip Ray wrote an early prototype of the ACL2SIX hint.

I completed the implementation of the ACL2SIX hint and used it to verify the multiplier

design.

A significant amount of previous work involves the integration of model checking

and theorem proving. Some examples are that the HOL theorem prover was integrated with

the Voss model checking system [36], a lightweight theorem prover was integrated with

the FORTE automated verification tool [78], a µ-calculus model checker was integrated

with PVS [61], a unifying framework for connecting model checking and theorem proving

has been presented [5], the µ-calculus has been formalized in ACL2 [43], ACL2 has been

integrated with the UCLID automated verification tool [44], and some verification of SMV’s
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compositional model checking has been done in ACL2 [69].

Our work is distinguished from most previous work in its use of a model checker

and theorem prover each of which on its own has been shown to be applicable to industrial

hardware verification problems [52, 72]. Furthermore, our integration technique is unique

in that it avoids a full formal embedding of the logic from one tool in the other. A huge

amount of effort was saved by avoiding the formalization of the semantics of VHDL within

ACL2.

Furthermore, the industrial verification techniques involving FORTE and HOL-Voss

rely primarily on symbolic trajectory evaluation, which can only express finite step prop-

erties (similar to those expressible in SULFA). ACL2VHDL properties, on the other hand,

can express more general invariants. For example, let P be an invariant in some finite state

machine. Thus, the following temporal logic property holds

�(P),

where the valid inputs and initial machine assumptions are implicit. The above property can

be expressed directly in ACL2VHDL, but not directly in STE. If given to ACL2SIX, the

above property is translated into a VHDL assertion, which the SixthSense model checker

will then attempt to verify through reachability analysis. Verifying the above property using

STE, on the other hand, may require a non-trivial strengthening of P until some inductive

invariant holds, which can be verified through finite-step properties, as in Chapter 8.
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Chapter 11

A General-Purpose Mechanism for

Integrating External Tools with

ACL2

11.1 Introduction

The initial implementations of the SULFA and SixthSense extensions to the ACL2 theo-

rem prover, described in Chapter 7 and Chapter 10, required modifications to the ACL2

source code. This chapter, however, presents a general-purpose mechanism for extending

the theorem prover with new proof engines without modifying the ACL2 source code. The

general-purpose extension, which was described in more detail at the International Work-

shop on Implementation of Logics [42] and in our paper in the Journal of Applied Logic

[40], is now included in the distributed version of the ACL2 theorem prover.

Aside from avoiding future source code modification, the general-purpose mecha-

nism clarifies the criteria needed for an extension of ACL2 to be sound. The correctness cri-

teria effectively form a contract between the extension writer and user, of which the ACL2

system itself need not be a part. The ACL2 system merely ensures that only extensions
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on which the user has agreed to trust are used. Therefore, potentially unsound extensions

can be distributed, even with the theorem prover, since a careful user will only trust sound

extensions.

Our mechanism relies on a new proof engine called a clause processor. Section 11.2

describes verified clause processors, which use the theorem prover to ensure soundness of

the combined system. Section 11.3 discusses unverified clause processors, which rely on

the writer of the clause processor to ensure soundness of the combined system. These

unverified clause processors use a new mechanism, called a trust tag, to ensure that the

only proof engines used are those the user has acknowledged as trusted.

11.2 Verified Clause Processors

An ACL2 clause is a list of ACL2 terms, representing a disjunction of those terms. A clause

processor is a function that inputs an ACL2 clause and outputs a (hopefully simpler) list of

clauses from which its input clause can be derived. For example, given the following ACL2

clause:

[p(IF A B C)q, pDq]

which represents the ACL2 formula

(IF A B C) , ’NIL ∨ D , ’NIL

then a clause processor that implements case splitting might produce the following list of

clauses:

[[p(EQUAL A ’NIL)q, pBq, pDq], [pAq, pCq, pDq]]

which represents

(A = ’NIL ∨ B , ’NIL ∨ D , ’NIL) ∧ (A , ’NIL ∨ C , ’NIL ∨ D , ’NIL).

Since ACL2 clauses can be expressed as ACL2 constants, a clause processor func-

tion can be written in ACL2. Furthermore, sometimes verified clause processors can be

200



created, which reduce the soundness of the clause processor to the soundness of the under-

lying ACL2 system.

The interface to a verified clause processor has two components: (i) the clause

processor rule class, which identifies an ACL2 function as a clause processor and (ii) the

clause processor hint mechanism, which directs the theorem prover to use a clause processor

on a particular problem. Before describing the clause processor rule class and hint in more

detail, the following terminology is introduced:

• first (X), given a list X, is the first element of the list.

• rest (X), given a list X, is the list formed from X after deleting the first element.

• insert (e, X) is the list formed from the list X by inserting the element e at its front.

• |X|, given a list X, is the length of the list.

• list (x0, x1, ..., xN) is the list composed of elements x0 through xN , which may also be

written as [x0, x1, ..., xN].

• [] is the empty list.

• We use the same definition of MakeFn and MakeIf as in Chapter 5. Given a func-

tion symbol f and ACL2 terms X1 through Xn, define MakeFn (n, X1, X2, ..., Xn) as the

term representing the application of f to arguments X1 through Xn.

MakeIf (x, y, z) , MakeFn (pIFq, x, y, z).

• Given an ACL2 function application E and a natural number i, or Arg (i, E), is

defined, as in Chapter 5, as the ith argument of E. For example,

Arg (1, p(IF A B C)q) = pAq.

• NA (E), given a function application E ∈ E, is its number of arguments. For example,

NA (p(IF A B C)q) = 3.
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• Given an ACL2 term E, the size of E, or |E|, is also defined as in Chapter 5:

|E| ,



0, if E is a constant

1, if E is a symbol

2 +

NA (E)∑
i=1

|Arg (i, E)|, otherwise.

• Args (E), given an ACL2 term E representing a function application returns the list

of ACL2 terms representing the arguments of that function application. For example,

Args (p(F A B C)q) = [pAq, pBq, pCq.]

• Given a list of ACL2 terms C, define

disjoin (C) ,

 pNILq, if C = []

MakeIf (first (C), pTq, disjoin (rest (C))), otherwise.

Intuitively, disjoin (C) is the ACL2 term representing the disjunction of the elements

of C.

• Given a list of lists of ACL2 terms F, define

conjoin* (F)

,  pTq, if F = []

MakeIf (disjoin (first (F)), conjoin* (rest (F)), pNILq), otherwise.

Intuitively, conjoin* (F) is the ACL2 term representing the conjunction of each

disjoin (C), where C is an element of F. For example, conjoin* ([[pAq, pBq], [pCq]])

is:

(IF (IF A ’T (IF B ’T ’NIL))

(IF (IF ’C ’T ’NIL) ’T ’NIL)

’NIL)
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ev (conjoin* (tool0 (C, args)), tool0-env (C, σ, args))
→

ev (disjoin (C), σ)

Figure 11.1: A formula stating the correctness of the clause processor tool0 .

which represents (a ∨ b) ∧ c.

Using the above terminology, Figure 11.1 illustrates an ACL2 theorem stating the

correctness of an arbitrary clause processor tool0 (C, args). The clause processor is correct

if for any ACL2 clause C and substitution σ such that the clause evaluates to true under σ,

there exists a substitution σ′ (provided by tool0-env (C, σ, args)) such that the conjunction

of clauses returned by the clause processor evaluates to true under σ′.

A verified clause processor with the name tool0 is introduced by tagging the theo-

rem in Figure 11.1 with the new clause processor rule-class. Only theorems that match the

syntax of the formula in Figure 11.1, for some clause processor tool0 , evaluator ev , and

function tool0-env , may be tagged with the new clause processor rule class.

Once a clause processor rule with the clause processor tool0 has been added to

ACL2’s rule database, then clause processor hints referring to tool0 may be used. The

hint tells the ACL2 theorem prover when encountering a given goal to replace it with

tool0 (C, args), where C is the proof object at that point in the proof and args is any user

guidance passed to the clause processor hint.

11.2.1 Example

As an example, we have developed a verified clause processor that sorts the arguments of

32 bit, bit-vector addition. The ACL2 function BV-ADD implements binary 32 bit, bit-vector

addition. Since modular addition is commutative and associative, all permutations of the

summands in 32 bit, bit-vector addition are equivalent. Thus,
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(BV-ADD A (BV-ADD B (BV-ADD C D)))

is equivalent to

(BV-ADD A (BV-ADD C (BV-ADD B D))).

Sorting the summands in a bit-vector addition helps to create a normal form that is important

in many verification problems, including the verification of the multiplier in Chapter 10.

A naive approach to sorting is to use the ACL2 general-purpose rewriter to rewrite

all instances of (BV-ADD X Y) to (BV-ADD Y X) and (BV-ADD X (BV-ADD Y Z)) to

(BV-ADD Y (BV-ADD X Z)) when the term being substituted for X is greater than the

term being substituted for Y by some syntactic measure. However, this approach requires

O(N2) applications of the rewrite rules to sort a nested BV-ADD term with N arguments.

Figure 11.2 defines a verified clause processor that uses mergesort to sort the sum-

mands of a nested BV-ADD term. The clause processor, named sortBVAddCP (L) is defined

as a mutually-recursive function described as follows:

• Given a list X, the function makeBVAdd (X) creates the nested BV-ADD term such

that the ith element of X is the ith summand in makeBVAdd (X). For example,

makeBVAdd (list (pAq, pBq, p(F X)q)) = p(BV-ADD A (BV-ADD B (F X)))q.

• Given an ACL2 term E, the function sortBVAdd (E) creates an equivalent term with

BV-ADD summands sorted. For example,

sortBVAdd (p(BV-ADD B (BV-ADD C A))q) = p(BV-ADD A (BV-ADD B C))q,

This is accomplished by collecting the summands into a list, using mergesort to sort

the list, and then using makeBVAdd to make a BV-ADD term from the sorted list. In

our example, (BV-ADD B (BV-ADD C A)) is collected into the list [pBq, pCq, pAq],

which is then sorted to created [pAq, pBq, pCq], before using makeBVAdd to create

the final BV-ADD expression.
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makeBVAdd (L)
, {

first (L), |L| < 2
MakeFn (pBV-ADDq, first (L), makeBVAdd (rest (L))), otherwise.

sortBVAdd (E)
, 

E, if |E| < 2
MakeFn (Fn (E), sortBVAddL (Args (E))), if Fn (E) , pBV-ADDq
makeBVAdd (mergesort (collect (E))), otherwise.

sortBVAddL (L)
, {

[], if L = []
insert (sortBVAdd (first (L)), sortBVAddL (rest (L))), otherwise.

collect (E)
, 

list (E), if |E| < 2
list (sortBVAdd (E)), if Fn (E) , pBV-ADDq
insert (sortBVAdd (Arg (1, E)), collect (Arg (2, E))), otherwise.

sortBVAddCP (L) , list (sortBVAddL (L)).

Figure 11.2: The mutually-recursive definition of a clause processor, sortBVAddCP (L),
which sorts the arguments of all instances of BV-ADD that occur in L. In the above definition,
E is always an ACL2 term, L is always a list of ACL2 terms, and mergesort (L) sorts a list
of terms using the mergesort algorithm.
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• Similarly, the function sortBVAddL (L), given a list of ACL2 terms L, creates a list

of terms equivalent to L with BV-ADD summands sorted.

• The clause processor sortBVAddCP (L), given a list of ACL2 terms L representing

an ACL2 clause, creates an equivalent (singleton) list of clauses with the summands

within BV-ADD subterms sorted.

The correctness of the sortBVAddCP (L) can be stated as:

ev (conjoin* (sortBVAddCP (C)), σ)→ ev (disjoin (C), σ)

which is proven using the ACL2 theorem prover. The proof involves the following key

lemmas:

1. perm (x, y)→ ev (makeBVAdd (x), σ) = ev (makeBVAdd (y), σ)

which states that any permutation of a nested BV-ADD applications evaluates to the

same result.

2. perm (x,mergesort (x))

which states that the mergesort algorithm always returns a permutation of its input.

The sorting clause processor is added to the ACL2 system the sortBVAddCP cor-

rectness theorem with the clause processor rule class. Once it has been added, a hint can be

used to apply sortBVAddCP to any ACL2 clause.

The verified clause processor shows significantly better performance than the naive

approach. A nested BV-ADD with 500 summands is sorted by the verified clause proces-

sor in 0.01 seconds and a nested BV-ADD with 1000 summands is sorted in 0.02 seconds.

By contrast, the naive approach that relies on the general-purpose rewriter requires 11.24

seconds and 64.41 seconds respectively 1.

1These results were obtained on a 2.6GHz Pentium R© IV desktop computer with 2.0GB of RAM.
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11.3 Basic Unverified Clause Processors

For some clause processors, it is difficult or impossible to verify the property in Figure 11.1

using the ACL2 theorem prover. For example, a clause processor that implements the

SULFA decision procedure described in Chapter 5 cannot be proven correct using the ACL2

theorem prover. One reason is that such a proof requires a second order axiom about all

ACL2 functions: the expansion of any function application is equal to its body. Also, ad-

mitting the decision procedure as a function in the ACL2 logic would be impossible, since

its proof of termination requires ordinals greater than ε0.

The unverified clause processor mechanism allows clause processors that are not

proven correct to be added to the ACL2 theorem prover. Like a verified clause processor,

an unverified clause processor is an ACL2 function that maps an ACL2 clause to a list of

clauses. Unlike verified clause processors, unverified clause processors may use program-

mode ACL2 functions, which are not required to terminate on all inputs. Furthermore,

unverified clause processors can use raw Lisp procedures (i.e., functions defined in the

Common Lisp environment in which ACL2 executes), which may make operating system

calls executing external programs or reading and writing files.

Unverified clause processors are implemented using a new feature, called trust tags.

A trust tag is a tag associated with a block of code that the user must declare trustworthy

before being executed. Before the declaration of a trust tag, the authors of ACL2 were es-

sentially responsible for its soundness. After a trust tag is declared, however, the soundness

depends on the soundness of ACL2 and the soundness of the block of code associated with

the trust tag. The block of code associated with a trust tag can be any arbitrary Lisp code,

including code that alters ACL2’s internal state.

Trust tags allow non-authors of the theorem prover to develop new features without

having to distribute their own versions of the ACL2 theorem prover. Instead, new features

can be distributed in an ACL2 file that is linked in dynamically with the ACL2 system, in the

same manner that ACL2 theorem and function databases are. To use any features associated
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with a trust tag, however, users must declare their intention to trust the new features (or their

author). Each trust tag is associated with the file containing its associated block of code,

providing careful users a means to find and inspect each block of code before declaring it

trustworthy.

The correctness criteria needed for a user to trust an unverified clause processor

is carefully laid out in our paper in the Journal of Applied Logic [40] and in the ACL2

documentation [37]. When a user declares the extension of ACL2 with an unverified clause

processor to be trustworthy they are declaring that the unverified clause processor meets

the correctness criteria. For the most part, an unverified clause processor is sound unless it

produces a list of clauses that do not imply its input clause. There are some subtle issues,

however, which are explained in the paper. For instance, each unverified clause processor

is associated with a list of supporting functions that extend ACL2’s ground zero theory, on

which the correctness of the clause processor depends. If a clause processor depends on a

function definition that is not listed, then extending ACL2 with it may be unsound.

11.3.1 Applications

The integration of ACL2 with other verification tools has been an area of considerable inter-

est. ACL2 has been previously integrated with the Cadence SMV model checker [69] and

the UCLID automated verification tool [44], as well with SAT solvers and the SixthSense

model checker, as discussed in Chapters 7 and 10. In the past, the extension of ACL2 with

an external verification tool has necessitated “hacking” the ACL2 source code, which, as

evidenced by the subtlety of the unverified clause processor correctness criteria, is an error

prone process. Now, an extension to ACL2 requires only a single definition of a clause

processor, which has a well-documented specification.

We have used the new unverified clause processor interface to develop a clause

processor for SULFA formulas, based on the SAT-based SULFA proof technique described

in Chapter 7. Furthermore, we have applied the SULFA clause processor to the Load Store
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Queue protocol described in Chapter 8 and used it to develop the general-purpose SMT

solver described in Chapter 9. The SULFA clause processor and the general-purpose SMT

solver are now distributed with the ACL2 theorem prover [37].

11.4 Unverified Clause Processors with Implicit Theories

The unverified clause processors described in Sections 11.2 and 11.3 work under the as-

sumption that a clause processor proves properties that follow from the axioms currently

in the ACL2 theorem prover’s database. However, as discussed in Section 10.3.1, the inte-

gration of ACL2 with SixthSense requires the introduction of an implicit theory, an ACL2

theory that is not formally introduced into the ACL2 system. In particular, the ACL2SIX

system contains axioms about the functions SIGBIT and SIGVEC that are derived from the

hardware design, which is external to the ACL2 system.

Support for implicit theories has been created using a new mechanism called encap-

sulation templates. Function symbols introduced using encapsulation templates are similar

to constrained functions introduced through the encapsulation principle described in Sec-

tion 3.5.1. The difference is that the axioms given to the theorem prover in an encapsulation

template are not assumed to be all the axioms about the introduced function symbols. There-

fore, the functional instantiation proof technique described in Section 3.6.3 is disallowed

on function symbols introduced in an encapsulation template, since functional instantiation

needs a full list of axioms regarding the function symbol (or symbols) being instantiated.

If an unverified clause processor is associated with an encapsulation template, then

it may prove properties about an implicit theory. The correctness criteria for an unverified

clause processor with an implicit theory is explained in our paper [40], as well as in the

ACL2 documentation [37]. The main idea is that it must be possible to replace the encapsu-

lation template with an admissible encapsulation event that contains all the axioms needed

for the unverified clause processor to be correct. Thus, an unverified clause processor with

an implicit theory is verifying properties about an admissible ACL2 theory that is simply
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not given to the theorem prover.

The ACL2SIX hint described in Chapter 10 has been implemented as an unverified

clause processor with an implicit theory, called the ACL2SIX clause processor. The func-

tions SIGBIT and SIGVEC are introduced using an encapsulation template. The justification

of the soundness of the clause processor is the same as the justification provided in our FM-

CAD paper [77]. Essentially, there exists a potential hardware model based on the VHDL

design, which contains axioms only about SIGBIT and SIGVEC, from which each theorem

proven by the ACL2SIX clause processor can be derived.

11.5 Summary

We have designed and implemented a general-purpose mechanism for dynamically extend-

ing the ACL2 theorem prover with new proof techniques, called clause processors. Our

general-purpose mechanism supports both verified and unverified clause processors, in-

cluding unverified clause processors that extend a theory with an implicit theory, containing

axioms not directly provided to the theorem prover.

Verified clause processors, unverified clause processors, and unverified clause pro-

cessors with implicit theories have each been implemented. We developed a verified clause

processor that uses mergesort to efficiently sort the summands in bit-vector addition op-

erations. An unverified clause processor was implemented based on the SULFA decision

procedure described in Chapter 7. Finally, an unverified clause processor with an implicit

theory was developed from the SixthSense integration described in Chapter 10.

The unverified clause processors mechanism is superior to previous approaches

used to integrate ACL2 with external tools. Previous attempts to integrate ACL2 with ex-

ternal tools required developers to create their own version of the ACL2 theorem prover,

which complicates the implementation and distribution of such tools. Furthermore, we

have developed a correctness criteria for unverified clause processors, which formalizes the

requirements needed to ensure the soundness. Having such criteria simplifies both the pro-
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cess of developing sound extensions and evaluating the potential for unsoundness risk with

a given extension. The new mechanism also requires the user to declare an unverified clause

processor as trustworthy before it is used. Therefore, distributions can include extensions

with various levels of unsoundness risk, and users can determine the level of acceptable risk

suitable for their work.

11.6 Development and Bibliographic Notes

The design of trust tags, encapsulated templates, and the new clause processor mechanisms

is joint work with Matt Kaufmann, J Moore, Sandip Ray. The design was then implemented

by Matt Kaufmann. Besides helping to design the mechanism, I created the initial applica-

tions for the new mechanism, including the sorting verified clause processor described in

Section 11.2 and the SULFA clause processor described in Section 11.3. Sandip Ray trans-

lated my implementation of the ACL2SIX hint, described in Chapter 10, into an unverified

clause processor with an implicit theory.

Some related work involves the development of “interface logics” [23], that com-

bine automated reasoning tools by defining a single logic L such that each reasoning tool

is a sub-logic of L. Similarly, Berezin’s thesis involves the creation of a unified logic for

combining theorem proving and model checking [5].

The PVS theorem prover contains decision procedures based on model checkers

and SAT solvers [61, 12], though we are not aware of any general-purpose mechanism to

integrate external tools with PVS.

Previous work with the HOL family of theorem provers [20], such as Isabelle [59]

and HOL4 [26], integrates external proof tools as oracles using the “tagging” system in-

troduced by Else Gunter [22]. Oracles have been used to integrate Isabelle with model

checkers and arithmetic decision procedures [56, 4]. Furthermore, the PROSPER project

[13] uses oracles within HOL98 to integrate several verification tools. Oracles have also

been used to solve large Boolean propositional formulas within HOL4, by appealing to
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eternal SAT solvers and BDD engines [18, 34]. Furthermore, the ACL2 theorem prover

itself has been connected with HOL4 through an HOL4 oracle [19].

The tagging system within HOL is somewhat different from the trust tags discussed

in this chapter. A tag in HOL is implemented in the logic as an additional hypothesis on

each theorem that requires the use of a given oracle. Thus, in HOL, one can track external

tool dependencies at the granularity of theorems. ACL2 trust tags, on the other hand, track

dependencies at the level of files. Our approach has the disadvantage that a user cannot use

only the portion of a file that does not depend on a given external tool. However, in practice,

we believe this disadvantage is not likely significant, since ACL2 users already frequently

move events across files. Furthermore, tracking dependencies at the level of files, at least

within the ACL2 theorem prover, leads to a cleaner implementation.

Some work also exists that uses external tools to search for proofs within a more

general framework. Ivy is one such system, which uses Otter to find ACL2 proofs for

certain theories [46]. Hurd also describes an interface for connecting HOL with first-order

logic for the purpose of finding HOL proofs more automatically [33].
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Chapter 12

The DE2 Language

12.1 Introduction

This chapter provides an overview of the hardware description language, DE2, which is

described in more detail in our paper in the proceedings of the Conference on Correct

Hardware Design and Verification Methods (CHARME) [31].

DE2 has unique features that make it suited for formal verification:

• DE2 is a hierarchical language and supports hierarchical verification. A design, or

DE2 module, is constructed by composing submodules. Similarly, the verification of

a module can be constructed from the verification of its submodules.

• DE2 has a simple, two-pass semantics, in which a module is defined by two passes

through its submodules. Having a simple semantics greatly simplifies the composi-

tion process. Furthermore, the DE2 language is restricted to finite state machines,

so that modules can be modeled as functions that input and output an implicit state

structure.

• The semantics of the DE2 language is deeply-embedded in the ACL2 logic, meaning

that a DE2 description is an ACL2 constant and ACL2 functions are defined that
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provide a formal semantics for the DE2 language.

• The formal semantics of DE2 also serves as an efficient evaluation and testing mech-

anism for DE2 circuits.

• An infrastructure has been created to automate the verification of DE2 designs in

ACL2.

• The infrastructure also supports the verification of (possibly infinite) sets of DE2

designs, described by ACL2 functions, and the verification of optimization and sim-

plification programs that operate on DE2 code.

• The structure of the DE2 language closely corresponds to a subset of Verilog, which

enables the formal verification of Verilog circuits.

• The DE2 language is designed to be extensible. Parameters, which are inputs that

must be constant in a synthesizable design, are built into the language. Parameters

promote reusability by allowing a single module description to represent an infinite

number of actual modules. Extensibility is also promoted by allowing primitive mod-

ules to be defined by the user, rather than built in to the language.

• Annotations are built into DE2 as first class objects, rather than comments. Thus,

users can embed non-functional information directly into the design and write ACL2

functions that reason about such information. For example, information about testing,

layout, and power can be embedded in annotations and reasoned about using ACL2

functions.

This chapter begins with an introductory example of a DE2 module in Section 12.2.

Section 12.3 and 12.4 then describe the syntax and semantics of DE2 in more detail. Sec-

tion 12.5 then overviews the DE2 verification system and Section 12.6 describes a circuit

generator on which the DE2 verification system has been applied.
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CLK

Sticky Bit

A
B C

(STICKY-BIT

(TYPE MODULE)

(PARAMS)

(OUTS (B 1))

(INS (A 1))

(WIRES (C 1))

(STS FF0)

(OCCS

(FF0 (C) (FFN 1) (B))

(B0 (B) (BUFN 1) ((BV-OR 1 A C)))))

Figure 12.1: A simple example circuit and its DE2 description, in which a high bit A causes
bit B and bit C to be high for all later times.

12.2 Introductory Example

As a first example, the sticky-bit circuit (previously described in Chapter 10), is shown in

Figure 12.1, along with its DE2 description. The sticky-bit circuit has a single input, A, a

single output B, and an internal wire C.

The DE2 description is an ACL2 term that specifies the name of the circuit and

contains various named annotations, such as TYPE, PARAMS, and OCCS, that describe the

circuit. The sticky-bit circuit’s OCCS annotation describes that the sticky-bit module is

built from two submodules, a flip-flop and a buffer. The occurrence

(FF0 (C) (FFN 1) (B))

describes that sticky-bit contains an instance, named FF0, of a 1 bit flip-flop module (an n

bit flip-flop module has a description named FFN), with input B and output C. Similarly, the

occurrence

(B0 (B) (BUFN 1) ((BV-OR 1 A C)))

describes that sticky-bit contains an instance, name B0, of a 1 bit buffer module (an n bit

buffer has a description named BUFN) with output B and input
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(BUFN

(TYPE PRIMITIVE)

(PARAMS N)

(OUTS (Q N))

(INS (X N))

(OCCS

(ST (Q)

((LAMBDA (X) (LIST X)))

(X))))

(FFN

(TYPE PRIMITIVE)

(PARAMS N)

(OUTS (Q N))

(INS (D N))

(STS L0)

(ST-DECLS (ST N))

(OCCS

(L0 (Q)

((LAMBDA (ST D)

(LIST D ST)))

(D))))

Figure 12.2: DE2 descriptions of N bit buffer and flip-flop modules.

((BV-OR 1 A C)),

which is the “or” of the 1 bit, bit vectors (or wires) A and C.

The TYPE annotation is used to differentiate between primitive modules and non-

primitive modules, where primitive modules do not instantiate submodules. The TYPE an-

notation is actually a non-functional annotation, because it is not used in the DE2 formal

semantics. However, a type checker ensures that TYPE annotations are present and correct.

Similar checkers and annotations can be created to contain and ensure the consistency of

other information. For example, we have developed annotations to record whether signals

are active-high or active-low, whether signals are data or control signals, and to record

coverage points (logic that is high when some interesting case is being tested).

The descriptions of the flip-flop and buffer submodules, which are used in the

sticky-bit module, are shown in Figure 12.2. Note that both modules contain PARAMS

annotations and LAMBDA module occurrences. The PARAMS annotation enables the module

descriptions to be used to create any N bit buffer or sequence of N flip-flops. The LAMBDA

module is an unnamed module that, given its state and inputs, explicitly creates its state and
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output using an ACL2 term (a call to the LIST function). Note that any state declared by the

STS annotation, which is normally an implicit input and output of the submodule, is made

explicit by the use of LAMBDA modules.

The ST-DECLS annotation is another annotation that does not affect the semantics

of a module. The ST-DECLS annotation declares that a piece of state is implemented using

a bit vector with a specific width. DE2, in principle, can be used with infinite memory

models. By declaring the state to be a finite bit vector, however, the ST-DECLS annotation

enables the use of finite-state verification tools.

As stated in Chapter 10, one property we may wish to prove about the sticky-bit

module in Figure 12.1 is:

�(B→ �B)

which states that once the B signal is high, it remains so for all time.

One way of writing this using the semantics of DE2 is:

(n0 ∈ N) ∧ (n1 ∈ N) ∧ (n0 < n1) ∧ stickyBitsInp (netlist) ∧

nth (0,RunOuts (n0, pBV-EVq, pSTICKY-BITq, params, γ, S , netlist))

→

nth (0,RunOuts (n1, pBV-EVq, pSTICKY-BITq, params, γ, S , netlist))

where

• RunOuts (n, ev,m, params, γ, S 0, netlist) is part of the DE2 semantics described in

Section 12.4; it returns a list of outputs of the module named m after n clock cycles,

given parameters params, given a list of at least n cycles of inputs γ, given initial state

S 0, and given a list of DE2 descriptions netlist including m and its submodules. The

ev input specifies an evaluator to be used, in this case the bit vector evaluator BV-EV,

under the substitution env, to evaluate ACL2 terms in the DE2 description or inputs.
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• stickyBitsInp (netlist) is a predicate that is true when the sticky-bit module descrip-

tion shown in Figure 12.1 are in netlist, as well as descriptions of its required sub-

modules shown in Figure 12.2.

• nth (i, x) is the function that returns the ith element of the list x.

The above property can then be proven using the methodology described in Sec-

tion 12.5.

12.3 Formal Syntax

A circuit is described in DE2 as a netlist of module descriptions. Both the netlist and

each module description is represented as a Lisp expression recognized by the following

grammar:

netlist ::= (module-list)

module-list ::= ε | module module-list

module ::= (symbol module-body)

module-body ::= ε | annotation module-body

annotation ::= (symbol expression)

where expression is an arbitrary Lisp expression, such as ((A B) (C D E) F).

The grammar in Figure 12.3 recognizes the built-in annotations, PARAMS, OUTS,

INS, WIRES, STS, and OCCS. Intuitively, the built-in annotations describe a module’s sub-

modules and wiring.

12.4 DE2 Semantics

The state of a machine with top-level module m after n steps, or cycles, is defined as:
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annotation ::= (PARAMS sym-list) | (OUTS decl-list) | (INS decl-list) |
(WIRES decl-list) | (STS sym-list) | (OCCS occ-list)

decl-list ::= ε | (symbol param) decl-list

occ-list ::= ε | occurrence occ-list
occurrence ::= (symbol occ-out-list (symbol param-list) wire-list) |

(symbol occ-out-list (lambda-module param-list) wire-list)

lambda-module ::= ((LAMBDA (sym-list) (LIST expr-list)) param)

occ-out-list ::= ε | occ-out occ-out-list
occ-out ::= symbol | (symbol param param)

expr-list ::= ε | wire expr-list | param expr-list

wire-list ::= ε | wire expr-list
wire ::= symbol | constant | (N-NILS param) |

(BV-CONST param param) | (BV-BIN-CONST param param) |
(BV-IF wire wire wire) | (UNARY-AND param wire) |
(UNARY-OR param wire) | (BV-AND param wire wire) |
(BV-OR param wire wire) | (BV-NOT param wire) |
(BV-XOR param wire wire) | (BV-EQ param wire wire) |
(BV-LEQ param wire wire) | (BV-DECODE param wire) |
(GET-SUBLIST wire param param) | (G wire param param) |
(APPEND-N param wire wire) | (A-N param wire wire) |
(BV-DUPLICATE param param wire) | (BV-ADD param wire wire) |
(UPDATE-SUBLIST wire param param wire) |
(US wire param param wire)

param-list ::= ε | param expr-list
param ::= symbol | number | (1- param) | (1+ param) |

(+ param param) | (- param param) | (EXPT param param)

sym-list ::= ε | symbol sym-list

Figure 12.3: A grammar specifying the syntax of the built-in annotations, used to specify
the functionality of a DE2 module. Note that symbol is an arbitrary symbol and number is
an arbitrary number.
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RunSt (n, ev,m, params, γ, S 0, netlist)

,  st, if n = 0

de (ev,m, params, γn−1, S n−1, env, netlist), otherwise.

where

• S n−1, is the recursively computed machine state at time n − 1:

S n−1 , RunSt (n − 1, ev,m, params, γ, S 0, netlist).

• Similarly, S 0 is the initial state of the machine, denoted as an ACL2 term, to be

evaluated using the ev evaluator under the substitution env.

• ev is a symbol specifying an evaluator for ACL2 terms. This chapter assumes

ev = pBV-EVq, specifying the bit-vector evaluator. Note that a wire expression in

Figure 12.3 recognizes an ACL2 term involving bit-vector primitives. If a different

evaluator were used, then a different set of primitives would be recognized. The

BV-EV evaluator is also used to evaluate simple arithmetic terms, including those

needed to evaluate the param expressions in Figure 12.3.

• env is a substitution mapping symbols to constants.

• netlist is an ordered list of DE2 module descriptions, including the descriptions of m

and all its submodules.

• params is a list of ACL2 terms corresponding to the module’s PARAMS annotation.

Each term evaluates to a natural number, when evaluated by the ev evaluator under

the substitution env.

• γ contains all the inputs to the module such that γi is a list of inputs, corresponding

to the module’s INS annotation, after i clock cycles. Each input is an ACL2 term that

can be evaluated to a constant using the ev evaluator under the substitution env.

220



• de (ev,m, params, ins, S , env, netlist) is the state of the machine m described by netlist

netlist at the next cycle, given its parameters params, inputs ins, and state S (all ACL2

terms evaluated by the ev evaluator under the env substitution) during the current

cycle.

The output of machine m after n cycles is defined as

RunOuts (n, ev,m, params, γ, S 0, netlist)

,

se (ev,m, params, γn, S n, env, netlist)

where

• ev, S 0, params, γ, and netlist are the same as in RunSt .

• S i is the machine state after i clock cycles, defined as:

S i , RunSt (i, ev,m, params, γ, S 0, netlist).

• se (ev,m, params, ins, S , env, netlist) is the output list of the machine m described by

netlist netlist at the next cycle, given its parameters params, inputs ins, and state S

(all ACL2 terms evaluated by the ev evaluator under the env substitution) during the

current cycle.

Thus, the semantics of a module are defined through the functions:

se (ev,m, params, ins, S , env, netlist)

de (ev,m, params, ins, S , env, netlist)

which return the outputs and next state of a module.

Intuitively, given the inputs and state of a DE2 module, the value of each wire can

be computed through a linear traversal of the submodule occurrences, as given by the OCCS

annotation. The se function returns the module outputs by computing the wire values and

then taking the subset of wires specified by the OUTS annotation. The de function returns a
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Figure 12.4: The ADD ADDR circuit adds (by bitwise disjunction) the block addressed by
ADDR to the mask X, when EN is high. The DECODER unit translates an n bit, bit vector
into 2n bit, bit vector with only the nth bit high. For example, given a four bit, bit vector
with value 3, the DECODER outputs a sixteen bit, bit vector with value 8 (the third bit is
high, the rest low).

DE2 module’s state by computing the wire values and then making a second, “dual” pass,

through the submodule occurrences, in which the state of each submodule is updated. For

example, in Figure 12.1, the wire B is computed during the first pass and, in the second

pass, the FF0 submodule occurrence updates its internal state using the new value of B. A

more detailed description of the se and de functions can be found in our CHARME paper

[31].

As another example, the ADD ADDR circuit, has the schematic shown in Fig-

ure 12.4 and the Verilog and DE2 descriptions shown in Figure 12.5. The ADD ADDR

circuit is a slight generalization of a circuit present in the implementation of the TRIPS

Load-Store Queue Protocol, described in Chapter 8. It adds an address to its input mask,

when its enable input EN is high. It uses a decoder submodule to translate the n bit input

address into a 2n bit, bit vector, in which only the nth bit is high. Then a multiplexer selects
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module ADD_ADDR (Q,X,EN,ADDR);

parameter N = 3;

output [0:(1<<N)-1] Q;

input [0:(1<<N)-1] X;

input [0:N-1] ADDR;

input EN;

wire [0:(1<<N)-1] DEC;

D0 #(N) decoder(ADDR);

assign Q = EN ? DEC | X : X;

endmodule

(ADD_ADDR

(PARAMS N)

(OUTS (Q (EXPT 2 N)))

(INS (X (EXPT 2 N))

(ADDR N)

(EN 1))

(WIRES (DEC (EXPT 2 N)))

(OCCS

(D0 (DEC) (DECODER N) (ADDR))

(B0 (Q) (BUFN (EXPT 2 N))

((BV-IF EN

(BV-OR (EXPT 2 N)

DEC

X)

X)))))

Figure 12.5: A Verilog and a DE2 description of the ADD ADDR circuit shown in Figure 12.4.
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(TWO-INV

(OUTS (Q0 1) (Q1 1))

(INS (A 1) (B 1))

(OCCS

(A0 (Q0) (BUFN 1) (BV-NOT 1 A))

(A1 (Q1) (BUFN 1) (BV-NOT 1 B))))

Q0

Q1

A

B

TWO−INV

Figure 12.6: The DE2 description on the left implements the internals of the TWO-INV
module drawn on the right. The schematic on the right further uses the TWO-INV module
to implement a one bit buffer. No DE2 description, however, can be created that wires the
TWO-INV module to itself to create such a buffer.

whether to add the decoded signal into the mask, based on the enable bit. Parameters are

used to generalize the input and output bit widths.

Note the close correspondence between the Verilog and DE2 descriptions in Fig-

ure 12.5. The syntax and semantics of DE2 correspond closely to a restricted subset of

Verilog. This enables many Verilog circuits to be easily translated into DE2 and simplifies

the Verilog to DE2 compiler described in Section 12.5. It also makes compilation from DE2

to Verilog trivial.

12.4.1 Limitations of the Two Pass Model

The fact that all wire values are calculated in a single traversal of the submodule occurrences

greatly simplifies the DE2 semantics and thus the verification of DE2 modules. However,

it also restricts the circuits that can be written in DE2. If the output of a submodule A is

wired to the input of a submodule B, then A must occur prior to B in the list of submodule

occurrences.

A combinational loop in a hardware designs prevents it from being represented in

DE2. In practice, this restriction is not severely limiting, since combinational loops rarely

appear in hardware designs. When combinational loops do occur, they can be modeled as
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Figure 12.7: An overview of the DE2 verification system.

ACL2 functions evaluated by the ev evaluator.

The submodule ordering restriction within DE2, however, rules out more than com-

binational loops. For example, a DE2 description of the TWO-INV module is shown on the

left in Figure 12.6 and its schematic is shown on the right. The TWO-INV module simply

contains two independent inverters. Each output of the module is the inversion of one of its

inputs. The DE2 description shown on the left of Figure 12.6, is a valid DE2 description,

but it cannot be wired to implement the buffer shown in the schematic on the right. Even

though the schematic clearly has no combination loops, the ordering restriction prevents it

from being described because the output of an instantiation of TWO-INV cannot affect its

input. The only way to create a DE2 description of the schematic in Figure 12.6 is to break

the TWO-INV module in two, so the inverters may be ordered.

12.5 The DE2 Verification System

Having a semantics for DE2 written in the ACL2 logic enables many forms of verifica-

tion. In Figure 12.7, we illustrate our verification system, which is built around the DE2
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language.

The DE2 verification system can be used to verify Verilog designs, which are de-

noted in the upper left of Figure 12.7. We have developed a compiler that automatically

translates a subset of Verilog to DE2 descriptions, which enables the verification of designs

of practical interest, such as the Load Store Queue protocol described in Chapter 8. Fur-

thermore, DE2 descriptions can also be compiled automatically into Verilog descriptions,

which enables DE2 descriptions to use traditional synthesis and timing tools that operate

on Verilog.

To assist in the verification of DE2 designs, a verifying compiler has been devel-

oped from DE2 descriptions to cycle-accurate ACL2 models of those descriptions. Here,

verifying compiler means a compiler that produces, along with its output, a proof that its

output is equivalent to its input. For each design it compiles, our verifying compiler pro-

duces an ACL2 proof that the DE2 description input to it is equivalent, according to the

semantics of DE2, to the cycle-accurate ACL2 model it produces. The ACL2 model pro-

duced is essentially a model in first-order logic, where each wire in a DE2 module has a

corresponding function. Furthermore, a function produces the next state of the finite state

machine described by each module from its previous state. Some simple reductions, such

as cone-of-influence are performed during the translation process, and these are verified by

the ACL2 theorem prover on a case-by-case basis.

The specification of the design begins in the form of English documents, charts,

graphs, C-models and test code, which is represented in the upper right of Figure 12.7.

This informal specification is then translated manually into a formal ACL2 specification.

Through user-guided proof, the formal specification is reduced to invariants and equivalence

properties in SULFA. If possible, the SULFA properties are verified automatically by the

SAT-based procedure in Chapter 7. If the SAT-based procedure, due to the state explosion

problem, fails to verify the SULFA properties, then they are further broken down by user-

guided proof until they can be successfully verified by some automatic procedure.
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The DE2 verification system can also be used to verify circuit generators, such

as the ripple-carry adder generator described in Section 12.6. The circuit generators are

implemented as ACL2 functions that produce DE2 code. By proving, through the DE2

semantics, that the ACL2 functions always produce correct code we verify a potentially

infinite number of implementations in a single verification effort.

Similarly, ACL2 functions that modify DE2 descriptions can also be verified. Such

functions can be used to optimize the DE2 implementation or simplify it for future verifi-

cation. Thus it is possible to use the DE2 verification system to translate a Verilog design

to DE2, run verified optimizations on it, and then translate it back into Verilog.

It is also possible to build static analysis tools, such as extended type checkers,

that check the correctness of DE2 annotations. DE2 annotations are first-class objects (i.e.,

they are not embedded in comments) that can include all manner of functional and non-

functional properties and parameters relating to a DE2 module. An extended type checker

can then input the DE2 module and read its annotations. The type checker can be written in

ACL2 and can therefore be analyzed and used within the verification effort. For example,

the ST-DECLS annotation is used to produce a finite memory model that enables the use of

finite-state verification tools.

12.6 Circuit Generator Example

This section describes circuit generators and their verification through a simple ripple-carry

adder example. Figure 12.8 illustrates the schematic of an n bit ripple-carry adder, built

from full-adders. Every submodule in a DE2 module must exist in all implementations of

that module, regardless of parameters. Therefore, the n bit ripple-carry adder in Figure 12.8

cannot be described as a parameterized DE2 module. A DE2 module can, however, describe

an n bit ripple-carry adder for any specific value of n. For example, the DE2 description of

a 4 bit ripple-carry adder is shown on the right in Figure 12.8.

To reason about the general n bit ripple-carry adder, an ACL2 function can be cre-
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A N−1
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A
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B
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A 1

COUT

CIN

RIPPLE−CARRY−ADDER
(RIPPLE-CARRY-4

(OUTS (SUM 4) (COUT 1))

(INS (A 4) (B 4) (CIN 1))

(STS)

(WIRES (C 5))

(OCCS

(B0 ((C 0 0)) (BUFN 1) (CIN))

(C1 ((SUM 0 0) (C 1 1))

(FULL-ADDER)

((G A 0 0) (G B 0 0) (G C 0 0)))

(C2 ((SUM 1 1) (C 2 2))

(FULL-ADDER)

((G A 1 1) (G B 1 1) (G C 1 1)))

(C3 ((SUM 2 2) (C 3 3))

(FULL-ADDER)

((G A 2 2) (G B 2 2) (G C 2 2)))

(C4 ((SUM 3 3) (C 4 4))

(FULL-ADDER)

((G A 3 3) (G B 3 3) (G C 3 3)))

(B1 (COUT) (BUFN 1) ((G C 4 4)))))

Figure 12.8: A general schematic for an n bit ripple-carry adder is shown on the left. Its
DE2 description in the 4 bit case is shown on the right.

228



ated to produce its DE2 description. To write such a function, first recall that a DE2 de-

scription is a list of modules. We thus define the following functions to manipulate lists:

• MakeDE (x0, x1, ..., xN) is the Lisp expression created by composing the Lisp expres-

sions x0 through xN . For example,

MakeDE (p(A B)q, pCq, pDq) = p((A B) C D)q.

Note that MakeDE is equivalent to Lisp’s LIST function, but this dissertation uses

MakeDE , rather than LIST, in order to distinguish between mathematical lists and a

Lisp expressions.

• AppDE (x, y) is the Lisp expression created by appending the Lisp expression y to the

end of the Lisp expression x. For example,

AppDE (p(A B)q, p(C)q) = p(A B C)q.

Note that both x and y must be enclosed in parentheses, i.e., they cannot be constants

or symbols. AppDE (x, y) is equivalent to Lisp’s APPEND function.

• SymName (s, n), given a Lisp symbol s and a natural number n, produces the symbol

with n appended to s. For example,

SymName (pBq, 33) = pB33q

To define the n bit ripple-carry adder in DE2, we first define the function

GenRipOcc (n), which returns the nth full-adder occurrence within the ripple-carry adder’s

OCCS annotation:
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GenRipOcc (n)

,

MakeDE ( SymName (pCq, n),

MakeDE ( MakeDE (pSUMq, n − 1, n − 1),MakeDE (pCq, n, n))

MakeDE (pFULL-ADDERq),

MakeDE ( MakeDE (pGq, pAq, n − 1, n − 1),

MakeDE (pGq, pBq, n − 1, n − 1),

MakeDE (pGq, pCq, n − 1, n − 1)))

For example, GenRipOcc (3) returns:

(C3 ((SUM 2 2) (C 3 3))

(FULL-ADDER)

((G A 2 2) (G B 2 2) (G C 2 2)))

which instantiates a full adder submodule, with module description named FULL-ADDER,

and names this occurrence as C3. The expressions (G A 2 2), (G B 2 2), and

(G C 2 2) are ACL2 terms returning the second bit of bit vectors named A, B, C respec-

tively. The C3 submodule receives these inputs and outputs its sum and carry bits onto the

second bit of the bit vector named SUM and the third bit of the bit vector named C.

The following function composes m ripple-carry adder occurrences to form the

OCCS annotation for an n bit ripple-carry adder module.

GenRipOccs (m, n)

, 
MakeDE (firstOcc), if m = 0

AppDE (GenRipOccs (m − 1, n),MakeDE (lastOcc)) if m = n + 1

AppDE (GenRipOccs (m − 1, n),MakeDE (GenRipOcc (m))), otherwise.

where

• firstOcc , p(B0 ((C 0 0)) (BUFN 1) (CIN))q.

230



• lastOcc , MakeDE (pB1q, p(COUT)q, p(BUFN 1)q, lastOccIns).

• lastOccIns , MakeDE (MakeDE (MakeDE (pGq, pCq, n, n))).

For example, GenRipOccs (2, 1) is:

((B0 ((C 0 0)) (BUFN 1) (CIN))

(C1 ((SUM 0 0) (C 1 1))

(FULL-ADDER)

((G A 0 0) (G B 0 0) (G C 0 0)))

(B1 (COUT) (BUFN 1) ((G C 1 1)))))

The following function generates the description for an n bit ripple-carry adder:

genRipple (n)

,

MakeDE ( SymName (pRIPPLE-CARRY-q, n),

MakeDE (OUTS,MakeDE (SUM, n),MakeDE (COUT, 1)),

MakeDE (INS,MakeDE (A, n),MakeDE (B, n),MakeDE (CIN, 1)),

MakeDE (WIRES,MakeDE (CARRY, n)),

AppDE (MakeDE (OCCS),GenRipOccs (n + 1, n)))

The DE2 description shown in Figure 12.8 is equal to the four bit ripple-carry

adder, genRipple (4). To complete the description of the ripple-carry adder a netlist must be

formed including both genRipple (4) and a DE2 description of the FULL-ADDER submod-

ule.

The specification of the ripple-carry adder can be written as:

(n ∈ N) ∧ (n > 0) ∧ RippleInp (n, netlist) ∧ bvp (n, a) ∧ bvp (n, b)

→

bvToNat (n, sum) = (bvToNat (n, c0) + bvToNat (n, a) + bvToNat (n, b)) mod 2n

231



where

• sum , nth (0, se (pBV-EVq, ripName, params, ins, S , env, netlist)), which is the SUM

output of the ripple carry adder module.

• ripName , SymName (pRIPPLE-CARRY-q, n), which is the name of the ripple carry

adder module.

• a is the evaluation, using the bit-vector evaluator, ’BV-EV, of the first input

(nth (0, ins)), under the substitution env.

• b is the evaluation, using the bit-vector evaluator, ’BV-EV, of the second input

(nth (1, ins)), under the substitution env.

• c0 is the evaluation, using the bit-vector evaluator, ’BV-EV, of the third input

(nth (2, ins)), under the substitution env. This input is the one bit carry input.

• bvToNat (x) is the natural number corresponding to the bit vector x.

• bvp (n, x) is the predicate that is true when x is an n bit, bit vector.

• RippleInp (n, netlist) is the predicate that is true when netlist is a list containing the

DE2 description of the n bit ripple-carry adder created by genRipple (n), as well as

all its submodule descriptions.

Intuitively, the specification above states that the output of any n bit ripple-carry

adder is the summation of its inputs. It is then proven using the ACL2 theorem prover, from

the definitions of ripple carry adder generator genRipple (n), and the formal semantics of

DE2, specified by the functions se and de .

12.7 Summary

DE2 is a new language for designing and specifying finite state machines. Its embedding

within the ACL2 theorem prover provides a means to formally verify that these machines
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satisfy their specifications. In this chapter, we show how to verify some small hardware

design examples. Chapter 8 provides a more significant example, where a component of

the TRIPS processor [9] is translated from Verilog to DE2 and then verified in ACL2.

Since DE2 programs are ACL2 constants, programs that generate and manipulate

DE2 circuits can also be verified. We have shown how one such circuit generator, which

generates a ripple-carry adder, has been verified.

Furthermore, in industrial hardware designs, all kinds of design data are presently

being added into the code as comments. This process prevents there from being a single

design description that is understandable by all the pre- and post-silicon development tools.

DE2 incorporates all the design data into a single annotation formalism, which ACL2 func-

tions can analyze and manipulate. We believe DE2 is the first language to incorporate all

the design data into a single formalism.

12.8 Development and Bibliographic Notes

The parser used in our Verilog to DE2 compiler was created by Vinod Viswanath.

The DE2 language is a successor to the DUAL-EVAL hardware description lan-

guage in NQTHM[8] and the DE language in ACL2 [28]. The DE language differs from its

predecessors in that it supports user-defined primitives, reusable libraries, parameters and

annotations. DE2 also structures state-holding elements in a different manner than its prede-

cessors. The DE2 language also includes a type system and a more automated verification

system.

In other hardware verification efforts with ACL2, hardware descriptions have been

translated into ACL2 models in the shallow-embedding style [16, 75]. In a first-order theo-

rem prover, however, only a deep-embedding style can reason on functions that operate on

hardware descriptions, such as programs that automatically optimize, simplify or analyze

hardware descriptions. Furthermore, deep-embedding is somewhat more rigorous, since

designs are expressed in a way that more closely matches the actual Verilog or VHDL. For
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example, a typical shallow-embedding approach in ACL2 might express hardware designs

using the functional model produced by our DE2 to ACL2 compiler. In our system, the

DE2 to ACL2 compiler produces a proof of correctness, which would be impossible if we

did not have a formal semantics for the input language.

The notion of shallow-embedding v. deep-embedding styles originate from com-

parisons between different approaches to embed hardware description languages into the

HOL family of theorem provers [66]. Initially, the ELLA and SILAGE languages were em-

bedded into HOL using the shallow-embedding style, and a subset of VHDL was embedded

using the deep-embedding style. More recently, the hardware description language of the

MDG automated proof system was deeply embedded in HOL and used to verify hardware

designs [64].

There has also been considerable interest within the functional language commu-

nity in the development of higher-order hardware description languages. Such languages

have the potential to automate low-level optimization techniques on larger designs. For ex-

ample, the WIRED language has been shown to improve the performance of multipliers by

incorporating layout information into the design of circuit generators [3].

The higher-order functional languages Lifted-FL [2] and reFLect [24] have been

created at Intel, and also combine theorem proving and fully-automated verification tech-

nologies. Differences between DE2 and these language includes DE2’s simpler, two-pass,

semantics, its minimal syntax, and its close correspondence to a subset of Verilog.
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Chapter 13

Future Directions

13.1 Introduction

There is a large number of directions in which one could continue the work described in this

dissertation. This chapter presents a brief overview of a few, primarily focusing on future

extensions and applications of the SULFA procedure described in Chapter 7.

13.2 Expanding SULFA

Originally, SULFA consisted of ACL2 formulas that could be unrolled into the ACL2 core

primitives if, cons, car, cdr, and consp. Later, SULFA was expanded to include equal

and uninterpreted functions. It is obviously advantageous to recognize as large a decidable

subclass of ACL2 formulas as possible. Thus, one avenue of future work is to continue to

expand SULFA.

One way to expand SULFA is to add more core primitives from Table 3.1. Since

arithmetic is included in ACL2’s core primitives, and arithmetic is undecidable, there is

no decision procedure for formulas made up of all ACL2 core primitives. Nevertheless,

important subclasses, such as linear arithmetic, could be included.
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Another possible SULFA expansion is to include a larger subset of constrained

ACL2 functions. Currently, only uninterpreted functions are supported, i.e., constrained

functions with no constraints. However, some constraints can clearly be allowed without

sacrificing decidability.

13.3 Improving Efficiency

The SAT-based procedure described in Chapter 7 is sufficiently efficient to be applied to

problems of practical interest, such as the data-tile protocol in Chapter 8. Performance,

however, could likely be improved through a number of known optimizations. The two most

promising involve common subexpression elimination and abstraction-refinement loops.

Recall that the algorithm in Chapter 7 creates variables for ACL2 expressions and

that these variables eventually become part of the CNF formula given to SAT. All other

things being equal, it is advantageous to produce a CNF formula with as few variables as

possible. Common subexpression elimination is an optimization that reduces the number of

variables in an expression, and sometimes its translation time to CNF, by creating identical

variables for identical expressions. For example, it is usually more efficient to translate

f (a = b, a = b) into f (x, x), where x , (a = b), than to translate f (a = b, a = b) into f (x, y),

where both x , (a = b) and y , (a = b). Similarly, if g (a, b) unrolls to a = b, then it is best

to translate f (a = b, g (a, b)) into f (x, x) and define x to be a = b.

Note that common subexpression elimination has an inherently inside-out nature.

An expression should not be considered until its common subexpressions have been elim-

inated. For example, a variable should not be created for f (a = b, a = b), but rather a

variable v should be created for a = b and then for f (v, v). Since the algorithm in Chap-

ter 7 is primarily an outside-in algorithm, common subexpression elimination is currently

omitted. A simple preprocessor that eliminates common subexpressions, like the one used

in Chapter 9, would likely improve performance of the SULFA solver on many SULFA

formulas. A more clever form of common subexpression elimination, incorporated into the
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SAT-based procedure itself, may yield even better results.

Another optimization worth noting involves abstraction-refinement loops. The idea

here is to perform abstraction when confronted with a difficult verification problem. If the

abstract formula is valid, then the original formula is also valid. If the counter example pro-

duced is also a counter example to the original formula, then the original formula is invalid.

Otherwise, some form of refinement, likely based on the counter-example, is performed to

create a less abstract problem. Abstraction-refinement loops can be very useful when deal-

ing with shallow problems over large data structures. Also, they can be necessary to avoid

explosion in formula size, when that explosion is not likely to yield a true counter-example.

For example, given an uninterpreted function f (x), if f (x) and f (y) occur in an expression

and x = y does not, it is probably best to assume that x , y so that f (x) and f (y) can be

given independent variables, unless only counterexamples where x = y are found.

13.4 Verification of Larger Hardware Modules

Another area of future work is to apply our methodology to larger hardware designs. Cur-

rently, for the most part, only floating-point units in industrial processors have been formally

verified. In order to make formal methods practical for full-scale industrial hardware verifi-

cation, we must increase our expertise with formal methods outside the floating-point unit.

The data-tile protocol verification effort described in Chapter 8 is one such effort, but this

effort could be continued to verify more of the data tile. Also, some other hardware designs,

such as routers, have never been formally verified.

13.5 Undecidable Domains

Developing decision procedures and identifying decidable classes of problems is a useful

endeavor since it can help direct a verification effort into a domain where fully-automated

procedures are more applicable. Ultimately though, our goal is to reduce the amount of user
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guidance required during large-scale verification, regardless of whether the formula to be

verified can be easily placed into a decidable class. Thus we are interested in techniques that

automatically reduce undecidable problems into decidable domains. One such technique is

to use an abstraction-refinement loop, like the one proposed in Section 13.3. Abstraction

can be used to reduce undecidable formulas into a decidable domain, then refinement can

be used to attempt to hone in on a valid abstraction or a real counter-example. Such an

approach is unlikely to discover any proof that requires induction, but, if it is well designed,

it may prove to be very good at finding counterexamples to invalid conjectures.

Some of the techniques in this dissertation may also prove applicable to general-

purpose simplification. An important intuition behind SAT solving and SAT-based proce-

dures is to put off any exponential time searching or transformations until the last possible

moment. In this manner, easier options are explored first and more information is available

when exponential time searching or transformations are finally undertaken. The ACL2 sim-

plifier, and other general-purpose simplifiers, do not always use this strategy. For example,

the ACL2 simplifier expands lambda expressions (β reduction) and performs case splitting

relatively early in the simplification process, both of which require exponential time. It

would be interesting to explore the development of a general-purpose simplifier that puts

off β reduction and case splitting until the last possible moment, when the best educated

guess can be made as to which one should be performed first.

13.6 Verified SAT-Based Procedure

Some SAT solvers, such as zChaff, can produce a proof of unsatisfiability after determining

that a problem is unsatisfiable [93]. One integration of HOL and SAT uses this proof to

check results from the SAT solver with the HOL theorem prover [91]. A difficulty, however,

is that the HOL theorem prover, like the ACL2 theorem prover, is designed to solve large

scale problems through a hierarchy where only a small portion of the problem needs to be

considered at once. In SAT solvers, no such hierarchical information is kept. Thus, only
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relatively small results from SAT solvers can be checked with HOL. One possible way to

address this within ACL2 is to develop a specialized proof checker, prove it correct using

the ACL2 theorem prover, and then use ACL2’s fast evaluation mechanism to check large

problems.

Once the unsatisfiability of a Boolean CNF formula can be verified by ACL2, the

translation from the original ACL2 problem to Boolean CNF must also be somehow veri-

fied. The SAT-based procedure for solving problems involving the core primitives if, cons,

car, cdr, consp, and equal might be verified and introduced as a verified clause processor,

as described in Chapter 11. The removal of uninterpreted functions also might be verified in

such a manner. The unrolling of functions would require a different approach though since

its correctness and termination follows from the (user-extendable) definitional axioms and

the proofs of termination of the functions it is unrolling.
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Chapter 14

Conclusion

Currently, the floating-point units of many processor designs are formally verified [60, 72],

but formal verification is not attempted on most other parts of industrial designs. We be-

lieve one cause of this disparity is the relative maturity of formal verification techniques

targeted specifically to floating-point units. In this dissertation, we have made advances to

the field of formal verification to improve general-purpose formal verification techniques

and to develop expertise in formal verification beyond the floating-point unit.

• One method to potentially reduce the cost of scalable hardware verification method-

ologies, such as those used on the proof of the FM9801 processor [75], is to increase

the amount of search used to find proofs automatically during interactive theorem

proving. The forward chaining proof strategy has therefore been modified to increase

the likelihood that a theorem marked as a forward chaining rule will be used auto-

matically by the ACL2 theorem prover. The modification increases the number of

theorems proven automatically at a cost of about 2 percent in the time required to

construct a proof. The modified proof strategy is now part of the default forward

chaining proof technique used in the ACL2 theorem prover.

• Another method to reduce verification cost is through the integration of fully-
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automated formal verification techniques with interactive theorem proving. By iden-

tifying the Subclass of Unrollable List Formulas in ACL2 (SULFA) and proving it

decidable, we have found a class of problems within an interactive theorem prover on

which fully-automated techniques may be applied.

SULFA is an interesting subclass in that it can be recognized efficiently and is built di-

rectly from the ACL2 core primitives—the small set of ACL2 primitives listed in Ta-

ble 3.1, from which all other ACL2 functions are defined. Furthermore, unlike most

identified decidable subclasses within first-order logic, SULFA contains a mechanism

for extension with new functions and their defining axioms while maintaining decid-

ability. Many useful properties are in SULFA, including 1,249 formulas in the ACL2

regression suite (3.2 percent). Also, finite-state machine models can be constructed

such that any property concerning only a finite number of steps of the machine is in

SULFA.

We have also developed an efficient recognizer for SULFA formulas and a SULFA

solver that proves and disproves SULFA formulas automatically by translating them

into the Boolean conjunctive normal form (CNF) required by SAT solvers. This tool

is now available as part of the standard distribution of the ACL2 theorem prover.

• The data-tile protocol implementation within the TRIPS processor was verified using

a mixture of the SAT-based SULFA solver and interactive theorem proving. The

verification strategy reduces safety and liveness properties into finite-step SULFA

properties. Significant human effort was avoided by using the SAT-based SULFA

solver instead of verifying the SULFA properties using interactive theorem proving.

Furthermore, the data-tile protocol is a novel component required by TRIPS multi-

tile architecture, which addresses up-coming challenges in computer architecture.

By verifying it, we have helped to build formal verification expertise in a new type of

hardware design, beyond the floating-point units verified formally in industry today.
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• An SMT solver has also been developed for the standard SMT theory of bit vectors by

combining the ACL2 simplifier and the SAT-based SULFA solver. This SULFA SMT

solver is able to verify all 8,246 problems in the SMT 2006 QF UFBV32 benchmark

suite. Furthermore, the SULFA SMT solver provides a greater degree of flexibility

than traditional SMT solvers—the SULFA SMT solver can be extended with new

primitives and rewrite rules, which are verified by interactive theorem proving. We

believe such flexibility is a key component of developing general-purpose algorithms

that can be specialized for different types of hardware units, such as communication

protocols, floating-point units, and load store units.

• We have also explored the integration of fully-automated and interactive theorem

proving techniques through the development of the ACL2SIX hint, which integrates

IBM’s SixthSense model checker with the ACL2 theorem prover. The ACL2SIX hint

is unique in that not only does it decrease the amount of human guidance required in

hardware verification, but it also avoids the need to create and maintain a semantics

for VHDL in the ACL2 logic. The ACL2SIX hint has been applied to the formal

verification of a high-performance multiplier circuit used in an industrial floating-

point multiplier design. The multiplier circuit we verified is beyond the scope of what

can be verified by SixthSense alone and the resulting ACL2 proof is much simpler

than what would be required without SixthSense.

• Originally, both the SAT-based SULFA solver and the ACL2SIX hint required direct

modifications to the ACL2 theorem prover. Discovering how to modify a sophisti-

cated general-purpose interactive theorem prover in a sound manner is a lengthy pro-

cess. A new mechanism has now been developed, however, for dynamically extend-

ing the theorem prover with new proof techniques, called clause processors. Clause

processors may be either verified or unverified. Verified clause processors reduce the

correctness of the proof technique to the correctness of the underlying ACL2 theorem

prover. Unverified clause processors must be declared by their users to be trusted and
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no theorem proven by an unverified clause processor will effect the theorem prover

of a user that has not declared it. The new unverified clause processor mechanism

supports the dynamic extension of ACL2 with either (or both) the SAT-based SULFA

solver or the ACL2SIX hint.

• Another method to simplify the formal verification of hardware designs is to develop

hardware description languages that are more amenable to formal verification. The

DE2 hardware description language has thus been developed with hardware verifica-

tion in mind. Its novel annotations feature provides the ability to incorporate spec-

ification into code, including specifications of non-functional behavior, e.g., power

specifications, extended type signatures, and layout information. DE2 also has a sim-

ple semantics, making the task of formal verification of DE2 designs easier. The

semantics of DE2 are also written in the logic of the ACL2 theorem prover, which

provides access to a highly-automated, scalable hardware verification tool.

The main focus of the above contributions has been to decrease the amount of user

guidance required by large-scale hardware verification. Our contributions have been divided

along a broad front: from developing new hardware description languages to increasing the

automation and flexibility of formal verification techniques and developing expertise with

those techniques on complex processor designs.

Furthermore, our work points to further possible improvements.

• The DE2 language could be applied to the verification of non-functional design fea-

tures, such as power, and the verification of programs that operate on circuits, such

as timing and power optimization programs.

• The subclass of ACL2 formulas can be expanded to include properties involving

arithmetic and constrained functions, as well as some properties that currently re-

quire induction.
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• The performance of the SAT-based SULFA solver can be improved with improved

SAT solvers, improved conversion techniques, and support for abstraction with auto-

mated refinement.

• A tighter integration between SixthSense and ACL2 can be created. A definition

extension principle can be created to admit functions that are unrollable into bit-

vector primitives. Also, multiple clock cycle variables can be supported to admit

more sophisticated linear temporal logic properties.

By continuing to improve formal verification techniques and developing expertise

over a larger set of hardware designs, we believe that formal verification will become cost-

effective over an ever increasing set of hardware designs, eventually leading to the formal

verification of entire large-scale industrial processors.
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